windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / aarch64-tdep.c
CommitLineData
07b287a0
MS
1/* Common target dependent code for GDB on AArch64 systems.
2
32d0add0 3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
07b287a0
MS
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22
23#include "frame.h"
24#include "inferior.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
07b287a0
MS
27#include "dis-asm.h"
28#include "regcache.h"
29#include "reggroups.h"
30#include "doublest.h"
31#include "value.h"
32#include "arch-utils.h"
33#include "osabi.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
36#include "trad-frame.h"
37#include "objfiles.h"
38#include "dwarf2-frame.h"
39#include "gdbtypes.h"
40#include "prologue-value.h"
41#include "target-descriptions.h"
42#include "user-regs.h"
43#include "language.h"
44#include "infcall.h"
45
46#include "aarch64-tdep.h"
47
48#include "elf-bfd.h"
49#include "elf/aarch64.h"
50
07b287a0
MS
51#include "vec.h"
52
53#include "features/aarch64.c"
07b287a0
MS
54
55/* Pseudo register base numbers. */
56#define AARCH64_Q0_REGNUM 0
57#define AARCH64_D0_REGNUM (AARCH64_Q0_REGNUM + 32)
58#define AARCH64_S0_REGNUM (AARCH64_D0_REGNUM + 32)
59#define AARCH64_H0_REGNUM (AARCH64_S0_REGNUM + 32)
60#define AARCH64_B0_REGNUM (AARCH64_H0_REGNUM + 32)
61
62/* The standard register names, and all the valid aliases for them. */
63static const struct
64{
65 const char *const name;
66 int regnum;
67} aarch64_register_aliases[] =
68{
69 /* 64-bit register names. */
70 {"fp", AARCH64_FP_REGNUM},
71 {"lr", AARCH64_LR_REGNUM},
72 {"sp", AARCH64_SP_REGNUM},
73
74 /* 32-bit register names. */
75 {"w0", AARCH64_X0_REGNUM + 0},
76 {"w1", AARCH64_X0_REGNUM + 1},
77 {"w2", AARCH64_X0_REGNUM + 2},
78 {"w3", AARCH64_X0_REGNUM + 3},
79 {"w4", AARCH64_X0_REGNUM + 4},
80 {"w5", AARCH64_X0_REGNUM + 5},
81 {"w6", AARCH64_X0_REGNUM + 6},
82 {"w7", AARCH64_X0_REGNUM + 7},
83 {"w8", AARCH64_X0_REGNUM + 8},
84 {"w9", AARCH64_X0_REGNUM + 9},
85 {"w10", AARCH64_X0_REGNUM + 10},
86 {"w11", AARCH64_X0_REGNUM + 11},
87 {"w12", AARCH64_X0_REGNUM + 12},
88 {"w13", AARCH64_X0_REGNUM + 13},
89 {"w14", AARCH64_X0_REGNUM + 14},
90 {"w15", AARCH64_X0_REGNUM + 15},
91 {"w16", AARCH64_X0_REGNUM + 16},
92 {"w17", AARCH64_X0_REGNUM + 17},
93 {"w18", AARCH64_X0_REGNUM + 18},
94 {"w19", AARCH64_X0_REGNUM + 19},
95 {"w20", AARCH64_X0_REGNUM + 20},
96 {"w21", AARCH64_X0_REGNUM + 21},
97 {"w22", AARCH64_X0_REGNUM + 22},
98 {"w23", AARCH64_X0_REGNUM + 23},
99 {"w24", AARCH64_X0_REGNUM + 24},
100 {"w25", AARCH64_X0_REGNUM + 25},
101 {"w26", AARCH64_X0_REGNUM + 26},
102 {"w27", AARCH64_X0_REGNUM + 27},
103 {"w28", AARCH64_X0_REGNUM + 28},
104 {"w29", AARCH64_X0_REGNUM + 29},
105 {"w30", AARCH64_X0_REGNUM + 30},
106
107 /* specials */
108 {"ip0", AARCH64_X0_REGNUM + 16},
109 {"ip1", AARCH64_X0_REGNUM + 17}
110};
111
112/* The required core 'R' registers. */
113static const char *const aarch64_r_register_names[] =
114{
115 /* These registers must appear in consecutive RAW register number
116 order and they must begin with AARCH64_X0_REGNUM! */
117 "x0", "x1", "x2", "x3",
118 "x4", "x5", "x6", "x7",
119 "x8", "x9", "x10", "x11",
120 "x12", "x13", "x14", "x15",
121 "x16", "x17", "x18", "x19",
122 "x20", "x21", "x22", "x23",
123 "x24", "x25", "x26", "x27",
124 "x28", "x29", "x30", "sp",
125 "pc", "cpsr"
126};
127
128/* The FP/SIMD 'V' registers. */
129static const char *const aarch64_v_register_names[] =
130{
131 /* These registers must appear in consecutive RAW register number
132 order and they must begin with AARCH64_V0_REGNUM! */
133 "v0", "v1", "v2", "v3",
134 "v4", "v5", "v6", "v7",
135 "v8", "v9", "v10", "v11",
136 "v12", "v13", "v14", "v15",
137 "v16", "v17", "v18", "v19",
138 "v20", "v21", "v22", "v23",
139 "v24", "v25", "v26", "v27",
140 "v28", "v29", "v30", "v31",
141 "fpsr",
142 "fpcr"
143};
144
145/* AArch64 prologue cache structure. */
146struct aarch64_prologue_cache
147{
148 /* The stack pointer at the time this frame was created; i.e. the
149 caller's stack pointer when this function was called. It is used
150 to identify this frame. */
151 CORE_ADDR prev_sp;
152
153 /* The frame base for this frame is just prev_sp - frame size.
154 FRAMESIZE is the distance from the frame pointer to the
155 initial stack pointer. */
156 int framesize;
157
158 /* The register used to hold the frame pointer for this frame. */
159 int framereg;
160
161 /* Saved register offsets. */
162 struct trad_frame_saved_reg *saved_regs;
163};
164
165/* Toggle this file's internal debugging dump. */
166static int aarch64_debug;
167
168static void
169show_aarch64_debug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
173}
174
175/* Extract a signed value from a bit field within an instruction
176 encoding.
177
178 INSN is the instruction opcode.
179
180 WIDTH specifies the width of the bit field to extract (in bits).
181
182 OFFSET specifies the least significant bit of the field where bits
183 are numbered zero counting from least to most significant. */
184
185static int32_t
186extract_signed_bitfield (uint32_t insn, unsigned width, unsigned offset)
187{
188 unsigned shift_l = sizeof (int32_t) * 8 - (offset + width);
189 unsigned shift_r = sizeof (int32_t) * 8 - width;
190
191 return ((int32_t) insn << shift_l) >> shift_r;
192}
193
194/* Determine if specified bits within an instruction opcode matches a
195 specific pattern.
196
197 INSN is the instruction opcode.
198
199 MASK specifies the bits within the opcode that are to be tested
200 agsinst for a match with PATTERN. */
201
202static int
203decode_masked_match (uint32_t insn, uint32_t mask, uint32_t pattern)
204{
205 return (insn & mask) == pattern;
206}
207
208/* Decode an opcode if it represents an immediate ADD or SUB instruction.
209
210 ADDR specifies the address of the opcode.
211 INSN specifies the opcode to test.
212 RD receives the 'rd' field from the decoded instruction.
213 RN receives the 'rn' field from the decoded instruction.
214
215 Return 1 if the opcodes matches and is decoded, otherwise 0. */
216static int
217decode_add_sub_imm (CORE_ADDR addr, uint32_t insn, unsigned *rd, unsigned *rn,
218 int32_t *imm)
219{
220 if ((insn & 0x9f000000) == 0x91000000)
221 {
222 unsigned shift;
223 unsigned op_is_sub;
224
225 *rd = (insn >> 0) & 0x1f;
226 *rn = (insn >> 5) & 0x1f;
227 *imm = (insn >> 10) & 0xfff;
228 shift = (insn >> 22) & 0x3;
229 op_is_sub = (insn >> 30) & 0x1;
230
231 switch (shift)
232 {
233 case 0:
234 break;
235 case 1:
236 *imm <<= 12;
237 break;
238 default:
239 /* UNDEFINED */
240 return 0;
241 }
242
243 if (op_is_sub)
244 *imm = -*imm;
245
246 if (aarch64_debug)
247 fprintf_unfiltered (gdb_stdlog,
248 "decode: 0x%s 0x%x add x%u, x%u, #%d\n",
249 core_addr_to_string_nz (addr), insn, *rd, *rn,
250 *imm);
251 return 1;
252 }
253 return 0;
254}
255
256/* Decode an opcode if it represents an ADRP instruction.
257
258 ADDR specifies the address of the opcode.
259 INSN specifies the opcode to test.
260 RD receives the 'rd' field from the decoded instruction.
261
262 Return 1 if the opcodes matches and is decoded, otherwise 0. */
263
264static int
265decode_adrp (CORE_ADDR addr, uint32_t insn, unsigned *rd)
266{
267 if (decode_masked_match (insn, 0x9f000000, 0x90000000))
268 {
269 *rd = (insn >> 0) & 0x1f;
270
271 if (aarch64_debug)
272 fprintf_unfiltered (gdb_stdlog,
273 "decode: 0x%s 0x%x adrp x%u, #?\n",
274 core_addr_to_string_nz (addr), insn, *rd);
275 return 1;
276 }
277 return 0;
278}
279
280/* Decode an opcode if it represents an branch immediate or branch
281 and link immediate instruction.
282
283 ADDR specifies the address of the opcode.
284 INSN specifies the opcode to test.
285 LINK receives the 'link' bit from the decoded instruction.
286 OFFSET receives the immediate offset from the decoded instruction.
287
288 Return 1 if the opcodes matches and is decoded, otherwise 0. */
289
290static int
291decode_b (CORE_ADDR addr, uint32_t insn, unsigned *link, int32_t *offset)
292{
293 /* b 0001 01ii iiii iiii iiii iiii iiii iiii */
294 /* bl 1001 01ii iiii iiii iiii iiii iiii iiii */
295 if (decode_masked_match (insn, 0x7c000000, 0x14000000))
296 {
297 *link = insn >> 31;
298 *offset = extract_signed_bitfield (insn, 26, 0) << 2;
299
300 if (aarch64_debug)
301 fprintf_unfiltered (gdb_stdlog,
302 "decode: 0x%s 0x%x %s 0x%s\n",
303 core_addr_to_string_nz (addr), insn,
304 *link ? "bl" : "b",
305 core_addr_to_string_nz (addr + *offset));
306
307 return 1;
308 }
309 return 0;
310}
311
312/* Decode an opcode if it represents a conditional branch instruction.
313
314 ADDR specifies the address of the opcode.
315 INSN specifies the opcode to test.
316 COND receives the branch condition field from the decoded
317 instruction.
