Make the objfile destructor private
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
d2e4a39e 199static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 200
4c4b4cd2
PH
201static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
14f9c5c9 203
108d56a4 204static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
205 struct type *);
206
207static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
0d5cff50 210static int find_struct_field (const char *, struct type *, int,
52ce6436 211 struct type **, int *, int *, int *, int *);
4c4b4cd2 212
d12307c1 213static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 214 struct value **, int, const char *,
2a612529 215 struct type *, int);
4c4b4cd2 216
4c4b4cd2
PH
217static int ada_is_direct_array_type (struct type *);
218
72d5681a
PH
219static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
714e53ab 221
52ce6436
PH
222static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
226 struct expression *,
227 int *, enum noside);
52ce6436
PH
228
229static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
852dff6c
JB
253
254static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
255
256static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
4c4b4cd2
PH
259\f
260
ee01b665
JB
261/* The result of a symbol lookup to be stored in our symbol cache. */
262
263struct cache_entry
264{
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
fe978cb0 268 domain_enum domain;
ee01b665
JB
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277};
278
279/* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288#define HASH_SIZE 1009
289
290struct ada_symbol_cache
291{
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297};
298
299static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 300
4c4b4cd2 301/* Maximum-sized dynamic type. */
14f9c5c9
AS
302static unsigned int varsize_limit;
303
67cb5b2d 304static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
305#ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307#else
14f9c5c9 308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 309#endif
14f9c5c9 310
4c4b4cd2 311/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 312static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 313 = "__gnat_ada_main_program_name";
14f9c5c9 314
4c4b4cd2
PH
315/* Limit on the number of warnings to raise per expression evaluation. */
316static int warning_limit = 2;
317
318/* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320static int warnings_issued = 0;
321
322static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324};
325
326static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328};
329
c6044dd1
JB
330/* Maintenance-related settings for this module. */
331
332static struct cmd_list_element *maint_set_ada_cmdlist;
333static struct cmd_list_element *maint_show_ada_cmdlist;
334
335/* Implement the "maintenance set ada" (prefix) command. */
336
337static void
981a3fb3 338maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 339{
635c7e8a
TT
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
c6044dd1
JB
342}
343
344/* Implement the "maintenance show ada" (prefix) command. */
345
346static void
981a3fb3 347maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
348{
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350}
351
352/* The "maintenance ada set/show ignore-descriptive-type" value. */
353
491144b5 354static bool ada_ignore_descriptive_types_p = false;
c6044dd1 355
e802dbe0
JB
356 /* Inferior-specific data. */
357
358/* Per-inferior data for this module. */
359
360struct ada_inferior_data
361{
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
f37b313d 366 struct type *tsd_type = nullptr;
3eecfa55
JB
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
f37b313d 371 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
372};
373
374/* Our key to this module's inferior data. */
f37b313d 375static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
376
377/* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385static struct ada_inferior_data *
386get_ada_inferior_data (struct inferior *inf)
387{
388 struct ada_inferior_data *data;
389
f37b313d 390 data = ada_inferior_data.get (inf);
e802dbe0 391 if (data == NULL)
f37b313d 392 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
393
394 return data;
395}
396
397/* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400static void
401ada_inferior_exit (struct inferior *inf)
402{
f37b313d 403 ada_inferior_data.clear (inf);
e802dbe0
JB
404}
405
ee01b665
JB
406
407 /* program-space-specific data. */
408
409/* This module's per-program-space data. */
410struct ada_pspace_data
411{
f37b313d
TT
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
ee01b665 418 /* The Ada symbol cache. */
f37b313d 419 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
420};
421
422/* Key to our per-program-space data. */
f37b313d 423static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
424
425/* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430static struct ada_pspace_data *
431get_ada_pspace_data (struct program_space *pspace)
432{
433 struct ada_pspace_data *data;
434
f37b313d 435 data = ada_pspace_data_handle.get (pspace);
ee01b665 436 if (data == NULL)
f37b313d 437 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
438
439 return data;
440}
441
4c4b4cd2
PH
442 /* Utilities */
443
720d1a40 444/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 445 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471static struct type *
472ada_typedef_target_type (struct type *type)
473{
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477}
478
41d27058
JB
479/* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483static const char *
484ada_unqualified_name (const char *decoded_name)
485{
2b0f535a
JB
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
41d27058
JB
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502}
503
39e7af3e 504/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 505
39e7af3e 506static std::string
41d27058
JB
507add_angle_brackets (const char *str)
508{
39e7af3e 509 return string_printf ("<%s>", str);
41d27058 510}
96d887e8 511
67cb5b2d 512static const char *
4c4b4cd2
PH
513ada_get_gdb_completer_word_break_characters (void)
514{
515 return ada_completer_word_break_characters;
516}
517
e79af960
JB
518/* Print an array element index using the Ada syntax. */
519
520static void
521ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 522 const struct value_print_options *options)
e79af960 523{
79a45b7d 524 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
525 fprintf_filtered (stream, " => ");
526}
527
e2b7af72
JB
528/* la_watch_location_expression for Ada. */
529
de93309a 530static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
531ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532{
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537}
538
de93309a
SM
539/* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
541
542#define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
544
f27cf670 545/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 547 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 548
de93309a 549static void *
f27cf670 550grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 551{
d2e4a39e
AS
552 if (*size < min_size)
553 {
554 *size *= 2;
555 if (*size < min_size)
4c4b4cd2 556 *size = min_size;
f27cf670 557 vect = xrealloc (vect, *size * element_size);
d2e4a39e 558 }
f27cf670 559 return vect;
14f9c5c9
AS
560}
561
562/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 563 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
564
565static int
ebf56fd3 566field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
567{
568 int len = strlen (target);
5b4ee69b 569
d2e4a39e 570 return
4c4b4cd2
PH
571 (strncmp (field_name, target, len) == 0
572 && (field_name[len] == '\0'
61012eef 573 || (startswith (field_name + len, "___")
76a01679
JB
574 && strcmp (field_name + strlen (field_name) - 6,
575 "___XVN") != 0)));
14f9c5c9
AS
576}
577
578
872c8b51
JB
579/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
586
587int
588ada_get_field_index (const struct type *type, const char *field_name,
589 int maybe_missing)
590{
591 int fieldno;
872c8b51
JB
592 struct type *struct_type = check_typedef ((struct type *) type);
593
594 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
596 return fieldno;
597
598 if (!maybe_missing)
323e0a4a 599 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 600 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
601
602 return -1;
603}
604
605/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
606
607int
d2e4a39e 608ada_name_prefix_len (const char *name)
14f9c5c9
AS
609{
610 if (name == NULL)
611 return 0;
d2e4a39e 612 else
14f9c5c9 613 {
d2e4a39e 614 const char *p = strstr (name, "___");
5b4ee69b 615
14f9c5c9 616 if (p == NULL)
4c4b4cd2 617 return strlen (name);
14f9c5c9 618 else
4c4b4cd2 619 return p - name;
14f9c5c9
AS
620 }
621}
622
4c4b4cd2
PH
623/* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
625
14f9c5c9 626static int
d2e4a39e 627is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
628{
629 int len1, len2;
5b4ee69b 630
14f9c5c9
AS
631 if (str == NULL)
632 return 0;
633 len1 = strlen (str);
634 len2 = strlen (suffix);
4c4b4cd2 635 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
636}
637
4c4b4cd2
PH
638/* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
14f9c5c9 640
d2e4a39e 641static struct value *
4c4b4cd2 642coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 643{
61ee279c 644 type = ada_check_typedef (type);
df407dfe 645 if (value_type (val) == type)
4c4b4cd2 646 return val;
d2e4a39e 647 else
14f9c5c9 648 {
4c4b4cd2
PH
649 struct value *result;
650
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
c1b5a1a6 653 ada_ensure_varsize_limit (type);
4c4b4cd2 654
41e8491f
JK
655 if (value_lazy (val)
656 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
657 result = allocate_value_lazy (type);
658 else
659 {
660 result = allocate_value (type);
9a0dc9e3 661 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 662 }
74bcbdf3 663 set_value_component_location (result, val);
9bbda503
AC
664 set_value_bitsize (result, value_bitsize (val));
665 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
666 if (VALUE_LVAL (result) == lval_memory)
667 set_value_address (result, value_address (val));
14f9c5c9
AS
668 return result;
669 }
670}
671
fc1a4b47
AC
672static const gdb_byte *
673cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
674{
675 if (valaddr == NULL)
676 return NULL;
677 else
678 return valaddr + offset;
679}
680
681static CORE_ADDR
ebf56fd3 682cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
683{
684 if (address == 0)
685 return 0;
d2e4a39e 686 else
14f9c5c9
AS
687 return address + offset;
688}
689
4c4b4cd2
PH
690/* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
693 expression. */
a2249542 694
77109804
AC
695/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
a0b31db1 697static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 698
14f9c5c9 699static void
a2249542 700lim_warning (const char *format, ...)
14f9c5c9 701{
a2249542 702 va_list args;
a2249542 703
5b4ee69b 704 va_start (args, format);
4c4b4cd2
PH
705 warnings_issued += 1;
706 if (warnings_issued <= warning_limit)
a2249542
MK
707 vwarning (format, args);
708
709 va_end (args);
4c4b4cd2
PH
710}
711
714e53ab
PH
712/* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
714 GDB. */
715
c1b5a1a6
JB
716void
717ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
718{
719 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 720 error (_("object size is larger than varsize-limit"));
714e53ab
PH
721}
722
0963b4bd 723/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 724static LONGEST
c3e5cd34 725max_of_size (int size)
4c4b4cd2 726{
76a01679 727 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 728
76a01679 729 return top_bit | (top_bit - 1);
4c4b4cd2
PH
730}
731
0963b4bd 732/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 733static LONGEST
c3e5cd34 734min_of_size (int size)
4c4b4cd2 735{
c3e5cd34 736 return -max_of_size (size) - 1;
4c4b4cd2
PH
737}
738
0963b4bd 739/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 740static ULONGEST
c3e5cd34 741umax_of_size (int size)
4c4b4cd2 742{
76a01679 743 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 744
76a01679 745 return top_bit | (top_bit - 1);
4c4b4cd2
PH
746}
747
0963b4bd 748/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
749static LONGEST
750max_of_type (struct type *t)
4c4b4cd2 751{
c3e5cd34
PH
752 if (TYPE_UNSIGNED (t))
753 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
754 else
755 return max_of_size (TYPE_LENGTH (t));
756}
757
0963b4bd 758/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
759static LONGEST
760min_of_type (struct type *t)
761{
762 if (TYPE_UNSIGNED (t))
763 return 0;
764 else
765 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
766}
767
768/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
769LONGEST
770ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 771{
c3345124 772 type = resolve_dynamic_type (type, NULL, 0);
76a01679 773 switch (TYPE_CODE (type))
4c4b4cd2
PH
774 {
775 case TYPE_CODE_RANGE:
690cc4eb 776 return TYPE_HIGH_BOUND (type);
4c4b4cd2 777 case TYPE_CODE_ENUM:
14e75d8e 778 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
779 case TYPE_CODE_BOOL:
780 return 1;
781 case TYPE_CODE_CHAR:
76a01679 782 case TYPE_CODE_INT:
690cc4eb 783 return max_of_type (type);
4c4b4cd2 784 default:
43bbcdc2 785 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
786 }
787}
788
14e75d8e 789/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
790LONGEST
791ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 792{
c3345124 793 type = resolve_dynamic_type (type, NULL, 0);
76a01679 794 switch (TYPE_CODE (type))
4c4b4cd2
PH
795 {
796 case TYPE_CODE_RANGE:
690cc4eb 797 return TYPE_LOW_BOUND (type);
4c4b4cd2 798 case TYPE_CODE_ENUM:
14e75d8e 799 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
800 case TYPE_CODE_BOOL:
801 return 0;
802 case TYPE_CODE_CHAR:
76a01679 803 case TYPE_CODE_INT:
690cc4eb 804 return min_of_type (type);
4c4b4cd2 805 default:
43bbcdc2 806 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
807 }
808}
809
810/* The identity on non-range types. For range types, the underlying
76a01679 811 non-range scalar type. */
4c4b4cd2
PH
812
813static struct type *
18af8284 814get_base_type (struct type *type)
4c4b4cd2
PH
815{
816 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
817 {
76a01679
JB
818 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
819 return type;
4c4b4cd2
PH
820 type = TYPE_TARGET_TYPE (type);
821 }
822 return type;
14f9c5c9 823}
41246937
JB
824
825/* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
85102364 827 encodings, making the resulting type a static but standard description
41246937
JB
828 of the initial type. */
829
830struct value *
831ada_get_decoded_value (struct value *value)
832{
833 struct type *type = ada_check_typedef (value_type (value));
834
835 if (ada_is_array_descriptor_type (type)
836 || (ada_is_constrained_packed_array_type (type)
837 && TYPE_CODE (type) != TYPE_CODE_PTR))
838 {
839 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
840 value = ada_coerce_to_simple_array_ptr (value);
841 else
842 value = ada_coerce_to_simple_array (value);
843 }
844 else
845 value = ada_to_fixed_value (value);
846
847 return value;
848}
849
850/* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
854
855struct type *
856ada_get_decoded_type (struct type *type)
857{
858 type = to_static_fixed_type (type);
859 if (ada_is_constrained_packed_array_type (type))
860 type = ada_coerce_to_simple_array_type (type);
861 return type;
862}
863
4c4b4cd2 864\f
76a01679 865
4c4b4cd2 866 /* Language Selection */
14f9c5c9
AS
867
868/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 869 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 870
de93309a 871static enum language
ccefe4c4 872ada_update_initial_language (enum language lang)
14f9c5c9 873{
cafb3438 874 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 875 return language_ada;
14f9c5c9
AS
876
877 return lang;
878}
96d887e8
PH
879
880/* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
883
884char *
885ada_main_name (void)
886{
3b7344d5 887 struct bound_minimal_symbol msym;
e83e4e24 888 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 889
96d887e8
PH
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
894 in Ada. */
895 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
896
3b7344d5 897 if (msym.minsym != NULL)
96d887e8 898 {
f9bc20b9
JB
899 CORE_ADDR main_program_name_addr;
900 int err_code;
901
77e371c0 902 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 903 if (main_program_name_addr == 0)
323e0a4a 904 error (_("Invalid address for Ada main program name."));
96d887e8 905
f9bc20b9
JB
906 target_read_string (main_program_name_addr, &main_program_name,
907 1024, &err_code);
908
909 if (err_code != 0)
910 return NULL;
e83e4e24 911 return main_program_name.get ();
96d887e8
PH
912 }
913
914 /* The main procedure doesn't seem to be in Ada. */
915 return NULL;
916}
14f9c5c9 917\f
4c4b4cd2 918 /* Symbols */
d2e4a39e 919
4c4b4cd2
PH
920/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
921 of NULLs. */
14f9c5c9 922
d2e4a39e
AS
923const struct ada_opname_map ada_opname_table[] = {
924 {"Oadd", "\"+\"", BINOP_ADD},
925 {"Osubtract", "\"-\"", BINOP_SUB},
926 {"Omultiply", "\"*\"", BINOP_MUL},
927 {"Odivide", "\"/\"", BINOP_DIV},
928 {"Omod", "\"mod\"", BINOP_MOD},
929 {"Orem", "\"rem\"", BINOP_REM},
930 {"Oexpon", "\"**\"", BINOP_EXP},
931 {"Olt", "\"<\"", BINOP_LESS},
932 {"Ole", "\"<=\"", BINOP_LEQ},
933 {"Ogt", "\">\"", BINOP_GTR},
934 {"Oge", "\">=\"", BINOP_GEQ},
935 {"Oeq", "\"=\"", BINOP_EQUAL},
936 {"One", "\"/=\"", BINOP_NOTEQUAL},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
940 {"Oconcat", "\"&\"", BINOP_CONCAT},
941 {"Oabs", "\"abs\"", UNOP_ABS},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
943 {"Oadd", "\"+\"", UNOP_PLUS},
944 {"Osubtract", "\"-\"", UNOP_NEG},
945 {NULL, NULL}
14f9c5c9
AS
946};
947
b5ec771e
PA
948/* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
4c4b4cd2 952
b5ec771e
PA
953static char *
954ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 955{
4c4b4cd2
PH
956 static char *encoding_buffer = NULL;
957 static size_t encoding_buffer_size = 0;
d2e4a39e 958 const char *p;
14f9c5c9 959 int k;
d2e4a39e 960
4c4b4cd2 961 if (decoded == NULL)
14f9c5c9
AS
962 return NULL;
963
4c4b4cd2
PH
964 GROW_VECT (encoding_buffer, encoding_buffer_size,
965 2 * strlen (decoded) + 10);
14f9c5c9
AS
966
967 k = 0;
4c4b4cd2 968 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 969 {
cdc7bb92 970 if (*p == '.')
4c4b4cd2
PH
971 {
972 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
973 k += 2;
974 }
14f9c5c9 975 else if (*p == '"')
4c4b4cd2
PH
976 {
977 const struct ada_opname_map *mapping;
978
979 for (mapping = ada_opname_table;
1265e4aa 980 mapping->encoded != NULL
61012eef 981 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
982 ;
983 if (mapping->encoded == NULL)
b5ec771e
PA
984 {
985 if (throw_errors)
986 error (_("invalid Ada operator name: %s"), p);
987 else
988 return NULL;
989 }
4c4b4cd2
PH
990 strcpy (encoding_buffer + k, mapping->encoded);
991 k += strlen (mapping->encoded);
992 break;
993 }
d2e4a39e 994 else
4c4b4cd2
PH
995 {
996 encoding_buffer[k] = *p;
997 k += 1;
998 }
14f9c5c9
AS
999 }
1000
4c4b4cd2
PH
1001 encoding_buffer[k] = '\0';
1002 return encoding_buffer;
14f9c5c9
AS
1003}
1004
b5ec771e
PA
1005/* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1007
1008char *
1009ada_encode (const char *decoded)
1010{
1011 return ada_encode_1 (decoded, true);
1012}
1013
14f9c5c9 1014/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1015 quotes, unfolded, but with the quotes stripped away. Result good
1016 to next call. */
1017
de93309a 1018static char *
d2e4a39e 1019ada_fold_name (const char *name)
14f9c5c9 1020{
d2e4a39e 1021 static char *fold_buffer = NULL;
14f9c5c9
AS
1022 static size_t fold_buffer_size = 0;
1023
1024 int len = strlen (name);
d2e4a39e 1025 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1026
1027 if (name[0] == '\'')
1028 {
d2e4a39e
AS
1029 strncpy (fold_buffer, name + 1, len - 2);
1030 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1031 }
1032 else
1033 {
1034 int i;
5b4ee69b 1035
14f9c5c9 1036 for (i = 0; i <= len; i += 1)
4c4b4cd2 1037 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1038 }
1039
1040 return fold_buffer;
1041}
1042
529cad9c
PH
1043/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1044
1045static int
1046is_lower_alphanum (const char c)
1047{
1048 return (isdigit (c) || (isalpha (c) && islower (c)));
1049}
1050
c90092fe
JB
1051/* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
29480c32
JB
1054 . .{DIGIT}+
1055 . ${DIGIT}+
1056 . ___{DIGIT}+
1057 . __{DIGIT}+.
c90092fe 1058
29480c32
JB
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1062
1063static void
1064ada_remove_trailing_digits (const char *encoded, int *len)
1065{
1066 if (*len > 1 && isdigit (encoded[*len - 1]))
1067 {
1068 int i = *len - 2;
5b4ee69b 1069
29480c32
JB
1070 while (i > 0 && isdigit (encoded[i]))
1071 i--;
1072 if (i >= 0 && encoded[i] == '.')
1073 *len = i;
1074 else if (i >= 0 && encoded[i] == '$')
1075 *len = i;
61012eef 1076 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1077 *len = i - 2;
61012eef 1078 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1079 *len = i - 1;
1080 }
1081}
1082
1083/* Remove the suffix introduced by the compiler for protected object
1084 subprograms. */
1085
1086static void
1087ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1088{
1089 /* Remove trailing N. */
1090
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
0963b4bd 1094 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1098
1099 if (*len > 1
1100 && encoded[*len - 1] == 'N'
1101 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1102 *len = *len - 1;
1103}
1104
1105/* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1107 replaced by ENCODED. */
14f9c5c9 1108
f945dedf 1109std::string
4c4b4cd2 1110ada_decode (const char *encoded)
14f9c5c9
AS
1111{
1112 int i, j;
1113 int len0;
d2e4a39e 1114 const char *p;
14f9c5c9 1115 int at_start_name;
f945dedf 1116 std::string decoded;
d2e4a39e 1117
0d81f350
JG
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded[0] == '.')
1121 encoded += 1;
1122
29480c32
JB
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
61012eef 1126 if (startswith (encoded, "_ada_"))
4c4b4cd2 1127 encoded += 5;
14f9c5c9 1128
29480c32
JB
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
4c4b4cd2 1132 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1133 goto Suppress;
1134
4c4b4cd2 1135 len0 = strlen (encoded);
4c4b4cd2 1136
29480c32
JB
1137 ada_remove_trailing_digits (encoded, &len0);
1138 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1139
4c4b4cd2
PH
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p = strstr (encoded, "___");
1145 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1146 {
1147 if (p[3] == 'X')
4c4b4cd2 1148 len0 = p - encoded;
14f9c5c9 1149 else
4c4b4cd2 1150 goto Suppress;
14f9c5c9 1151 }
4c4b4cd2 1152
29480c32
JB
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1156
61012eef 1157 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1158 len0 -= 3;
76a01679 1159
a10967fa
JB
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1162 bodies. */
1163
61012eef 1164 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1165 len0 -= 2;
1166
29480c32
JB
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1169
61012eef 1170 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1171 len0 -= 1;
1172
4c4b4cd2 1173 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1174
f945dedf 1175 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1176
29480c32
JB
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1178
4c4b4cd2 1179 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1180 {
4c4b4cd2
PH
1181 i = len0 - 2;
1182 while ((i >= 0 && isdigit (encoded[i]))
1183 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1184 i -= 1;
1185 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1186 len0 = i - 1;
1187 else if (encoded[i] == '$')
1188 len0 = i;
d2e4a39e 1189 }
14f9c5c9 1190
29480c32
JB
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1193
4c4b4cd2
PH
1194 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1195 decoded[j] = encoded[i];
14f9c5c9
AS
1196
1197 at_start_name = 1;
1198 while (i < len0)
1199 {
29480c32 1200 /* Is this a symbol function? */
4c4b4cd2
PH
1201 if (at_start_name && encoded[i] == 'O')
1202 {
1203 int k;
5b4ee69b 1204
4c4b4cd2
PH
1205 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1206 {
1207 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1208 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1209 op_len - 1) == 0)
1210 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1211 {
f945dedf 1212 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1213 at_start_name = 0;
1214 i += op_len;
1215 j += strlen (ada_opname_table[k].decoded);
1216 break;
1217 }
1218 }
1219 if (ada_opname_table[k].encoded != NULL)
1220 continue;
1221 }
14f9c5c9
AS
1222 at_start_name = 0;
1223
529cad9c
PH
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1226
61012eef 1227 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1228 i += 2;
529cad9c 1229
29480c32
JB
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1233
1234 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1235 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1236 && isdigit (encoded [i+4]))
1237 {
1238 int k = i + 5;
1239
1240 while (k < len0 && isdigit (encoded[k]))
1241 k++; /* Skip any extra digit. */
1242
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1246 i = k;
1247 }
1248
529cad9c
PH
1249 /* Remove _E{DIGITS}+[sb] */
1250
1251 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1252 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1256 by a 'B'.
1257
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1261
1262 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1263 && isdigit (encoded[i+2]))
1264 {
1265 int k = i + 3;
1266
1267 while (k < len0 && isdigit (encoded[k]))
1268 k++;
1269
1270 if (k < len0
1271 && (encoded[k] == 'b' || encoded[k] == 's'))
1272 {
1273 k++;
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1277 if (k == len0
1278 || (k < len0 && encoded[k] == '_'))
1279 i = k;
1280 }
1281 }
1282
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1285
1286 if (i < len0 + 3
1287 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1288 {
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr = encoded + i - 1;
1293
1294 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1295 ptr--;
1296 if (ptr < encoded
1297 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1298 i++;
1299 }
1300
4c4b4cd2
PH
1301 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1302 {
29480c32
JB
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1309 package names. */
4c4b4cd2
PH
1310 do
1311 i += 1;
1312 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1313 if (i < len0)
1314 goto Suppress;
1315 }
cdc7bb92 1316 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1317 {
29480c32 1318 /* Replace '__' by '.'. */
4c4b4cd2
PH
1319 decoded[j] = '.';
1320 at_start_name = 1;
1321 i += 2;
1322 j += 1;
1323 }
14f9c5c9 1324 else
4c4b4cd2 1325 {
29480c32
JB
1326 /* It's a character part of the decoded name, so just copy it
1327 over. */
4c4b4cd2
PH
1328 decoded[j] = encoded[i];
1329 i += 1;
1330 j += 1;
1331 }
14f9c5c9 1332 }
f945dedf 1333 decoded.resize (j);
14f9c5c9 1334
29480c32
JB
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1337
f945dedf 1338 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1339 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1340 goto Suppress;
1341
f945dedf 1342 return decoded;
14f9c5c9
AS
1343
1344Suppress:
4c4b4cd2 1345 if (encoded[0] == '<')
f945dedf 1346 decoded = encoded;
14f9c5c9 1347 else
f945dedf 1348 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1349 return decoded;
1350
1351}
1352
1353/* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358static struct htab *decoded_names_store;
1359
1360/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1365 GSYMBOL).
4c4b4cd2
PH
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1368 when a decoded name is cached in it. */
4c4b4cd2 1369
45e6c716 1370const char *
f85f34ed 1371ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1372{
f85f34ed
TT
1373 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1374 const char **resultp =
615b3f62 1375 &gsymbol->language_specific.demangled_name;
5b4ee69b 1376
f85f34ed 1377 if (!gsymbol->ada_mangled)
4c4b4cd2 1378 {
f945dedf 1379 std::string decoded = ada_decode (gsymbol->name);
f85f34ed 1380 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1381
f85f34ed 1382 gsymbol->ada_mangled = 1;
5b4ee69b 1383
f85f34ed 1384 if (obstack != NULL)
f945dedf 1385 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1386 else
76a01679 1387 {
f85f34ed
TT
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1392
76a01679 1393 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1394 decoded.c_str (), INSERT);
5b4ee69b 1395
76a01679 1396 if (*slot == NULL)
f945dedf 1397 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1398 *resultp = *slot;
1399 }
4c4b4cd2 1400 }
14f9c5c9 1401
4c4b4cd2
PH
1402 return *resultp;
1403}
76a01679 1404
2c0b251b 1405static char *
76a01679 1406ada_la_decode (const char *encoded, int options)
4c4b4cd2 1407{
f945dedf 1408 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1409}
1410
8b302db8
TT
1411/* Implement la_sniff_from_mangled_name for Ada. */
1412
1413static int
1414ada_sniff_from_mangled_name (const char *mangled, char **out)
1415{
f945dedf 1416 std::string demangled = ada_decode (mangled);
8b302db8
TT
1417
1418 *out = NULL;
1419
f945dedf 1420 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1421 {
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1424
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1428
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1435
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1444 return 1;
1445 }
1446
1447 return 0;
1448}
1449
14f9c5c9 1450\f
d2e4a39e 1451
4c4b4cd2 1452 /* Arrays */
14f9c5c9 1453
28c85d6c
JB
1454/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1460
85102364 1461 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1470
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1475 index subtype). */
1476
1477void
1478ada_fixup_array_indexes_type (struct type *index_desc_type)
1479{
1480 int i;
1481
1482 if (index_desc_type == NULL)
1483 return;
1484 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1485
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1488 now.