318 OFFSET receives the immediate offset from the decoded instruction.
319
320 Return 1 if the opcodes matches and is decoded, otherwise 0. */
321
322static int
323decode_bcond (CORE_ADDR addr, uint32_t insn, unsigned *cond, int32_t *offset)
324{
325 if (decode_masked_match (insn, 0xfe000000, 0x54000000))
326 {
327 *cond = (insn >> 0) & 0xf;
328 *offset = extract_signed_bitfield (insn, 19, 5) << 2;
329
330 if (aarch64_debug)
331 fprintf_unfiltered (gdb_stdlog,
332 "decode: 0x%s 0x%x b<%u> 0x%s\n",
333 core_addr_to_string_nz (addr), insn, *cond,
334 core_addr_to_string_nz (addr + *offset));
335 return 1;
336 }
337 return 0;
338}
339
340/* Decode an opcode if it represents a branch via register instruction.
341
342 ADDR specifies the address of the opcode.
343 INSN specifies the opcode to test.
344 LINK receives the 'link' bit from the decoded instruction.
345 RN receives the 'rn' field from the decoded instruction.
346
347 Return 1 if the opcodes matches and is decoded, otherwise 0. */
348
349static int
350decode_br (CORE_ADDR addr, uint32_t insn, unsigned *link, unsigned *rn)
351{
352 /* 8 4 0 6 2 8 4 0 */
353 /* blr 110101100011111100000000000rrrrr */
354 /* br 110101100001111100000000000rrrrr */
355 if (decode_masked_match (insn, 0xffdffc1f, 0xd61f0000))
356 {
357 *link = (insn >> 21) & 1;
358 *rn = (insn >> 5) & 0x1f;
359
360 if (aarch64_debug)
361 fprintf_unfiltered (gdb_stdlog,
362 "decode: 0x%s 0x%x %s 0x%x\n",
363 core_addr_to_string_nz (addr), insn,
364 *link ? "blr" : "br", *rn);
365
366 return 1;
367 }
368 return 0;
369}
370
371/* Decode an opcode if it represents a CBZ or CBNZ instruction.
372
373 ADDR specifies the address of the opcode.
374 INSN specifies the opcode to test.
375 IS64 receives the 'sf' field from the decoded instruction.
376 OP receives the 'op' field from the decoded instruction.
377 RN receives the 'rn' field from the decoded instruction.
378 OFFSET receives the 'imm19' field from the decoded instruction.
379
380 Return 1 if the opcodes matches and is decoded, otherwise 0. */
381
382static int
383decode_cb (CORE_ADDR addr,
384 uint32_t insn, int *is64, unsigned *op, unsigned *rn,
385 int32_t *offset)
386{
387 if (decode_masked_match (insn, 0x7e000000, 0x34000000))
388 {
389 /* cbz T011 010o iiii iiii iiii iiii iiir rrrr */
390 /* cbnz T011 010o iiii iiii iiii iiii iiir rrrr */
391
392 *rn = (insn >> 0) & 0x1f;
393 *is64 = (insn >> 31) & 0x1;
394 *op = (insn >> 24) & 0x1;
395 *offset = extract_signed_bitfield (insn, 19, 5) << 2;
396
397 if (aarch64_debug)
398 fprintf_unfiltered (gdb_stdlog,
399 "decode: 0x%s 0x%x %s 0x%s\n",
400 core_addr_to_string_nz (addr), insn,
401 *op ? "cbnz" : "cbz",
402 core_addr_to_string_nz (addr + *offset));
403 return 1;
404 }
405 return 0;
406}
407
408/* Decode an opcode if it represents a ERET instruction.
409
410 ADDR specifies the address of the opcode.
411 INSN specifies the opcode to test.
412
413 Return 1 if the opcodes matches and is decoded, otherwise 0. */
414
415static int
416decode_eret (CORE_ADDR addr, uint32_t insn)
417{
418 /* eret 1101 0110 1001 1111 0000 0011 1110 0000 */
419 if (insn == 0xd69f03e0)
420 {
421 if (aarch64_debug)
422 fprintf_unfiltered (gdb_stdlog, "decode: 0x%s 0x%x eret\n",
423 core_addr_to_string_nz (addr), insn);
424 return 1;
425 }
426 return 0;
427}
428
429/* Decode an opcode if it represents a MOVZ instruction.
430
431 ADDR specifies the address of the opcode.
432 INSN specifies the opcode to test.
433 RD receives the 'rd' field from the decoded instruction.
434
435 Return 1 if the opcodes matches and is decoded, otherwise 0. */
436
437static int
438decode_movz (CORE_ADDR addr, uint32_t insn, unsigned *rd)
439{
440 if (decode_masked_match (insn, 0xff800000, 0x52800000))
441 {
442 *rd = (insn >> 0) & 0x1f;
443
444 if (aarch64_debug)
445 fprintf_unfiltered (gdb_stdlog,
446 "decode: 0x%s 0x%x movz x%u, #?\n",
447 core_addr_to_string_nz (addr), insn, *rd);
448 return 1;
449 }
450 return 0;
451}
452
453/* Decode an opcode if it represents a ORR (shifted register)
454 instruction.
455
456 ADDR specifies the address of the opcode.
457 INSN specifies the opcode to test.
458 RD receives the 'rd' field from the decoded instruction.
459 RN receives the 'rn' field from the decoded instruction.
460 RM receives the 'rm' field from the decoded instruction.
461 IMM receives the 'imm6' field from the decoded instruction.
462
463 Return 1 if the opcodes matches and is decoded, otherwise 0. */
464
465static int
466decode_orr_shifted_register_x (CORE_ADDR addr,
467 uint32_t insn, unsigned *rd, unsigned *rn,
468 unsigned *rm, int32_t *imm)
469{
470 if (decode_masked_match (insn, 0xff200000, 0xaa000000))
471 {
472 *rd = (insn >> 0) & 0x1f;
473 *rn = (insn >> 5) & 0x1f;
474 *rm = (insn >> 16) & 0x1f;
475 *imm = (insn >> 10) & 0x3f;
476
477 if (aarch64_debug)
478 fprintf_unfiltered (gdb_stdlog,
479 "decode: 0x%s 0x%x orr x%u, x%u, x%u, #%u\n",
480 core_addr_to_string_nz (addr), insn, *rd,
481 *rn, *rm, *imm);
482 return 1;
483 }
484 return 0;
485}
486
487/* Decode an opcode if it represents a RET instruction.
488
489 ADDR specifies the address of the opcode.
490 INSN specifies the opcode to test.
491 RN receives the 'rn' field from the decoded instruction.
492
493 Return 1 if the opcodes matches and is decoded, otherwise 0. */
494
495static int
496decode_ret (CORE_ADDR addr, uint32_t insn, unsigned *rn)
497{
498 if (decode_masked_match (insn, 0xfffffc1f, 0xd65f0000))
499 {
500 *rn = (insn >> 5) & 0x1f;
501 if (aarch64_debug)
502 fprintf_unfiltered (gdb_stdlog,
503 "decode: 0x%s 0x%x ret x%u\n",
504 core_addr_to_string_nz (addr), insn, *rn);
505 return 1;
506 }
507 return 0;
508}
509
510/* Decode an opcode if it represents the following instruction:
511 STP rt, rt2, [rn, #imm]
512
513 ADDR specifies the address of the opcode.
514 INSN specifies the opcode to test.
515 RT1 receives the 'rt' field from the decoded instruction.
516 RT2 receives the 'rt2' field from the decoded instruction.
517 RN receives the 'rn' field from the decoded instruction.
518 IMM receives the 'imm' field from the decoded instruction.
519
520 Return 1 if the opcodes matches and is decoded, otherwise 0. */
521
522static int
523decode_stp_offset (CORE_ADDR addr,
524 uint32_t insn,
525 unsigned *rt1, unsigned *rt2, unsigned *rn, int32_t *imm)
526{
527 if (decode_masked_match (insn, 0xffc00000, 0xa9000000))
528 {
529 *rt1 = (insn >> 0) & 0x1f;
530 *rn = (insn >> 5) & 0x1f;
531 *rt2 = (insn >> 10) & 0x1f;
532 *imm = extract_signed_bitfield (insn, 7, 15);
533 *imm <<= 3;
534
535 if (aarch64_debug)
536 fprintf_unfiltered (gdb_stdlog,
537 "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]\n",
538 core_addr_to_string_nz (addr), insn,
539 *rt1, *rt2, *rn, *imm);
540 return 1;
541 }
542 return 0;
543}
544
545/* Decode an opcode if it represents the following instruction:
546 STP rt, rt2, [rn, #imm]!
547
548 ADDR specifies the address of the opcode.
549 INSN specifies the opcode to test.
550 RT1 receives the 'rt' field from the decoded instruction.
551 RT2 receives the 'rt2' field from the decoded instruction.
552 RN receives the 'rn' field from the decoded instruction.
553 IMM receives the 'imm' field from the decoded instruction.
554
555 Return 1 if the opcodes matches and is decoded, otherwise 0. */
556
557static int
558decode_stp_offset_wb (CORE_ADDR addr,
559 uint32_t insn,
560 unsigned *rt1, unsigned *rt2, unsigned *rn,
561 int32_t *imm)
562{
563 if (decode_masked_match (insn, 0xffc00000, 0xa9800000))
564 {
565 *rt1 = (insn >> 0) & 0x1f;
566 *rn = (insn >> 5) & 0x1f;
567 *rt2 = (insn >> 10) & 0x1f;
568 *imm = extract_signed_bitfield (insn, 7, 15);
569 *imm <<= 3;
570
571 if (aarch64_debug)
572 fprintf_unfiltered (gdb_stdlog,
573 "decode: 0x%s 0x%x stp x%u, x%u, [x%u + #%d]!\n",
574 core_addr_to_string_nz (addr), insn,
575 *rt1, *rt2, *rn, *imm);
576 return 1;
577 }
578 return 0;
579}
580
581/* Decode an opcode if it represents the following instruction:
582 STUR rt, [rn, #imm]
583
584 ADDR specifies the address of the opcode.
585 INSN specifies the opcode to test.
586 IS64 receives size field from the decoded instruction.
587 RT receives the 'rt' field from the decoded instruction.
588 RN receives the 'rn' field from the decoded instruction.
589 IMM receives the 'imm' field from the decoded instruction.
590
591 Return 1 if the opcodes matches and is decoded, otherwise 0. */
592
593static int
594decode_stur (CORE_ADDR addr, uint32_t insn, int *is64, unsigned *rt,
595 unsigned *rn, int32_t *imm)
596{
597 if (decode_masked_match (insn, 0xbfe00c00, 0xb8000000))
598 {
599 *is64 = (insn >> 30) & 1;
600 *rt = (insn >> 0) & 0x1f;
601 *rn = (insn >> 5) & 0x1f;
602 *imm = extract_signed_bitfield (insn, 9, 12);
603
604 if (aarch64_debug)
605 fprintf_unfiltered (gdb_stdlog,
606 "decode: 0x%s 0x%x stur %c%u, [x%u + #%d]\n",
607 core_addr_to_string_nz (addr), insn,
608 *is64 ? 'x' : 'w', *rt, *rn, *imm);
609 return 1;
610 }
611 return 0;
612}
613
614/* Decode an opcode if it represents a TB or TBNZ instruction.
615
616 ADDR specifies the address of the opcode.
617 INSN specifies the opcode to test.
618 OP receives the 'op' field from the decoded instruction.
619 BIT receives the bit position field from the decoded instruction.
620 RT receives 'rt' field from the decoded instruction.
621 IMM receives 'imm' field from the decoded instruction.
622
623 Return 1 if the opcodes matches and is decoded, otherwise 0. */
624
625static int
626decode_tb (CORE_ADDR addr,
627 uint32_t insn, unsigned *op, unsigned *bit, unsigned *rt,
628 int32_t *imm)
629{
630 if (decode_masked_match (insn, 0x7e000000, 0x36000000))
631 {
632 /* tbz b011 0110 bbbb biii iiii iiii iiir rrrr */
633 /* tbnz B011 0111 bbbb biii iiii iiii iiir rrrr */
634
635 *rt = (insn >> 0) & 0x1f;
636 *op = insn & (1 << 24);
637 *bit = ((insn >> (31 - 4)) & 0x20) | ((insn >> 19) & 0x1f);
638 *imm = extract_signed_bitfield (insn, 14, 5) << 2;
639
640 if (aarch64_debug)
641 fprintf_unfiltered (gdb_stdlog,
642 "decode: 0x%s 0x%x %s x%u, #%u, 0x%s\n",
643 core_addr_to_string_nz (addr), insn,
644 *op ? "tbnz" : "tbz", *rt, *bit,
645 core_addr_to_string_nz (addr + *imm));
646 return 1;
647 }
648 return 0;
649}
650
651/* Analyze a prologue, looking for a recognizable stack frame
652 and frame pointer. Scan until we encounter a store that could
653 clobber the stack frame unexpectedly, or an unknown instruction. */
654
655static CORE_ADDR
656aarch64_analyze_prologue (struct gdbarch *gdbarch,
657 CORE_ADDR start, CORE_ADDR limit,
658 struct aarch64_prologue_cache *cache)
659{
660 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
661 int i;
662 pv_t regs[AARCH64_X_REGISTER_COUNT];
663 struct pv_area *stack;
664 struct cleanup *back_to;
665
666 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
667 regs[i] = pv_register (i, 0);
668 stack = make_pv_area (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
669 back_to = make_cleanup_free_pv_area (stack);
670
671 for (; start < limit; start += 4)
672 {
673 uint32_t insn;
674 unsigned rd;
675 unsigned rn;
676 unsigned rm;
677 unsigned rt;
678 unsigned rt1;
679 unsigned rt2;
680 int op_is_sub;
681 int32_t imm;
682 unsigned cond;
96b32e50 683 int is64;
07b287a0
MS
684 unsigned is_link;
685 unsigned op;
686 unsigned bit;
687 int32_t offset;
688
689 insn = read_memory_unsigned_integer (start, 4, byte_order_for_code);
690
691 if (decode_add_sub_imm (start, insn, &rd, &rn, &imm))
692 regs[rd] = pv_add_constant (regs[rn], imm);
693 else if (decode_adrp (start, insn, &rd))
694 regs[rd] = pv_unknown ();
695 else if (decode_b (start, insn, &is_link, &offset))
696 {
697 /* Stop analysis on branch. */
698 break;
699 }
700 else if (decode_bcond (start, insn, &cond, &offset))
701 {
702 /* Stop analysis on branch. */
703 break;
704 }
705 else if (decode_br (start, insn, &is_link, &rn))
706 {
707 /* Stop analysis on branch. */
708 break;
709 }
710 else if (decode_cb (start, insn, &is64, &op, &rn, &offset))
711 {
712 /* Stop analysis on branch. */
713 break;
714 }
715 else if (decode_eret (start, insn))
716 {
717 /* Stop analysis on branch. */
718 break;
719 }
720 else if (decode_movz (start, insn, &rd))
721 regs[rd] = pv_unknown ();
722 else
723 if (decode_orr_shifted_register_x (start, insn, &rd, &rn, &rm, &imm))
724 {
725 if (imm == 0 && rn == 31)
726 regs[rd] = regs[rm];
727 else
728 {
729 if (aarch64_debug)
730 fprintf_unfiltered
731 (gdb_stdlog,
732 "aarch64: prologue analysis gave up addr=0x%s "
733 "opcode=0x%x (orr x register)\n",
734 core_addr_to_string_nz (start),
735 insn);
736 break;
737 }
738 }
739 else if (decode_ret (start, insn, &rn))
740 {
741 /* Stop analysis on branch. */
742 break;
743 }
744 else if (decode_stur (start, insn, &is64, &rt, &rn, &offset))
745 {
746 pv_area_store (stack, pv_add_constant (regs[rn], offset),
747 is64 ? 8 : 4, regs[rt]);
748 }
749 else if (decode_stp_offset (start, insn, &rt1, &rt2, &rn, &imm))
750 {
751 /* If recording this store would invalidate the store area
752 (perhaps because rn is not known) then we should abandon
753 further prologue analysis. */
754 if (pv_area_store_would_trash (stack,
755 pv_add_constant (regs[rn], imm)))
756 break;
757
758 if (pv_area_store_would_trash (stack,
759 pv_add_constant (regs[rn], imm + 8)))
760 break;
761
762 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
763 regs[rt1]);
764 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
765 regs[rt2]);
766 }
767 else if (decode_stp_offset_wb (start, insn, &rt1, &rt2, &rn, &imm))
768 {
769 /* If recording this store would invalidate the store area
770 (perhaps because rn is not known) then we should abandon
771 further prologue analysis. */
772 if (pv_area_store_would_trash (stack,
14ac654f
MS
773 pv_add_constant (regs[rn], imm)))
774 break;
775
776 if (pv_area_store_would_trash (stack,
07b287a0
MS
777 pv_add_constant (regs[rn], imm + 8)))
778 break;
779
780 pv_area_store (stack, pv_add_constant (regs[rn], imm), 8,
781 regs[rt1]);
782 pv_area_store (stack, pv_add_constant (regs[rn], imm + 8), 8,
783 regs[rt2]);
784 regs[rn] = pv_add_constant (regs[rn], imm);
785 }
786 else if (decode_tb (start, insn, &op, &bit, &rn, &offset))
787 {
788 /* Stop analysis on branch. */
789 break;
790 }
791 else
792 {
793 if (aarch64_debug)
794 fprintf_unfiltered (gdb_stdlog,
795 "aarch64: prologue analysis gave up addr=0x%s"
796 " opcode=0x%x\n",
797 core_addr_to_string_nz (start), insn);
798 break;
799 }
800 }
801
802 if (cache == NULL)
803 {
804 do_cleanups (back_to);
805 return start;
806 }
807
808 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
809 {
810 /* Frame pointer is fp. Frame size is constant. */
811 cache->framereg = AARCH64_FP_REGNUM;
812 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
813 }
814 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
815 {
816 /* Try the stack pointer. */
817 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
818 cache->framereg = AARCH64_SP_REGNUM;
819 }
820 else
821 {
822 /* We're just out of luck. We don't know where the frame is. */
823 cache->framereg = -1;
824 cache->framesize = 0;
825 }
826
827 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
828 {
829 CORE_ADDR offset;
830
831 if (pv_area_find_reg (stack, gdbarch, i, &offset))
832 cache->saved_regs[i].addr = offset;
833 }
834
835 do_cleanups (back_to);
836 return start;
837}
838
839/* Implement the "skip_prologue" gdbarch method. */
840
841static CORE_ADDR
842aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
843{
844 unsigned long inst;
845 CORE_ADDR skip_pc;
846 CORE_ADDR func_addr, limit_pc;
847 struct symtab_and_line sal;
848
849 /* See if we can determine the end of the prologue via the symbol
850 table. If so, then return either PC, or the PC after the
851 prologue, whichever is greater. */
852 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
853 {
854 CORE_ADDR post_prologue_pc
855 = skip_prologue_using_sal (gdbarch, func_addr);
856
857 if (post_prologue_pc != 0)
858 return max (pc, post_prologue_pc);
859 }
860
861 /* Can't determine prologue from the symbol table, need to examine
862 instructions. */
863
864 /* Find an upper limit on the function prologue using the debug
865 information. If the debug information could not be used to
866 provide that bound, then use an arbitrary large number as the
867 upper bound. */
868 limit_pc = skip_prologue_using_sal (gdbarch, pc);
869 if (limit_pc == 0)
870 limit_pc = pc + 128; /* Magic. */
871
872 /* Try disassembling prologue. */
873 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
874}
875
876/* Scan the function prologue for THIS_FRAME and populate the prologue
877 cache CACHE. */
878
879static void
880aarch64_scan_prologue (struct frame_info *this_frame,
881 struct aarch64_prologue_cache *cache)
882{
883 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
884 CORE_ADDR prologue_start;
885 CORE_ADDR prologue_end;
886 CORE_ADDR prev_pc = get_frame_pc (this_frame);
887 struct gdbarch *gdbarch = get_frame_arch (this_frame);
888
889 /* Assume we do not find a frame. */
890 cache->framereg = -1;
891 cache->framesize = 0;
892
893 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
894 &prologue_end))
895 {
896 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
897
898 if (sal.line == 0)
899 {
900 /* No line info so use the current PC. */
901 prologue_end = prev_pc;
902 }
903 else if (sal.end < prologue_end)
904 {
905 /* The next line begins after the function end. */
906 prologue_end = sal.end;
907 }
908
909 prologue_end = min (prologue_end, prev_pc);
910 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
911 }
912 else
913 {
914 CORE_ADDR frame_loc;
915 LONGEST saved_fp;
916 LONGEST saved_lr;
917 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
918
919 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
920 if (frame_loc == 0)
921 return;
922
923 cache->framereg = AARCH64_FP_REGNUM;
924 cache->framesize = 16;
925 cache->saved_regs[29].addr = 0;
926 cache->saved_regs[30].addr = 8;
927 }
928}
929
930/* Allocate an aarch64_prologue_cache and fill it with information
931 about the prologue of *THIS_FRAME. */
932
933static struct aarch64_prologue_cache *
934aarch64_make_prologue_cache (struct frame_info *this_frame)
935{
936 struct aarch64_prologue_cache *cache;
937 CORE_ADDR unwound_fp;
938 int reg;
939
940 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
941 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
942
943 aarch64_scan_prologue (this_frame, cache);
944
945 if (cache->framereg == -1)
946 return cache;
947
948 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
949 if (unwound_fp == 0)
950 return cache;
951
952 cache->prev_sp = unwound_fp + cache->framesize;
953
954 /* Calculate actual addresses of saved registers using offsets
955 determined by aarch64_analyze_prologue. */
956 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
957 if (trad_frame_addr_p (cache->saved_regs, reg))
958 cache->saved_regs[reg].addr += cache->prev_sp;
959
960 return cache;
961}
962
963/* Our frame ID for a normal frame is the current function's starting
964 PC and the caller's SP when we were called. */
965
966static void
967aarch64_prologue_this_id (struct frame_info *this_frame,
968 void **this_cache, struct frame_id *this_id)
969{
970 struct aarch64_prologue_cache *cache;
971 struct frame_id id;
972 CORE_ADDR pc, func;
973
974 if (*this_cache == NULL)
975 *this_cache = aarch64_make_prologue_cache (this_frame);
976 cache = *this_cache;
977
978 /* This is meant to halt the backtrace at "_start". */
979 pc = get_frame_pc (this_frame);
980 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
981 return;
982
983 /* If we've hit a wall, stop. */
984 if (cache->prev_sp == 0)
985 return;
986
987 func = get_frame_func (this_frame);
988 id = frame_id_build (cache->prev_sp, func);
989 *this_id = id;
990}
991