1489
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1495 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1496 return;
1497
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1500 {
0d5cff50 1501 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1502 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1503
1504 if (raw_type)
1505 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1506 }
1507}
1508
4c4b4cd2 1509/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1510
a121b7c1 1511static const char *bound_name[] = {
d2e4a39e 1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1514};
1515
1516/* Maximum number of array dimensions we are prepared to handle. */
1517
4c4b4cd2 1518#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1519
14f9c5c9 1520
4c4b4cd2
PH
1521/* The desc_* routines return primitive portions of array descriptors
1522 (fat pointers). */
14f9c5c9
AS
1523
1524/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1525 level of indirection, if needed. */
1526
d2e4a39e
AS
1527static struct type *
1528desc_base_type (struct type *type)
14f9c5c9
AS
1529{
1530 if (type == NULL)
1531 return NULL;
61ee279c 1532 type = ada_check_typedef (type);
720d1a40
JB
1533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1534 type = ada_typedef_target_type (type);
1535
1265e4aa
JB
1536 if (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1539 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1540 else
1541 return type;
1542}
1543
4c4b4cd2
PH
1544/* True iff TYPE indicates a "thin" array pointer type. */
1545
14f9c5c9 1546static int
d2e4a39e 1547is_thin_pntr (struct type *type)
14f9c5c9 1548{
d2e4a39e 1549 return
14f9c5c9
AS
1550 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1552}
1553
4c4b4cd2
PH
1554/* The descriptor type for thin pointer type TYPE. */
1555
d2e4a39e
AS
1556static struct type *
1557thin_descriptor_type (struct type *type)
14f9c5c9 1558{
d2e4a39e 1559 struct type *base_type = desc_base_type (type);
5b4ee69b 1560
14f9c5c9
AS
1561 if (base_type == NULL)
1562 return NULL;
1563 if (is_suffix (ada_type_name (base_type), "___XVE"))
1564 return base_type;
d2e4a39e 1565 else
14f9c5c9 1566 {
d2e4a39e 1567 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1568
14f9c5c9 1569 if (alt_type == NULL)
4c4b4cd2 1570 return base_type;
14f9c5c9 1571 else
4c4b4cd2 1572 return alt_type;
14f9c5c9
AS
1573 }
1574}
1575
4c4b4cd2
PH
1576/* A pointer to the array data for thin-pointer value VAL. */
1577
d2e4a39e
AS
1578static struct value *
1579thin_data_pntr (struct value *val)
14f9c5c9 1580{
828292f2 1581 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1582 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1583
556bdfd4
UW
1584 data_type = lookup_pointer_type (data_type);
1585
14f9c5c9 1586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1587 return value_cast (data_type, value_copy (val));
d2e4a39e 1588 else
42ae5230 1589 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1590}
1591
4c4b4cd2
PH
1592/* True iff TYPE indicates a "thick" array pointer type. */
1593
14f9c5c9 1594static int
d2e4a39e 1595is_thick_pntr (struct type *type)
14f9c5c9
AS
1596{
1597 type = desc_base_type (type);
1598 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1599 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1604
d2e4a39e
AS
1605static struct type *
1606desc_bounds_type (struct type *type)
14f9c5c9 1607{
d2e4a39e 1608 struct type *r;
14f9c5c9
AS
1609
1610 type = desc_base_type (type);
1611
1612 if (type == NULL)
1613 return NULL;
1614 else if (is_thin_pntr (type))
1615 {
1616 type = thin_descriptor_type (type);
1617 if (type == NULL)
4c4b4cd2 1618 return NULL;
14f9c5c9
AS
1619 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1620 if (r != NULL)
61ee279c 1621 return ada_check_typedef (r);
14f9c5c9
AS
1622 }
1623 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1624 {
1625 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1626 if (r != NULL)
61ee279c 1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1628 }
1629 return NULL;
1630}
1631
1632/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1633 one, a pointer to its bounds data. Otherwise NULL. */
1634
d2e4a39e
AS
1635static struct value *
1636desc_bounds (struct value *arr)
14f9c5c9 1637{
df407dfe 1638 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1639
d2e4a39e 1640 if (is_thin_pntr (type))
14f9c5c9 1641 {
d2e4a39e 1642 struct type *bounds_type =
4c4b4cd2 1643 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1644 LONGEST addr;
1645
4cdfadb1 1646 if (bounds_type == NULL)
323e0a4a 1647 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1648
1649 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1650 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1651 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1653 addr = value_as_long (arr);
d2e4a39e 1654 else
42ae5230 1655 addr = value_address (arr);
14f9c5c9 1656
d2e4a39e 1657 return
4c4b4cd2
PH
1658 value_from_longest (lookup_pointer_type (bounds_type),
1659 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1660 }
1661
1662 else if (is_thick_pntr (type))
05e522ef
JB
1663 {
1664 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1665 _("Bad GNAT array descriptor"));
1666 struct type *p_bounds_type = value_type (p_bounds);
1667
1668 if (p_bounds_type
1669 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1670 {
1671 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1672
1673 if (TYPE_STUB (target_type))
1674 p_bounds = value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type)),
1676 p_bounds);
1677 }
1678 else
1679 error (_("Bad GNAT array descriptor"));
1680
1681 return p_bounds;
1682 }
14f9c5c9
AS
1683 else
1684 return NULL;
1685}
1686
4c4b4cd2
PH
1687/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1689
14f9c5c9 1690static int
d2e4a39e 1691fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1692{
1693 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1694}
1695
1696/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1697 size of the field containing the address of the bounds data. */
1698
14f9c5c9 1699static int
d2e4a39e 1700fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1701{
1702 type = desc_base_type (type);
1703
d2e4a39e 1704 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1705 return TYPE_FIELD_BITSIZE (type, 1);
1706 else
61ee279c 1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1708}
1709
4c4b4cd2 1710/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1713 data. */
4c4b4cd2 1714
d2e4a39e 1715static struct type *
556bdfd4 1716desc_data_target_type (struct type *type)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
4c4b4cd2 1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1721 if (is_thin_pntr (type))
556bdfd4 1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1723 else if (is_thick_pntr (type))
556bdfd4
UW
1724 {
1725 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1726
1727 if (data_type
1728 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1730 }
1731
1732 return NULL;
14f9c5c9
AS
1733}
1734
1735/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1736 its array data. */
4c4b4cd2 1737
d2e4a39e
AS
1738static struct value *
1739desc_data (struct value *arr)
14f9c5c9 1740{
df407dfe 1741 struct type *type = value_type (arr);
5b4ee69b 1742
14f9c5c9
AS
1743 if (is_thin_pntr (type))
1744 return thin_data_pntr (arr);
1745 else if (is_thick_pntr (type))
d2e4a39e 1746 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1747 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1748 else
1749 return NULL;
1750}
1751
1752
1753/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1754 position of the field containing the address of the data. */
1755
14f9c5c9 1756static int
d2e4a39e 1757fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1758{
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1760}
1761
1762/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1763 size of the field containing the address of the data. */
1764
14f9c5c9 1765static int
d2e4a39e 1766fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1767{
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1772 else
14f9c5c9
AS
1773 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1774}
1775
4c4b4cd2 1776/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1778 bound, if WHICH is 1. The first bound is I=1. */
1779
d2e4a39e
AS
1780static struct value *
1781desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1782{
d2e4a39e 1783 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1784 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1785}
1786
1787/* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1789 bound, if WHICH is 1. The first bound is I=1. */
1790
14f9c5c9 1791static int
d2e4a39e 1792desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1793{
d2e4a39e 1794 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1795}
1796
1797/* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1799 bound, if WHICH is 1. The first bound is I=1. */
1800
76a01679 1801static int
d2e4a39e 1802desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1803{
1804 type = desc_base_type (type);
1805
d2e4a39e
AS
1806 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1808 else
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1810}
1811
1812/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1814
d2e4a39e
AS
1815static struct type *
1816desc_index_type (struct type *type, int i)
14f9c5c9
AS
1817{
1818 type = desc_base_type (type);
1819
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1821 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1822 else
14f9c5c9
AS
1823 return NULL;
1824}
1825
4c4b4cd2
PH
1826/* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1828
14f9c5c9 1829static int
d2e4a39e 1830desc_arity (struct type *type)
14f9c5c9
AS
1831{
1832 type = desc_base_type (type);
1833
1834 if (type != NULL)
1835 return TYPE_NFIELDS (type) / 2;
1836 return 0;
1837}
1838
4c4b4cd2
PH
1839/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1841 type). */
1842
76a01679
JB
1843static int
1844ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1845{
1846 if (type == NULL)
1847 return 0;
61ee279c 1848 type = ada_check_typedef (type);
4c4b4cd2 1849 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1850 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1851}
1852
52ce6436 1853/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1854 * to one. */
52ce6436 1855
2c0b251b 1856static int
52ce6436
PH
1857ada_is_array_type (struct type *type)
1858{
1859 while (type != NULL
1860 && (TYPE_CODE (type) == TYPE_CODE_PTR
1861 || TYPE_CODE (type) == TYPE_CODE_REF))
1862 type = TYPE_TARGET_TYPE (type);
1863 return ada_is_direct_array_type (type);
1864}
1865
4c4b4cd2 1866/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1867
14f9c5c9 1868int
4c4b4cd2 1869ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1870{
1871 if (type == NULL)
1872 return 0;
61ee279c 1873 type = ada_check_typedef (type);
14f9c5c9 1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1875 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1877 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1878}
1879
4c4b4cd2
PH
1880/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1881
14f9c5c9 1882int
4c4b4cd2 1883ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1884{
556bdfd4 1885 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1886
1887 if (type == NULL)
1888 return 0;
61ee279c 1889 type = ada_check_typedef (type);
556bdfd4
UW
1890 return (data_type != NULL
1891 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1893}
1894
1895/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1896 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1897 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1898 is still needed. */
1899
14f9c5c9 1900int
ebf56fd3 1901ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1902{
d2e4a39e 1903 return
14f9c5c9
AS
1904 type != NULL
1905 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1907 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1908 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1909}
1910
1911
4c4b4cd2 1912/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1913 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1915 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1918 a descriptor. */
de93309a
SM
1919
1920static struct type *
d2e4a39e 1921ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1922{
ad82864c
JB
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1925
df407dfe
AC
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
d2e4a39e
AS
1928
1929 if (!bounds)
ad82864c
JB
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
14f9c5c9
AS
1940 else
1941 {
d2e4a39e 1942 struct type *elt_type;
14f9c5c9 1943 int arity;
d2e4a39e 1944 struct value *descriptor;
14f9c5c9 1945
df407dfe
AC
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
14f9c5c9 1948
d2e4a39e 1949 if (elt_type == NULL || arity == 0)
df407dfe 1950 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1951
1952 descriptor = desc_bounds (arr);
d2e4a39e 1953 if (value_as_long (descriptor) == 0)
4c4b4cd2 1954 return NULL;
d2e4a39e 1955 while (arity > 0)
4c4b4cd2 1956 {
e9bb382b
UW
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1961
5b4ee69b 1962 arity -= 1;
0c9c3474
SA
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
4c4b4cd2 1966 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
4c4b4cd2 1988 }
14f9c5c9
AS
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992}
1993
1994/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
d2e4a39e
AS
1999struct value *
2000ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2001{
df407dfe 2002 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2003 {
d2e4a39e 2004 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2005
14f9c5c9 2006 if (arrType == NULL)
4c4b4cd2 2007 return NULL;
14f9c5c9
AS
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
ad82864c
JB
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2012 else
2013 return arr;
2014}
2015
2016/* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2018 be ARR itself if it already is in the proper form). */
2019
720d1a40 2020struct value *
d2e4a39e 2021ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2022{
df407dfe 2023 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2024 {
d2e4a39e 2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2026
14f9c5c9 2027 if (arrVal == NULL)
323e0a4a 2028 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2030 return value_ind (arrVal);
2031 }
ad82864c
JB
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
d2e4a39e 2034 else
14f9c5c9
AS
2035 return arr;
2036}
2037
2038/* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2040 packing). For other types, is the identity. */
2041
d2e4a39e
AS
2042struct type *
2043ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2044{
ad82864c
JB
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
17280b9f
UW
2047
2048 if (ada_is_array_descriptor_type (type))
556bdfd4 2049 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2050
2051 return type;
14f9c5c9
AS
2052}
2053
4c4b4cd2
PH
2054/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
ad82864c
JB
2056static int
2057ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2058{
2059 if (type == NULL)
2060 return 0;
4c4b4cd2 2061 type = desc_base_type (type);
61ee279c 2062 type = ada_check_typedef (type);
d2e4a39e 2063 return
14f9c5c9
AS
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066}
2067
ad82864c
JB
2068/* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071int
2072ada_is_constrained_packed_array_type (struct type *type)
2073{
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076}
2077
2078/* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081static int
2082ada_is_unconstrained_packed_array_type (struct type *type)
2083{
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086}
2087
2088/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091static long
2092decode_packed_array_bitsize (struct type *type)
2093{
0d5cff50
DE
2094 const char *raw_name;
2095 const char *tail;
ad82864c
JB
2096 long bits;
2097
720d1a40
JB
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
720d1a40 2112 gdb_assert (tail != NULL);
ad82864c
JB
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122}
2123
14f9c5c9
AS
2124/* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
4c4b4cd2 2140
d2e4a39e 2141static struct type *
ad82864c 2142constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2143{
d2e4a39e
AS
2144 struct type *new_elt_type;
2145 struct type *new_type;
99b1c762
JB
2146 struct type *index_type_desc;
2147 struct type *index_type;
14f9c5c9
AS
2148 LONGEST low_bound, high_bound;
2149
61ee279c 2150 type = ada_check_typedef (type);
14f9c5c9
AS
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
99b1c762
JB
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
e9bb382b 2161 new_type = alloc_type_copy (type);
ad82864c
JB
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
99b1c762 2165 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
4a46959e
JB
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2175 else
14f9c5c9
AS
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2178 TYPE_LENGTH (new_type) =
4c4b4cd2 2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2180 }
2181
876cecd0 2182 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2183 return new_type;
2184}
2185
ad82864c
JB
2186/* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2188
d2e4a39e 2189static struct type *
ad82864c 2190decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2191{
0d5cff50 2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2193 char *name;
0d5cff50 2194 const char *tail;
d2e4a39e 2195 struct type *shadow_type;
14f9c5c9 2196 long bits;
14f9c5c9 2197
727e3d2e
JB
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2206 type = desc_base_type (type);
2207
14f9c5c9
AS
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
b4ba55a1
JB
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
14f9c5c9 2214 {
323e0a4a 2215 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2216 return NULL;
2217 }
f168693b 2218 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
0963b4bd
MS
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
d2e4a39e 2226
ad82864c
JB
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2229}
2230
ad82864c
JB
2231/* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
4c4b4cd2 2235 type length is set appropriately. */
14f9c5c9 2236
d2e4a39e 2237static struct value *
ad82864c 2238decode_constrained_packed_array (struct value *arr)
14f9c5c9 2239{
4c4b4cd2 2240 struct type *type;
14f9c5c9 2241
11aa919a
PMR
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
828292f2 2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2251 arr = value_ind (arr);
4c4b4cd2 2252
ad82864c 2253 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2254 if (type == NULL)
2255 {
323e0a4a 2256 error (_("can't unpack array"));
14f9c5c9
AS
2257 return NULL;
2258 }
61ee279c 2259
d5a22e77 2260 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2261 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
df407dfe 2270 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
df407dfe 2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
4c4b4cd2 2285 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2286}
2287
2288
2289/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2290 given in IND. ARR must be a simple array. */
14f9c5c9 2291
d2e4a39e
AS
2292static struct value *
2293value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2294{
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
d2e4a39e
AS
2298 struct type *elt_type;
2299 struct value *v;
14f9c5c9
AS
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
df407dfe 2303 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2304 for (i = 0; i < arity; i += 1)
14f9c5c9 2305 {
d2e4a39e 2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
0963b4bd
MS
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
14f9c5c9 2311 else
4c4b4cd2
PH
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
323e0a4a 2319 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2320 lowerbound = upperbound = 0;
2321 }
2322
3cb382c9 2323 idx = pos_atr (ind[i]);
4c4b4cd2 2324 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
4c4b4cd2
PH
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2330 }
14f9c5c9
AS
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2336 bits, elt_type);
14f9c5c9
AS
2337 return v;
2338}
2339
4c4b4cd2 2340/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2341
2342static int
d2e4a39e 2343has_negatives (struct type *type)
14f9c5c9 2344{
d2e4a39e
AS
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
4e962e74 2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2353 }
14f9c5c9 2354}
d2e4a39e 2355
f93fca70 2356/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2358 the unpacked buffer.
14f9c5c9 2359
5b639dea
JB
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
f93fca70
JB
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
14f9c5c9 2365
f93fca70 2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2367
f93fca70
JB
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370static void
2371ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375{
a1c95e6b
JB
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
a1c95e6b
JB
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
4c4b4cd2 2386 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2387 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2388 unsigned char sign;
a1c95e6b 2389
4c4b4cd2
PH
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
f93fca70 2392 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2393
5b639dea
JB
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
14f9c5c9 2400 srcBitsLeft = bit_size;
086ca51f 2401 src_bytes_left = src_len;
f93fca70 2402 unpacked_bytes_left = unpacked_len;
14f9c5c9 2403 sign = 0;
f93fca70
JB
2404
2405 if (is_big_endian)
14f9c5c9 2406 {
086ca51f 2407 src_idx = src_len - 1;
f93fca70
JB
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2410 sign = ~0;
d2e4a39e
AS
2411
2412 unusedLS =
4c4b4cd2
PH
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
14f9c5c9 2415
f93fca70
JB
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
4c4b4cd2
PH
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
086ca51f
JB
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2430 }
14f9c5c9 2431 }
d2e4a39e 2432 else
14f9c5c9
AS
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
086ca51f 2436 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
f93fca70 2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2441 sign = ~0;
14f9c5c9 2442 }
d2e4a39e 2443
14f9c5c9 2444 accum = 0;
086ca51f 2445 while (src_bytes_left > 0)
14f9c5c9
AS
2446 {
2447 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2448 part of the value. */
d2e4a39e 2449 unsigned int unusedMSMask =
4c4b4cd2
PH
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
14f9c5c9 2453 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2454
d2e4a39e 2455 accum |=
086ca51f 2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2457 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2458 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2459 {
db297a65 2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
4c4b4cd2 2465 }
14f9c5c9
AS
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
086ca51f
JB
2468 src_bytes_left -= 1;
2469 src_idx += delta;
14f9c5c9 2470 }
086ca51f 2471 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2472 {
2473 accum |= sign << accumSize;
db297a65 2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2475 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2476 if (accumSize < 0)
2477 accumSize = 0;
14f9c5c9 2478 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
14f9c5c9 2481 }
f93fca70
JB
2482}
2483
2484/* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493struct value *
2494ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497{
2498 struct value *v;
bfb1c796 2499 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2500 gdb_byte *unpacked;
220475ed 2501 const int is_scalar = is_scalar_type (type);
d5a22e77 2502 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2503 gdb::byte_vector staging;
f93fca70
JB
2504
2505 type = ada_check_typedef (type);
2506
d0a9e810 2507 if (obj == NULL)
bfb1c796 2508 src = valaddr + offset;
d0a9e810 2509 else
bfb1c796 2510 src = value_contents (obj) + offset;
d0a9e810
JB
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
d0a9e810
JB
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2525 staging.data (), staging.size (),
d0a9e810
JB
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
d5722aa2 2528 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
d0a9e810
JB
2540 }
2541
f93fca70
JB
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
bfb1c796 2545 src = valaddr + offset;
f93fca70
JB
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
0cafa88c 2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2550 gdb_byte *buf;
0cafa88c 2551
f93fca70 2552 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
f93fca70
JB
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
bfb1c796 2560 src = value_contents (obj) + offset;
f93fca70
JB
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
bfb1c796 2583 unpacked = value_contents_writeable (v);
f93fca70
JB
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
d5722aa2 2591 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2592 {
d0a9e810
JB
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
d5722aa2 2596 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2597 }
d0a9e810
JB
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2602
14f9c5c9
AS
2603 return v;
2604}
d2e4a39e 2605
14f9c5c9
AS
2606/* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2609 floating-point or non-scalar types. */
14f9c5c9 2610
d2e4a39e
AS
2611static struct value *
2612ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2613{
df407dfe
AC
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
14f9c5c9 2616
52ce6436
PH
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
88e3b34b 2625 if (!deprecated_value_modifiable (toval))
323e0a4a 2626 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2627
d2e4a39e 2628 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2629 && bits > 0
d2e4a39e 2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2632 {
df407dfe
AC
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2635 int from_size;
224c3ddb 2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2637 struct value *val;
42ae5230 2638 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2641 fromval = value_cast (type, fromval);
14f9c5c9 2642
52ce6436 2643 read_memory (to_addr, buffer, len);
aced2898
PH
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2647
d5a22e77 2648 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
972daa01 2655 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2656
14f9c5c9 2657 val = value_copy (toval);
0fd88904 2658 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2659 TYPE_LENGTH (type));
04624583 2660 deprecated_set_value_type (val, type);
d2e4a39e 2661
14f9c5c9
AS
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666}
2667
2668
7c512744
JB
2669/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
52ce6436
PH
2680static void
2681value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683{
2684 LONGEST offset_in_container =
42ae5230 2685 (LONGEST) (value_address (component) - value_address (container));
7c512744 2686 int bit_offset_in_container =
52ce6436
PH
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
7c512744 2689
52ce6436
PH
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
d5a22e77 2697 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
a99bc3d2
JB
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2a62dfa9 2709 }
52ce6436 2710 else
a99bc3d2
JB
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
7c512744
JB
2714}
2715
736ade86
XR
2716/* Determine if TYPE is an access to an unconstrained array. */
2717
d91e9ea8 2718bool
736ade86
XR
2719ada_is_access_to_unconstrained_array (struct type *type)
2720{
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723}
2724
4c4b4cd2
PH
2725/* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2727 thereto. */
2728
d2e4a39e
AS
2729struct value *
2730ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2731{
2732 int k;
d2e4a39e
AS
2733 struct value *elt;
2734 struct type *elt_type;
14f9c5c9
AS
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
df407dfe 2738 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
b9c50e9a
XR
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
14f9c5c9 2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2748 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2749
2497b498 2750 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2771 }
b9c50e9a 2772
14f9c5c9
AS
2773 return elt;
2774}
2775
deede10c
JB
2776/* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
14f9c5c9 2787
2c0b251b 2788static struct value *
deede10c 2789ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2790{
2791 int k;
919e6dbe 2792 struct value *array_ind = ada_value_ind (arr);
deede10c 2793 struct type *type
919e6dbe
PMR
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
aa715135 2803 struct value *lwb_value;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2806 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2808 value_copy (arr));
14f9c5c9 2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816}
2817
0b5d8877 2818/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
0b5d8877 2822static struct value *
f5938064
JG
2823ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
0b5d8877 2825{
b0dd7688 2826 struct type *type0 = ada_check_typedef (type);
aa715135 2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2828 struct type *index_type
aa715135 2829 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
5b4ee69b 2845
aa715135
JG
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2849 return value_at_lazy (slice_type, base);
0b5d8877
PH
2850}
2851
2852
2853static struct value *
2854ada_value_slice (struct value *array, int low, int high)
2855{
b0dd7688 2856 struct type *type = ada_check_typedef (value_type (array));
aa715135 2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2864 LONGEST low_pos, high_pos;
5b4ee69b 2865
aa715135
JG
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2876}
2877
14f9c5c9
AS
2878/* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2881 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2882
2883int
d2e4a39e 2884ada_array_arity (struct type *type)
14f9c5c9
AS
2885{
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
d2e4a39e 2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2895 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2898 {
4c4b4cd2 2899 arity += 1;
61ee279c 2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2901 }
d2e4a39e 2902
14f9c5c9
AS
2903 return arity;
2904}
2905
2906/* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2909 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2910
d2e4a39e
AS
2911struct type *
2912ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2913{
2914 type = desc_base_type (type);
2915
d2e4a39e 2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2917 {
2918 int k;
d2e4a39e 2919 struct type *p_array_type;
14f9c5c9 2920
556bdfd4 2921 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
4c4b4cd2 2925 return NULL;
d2e4a39e 2926
4c4b4cd2 2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2928 if (nindices >= 0 && k > nindices)
4c4b4cd2 2929 k = nindices;
d2e4a39e 2930 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2931 {
61ee279c 2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2933 k -= 1;
2934 }
14f9c5c9
AS
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
14f9c5c9
AS
2944 return type;
2945 }
2946
2947 return NULL;
2948}
2949
4c4b4cd2 2950/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
14f9c5c9 2955
1eea4ebd
UW
2956static struct type *
2957ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2958{
4c4b4cd2
PH
2959 struct type *result_type;
2960
14f9c5c9
AS
2961 type = desc_base_type (type);
2962
1eea4ebd
UW
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2965
4c4b4cd2 2966 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
4c4b4cd2 2971 type = TYPE_TARGET_TYPE (type);
262452ec 2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2975 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
14f9c5c9 2978 }
d2e4a39e 2979 else
1eea4ebd
UW
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
14f9c5c9
AS
2987}
2988
2989/* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
14f9c5c9 2994
abb68b3e 2995static LONGEST
fb5e3d5c 2996ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2997{
8a48ac95 2998 struct type *type, *index_type_desc, *index_type;
1ce677a4 2999 int i;
262452ec
JK
3000
3001 gdb_assert (which == 0 || which == 1);
14f9c5c9 3002
ad82864c
JB
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3005
4c4b4cd2 3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3007 return (LONGEST) - which;
14f9c5c9
AS
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
bafffb51
JB
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
262452ec 3027 if (index_type_desc != NULL)
28c85d6c
JB
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
262452ec 3030 else
8a48ac95
JB
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
262452ec 3039
43bbcdc2
PH
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3044}
3045
3046/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3049 supplied by run-time quantities other than discriminants. */
14f9c5c9 3050
1eea4ebd 3051static LONGEST
4dc81987 3052ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3053{
eb479039
JB
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
14f9c5c9 3059
ad82864c
JB
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3062 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3063 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3064 else
1eea4ebd 3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
14f9c5c9 3073
1eea4ebd 3074static LONGEST
d2e4a39e 3075ada_array_length (struct value *arr, int n)
14f9c5c9 3076{
aa715135
JG
3077 struct type *arr_type, *index_type;
3078 int low, high;
eb479039
JB
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
14f9c5c9 3083
ad82864c
JB
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3086
4c4b4cd2 3087 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
14f9c5c9 3092 else
aa715135
JG
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
f168693b 3098 arr_type = check_typedef (arr_type);
7150d33c 3099 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
4c4b4cd2
PH
3112}
3113
bff8c71f
TT
3114/* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3117
3118static struct value *
bff8c71f 3119empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3120{
b0dd7688 3121 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3122 struct type *index_type
3123 = create_static_range_type
bff8c71f
TT
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
b0dd7688 3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3127
0b5d8877 3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3129}
14f9c5c9 3130\f
d2e4a39e 3131
4c4b4cd2 3132 /* Name resolution */
14f9c5c9 3133
4c4b4cd2
PH
3134/* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
14f9c5c9 3136
d2e4a39e 3137static const char *
4c4b4cd2 3138ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3139{
3140 int i;
3141
4c4b4cd2 3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3143 {
3144 if (ada_opname_table[i].op == op)
4c4b4cd2 3145 return ada_opname_table[i].decoded;
14f9c5c9 3146 }
323e0a4a 3147 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3148}
3149
de93309a
SM
3150/* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
14f9c5c9 3155
de93309a
SM
3156static int
3157encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3158{
de93309a
SM
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
30b15541 3166
de93309a
SM
3167 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3168 ;
3169 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3170 ;
3171 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3172 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3173 {
3174 int n0, n1;
30b15541 3175
de93309a
SM
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
14f9c5c9
AS
3187}
3188
de93309a
SM
3189/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
14f9c5c9 3191
de93309a
SM
3192static void
3193sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3194{
14f9c5c9 3195 int i;
14f9c5c9 3196
de93309a 3197 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3198 {
de93309a
SM
3199 struct block_symbol sym = syms[i];
3200 int j;
3201
3202 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3203 {
987012b8
CB
3204 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3205 sym.symbol->linkage_name ()))
de93309a
SM
3206 break;
3207 syms[j + 1] = syms[j];
4c4b4cd2 3208 }
de93309a
SM
3209 syms[j + 1] = sym;
3210 }
3211}
14f9c5c9 3212
de93309a
SM
3213/* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215static bool print_signatures = true;
4c4b4cd2 3216
de93309a
SM
3217/* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
4c4b4cd2 3221
de93309a
SM
3222static void
3223ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3224 const struct type_print_options *flags)
3225{
3226 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3227
987012b8 3228 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3229 if (!print_signatures
3230 || type == NULL
3231 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3232 return;
4c4b4cd2 3233
de93309a
SM
3234 if (TYPE_NFIELDS (type) > 0)
3235 {
3236 int i;
14f9c5c9 3237
de93309a
SM
3238 fprintf_filtered (stream, " (");
3239 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3240 {
3241 if (i > 0)
3242 fprintf_filtered (stream, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3244 flags);
3245 }
3246 fprintf_filtered (stream, ")");
3247 }
3248 if (TYPE_TARGET_TYPE (type) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3250 {
3251 fprintf_filtered (stream, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3253 }
3254}
14f9c5c9 3255
de93309a
SM
3256/* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3259
de93309a
SM
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
14f9c5c9 3262
de93309a
SM
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3266
de93309a 3267 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3268
de93309a
SM
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
14f9c5c9 3271
de93309a
SM
3272static int
3273get_selections (int *choices, int n_choices, int max_results,
3274 int is_all_choice, const char *annotation_suffix)
3275{
992a7040 3276 const char *args;
de93309a
SM
3277 const char *prompt;
3278 int n_chosen;
3279 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3280
de93309a
SM
3281 prompt = getenv ("PS2");
3282 if (prompt == NULL)
3283 prompt = "> ";
4c4b4cd2 3284
de93309a 3285 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3286
de93309a
SM
3287 if (args == NULL)
3288 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3289
de93309a 3290 n_chosen = 0;
4c4b4cd2 3291
de93309a
SM
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3294 while (1)
14f9c5c9 3295 {
de93309a
SM
3296 char *args2;
3297 int choice, j;
76a01679 3298
de93309a
SM
3299 args = skip_spaces (args);
3300 if (*args == '\0' && n_chosen == 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args == '\0')
3303 break;
76a01679 3304
de93309a
SM
3305 choice = strtol (args, &args2, 10);
3306 if (args == args2 || choice < 0
3307 || choice > n_choices + first_choice - 1)
3308 error (_("Argument must be choice number"));
3309 args = args2;
76a01679 3310
de93309a
SM
3311 if (choice == 0)
3312 error (_("cancelled"));
76a01679 3313
de93309a
SM
3314 if (choice < first_choice)
3315 {
3316 n_chosen = n_choices;
3317 for (j = 0; j < n_choices; j += 1)
3318 choices[j] = j;
3319 break;
76a01679 3320 }
de93309a 3321 choice -= first_choice;
76a01679 3322
de93309a 3323 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3324 {
76a01679 3325 }
4c4b4cd2 3326
de93309a 3327 if (j < 0 || choice != choices[j])
4c4b4cd2 3328 {
de93309a 3329 int k;
4c4b4cd2 3330
de93309a
SM
3331 for (k = n_chosen - 1; k > j; k -= 1)
3332 choices[k + 1] = choices[k];
3333 choices[j + 1] = choice;
3334 n_chosen += 1;
4c4b4cd2 3335 }
14f9c5c9
AS
3336 }
3337
de93309a
SM
3338 if (n_chosen > max_results)
3339 error (_("Select no more than %d of the above"), max_results);
3340
3341 return n_chosen;
14f9c5c9
AS
3342}
3343
de93309a
SM
3344/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3347 selected. */
3348
3349/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
14f9c5c9
AS
3351
3352static int
de93309a 3353user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3354{
de93309a
SM
3355 int i;
3356 int *chosen = XALLOCAVEC (int , nsyms);
3357 int n_chosen;
3358 int first_choice = (max_results == 1) ? 1 : 2;
3359 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3360
de93309a
SM
3361 if (max_results < 1)
3362 error (_("Request to select 0 symbols!"));
3363 if (nsyms <= 1)
3364 return nsyms;
14f9c5c9 3365
de93309a
SM
3366 if (select_mode == multiple_symbols_cancel)
3367 error (_("\
3368canceled because the command is ambiguous\n\
3369See set/show multiple-symbol."));
14f9c5c9 3370
de93309a
SM
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode == multiple_symbols_all && max_results > 1)
3375 return nsyms;
14f9c5c9 3376
de93309a
SM
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results > 1)
3379 printf_filtered (_("[1] all\n"));
14f9c5c9 3380
de93309a 3381 sort_choices (syms, nsyms);
14f9c5c9 3382
de93309a
SM
3383 for (i = 0; i < nsyms; i += 1)
3384 {
3385 if (syms[i].symbol == NULL)
3386 continue;
14f9c5c9 3387
de93309a
SM
3388 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3389 {
3390 struct symtab_and_line sal =
3391 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3392
de93309a
SM
3393 printf_filtered ("[%d] ", i + first_choice);
3394 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3395 &type_print_raw_options);
3396 if (sal.symtab == NULL)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style.style ().ptr (), nullptr, sal.line);
3399 else
3400 printf_filtered
3401 (_(" at %ps:%d\n"),
3402 styled_string (file_name_style.style (),
3403 symtab_to_filename_for_display (sal.symtab)),
3404 sal.line);
3405 continue;
3406 }
76a01679
JB
3407 else
3408 {
de93309a
SM
3409 int is_enumeral =
3410 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3411 && SYMBOL_TYPE (syms[i].symbol) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3413 struct symtab *symtab = NULL;
4c4b4cd2 3414
de93309a
SM
3415 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3416 symtab = symbol_symtab (syms[i].symbol);
3417
3418 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3419 {
3420 printf_filtered ("[%d] ", i + first_choice);
3421 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3422 &type_print_raw_options);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab),
3425 SYMBOL_LINE (syms[i].symbol));
3426 }
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3429 {
3430 printf_filtered (("[%d] "), i + first_choice);
3431 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3432 gdb_stdout, -1, 0, &type_print_raw_options);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3434 syms[i].symbol->print_name ());
de93309a
SM
3435 }
3436 else
3437 {
3438 printf_filtered ("[%d] ", i + first_choice);
3439 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3440 &type_print_raw_options);
3441
3442 if (symtab != NULL)
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3445 : _(" at %s:?\n"),
3446 symtab_to_filename_for_display (symtab));
3447 else
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3450 : _(" at ?\n"));
3451 }
76a01679 3452 }
14f9c5c9 3453 }
14f9c5c9 3454
de93309a
SM
3455 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3456 "overload-choice");
14f9c5c9 3457
de93309a
SM
3458 for (i = 0; i < n_chosen; i += 1)
3459 syms[i] = syms[chosen[i]];
14f9c5c9 3460
de93309a
SM
3461 return n_chosen;
3462}
14f9c5c9 3463
de93309a
SM
3464/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3472
de93309a
SM
3473static void
3474resolve (expression_up *expp, int void_context_p, int parse_completion,
3475 innermost_block_tracker *tracker)
3476{
3477 struct type *context_type = NULL;
3478 int pc = 0;
14f9c5c9 3479
de93309a
SM
3480 if (void_context_p)
3481 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3482
de93309a
SM
3483 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3484}
4c4b4cd2 3485
de93309a
SM
3486/* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
14f9c5c9 3494
de93309a
SM
3495static struct value *
3496resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3497 struct type *context_type, int parse_completion,
3498 innermost_block_tracker *tracker)
14f9c5c9 3499{
de93309a
SM
3500 int pc = *pos;
3501 int i;
3502 struct expression *exp; /* Convenience: == *expp. */
3503 enum exp_opcode op = (*expp)->elts[pc].opcode;
3504 struct value **argvec; /* Vector of operand types (alloca'ed). */
3505 int nargs; /* Number of operands. */
3506 int oplen;
14f9c5c9 3507
de93309a
SM
3508 argvec = NULL;
3509 nargs = 0;
3510 exp = expp->get ();
4c4b4cd2 3511
de93309a
SM
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3513 if needed. */
3514 switch (op)
3515 {
3516 case OP_FUNCALL:
3517 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3519 *pos += 7;
3520 else
3521 {
3522 *pos += 3;
3523 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3524 }
de93309a
SM
3525 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3526 break;
14f9c5c9 3527
de93309a
SM
3528 case UNOP_ADDR:
3529 *pos += 1;
3530 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 break;
3532
3533 case UNOP_QUAL:
3534 *pos += 3;
3535 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3536 parse_completion, tracker);
3537 break;
3538
3539 case OP_ATR_MODULUS:
3540 case OP_ATR_SIZE:
3541 case OP_ATR_TAG:
3542 case OP_ATR_FIRST:
3543 case OP_ATR_LAST:
3544 case OP_ATR_LENGTH:
3545 case OP_ATR_POS:
3546 case OP_ATR_VAL:
3547 case OP_ATR_MIN:
3548 case OP_ATR_MAX:
3549 case TERNOP_IN_RANGE:
3550 case BINOP_IN_BOUNDS:
3551 case UNOP_IN_RANGE:
3552 case OP_AGGREGATE:
3553 case OP_OTHERS:
3554 case OP_CHOICES:
3555 case OP_POSITIONAL:
3556 case OP_DISCRETE_RANGE:
3557 case OP_NAME:
3558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3559 *pos += oplen;
3560 break;
3561
3562 case BINOP_ASSIGN:
3563 {
3564 struct value *arg1;
3565
3566 *pos += 1;
3567 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3568 if (arg1 == NULL)
3569 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3570 else
3571 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3572 tracker);
3573 break;
3574 }
3575
3576 case UNOP_CAST:
3577 *pos += 3;
3578 nargs = 1;
3579 break;
3580
3581 case BINOP_ADD:
3582 case BINOP_SUB:
3583 case BINOP_MUL:
3584 case BINOP_DIV:
3585 case BINOP_REM:
3586 case BINOP_MOD:
3587 case BINOP_EXP:
3588 case BINOP_CONCAT:
3589 case BINOP_LOGICAL_AND:
3590 case BINOP_LOGICAL_OR:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601
3602 case BINOP_REPEAT:
3603 case BINOP_SUBSCRIPT:
3604 case BINOP_COMMA:
3605 *pos += 1;
3606 nargs = 2;
3607 break;
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 case UNOP_IND:
3614 *pos += 1;
3615 nargs = 1;
3616 break;
3617
3618 case OP_LONG:
3619 case OP_FLOAT:
3620 case OP_VAR_VALUE:
3621 case OP_VAR_MSYM_VALUE:
3622 *pos += 4;
3623 break;
3624
3625 case OP_TYPE:
3626 case OP_BOOL:
3627 case OP_LAST:
3628 case OP_INTERNALVAR:
3629 *pos += 3;
3630 break;
3631
3632 case UNOP_MEMVAL:
3633 *pos += 3;
3634 nargs = 1;
3635 break;
3636
3637 case OP_REGISTER:
3638 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3639 break;
3640
3641 case STRUCTOP_STRUCT:
3642 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3643 nargs = 1;
3644 break;
3645
3646 case TERNOP_SLICE:
3647 *pos += 1;
3648 nargs = 3;
3649 break;
3650
3651 case OP_STRING:
3652 break;
3653
3654 default:
3655 error (_("Unexpected operator during name resolution"));
14f9c5c9 3656 }
14f9c5c9 3657
de93309a
SM
3658 argvec = XALLOCAVEC (struct value *, nargs + 1);
3659 for (i = 0; i < nargs; i += 1)
3660 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3661 tracker);
3662 argvec[i] = NULL;
3663 exp = expp->get ();
4c4b4cd2 3664
de93309a
SM
3665 /* Pass two: perform any resolution on principal operator. */
3666 switch (op)
14f9c5c9 3667 {
de93309a
SM
3668 default:
3669 break;
5b4ee69b 3670
de93309a
SM
3671 case OP_VAR_VALUE:
3672 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3673 {
de93309a
SM
3674 std::vector<struct block_symbol> candidates;
3675 int n_candidates;
5b4ee69b 3676
de93309a 3677 n_candidates =
987012b8 3678 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3679 exp->elts[pc + 1].block, VAR_DOMAIN,
3680 &candidates);
d2e4a39e 3681
de93309a
SM
3682 if (n_candidates > 1)
3683 {
3684 /* Types tend to get re-introduced locally, so if there
3685 are any local symbols that are not types, first filter
3686 out all types. */
3687 int j;
3688 for (j = 0; j < n_candidates; j += 1)
3689 switch (SYMBOL_CLASS (candidates[j].symbol))
3690 {
3691 case LOC_REGISTER:
3692 case LOC_ARG:
3693 case LOC_REF_ARG:
3694 case LOC_REGPARM_ADDR:
3695 case LOC_LOCAL:
3696 case LOC_COMPUTED:
3697 goto FoundNonType;
3698 default:
3699 break;
3700 }
3701 FoundNonType:
3702 if (j < n_candidates)
3703 {
3704 j = 0;
3705 while (j < n_candidates)
3706 {
3707 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3708 {
3709 candidates[j] = candidates[n_candidates - 1];
3710 n_candidates -= 1;
3711 }
3712 else
3713 j += 1;
3714 }
3715 }
3716 }
4c4b4cd2 3717
de93309a
SM
3718 if (n_candidates == 0)
3719 error (_("No definition found for %s"),
987012b8 3720 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3721 else if (n_candidates == 1)
3722 i = 0;
3723 else if (deprocedure_p
3724 && !is_nonfunction (candidates.data (), n_candidates))
3725 {
3726 i = ada_resolve_function
3727 (candidates.data (), n_candidates, NULL, 0,
987012b8 3728 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3729 context_type, parse_completion);
3730 if (i < 0)
3731 error (_("Could not find a match for %s"),
987012b8 3732 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3733 }
3734 else
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3737 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3738 user_select_syms (candidates.data (), n_candidates, 1);
3739 i = 0;
3740 }
5b4ee69b 3741
de93309a
SM
3742 exp->elts[pc + 1].block = candidates[i].block;
3743 exp->elts[pc + 2].symbol = candidates[i].symbol;
3744 tracker->update (candidates[i]);
3745 }
14f9c5c9 3746
de93309a
SM
3747 if (deprocedure_p
3748 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3749 == TYPE_CODE_FUNC))
4c4b4cd2 3750 {
de93309a
SM
3751 replace_operator_with_call (expp, pc, 0, 4,
3752 exp->elts[pc + 2].symbol,
3753 exp->elts[pc + 1].block);
3754 exp = expp->get ();
4c4b4cd2 3755 }
de93309a
SM
3756 break;
3757
3758 case OP_FUNCALL:
3759 {
3760 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3761 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3762 {
3763 std::vector<struct block_symbol> candidates;
3764 int n_candidates;
3765
3766 n_candidates =
987012b8 3767 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3768 exp->elts[pc + 4].block, VAR_DOMAIN,
3769 &candidates);
14f9c5c9 3770
de93309a
SM
3771 if (n_candidates == 1)
3772 i = 0;
3773 else
3774 {
3775 i = ada_resolve_function
3776 (candidates.data (), n_candidates,
3777 argvec, nargs,
987012b8 3778 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3779 context_type, parse_completion);
3780 if (i < 0)
3781 error (_("Could not find a match for %s"),
987012b8 3782 exp->elts[pc + 5].symbol->print_name ());
de93309a 3783 }
d72413e6 3784
de93309a
SM
3785 exp->elts[pc + 4].block = candidates[i].block;
3786 exp->elts[pc + 5].symbol = candidates[i].symbol;
3787 tracker->update (candidates[i]);
3788 }
3789 }
3790 break;
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_CONCAT:
3798 case BINOP_BITWISE_AND:
3799 case BINOP_BITWISE_IOR:
3800 case BINOP_BITWISE_XOR:
3801 case BINOP_EQUAL:
3802 case BINOP_NOTEQUAL:
3803 case BINOP_LESS:
3804 case BINOP_GTR:
3805 case BINOP_LEQ:
3806 case BINOP_GEQ:
3807 case BINOP_EXP:
3808 case UNOP_NEG:
3809 case UNOP_PLUS:
3810 case UNOP_LOGICAL_NOT:
3811 case UNOP_ABS:
3812 if (possible_user_operator_p (op, argvec))
3813 {
3814 std::vector<struct block_symbol> candidates;
3815 int n_candidates;
d72413e6 3816
de93309a
SM
3817 n_candidates =
3818 ada_lookup_symbol_list (ada_decoded_op_name (op),
3819 NULL, VAR_DOMAIN,
3820 &candidates);
d72413e6 3821
de93309a
SM
3822 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3823 nargs, ada_decoded_op_name (op), NULL,
3824 parse_completion);
3825 if (i < 0)
3826 break;
d72413e6 3827
de93309a
SM
3828 replace_operator_with_call (expp, pc, nargs, 1,
3829 candidates[i].symbol,
3830 candidates[i].block);
3831 exp = expp->get ();
3832 }
3833 break;
d72413e6 3834
de93309a
SM
3835 case OP_TYPE:
3836 case OP_REGISTER:
3837 return NULL;
d72413e6 3838 }
d72413e6 3839
de93309a
SM
3840 *pos = pc;
3841 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3842 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3843 exp->elts[pc + 1].objfile,
3844 exp->elts[pc + 2].msymbol);
3845 else
3846 return evaluate_subexp_type (exp, pos);
3847}
14f9c5c9 3848
de93309a
SM
3849/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3850 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3851 a non-pointer. */
3852/* The term "match" here is rather loose. The match is heuristic and
3853 liberal. */
14f9c5c9 3854
de93309a
SM
3855static int
3856ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3857{
de93309a
SM
3858 ftype = ada_check_typedef (ftype);
3859 atype = ada_check_typedef (atype);
14f9c5c9 3860
de93309a
SM
3861 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3862 ftype = TYPE_TARGET_TYPE (ftype);
3863 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3864 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3865
de93309a 3866 switch (TYPE_CODE (ftype))
14f9c5c9 3867 {
de93309a
SM
3868 default:
3869 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3870 case TYPE_CODE_PTR:
3871 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3872 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3873 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3874 else
de93309a
SM
3875 return (may_deref
3876 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_ENUM:
3879 case TYPE_CODE_RANGE:
3880 switch (TYPE_CODE (atype))
4c4b4cd2 3881 {
de93309a
SM
3882 case TYPE_CODE_INT:
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_RANGE:
3885 return 1;
3886 default:
3887 return 0;
4c4b4cd2 3888 }
d2e4a39e 3889
de93309a
SM
3890 case TYPE_CODE_ARRAY:
3891 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3892 || ada_is_array_descriptor_type (atype));
14f9c5c9 3893
de93309a
SM
3894 case TYPE_CODE_STRUCT:
3895 if (ada_is_array_descriptor_type (ftype))
3896 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3897 || ada_is_array_descriptor_type (atype));
3898 else
3899 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3900 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3901
de93309a
SM
3902 case TYPE_CODE_UNION:
3903 case TYPE_CODE_FLT:
3904 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3905 }
14f9c5c9
AS
3906}
3907
de93309a
SM
3908/* Return non-zero if the formals of FUNC "sufficiently match" the
3909 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3910 may also be an enumeral, in which case it is treated as a 0-
3911 argument function. */
14f9c5c9 3912
de93309a
SM
3913static int
3914ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3915{
3916 int i;
3917 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3918
de93309a
SM
3919 if (SYMBOL_CLASS (func) == LOC_CONST
3920 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3921 return (n_actuals == 0);
3922 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3923 return 0;
14f9c5c9 3924
de93309a
SM
3925 if (TYPE_NFIELDS (func_type) != n_actuals)
3926 return 0;
14f9c5c9 3927
de93309a
SM
3928 for (i = 0; i < n_actuals; i += 1)
3929 {
3930 if (actuals[i] == NULL)
3931 return 0;
3932 else
3933 {
3934 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3935 i));
3936 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3937
de93309a
SM
3938 if (!ada_type_match (ftype, atype, 1))
3939 return 0;
3940 }
3941 }
3942 return 1;
3943}
d2e4a39e 3944
de93309a
SM
3945/* False iff function type FUNC_TYPE definitely does not produce a value
3946 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3947 FUNC_TYPE is not a valid function type with a non-null return type
3948 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3949
de93309a
SM
3950static int
3951return_match (struct type *func_type, struct type *context_type)
3952{
3953 struct type *return_type;
d2e4a39e 3954
de93309a
SM
3955 if (func_type == NULL)
3956 return 1;
14f9c5c9 3957
de93309a
SM
3958 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3959 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3960 else
3961 return_type = get_base_type (func_type);
3962 if (return_type == NULL)
3963 return 1;
76a01679 3964
de93309a 3965 context_type = get_base_type (context_type);
14f9c5c9 3966
de93309a
SM
3967 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3968 return context_type == NULL || return_type == context_type;
3969 else if (context_type == NULL)
3970 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3971 else
3972 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3973}
14f9c5c9 3974
14f9c5c9 3975
de93309a
SM
3976/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3977 function (if any) that matches the types of the NARGS arguments in
3978 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3979 that returns that type, then eliminate matches that don't. If
3980 CONTEXT_TYPE is void and there is at least one match that does not
3981 return void, eliminate all matches that do.
14f9c5c9 3982
de93309a
SM
3983 Asks the user if there is more than one match remaining. Returns -1
3984 if there is no such symbol or none is selected. NAME is used
3985 solely for messages. May re-arrange and modify SYMS in
3986 the process; the index returned is for the modified vector. */
14f9c5c9 3987
de93309a
SM
3988static int
3989ada_resolve_function (struct block_symbol syms[],
3990 int nsyms, struct value **args, int nargs,
3991 const char *name, struct type *context_type,
3992 int parse_completion)
3993{
3994 int fallback;
3995 int k;
3996 int m; /* Number of hits */
14f9c5c9 3997
de93309a
SM
3998 m = 0;
3999 /* In the first pass of the loop, we only accept functions matching
4000 context_type. If none are found, we add a second pass of the loop
4001 where every function is accepted. */
4002 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4003 {
4004 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 4005 {
de93309a 4006 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 4007
de93309a
SM
4008 if (ada_args_match (syms[k].symbol, args, nargs)
4009 && (fallback || return_match (type, context_type)))
4010 {
4011 syms[m] = syms[k];
4012 m += 1;
4013 }
4c4b4cd2 4014 }
14f9c5c9
AS
4015 }
4016
de93309a
SM
4017 /* If we got multiple matches, ask the user which one to use. Don't do this
4018 interactive thing during completion, though, as the purpose of the
4019 completion is providing a list of all possible matches. Prompting the
4020 user to filter it down would be completely unexpected in this case. */
4021 if (m == 0)
4022 return -1;
4023 else if (m > 1 && !parse_completion)
4024 {
4025 printf_filtered (_("Multiple matches for %s\n"), name);
4026 user_select_syms (syms, m, 1);
4027 return 0;
4028 }
4029 return 0;
14f9c5c9
AS
4030}
4031
4c4b4cd2
PH
4032/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4033 on the function identified by SYM and BLOCK, and taking NARGS
4034 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4035
4036static void
e9d9f57e 4037replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4038 int oplen, struct symbol *sym,
270140bd 4039 const struct block *block)
14f9c5c9
AS
4040{
4041 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4042 symbol, -oplen for operator being replaced). */
d2e4a39e 4043 struct expression *newexp = (struct expression *)
8c1a34e7 4044 xzalloc (sizeof (struct expression)
4c4b4cd2 4045 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4046 struct expression *exp = expp->get ();
14f9c5c9
AS
4047
4048 newexp->nelts = exp->nelts + 7 - oplen;
4049 newexp->language_defn = exp->language_defn;
3489610d 4050 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4051 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4052 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4053 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4054
4055 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4056 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4057
4058 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4059 newexp->elts[pc + 4].block = block;
4060 newexp->elts[pc + 5].symbol = sym;
4061
e9d9f57e 4062 expp->reset (newexp);
d2e4a39e 4063}
14f9c5c9
AS
4064
4065/* Type-class predicates */
4066
4c4b4cd2
PH
4067/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4068 or FLOAT). */
14f9c5c9
AS
4069
4070static int
d2e4a39e 4071numeric_type_p (struct type *type)
14f9c5c9
AS
4072{
4073 if (type == NULL)
4074 return 0;
d2e4a39e
AS
4075 else
4076 {
4077 switch (TYPE_CODE (type))
4c4b4cd2
PH
4078 {
4079 case TYPE_CODE_INT:
4080 case TYPE_CODE_FLT:
4081 return 1;
4082 case TYPE_CODE_RANGE:
4083 return (type == TYPE_TARGET_TYPE (type)
4084 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4085 default:
4086 return 0;
4087 }
d2e4a39e 4088 }
14f9c5c9
AS
4089}
4090
4c4b4cd2 4091/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4092
4093static int
d2e4a39e 4094integer_type_p (struct type *type)
14f9c5c9
AS
4095{
4096 if (type == NULL)
4097 return 0;
d2e4a39e
AS
4098 else
4099 {
4100 switch (TYPE_CODE (type))
4c4b4cd2
PH
4101 {
4102 case TYPE_CODE_INT:
4103 return 1;
4104 case TYPE_CODE_RANGE:
4105 return (type == TYPE_TARGET_TYPE (type)
4106 || integer_type_p (TYPE_TARGET_TYPE (type)));
4107 default:
4108 return 0;
4109 }
d2e4a39e 4110 }
14f9c5c9
AS
4111}
4112
4c4b4cd2 4113/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4114
4115static int
d2e4a39e 4116scalar_type_p (struct type *type)
14f9c5c9
AS
4117{
4118 if (type == NULL)
4119 return 0;
d2e4a39e
AS
4120 else
4121 {
4122 switch (TYPE_CODE (type))
4c4b4cd2
PH
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_RANGE:
4126 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FLT:
4128 return 1;
4129 default:
4130 return 0;
4131 }
d2e4a39e 4132 }
14f9c5c9
AS
4133}
4134
4c4b4cd2 4135/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4136
4137static int
d2e4a39e 4138discrete_type_p (struct type *type)
14f9c5c9
AS
4139{
4140 if (type == NULL)
4141 return 0;
d2e4a39e
AS
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4c4b4cd2
PH
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
872f0337 4149 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4150 return 1;
4151 default:
4152 return 0;
4153 }
d2e4a39e 4154 }
14f9c5c9
AS
4155}
4156
4c4b4cd2
PH
4157/* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
14f9c5c9
AS
4160
4161static int
d2e4a39e 4162possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4163{
76a01679 4164 struct type *type0 =
df407dfe 4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4166 struct type *type1 =
df407dfe 4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4168
4c4b4cd2
PH
4169 if (type0 == NULL)
4170 return 0;
4171
14f9c5c9
AS
4172 switch (op)
4173 {
4174 default:
4175 return 0;
4176
4177 case BINOP_ADD:
4178 case BINOP_SUB:
4179 case BINOP_MUL:
4180 case BINOP_DIV:
d2e4a39e 4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4182
4183 case BINOP_REM:
4184 case BINOP_MOD:
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
d2e4a39e 4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4189
4190 case BINOP_EQUAL:
4191 case BINOP_NOTEQUAL:
4192 case BINOP_LESS:
4193 case BINOP_GTR:
4194 case BINOP_LEQ:
4195 case BINOP_GEQ:
d2e4a39e 4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4197
4198 case BINOP_CONCAT:
ee90b9ab 4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4200
4201 case BINOP_EXP:
d2e4a39e 4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4203
4204 case UNOP_NEG:
4205 case UNOP_PLUS:
4206 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4207 case UNOP_ABS:
4208 return (!numeric_type_p (type0));
14f9c5c9
AS
4209
4210 }
4211}
4212\f
4c4b4cd2 4213 /* Renaming */
14f9c5c9 4214
aeb5907d
JB
4215/* NOTES:
4216
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4219 point.
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4226
4227/* If SYM encodes a renaming,
4228
4229 <renaming> renames <renamed entity>,
4230
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
0963b4bd 4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4243
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4245
4246enum ada_renaming_category
4247ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4250{
4251 enum ada_renaming_category kind;
4252 const char *info;
4253 const char *suffix;
4254
4255 if (sym == NULL)
4256 return ADA_NOT_RENAMING;
4257 switch (SYMBOL_CLASS (sym))
14f9c5c9 4258 {
aeb5907d
JB
4259 default:
4260 return ADA_NOT_RENAMING;
aeb5907d
JB
4261 case LOC_LOCAL:
4262 case LOC_STATIC:
4263 case LOC_COMPUTED:
4264 case LOC_OPTIMIZED_OUT:
987012b8 4265 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4266 if (info == NULL)
4267 return ADA_NOT_RENAMING;
4268 switch (info[5])
4269 {
4270 case '_':
4271 kind = ADA_OBJECT_RENAMING;
4272 info += 6;
4273 break;
4274 case 'E':
4275 kind = ADA_EXCEPTION_RENAMING;
4276 info += 7;
4277 break;
4278 case 'P':
4279 kind = ADA_PACKAGE_RENAMING;
4280 info += 7;
4281 break;
4282 case 'S':
4283 kind = ADA_SUBPROGRAM_RENAMING;
4284 info += 7;
4285 break;
4286 default:
4287 return ADA_NOT_RENAMING;
4288 }
14f9c5c9 4289 }
4c4b4cd2 4290
de93309a
SM
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4296 if (len != NULL)
4297 *len = strlen (info) - strlen (suffix);
4298 suffix += 5;
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4301 return kind;
4302}
4303
4304/* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4307
4308static struct value *
4309ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4311{
4312 const char *sym_name;
4313
987012b8 4314 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4317}
4318\f
4319
4320 /* Evaluation: Function Calls */
4321
4322/* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4325
4326static struct value *
4327ensure_lval (struct value *val)
4328{
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4331 {
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4335
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val), len);
4339 }
4340
4341 return val;
4342}
4343
4344/* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4347 appropriate type.
4348
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4351 (e.g., '_parent').