992/* Implement the "prev_register" frame_unwind method. */
993
994static struct value *
995aarch64_prologue_prev_register (struct frame_info *this_frame,
996 void **this_cache, int prev_regnum)
997{
998 struct gdbarch *gdbarch = get_frame_arch (this_frame);
999 struct aarch64_prologue_cache *cache;
1000
1001 if (*this_cache == NULL)
1002 *this_cache = aarch64_make_prologue_cache (this_frame);
1003 cache = *this_cache;
1004
1005 /* If we are asked to unwind the PC, then we need to return the LR
1006 instead. The prologue may save PC, but it will point into this
1007 frame's prologue, not the next frame's resume location. */
1008 if (prev_regnum == AARCH64_PC_REGNUM)
1009 {
1010 CORE_ADDR lr;
1011
1012 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1013 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
1014 }
1015
1016 /* SP is generally not saved to the stack, but this frame is
1017 identified by the next frame's stack pointer at the time of the
1018 call. The value was already reconstructed into PREV_SP. */
1019 /*
1020 +----------+ ^
1021 | saved lr | |
1022 +->| saved fp |--+
1023 | | |
1024 | | | <- Previous SP
1025 | +----------+
1026 | | saved lr |
1027 +--| saved fp |<- FP
1028 | |
1029 | |<- SP
1030 +----------+ */
1031 if (prev_regnum == AARCH64_SP_REGNUM)
1032 return frame_unwind_got_constant (this_frame, prev_regnum,
1033 cache->prev_sp);
1034
1035 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1036 prev_regnum);
1037}
1038
1039/* AArch64 prologue unwinder. */
1040struct frame_unwind aarch64_prologue_unwind =
1041{
1042 NORMAL_FRAME,
1043 default_frame_unwind_stop_reason,
1044 aarch64_prologue_this_id,
1045 aarch64_prologue_prev_register,
1046 NULL,
1047 default_frame_sniffer
1048};
1049
1050/* Allocate an aarch64_prologue_cache and fill it with information
1051 about the prologue of *THIS_FRAME. */
1052
1053static struct aarch64_prologue_cache *
1054aarch64_make_stub_cache (struct frame_info *this_frame)
1055{
1056 int reg;
1057 struct aarch64_prologue_cache *cache;
1058 CORE_ADDR unwound_fp;
1059
1060 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1061 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1062
1063 cache->prev_sp
1064 = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1065
1066 return cache;
1067}
1068
1069/* Our frame ID for a stub frame is the current SP and LR. */
1070
1071static void
1072aarch64_stub_this_id (struct frame_info *this_frame,
1073 void **this_cache, struct frame_id *this_id)
1074{
1075 struct aarch64_prologue_cache *cache;
1076
1077 if (*this_cache == NULL)
1078 *this_cache = aarch64_make_stub_cache (this_frame);
1079 cache = *this_cache;
1080
1081 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
1082}
1083
1084/* Implement the "sniffer" frame_unwind method. */
1085
1086static int
1087aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
1088 struct frame_info *this_frame,
1089 void **this_prologue_cache)
1090{
1091 CORE_ADDR addr_in_block;
1092 gdb_byte dummy[4];
1093
1094 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 1095 if (in_plt_section (addr_in_block)
07b287a0
MS
1096 /* We also use the stub winder if the target memory is unreadable
1097 to avoid having the prologue unwinder trying to read it. */
1098 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1099 return 1;
1100
1101 return 0;
1102}
1103
1104/* AArch64 stub unwinder. */
1105struct frame_unwind aarch64_stub_unwind =
1106{
1107 NORMAL_FRAME,
1108 default_frame_unwind_stop_reason,
1109 aarch64_stub_this_id,
1110 aarch64_prologue_prev_register,
1111 NULL,
1112 aarch64_stub_unwind_sniffer
1113};
1114
1115/* Return the frame base address of *THIS_FRAME. */
1116
1117static CORE_ADDR
1118aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1119{
1120 struct aarch64_prologue_cache *cache;
1121
1122 if (*this_cache == NULL)
1123 *this_cache = aarch64_make_prologue_cache (this_frame);
1124 cache = *this_cache;
1125
1126 return cache->prev_sp - cache->framesize;
1127}
1128
1129/* AArch64 default frame base information. */
1130struct frame_base aarch64_normal_base =
1131{
1132 &aarch64_prologue_unwind,
1133 aarch64_normal_frame_base,
1134 aarch64_normal_frame_base,
1135 aarch64_normal_frame_base
1136};
1137
1138/* Assuming THIS_FRAME is a dummy, return the frame ID of that
1139 dummy frame. The frame ID's base needs to match the TOS value
1140 saved by save_dummy_frame_tos () and returned from
1141 aarch64_push_dummy_call, and the PC needs to match the dummy
1142 frame's breakpoint. */
1143
1144static struct frame_id
1145aarch64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1146{
1147 return frame_id_build (get_frame_register_unsigned (this_frame,
1148 AARCH64_SP_REGNUM),
1149 get_frame_pc (this_frame));
1150}
1151
1152/* Implement the "unwind_pc" gdbarch method. */
1153
1154static CORE_ADDR
1155aarch64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1156{
1157 CORE_ADDR pc
1158 = frame_unwind_register_unsigned (this_frame, AARCH64_PC_REGNUM);
1159
1160 return pc;
1161}
1162
1163/* Implement the "unwind_sp" gdbarch method. */
1164
1165static CORE_ADDR
1166aarch64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1167{
1168 return frame_unwind_register_unsigned (this_frame, AARCH64_SP_REGNUM);
1169}
1170
1171/* Return the value of the REGNUM register in the previous frame of
1172 *THIS_FRAME. */
1173
1174static struct value *
1175aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1176 void **this_cache, int regnum)
1177{
1178 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1179 CORE_ADDR lr;
1180
1181 switch (regnum)
1182 {
1183 case AARCH64_PC_REGNUM:
1184 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1185 return frame_unwind_got_constant (this_frame, regnum, lr);
1186
1187 default:
1188 internal_error (__FILE__, __LINE__,
1189 _("Unexpected register %d"), regnum);
1190 }
1191}
1192
1193/* Implement the "init_reg" dwarf2_frame_ops method. */
1194
1195static void
1196aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1197 struct dwarf2_frame_state_reg *reg,
1198 struct frame_info *this_frame)
1199{
1200 switch (regnum)
1201 {
1202 case AARCH64_PC_REGNUM:
1203 reg->how = DWARF2_FRAME_REG_FN;
1204 reg->loc.fn = aarch64_dwarf2_prev_register;
1205 break;
1206 case AARCH64_SP_REGNUM:
1207 reg->how = DWARF2_FRAME_REG_CFA;
1208 break;
1209 }
1210}
1211
1212/* When arguments must be pushed onto the stack, they go on in reverse
1213 order. The code below implements a FILO (stack) to do this. */
1214
1215typedef struct
1216{
1217 /* Value to pass on stack. */
1218 const void *data;
1219
1220 /* Size in bytes of value to pass on stack. */
1221 int len;
1222} stack_item_t;
1223
1224DEF_VEC_O (stack_item_t);
1225
1226/* Return the alignment (in bytes) of the given type. */
1227
1228static int
1229aarch64_type_align (struct type *t)
1230{
1231 int n;
1232 int align;
1233 int falign;
1234
1235 t = check_typedef (t);
1236 switch (TYPE_CODE (t))
1237 {
1238 default:
1239 /* Should never happen. */
1240 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1241 return 4;
1242
1243 case TYPE_CODE_PTR:
1244 case TYPE_CODE_ENUM:
1245 case TYPE_CODE_INT:
1246 case TYPE_CODE_FLT:
1247 case TYPE_CODE_SET:
1248 case TYPE_CODE_RANGE:
1249 case TYPE_CODE_BITSTRING:
1250 case TYPE_CODE_REF:
1251 case TYPE_CODE_CHAR:
1252 case TYPE_CODE_BOOL:
1253 return TYPE_LENGTH (t);
1254
1255 case TYPE_CODE_ARRAY:
1256 case TYPE_CODE_COMPLEX:
1257 return aarch64_type_align (TYPE_TARGET_TYPE (t));
1258
1259 case TYPE_CODE_STRUCT:
1260 case TYPE_CODE_UNION:
1261 align = 1;
1262 for (n = 0; n < TYPE_NFIELDS (t); n++)
1263 {
1264 falign = aarch64_type_align (TYPE_FIELD_TYPE (t, n));
1265 if (falign > align)
1266 align = falign;
1267 }
1268 return align;
1269 }
1270}
1271
1272/* Return 1 if *TY is a homogeneous floating-point aggregate as
1273 defined in the AAPCS64 ABI document; otherwise return 0. */
1274
1275static int
1276is_hfa (struct type *ty)
1277{
1278 switch (TYPE_CODE (ty))
1279 {
1280 case TYPE_CODE_ARRAY:
1281 {
1282 struct type *target_ty = TYPE_TARGET_TYPE (ty);
1283 if (TYPE_CODE (target_ty) == TYPE_CODE_FLT && TYPE_LENGTH (ty) <= 4)
1284 return 1;
1285 break;
1286 }
1287
1288 case TYPE_CODE_UNION:
1289 case TYPE_CODE_STRUCT:
1290 {
1291 if (TYPE_NFIELDS (ty) > 0 && TYPE_NFIELDS (ty) <= 4)
1292 {
1293 struct type *member0_type;
1294
1295 member0_type = check_typedef (TYPE_FIELD_TYPE (ty, 0));
1296 if (TYPE_CODE (member0_type) == TYPE_CODE_FLT)
1297 {
1298 int i;
1299
1300 for (i = 0; i < TYPE_NFIELDS (ty); i++)
1301 {
1302 struct type *member1_type;
1303
1304 member1_type = check_typedef (TYPE_FIELD_TYPE (ty, i));
1305 if (TYPE_CODE (member0_type) != TYPE_CODE (member1_type)
1306 || (TYPE_LENGTH (member0_type)
1307 != TYPE_LENGTH (member1_type)))
1308 return 0;
1309 }
1310 return 1;
1311 }
1312 }
1313 return 0;
1314 }
1315
1316 default:
1317 break;
1318 }
1319
1320 return 0;
1321}
1322
1323/* AArch64 function call information structure. */
1324struct aarch64_call_info
1325{
1326 /* the current argument number. */
1327 unsigned argnum;
1328
1329 /* The next general purpose register number, equivalent to NGRN as
1330 described in the AArch64 Procedure Call Standard. */
1331 unsigned ngrn;
1332
1333 /* The next SIMD and floating point register number, equivalent to
1334 NSRN as described in the AArch64 Procedure Call Standard. */
1335 unsigned nsrn;
1336
1337 /* The next stacked argument address, equivalent to NSAA as
1338 described in the AArch64 Procedure Call Standard. */
1339 unsigned nsaa;
1340
1341 /* Stack item vector. */
1342 VEC(stack_item_t) *si;
1343};
1344
1345/* Pass a value in a sequence of consecutive X registers. The caller
1346 is responsbile for ensuring sufficient registers are available. */
1347
1348static void
1349pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1350 struct aarch64_call_info *info, struct type *type,
1351 const bfd_byte *buf)
1352{
1353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1354 int len = TYPE_LENGTH (type);
1355 enum type_code typecode = TYPE_CODE (type);
1356 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1357
1358 info->argnum++;
1359
1360 while (len > 0)
1361 {
1362 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1363 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1364 byte_order);
1365
1366
1367 /* Adjust sub-word struct/union args when big-endian. */
1368 if (byte_order == BFD_ENDIAN_BIG
1369 && partial_len < X_REGISTER_SIZE
1370 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1371 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1372
1373 if (aarch64_debug)
1374 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1375 info->argnum,
1376 gdbarch_register_name (gdbarch, regnum),
1377 phex (regval, X_REGISTER_SIZE));
1378 regcache_cooked_write_unsigned (regcache, regnum, regval);