4352
4353 If NO_ERR, then simply return NULL in case of error, rather than
4354 calling error. */
4355
4356static struct value *
4357ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4358{
4359 struct type *t, *t1;
4360 struct value *v;
4361 int check_tag;
4362
4363 v = NULL;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (TYPE_CODE (t) == TYPE_CODE_REF)
4366 {
4367 t1 = TYPE_TARGET_TYPE (t);
4368 if (t1 == NULL)
4369 goto BadValue;
4370 t1 = ada_check_typedef (t1);
4371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4372 {
4373 arg = coerce_ref (arg);
4374 t = t1;
4375 }
4376 }
4377
4378 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4379 {
4380 t1 = TYPE_TARGET_TYPE (t);
4381 if (t1 == NULL)
4382 goto BadValue;
4383 t1 = ada_check_typedef (t1);
4384 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4385 {
4386 arg = value_ind (arg);
4387 t = t1;
4388 }
4389 else
4390 break;
4391 }
aeb5907d 4392
de93309a
SM
4393 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4394 goto BadValue;
52ce6436 4395
de93309a
SM
4396 if (t1 == t)
4397 v = ada_search_struct_field (name, arg, 0, t);
4398 else
4399 {
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4402 CORE_ADDR address;
a5ee536b 4403
de93309a
SM
4404 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4406 else
4407 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4408
de93309a
SM
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
14f9c5c9 4414
de93309a
SM
4415 if (ada_is_tagged_type (t1, 0)
4416 || (TYPE_CODE (t1) == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4418 {
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
14f9c5c9 4421
de93309a
SM
4422 if (!find_struct_field (name, t1, 0,
4423 &field_type, &byte_offset, &bit_offset,
4424 &bit_size, NULL))
4425 check_tag = 1;
4426 else
4427 check_tag = 0;
4428 }
4429 else
4430 check_tag = 0;
c3e5cd34 4431
de93309a
SM
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4436
4437 if (find_struct_field (name, t1, 0,
4438 &field_type, &byte_offset, &bit_offset,
4439 &bit_size, NULL))
4440 {
4441 if (bit_size != 0)
4442 {
4443 if (TYPE_CODE (t) == TYPE_CODE_REF)
4444 arg = ada_coerce_ref (arg);
4445 else
4446 arg = ada_value_ind (arg);
4447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4448 bit_offset, bit_size,
4449 field_type);
4450 }
4451 else
4452 v = value_at_lazy (field_type, address + byte_offset);
4453 }
c3e5cd34 4454 }
14f9c5c9 4455
de93309a
SM
4456 if (v != NULL || no_err)
4457 return v;
4458 else
4459 error (_("There is no member named %s."), name);
4460
4461 BadValue:
4462 if (no_err)
4463 return NULL;
4464 else
4465 error (_("Attempt to extract a component of "
4466 "a value that is not a record."));
14f9c5c9
AS
4467}
4468
4469/* Return the value ACTUAL, converted to be an appropriate value for a
4470 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4471 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4472 values not residing in memory, updating it as needed. */
14f9c5c9 4473
a93c0eb6 4474struct value *
40bc484c 4475ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4476{
df407dfe 4477 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4478 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4479 struct type *formal_target =
4480 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4481 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4482 struct type *actual_target =
4483 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4484 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4485
4c4b4cd2 4486 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4487 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4488 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4489 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4491 {
a84a8a0d 4492 struct value *result;
5b4ee69b 4493
14f9c5c9 4494 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4495 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4496 result = desc_data (actual);
cb923fcc 4497 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4498 {
4499 if (VALUE_LVAL (actual) != lval_memory)
4500 {
4501 struct value *val;
5b4ee69b 4502
df407dfe 4503 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4504 val = allocate_value (actual_type);
990a07ab 4505 memcpy ((char *) value_contents_raw (val),
0fd88904 4506 (char *) value_contents (actual),
4c4b4cd2 4507 TYPE_LENGTH (actual_type));
40bc484c 4508 actual = ensure_lval (val);
4c4b4cd2 4509 }
a84a8a0d 4510 result = value_addr (actual);
4c4b4cd2 4511 }
a84a8a0d
JB
4512 else
4513 return actual;
b1af9e97 4514 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4515 }
4516 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4517 return ada_value_ind (actual);
8344af1e
JB
4518 else if (ada_is_aligner_type (formal_type))
4519 {
4520 /* We need to turn this parameter into an aligner type
4521 as well. */
4522 struct value *aligner = allocate_value (formal_type);
4523 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4524
4525 value_assign_to_component (aligner, component, actual);
4526 return aligner;
4527 }
14f9c5c9
AS
4528
4529 return actual;
4530}
4531
438c98a1
JB
4532/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4533 type TYPE. This is usually an inefficient no-op except on some targets
4534 (such as AVR) where the representation of a pointer and an address
4535 differs. */
4536
4537static CORE_ADDR
4538value_pointer (struct value *value, struct type *type)
4539{
4540 struct gdbarch *gdbarch = get_type_arch (type);
4541 unsigned len = TYPE_LENGTH (type);
224c3ddb 4542 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4543 CORE_ADDR addr;
4544
4545 addr = value_address (value);
4546 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4547 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4548 return addr;
4549}
4550
14f9c5c9 4551
4c4b4cd2
PH
4552/* Push a descriptor of type TYPE for array value ARR on the stack at
4553 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4554 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4555 to-descriptor type rather than a descriptor type), a struct value *
4556 representing a pointer to this descriptor. */
14f9c5c9 4557
d2e4a39e 4558static struct value *
40bc484c 4559make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4560{
d2e4a39e
AS
4561 struct type *bounds_type = desc_bounds_type (type);
4562 struct type *desc_type = desc_base_type (type);
4563 struct value *descriptor = allocate_value (desc_type);
4564 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4565 int i;
d2e4a39e 4566
0963b4bd
MS
4567 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4568 i > 0; i -= 1)
14f9c5c9 4569 {
19f220c3
JK
4570 modify_field (value_type (bounds), value_contents_writeable (bounds),
4571 ada_array_bound (arr, i, 0),
4572 desc_bound_bitpos (bounds_type, i, 0),
4573 desc_bound_bitsize (bounds_type, i, 0));
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 1),
4576 desc_bound_bitpos (bounds_type, i, 1),
4577 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4578 }
d2e4a39e 4579
40bc484c 4580 bounds = ensure_lval (bounds);
d2e4a39e 4581
19f220c3
JK
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (ensure_lval (arr),
4585 TYPE_FIELD_TYPE (desc_type, 0)),
4586 fat_pntr_data_bitpos (desc_type),
4587 fat_pntr_data_bitsize (desc_type));
4588
4589 modify_field (value_type (descriptor),
4590 value_contents_writeable (descriptor),
4591 value_pointer (bounds,
4592 TYPE_FIELD_TYPE (desc_type, 1)),
4593 fat_pntr_bounds_bitpos (desc_type),
4594 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4595
40bc484c 4596 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4597
4598 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4599 return value_addr (descriptor);
4600 else
4601 return descriptor;
4602}
14f9c5c9 4603\f
3d9434b5
JB
4604 /* Symbol Cache Module */
4605
3d9434b5 4606/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4607 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4608 on the type of entity being printed, the cache can make it as much
4609 as an order of magnitude faster than without it.
4610
4611 The descriptive type DWARF extension has significantly reduced
4612 the need for this cache, at least when DWARF is being used. However,
4613 even in this case, some expensive name-based symbol searches are still
4614 sometimes necessary - to find an XVZ variable, mostly. */
4615
ee01b665 4616/* Initialize the contents of SYM_CACHE. */
3d9434b5 4617
ee01b665
JB
4618static void
4619ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4620{
4621 obstack_init (&sym_cache->cache_space);
4622 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4623}
3d9434b5 4624
ee01b665
JB
4625/* Free the memory used by SYM_CACHE. */
4626
4627static void
4628ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4629{
ee01b665
JB
4630 obstack_free (&sym_cache->cache_space, NULL);
4631 xfree (sym_cache);
4632}
3d9434b5 4633
ee01b665
JB
4634/* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4636
ee01b665
JB
4637static struct ada_symbol_cache *
4638ada_get_symbol_cache (struct program_space *pspace)
4639{
4640 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4641
66c168ae 4642 if (pspace_data->sym_cache == NULL)
ee01b665 4643 {
66c168ae
JB
4644 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4645 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4646 }
4647
66c168ae 4648 return pspace_data->sym_cache;
ee01b665 4649}
3d9434b5
JB
4650
4651/* Clear all entries from the symbol cache. */
4652
4653static void
4654ada_clear_symbol_cache (void)
4655{
ee01b665
JB
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658
4659 obstack_free (&sym_cache->cache_space, NULL);
4660 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4661}
4662
fe978cb0 4663/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4664 Return it if found, or NULL otherwise. */
4665
4666static struct cache_entry **
fe978cb0 4667find_entry (const char *name, domain_enum domain)
3d9434b5 4668{
ee01b665
JB
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4671 int h = msymbol_hash (name) % HASH_SIZE;
4672 struct cache_entry **e;
4673
ee01b665 4674 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4675 {
fe978cb0 4676 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4677 return e;
4678 }
4679 return NULL;
4680}
4681
fe978cb0 4682/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return 1 if found, 0 otherwise.
4684
4685 If an entry was found and SYM is not NULL, set *SYM to the entry's
4686 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4687
96d887e8 4688static int
fe978cb0 4689lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4690 struct symbol **sym, const struct block **block)
96d887e8 4691{
fe978cb0 4692 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4693
4694 if (e == NULL)
4695 return 0;
4696 if (sym != NULL)
4697 *sym = (*e)->sym;
4698 if (block != NULL)
4699 *block = (*e)->block;
4700 return 1;
96d887e8
PH
4701}
4702
3d9434b5 4703/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4704 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4705
96d887e8 4706static void
fe978cb0 4707cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4708 const struct block *block)
96d887e8 4709{
ee01b665
JB
4710 struct ada_symbol_cache *sym_cache
4711 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4712 int h;
4713 char *copy;
4714 struct cache_entry *e;
4715
1994afbf
DE
4716 /* Symbols for builtin types don't have a block.
4717 For now don't cache such symbols. */
4718 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4719 return;
4720
3d9434b5
JB
4721 /* If the symbol is a local symbol, then do not cache it, as a search
4722 for that symbol depends on the context. To determine whether
4723 the symbol is local or not, we check the block where we found it
4724 against the global and static blocks of its associated symtab. */
4725 if (sym
08be3fe3 4726 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4727 GLOBAL_BLOCK) != block
08be3fe3 4728 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4729 STATIC_BLOCK) != block)
3d9434b5
JB
4730 return;
4731
4732 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4733 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4734 e->next = sym_cache->root[h];
4735 sym_cache->root[h] = e;
224c3ddb
SM
4736 e->name = copy
4737 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4738 strcpy (copy, name);
4739 e->sym = sym;
fe978cb0 4740 e->domain = domain;
3d9434b5 4741 e->block = block;
96d887e8 4742}
4c4b4cd2
PH
4743\f
4744 /* Symbol Lookup */
4745
b5ec771e
PA
4746/* Return the symbol name match type that should be used used when
4747 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4748
4749 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4750 for Ada lookups. */
c0431670 4751
b5ec771e
PA
4752static symbol_name_match_type
4753name_match_type_from_name (const char *lookup_name)
c0431670 4754{
b5ec771e
PA
4755 return (strstr (lookup_name, "__") == NULL
4756 ? symbol_name_match_type::WILD
4757 : symbol_name_match_type::FULL);
c0431670
JB
4758}
4759
4c4b4cd2
PH
4760/* Return the result of a standard (literal, C-like) lookup of NAME in
4761 given DOMAIN, visible from lexical block BLOCK. */
4762
4763static struct symbol *
4764standard_lookup (const char *name, const struct block *block,
4765 domain_enum domain)
4766{
acbd605d 4767 /* Initialize it just to avoid a GCC false warning. */
6640a367 4768 struct block_symbol sym = {};
4c4b4cd2 4769
d12307c1
PMR
4770 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4771 return sym.symbol;
a2cd4f14 4772 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4773 cache_symbol (name, domain, sym.symbol, sym.block);
4774 return sym.symbol;
4c4b4cd2
PH
4775}
4776
4777
4778/* Non-zero iff there is at least one non-function/non-enumeral symbol
4779 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4780 since they contend in overloading in the same way. */
4781static int
d12307c1 4782is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4783{
4784 int i;
4785
4786 for (i = 0; i < n; i += 1)
d12307c1
PMR
4787 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4788 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4789 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4790 return 1;
4791
4792 return 0;
4793}
4794
4795/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4796 struct types. Otherwise, they may not. */
14f9c5c9
AS
4797
4798static int
d2e4a39e 4799equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4800{
d2e4a39e 4801 if (type0 == type1)
14f9c5c9 4802 return 1;
d2e4a39e 4803 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4804 || TYPE_CODE (type0) != TYPE_CODE (type1))
4805 return 0;
d2e4a39e 4806 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4807 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4808 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4809 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4810 return 1;
d2e4a39e 4811
14f9c5c9
AS
4812 return 0;
4813}
4814
4815/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4816 no more defined than that of SYM1. */
14f9c5c9
AS
4817
4818static int
d2e4a39e 4819lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4820{
4821 if (sym0 == sym1)
4822 return 1;
176620f1 4823 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4824 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4825 return 0;
4826
d2e4a39e 4827 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4828 {
4829 case LOC_UNDEF:
4830 return 1;
4831 case LOC_TYPEDEF:
4832 {
4c4b4cd2
PH
4833 struct type *type0 = SYMBOL_TYPE (sym0);
4834 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4835 const char *name0 = sym0->linkage_name ();
4836 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4837 int len0 = strlen (name0);
5b4ee69b 4838
4c4b4cd2
PH
4839 return
4840 TYPE_CODE (type0) == TYPE_CODE (type1)
4841 && (equiv_types (type0, type1)
4842 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4843 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4844 }
4845 case LOC_CONST:
4846 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4847 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4848
4849 case LOC_STATIC:
4850 {
987012b8
CB
4851 const char *name0 = sym0->linkage_name ();
4852 const char *name1 = sym1->linkage_name ();
4b610737
TT
4853 return (strcmp (name0, name1) == 0
4854 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4855 }
4856
d2e4a39e
AS
4857 default:
4858 return 0;
14f9c5c9
AS
4859 }
4860}
4861
d12307c1 4862/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4863 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4864
4865static void
76a01679
JB
4866add_defn_to_vec (struct obstack *obstackp,
4867 struct symbol *sym,
f0c5f9b2 4868 const struct block *block)
14f9c5c9
AS
4869{
4870 int i;
d12307c1 4871 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4872
529cad9c
PH
4873 /* Do not try to complete stub types, as the debugger is probably
4874 already scanning all symbols matching a certain name at the
4875 time when this function is called. Trying to replace the stub
4876 type by its associated full type will cause us to restart a scan
4877 which may lead to an infinite recursion. Instead, the client
4878 collecting the matching symbols will end up collecting several
4879 matches, with at least one of them complete. It can then filter
4880 out the stub ones if needed. */
4881
4c4b4cd2
PH
4882 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4883 {
d12307c1 4884 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4885 return;
d12307c1 4886 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4887 {
d12307c1 4888 prevDefns[i].symbol = sym;
4c4b4cd2 4889 prevDefns[i].block = block;
4c4b4cd2 4890 return;
76a01679 4891 }
4c4b4cd2
PH
4892 }
4893
4894 {
d12307c1 4895 struct block_symbol info;
4c4b4cd2 4896
d12307c1 4897 info.symbol = sym;
4c4b4cd2 4898 info.block = block;
d12307c1 4899 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4900 }
4901}
4902
d12307c1
PMR
4903/* Number of block_symbol structures currently collected in current vector in
4904 OBSTACKP. */
4c4b4cd2 4905
76a01679
JB
4906static int
4907num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4908{
d12307c1 4909 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4910}
4911
d12307c1
PMR
4912/* Vector of block_symbol structures currently collected in current vector in
4913 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4914
d12307c1 4915static struct block_symbol *
4c4b4cd2
PH
4916defns_collected (struct obstack *obstackp, int finish)
4917{
4918 if (finish)
224c3ddb 4919 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4920 else
d12307c1 4921 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4922}
4923
7c7b6655
TT
4924/* Return a bound minimal symbol matching NAME according to Ada
4925 decoding rules. Returns an invalid symbol if there is no such
4926 minimal symbol. Names prefixed with "standard__" are handled
4927 specially: "standard__" is first stripped off, and only static and
4928 global symbols are searched. */
4c4b4cd2 4929
7c7b6655 4930struct bound_minimal_symbol
96d887e8 4931ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4932{
7c7b6655 4933 struct bound_minimal_symbol result;
4c4b4cd2 4934
7c7b6655
TT
4935 memset (&result, 0, sizeof (result));
4936
b5ec771e
PA
4937 symbol_name_match_type match_type = name_match_type_from_name (name);
4938 lookup_name_info lookup_name (name, match_type);
4939
4940 symbol_name_matcher_ftype *match_name
4941 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4942
2030c079 4943 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4944 {
7932255d 4945 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4946 {
c9d95fa3 4947 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4948 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4949 {
4950 result.minsym = msymbol;
4951 result.objfile = objfile;
4952 break;
4953 }
4954 }
4955 }
4c4b4cd2 4956
7c7b6655 4957 return result;
96d887e8 4958}
4c4b4cd2 4959
96d887e8
PH
4960/* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4c4b4cd2 4965
96d887e8
PH
4966static void
4967add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
96d887e8 4970{
96d887e8 4971}
14f9c5c9 4972
96d887e8
PH
4973/* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
14f9c5c9 4975
96d887e8
PH
4976static int
4977is_nondebugging_type (struct type *type)
4978{
0d5cff50 4979 const char *name = ada_type_name (type);
5b4ee69b 4980
96d887e8
PH
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982}
4c4b4cd2 4983
8f17729f
JB
4984/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991static int
4992ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993{
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
0d5cff50
DE
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025}
5026
5027/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047static int
54d343a2 5048symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5049{
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
54d343a2 5060 for (i = 0; i < syms.size (); i++)
d12307c1 5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
54d343a2 5065 for (i = 1; i < syms.size (); i++)
d12307c1 5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5070 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
54d343a2 5078 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5081 return 0;
5082
5083 return 1;
5084}
5085
54d343a2 5086/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
4c4b4cd2 5092
96d887e8 5093static int
54d343a2 5094remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5095{
5096 int i, j;
4c4b4cd2 5097
8f17729f
JB
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
54d343a2
TT
5101 if (syms->size () < 2)
5102 return syms->size ();
8f17729f 5103
96d887e8 5104 i = 0;
54d343a2 5105 while (i < syms->size ())
96d887e8 5106 {
a35ddb44 5107 int remove_p = 0;
339c13b6
JB
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
54d343a2 5112 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5113 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5114 {
54d343a2 5115 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5116 {
5117 if (j != i
54d343a2 5118 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5119 && (*syms)[j].symbol->linkage_name () != NULL
5120 && strcmp ((*syms)[i].symbol->linkage_name (),
5121 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5122 remove_p = 1;
339c13b6
JB
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
987012b8 5129 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5130 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5132 {
54d343a2 5133 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5134 {
5135 if (i != j
987012b8
CB
5136 && (*syms)[j].symbol->linkage_name () != NULL
5137 && strcmp ((*syms)[i].symbol->linkage_name (),
5138 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5139 && SYMBOL_CLASS ((*syms)[i].symbol)
5140 == SYMBOL_CLASS ((*syms)[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5143 remove_p = 1;
4c4b4cd2 5144 }
4c4b4cd2 5145 }
339c13b6 5146
a35ddb44 5147 if (remove_p)
54d343a2 5148 syms->erase (syms->begin () + i);
339c13b6 5149
96d887e8 5150 i += 1;
14f9c5c9 5151 }
8f17729f
JB
5152
5153 /* If all the remaining symbols are identical enumerals, then
5154 just keep the first one and discard the rest.
5155
5156 Unlike what we did previously, we do not discard any entry
5157 unless they are ALL identical. This is because the symbol
5158 comparison is not a strict comparison, but rather a practical
5159 comparison. If all symbols are considered identical, then
5160 we can just go ahead and use the first one and discard the rest.
5161 But if we cannot reduce the list to a single element, we have
5162 to ask the user to disambiguate anyways. And if we have to
5163 present a multiple-choice menu, it's less confusing if the list
5164 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5165 if (symbols_are_identical_enums (*syms))
5166 syms->resize (1);
8f17729f 5167
54d343a2 5168 return syms->size ();
14f9c5c9
AS
5169}
5170
96d887e8
PH
5171/* Given a type that corresponds to a renaming entity, use the type name
5172 to extract the scope (package name or function name, fully qualified,
5173 and following the GNAT encoding convention) where this renaming has been
49d83361 5174 defined. */
4c4b4cd2 5175
49d83361 5176static std::string
96d887e8 5177xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5178{
96d887e8 5179 /* The renaming types adhere to the following convention:
0963b4bd 5180 <scope>__<rename>___<XR extension>.
96d887e8
PH
5181 So, to extract the scope, we search for the "___XR" extension,
5182 and then backtrack until we find the first "__". */
76a01679 5183
a737d952 5184 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5185 const char *suffix = strstr (name, "___XR");
5186 const char *last;
14f9c5c9 5187
96d887e8
PH
5188 /* Now, backtrack a bit until we find the first "__". Start looking
5189 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5190
96d887e8
PH
5191 for (last = suffix - 3; last > name; last--)
5192 if (last[0] == '_' && last[1] == '_')
5193 break;
76a01679 5194
96d887e8 5195 /* Make a copy of scope and return it. */
49d83361 5196 return std::string (name, last);
4c4b4cd2
PH
5197}
5198
96d887e8 5199/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5200
96d887e8
PH
5201static int
5202is_package_name (const char *name)
4c4b4cd2 5203{
96d887e8
PH
5204 /* Here, We take advantage of the fact that no symbols are generated
5205 for packages, while symbols are generated for each function.
5206 So the condition for NAME represent a package becomes equivalent
5207 to NAME not existing in our list of symbols. There is only one
5208 small complication with library-level functions (see below). */
4c4b4cd2 5209
96d887e8
PH
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5213 return 0;
14f9c5c9 5214
96d887e8
PH
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
14f9c5c9 5217
96d887e8 5218 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5219 functions names cannot contain "__" in them. */
96d887e8
PH
5220 if (strstr (name, "__") != NULL)
5221 return 0;
4c4b4cd2 5222
528e1572 5223 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5224
528e1572 5225 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5226}
14f9c5c9 5227
96d887e8 5228/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5229 not visible from FUNCTION_NAME. */
14f9c5c9 5230
96d887e8 5231static int
0d5cff50 5232old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5233{
aeb5907d
JB
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5235 return 0;
5236
49d83361 5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5238
96d887e8 5239 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5240 if (is_package_name (scope.c_str ()))
5241 return 0;
14f9c5c9 5242
96d887e8
PH
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
76a01679 5245
96d887e8
PH
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5249 this prefix. */
61012eef 5250 if (startswith (function_name, "_ada_"))
96d887e8 5251 function_name += 5;
f26caa11 5252
49d83361 5253 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5254}
5255
aeb5907d
JB
5256/* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
96d887e8
PH
5261
5262 Rationale:
aeb5907d
JB
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5266 latter.
5267
5268 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
f26caa11 5275
96d887e8
PH
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5281
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5287
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
4c4b4cd2 5292
14f9c5c9 5293static int
54d343a2
TT
5294remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
4c4b4cd2
PH
5296{
5297 struct symbol *current_function;
0d5cff50 5298 const char *current_function_name;
4c4b4cd2 5299 int i;
aeb5907d
JB
5300 int is_new_style_renaming;
5301
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
0963b4bd 5304 First, zero out such symbols, then compress. */
aeb5907d 5305 is_new_style_renaming = 0;
54d343a2 5306 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5307 {
54d343a2
TT
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5310 const char *name;
5311 const char *suffix;
5312
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5314 continue;
987012b8 5315 name = sym->linkage_name ();
aeb5907d
JB
5316 suffix = strstr (name, "___XR");
5317
5318 if (suffix != NULL)
5319 {
5320 int name_len = suffix - name;
5321 int j;
5b4ee69b 5322
aeb5907d 5323 is_new_style_renaming = 1;
54d343a2
TT
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
987012b8 5326 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5327 name_len) == 0
54d343a2
TT
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
aeb5907d
JB
5330 }
5331 }
5332 if (is_new_style_renaming)
5333 {
5334 int j, k;
5335
54d343a2
TT
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
aeb5907d 5338 {
54d343a2 5339 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5340 k += 1;
5341 }
5342 return k;
5343 }
4c4b4cd2
PH
5344
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
76a01679 5347
4c4b4cd2 5348 if (current_block == NULL)
54d343a2 5349 return syms->size ();
76a01679 5350
7f0df278 5351 current_function = block_linkage_function (current_block);
4c4b4cd2 5352 if (current_function == NULL)
54d343a2 5353 return syms->size ();
4c4b4cd2 5354
987012b8 5355 current_function_name = current_function->linkage_name ();
4c4b4cd2 5356 if (current_function_name == NULL)
54d343a2 5357 return syms->size ();
4c4b4cd2
PH
5358
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5362
5363 i = 0;
54d343a2 5364 while (i < syms->size ())
4c4b4cd2 5365 {
54d343a2 5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5367 == ADA_OBJECT_RENAMING
54d343a2
TT
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5371 else
5372 i += 1;
5373 }
5374
54d343a2 5375 return syms->size ();
4c4b4cd2
PH
5376}
5377
339c13b6
JB
5378/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5385
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5387
5388static void
b5ec771e
PA
5389ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
339c13b6
JB
5392{
5393 int block_depth = 0;
5394
5395 while (block != NULL)
5396 {
5397 block_depth += 1;
b5ec771e 5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5399
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5403 return;
5404
5405 block = BLOCK_SUPERBLOCK (block);
5406 }
5407
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5412}
5413
ccefe4c4 5414/* An object of this type is used as the user_data argument when
40658b94 5415 calling the map_matching_symbols method. */
ccefe4c4 5416
40658b94 5417struct match_data
ccefe4c4 5418{
40658b94 5419 struct objfile *objfile;
ccefe4c4 5420 struct obstack *obstackp;
40658b94
PH
5421 struct symbol *arg_sym;
5422 int found_sym;
ccefe4c4
TT
5423};
5424
199b4314
TT
5425/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5426 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
ccefe4c4 5433
199b4314
TT
5434static bool
5435aux_add_nonlocal_symbols (struct block_symbol *bsym,
5436 struct match_data *data)
ccefe4c4 5437{
199b4314
TT
5438 const struct block *block = bsym->block;
5439 struct symbol *sym = bsym->symbol;
5440
40658b94
PH
5441 if (sym == NULL)
5442 {
5443 if (!data->found_sym && data->arg_sym != NULL)
5444 add_defn_to_vec (data->obstackp,
5445 fixup_symbol_section (data->arg_sym, data->objfile),
5446 block);
5447 data->found_sym = 0;
5448 data->arg_sym = NULL;
5449 }
5450 else
5451 {
5452 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5453 return true;
40658b94
PH
5454 else if (SYMBOL_IS_ARGUMENT (sym))
5455 data->arg_sym = sym;
5456 else
5457 {
5458 data->found_sym = 1;
5459 add_defn_to_vec (data->obstackp,
5460 fixup_symbol_section (sym, data->objfile),
5461 block);
5462 }
5463 }
199b4314 5464 return true;
40658b94
PH
5465}
5466
b5ec771e
PA
5467/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5468 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5469 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5470
5471static int
5472ada_add_block_renamings (struct obstack *obstackp,
5473 const struct block *block,
b5ec771e
PA
5474 const lookup_name_info &lookup_name,
5475 domain_enum domain)
22cee43f
PMR
5476{
5477 struct using_direct *renaming;
5478 int defns_mark = num_defns_collected (obstackp);
5479
b5ec771e
PA
5480 symbol_name_matcher_ftype *name_match
5481 = ada_get_symbol_name_matcher (lookup_name);
5482
22cee43f
PMR
5483 for (renaming = block_using (block);
5484 renaming != NULL;
5485 renaming = renaming->next)
5486 {
5487 const char *r_name;
22cee43f
PMR
5488
5489 /* Avoid infinite recursions: skip this renaming if we are actually
5490 already traversing it.
5491
5492 Currently, symbol lookup in Ada don't use the namespace machinery from
5493 C++/Fortran support: skip namespace imports that use them. */
5494 if (renaming->searched
5495 || (renaming->import_src != NULL
5496 && renaming->import_src[0] != '\0')
5497 || (renaming->import_dest != NULL
5498 && renaming->import_dest[0] != '\0'))
5499 continue;
5500 renaming->searched = 1;
5501
5502 /* TODO: here, we perform another name-based symbol lookup, which can
5503 pull its own multiple overloads. In theory, we should be able to do
5504 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5505 not a simple name. But in order to do this, we would need to enhance
5506 the DWARF reader to associate a symbol to this renaming, instead of a
5507 name. So, for now, we do something simpler: re-use the C++/Fortran
5508 namespace machinery. */
5509 r_name = (renaming->alias != NULL
5510 ? renaming->alias
5511 : renaming->declaration);
b5ec771e
PA
5512 if (name_match (r_name, lookup_name, NULL))
5513 {
5514 lookup_name_info decl_lookup_name (renaming->declaration,
5515 lookup_name.match_type ());
5516 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5517 1, NULL);
5518 }
22cee43f
PMR
5519 renaming->searched = 0;
5520 }
5521 return num_defns_collected (obstackp) != defns_mark;
5522}
5523
db230ce3
JB
5524/* Implements compare_names, but only applying the comparision using
5525 the given CASING. */
5b4ee69b 5526
40658b94 5527static int
db230ce3
JB
5528compare_names_with_case (const char *string1, const char *string2,
5529 enum case_sensitivity casing)
40658b94
PH
5530{
5531 while (*string1 != '\0' && *string2 != '\0')
5532 {
db230ce3
JB
5533 char c1, c2;
5534
40658b94
PH
5535 if (isspace (*string1) || isspace (*string2))
5536 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5537
5538 if (casing == case_sensitive_off)
5539 {
5540 c1 = tolower (*string1);
5541 c2 = tolower (*string2);
5542 }
5543 else
5544 {
5545 c1 = *string1;
5546 c2 = *string2;
5547 }
5548 if (c1 != c2)
40658b94 5549 break;
db230ce3 5550
40658b94
PH
5551 string1 += 1;
5552 string2 += 1;
5553 }
db230ce3 5554
40658b94
PH
5555 switch (*string1)
5556 {
5557 case '(':
5558 return strcmp_iw_ordered (string1, string2);
5559 case '_':
5560 if (*string2 == '\0')
5561 {
052874e8 5562 if (is_name_suffix (string1))
40658b94
PH
5563 return 0;
5564 else
1a1d5513 5565 return 1;
40658b94 5566 }
dbb8534f 5567 /* FALLTHROUGH */
40658b94
PH
5568 default:
5569 if (*string2 == '(')
5570 return strcmp_iw_ordered (string1, string2);
5571 else
db230ce3
JB
5572 {
5573 if (casing == case_sensitive_off)
5574 return tolower (*string1) - tolower (*string2);
5575 else
5576 return *string1 - *string2;
5577 }
40658b94 5578 }
ccefe4c4
TT
5579}
5580
db230ce3
JB
5581/* Compare STRING1 to STRING2, with results as for strcmp.
5582 Compatible with strcmp_iw_ordered in that...
5583
5584 strcmp_iw_ordered (STRING1, STRING2) <= 0
5585
5586 ... implies...
5587
5588 compare_names (STRING1, STRING2) <= 0
5589
5590 (they may differ as to what symbols compare equal). */
5591
5592static int
5593compare_names (const char *string1, const char *string2)
5594{
5595 int result;
5596
5597 /* Similar to what strcmp_iw_ordered does, we need to perform
5598 a case-insensitive comparison first, and only resort to
5599 a second, case-sensitive, comparison if the first one was
5600 not sufficient to differentiate the two strings. */
5601
5602 result = compare_names_with_case (string1, string2, case_sensitive_off);
5603 if (result == 0)
5604 result = compare_names_with_case (string1, string2, case_sensitive_on);
5605
5606 return result;
5607}
5608
b5ec771e
PA
5609/* Convenience function to get at the Ada encoded lookup name for
5610 LOOKUP_NAME, as a C string. */
5611
5612static const char *
5613ada_lookup_name (const lookup_name_info &lookup_name)
5614{
5615 return lookup_name.ada ().lookup_name ().c_str ();
5616}
5617
339c13b6 5618/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5619 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5620 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5621 symbols otherwise. */
339c13b6
JB
5622
5623static void
b5ec771e
PA
5624add_nonlocal_symbols (struct obstack *obstackp,
5625 const lookup_name_info &lookup_name,
5626 domain_enum domain, int global)
339c13b6 5627{
40658b94 5628 struct match_data data;
339c13b6 5629
6475f2fe 5630 memset (&data, 0, sizeof data);
ccefe4c4 5631 data.obstackp = obstackp;
339c13b6 5632
b5ec771e
PA
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5634
199b4314
TT
5635 auto callback = [&] (struct block_symbol *bsym)
5636 {
5637 return aux_add_nonlocal_symbols (bsym, &data);
5638 };
5639
2030c079 5640 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5641 {
5642 data.objfile = objfile;
5643
b054970d
TT
5644 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5645 domain, global, callback,
5646 (is_wild_match
5647 ? NULL : compare_names));
22cee43f 5648
b669c953 5649 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5650 {
5651 const struct block *global_block
5652 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5653
b5ec771e
PA
5654 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5655 domain))
22cee43f
PMR
5656 data.found_sym = 1;
5657 }
40658b94
PH
5658 }
5659
5660 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5661 {
b5ec771e 5662 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5663 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5664 symbol_name_match_type::FULL);
b5ec771e 5665
2030c079 5666 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5667 {
40658b94 5668 data.objfile = objfile;
b054970d 5669 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5670 domain, global, callback,
b5ec771e 5671 compare_names);
40658b94
PH
5672 }
5673 }
339c13b6
JB
5674}
5675
b5ec771e
PA
5676/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5677 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5678 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5679
22cee43f
PMR
5680 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5681 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5682 is the one match returned (no other matches in that or
d9680e73 5683 enclosing blocks is returned). If there are any matches in or
22cee43f 5684 surrounding BLOCK, then these alone are returned.
4eeaa230 5685
b5ec771e
PA
5686 Names prefixed with "standard__" are handled specially:
5687 "standard__" is first stripped off (by the lookup_name
5688 constructor), and only static and global symbols are searched.
14f9c5c9 5689
22cee43f
PMR
5690 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5691 to lookup global symbols. */
5692
5693static void
5694ada_add_all_symbols (struct obstack *obstackp,
5695 const struct block *block,
b5ec771e 5696 const lookup_name_info &lookup_name,
22cee43f
PMR
5697 domain_enum domain,
5698 int full_search,
5699 int *made_global_lookup_p)
14f9c5c9
AS
5700{
5701 struct symbol *sym;
14f9c5c9 5702
22cee43f
PMR
5703 if (made_global_lookup_p)
5704 *made_global_lookup_p = 0;
339c13b6
JB
5705
5706 /* Special case: If the user specifies a symbol name inside package
5707 Standard, do a non-wild matching of the symbol name without
5708 the "standard__" prefix. This was primarily introduced in order
5709 to allow the user to specifically access the standard exceptions
5710 using, for instance, Standard.Constraint_Error when Constraint_Error
5711 is ambiguous (due to the user defining its own Constraint_Error
5712 entity inside its program). */
b5ec771e
PA
5713 if (lookup_name.ada ().standard_p ())
5714 block = NULL;
4c4b4cd2 5715
339c13b6 5716 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5717
4eeaa230
DE
5718 if (block != NULL)
5719 {
5720 if (full_search)
b5ec771e 5721 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5722 else
5723 {
5724 /* In the !full_search case we're are being called by
5725 ada_iterate_over_symbols, and we don't want to search
5726 superblocks. */
b5ec771e 5727 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5728 }
22cee43f
PMR
5729 if (num_defns_collected (obstackp) > 0 || !full_search)
5730 return;
4eeaa230 5731 }
d2e4a39e 5732
339c13b6
JB
5733 /* No non-global symbols found. Check our cache to see if we have
5734 already performed this search before. If we have, then return
5735 the same result. */
5736
b5ec771e
PA
5737 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5738 domain, &sym, &block))
4c4b4cd2
PH
5739 {
5740 if (sym != NULL)
b5ec771e 5741 add_defn_to_vec (obstackp, sym, block);
22cee43f 5742 return;
4c4b4cd2 5743 }
14f9c5c9 5744
22cee43f
PMR
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 1;
b1eedac9 5747
339c13b6
JB
5748 /* Search symbols from all global blocks. */
5749
b5ec771e 5750 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5751
4c4b4cd2 5752 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5753 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5754
22cee43f 5755 if (num_defns_collected (obstackp) == 0)
b5ec771e 5756 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5757}
5758
b5ec771e
PA
5759/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5760 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5761 matches.
54d343a2
TT
5762 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5763 found and the blocks and symbol tables (if any) in which they were
5764 found.
22cee43f
PMR
5765
5766 When full_search is non-zero, any non-function/non-enumeral
5767 symbol match within the nest of blocks whose innermost member is BLOCK,
5768 is the one match returned (no other matches in that or
5769 enclosing blocks is returned). If there are any matches in or
5770 surrounding BLOCK, then these alone are returned.
5771
5772 Names prefixed with "standard__" are handled specially: "standard__"
5773 is first stripped off, and only static and global symbols are searched. */
5774
5775static int
b5ec771e
PA
5776ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5777 const struct block *block,
22cee43f 5778 domain_enum domain,
54d343a2 5779 std::vector<struct block_symbol> *results,
22cee43f
PMR
5780 int full_search)
5781{
22cee43f
PMR
5782 int syms_from_global_search;
5783 int ndefns;
ec6a20c2 5784 auto_obstack obstack;
22cee43f 5785
ec6a20c2 5786 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5787 domain, full_search, &syms_from_global_search);
14f9c5c9 5788
ec6a20c2
JB
5789 ndefns = num_defns_collected (&obstack);
5790
54d343a2
TT
5791 struct block_symbol *base = defns_collected (&obstack, 1);
5792 for (int i = 0; i < ndefns; ++i)
5793 results->push_back (base[i]);
4c4b4cd2 5794
54d343a2 5795 ndefns = remove_extra_symbols (results);
4c4b4cd2 5796
b1eedac9 5797 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5798 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5799
b1eedac9 5800 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5801 cache_symbol (ada_lookup_name (lookup_name), domain,
5802 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5803
54d343a2 5804 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5805
14f9c5c9
AS
5806 return ndefns;
5807}
5808
b5ec771e 5809/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5810 in global scopes, returning the number of matches, and filling *RESULTS
5811 with (SYM,BLOCK) tuples.
ec6a20c2 5812
4eeaa230
DE
5813 See ada_lookup_symbol_list_worker for further details. */
5814
5815int
b5ec771e 5816ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5817 domain_enum domain,
5818 std::vector<struct block_symbol> *results)
4eeaa230 5819{
b5ec771e
PA
5820 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5821 lookup_name_info lookup_name (name, name_match_type);
5822
5823 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5824}
5825
5826/* Implementation of the la_iterate_over_symbols method. */
5827
6969f124 5828static bool
14bc53a8 5829ada_iterate_over_symbols
b5ec771e
PA
5830 (const struct block *block, const lookup_name_info &name,
5831 domain_enum domain,
14bc53a8 5832 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5833{
5834 int ndefs, i;
54d343a2 5835 std::vector<struct block_symbol> results;
4eeaa230
DE
5836
5837 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5838
4eeaa230
DE
5839 for (i = 0; i < ndefs; ++i)
5840 {
7e41c8db 5841 if (!callback (&results[i]))
6969f124 5842 return false;
4eeaa230 5843 }
6969f124
TT
5844
5845 return true;
4eeaa230
DE
5846}
5847
4e5c77fe
JB
5848/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5849 to 1, but choosing the first symbol found if there are multiple
5850 choices.
5851
5e2336be
JB
5852 The result is stored in *INFO, which must be non-NULL.
5853 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5854
5855void
5856ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5857 domain_enum domain,
d12307c1 5858 struct block_symbol *info)
14f9c5c9 5859{
b5ec771e
PA
5860 /* Since we already have an encoded name, wrap it in '<>' to force a
5861 verbatim match. Otherwise, if the name happens to not look like
5862 an encoded name (because it doesn't include a "__"),
5863 ada_lookup_name_info would re-encode/fold it again, and that
5864 would e.g., incorrectly lowercase object renaming names like
5865 "R28b" -> "r28b". */
5866 std::string verbatim = std::string ("<") + name + '>';
5867
5e2336be 5868 gdb_assert (info != NULL);
65392b3e 5869 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5870}
aeb5907d
JB
5871
5872/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5873 scope and in global scopes, or NULL if none. NAME is folded and
5874 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5875 choosing the first symbol if there are multiple choices. */
4e5c77fe 5876
d12307c1 5877struct block_symbol
aeb5907d 5878ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5879 domain_enum domain)
aeb5907d 5880{
54d343a2 5881 std::vector<struct block_symbol> candidates;
f98fc17b 5882 int n_candidates;
f98fc17b
PA
5883
5884 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5885
5886 if (n_candidates == 0)
54d343a2 5887 return {};
f98fc17b
PA
5888
5889 block_symbol info = candidates[0];
5890 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5891 return info;
4c4b4cd2 5892}
14f9c5c9 5893
d12307c1 5894static struct block_symbol
f606139a
DE
5895ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5896 const char *name,
76a01679 5897 const struct block *block,
21b556f4 5898 const domain_enum domain)
4c4b4cd2 5899{
d12307c1 5900 struct block_symbol sym;
04dccad0 5901
65392b3e 5902 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5903 if (sym.symbol != NULL)
04dccad0
JB
5904 return sym;
5905
5906 /* If we haven't found a match at this point, try the primitive
5907 types. In other languages, this search is performed before
5908 searching for global symbols in order to short-circuit that
5909 global-symbol search if it happens that the name corresponds
5910 to a primitive type. But we cannot do the same in Ada, because
5911 it is perfectly legitimate for a program to declare a type which
5912 has the same name as a standard type. If looking up a type in
5913 that situation, we have traditionally ignored the primitive type
5914 in favor of user-defined types. This is why, unlike most other
5915 languages, we search the primitive types this late and only after
5916 having searched the global symbols without success. */
5917
5918 if (domain == VAR_DOMAIN)
5919 {
5920 struct gdbarch *gdbarch;
5921
5922 if (block == NULL)
5923 gdbarch = target_gdbarch ();
5924 else
5925 gdbarch = block_gdbarch (block);
d12307c1
PMR
5926 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5927 if (sym.symbol != NULL)
04dccad0
JB
5928 return sym;
5929 }
5930
6640a367 5931 return {};
14f9c5c9
AS
5932}
5933
5934
4c4b4cd2
PH
5935/* True iff STR is a possible encoded suffix of a normal Ada name
5936 that is to be ignored for matching purposes. Suffixes of parallel
5937 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5938 are given by any of the regular expressions:
4c4b4cd2 5939
babe1480
JB
5940 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5941 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5942 TKB [subprogram suffix for task bodies]
babe1480 5943 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5944 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5945
5946 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5947 match is performed. This sequence is used to differentiate homonyms,
5948 is an optional part of a valid name suffix. */
4c4b4cd2 5949
14f9c5c9 5950static int
d2e4a39e 5951is_name_suffix (const char *str)
14f9c5c9
AS
5952{
5953 int k;
4c4b4cd2
PH
5954 const char *matching;
5955 const int len = strlen (str);
5956
babe1480
JB
5957 /* Skip optional leading __[0-9]+. */
5958
4c4b4cd2
PH
5959 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5960 {
babe1480
JB
5961 str += 3;
5962 while (isdigit (str[0]))
5963 str += 1;
4c4b4cd2 5964 }
babe1480
JB
5965
5966 /* [.$][0-9]+ */
4c4b4cd2 5967
babe1480 5968 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5969 {
babe1480 5970 matching = str + 1;
4c4b4cd2
PH
5971 while (isdigit (matching[0]))
5972 matching += 1;
5973 if (matching[0] == '\0')
5974 return 1;
5975 }
5976
5977 /* ___[0-9]+ */
babe1480 5978
4c4b4cd2
PH
5979 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5980 {
5981 matching = str + 3;
5982 while (isdigit (matching[0]))
5983 matching += 1;
5984 if (matching[0] == '\0')
5985 return 1;
5986 }
5987
9ac7f98e
JB
5988 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5989
5990 if (strcmp (str, "TKB") == 0)
5991 return 1;
5992
529cad9c
PH
5993#if 0
5994 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5995 with a N at the end. Unfortunately, the compiler uses the same
5996 convention for other internal types it creates. So treating
529cad9c 5997 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5998 some regressions. For instance, consider the case of an enumerated
5999 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6000 name ends with N.
6001 Having a single character like this as a suffix carrying some
0963b4bd 6002 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6003 to be something like "_N" instead. In the meantime, do not do
6004 the following check. */
6005 /* Protected Object Subprograms */
6006 if (len == 1 && str [0] == 'N')
6007 return 1;
6008#endif
6009
6010 /* _E[0-9]+[bs]$ */
6011 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6012 {
6013 matching = str + 3;
6014 while (isdigit (matching[0]))
6015 matching += 1;
6016 if ((matching[0] == 'b' || matching[0] == 's')
6017 && matching [1] == '\0')
6018 return 1;
6019 }
6020
4c4b4cd2
PH
6021 /* ??? We should not modify STR directly, as we are doing below. This
6022 is fine in this case, but may become problematic later if we find
6023 that this alternative did not work, and want to try matching
6024 another one from the begining of STR. Since we modified it, we
6025 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6026 if (str[0] == 'X')
6027 {
6028 str += 1;
d2e4a39e 6029 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6030 {
6031 if (str[0] != 'n' && str[0] != 'b')
6032 return 0;
6033 str += 1;
6034 }
14f9c5c9 6035 }
babe1480 6036
14f9c5c9
AS
6037 if (str[0] == '\000')
6038 return 1;
babe1480 6039
d2e4a39e 6040 if (str[0] == '_')
14f9c5c9
AS
6041 {
6042 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6043 return 0;
d2e4a39e 6044 if (str[2] == '_')
4c4b4cd2 6045 {
61ee279c
PH
6046 if (strcmp (str + 3, "JM") == 0)
6047 return 1;
6048 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6049 the LJM suffix in favor of the JM one. But we will
6050 still accept LJM as a valid suffix for a reasonable
6051 amount of time, just to allow ourselves to debug programs
6052 compiled using an older version of GNAT. */
4c4b4cd2
PH
6053 if (strcmp (str + 3, "LJM") == 0)
6054 return 1;
6055 if (str[3] != 'X')
6056 return 0;
1265e4aa
JB
6057 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6058 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6059 return 1;
6060 if (str[4] == 'R' && str[5] != 'T')
6061 return 1;
6062 return 0;
6063 }
6064 if (!isdigit (str[2]))
6065 return 0;
6066 for (k = 3; str[k] != '\0'; k += 1)
6067 if (!isdigit (str[k]) && str[k] != '_')
6068 return 0;
14f9c5c9
AS
6069 return 1;
6070 }
4c4b4cd2 6071 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6072 {
4c4b4cd2
PH
6073 for (k = 2; str[k] != '\0'; k += 1)
6074 if (!isdigit (str[k]) && str[k] != '_')
6075 return 0;
14f9c5c9
AS
6076 return 1;
6077 }
6078 return 0;
6079}
d2e4a39e 6080
aeb5907d
JB
6081/* Return non-zero if the string starting at NAME and ending before
6082 NAME_END contains no capital letters. */
529cad9c
PH
6083
6084static int
6085is_valid_name_for_wild_match (const char *name0)
6086{
f945dedf 6087 std::string decoded_name = ada_decode (name0);
529cad9c
PH
6088 int i;
6089
5823c3ef
JB
6090 /* If the decoded name starts with an angle bracket, it means that
6091 NAME0 does not follow the GNAT encoding format. It should then
6092 not be allowed as a possible wild match. */
6093 if (decoded_name[0] == '<')
6094 return 0;
6095
529cad9c
PH
6096 for (i=0; decoded_name[i] != '\0'; i++)
6097 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6098 return 0;
6099
6100 return 1;
6101}
6102
73589123
PH
6103/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6104 that could start a simple name. Assumes that *NAMEP points into
6105 the string beginning at NAME0. */
4c4b4cd2 6106
14f9c5c9 6107static int
73589123 6108advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6109{
73589123 6110 const char *name = *namep;
5b4ee69b 6111
5823c3ef 6112 while (1)
14f9c5c9 6113 {
aa27d0b3 6114 int t0, t1;
73589123
PH
6115
6116 t0 = *name;
6117 if (t0 == '_')
6118 {
6119 t1 = name[1];
6120 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6121 {
6122 name += 1;
61012eef 6123 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6124 break;
6125 else
6126 name += 1;
6127 }
aa27d0b3
JB
6128 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6129 || name[2] == target0))
73589123
PH
6130 {
6131 name += 2;
6132 break;
6133 }
6134 else
6135 return 0;
6136 }
6137 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6138 name += 1;
6139 else
5823c3ef 6140 return 0;
73589123
PH
6141 }
6142
6143 *namep = name;
6144 return 1;
6145}
6146
b5ec771e
PA
6147/* Return true iff NAME encodes a name of the form prefix.PATN.
6148 Ignores any informational suffixes of NAME (i.e., for which
6149 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6150 simple name. */
73589123 6151
b5ec771e 6152static bool
73589123
PH
6153wild_match (const char *name, const char *patn)
6154{
22e048c9 6155 const char *p;
73589123
PH
6156 const char *name0 = name;
6157
6158 while (1)
6159 {
6160 const char *match = name;
6161
6162 if (*name == *patn)
6163 {
6164 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6165 if (*p != *name)
6166 break;
6167 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6168 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6169
6170 if (name[-1] == '_')
6171 name -= 1;
6172 }
6173 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6174 return false;
96d887e8 6175 }
96d887e8
PH
6176}
6177
b5ec771e
PA
6178/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6179 any trailing suffixes that encode debugging information or leading
6180 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6181 information that is ignored). */
40658b94 6182
b5ec771e 6183static bool
c4d840bd
PH
6184full_match (const char *sym_name, const char *search_name)
6185{
b5ec771e
PA
6186 size_t search_name_len = strlen (search_name);
6187
6188 if (strncmp (sym_name, search_name, search_name_len) == 0
6189 && is_name_suffix (sym_name + search_name_len))
6190 return true;
6191
6192 if (startswith (sym_name, "_ada_")
6193 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6194 && is_name_suffix (sym_name + search_name_len + 5))
6195 return true;
c4d840bd 6196
b5ec771e
PA
6197 return false;
6198}
c4d840bd 6199
b5ec771e
PA
6200/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6201 *defn_symbols, updating the list of symbols in OBSTACKP (if
6202 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6203
6204static void
6205ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6206 const struct block *block,
6207 const lookup_name_info &lookup_name,
6208 domain_enum domain, struct objfile *objfile)
96d887e8 6209{
8157b174 6210 struct block_iterator iter;
96d887e8
PH
6211 /* A matching argument symbol, if any. */
6212 struct symbol *arg_sym;
6213 /* Set true when we find a matching non-argument symbol. */
6214 int found_sym;
6215 struct symbol *sym;
6216
6217 arg_sym = NULL;
6218 found_sym = 0;
b5ec771e
PA
6219 for (sym = block_iter_match_first (block, lookup_name, &iter);
6220 sym != NULL;
6221 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6222 {
b5ec771e
PA
6223 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6224 SYMBOL_DOMAIN (sym), domain))
6225 {
6226 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6227 {
6228 if (SYMBOL_IS_ARGUMENT (sym))
6229 arg_sym = sym;
6230 else
6231 {
6232 found_sym = 1;
6233 add_defn_to_vec (obstackp,
6234 fixup_symbol_section (sym, objfile),
6235 block);
6236 }
6237 }
6238 }
96d887e8
PH
6239 }
6240
22cee43f
PMR
6241 /* Handle renamings. */
6242
b5ec771e 6243 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6244 found_sym = 1;
6245
96d887e8
PH
6246 if (!found_sym && arg_sym != NULL)
6247 {
76a01679
JB
6248 add_defn_to_vec (obstackp,
6249 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6250 block);
96d887e8
PH
6251 }
6252
b5ec771e 6253 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6254 {
6255 arg_sym = NULL;
6256 found_sym = 0;
b5ec771e
PA
6257 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6258 const char *name = ada_lookup_name.c_str ();
6259 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6260
6261 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6262 {
4186eb54
KS
6263 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6264 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6265 {
6266 int cmp;
6267
987012b8 6268 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6269 if (cmp == 0)
6270 {
987012b8 6271 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6272 if (cmp == 0)
987012b8 6273 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6274 name_len);
6275 }
6276
6277 if (cmp == 0
987012b8 6278 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6279 {
2a2d4dc3
AS
6280 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6281 {
6282 if (SYMBOL_IS_ARGUMENT (sym))
6283 arg_sym = sym;
6284 else
6285 {
6286 found_sym = 1;
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (sym, objfile),
6289 block);
6290 }
6291 }
76a01679
JB
6292 }
6293 }
76a01679 6294 }
96d887e8
PH
6295
6296 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6297 They aren't parameters, right? */
6298 if (!found_sym && arg_sym != NULL)
6299 {
6300 add_defn_to_vec (obstackp,
76a01679 6301 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6302 block);
96d887e8
PH
6303 }
6304 }
6305}
6306\f
41d27058
JB
6307
6308 /* Symbol Completion */
6309
b5ec771e 6310/* See symtab.h. */
41d27058 6311
b5ec771e
PA
6312bool
6313ada_lookup_name_info::matches
6314 (const char *sym_name,
6315 symbol_name_match_type match_type,
a207cff2 6316 completion_match_result *comp_match_res) const
41d27058 6317{
b5ec771e
PA
6318 bool match = false;
6319 const char *text = m_encoded_name.c_str ();
6320 size_t text_len = m_encoded_name.size ();
41d27058
JB
6321
6322 /* First, test against the fully qualified name of the symbol. */
6323
6324 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6325 match = true;
41d27058 6326
f945dedf 6327 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6328 if (match && !m_encoded_p)
41d27058
JB
6329 {
6330 /* One needed check before declaring a positive match is to verify
6331 that iff we are doing a verbatim match, the decoded version
6332 of the symbol name starts with '<'. Otherwise, this symbol name
6333 is not a suitable completion. */
41d27058 6334
f945dedf 6335 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6336 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6337 }
6338
b5ec771e 6339 if (match && !m_verbatim_p)
41d27058
JB
6340 {
6341 /* When doing non-verbatim match, another check that needs to
6342 be done is to verify that the potentially matching symbol name
6343 does not include capital letters, because the ada-mode would
6344 not be able to understand these symbol names without the
6345 angle bracket notation. */
6346 const char *tmp;
6347
6348 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6349 if (*tmp != '\0')
b5ec771e 6350 match = false;
41d27058
JB
6351 }
6352
6353 /* Second: Try wild matching... */
6354
b5ec771e 6355 if (!match && m_wild_match_p)
41d27058
JB
6356 {
6357 /* Since we are doing wild matching, this means that TEXT
6358 may represent an unqualified symbol name. We therefore must
6359 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6360 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6361
6362 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6363 match = true;
41d27058
JB
6364 }
6365
b5ec771e 6366 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6367
6368 if (!match)
b5ec771e 6369 return false;
41d27058 6370
a207cff2 6371 if (comp_match_res != NULL)
b5ec771e 6372 {
a207cff2 6373 std::string &match_str = comp_match_res->match.storage ();
41d27058 6374
b5ec771e 6375 if (!m_encoded_p)
a207cff2 6376 match_str = ada_decode (sym_name);
b5ec771e
PA
6377 else
6378 {
6379 if (m_verbatim_p)
6380 match_str = add_angle_brackets (sym_name);
6381 else
6382 match_str = sym_name;
41d27058 6383
b5ec771e 6384 }
a207cff2
PA
6385
6386 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6387 }
6388
b5ec771e 6389 return true;
41d27058
JB
6390}
6391
b5ec771e 6392/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6393 WORD is the entire command on which completion is made. */
41d27058 6394
eb3ff9a5
PA
6395static void
6396ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6397 complete_symbol_mode mode,
b5ec771e
PA
6398 symbol_name_match_type name_match_type,
6399 const char *text, const char *word,
eb3ff9a5 6400 enum type_code code)
41d27058 6401{
41d27058 6402 struct symbol *sym;
3977b71f 6403 const struct block *b, *surrounding_static_block = 0;
8157b174 6404 struct block_iterator iter;
41d27058 6405
2f68a895
TT
6406 gdb_assert (code == TYPE_CODE_UNDEF);
6407
1b026119 6408 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6409
6410 /* First, look at the partial symtab symbols. */
14bc53a8 6411 expand_symtabs_matching (NULL,
b5ec771e
PA
6412 lookup_name,
6413 NULL,
14bc53a8
PA
6414 NULL,
6415 ALL_DOMAIN);
41d27058
JB
6416
6417 /* At this point scan through the misc symbol vectors and add each
6418 symbol you find to the list. Eventually we want to ignore
6419 anything that isn't a text symbol (everything else will be
6420 handled by the psymtab code above). */
6421
2030c079 6422 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6423 {
7932255d 6424 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6425 {
6426 QUIT;
6427
6428 if (completion_skip_symbol (mode, msymbol))
6429 continue;
6430
6431 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6432
6433 /* Ada minimal symbols won't have their language set to Ada. If
6434 we let completion_list_add_name compare using the
6435 default/C-like matcher, then when completing e.g., symbols in a
6436 package named "pck", we'd match internal Ada symbols like
6437 "pckS", which are invalid in an Ada expression, unless you wrap
6438 them in '<' '>' to request a verbatim match.
6439
6440 Unfortunately, some Ada encoded names successfully demangle as
6441 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6442 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6443 with the wrong language set. Paper over that issue here. */
6444 if (symbol_language == language_auto
6445 || symbol_language == language_cplus)
6446 symbol_language = language_ada;
6447
6448 completion_list_add_name (tracker,
6449 symbol_language,
c9d95fa3 6450 msymbol->linkage_name (),
5325b9bf
TT
6451 lookup_name, text, word);
6452 }
6453 }
41d27058
JB
6454
6455 /* Search upwards from currently selected frame (so that we can
6456 complete on local vars. */
6457
6458 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6459 {
6460 if (!BLOCK_SUPERBLOCK (b))
6461 surrounding_static_block = b; /* For elmin of dups */
6462
6463 ALL_BLOCK_SYMBOLS (b, iter, sym)
6464 {
f9d67a22
PA
6465 if (completion_skip_symbol (mode, sym))
6466 continue;
6467
b5ec771e
PA
6468 completion_list_add_name (tracker,
6469 SYMBOL_LANGUAGE (sym),
987012b8 6470 sym->linkage_name (),
1b026119 6471 lookup_name, text, word);
41d27058
JB
6472 }
6473 }
6474
6475 /* Go through the symtabs and check the externs and statics for
43f3e411 6476 symbols which match. */
41d27058 6477
2030c079 6478 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6479 {
b669c953 6480 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6481 {
6482 QUIT;
6483 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6484 ALL_BLOCK_SYMBOLS (b, iter, sym)
6485 {
6486 if (completion_skip_symbol (mode, sym))
6487 continue;
f9d67a22 6488
d8aeb77f
TT
6489 completion_list_add_name (tracker,
6490 SYMBOL_LANGUAGE (sym),
987012b8 6491 sym->linkage_name (),
d8aeb77f
TT
6492 lookup_name, text, word);
6493 }
6494 }
41d27058 6495 }
41d27058 6496
2030c079 6497 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6498 {
b669c953 6499 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6500 {
6501 QUIT;
6502 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6503 /* Don't do this block twice. */
6504 if (b == surrounding_static_block)
6505 continue;
6506 ALL_BLOCK_SYMBOLS (b, iter, sym)
6507 {
6508 if (completion_skip_symbol (mode, sym))
6509 continue;
f9d67a22 6510
d8aeb77f
TT
6511 completion_list_add_name (tracker,
6512 SYMBOL_LANGUAGE (sym),
987012b8 6513 sym->linkage_name (),
d8aeb77f
TT
6514 lookup_name, text, word);
6515 }
6516 }
41d27058 6517 }
41d27058
JB
6518}
6519
963a6417 6520 /* Field Access */
96d887e8 6521
73fb9985
JB
6522/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6523 for tagged types. */
6524
6525static int
6526ada_is_dispatch_table_ptr_type (struct type *type)
6527{
0d5cff50 6528 const char *name;
73fb9985
JB
6529
6530 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6531 return 0;
6532
6533 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6534 if (name == NULL)
6535 return 0;
6536
6537 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6538}
6539
ac4a2da4
JG
6540/* Return non-zero if TYPE is an interface tag. */
6541
6542static int
6543ada_is_interface_tag (struct type *type)
6544{
6545 const char *name = TYPE_NAME (type);
6546
6547 if (name == NULL)
6548 return 0;
6549
6550 return (strcmp (name, "ada__tags__interface_tag") == 0);
6551}
6552
963a6417
PH
6553/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6554 to be invisible to users. */
96d887e8 6555
963a6417
PH
6556int
6557ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6558{
963a6417
PH
6559 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6560 return 1;
ffde82bf 6561
73fb9985
JB
6562 /* Check the name of that field. */
6563 {
6564 const char *name = TYPE_FIELD_NAME (type, field_num);
6565
6566 /* Anonymous field names should not be printed.