1379 len -= partial_len;
1380 buf += partial_len;
1381 regnum++;
1382 }
1383}
1384
1385/* Attempt to marshall a value in a V register. Return 1 if
1386 successful, or 0 if insufficient registers are available. This
1387 function, unlike the equivalent pass_in_x() function does not
1388 handle arguments spread across multiple registers. */
1389
1390static int
1391pass_in_v (struct gdbarch *gdbarch,
1392 struct regcache *regcache,
1393 struct aarch64_call_info *info,
1394 const bfd_byte *buf)
1395{
1396 if (info->nsrn < 8)
1397 {
1398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1399 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1400
1401 info->argnum++;
1402 info->nsrn++;
1403
1404 regcache_cooked_write (regcache, regnum, buf);
1405 if (aarch64_debug)
1406 fprintf_unfiltered (gdb_stdlog, "arg %d in %s\n",
1407 info->argnum,
1408 gdbarch_register_name (gdbarch, regnum));
1409 return 1;
1410 }
1411 info->nsrn = 8;
1412 return 0;
1413}
1414
1415/* Marshall an argument onto the stack. */
1416
1417static void
1418pass_on_stack (struct aarch64_call_info *info, struct type *type,
1419 const bfd_byte *buf)
1420{
1421 int len = TYPE_LENGTH (type);
1422 int align;
1423 stack_item_t item;
1424
1425 info->argnum++;
1426
1427 align = aarch64_type_align (type);
1428
1429 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1430 Natural alignment of the argument's type. */
1431 align = align_up (align, 8);
1432
1433 /* The AArch64 PCS requires at most doubleword alignment. */
1434 if (align > 16)
1435 align = 16;
1436
1437 if (aarch64_debug)
1438 fprintf_unfiltered (gdb_stdlog, "arg %d len=%d @ sp + %d\n",
1439 info->argnum, len, info->nsaa);
1440
1441 item.len = len;
1442 item.data = buf;
1443 VEC_safe_push (stack_item_t, info->si, &item);
1444
1445 info->nsaa += len;
1446 if (info->nsaa & (align - 1))
1447 {
1448 /* Push stack alignment padding. */
1449 int pad = align - (info->nsaa & (align - 1));
1450
1451 item.len = pad;
1452 item.data = buf;
1453
1454 VEC_safe_push (stack_item_t, info->si, &item);
1455 info->nsaa += pad;
1456 }
1457}
1458
1459/* Marshall an argument into a sequence of one or more consecutive X
1460 registers or, if insufficient X registers are available then onto
1461 the stack. */
1462
1463static void
1464pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1465 struct aarch64_call_info *info, struct type *type,
1466 const bfd_byte *buf)
1467{
1468 int len = TYPE_LENGTH (type);
1469 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1470
1471 /* PCS C.13 - Pass in registers if we have enough spare */
1472 if (info->ngrn + nregs <= 8)
1473 {
1474 pass_in_x (gdbarch, regcache, info, type, buf);
1475 info->ngrn += nregs;
1476 }
1477 else
1478 {
1479 info->ngrn = 8;
1480 pass_on_stack (info, type, buf);
1481 }
1482}
1483
1484/* Pass a value in a V register, or on the stack if insufficient are
1485 available. */
1486
1487static void
1488pass_in_v_or_stack (struct gdbarch *gdbarch,
1489 struct regcache *regcache,
1490 struct aarch64_call_info *info,
1491 struct type *type,
1492 const bfd_byte *buf)
1493{
1494 if (!pass_in_v (gdbarch, regcache, info, buf))
1495 pass_on_stack (info, type, buf);
1496}
1497
1498/* Implement the "push_dummy_call" gdbarch method. */
1499
1500static CORE_ADDR
1501aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1502 struct regcache *regcache, CORE_ADDR bp_addr,
1503 int nargs,
1504 struct value **args, CORE_ADDR sp, int struct_return,
1505 CORE_ADDR struct_addr)
1506{
1507 int nstack = 0;
1508 int argnum;
1509 int x_argreg;
1510 int v_argreg;
1511 struct aarch64_call_info info;
1512 struct type *func_type;
1513 struct type *return_type;
1514 int lang_struct_return;
1515
1516 memset (&info, 0, sizeof (info));
1517
1518 /* We need to know what the type of the called function is in order
1519 to determine the number of named/anonymous arguments for the
1520 actual argument placement, and the return type in order to handle
1521 return value correctly.
1522
1523 The generic code above us views the decision of return in memory
1524 or return in registers as a two stage processes. The language
1525 handler is consulted first and may decide to return in memory (eg
1526 class with copy constructor returned by value), this will cause
1527 the generic code to allocate space AND insert an initial leading
1528 argument.
1529
1530 If the language code does not decide to pass in memory then the
1531 target code is consulted.
1532
1533 If the language code decides to pass in memory we want to move
1534 the pointer inserted as the initial argument from the argument
1535 list and into X8, the conventional AArch64 struct return pointer
1536 register.
1537
1538 This is slightly awkward, ideally the flag "lang_struct_return"
1539 would be passed to the targets implementation of push_dummy_call.
1540 Rather that change the target interface we call the language code
1541 directly ourselves. */
1542
1543 func_type = check_typedef (value_type (function));
1544
1545 /* Dereference function pointer types. */
1546 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1547 func_type = TYPE_TARGET_TYPE (func_type);
1548
1549 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1550 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
1551
1552 /* If language_pass_by_reference () returned true we will have been
1553 given an additional initial argument, a hidden pointer to the
1554 return slot in memory. */
1555 return_type = TYPE_TARGET_TYPE (func_type);
1556 lang_struct_return = language_pass_by_reference (return_type);
1557
1558 /* Set the return address. For the AArch64, the return breakpoint
1559 is always at BP_ADDR. */
1560 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1561
1562 /* If we were given an initial argument for the return slot because
1563 lang_struct_return was true, lose it. */
1564 if (lang_struct_return)
1565 {
1566 args++;
1567 nargs--;
1568 }
1569
1570 /* The struct_return pointer occupies X8. */
1571 if (struct_return || lang_struct_return)
1572 {
1573 if (aarch64_debug)
1574 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1575 gdbarch_register_name
1576 (gdbarch,
1577 AARCH64_STRUCT_RETURN_REGNUM),
1578 paddress (gdbarch, struct_addr));
1579 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1580 struct_addr);
1581 }
1582
1583 for (argnum = 0; argnum < nargs; argnum++)
1584 {
1585 struct value *arg = args[argnum];
1586 struct type *arg_type;
1587 int len;
1588
1589 arg_type = check_typedef (value_type (arg));
1590 len = TYPE_LENGTH (arg_type);
1591
1592 switch (TYPE_CODE (arg_type))
1593 {
1594 case TYPE_CODE_INT:
1595 case TYPE_CODE_BOOL:
1596 case TYPE_CODE_CHAR:
1597 case TYPE_CODE_RANGE:
1598 case TYPE_CODE_ENUM:
1599 if (len < 4)
1600 {
1601 /* Promote to 32 bit integer. */
1602 if (TYPE_UNSIGNED (arg_type))
1603 arg_type = builtin_type (gdbarch)->builtin_uint32;
1604 else
1605 arg_type = builtin_type (gdbarch)->builtin_int32;
1606 arg = value_cast (arg_type, arg);
1607 }
1608 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1609 value_contents (arg));
1610 break;
1611
1612 case TYPE_CODE_COMPLEX:
1613 if (info.nsrn <= 6)
1614 {
1615 const bfd_byte *buf = value_contents (arg);
1616 struct type *target_type =
1617 check_typedef (TYPE_TARGET_TYPE (arg_type));
1618
1619 pass_in_v (gdbarch, regcache, &info, buf);
1620 pass_in_v (gdbarch, regcache, &info,
1621 buf + TYPE_LENGTH (target_type));
1622 }
1623 else
1624 {
1625 info.nsrn = 8;
1626 pass_on_stack (&info, arg_type, value_contents (arg));
1627 }
1628 break;
1629 case TYPE_CODE_FLT:
1630 pass_in_v_or_stack (gdbarch, regcache, &info, arg_type,
1631 value_contents (arg));
1632 break;
1633
1634 case TYPE_CODE_STRUCT:
1635 case TYPE_CODE_ARRAY:
1636 case TYPE_CODE_UNION:
1637 if (is_hfa (arg_type))
1638 {
1639 int elements = TYPE_NFIELDS (arg_type);
1640
1641 /* Homogeneous Aggregates */
1642 if (info.nsrn + elements < 8)
1643 {
1644 int i;
1645
1646 for (i = 0; i < elements; i++)
1647 {
1648 /* We know that we have sufficient registers
1649 available therefore this will never fallback
1650 to the stack. */
1651 struct value *field =
1652 value_primitive_field (arg, 0, i, arg_type);
1653 struct type *field_type =
1654 check_typedef (value_type (field));
1655
1656 pass_in_v_or_stack (gdbarch, regcache, &info, field_type,
1657 value_contents_writeable (field));
1658 }
1659 }
1660 else
1661 {
1662 info.nsrn = 8;
1663 pass_on_stack (&info, arg_type, value_contents (arg));
1664 }
1665 }
1666 else if (len > 16)
1667 {
1668 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1669 invisible reference. */
1670
1671 /* Allocate aligned storage. */
1672 sp = align_down (sp - len, 16);
1673
1674 /* Write the real data into the stack. */
1675 write_memory (sp, value_contents (arg), len);
1676
1677 /* Construct the indirection. */
1678 arg_type = lookup_pointer_type (arg_type);
1679 arg = value_from_pointer (arg_type, sp);
1680 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1681 value_contents (arg));
1682 }
1683 else
1684 /* PCS C.15 / C.18 multiple values pass. */
1685 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1686 value_contents (arg));
1687 break;
1688
1689 default:
1690 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type,
1691 value_contents (arg));
1692 break;
1693 }
1694 }
1695
1696 /* Make sure stack retains 16 byte alignment. */
1697 if (info.nsaa & 15)
1698 sp -= 16 - (info.nsaa & 15);
1699
1700 while (!VEC_empty (stack_item_t, info.si))
1701 {
1702 stack_item_t *si = VEC_last (stack_item_t, info.si);
1703
1704 sp -= si->len;
1705 write_memory (sp, si->data, si->len);
1706 VEC_pop (stack_item_t, info.si);
1707 }
1708
1709 VEC_free (stack_item_t, info.si);
1710
1711 /* Finally, update the SP register. */
1712 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1713
1714 return sp;
1715}
1716
1717/* Implement the "frame_align" gdbarch method. */
1718
1719static CORE_ADDR
1720aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1721{
1722 /* Align the stack to sixteen bytes. */
1723 return sp & ~(CORE_ADDR) 15;
1724}
1725
1726/* Return the type for an AdvSISD Q register. */
1727
1728static struct type *
1729aarch64_vnq_type (struct gdbarch *gdbarch)
1730{
1731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1732
1733 if (tdep->vnq_type == NULL)
1734 {
1735 struct type *t;
1736 struct type *elem;
1737
1738 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1739 TYPE_CODE_UNION);
1740
1741 elem = builtin_type (gdbarch)->builtin_uint128;
1742 append_composite_type_field (t, "u", elem);
1743
1744 elem = builtin_type (gdbarch)->builtin_int128;
1745 append_composite_type_field (t, "s", elem);
1746
1747 tdep->vnq_type = t;
1748 }
1749
1750 return tdep->vnq_type;
1751}
1752
1753/* Return the type for an AdvSISD D register. */
1754
1755static struct type *