6567 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6568 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6569 if (name == NULL)
6570 return 1;
6571
ffde82bf
JB
6572 /* Normally, fields whose name start with an underscore ("_")
6573 are fields that have been internally generated by the compiler,
6574 and thus should not be printed. The "_parent" field is special,
6575 however: This is a field internally generated by the compiler
6576 for tagged types, and it contains the components inherited from
6577 the parent type. This field should not be printed as is, but
6578 should not be ignored either. */
61012eef 6579 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6580 return 1;
6581 }
6582
ac4a2da4
JG
6583 /* If this is the dispatch table of a tagged type or an interface tag,
6584 then ignore. */
73fb9985 6585 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6586 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6587 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6588 return 1;
6589
6590 /* Not a special field, so it should not be ignored. */
6591 return 0;
963a6417 6592}
96d887e8 6593
963a6417 6594/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6595 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6596
963a6417
PH
6597int
6598ada_is_tagged_type (struct type *type, int refok)
6599{
988f6b3d 6600 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6601}
96d887e8 6602
963a6417 6603/* True iff TYPE represents the type of X'Tag */
96d887e8 6604
963a6417
PH
6605int
6606ada_is_tag_type (struct type *type)
6607{
460efde1
JB
6608 type = ada_check_typedef (type);
6609
963a6417
PH
6610 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6611 return 0;
6612 else
96d887e8 6613 {
963a6417 6614 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6615
963a6417
PH
6616 return (name != NULL
6617 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6618 }
96d887e8
PH
6619}
6620
963a6417 6621/* The type of the tag on VAL. */
76a01679 6622
de93309a 6623static struct type *
963a6417 6624ada_tag_type (struct value *val)
96d887e8 6625{
988f6b3d 6626 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6627}
96d887e8 6628
b50d69b5
JG
6629/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6630 retired at Ada 05). */
6631
6632static int
6633is_ada95_tag (struct value *tag)
6634{
6635 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6636}
6637
963a6417 6638/* The value of the tag on VAL. */
96d887e8 6639
de93309a 6640static struct value *
963a6417
PH
6641ada_value_tag (struct value *val)
6642{
03ee6b2e 6643 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6644}
6645
963a6417
PH
6646/* The value of the tag on the object of type TYPE whose contents are
6647 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6648 ADDRESS. */
96d887e8 6649
963a6417 6650static struct value *
10a2c479 6651value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6652 const gdb_byte *valaddr,
963a6417 6653 CORE_ADDR address)
96d887e8 6654{
b5385fc0 6655 int tag_byte_offset;
963a6417 6656 struct type *tag_type;
5b4ee69b 6657
963a6417 6658 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6659 NULL, NULL, NULL))
96d887e8 6660 {
fc1a4b47 6661 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6662 ? NULL
6663 : valaddr + tag_byte_offset);
963a6417 6664 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6665
963a6417 6666 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6667 }
963a6417
PH
6668 return NULL;
6669}
96d887e8 6670
963a6417
PH
6671static struct type *
6672type_from_tag (struct value *tag)
6673{
6674 const char *type_name = ada_tag_name (tag);
5b4ee69b 6675
963a6417
PH
6676 if (type_name != NULL)
6677 return ada_find_any_type (ada_encode (type_name));
6678 return NULL;
6679}
96d887e8 6680
b50d69b5
JG
6681/* Given a value OBJ of a tagged type, return a value of this
6682 type at the base address of the object. The base address, as
6683 defined in Ada.Tags, it is the address of the primary tag of
6684 the object, and therefore where the field values of its full
6685 view can be fetched. */
6686
6687struct value *
6688ada_tag_value_at_base_address (struct value *obj)
6689{
b50d69b5
JG
6690 struct value *val;
6691 LONGEST offset_to_top = 0;
6692 struct type *ptr_type, *obj_type;
6693 struct value *tag;
6694 CORE_ADDR base_address;
6695
6696 obj_type = value_type (obj);
6697
6698 /* It is the responsability of the caller to deref pointers. */
6699
6700 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6701 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6702 return obj;
6703
6704 tag = ada_value_tag (obj);
6705 if (!tag)
6706 return obj;
6707
6708 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6709
6710 if (is_ada95_tag (tag))
6711 return obj;
6712
08f49010
XR
6713 ptr_type = language_lookup_primitive_type
6714 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6715 ptr_type = lookup_pointer_type (ptr_type);
6716 val = value_cast (ptr_type, tag);
6717 if (!val)
6718 return obj;
6719
6720 /* It is perfectly possible that an exception be raised while
6721 trying to determine the base address, just like for the tag;
6722 see ada_tag_name for more details. We do not print the error
6723 message for the same reason. */
6724
a70b8144 6725 try
b50d69b5
JG
6726 {
6727 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6728 }
6729
230d2906 6730 catch (const gdb_exception_error &e)
492d29ea
PA
6731 {
6732 return obj;
6733 }
b50d69b5
JG
6734
6735 /* If offset is null, nothing to do. */
6736
6737 if (offset_to_top == 0)
6738 return obj;
6739
6740 /* -1 is a special case in Ada.Tags; however, what should be done
6741 is not quite clear from the documentation. So do nothing for
6742 now. */
6743
6744 if (offset_to_top == -1)
6745 return obj;
6746
08f49010
XR
6747 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6748 from the base address. This was however incompatible with
6749 C++ dispatch table: C++ uses a *negative* value to *add*
6750 to the base address. Ada's convention has therefore been
6751 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6752 use the same convention. Here, we support both cases by
6753 checking the sign of OFFSET_TO_TOP. */
6754
6755 if (offset_to_top > 0)
6756 offset_to_top = -offset_to_top;
6757
6758 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6759 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6760
6761 /* Make sure that we have a proper tag at the new address.
6762 Otherwise, offset_to_top is bogus (which can happen when
6763 the object is not initialized yet). */
6764
6765 if (!tag)
6766 return obj;
6767
6768 obj_type = type_from_tag (tag);
6769
6770 if (!obj_type)
6771 return obj;
6772
6773 return value_from_contents_and_address (obj_type, NULL, base_address);
6774}
6775
1b611343
JB
6776/* Return the "ada__tags__type_specific_data" type. */
6777
6778static struct type *
6779ada_get_tsd_type (struct inferior *inf)
963a6417 6780{
1b611343 6781 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6782
1b611343
JB
6783 if (data->tsd_type == 0)
6784 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6785 return data->tsd_type;
6786}
529cad9c 6787
1b611343
JB
6788/* Return the TSD (type-specific data) associated to the given TAG.
6789 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6790
1b611343 6791 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6792
1b611343
JB
6793static struct value *
6794ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6795{
4c4b4cd2 6796 struct value *val;
1b611343 6797 struct type *type;
5b4ee69b 6798
1b611343
JB
6799 /* First option: The TSD is simply stored as a field of our TAG.
6800 Only older versions of GNAT would use this format, but we have
6801 to test it first, because there are no visible markers for
6802 the current approach except the absence of that field. */
529cad9c 6803
1b611343
JB
6804 val = ada_value_struct_elt (tag, "tsd", 1);
6805 if (val)
6806 return val;
e802dbe0 6807
1b611343
JB
6808 /* Try the second representation for the dispatch table (in which
6809 there is no explicit 'tsd' field in the referent of the tag pointer,
6810 and instead the tsd pointer is stored just before the dispatch
6811 table. */
e802dbe0 6812
1b611343
JB
6813 type = ada_get_tsd_type (current_inferior());
6814 if (type == NULL)
6815 return NULL;
6816 type = lookup_pointer_type (lookup_pointer_type (type));
6817 val = value_cast (type, tag);
6818 if (val == NULL)
6819 return NULL;
6820 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6821}
6822
1b611343
JB
6823/* Given the TSD of a tag (type-specific data), return a string
6824 containing the name of the associated type.
6825
6826 The returned value is good until the next call. May return NULL
6827 if we are unable to determine the tag name. */
6828
6829static char *
6830ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6831{
529cad9c
PH
6832 static char name[1024];
6833 char *p;
1b611343 6834 struct value *val;
529cad9c 6835
1b611343 6836 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6837 if (val == NULL)
1b611343 6838 return NULL;
4c4b4cd2
PH
6839 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6840 for (p = name; *p != '\0'; p += 1)
6841 if (isalpha (*p))
6842 *p = tolower (*p);
1b611343 6843 return name;
4c4b4cd2
PH
6844}
6845
6846/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6847 a C string.
6848
6849 Return NULL if the TAG is not an Ada tag, or if we were unable to
6850 determine the name of that tag. The result is good until the next
6851 call. */
4c4b4cd2
PH
6852
6853const char *
6854ada_tag_name (struct value *tag)
6855{
1b611343 6856 char *name = NULL;
5b4ee69b 6857
df407dfe 6858 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6859 return NULL;
1b611343
JB
6860
6861 /* It is perfectly possible that an exception be raised while trying
6862 to determine the TAG's name, even under normal circumstances:
6863 The associated variable may be uninitialized or corrupted, for
6864 instance. We do not let any exception propagate past this point.
6865 instead we return NULL.
6866
6867 We also do not print the error message either (which often is very
6868 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6869 the caller print a more meaningful message if necessary. */
a70b8144 6870 try
1b611343
JB
6871 {
6872 struct value *tsd = ada_get_tsd_from_tag (tag);
6873
6874 if (tsd != NULL)
6875 name = ada_tag_name_from_tsd (tsd);
6876 }
230d2906 6877 catch (const gdb_exception_error &e)
492d29ea
PA
6878 {
6879 }
1b611343
JB
6880
6881 return name;
4c4b4cd2
PH
6882}
6883
6884/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6885
d2e4a39e 6886struct type *
ebf56fd3 6887ada_parent_type (struct type *type)
14f9c5c9
AS
6888{
6889 int i;
6890
61ee279c 6891 type = ada_check_typedef (type);
14f9c5c9
AS
6892
6893 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6894 return NULL;
6895
6896 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6897 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6898 {
6899 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6900
6901 /* If the _parent field is a pointer, then dereference it. */
6902 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6903 parent_type = TYPE_TARGET_TYPE (parent_type);
6904 /* If there is a parallel XVS type, get the actual base type. */
6905 parent_type = ada_get_base_type (parent_type);
6906
6907 return ada_check_typedef (parent_type);
6908 }
14f9c5c9
AS
6909
6910 return NULL;
6911}
6912
4c4b4cd2
PH
6913/* True iff field number FIELD_NUM of structure type TYPE contains the
6914 parent-type (inherited) fields of a derived type. Assumes TYPE is
6915 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6916
6917int
ebf56fd3 6918ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6919{
61ee279c 6920 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6921
4c4b4cd2 6922 return (name != NULL
61012eef
GB
6923 && (startswith (name, "PARENT")
6924 || startswith (name, "_parent")));
14f9c5c9
AS
6925}
6926
4c4b4cd2 6927/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6928 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6929 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6930 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6931 structures. */
14f9c5c9
AS
6932
6933int
ebf56fd3 6934ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6935{
d2e4a39e 6936 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6937
dddc0e16
JB
6938 if (name != NULL && strcmp (name, "RETVAL") == 0)
6939 {
6940 /* This happens in functions with "out" or "in out" parameters
6941 which are passed by copy. For such functions, GNAT describes
6942 the function's return type as being a struct where the return
6943 value is in a field called RETVAL, and where the other "out"
6944 or "in out" parameters are fields of that struct. This is not
6945 a wrapper. */
6946 return 0;
6947 }
6948
d2e4a39e 6949 return (name != NULL
61012eef 6950 && (startswith (name, "PARENT")
4c4b4cd2 6951 || strcmp (name, "REP") == 0
61012eef 6952 || startswith (name, "_parent")
4c4b4cd2 6953 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6954}
6955
4c4b4cd2
PH
6956/* True iff field number FIELD_NUM of structure or union type TYPE
6957 is a variant wrapper. Assumes TYPE is a structure type with at least
6958 FIELD_NUM+1 fields. */
14f9c5c9
AS
6959
6960int
ebf56fd3 6961ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6962{
8ecb59f8
TT
6963 /* Only Ada types are eligible. */
6964 if (!ADA_TYPE_P (type))
6965 return 0;
6966
d2e4a39e 6967 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6968
14f9c5c9 6969 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6970 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6971 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6972 == TYPE_CODE_UNION)));
14f9c5c9
AS
6973}
6974
6975/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6976 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6977 returns the type of the controlling discriminant for the variant.
6978 May return NULL if the type could not be found. */
14f9c5c9 6979
d2e4a39e 6980struct type *
ebf56fd3 6981ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6982{
a121b7c1 6983 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6984
988f6b3d 6985 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6986}
6987
4c4b4cd2 6988/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6989 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6990 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6991
de93309a 6992static int
ebf56fd3 6993ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6994{
d2e4a39e 6995 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6996
14f9c5c9
AS
6997 return (name != NULL && name[0] == 'O');
6998}
6999
7000/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7001 returns the name of the discriminant controlling the variant.
7002 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7003
a121b7c1 7004const char *
ebf56fd3 7005ada_variant_discrim_name (struct type *type0)
14f9c5c9 7006{
d2e4a39e 7007 static char *result = NULL;
14f9c5c9 7008 static size_t result_len = 0;
d2e4a39e
AS
7009 struct type *type;
7010 const char *name;
7011 const char *discrim_end;
7012 const char *discrim_start;
14f9c5c9
AS
7013
7014 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7015 type = TYPE_TARGET_TYPE (type0);
7016 else
7017 type = type0;
7018
7019 name = ada_type_name (type);
7020
7021 if (name == NULL || name[0] == '\000')
7022 return "";
7023
7024 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7025 discrim_end -= 1)
7026 {
61012eef 7027 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7028 break;
14f9c5c9
AS
7029 }
7030 if (discrim_end == name)
7031 return "";
7032
d2e4a39e 7033 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7034 discrim_start -= 1)
7035 {
d2e4a39e 7036 if (discrim_start == name + 1)
4c4b4cd2 7037 return "";
76a01679 7038 if ((discrim_start > name + 3
61012eef 7039 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7040 || discrim_start[-1] == '.')
7041 break;
14f9c5c9
AS
7042 }
7043
7044 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7045 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7046 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7047 return result;
7048}
7049
4c4b4cd2
PH
7050/* Scan STR for a subtype-encoded number, beginning at position K.
7051 Put the position of the character just past the number scanned in
7052 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7053 Return 1 if there was a valid number at the given position, and 0
7054 otherwise. A "subtype-encoded" number consists of the absolute value
7055 in decimal, followed by the letter 'm' to indicate a negative number.
7056 Assumes 0m does not occur. */
14f9c5c9
AS
7057
7058int
d2e4a39e 7059ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7060{
7061 ULONGEST RU;
7062
d2e4a39e 7063 if (!isdigit (str[k]))
14f9c5c9
AS
7064 return 0;
7065
4c4b4cd2 7066 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7067 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7068 LONGEST. */
14f9c5c9
AS
7069 RU = 0;
7070 while (isdigit (str[k]))
7071 {
d2e4a39e 7072 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7073 k += 1;
7074 }
7075
d2e4a39e 7076 if (str[k] == 'm')
14f9c5c9
AS
7077 {
7078 if (R != NULL)
4c4b4cd2 7079 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7080 k += 1;
7081 }
7082 else if (R != NULL)
7083 *R = (LONGEST) RU;
7084
4c4b4cd2 7085 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7086 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7087 number representable as a LONGEST (although either would probably work
7088 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7089 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7090
7091 if (new_k != NULL)
7092 *new_k = k;
7093 return 1;
7094}
7095
4c4b4cd2
PH
7096/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7097 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7098 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7099
de93309a 7100static int
ebf56fd3 7101ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7102{
d2e4a39e 7103 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7104 int p;
7105
7106 p = 0;
7107 while (1)
7108 {
d2e4a39e 7109 switch (name[p])
4c4b4cd2
PH
7110 {
7111 case '\0':
7112 return 0;
7113 case 'S':
7114 {
7115 LONGEST W;
5b4ee69b 7116
4c4b4cd2
PH
7117 if (!ada_scan_number (name, p + 1, &W, &p))
7118 return 0;
7119 if (val == W)
7120 return 1;
7121 break;
7122 }
7123 case 'R':
7124 {
7125 LONGEST L, U;
5b4ee69b 7126
4c4b4cd2
PH
7127 if (!ada_scan_number (name, p + 1, &L, &p)
7128 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7129 return 0;
7130 if (val >= L && val <= U)
7131 return 1;
7132 break;
7133 }
7134 case 'O':
7135 return 1;
7136 default:
7137 return 0;
7138 }
7139 }
7140}
7141
0963b4bd 7142/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7143
7144/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7145 ARG_TYPE, extract and return the value of one of its (non-static)
7146 fields. FIELDNO says which field. Differs from value_primitive_field
7147 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7148
4c4b4cd2 7149static struct value *
d2e4a39e 7150ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7151 struct type *arg_type)
14f9c5c9 7152{
14f9c5c9
AS
7153 struct type *type;
7154
61ee279c 7155 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7156 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7157
4504bbde
TT
7158 /* Handle packed fields. It might be that the field is not packed
7159 relative to its containing structure, but the structure itself is
7160 packed; in this case we must take the bit-field path. */
7161 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7162 {
7163 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7164 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7165
0fd88904 7166 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7167 offset + bit_pos / 8,
7168 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7169 }
7170 else
7171 return value_primitive_field (arg1, offset, fieldno, arg_type);
7172}
7173
52ce6436
PH
7174/* Find field with name NAME in object of type TYPE. If found,
7175 set the following for each argument that is non-null:
7176 - *FIELD_TYPE_P to the field's type;
7177 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7178 an object of that type;
7179 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7180 - *BIT_SIZE_P to its size in bits if the field is packed, and
7181 0 otherwise;
7182 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7183 fields up to but not including the desired field, or by the total
7184 number of fields if not found. A NULL value of NAME never
7185 matches; the function just counts visible fields in this case.
7186
828d5846
XR
7187 Notice that we need to handle when a tagged record hierarchy
7188 has some components with the same name, like in this scenario:
7189
7190 type Top_T is tagged record
7191 N : Integer := 1;
7192 U : Integer := 974;
7193 A : Integer := 48;
7194 end record;
7195
7196 type Middle_T is new Top.Top_T with record
7197 N : Character := 'a';
7198 C : Integer := 3;
7199 end record;
7200
7201 type Bottom_T is new Middle.Middle_T with record
7202 N : Float := 4.0;
7203 C : Character := '5';
7204 X : Integer := 6;
7205 A : Character := 'J';
7206 end record;
7207
7208 Let's say we now have a variable declared and initialized as follow:
7209
7210 TC : Top_A := new Bottom_T;
7211
7212 And then we use this variable to call this function
7213
7214 procedure Assign (Obj: in out Top_T; TV : Integer);
7215
7216 as follow:
7217
7218 Assign (Top_T (B), 12);
7219
7220 Now, we're in the debugger, and we're inside that procedure
7221 then and we want to print the value of obj.c:
7222
7223 Usually, the tagged record or one of the parent type owns the
7224 component to print and there's no issue but in this particular
7225 case, what does it mean to ask for Obj.C? Since the actual
7226 type for object is type Bottom_T, it could mean two things: type
7227 component C from the Middle_T view, but also component C from
7228 Bottom_T. So in that "undefined" case, when the component is
7229 not found in the non-resolved type (which includes all the
7230 components of the parent type), then resolve it and see if we
7231 get better luck once expanded.
7232
7233 In the case of homonyms in the derived tagged type, we don't
7234 guaranty anything, and pick the one that's easiest for us
7235 to program.
7236
0963b4bd 7237 Returns 1 if found, 0 otherwise. */
52ce6436 7238
4c4b4cd2 7239static int
0d5cff50 7240find_struct_field (const char *name, struct type *type, int offset,
76a01679 7241 struct type **field_type_p,
52ce6436
PH
7242 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7243 int *index_p)
4c4b4cd2
PH
7244{
7245 int i;
828d5846 7246 int parent_offset = -1;
4c4b4cd2 7247
61ee279c 7248 type = ada_check_typedef (type);
76a01679 7249
52ce6436
PH
7250 if (field_type_p != NULL)
7251 *field_type_p = NULL;
7252 if (byte_offset_p != NULL)
d5d6fca5 7253 *byte_offset_p = 0;
52ce6436
PH
7254 if (bit_offset_p != NULL)
7255 *bit_offset_p = 0;
7256 if (bit_size_p != NULL)
7257 *bit_size_p = 0;
7258
7259 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7260 {
7261 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7262 int fld_offset = offset + bit_pos / 8;
0d5cff50 7263 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7264
4c4b4cd2
PH
7265 if (t_field_name == NULL)
7266 continue;
7267
828d5846
XR
7268 else if (ada_is_parent_field (type, i))
7269 {
7270 /* This is a field pointing us to the parent type of a tagged
7271 type. As hinted in this function's documentation, we give
7272 preference to fields in the current record first, so what
7273 we do here is just record the index of this field before
7274 we skip it. If it turns out we couldn't find our field
7275 in the current record, then we'll get back to it and search
7276 inside it whether the field might exist in the parent. */
7277
7278 parent_offset = i;
7279 continue;
7280 }
7281
52ce6436 7282 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7283 {
7284 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7285
52ce6436
PH
7286 if (field_type_p != NULL)
7287 *field_type_p = TYPE_FIELD_TYPE (type, i);
7288 if (byte_offset_p != NULL)
7289 *byte_offset_p = fld_offset;
7290 if (bit_offset_p != NULL)
7291 *bit_offset_p = bit_pos % 8;
7292 if (bit_size_p != NULL)
7293 *bit_size_p = bit_size;
76a01679
JB
7294 return 1;
7295 }
4c4b4cd2
PH
7296 else if (ada_is_wrapper_field (type, i))
7297 {
52ce6436
PH
7298 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7299 field_type_p, byte_offset_p, bit_offset_p,
7300 bit_size_p, index_p))
76a01679
JB
7301 return 1;
7302 }
4c4b4cd2
PH
7303 else if (ada_is_variant_part (type, i))
7304 {
52ce6436
PH
7305 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7306 fixed type?? */
4c4b4cd2 7307 int j;
52ce6436
PH
7308 struct type *field_type
7309 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7310
52ce6436 7311 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7312 {
76a01679
JB
7313 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7314 fld_offset
7315 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7316 field_type_p, byte_offset_p,
52ce6436 7317 bit_offset_p, bit_size_p, index_p))
76a01679 7318 return 1;
4c4b4cd2
PH
7319 }
7320 }
52ce6436
PH
7321 else if (index_p != NULL)
7322 *index_p += 1;
4c4b4cd2 7323 }
828d5846
XR
7324
7325 /* Field not found so far. If this is a tagged type which
7326 has a parent, try finding that field in the parent now. */
7327
7328 if (parent_offset != -1)
7329 {
7330 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7331 int fld_offset = offset + bit_pos / 8;
7332
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7334 fld_offset, field_type_p, byte_offset_p,
7335 bit_offset_p, bit_size_p, index_p))
7336 return 1;
7337 }
7338
4c4b4cd2
PH
7339 return 0;
7340}
7341
0963b4bd 7342/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7343
52ce6436
PH
7344static int
7345num_visible_fields (struct type *type)
7346{
7347 int n;
5b4ee69b 7348
52ce6436
PH
7349 n = 0;
7350 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7351 return n;
7352}
14f9c5c9 7353
4c4b4cd2 7354/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7355 and search in it assuming it has (class) type TYPE.
7356 If found, return value, else return NULL.
7357
828d5846
XR
7358 Searches recursively through wrapper fields (e.g., '_parent').
7359
7360 In the case of homonyms in the tagged types, please refer to the
7361 long explanation in find_struct_field's function documentation. */
14f9c5c9 7362
4c4b4cd2 7363static struct value *
108d56a4 7364ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7365 struct type *type)
14f9c5c9
AS
7366{
7367 int i;
828d5846 7368 int parent_offset = -1;
14f9c5c9 7369
5b4ee69b 7370 type = ada_check_typedef (type);
52ce6436 7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7372 {
0d5cff50 7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7374
7375 if (t_field_name == NULL)
4c4b4cd2 7376 continue;
14f9c5c9 7377
828d5846
XR
7378 else if (ada_is_parent_field (type, i))
7379 {
7380 /* This is a field pointing us to the parent type of a tagged
7381 type. As hinted in this function's documentation, we give
7382 preference to fields in the current record first, so what
7383 we do here is just record the index of this field before
7384 we skip it. If it turns out we couldn't find our field
7385 in the current record, then we'll get back to it and search
7386 inside it whether the field might exist in the parent. */
7387
7388 parent_offset = i;
7389 continue;
7390 }
7391
14f9c5c9 7392 else if (field_name_match (t_field_name, name))
4c4b4cd2 7393 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7394
7395 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7396 {
0963b4bd 7397 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7398 ada_search_struct_field (name, arg,
7399 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7400 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7401
4c4b4cd2
PH
7402 if (v != NULL)
7403 return v;
7404 }
14f9c5c9
AS
7405
7406 else if (ada_is_variant_part (type, i))
4c4b4cd2 7407 {
0963b4bd 7408 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7409 int j;
5b4ee69b
MS
7410 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7411 i));
4c4b4cd2
PH
7412 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7413
52ce6436 7414 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7415 {
0963b4bd
MS
7416 struct value *v = ada_search_struct_field /* Force line
7417 break. */
06d5cf63
JB
7418 (name, arg,
7419 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7420 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7421
4c4b4cd2
PH
7422 if (v != NULL)
7423 return v;
7424 }
7425 }
14f9c5c9 7426 }
828d5846
XR
7427
7428 /* Field not found so far. If this is a tagged type which
7429 has a parent, try finding that field in the parent now. */
7430
7431 if (parent_offset != -1)
7432 {
7433 struct value *v = ada_search_struct_field (
7434 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7435 TYPE_FIELD_TYPE (type, parent_offset));
7436
7437 if (v != NULL)
7438 return v;
7439 }
7440
14f9c5c9
AS
7441 return NULL;
7442}
d2e4a39e 7443
52ce6436
PH
7444static struct value *ada_index_struct_field_1 (int *, struct value *,
7445 int, struct type *);
7446
7447
7448/* Return field #INDEX in ARG, where the index is that returned by
7449 * find_struct_field through its INDEX_P argument. Adjust the address
7450 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7451 * If found, return value, else return NULL. */
52ce6436
PH
7452
7453static struct value *
7454ada_index_struct_field (int index, struct value *arg, int offset,
7455 struct type *type)
7456{
7457 return ada_index_struct_field_1 (&index, arg, offset, type);
7458}
7459
7460
7461/* Auxiliary function for ada_index_struct_field. Like
7462 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7463 * *INDEX_P. */
52ce6436
PH
7464
7465static struct value *
7466ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7467 struct type *type)
7468{
7469 int i;
7470 type = ada_check_typedef (type);
7471
7472 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7473 {
7474 if (TYPE_FIELD_NAME (type, i) == NULL)
7475 continue;
7476 else if (ada_is_wrapper_field (type, i))
7477 {
0963b4bd 7478 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7479 ada_index_struct_field_1 (index_p, arg,
7480 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7481 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7482
52ce6436
PH
7483 if (v != NULL)
7484 return v;
7485 }
7486
7487 else if (ada_is_variant_part (type, i))
7488 {
7489 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7490 find_struct_field. */
52ce6436
PH
7491 error (_("Cannot assign this kind of variant record"));
7492 }
7493 else if (*index_p == 0)
7494 return ada_value_primitive_field (arg, offset, i, type);
7495 else
7496 *index_p -= 1;
7497 }
7498 return NULL;
7499}
7500
3b4de39c 7501/* Return a string representation of type TYPE. */
99bbb428 7502
3b4de39c 7503static std::string
99bbb428
PA
7504type_as_string (struct type *type)
7505{
d7e74731 7506 string_file tmp_stream;
99bbb428 7507
d7e74731 7508 type_print (type, "", &tmp_stream, -1);
99bbb428 7509
d7e74731 7510 return std::move (tmp_stream.string ());
99bbb428
PA
7511}
7512
14f9c5c9 7513/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7514 If DISPP is non-null, add its byte displacement from the beginning of a
7515 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7516 work for packed fields).
7517
7518 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7519 followed by "___".
14f9c5c9 7520
0963b4bd 7521 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7522 be a (pointer or reference)+ to a struct or union, and the
7523 ultimate target type will be searched.
14f9c5c9
AS
7524
7525 Looks recursively into variant clauses and parent types.
7526
828d5846
XR
7527 In the case of homonyms in the tagged types, please refer to the
7528 long explanation in find_struct_field's function documentation.
7529
4c4b4cd2
PH
7530 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7531 TYPE is not a type of the right kind. */
14f9c5c9 7532
4c4b4cd2 7533static struct type *
a121b7c1 7534ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7535 int noerr)
14f9c5c9
AS
7536{
7537 int i;
828d5846 7538 int parent_offset = -1;
14f9c5c9
AS
7539
7540 if (name == NULL)
7541 goto BadName;
7542
76a01679 7543 if (refok && type != NULL)
4c4b4cd2
PH
7544 while (1)
7545 {
61ee279c 7546 type = ada_check_typedef (type);
76a01679
JB
7547 if (TYPE_CODE (type) != TYPE_CODE_PTR
7548 && TYPE_CODE (type) != TYPE_CODE_REF)
7549 break;
7550 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7551 }
14f9c5c9 7552
76a01679 7553 if (type == NULL
1265e4aa
JB
7554 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7555 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7556 {
4c4b4cd2 7557 if (noerr)
76a01679 7558 return NULL;
99bbb428 7559
3b4de39c
PA
7560 error (_("Type %s is not a structure or union type"),
7561 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7562 }
7563
7564 type = to_static_fixed_type (type);
7565
7566 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7567 {
0d5cff50 7568 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7569 struct type *t;
d2e4a39e 7570
14f9c5c9 7571 if (t_field_name == NULL)
4c4b4cd2 7572 continue;
14f9c5c9 7573
828d5846
XR
7574 else if (ada_is_parent_field (type, i))
7575 {
7576 /* This is a field pointing us to the parent type of a tagged
7577 type. As hinted in this function's documentation, we give
7578 preference to fields in the current record first, so what
7579 we do here is just record the index of this field before
7580 we skip it. If it turns out we couldn't find our field
7581 in the current record, then we'll get back to it and search
7582 inside it whether the field might exist in the parent. */
7583
7584 parent_offset = i;
7585 continue;
7586 }
7587
14f9c5c9 7588 else if (field_name_match (t_field_name, name))
988f6b3d 7589 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7590
7591 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7592 {
4c4b4cd2 7593 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7594 0, 1);
4c4b4cd2 7595 if (t != NULL)
988f6b3d 7596 return t;
4c4b4cd2 7597 }
14f9c5c9
AS
7598
7599 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7600 {
7601 int j;
5b4ee69b
MS
7602 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7603 i));
4c4b4cd2
PH
7604
7605 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7606 {
b1f33ddd
JB
7607 /* FIXME pnh 2008/01/26: We check for a field that is
7608 NOT wrapped in a struct, since the compiler sometimes
7609 generates these for unchecked variant types. Revisit
0963b4bd 7610 if the compiler changes this practice. */
0d5cff50 7611 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7612
b1f33ddd
JB
7613 if (v_field_name != NULL
7614 && field_name_match (v_field_name, name))
460efde1 7615 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7616 else
0963b4bd
MS
7617 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7618 j),
988f6b3d 7619 name, 0, 1);
b1f33ddd 7620
4c4b4cd2 7621 if (t != NULL)
988f6b3d 7622 return t;
4c4b4cd2
PH
7623 }
7624 }
14f9c5c9
AS
7625
7626 }
7627
828d5846
XR
7628 /* Field not found so far. If this is a tagged type which
7629 has a parent, try finding that field in the parent now. */
7630
7631 if (parent_offset != -1)
7632 {
7633 struct type *t;
7634
7635 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7636 name, 0, 1);
7637 if (t != NULL)
7638 return t;
7639 }
7640
14f9c5c9 7641BadName:
d2e4a39e 7642 if (!noerr)
14f9c5c9 7643 {
2b2798cc 7644 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7645
7646 error (_("Type %s has no component named %s"),
3b4de39c 7647 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7648 }
7649
7650 return NULL;
7651}
7652
b1f33ddd
JB
7653/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7654 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7655 represents an unchecked union (that is, the variant part of a
0963b4bd 7656 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7657
7658static int
7659is_unchecked_variant (struct type *var_type, struct type *outer_type)
7660{
a121b7c1 7661 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7662
988f6b3d 7663 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7664}
7665
7666
14f9c5c9
AS
7667/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7668 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7669 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7670 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7671
d2e4a39e 7672int
ebf56fd3 7673ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7674 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7675{
7676 int others_clause;
7677 int i;
a121b7c1 7678 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7679 struct value *outer;
7680 struct value *discrim;
14f9c5c9
AS
7681 LONGEST discrim_val;
7682
012370f6
TT
7683 /* Using plain value_from_contents_and_address here causes problems
7684 because we will end up trying to resolve a type that is currently
7685 being constructed. */
7686 outer = value_from_contents_and_address_unresolved (outer_type,
7687 outer_valaddr, 0);
0c281816
JB
7688 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7689 if (discrim == NULL)
14f9c5c9 7690 return -1;
0c281816 7691 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7692
7693 others_clause = -1;
7694 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7695 {
7696 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7697 others_clause = i;
14f9c5c9 7698 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7699 return i;
14f9c5c9
AS
7700 }
7701
7702 return others_clause;
7703}
d2e4a39e 7704\f
14f9c5c9
AS
7705
7706
4c4b4cd2 7707 /* Dynamic-Sized Records */
14f9c5c9
AS
7708
7709/* Strategy: The type ostensibly attached to a value with dynamic size
7710 (i.e., a size that is not statically recorded in the debugging
7711 data) does not accurately reflect the size or layout of the value.
7712 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7713 conventional types that are constructed on the fly. */
14f9c5c9
AS
7714
7715/* There is a subtle and tricky problem here. In general, we cannot
7716 determine the size of dynamic records without its data. However,
7717 the 'struct value' data structure, which GDB uses to represent
7718 quantities in the inferior process (the target), requires the size
7719 of the type at the time of its allocation in order to reserve space
7720 for GDB's internal copy of the data. That's why the
7721 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7722 rather than struct value*s.
14f9c5c9
AS
7723
7724 However, GDB's internal history variables ($1, $2, etc.) are
7725 struct value*s containing internal copies of the data that are not, in
7726 general, the same as the data at their corresponding addresses in
7727 the target. Fortunately, the types we give to these values are all
7728 conventional, fixed-size types (as per the strategy described
7729 above), so that we don't usually have to perform the
7730 'to_fixed_xxx_type' conversions to look at their values.
7731 Unfortunately, there is one exception: if one of the internal
7732 history variables is an array whose elements are unconstrained
7733 records, then we will need to create distinct fixed types for each
7734 element selected. */
7735
7736/* The upshot of all of this is that many routines take a (type, host
7737 address, target address) triple as arguments to represent a value.
7738 The host address, if non-null, is supposed to contain an internal
7739 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7740 target at the target address. */
14f9c5c9
AS
7741
7742/* Assuming that VAL0 represents a pointer value, the result of
7743 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7744 dynamic-sized types. */
14f9c5c9 7745
d2e4a39e
AS
7746struct value *
7747ada_value_ind (struct value *val0)
14f9c5c9 7748{
c48db5ca 7749 struct value *val = value_ind (val0);
5b4ee69b 7750
b50d69b5
JG
7751 if (ada_is_tagged_type (value_type (val), 0))
7752 val = ada_tag_value_at_base_address (val);
7753
4c4b4cd2 7754 return ada_to_fixed_value (val);
14f9c5c9
AS
7755}
7756
7757/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7758 qualifiers on VAL0. */
7759
d2e4a39e
AS
7760static struct value *
7761ada_coerce_ref (struct value *val0)
7762{
df407dfe 7763 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7764 {
7765 struct value *val = val0;
5b4ee69b 7766
994b9211 7767 val = coerce_ref (val);
b50d69b5
JG
7768
7769 if (ada_is_tagged_type (value_type (val), 0))
7770 val = ada_tag_value_at_base_address (val);
7771
4c4b4cd2 7772 return ada_to_fixed_value (val);
d2e4a39e
AS
7773 }
7774 else
14f9c5c9
AS
7775 return val0;
7776}
7777
7778/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7779 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7780
7781static unsigned int
ebf56fd3 7782align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7783{
7784 return (off + alignment - 1) & ~(alignment - 1);
7785}
7786
4c4b4cd2 7787/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7788
7789static unsigned int
ebf56fd3 7790field_alignment (struct type *type, int f)
14f9c5c9 7791{
d2e4a39e 7792 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7793 int len;
14f9c5c9
AS
7794 int align_offset;
7795
64a1bf19
JB
7796 /* The field name should never be null, unless the debugging information
7797 is somehow malformed. In this case, we assume the field does not
7798 require any alignment. */
7799 if (name == NULL)
7800 return 1;
7801
7802 len = strlen (name);
7803
4c4b4cd2
PH
7804 if (!isdigit (name[len - 1]))
7805 return 1;
14f9c5c9 7806
d2e4a39e 7807 if (isdigit (name[len - 2]))
14f9c5c9
AS
7808 align_offset = len - 2;
7809 else
7810 align_offset = len - 1;
7811
61012eef 7812 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7813 return TARGET_CHAR_BIT;
7814
4c4b4cd2
PH
7815 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7816}
7817
852dff6c 7818/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7819
852dff6c
JB
7820static struct symbol *
7821ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7822{
7823 struct symbol *sym;
7824
7825 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7826 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7827 return sym;
7828
4186eb54
KS
7829 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7830 return sym;
14f9c5c9
AS
7831}
7832
dddfab26
UW
7833/* Find a type named NAME. Ignores ambiguity. This routine will look
7834 solely for types defined by debug info, it will not search the GDB
7835 primitive types. */
4c4b4cd2 7836
852dff6c 7837static struct type *
ebf56fd3 7838ada_find_any_type (const char *name)
14f9c5c9 7839{
852dff6c 7840 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7841
14f9c5c9 7842 if (sym != NULL)
dddfab26 7843 return SYMBOL_TYPE (sym);
14f9c5c9 7844
dddfab26 7845 return NULL;
14f9c5c9
AS
7846}
7847
739593e0
JB
7848/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7849 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7850 symbol, in which case it is returned. Otherwise, this looks for
7851 symbols whose name is that of NAME_SYM suffixed with "___XR".
7852 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7853
c0e70c62
TT
7854static bool
7855ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7856{
987012b8 7857 const char *name = name_sym->linkage_name ();
c0e70c62 7858 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7859}
7860
14f9c5c9 7861/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7862 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7863 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7864 otherwise return 0. */
7865
14f9c5c9 7866int
d2e4a39e 7867ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7868{
7869 if (type1 == NULL)
7870 return 1;
7871 else if (type0 == NULL)
7872 return 0;
7873 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7874 return 1;
7875 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7876 return 0;
4c4b4cd2
PH
7877 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7878 return 1;
ad82864c 7879 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7880 return 1;
4c4b4cd2
PH
7881 else if (ada_is_array_descriptor_type (type0)
7882 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7883 return 1;
aeb5907d
JB
7884 else
7885 {
a737d952
TT
7886 const char *type0_name = TYPE_NAME (type0);
7887 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7888
7889 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7890 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7891 return 1;
7892 }
14f9c5c9
AS
7893 return 0;
7894}
7895
e86ca25f
TT
7896/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7897 null. */
4c4b4cd2 7898
0d5cff50 7899const char *
d2e4a39e 7900ada_type_name (struct type *type)
14f9c5c9 7901{
d2e4a39e 7902 if (type == NULL)
14f9c5c9 7903 return NULL;
e86ca25f 7904 return TYPE_NAME (type);
14f9c5c9
AS
7905}
7906
b4ba55a1
JB
7907/* Search the list of "descriptive" types associated to TYPE for a type
7908 whose name is NAME. */
7909
7910static struct type *
7911find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7912{
931e5bc3 7913 struct type *result, *tmp;
b4ba55a1 7914
c6044dd1
JB
7915 if (ada_ignore_descriptive_types_p)
7916 return NULL;
7917
b4ba55a1
JB
7918 /* If there no descriptive-type info, then there is no parallel type
7919 to be found. */
7920 if (!HAVE_GNAT_AUX_INFO (type))
7921 return NULL;
7922
7923 result = TYPE_DESCRIPTIVE_TYPE (type);
7924 while (result != NULL)
7925 {
0d5cff50 7926 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7927
7928 if (result_name == NULL)
7929 {
7930 warning (_("unexpected null name on descriptive type"));
7931 return NULL;
7932 }
7933
7934 /* If the names match, stop. */
7935 if (strcmp (result_name, name) == 0)
7936 break;
7937
7938 /* Otherwise, look at the next item on the list, if any. */
7939 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7940 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7941 else
7942 tmp = NULL;
7943
7944 /* If not found either, try after having resolved the typedef. */
7945 if (tmp != NULL)
7946 result = tmp;
b4ba55a1 7947 else
931e5bc3 7948 {
f168693b 7949 result = check_typedef (result);
931e5bc3
JG
7950 if (HAVE_GNAT_AUX_INFO (result))
7951 result = TYPE_DESCRIPTIVE_TYPE (result);
7952 else
7953 result = NULL;
7954 }
b4ba55a1
JB
7955 }
7956
7957 /* If we didn't find a match, see whether this is a packed array. With
7958 older compilers, the descriptive type information is either absent or
7959 irrelevant when it comes to packed arrays so the above lookup fails.
7960 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7961 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7962 return ada_find_any_type (name);
7963
7964 return result;
7965}
7966
7967/* Find a parallel type to TYPE with the specified NAME, using the
7968 descriptive type taken from the debugging information, if available,
7969 and otherwise using the (slower) name-based method. */
7970
7971static struct type *
7972ada_find_parallel_type_with_name (struct type *type, const char *name)
7973{
7974 struct type *result = NULL;
7975
7976 if (HAVE_GNAT_AUX_INFO (type))
7977 result = find_parallel_type_by_descriptive_type (type, name);
7978 else
7979 result = ada_find_any_type (name);
7980
7981 return result;
7982}
7983
7984/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7985 SUFFIX to the name of TYPE. */
14f9c5c9 7986
d2e4a39e 7987struct type *
ebf56fd3 7988ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7989{
0d5cff50 7990 char *name;
fe978cb0 7991 const char *type_name = ada_type_name (type);
14f9c5c9 7992 int len;
d2e4a39e 7993
fe978cb0 7994 if (type_name == NULL)
14f9c5c9
AS
7995 return NULL;
7996
fe978cb0 7997 len = strlen (type_name);
14f9c5c9 7998
b4ba55a1 7999 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8000
fe978cb0 8001 strcpy (name, type_name);
14f9c5c9
AS
8002 strcpy (name + len, suffix);
8003
b4ba55a1 8004 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8005}
8006
14f9c5c9 8007/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8008 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8009
d2e4a39e
AS
8010static struct type *
8011dynamic_template_type (struct type *type)
14f9c5c9 8012{
61ee279c 8013 type = ada_check_typedef (type);
14f9c5c9
AS
8014
8015 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8016 || ada_type_name (type) == NULL)
14f9c5c9 8017 return NULL;
d2e4a39e 8018 else
14f9c5c9
AS
8019 {
8020 int len = strlen (ada_type_name (type));
5b4ee69b 8021
4c4b4cd2
PH
8022 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8023 return type;
14f9c5c9 8024 else
4c4b4cd2 8025 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8026 }
8027}
8028
8029/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8030 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8031
d2e4a39e
AS
8032static int
8033is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8034{
8035 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8036
d2e4a39e 8037 return name != NULL
14f9c5c9
AS
8038 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8039 && strstr (name, "___XVL") != NULL;
8040}
8041
4c4b4cd2
PH
8042/* The index of the variant field of TYPE, or -1 if TYPE does not
8043 represent a variant record type. */
14f9c5c9 8044
d2e4a39e 8045static int
4c4b4cd2 8046variant_field_index (struct type *type)
14f9c5c9
AS
8047{
8048 int f;
8049
4c4b4cd2
PH
8050 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8051 return -1;
8052
8053 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8054 {
8055 if (ada_is_variant_part (type, f))
8056 return f;
8057 }
8058 return -1;
14f9c5c9
AS
8059}
8060
4c4b4cd2
PH
8061/* A record type with no fields. */
8062
d2e4a39e 8063static struct type *
fe978cb0 8064empty_record (struct type *templ)
14f9c5c9 8065{
fe978cb0 8066 struct type *type = alloc_type_copy (templ);
5b4ee69b 8067
14f9c5c9
AS
8068 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8069 TYPE_NFIELDS (type) = 0;
8070 TYPE_FIELDS (type) = NULL;
8ecb59f8 8071 INIT_NONE_SPECIFIC (type);
14f9c5c9 8072 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8073 TYPE_LENGTH (type) = 0;
8074 return type;
8075}
8076
8077/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8078 the value of type TYPE at VALADDR or ADDRESS (see comments at
8079 the beginning of this section) VAL according to GNAT conventions.
8080 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8081 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8082 an outer-level type (i.e., as opposed to a branch of a variant.) A
8083 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8084 of the variant.
14f9c5c9 8085
4c4b4cd2
PH
8086 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8087 length are not statically known are discarded. As a consequence,
8088 VALADDR, ADDRESS and DVAL0 are ignored.
8089
8090 NOTE: Limitations: For now, we assume that dynamic fields and
8091 variants occupy whole numbers of bytes. However, they need not be
8092 byte-aligned. */
8093
8094struct type *
10a2c479 8095ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8096 const gdb_byte *valaddr,
4c4b4cd2
PH
8097 CORE_ADDR address, struct value *dval0,
8098 int keep_dynamic_fields)
14f9c5c9 8099{
d2e4a39e
AS
8100 struct value *mark = value_mark ();
8101 struct value *dval;
8102 struct type *rtype;
14f9c5c9 8103 int nfields, bit_len;
4c4b4cd2 8104 int variant_field;
14f9c5c9 8105 long off;
d94e4f4f 8106 int fld_bit_len;
14f9c5c9
AS
8107 int f;
8108
4c4b4cd2
PH
8109 /* Compute the number of fields in this record type that are going
8110 to be processed: unless keep_dynamic_fields, this includes only
8111 fields whose position and length are static will be processed. */
8112 if (keep_dynamic_fields)
8113 nfields = TYPE_NFIELDS (type);
8114 else
8115 {
8116 nfields = 0;
76a01679 8117 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8118 && !ada_is_variant_part (type, nfields)
8119 && !is_dynamic_field (type, nfields))
8120 nfields++;
8121 }
8122
e9bb382b 8123 rtype = alloc_type_copy (type);
14f9c5c9 8124 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8125 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8126 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8127 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8128 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8129 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8130 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8131 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8132
d2e4a39e
AS
8133 off = 0;
8134 bit_len = 0;
4c4b4cd2
PH
8135 variant_field = -1;
8136
14f9c5c9
AS
8137 for (f = 0; f < nfields; f += 1)
8138 {
6c038f32
PH
8139 off = align_value (off, field_alignment (type, f))
8140 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8141 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8142 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8143
d2e4a39e 8144 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8145 {
8146 variant_field = f;
d94e4f4f 8147 fld_bit_len = 0;
4c4b4cd2 8148 }
14f9c5c9 8149 else if (is_dynamic_field (type, f))
4c4b4cd2 8150 {
284614f0
JB
8151 const gdb_byte *field_valaddr = valaddr;
8152 CORE_ADDR field_address = address;
8153 struct type *field_type =
8154 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8155
4c4b4cd2 8156 if (dval0 == NULL)
b5304971
JG
8157 {
8158 /* rtype's length is computed based on the run-time
8159 value of discriminants. If the discriminants are not
8160 initialized, the type size may be completely bogus and
0963b4bd 8161 GDB may fail to allocate a value for it. So check the
b5304971 8162 size first before creating the value. */
c1b5a1a6 8163 ada_ensure_varsize_limit (rtype);
012370f6
TT
8164 /* Using plain value_from_contents_and_address here
8165 causes problems because we will end up trying to
8166 resolve a type that is currently being
8167 constructed. */
8168 dval = value_from_contents_and_address_unresolved (rtype,
8169 valaddr,
8170 address);
9f1f738a 8171 rtype = value_type (dval);
b5304971 8172 }
4c4b4cd2
PH
8173 else
8174 dval = dval0;
8175
284614f0
JB
8176 /* If the type referenced by this field is an aligner type, we need
8177 to unwrap that aligner type, because its size might not be set.
8178 Keeping the aligner type would cause us to compute the wrong
8179 size for this field, impacting the offset of the all the fields
8180 that follow this one. */
8181 if (ada_is_aligner_type (field_type))
8182 {
8183 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8184
8185 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8186 field_address = cond_offset_target (field_address, field_offset);
8187 field_type = ada_aligned_type (field_type);
8188 }
8189
8190 field_valaddr = cond_offset_host (field_valaddr,
8191 off / TARGET_CHAR_BIT);
8192 field_address = cond_offset_target (field_address,
8193 off / TARGET_CHAR_BIT);
8194
8195 /* Get the fixed type of the field. Note that, in this case,
8196 we do not want to get the real type out of the tag: if
8197 the current field is the parent part of a tagged record,
8198 we will get the tag of the object. Clearly wrong: the real
8199 type of the parent is not the real type of the child. We
8200 would end up in an infinite loop. */
8201 field_type = ada_get_base_type (field_type);
8202 field_type = ada_to_fixed_type (field_type, field_valaddr,
8203 field_address, dval, 0);
27f2a97b
JB
8204 /* If the field size is already larger than the maximum
8205 object size, then the record itself will necessarily
8206 be larger than the maximum object size. We need to make
8207 this check now, because the size might be so ridiculously
8208 large (due to an uninitialized variable in the inferior)
8209 that it would cause an overflow when adding it to the
8210 record size. */
c1b5a1a6 8211 ada_ensure_varsize_limit (field_type);
284614f0
JB
8212
8213 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8214 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8215 /* The multiplication can potentially overflow. But because
8216 the field length has been size-checked just above, and
8217 assuming that the maximum size is a reasonable value,
8218 an overflow should not happen in practice. So rather than
8219 adding overflow recovery code to this already complex code,
8220 we just assume that it's not going to happen. */
d94e4f4f 8221 fld_bit_len =
4c4b4cd2
PH
8222 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8223 }
14f9c5c9 8224 else
4c4b4cd2 8225 {
5ded5331
JB
8226 /* Note: If this field's type is a typedef, it is important
8227 to preserve the typedef layer.
8228
8229 Otherwise, we might be transforming a typedef to a fat
8230 pointer (encoding a pointer to an unconstrained array),
8231 into a basic fat pointer (encoding an unconstrained
8232 array). As both types are implemented using the same
8233 structure, the typedef is the only clue which allows us
8234 to distinguish between the two options. Stripping it
8235 would prevent us from printing this field appropriately. */
8236 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8237 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8238 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8239 fld_bit_len =
4c4b4cd2
PH
8240 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8241 else
5ded5331
JB
8242 {
8243 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8244
8245 /* We need to be careful of typedefs when computing
8246 the length of our field. If this is a typedef,
8247 get the length of the target type, not the length
8248 of the typedef. */
8249 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8250 field_type = ada_typedef_target_type (field_type);
8251
8252 fld_bit_len =
8253 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8254 }
4c4b4cd2 8255 }
14f9c5c9 8256 if (off + fld_bit_len > bit_len)
4c4b4cd2 8257 bit_len = off + fld_bit_len;
d94e4f4f 8258 off += fld_bit_len;
4c4b4cd2
PH
8259 TYPE_LENGTH (rtype) =
8260 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8261 }
4c4b4cd2
PH
8262
8263 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8264 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8265 the record. This can happen in the presence of representation
8266 clauses. */
8267 if (variant_field >= 0)
8268 {
8269 struct type *branch_type;
8270
8271 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8272
8273 if (dval0 == NULL)
9f1f738a 8274 {
012370f6
TT
8275 /* Using plain value_from_contents_and_address here causes
8276 problems because we will end up trying to resolve a type
8277 that is currently being constructed. */
8278 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8279 address);
9f1f738a
SA
8280 rtype = value_type (dval);
8281 }
4c4b4cd2
PH
8282 else
8283 dval = dval0;
8284
8285 branch_type =
8286 to_fixed_variant_branch_type
8287 (TYPE_FIELD_TYPE (type, variant_field),
8288 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8289 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8290 if (branch_type == NULL)
8291 {
8292 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8293 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8294 TYPE_NFIELDS (rtype) -= 1;
8295 }
8296 else
8297 {
8298 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8299 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8300 fld_bit_len =
8301 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8302 TARGET_CHAR_BIT;
8303 if (off + fld_bit_len > bit_len)
8304 bit_len = off + fld_bit_len;
8305 TYPE_LENGTH (rtype) =
8306 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8307 }
8308 }
8309
714e53ab
PH
8310 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8311 should contain the alignment of that record, which should be a strictly
8312 positive value. If null or negative, then something is wrong, most
8313 probably in the debug info. In that case, we don't round up the size
0963b4bd 8314 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8315 the current RTYPE length might be good enough for our purposes. */
8316 if (TYPE_LENGTH (type) <= 0)
8317 {
323e0a4a 8318 if (TYPE_NAME (rtype))
cc1defb1
KS
8319 warning (_("Invalid type size for `%s' detected: %s."),
8320 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8321 else
cc1defb1
KS
8322 warning (_("Invalid type size for <unnamed> detected: %s."),
8323 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8324 }
8325 else
8326 {
8327 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8328 TYPE_LENGTH (type));
8329 }
14f9c5c9
AS
8330
8331 value_free_to_mark (mark);
d2e4a39e 8332 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8333 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8334 return rtype;
8335}
8336
4c4b4cd2
PH
8337/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8338 of 1. */
14f9c5c9 8339
d2e4a39e 8340static struct type *
fc1a4b47 8341template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8342 CORE_ADDR address, struct value *dval0)
8343{
8344 return ada_template_to_fixed_record_type_1 (type, valaddr,
8345 address, dval0, 1);
8346}
8347
8348/* An ordinary record type in which ___XVL-convention fields and
8349 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8350 static approximations, containing all possible fields. Uses
8351 no runtime values. Useless for use in values, but that's OK,
8352 since the results are used only for type determinations. Works on both
8353 structs and unions. Representation note: to save space, we memorize
8354 the result of this function in the TYPE_TARGET_TYPE of the
8355 template type. */
8356
8357static struct type *
8358template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8359{
8360 struct type *type;
8361 int nfields;
8362 int f;
8363
9e195661
PMR
8364 /* No need no do anything if the input type is already fixed. */
8365 if (TYPE_FIXED_INSTANCE (type0))
8366 return type0;
8367
8368 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8369 if (TYPE_TARGET_TYPE (type0) != NULL)
8370 return TYPE_TARGET_TYPE (type0);
8371
9e195661 8372 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8373 type = type0;
9e195661
PMR
8374 nfields = TYPE_NFIELDS (type0);
8375
8376 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8377 recompute all over next time. */
8378 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8379
8380 for (f = 0; f < nfields; f += 1)
8381 {
460efde1 8382 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8383 struct type *new_type;
14f9c5c9 8384
4c4b4cd2 8385 if (is_dynamic_field (type0, f))
460efde1
JB
8386 {
8387 field_type = ada_check_typedef (field_type);
8388 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8389 }
14f9c5c9 8390 else
f192137b 8391 new_type = static_unwrap_type (field_type);
9e195661
PMR
8392
8393 if (new_type != field_type)
8394 {
8395 /* Clone TYPE0 only the first time we get a new field type. */
8396 if (type == type0)
8397 {
8398 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8399 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8400 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8401 TYPE_NFIELDS (type) = nfields;
8402 TYPE_FIELDS (type) = (struct field *)
8403 TYPE_ALLOC (type, nfields * sizeof (struct field));
8404 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8405 sizeof (struct field) * nfields);
8406 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8407 TYPE_FIXED_INSTANCE (type) = 1;
8408 TYPE_LENGTH (type) = 0;
8409 }
8410 TYPE_FIELD_TYPE (type, f) = new_type;
8411 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8412 }
14f9c5c9 8413 }
9e195661 8414
14f9c5c9
AS
8415 return type;
8416}
8417
4c4b4cd2 8418/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8419 whose address in memory is ADDRESS, returns a revision of TYPE,
8420 which should be a non-dynamic-sized record, in which the variant
8421 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8422 for discriminant values in DVAL0, which can be NULL if the record
8423 contains the necessary discriminant values. */
8424
d2e4a39e 8425static struct type *
fc1a4b47 8426to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8427 CORE_ADDR address, struct value *dval0)
14f9c5c9 8428{
d2e4a39e 8429 struct value *mark = value_mark ();
4c4b4cd2 8430 struct value *dval;
d2e4a39e 8431 struct type *rtype;
14f9c5c9
AS
8432 struct type *branch_type;
8433 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8434 int variant_field = variant_field_index (type);
14f9c5c9 8435
4c4b4cd2 8436 if (variant_field == -1)
14f9c5c9
AS
8437 return type;
8438
4c4b4cd2 8439 if (dval0 == NULL)
9f1f738a
SA
8440 {
8441 dval = value_from_contents_and_address (type, valaddr, address);
8442 type = value_type (dval);
8443 }
4c4b4cd2
PH
8444 else
8445 dval = dval0;
8446
e9bb382b 8447 rtype = alloc_type_copy (type);
14f9c5c9 8448 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8449 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8450 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8451 TYPE_FIELDS (rtype) =
8452 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8453 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8454 sizeof (struct field) * nfields);
14f9c5c9 8455 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8456 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8457 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8458
4c4b4cd2
PH
8459 branch_type = to_fixed_variant_branch_type
8460 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8461 cond_offset_host (valaddr,
4c4b4cd2
PH
8462 TYPE_FIELD_BITPOS (type, variant_field)
8463 / TARGET_CHAR_BIT),
d2e4a39e 8464 cond_offset_target (address,
4c4b4cd2
PH
8465 TYPE_FIELD_BITPOS (type, variant_field)
8466 / TARGET_CHAR_BIT), dval);
d2e4a39e 8467 if (branch_type == NULL)
14f9c5c9 8468 {
4c4b4cd2 8469 int f;
5b4ee69b 8470
4c4b4cd2
PH
8471 for (f = variant_field + 1; f < nfields; f += 1)
8472 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8473 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8474 }
8475 else
8476 {
4c4b4cd2
PH
8477 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8478 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8479 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8480 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8481 }
4c4b4cd2 8482 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8483
4c4b4cd2 8484 value_free_to_mark (mark);
14f9c5c9
AS
8485 return rtype;
8486}
8487
8488/* An ordinary record type (with fixed-length fields) that describes
8489 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8490 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8491 should be in DVAL, a record value; it may be NULL if the object
8492 at ADDR itself contains any necessary discriminant values.
8493 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8494 values from the record are needed. Except in the case that DVAL,
8495 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8496 unchecked) is replaced by a particular branch of the variant.