1756aarch64_vnd_type (struct gdbarch *gdbarch)
1757{
1758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1759
1760 if (tdep->vnd_type == NULL)
1761 {
1762 struct type *t;
1763 struct type *elem;
1764
1765 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1766 TYPE_CODE_UNION);
1767
1768 elem = builtin_type (gdbarch)->builtin_double;
1769 append_composite_type_field (t, "f", elem);
1770
1771 elem = builtin_type (gdbarch)->builtin_uint64;
1772 append_composite_type_field (t, "u", elem);
1773
1774 elem = builtin_type (gdbarch)->builtin_int64;
1775 append_composite_type_field (t, "s", elem);
1776
1777 tdep->vnd_type = t;
1778 }
1779
1780 return tdep->vnd_type;
1781}
1782
1783/* Return the type for an AdvSISD S register. */
1784
1785static struct type *
1786aarch64_vns_type (struct gdbarch *gdbarch)
1787{
1788 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1789
1790 if (tdep->vns_type == NULL)
1791 {
1792 struct type *t;
1793 struct type *elem;
1794
1795 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
1796 TYPE_CODE_UNION);
1797
1798 elem = builtin_type (gdbarch)->builtin_float;
1799 append_composite_type_field (t, "f", elem);
1800
1801 elem = builtin_type (gdbarch)->builtin_uint32;
1802 append_composite_type_field (t, "u", elem);
1803
1804 elem = builtin_type (gdbarch)->builtin_int32;
1805 append_composite_type_field (t, "s", elem);
1806
1807 tdep->vns_type = t;
1808 }
1809
1810 return tdep->vns_type;
1811}
1812
1813/* Return the type for an AdvSISD H register. */
1814
1815static struct type *
1816aarch64_vnh_type (struct gdbarch *gdbarch)
1817{
1818 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1819
1820 if (tdep->vnh_type == NULL)
1821 {
1822 struct type *t;
1823 struct type *elem;
1824
1825 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
1826 TYPE_CODE_UNION);
1827
1828 elem = builtin_type (gdbarch)->builtin_uint16;
1829 append_composite_type_field (t, "u", elem);
1830
1831 elem = builtin_type (gdbarch)->builtin_int16;
1832 append_composite_type_field (t, "s", elem);
1833
1834 tdep->vnh_type = t;
1835 }
1836
1837 return tdep->vnh_type;
1838}
1839
1840/* Return the type for an AdvSISD B register. */
1841
1842static struct type *
1843aarch64_vnb_type (struct gdbarch *gdbarch)
1844{
1845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1846
1847 if (tdep->vnb_type == NULL)
1848 {
1849 struct type *t;
1850 struct type *elem;
1851
1852 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
1853 TYPE_CODE_UNION);
1854
1855 elem = builtin_type (gdbarch)->builtin_uint8;
1856 append_composite_type_field (t, "u", elem);
1857
1858 elem = builtin_type (gdbarch)->builtin_int8;
1859 append_composite_type_field (t, "s", elem);
1860
1861 tdep->vnb_type = t;
1862 }
1863
1864 return tdep->vnb_type;
1865}
1866
1867/* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
1868
1869static int
1870aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1871{
1872 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
1873 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
1874
1875 if (reg == AARCH64_DWARF_SP)
1876 return AARCH64_SP_REGNUM;
1877
1878 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
1879 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
1880
1881 return -1;
1882}
1883\f
1884
1885/* Implement the "print_insn" gdbarch method. */
1886
1887static int
1888aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
1889{
1890 info->symbols = NULL;
1891 return print_insn_aarch64 (memaddr, info);
1892}
1893
1894/* AArch64 BRK software debug mode instruction.
1895 Note that AArch64 code is always little-endian.
1896 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
948f8e3d 1897static const gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
07b287a0
MS
1898
1899/* Implement the "breakpoint_from_pc" gdbarch method. */
1900
948f8e3d 1901static const gdb_byte *
07b287a0
MS
1902aarch64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1903 int *lenptr)
1904{
1905 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1906
1907 *lenptr = sizeof (aarch64_default_breakpoint);
1908 return aarch64_default_breakpoint;
1909}
1910
1911/* Extract from an array REGS containing the (raw) register state a
1912 function return value of type TYPE, and copy that, in virtual
1913 format, into VALBUF. */
1914
1915static void
1916aarch64_extract_return_value (struct type *type, struct regcache *regs,
1917 gdb_byte *valbuf)
1918{
1919 struct gdbarch *gdbarch = get_regcache_arch (regs);
1920 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1921
1922 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1923 {
1924 bfd_byte buf[V_REGISTER_SIZE];
1925 int len = TYPE_LENGTH (type);
1926
1927 regcache_cooked_read (regs, AARCH64_V0_REGNUM, buf);
1928 memcpy (valbuf, buf, len);
1929 }
1930 else if (TYPE_CODE (type) == TYPE_CODE_INT
1931 || TYPE_CODE (type) == TYPE_CODE_CHAR
1932 || TYPE_CODE (type) == TYPE_CODE_BOOL
1933 || TYPE_CODE (type) == TYPE_CODE_PTR
1934 || TYPE_CODE (type) == TYPE_CODE_REF
1935 || TYPE_CODE (type) == TYPE_CODE_ENUM)
1936 {
1937 /* If the the type is a plain integer, then the access is
1938 straight-forward. Otherwise we have to play around a bit
1939 more. */
1940 int len = TYPE_LENGTH (type);
1941 int regno = AARCH64_X0_REGNUM;
1942 ULONGEST tmp;
1943
1944 while (len > 0)
1945 {
1946 /* By using store_unsigned_integer we avoid having to do
1947 anything special for small big-endian values. */
1948 regcache_cooked_read_unsigned (regs, regno++, &tmp);
1949 store_unsigned_integer (valbuf,
1950 (len > X_REGISTER_SIZE
1951 ? X_REGISTER_SIZE : len), byte_order, tmp);
1952 len -= X_REGISTER_SIZE;
1953 valbuf += X_REGISTER_SIZE;
1954 }
1955 }
1956 else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
1957 {
1958 int regno = AARCH64_V0_REGNUM;
1959 bfd_byte buf[V_REGISTER_SIZE];
1960 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1961 int len = TYPE_LENGTH (target_type);
1962
1963 regcache_cooked_read (regs, regno, buf);
1964 memcpy (valbuf, buf, len);
1965 valbuf += len;
1966 regcache_cooked_read (regs, regno + 1, buf);
1967 memcpy (valbuf, buf, len);
1968 valbuf += len;
1969 }
1970 else if (is_hfa (type))
1971 {
1972 int elements = TYPE_NFIELDS (type);
1973 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1974 int len = TYPE_LENGTH (member_type);
1975 int i;
1976
1977 for (i = 0; i < elements; i++)
1978 {
1979 int regno = AARCH64_V0_REGNUM + i;
1980 bfd_byte buf[X_REGISTER_SIZE];
1981
1982 if (aarch64_debug)
1983 fprintf_unfiltered (gdb_stdlog,
1984 "read HFA return value element %d from %s\n",
1985 i + 1,
1986 gdbarch_register_name (gdbarch, regno));
1987 regcache_cooked_read (regs, regno, buf);
1988
1989 memcpy (valbuf, buf, len);
1990 valbuf += len;
1991 }
1992 }
1993 else
1994 {
1995 /* For a structure or union the behaviour is as if the value had
1996 been stored to word-aligned memory and then loaded into
1997 registers with 64-bit load instruction(s). */
1998 int len = TYPE_LENGTH (type);
1999 int regno = AARCH64_X0_REGNUM;
2000 bfd_byte buf[X_REGISTER_SIZE];
2001
2002 while (len > 0)
2003 {
2004 regcache_cooked_read (regs, regno++, buf);
2005 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2006 len -= X_REGISTER_SIZE;
2007 valbuf += X_REGISTER_SIZE;
2008 }
2009 }
2010}
2011
2012
2013/* Will a function return an aggregate type in memory or in a
2014 register? Return 0 if an aggregate type can be returned in a
2015 register, 1 if it must be returned in memory. */
2016
2017static int
2018aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2019{
2020 int nRc;
2021 enum type_code code;
2022
2023 CHECK_TYPEDEF (type);
2024
2025 /* In the AArch64 ABI, "integer" like aggregate types are returned
2026 in registers. For an aggregate type to be integer like, its size
2027 must be less than or equal to 4 * X_REGISTER_SIZE. */
2028
2029 if (is_hfa (type))
2030 {
2031 /* PCS B.5 If the argument is a Named HFA, then the argument is
2032 used unmodified. */
2033 return 0;
2034 }
2035
2036 if (TYPE_LENGTH (type) > 16)
2037 {
2038 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2039 invisible reference. */
2040
2041 return 1;
2042 }
2043
2044 return 0;
2045}
2046
2047/* Write into appropriate registers a function return value of type
2048 TYPE, given in virtual format. */
2049
2050static void
2051aarch64_store_return_value (struct type *type, struct regcache *regs,
2052 const gdb_byte *valbuf)
2053{
2054 struct gdbarch *gdbarch = get_regcache_arch (regs);
2055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2056
2057 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2058 {
2059 bfd_byte buf[V_REGISTER_SIZE];
2060 int len = TYPE_LENGTH (type);
2061
2062 memcpy (buf, valbuf, len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2063 regcache_cooked_write (regs, AARCH64_V0_REGNUM, buf);
2064 }
2065 else if (TYPE_CODE (type) == TYPE_CODE_INT
2066 || TYPE_CODE (type) == TYPE_CODE_CHAR
2067 || TYPE_CODE (type) == TYPE_CODE_BOOL
2068 || TYPE_CODE (type) == TYPE_CODE_PTR
2069 || TYPE_CODE (type) == TYPE_CODE_REF
2070 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2071 {
2072 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2073 {
2074 /* Values of one word or less are zero/sign-extended and
2075 returned in r0. */
2076 bfd_byte tmpbuf[X_REGISTER_SIZE];
2077 LONGEST val = unpack_long (type, valbuf);
2078
2079 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2080 regcache_cooked_write (regs, AARCH64_X0_REGNUM, tmpbuf);
2081 }
2082 else
2083 {
2084 /* Integral values greater than one word are stored in
2085 consecutive registers starting with r0. This will always
2086 be a multiple of the regiser size. */
2087 int len = TYPE_LENGTH (type);
2088 int regno = AARCH64_X0_REGNUM;
2089
2090 while (len > 0)
2091 {
2092 regcache_cooked_write (regs, regno++, valbuf);
2093 len -= X_REGISTER_SIZE;
2094 valbuf += X_REGISTER_SIZE;
2095 }
2096 }
2097 }
2098 else if (is_hfa (type))
2099 {
2100 int elements = TYPE_NFIELDS (type);
2101 struct type *member_type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2102 int len = TYPE_LENGTH (member_type);
2103 int i;
2104
2105 for (i = 0; i < elements; i++)
2106 {
2107 int regno = AARCH64_V0_REGNUM + i;
2108 bfd_byte tmpbuf[MAX_REGISTER_SIZE];
2109
2110 if (aarch64_debug)
2111 fprintf_unfiltered (gdb_stdlog,
2112 "write HFA return value element %d to %s\n",
2113 i + 1,
2114 gdbarch_register_name (gdbarch, regno));
2115
2116 memcpy (tmpbuf, valbuf, len);
2117 regcache_cooked_write (regs, regno, tmpbuf);
2118 valbuf += len;
2119 }
2120 }
2121 else
2122 {
2123 /* For a structure or union the behaviour is as if the value had
2124 been stored to word-aligned memory and then loaded into
2125 registers with 64-bit load instruction(s). */
2126 int len = TYPE_LENGTH (type);
2127 int regno = AARCH64_X0_REGNUM;
2128 bfd_byte tmpbuf[X_REGISTER_SIZE];
2129
2130 while (len > 0)
2131 {
2132 memcpy (tmpbuf, valbuf,
2133 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2134 regcache_cooked_write (regs, regno++, tmpbuf);
2135 len -= X_REGISTER_SIZE;
2136 valbuf += X_REGISTER_SIZE;
2137 }
2138 }
2139}
2140
2141/* Implement the "return_value" gdbarch method. */
2142
2143static enum return_value_convention
2144aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2145 struct type *valtype, struct regcache *regcache,
2146 gdb_byte *readbuf, const gdb_byte *writebuf)
2147{
2148 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2149
2150 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2151 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2152 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2153 {
2154 if (aarch64_return_in_memory (gdbarch, valtype))
2155 {
2156 if (aarch64_debug)
2157 fprintf_unfiltered (gdb_stdlog, "return value in memory\n");
2158 return RETURN_VALUE_STRUCT_CONVENTION;
2159 }
2160 }
2161
2162 if (writebuf)
2163 aarch64_store_return_value (valtype, regcache, writebuf);
2164
2165 if (readbuf)
2166 aarch64_extract_return_value (valtype, regcache, readbuf);
2167
2168 if (aarch64_debug)
2169 fprintf_unfiltered (gdb_stdlog, "return value in registers\n");
2170
2171 return RETURN_VALUE_REGISTER_CONVENTION;
2172}
2173
2174/* Implement the "get_longjmp_target" gdbarch method. */
2175
2176static int
2177aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2178{
2179 CORE_ADDR jb_addr;
2180 gdb_byte buf[X_REGISTER_SIZE];
2181 struct gdbarch *gdbarch = get_frame_arch (frame);
2182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2184
2185 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2186
2187 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2188 X_REGISTER_SIZE))
2189 return 0;
2190
2191 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2192 return 1;
2193}
2194\f
2195
2196/* Return the pseudo register name corresponding to register regnum. */
2197
2198static const char *
2199aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2200{
2201 static const char *const q_name[] =
2202 {
2203 "q0", "q1", "q2", "q3",
2204 "q4", "q5", "q6", "q7",
2205 "q8", "q9", "q10", "q11",
2206 "q12", "q13", "q14", "q15",
2207 "q16", "q17", "q18", "q19",
2208 "q20", "q21", "q22", "q23",
2209 "q24", "q25", "q26", "q27",
2210 "q28", "q29", "q30", "q31",
2211 };
2212
2213 static const char *const d_name[] =
2214 {
2215 "d0", "d1", "d2", "d3",
2216 "d4", "d5", "d6", "d7",
2217 "d8", "d9", "d10", "d11",
2218 "d12", "d13", "d14", "d15",
2219 "d16", "d17", "d18", "d19",
2220 "d20", "d21", "d22", "d23",
2221 "d24", "d25", "d26", "d27",
2222 "d28", "d29", "d30", "d31",
2223 };
2224
2225 static const char *const s_name[] =
2226 {
2227 "s0", "s1", "s2", "s3",
2228 "s4", "s5", "s6", "s7",
2229 "s8", "s9", "s10", "s11",
2230 "s12", "s13", "s14", "s15",
2231 "s16", "s17", "s18", "s19",
2232 "s20", "s21", "s22", "s23",
2233 "s24", "s25", "s26", "s27",
2234 "s28", "s29", "s30", "s31",
2235 };
2236
2237 static const char *const h_name[] =
2238 {
2239 "h0", "h1", "h2", "h3",
2240 "h4", "h5", "h6", "h7",
2241 "h8", "h9", "h10", "h11",
2242 "h12", "h13", "h14", "h15",
2243 "h16", "h17", "h18", "h19",
2244 "h20", "h21", "h22", "h23",
2245 "h24", "h25", "h26", "h27",
2246 "h28", "h29", "h30", "h31",
2247 };
2248
2249 static const char *const b_name[] =
2250 {
2251 "b0", "b1", "b2", "b3",
2252 "b4", "b5", "b6", "b7",
2253 "b8", "b9", "b10", "b11",
2254 "b12", "b13", "b14", "b15",
2255 "b16", "b17", "b18", "b19",
2256 "b20", "b21", "b22", "b23",
2257 "b24", "b25", "b26", "b27",
2258 "b28", "b29", "b30", "b31",
2259 };
2260
2261 regnum -= gdbarch_num_regs (gdbarch);
2262
2263 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2264 return q_name[regnum - AARCH64_Q0_REGNUM];
2265
2266 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2267 return d_name[regnum - AARCH64_D0_REGNUM];
2268
2269 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2270 return s_name[regnum - AARCH64_S0_REGNUM];
2271
2272 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2273 return h_name[regnum - AARCH64_H0_REGNUM];
2274
2275 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2276 return b_name[regnum - AARCH64_B0_REGNUM];
2277
2278 internal_error (__FILE__, __LINE__,
2279 _("aarch64_pseudo_register_name: bad register number %d"),
2280 regnum);
2281}
2282
2283/* Implement the "pseudo_register_type" tdesc_arch_data method. */
2284
2285static struct type *
2286aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2287{
2288 regnum -= gdbarch_num_regs (gdbarch);
2289
2290 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2291 return aarch64_vnq_type (gdbarch);
2292
2293 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2294 return aarch64_vnd_type (gdbarch);
2295
2296 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2297 return aarch64_vns_type (gdbarch);
2298
2299 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2300 return aarch64_vnh_type (gdbarch);
2301
2302 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2303 return aarch64_vnb_type (gdbarch);
2304
2305 internal_error (__FILE__, __LINE__,
2306 _("aarch64_pseudo_register_type: bad register number %d"),
2307 regnum);
2308}
2309
2310/* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2311
2312static int
2313aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2314 struct reggroup *group)
2315{
2316 regnum -= gdbarch_num_regs (gdbarch);
2317
2318 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2319 return group == all_reggroup || group == vector_reggroup;
2320 else if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2321 return (group == all_reggroup || group == vector_reggroup
2322 || group == float_reggroup);
2323 else if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2324 return (group == all_reggroup || group == vector_reggroup
2325 || group == float_reggroup);
2326 else if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2327 return group == all_reggroup || group == vector_reggroup;
2328 else if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2329 return group == all_reggroup || group == vector_reggroup;
2330
2331 return group == all_reggroup;
2332}
2333
2334/* Implement the "pseudo_register_read_value" gdbarch method. */
2335
2336static struct value *
2337aarch64_pseudo_read_value (struct gdbarch *gdbarch,
2338 struct regcache *regcache,
2339 int regnum)
2340{
2341 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2342 struct value *result_value;
2343 gdb_byte *buf;
2344
2345 result_value = allocate_value (register_type (gdbarch, regnum));
2346 VALUE_LVAL (result_value) = lval_register;
2347 VALUE_REGNUM (result_value) = regnum;
2348 buf = value_contents_raw (result_value);
2349
2350 regnum -= gdbarch_num_regs (gdbarch);
2351
2352 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2353 {
2354 enum register_status status;
2355 unsigned v_regnum;
2356
2357 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2358 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2359 if (status != REG_VALID)
2360 mark_value_bytes_unavailable (result_value, 0,
2361 TYPE_LENGTH (value_type (result_value)));
2362 else
2363 memcpy (buf, reg_buf, Q_REGISTER_SIZE);
2364 return result_value;
2365 }
2366
2367 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2368 {
2369 enum register_status status;
2370 unsigned v_regnum;
2371
2372 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2373 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2374 if (status != REG_VALID)
2375 mark_value_bytes_unavailable (result_value, 0,
2376 TYPE_LENGTH (value_type (result_value)));
2377 else
2378 memcpy (buf, reg_buf, D_REGISTER_SIZE);
2379 return result_value;
2380 }
2381
2382 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2383 {
2384 enum register_status status;
2385 unsigned v_regnum;
2386
2387 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2388 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2389 memcpy (buf, reg_buf, S_REGISTER_SIZE);
2390 return result_value;
2391 }
2392
2393 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2394 {
2395 enum register_status status;
2396 unsigned v_regnum;
2397
2398 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2399 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2400 if (status != REG_VALID)
2401 mark_value_bytes_unavailable (result_value, 0,
2402 TYPE_LENGTH (value_type (result_value)));
2403 else
2404 memcpy (buf, reg_buf, H_REGISTER_SIZE);
2405 return result_value;
2406 }
2407
2408 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2409 {
2410 enum register_status status;
2411 unsigned v_regnum;
2412
2413 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2414 status = regcache_raw_read (regcache, v_regnum, reg_buf);
2415 if (status != REG_VALID)
2416 mark_value_bytes_unavailable (result_value, 0,
2417 TYPE_LENGTH (value_type (result_value)));
2418 else
2419 memcpy (buf, reg_buf, B_REGISTER_SIZE);
2420 return result_value;
2421 }
2422
2423 gdb_assert_not_reached ("regnum out of bound");
2424}
2425
2426/* Implement the "pseudo_register_write" gdbarch method. */
2427
2428static void
2429aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2430 int regnum, const gdb_byte *buf)
2431{
2432 gdb_byte reg_buf[MAX_REGISTER_SIZE];
2433
2434 /* Ensure the register buffer is zero, we want gdb writes of the
2435 various 'scalar' pseudo registers to behavior like architectural
2436 writes, register width bytes are written the remainder are set to
2437 zero. */
2438 memset (reg_buf, 0, sizeof (reg_buf));
2439
2440 regnum -= gdbarch_num_regs (gdbarch);
2441
2442 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2443 {
2444 /* pseudo Q registers */
2445 unsigned v_regnum;
2446
2447 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_Q0_REGNUM;
2448 memcpy (reg_buf, buf, Q_REGISTER_SIZE);
2449 regcache_raw_write (regcache, v_regnum, reg_buf);
2450 return;
2451 }
2452
2453 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2454 {
2455 /* pseudo D registers */
2456 unsigned v_regnum;
2457
2458 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_D0_REGNUM;
2459 memcpy (reg_buf, buf, D_REGISTER_SIZE);
2460 regcache_raw_write (regcache, v_regnum, reg_buf);
2461 return;
2462 }
2463
2464 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2465 {
2466 unsigned v_regnum;
2467
2468 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_S0_REGNUM;
2469 memcpy (reg_buf, buf, S_REGISTER_SIZE);
2470 regcache_raw_write (regcache, v_regnum, reg_buf);
2471 return;
2472 }
2473
2474 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2475 {
2476 /* pseudo H registers */
2477 unsigned v_regnum;
2478
2479 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_H0_REGNUM;
2480 memcpy (reg_buf, buf, H_REGISTER_SIZE);
2481 regcache_raw_write (regcache, v_regnum, reg_buf);
2482 return;
2483 }
2484
2485 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2486 {
2487 /* pseudo B registers */
2488 unsigned v_regnum;
2489
2490 v_regnum = AARCH64_V0_REGNUM + regnum - AARCH64_B0_REGNUM;
2491 memcpy (reg_buf, buf, B_REGISTER_SIZE);
2492 regcache_raw_write (regcache, v_regnum, reg_buf);
2493 return;
2494 }
2495
2496 gdb_assert_not_reached ("regnum out of bound");
2497}
2498
07b287a0
MS
2499/* Callback function for user_reg_add. */
2500
2501static struct value *
2502value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2503{
2504 const int *reg_p = baton;
2505
2506 return value_of_register (*reg_p, frame);
2507}
2508\f
2509
9404b58f
KM
2510/* Implement the "software_single_step" gdbarch method, needed to
2511 single step through atomic sequences on AArch64. */
2512
2513static int
2514aarch64_software_single_step (struct frame_info *frame)
2515{
2516 struct gdbarch *gdbarch = get_frame_arch (frame);
2517 struct address_space *aspace = get_frame_address_space (frame);
2518 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2519 const int insn_size = 4;
2520 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2521 CORE_ADDR pc = get_frame_pc (frame);
2522 CORE_ADDR breaks[2] = { -1, -1 };
2523 CORE_ADDR loc = pc;
2524 CORE_ADDR closing_insn = 0;
2525 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2526 byte_order_for_code);
2527 int index;
2528 int insn_count;
2529 int bc_insn_count = 0; /* Conditional branch instruction count. */
2530 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2531
2532 /* Look for a Load Exclusive instruction which begins the sequence. */
2533 if (!decode_masked_match (insn, 0x3fc00000, 0x08400000))
2534 return 0;
2535
2536 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2537 {
2538 int32_t offset;
2539 unsigned cond;
2540
2541 loc += insn_size;
2542 insn = read_memory_unsigned_integer (loc, insn_size,
2543 byte_order_for_code);
2544
2545 /* Check if the instruction is a conditional branch. */
2546 if (decode_bcond (loc, insn, &cond, &offset))
2547 {
2548 if (bc_insn_count >= 1)
2549 return 0;
2550
2551 /* It is, so we'll try to set a breakpoint at the destination. */
2552 breaks[1] = loc + offset;
2553
2554 bc_insn_count++;
2555 last_breakpoint++;
2556 }
2557
2558 /* Look for the Store Exclusive which closes the atomic sequence. */
2559 if (decode_masked_match (insn, 0x3fc00000, 0x08000000))
2560 {
2561 closing_insn = loc;
2562 break;
2563 }
2564 }
2565
2566 /* We didn't find a closing Store Exclusive instruction, fall back. */
2567 if (!closing_insn)
2568 return 0;
2569
2570 /* Insert breakpoint after the end of the atomic sequence. */
2571 breaks[0] = loc + insn_size;
2572
2573 /* Check for duplicated breakpoints, and also check that the second
2574 breakpoint is not within the atomic sequence. */
2575 if (last_breakpoint
2576 && (breaks[1] == breaks[0]
2577 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2578 last_breakpoint = 0;
2579
2580 /* Insert the breakpoint at the end of the sequence, and one at the
2581 destination of the conditional branch, if it exists. */
2582 for (index = 0; index <= last_breakpoint; index++)
2583 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2584
2585 return 1;
2586}
2587
07b287a0
MS
2588/* Initialize the current architecture based on INFO. If possible,
2589 re-use an architecture from ARCHES, which is a list of
2590 architectures already created during this debugging session.
2591
2592 Called e.g. at program startup, when reading a core file, and when
2593 reading a binary file. */
2594
2595static struct gdbarch *
2596aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2597{
2598 struct gdbarch_tdep *tdep;
2599 struct gdbarch *gdbarch;
2600 struct gdbarch_list *best_arch;
2601 struct tdesc_arch_data *tdesc_data = NULL;
2602 const struct target_desc *tdesc = info.target_desc;
2603 int i;
2604 int have_fpa_registers = 1;
2605 int valid_p = 1;
2606 const struct tdesc_feature *feature;
2607 int num_regs = 0;
2608 int num_pseudo_regs = 0;
2609
2610 /* Ensure we always have a target descriptor. */
2611 if (!tdesc_has_registers (tdesc))
2612 tdesc = tdesc_aarch64;
2613
2614 gdb_assert (tdesc);
2615
2616 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.core");
2617
2618 if (feature == NULL)
2619 return NULL;
2620
2621 tdesc_data = tdesc_data_alloc ();
2622
2623 /* Validate the descriptor provides the mandatory core R registers
2624 and allocate their numbers. */
2625 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
2626 valid_p &=
2627 tdesc_numbered_register (feature, tdesc_data, AARCH64_X0_REGNUM + i,
2628 aarch64_r_register_names[i]);
2629
2630 num_regs = AARCH64_X0_REGNUM + i;
2631
2632 /* Look for the V registers. */
2633 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
2634 if (feature)
2635 {
2636 /* Validate the descriptor provides the mandatory V registers
2637 and allocate their numbers. */
2638 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
2639 valid_p &=
2640 tdesc_numbered_register (feature, tdesc_data, AARCH64_V0_REGNUM + i,
2641 aarch64_v_register_names[i]);
2642
2643 num_regs = AARCH64_V0_REGNUM + i;
2644
2645 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
2646 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
2647 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
2648 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
2649 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
2650 }
2651
2652 if (!valid_p)
2653 {
2654 tdesc_data_cleanup (tdesc_data);
2655 return NULL;
2656 }
2657
2658 /* AArch64 code is always little-endian. */
2659 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
2660
2661 /* If there is already a candidate, use it. */
2662 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2663 best_arch != NULL;
2664 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2665 {
2666 /* Found a match. */
2667 break;
2668 }
2669
2670 if (best_arch != NULL)
2671 {
2672 if (tdesc_data != NULL)
2673 tdesc_data_cleanup (tdesc_data);
2674 return best_arch->gdbarch;
2675 }
2676
2677 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2678 gdbarch = gdbarch_alloc (&info, tdep);
2679
2680 /* This should be low enough for everything. */
2681 tdep->lowest_pc = 0x20;
2682 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2683 tdep->jb_elt_size = 8;
2684
2685 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
2686 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
2687
07b287a0
MS
2688 /* Frame handling. */
2689 set_gdbarch_dummy_id (gdbarch, aarch64_dummy_id);
2690 set_gdbarch_unwind_pc (gdbarch, aarch64_unwind_pc);
2691 set_gdbarch_unwind_sp (gdbarch, aarch64_unwind_sp);
2692
2693 /* Advance PC across function entry code. */
2694 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
2695
2696 /* The stack grows downward. */
2697 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2698
2699 /* Breakpoint manipulation. */
2700 set_gdbarch_breakpoint_from_pc (gdbarch, aarch64_breakpoint_from_pc);
07b287a0 2701 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9404b58f 2702 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
07b287a0
MS
2703
2704 /* Information about registers, etc. */
2705 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
2706 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
2707 set_gdbarch_num_regs (gdbarch, num_regs);
2708
2709 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
2710 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
2711 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
2712 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
2713 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
2714 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2715 aarch64_pseudo_register_reggroup_p);
2716
2717 /* ABI */
2718 set_gdbarch_short_bit (gdbarch, 16);
2719 set_gdbarch_int_bit (gdbarch, 32);
2720 set_gdbarch_float_bit (gdbarch, 32);
2721 set_gdbarch_double_bit (gdbarch, 64);
2722 set_gdbarch_long_double_bit (gdbarch, 128);
2723 set_gdbarch_long_bit (gdbarch, 64);
2724 set_gdbarch_long_long_bit (gdbarch, 64);
2725 set_gdbarch_ptr_bit (gdbarch, 64);
2726 set_gdbarch_char_signed (gdbarch, 0);
2727 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2728 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2729 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2730
2731 /* Internal <-> external register number maps. */
2732 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
2733
2734 /* Returning results. */
2735 set_gdbarch_return_value (gdbarch, aarch64_return_value);
2736
2737 /* Disassembly. */
2738 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
2739
2740 /* Virtual tables. */
2741 set_gdbarch_vbit_in_delta (gdbarch, 1);
2742
2743 /* Hook in the ABI-specific overrides, if they have been registered. */
2744 info.target_desc = tdesc;
2745 info.tdep_info = (void *) tdesc_data;
2746 gdbarch_init_osabi (info, gdbarch);
2747
2748 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
2749
2750 /* Add some default predicates. */
2751 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
2752 dwarf2_append_unwinders (gdbarch);
2753 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
2754
2755 frame_base_set_default (gdbarch, &aarch64_normal_base);
2756
2757 /* Now we have tuned the configuration, set a few final things,
2758 based on what the OS ABI has told us. */
2759
2760 if (tdep->jb_pc >= 0)
2761 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
2762
2763 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2764
2765 /* Add standard register aliases. */
2766 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
2767 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
2768 value_of_aarch64_user_reg,
2769 &aarch64_register_aliases[i].regnum);
2770
2771 return gdbarch;
2772}
2773
2774static void
2775aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2776{
2777 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2778
2779 if (tdep == NULL)
2780 return;
2781
2782 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
2783 paddress (gdbarch, tdep->lowest_pc));
2784}
2785
2786/* Suppress warning from -Wmissing-prototypes. */
2787extern initialize_file_ftype _initialize_aarch64_tdep;
2788
2789void
2790_initialize_aarch64_tdep (void)
2791{
2792 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
2793 aarch64_dump_tdep);
2794
2795 initialize_tdesc_aarch64 ();
07b287a0
MS
2796
2797 /* Debug this file's internals. */
2798 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
2799Set AArch64 debugging."), _("\
2800Show AArch64 debugging."), _("\
2801When on, AArch64 specific debugging is enabled."),
2802 NULL,
2803 show_aarch64_debug,
2804 &setdebuglist, &showdebuglist);
2805}
This page took 0.264217 seconds and 4 git commands to generate.