8497
8498 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8499 is questionable and may be removed. It can arise during the
8500 processing of an unconstrained-array-of-record type where all the
8501 variant branches have exactly the same size. This is because in
8502 such cases, the compiler does not bother to use the XVS convention
8503 when encoding the record. I am currently dubious of this
8504 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8505
d2e4a39e 8506static struct type *
fc1a4b47 8507to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8508 CORE_ADDR address, struct value *dval)
14f9c5c9 8509{
d2e4a39e 8510 struct type *templ_type;
14f9c5c9 8511
876cecd0 8512 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8513 return type0;
8514
d2e4a39e 8515 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8516
8517 if (templ_type != NULL)
8518 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8519 else if (variant_field_index (type0) >= 0)
8520 {
8521 if (dval == NULL && valaddr == NULL && address == 0)
8522 return type0;
8523 return to_record_with_fixed_variant_part (type0, valaddr, address,
8524 dval);
8525 }
14f9c5c9
AS
8526 else
8527 {
876cecd0 8528 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8529 return type0;
8530 }
8531
8532}
8533
8534/* An ordinary record type (with fixed-length fields) that describes
8535 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8536 union type. Any necessary discriminants' values should be in DVAL,
8537 a record value. That is, this routine selects the appropriate
8538 branch of the union at ADDR according to the discriminant value
b1f33ddd 8539 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8540 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8541
d2e4a39e 8542static struct type *
fc1a4b47 8543to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8544 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8545{
8546 int which;
d2e4a39e
AS
8547 struct type *templ_type;
8548 struct type *var_type;
14f9c5c9
AS
8549
8550 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8551 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8552 else
14f9c5c9
AS
8553 var_type = var_type0;
8554
8555 templ_type = ada_find_parallel_type (var_type, "___XVU");
8556
8557 if (templ_type != NULL)
8558 var_type = templ_type;
8559
b1f33ddd
JB
8560 if (is_unchecked_variant (var_type, value_type (dval)))
8561 return var_type0;
d2e4a39e
AS
8562 which =
8563 ada_which_variant_applies (var_type,
0fd88904 8564 value_type (dval), value_contents (dval));
14f9c5c9
AS
8565
8566 if (which < 0)
e9bb382b 8567 return empty_record (var_type);
14f9c5c9 8568 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8569 return to_fixed_record_type
d2e4a39e
AS
8570 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8571 valaddr, address, dval);
4c4b4cd2 8572 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8573 return
8574 to_fixed_record_type
8575 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8576 else
8577 return TYPE_FIELD_TYPE (var_type, which);
8578}
8579
8908fca5
JB
8580/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8581 ENCODING_TYPE, a type following the GNAT conventions for discrete
8582 type encodings, only carries redundant information. */
8583
8584static int
8585ada_is_redundant_range_encoding (struct type *range_type,
8586 struct type *encoding_type)
8587{
108d56a4 8588 const char *bounds_str;
8908fca5
JB
8589 int n;
8590 LONGEST lo, hi;
8591
8592 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8593
005e2509
JB
8594 if (TYPE_CODE (get_base_type (range_type))
8595 != TYPE_CODE (get_base_type (encoding_type)))
8596 {
8597 /* The compiler probably used a simple base type to describe
8598 the range type instead of the range's actual base type,
8599 expecting us to get the real base type from the encoding
8600 anyway. In this situation, the encoding cannot be ignored
8601 as redundant. */
8602 return 0;
8603 }
8604
8908fca5
JB
8605 if (is_dynamic_type (range_type))
8606 return 0;
8607
8608 if (TYPE_NAME (encoding_type) == NULL)
8609 return 0;
8610
8611 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8612 if (bounds_str == NULL)
8613 return 0;
8614
8615 n = 8; /* Skip "___XDLU_". */
8616 if (!ada_scan_number (bounds_str, n, &lo, &n))
8617 return 0;
8618 if (TYPE_LOW_BOUND (range_type) != lo)
8619 return 0;
8620
8621 n += 2; /* Skip the "__" separator between the two bounds. */
8622 if (!ada_scan_number (bounds_str, n, &hi, &n))
8623 return 0;
8624 if (TYPE_HIGH_BOUND (range_type) != hi)
8625 return 0;
8626
8627 return 1;
8628}
8629
8630/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8631 a type following the GNAT encoding for describing array type
8632 indices, only carries redundant information. */
8633
8634static int
8635ada_is_redundant_index_type_desc (struct type *array_type,
8636 struct type *desc_type)
8637{
8638 struct type *this_layer = check_typedef (array_type);
8639 int i;
8640
8641 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8642 {
8643 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8644 TYPE_FIELD_TYPE (desc_type, i)))
8645 return 0;
8646 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8647 }
8648
8649 return 1;
8650}
8651
14f9c5c9
AS
8652/* Assuming that TYPE0 is an array type describing the type of a value
8653 at ADDR, and that DVAL describes a record containing any
8654 discriminants used in TYPE0, returns a type for the value that
8655 contains no dynamic components (that is, no components whose sizes
8656 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8657 true, gives an error message if the resulting type's size is over
4c4b4cd2 8658 varsize_limit. */
14f9c5c9 8659
d2e4a39e
AS
8660static struct type *
8661to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8662 int ignore_too_big)
14f9c5c9 8663{
d2e4a39e
AS
8664 struct type *index_type_desc;
8665 struct type *result;
ad82864c 8666 int constrained_packed_array_p;
931e5bc3 8667 static const char *xa_suffix = "___XA";
14f9c5c9 8668
b0dd7688 8669 type0 = ada_check_typedef (type0);
284614f0 8670 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8671 return type0;
14f9c5c9 8672
ad82864c
JB
8673 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8674 if (constrained_packed_array_p)
8675 type0 = decode_constrained_packed_array_type (type0);
284614f0 8676
931e5bc3
JG
8677 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8678
8679 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8680 encoding suffixed with 'P' may still be generated. If so,
8681 it should be used to find the XA type. */
8682
8683 if (index_type_desc == NULL)
8684 {
1da0522e 8685 const char *type_name = ada_type_name (type0);
931e5bc3 8686
1da0522e 8687 if (type_name != NULL)
931e5bc3 8688 {
1da0522e 8689 const int len = strlen (type_name);
931e5bc3
JG
8690 char *name = (char *) alloca (len + strlen (xa_suffix));
8691
1da0522e 8692 if (type_name[len - 1] == 'P')
931e5bc3 8693 {
1da0522e 8694 strcpy (name, type_name);
931e5bc3
JG
8695 strcpy (name + len - 1, xa_suffix);
8696 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8697 }
8698 }
8699 }
8700
28c85d6c 8701 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8702 if (index_type_desc != NULL
8703 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8704 {
8705 /* Ignore this ___XA parallel type, as it does not bring any
8706 useful information. This allows us to avoid creating fixed
8707 versions of the array's index types, which would be identical
8708 to the original ones. This, in turn, can also help avoid
8709 the creation of fixed versions of the array itself. */
8710 index_type_desc = NULL;
8711 }
8712
14f9c5c9
AS
8713 if (index_type_desc == NULL)
8714 {
61ee279c 8715 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8716
14f9c5c9 8717 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8718 depend on the contents of the array in properly constructed
8719 debugging data. */
529cad9c
PH
8720 /* Create a fixed version of the array element type.
8721 We're not providing the address of an element here,
e1d5a0d2 8722 and thus the actual object value cannot be inspected to do
529cad9c
PH
8723 the conversion. This should not be a problem, since arrays of
8724 unconstrained objects are not allowed. In particular, all
8725 the elements of an array of a tagged type should all be of
8726 the same type specified in the debugging info. No need to
8727 consult the object tag. */
1ed6ede0 8728 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8729
284614f0
JB
8730 /* Make sure we always create a new array type when dealing with
8731 packed array types, since we're going to fix-up the array
8732 type length and element bitsize a little further down. */
ad82864c 8733 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8734 result = type0;
14f9c5c9 8735 else
e9bb382b 8736 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8737 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8738 }
8739 else
8740 {
8741 int i;
8742 struct type *elt_type0;
8743
8744 elt_type0 = type0;
8745 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8746 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8747
8748 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8749 depend on the contents of the array in properly constructed
8750 debugging data. */
529cad9c
PH
8751 /* Create a fixed version of the array element type.
8752 We're not providing the address of an element here,
e1d5a0d2 8753 and thus the actual object value cannot be inspected to do
529cad9c
PH
8754 the conversion. This should not be a problem, since arrays of
8755 unconstrained objects are not allowed. In particular, all
8756 the elements of an array of a tagged type should all be of
8757 the same type specified in the debugging info. No need to
8758 consult the object tag. */
1ed6ede0
JB
8759 result =
8760 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8761
8762 elt_type0 = type0;
14f9c5c9 8763 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8764 {
8765 struct type *range_type =
28c85d6c 8766 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8767
e9bb382b 8768 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8769 result, range_type);
1ce677a4 8770 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8771 }
d2e4a39e 8772 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8773 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8774 }
8775
2e6fda7d
JB
8776 /* We want to preserve the type name. This can be useful when
8777 trying to get the type name of a value that has already been
8778 printed (for instance, if the user did "print VAR; whatis $". */
8779 TYPE_NAME (result) = TYPE_NAME (type0);
8780
ad82864c 8781 if (constrained_packed_array_p)
284614f0
JB
8782 {
8783 /* So far, the resulting type has been created as if the original
8784 type was a regular (non-packed) array type. As a result, the
8785 bitsize of the array elements needs to be set again, and the array
8786 length needs to be recomputed based on that bitsize. */
8787 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8788 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8789
8790 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8791 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8792 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8793 TYPE_LENGTH (result)++;
8794 }
8795
876cecd0 8796 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8797 return result;
d2e4a39e 8798}
14f9c5c9
AS
8799
8800
8801/* A standard type (containing no dynamically sized components)
8802 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8803 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8804 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8805 ADDRESS or in VALADDR contains these discriminants.
8806
1ed6ede0
JB
8807 If CHECK_TAG is not null, in the case of tagged types, this function
8808 attempts to locate the object's tag and use it to compute the actual
8809 type. However, when ADDRESS is null, we cannot use it to determine the
8810 location of the tag, and therefore compute the tagged type's actual type.
8811 So we return the tagged type without consulting the tag. */
529cad9c 8812
f192137b
JB
8813static struct type *
8814ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8815 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8816{
61ee279c 8817 type = ada_check_typedef (type);
8ecb59f8
TT
8818
8819 /* Only un-fixed types need to be handled here. */
8820 if (!HAVE_GNAT_AUX_INFO (type))
8821 return type;
8822
d2e4a39e
AS
8823 switch (TYPE_CODE (type))
8824 {
8825 default:
14f9c5c9 8826 return type;
d2e4a39e 8827 case TYPE_CODE_STRUCT:
4c4b4cd2 8828 {
76a01679 8829 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8830 struct type *fixed_record_type =
8831 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8832
529cad9c
PH
8833 /* If STATIC_TYPE is a tagged type and we know the object's address,
8834 then we can determine its tag, and compute the object's actual
0963b4bd 8835 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8836 type (the parent part of the record may have dynamic fields
8837 and the way the location of _tag is expressed may depend on
8838 them). */
529cad9c 8839
1ed6ede0 8840 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8841 {
b50d69b5
JG
8842 struct value *tag =
8843 value_tag_from_contents_and_address
8844 (fixed_record_type,
8845 valaddr,
8846 address);
8847 struct type *real_type = type_from_tag (tag);
8848 struct value *obj =
8849 value_from_contents_and_address (fixed_record_type,
8850 valaddr,
8851 address);
9f1f738a 8852 fixed_record_type = value_type (obj);
76a01679 8853 if (real_type != NULL)
b50d69b5
JG
8854 return to_fixed_record_type
8855 (real_type, NULL,
8856 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8857 }
4af88198
JB
8858
8859 /* Check to see if there is a parallel ___XVZ variable.
8860 If there is, then it provides the actual size of our type. */
8861 else if (ada_type_name (fixed_record_type) != NULL)
8862 {
0d5cff50 8863 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8864 char *xvz_name
8865 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8866 bool xvz_found = false;
4af88198
JB
8867 LONGEST size;
8868
88c15c34 8869 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8870 try
eccab96d
JB
8871 {
8872 xvz_found = get_int_var_value (xvz_name, size);
8873 }
230d2906 8874 catch (const gdb_exception_error &except)
eccab96d
JB
8875 {
8876 /* We found the variable, but somehow failed to read
8877 its value. Rethrow the same error, but with a little
8878 bit more information, to help the user understand
8879 what went wrong (Eg: the variable might have been
8880 optimized out). */
8881 throw_error (except.error,
8882 _("unable to read value of %s (%s)"),
3d6e9d23 8883 xvz_name, except.what ());
eccab96d 8884 }
eccab96d
JB
8885
8886 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8887 {
8888 fixed_record_type = copy_type (fixed_record_type);
8889 TYPE_LENGTH (fixed_record_type) = size;
8890
8891 /* The FIXED_RECORD_TYPE may have be a stub. We have
8892 observed this when the debugging info is STABS, and
8893 apparently it is something that is hard to fix.
8894
8895 In practice, we don't need the actual type definition
8896 at all, because the presence of the XVZ variable allows us
8897 to assume that there must be a XVS type as well, which we
8898 should be able to use later, when we need the actual type
8899 definition.
8900
8901 In the meantime, pretend that the "fixed" type we are
8902 returning is NOT a stub, because this can cause trouble
8903 when using this type to create new types targeting it.
8904 Indeed, the associated creation routines often check
8905 whether the target type is a stub and will try to replace
0963b4bd 8906 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8907 might cause the new type to have the wrong size too.
8908 Consider the case of an array, for instance, where the size
8909 of the array is computed from the number of elements in
8910 our array multiplied by the size of its element. */
8911 TYPE_STUB (fixed_record_type) = 0;
8912 }
8913 }
1ed6ede0 8914 return fixed_record_type;
4c4b4cd2 8915 }
d2e4a39e 8916 case TYPE_CODE_ARRAY:
4c4b4cd2 8917 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8918 case TYPE_CODE_UNION:
8919 if (dval == NULL)
4c4b4cd2 8920 return type;
d2e4a39e 8921 else
4c4b4cd2 8922 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8923 }
14f9c5c9
AS
8924}
8925
f192137b
JB
8926/* The same as ada_to_fixed_type_1, except that it preserves the type
8927 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8928
8929 The typedef layer needs be preserved in order to differentiate between
8930 arrays and array pointers when both types are implemented using the same
8931 fat pointer. In the array pointer case, the pointer is encoded as
8932 a typedef of the pointer type. For instance, considering:
8933
8934 type String_Access is access String;
8935 S1 : String_Access := null;
8936
8937 To the debugger, S1 is defined as a typedef of type String. But
8938 to the user, it is a pointer. So if the user tries to print S1,
8939 we should not dereference the array, but print the array address
8940 instead.
8941
8942 If we didn't preserve the typedef layer, we would lose the fact that
8943 the type is to be presented as a pointer (needs de-reference before
8944 being printed). And we would also use the source-level type name. */
f192137b
JB
8945
8946struct type *
8947ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8948 CORE_ADDR address, struct value *dval, int check_tag)
8949
8950{
8951 struct type *fixed_type =
8952 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8953
96dbd2c1
JB
8954 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8955 then preserve the typedef layer.
8956
8957 Implementation note: We can only check the main-type portion of
8958 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8959 from TYPE now returns a type that has the same instance flags
8960 as TYPE. For instance, if TYPE is a "typedef const", and its
8961 target type is a "struct", then the typedef elimination will return
8962 a "const" version of the target type. See check_typedef for more
8963 details about how the typedef layer elimination is done.
8964
8965 brobecker/2010-11-19: It seems to me that the only case where it is
8966 useful to preserve the typedef layer is when dealing with fat pointers.
8967 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8968 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8969 because we call check_typedef/ada_check_typedef pretty much everywhere.
8970 */
f192137b 8971 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8972 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8973 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8974 return type;
8975
8976 return fixed_type;
8977}
8978
14f9c5c9 8979/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8980 TYPE0, but based on no runtime data. */
14f9c5c9 8981
d2e4a39e
AS
8982static struct type *
8983to_static_fixed_type (struct type *type0)
14f9c5c9 8984{
d2e4a39e 8985 struct type *type;
14f9c5c9
AS
8986
8987 if (type0 == NULL)
8988 return NULL;
8989
876cecd0 8990 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8991 return type0;
8992
61ee279c 8993 type0 = ada_check_typedef (type0);
d2e4a39e 8994
14f9c5c9
AS
8995 switch (TYPE_CODE (type0))
8996 {
8997 default:
8998 return type0;
8999 case TYPE_CODE_STRUCT:
9000 type = dynamic_template_type (type0);
d2e4a39e 9001 if (type != NULL)
4c4b4cd2
PH
9002 return template_to_static_fixed_type (type);
9003 else
9004 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9005 case TYPE_CODE_UNION:
9006 type = ada_find_parallel_type (type0, "___XVU");
9007 if (type != NULL)
4c4b4cd2
PH
9008 return template_to_static_fixed_type (type);
9009 else
9010 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9011 }
9012}
9013
4c4b4cd2
PH
9014/* A static approximation of TYPE with all type wrappers removed. */
9015
d2e4a39e
AS
9016static struct type *
9017static_unwrap_type (struct type *type)
14f9c5c9
AS
9018{
9019 if (ada_is_aligner_type (type))
9020 {
61ee279c 9021 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9022 if (ada_type_name (type1) == NULL)
4c4b4cd2 9023 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9024
9025 return static_unwrap_type (type1);
9026 }
d2e4a39e 9027 else
14f9c5c9 9028 {
d2e4a39e 9029 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9030
d2e4a39e 9031 if (raw_real_type == type)
4c4b4cd2 9032 return type;
14f9c5c9 9033 else
4c4b4cd2 9034 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9035 }
9036}
9037
9038/* In some cases, incomplete and private types require
4c4b4cd2 9039 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9040 type Foo;
9041 type FooP is access Foo;
9042 V: FooP;
9043 type Foo is array ...;
4c4b4cd2 9044 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9045 cross-references to such types, we instead substitute for FooP a
9046 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9047 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9048
9049/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9050 exists, otherwise TYPE. */
9051
d2e4a39e 9052struct type *
61ee279c 9053ada_check_typedef (struct type *type)
14f9c5c9 9054{
727e3d2e
JB
9055 if (type == NULL)
9056 return NULL;
9057
736ade86
XR
9058 /* If our type is an access to an unconstrained array, which is encoded
9059 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9060 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9061 what allows us to distinguish between fat pointers that represent
9062 array types, and fat pointers that represent array access types
9063 (in both cases, the compiler implements them as fat pointers). */
736ade86 9064 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9065 return type;
9066
f168693b 9067 type = check_typedef (type);
14f9c5c9 9068 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9069 || !TYPE_STUB (type)
e86ca25f 9070 || TYPE_NAME (type) == NULL)
14f9c5c9 9071 return type;
d2e4a39e 9072 else
14f9c5c9 9073 {
e86ca25f 9074 const char *name = TYPE_NAME (type);
d2e4a39e 9075 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9076
05e522ef
JB
9077 if (type1 == NULL)
9078 return type;
9079
9080 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9081 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9082 types, only for the typedef-to-array types). If that's the case,
9083 strip the typedef layer. */
9084 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9085 type1 = ada_check_typedef (type1);
9086
9087 return type1;
14f9c5c9
AS
9088 }
9089}
9090
9091/* A value representing the data at VALADDR/ADDRESS as described by
9092 type TYPE0, but with a standard (static-sized) type that correctly
9093 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9094 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9095 creation of struct values]. */
14f9c5c9 9096
4c4b4cd2
PH
9097static struct value *
9098ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9099 struct value *val0)
14f9c5c9 9100{
1ed6ede0 9101 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9102
14f9c5c9
AS
9103 if (type == type0 && val0 != NULL)
9104 return val0;
cc0e770c
JB
9105
9106 if (VALUE_LVAL (val0) != lval_memory)
9107 {
9108 /* Our value does not live in memory; it could be a convenience
9109 variable, for instance. Create a not_lval value using val0's
9110 contents. */
9111 return value_from_contents (type, value_contents (val0));
9112 }
9113
9114 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9115}
9116
9117/* A value representing VAL, but with a standard (static-sized) type
9118 that correctly describes it. Does not necessarily create a new
9119 value. */
9120
0c3acc09 9121struct value *
4c4b4cd2
PH
9122ada_to_fixed_value (struct value *val)
9123{
c48db5ca 9124 val = unwrap_value (val);
d8ce9127 9125 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9126 return val;
14f9c5c9 9127}
d2e4a39e 9128\f
14f9c5c9 9129
14f9c5c9
AS
9130/* Attributes */
9131
4c4b4cd2
PH
9132/* Table mapping attribute numbers to names.
9133 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9134
d2e4a39e 9135static const char *attribute_names[] = {
14f9c5c9
AS
9136 "<?>",
9137
d2e4a39e 9138 "first",
14f9c5c9
AS
9139 "last",
9140 "length",
9141 "image",
14f9c5c9
AS
9142 "max",
9143 "min",
4c4b4cd2
PH
9144 "modulus",
9145 "pos",
9146 "size",
9147 "tag",
14f9c5c9 9148 "val",
14f9c5c9
AS
9149 0
9150};
9151
de93309a 9152static const char *
4c4b4cd2 9153ada_attribute_name (enum exp_opcode n)
14f9c5c9 9154{
4c4b4cd2
PH
9155 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9156 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9157 else
9158 return attribute_names[0];
9159}
9160
4c4b4cd2 9161/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9162
4c4b4cd2
PH
9163static LONGEST
9164pos_atr (struct value *arg)
14f9c5c9 9165{
24209737
PH
9166 struct value *val = coerce_ref (arg);
9167 struct type *type = value_type (val);
aa715135 9168 LONGEST result;
14f9c5c9 9169
d2e4a39e 9170 if (!discrete_type_p (type))
323e0a4a 9171 error (_("'POS only defined on discrete types"));
14f9c5c9 9172
aa715135
JG
9173 if (!discrete_position (type, value_as_long (val), &result))
9174 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9175
aa715135 9176 return result;
4c4b4cd2
PH
9177}
9178
9179static struct value *
3cb382c9 9180value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9181{
3cb382c9 9182 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9183}
9184
4c4b4cd2 9185/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9186
d2e4a39e
AS
9187static struct value *
9188value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9189{
d2e4a39e 9190 if (!discrete_type_p (type))
323e0a4a 9191 error (_("'VAL only defined on discrete types"));
df407dfe 9192 if (!integer_type_p (value_type (arg)))
323e0a4a 9193 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9194
9195 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9196 {
9197 long pos = value_as_long (arg);
5b4ee69b 9198
14f9c5c9 9199 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9200 error (_("argument to 'VAL out of range"));
14e75d8e 9201 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9202 }
9203 else
9204 return value_from_longest (type, value_as_long (arg));
9205}
14f9c5c9 9206\f
d2e4a39e 9207
4c4b4cd2 9208 /* Evaluation */
14f9c5c9 9209
4c4b4cd2
PH
9210/* True if TYPE appears to be an Ada character type.
9211 [At the moment, this is true only for Character and Wide_Character;
9212 It is a heuristic test that could stand improvement]. */
14f9c5c9 9213
fc913e53 9214bool
d2e4a39e 9215ada_is_character_type (struct type *type)
14f9c5c9 9216{
7b9f71f2
JB
9217 const char *name;
9218
9219 /* If the type code says it's a character, then assume it really is,
9220 and don't check any further. */
9221 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9222 return true;
7b9f71f2
JB
9223
9224 /* Otherwise, assume it's a character type iff it is a discrete type
9225 with a known character type name. */
9226 name = ada_type_name (type);
9227 return (name != NULL
9228 && (TYPE_CODE (type) == TYPE_CODE_INT
9229 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9230 && (strcmp (name, "character") == 0
9231 || strcmp (name, "wide_character") == 0
5a517ebd 9232 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9233 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9234}
9235
4c4b4cd2 9236/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9237
fc913e53 9238bool
ebf56fd3 9239ada_is_string_type (struct type *type)
14f9c5c9 9240{
61ee279c 9241 type = ada_check_typedef (type);
d2e4a39e 9242 if (type != NULL
14f9c5c9 9243 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9244 && (ada_is_simple_array_type (type)
9245 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9246 && ada_array_arity (type) == 1)
9247 {
9248 struct type *elttype = ada_array_element_type (type, 1);
9249
9250 return ada_is_character_type (elttype);
9251 }
d2e4a39e 9252 else
fc913e53 9253 return false;
14f9c5c9
AS
9254}
9255
5bf03f13
JB
9256/* The compiler sometimes provides a parallel XVS type for a given
9257 PAD type. Normally, it is safe to follow the PAD type directly,
9258 but older versions of the compiler have a bug that causes the offset
9259 of its "F" field to be wrong. Following that field in that case
9260 would lead to incorrect results, but this can be worked around
9261 by ignoring the PAD type and using the associated XVS type instead.
9262
9263 Set to True if the debugger should trust the contents of PAD types.
9264 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9265static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9266
9267/* True if TYPE is a struct type introduced by the compiler to force the
9268 alignment of a value. Such types have a single field with a
4c4b4cd2 9269 distinctive name. */
14f9c5c9
AS
9270
9271int
ebf56fd3 9272ada_is_aligner_type (struct type *type)
14f9c5c9 9273{
61ee279c 9274 type = ada_check_typedef (type);
714e53ab 9275
5bf03f13 9276 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9277 return 0;
9278
14f9c5c9 9279 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9280 && TYPE_NFIELDS (type) == 1
9281 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9282}
9283
9284/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9285 the parallel type. */
14f9c5c9 9286
d2e4a39e
AS
9287struct type *
9288ada_get_base_type (struct type *raw_type)
14f9c5c9 9289{
d2e4a39e
AS
9290 struct type *real_type_namer;
9291 struct type *raw_real_type;
14f9c5c9
AS
9292
9293 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9294 return raw_type;
9295
284614f0
JB
9296 if (ada_is_aligner_type (raw_type))
9297 /* The encoding specifies that we should always use the aligner type.
9298 So, even if this aligner type has an associated XVS type, we should
9299 simply ignore it.
9300
9301 According to the compiler gurus, an XVS type parallel to an aligner
9302 type may exist because of a stabs limitation. In stabs, aligner
9303 types are empty because the field has a variable-sized type, and
9304 thus cannot actually be used as an aligner type. As a result,
9305 we need the associated parallel XVS type to decode the type.
9306 Since the policy in the compiler is to not change the internal
9307 representation based on the debugging info format, we sometimes
9308 end up having a redundant XVS type parallel to the aligner type. */
9309 return raw_type;
9310
14f9c5c9 9311 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9312 if (real_type_namer == NULL
14f9c5c9
AS
9313 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9314 || TYPE_NFIELDS (real_type_namer) != 1)
9315 return raw_type;
9316
f80d3ff2
JB
9317 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9318 {
9319 /* This is an older encoding form where the base type needs to be
85102364 9320 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9321 more efficient. */
9322 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9323 if (raw_real_type == NULL)
9324 return raw_type;
9325 else
9326 return raw_real_type;
9327 }
9328
9329 /* The field in our XVS type is a reference to the base type. */
9330 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9331}
14f9c5c9 9332
4c4b4cd2 9333/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9334
d2e4a39e
AS
9335struct type *
9336ada_aligned_type (struct type *type)
14f9c5c9
AS
9337{
9338 if (ada_is_aligner_type (type))
9339 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9340 else
9341 return ada_get_base_type (type);
9342}
9343
9344
9345/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9346 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9347
fc1a4b47
AC
9348const gdb_byte *
9349ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9350{
d2e4a39e 9351 if (ada_is_aligner_type (type))
14f9c5c9 9352 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9353 valaddr +
9354 TYPE_FIELD_BITPOS (type,
9355 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9356 else
9357 return valaddr;
9358}
9359
4c4b4cd2
PH
9360
9361
14f9c5c9 9362/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9363 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9364const char *
9365ada_enum_name (const char *name)
14f9c5c9 9366{
4c4b4cd2
PH
9367 static char *result;
9368 static size_t result_len = 0;
e6a959d6 9369 const char *tmp;
14f9c5c9 9370
4c4b4cd2
PH
9371 /* First, unqualify the enumeration name:
9372 1. Search for the last '.' character. If we find one, then skip
177b42fe 9373 all the preceding characters, the unqualified name starts
76a01679 9374 right after that dot.
4c4b4cd2 9375 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9376 translates dots into "__". Search forward for double underscores,
9377 but stop searching when we hit an overloading suffix, which is
9378 of the form "__" followed by digits. */
4c4b4cd2 9379
c3e5cd34
PH
9380 tmp = strrchr (name, '.');
9381 if (tmp != NULL)
4c4b4cd2
PH
9382 name = tmp + 1;
9383 else
14f9c5c9 9384 {
4c4b4cd2
PH
9385 while ((tmp = strstr (name, "__")) != NULL)
9386 {
9387 if (isdigit (tmp[2]))
9388 break;
9389 else
9390 name = tmp + 2;
9391 }
14f9c5c9
AS
9392 }
9393
9394 if (name[0] == 'Q')
9395 {
14f9c5c9 9396 int v;
5b4ee69b 9397
14f9c5c9 9398 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9399 {
9400 if (sscanf (name + 2, "%x", &v) != 1)
9401 return name;
9402 }
272560b5
TT
9403 else if (((name[1] >= '0' && name[1] <= '9')
9404 || (name[1] >= 'a' && name[1] <= 'z'))
9405 && name[2] == '\0')
9406 {
9407 GROW_VECT (result, result_len, 4);
9408 xsnprintf (result, result_len, "'%c'", name[1]);
9409 return result;
9410 }
14f9c5c9 9411 else
4c4b4cd2 9412 return name;
14f9c5c9 9413
4c4b4cd2 9414 GROW_VECT (result, result_len, 16);
14f9c5c9 9415 if (isascii (v) && isprint (v))
88c15c34 9416 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9417 else if (name[1] == 'U')
88c15c34 9418 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9419 else
88c15c34 9420 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9421
9422 return result;
9423 }
d2e4a39e 9424 else
4c4b4cd2 9425 {
c3e5cd34
PH
9426 tmp = strstr (name, "__");
9427 if (tmp == NULL)
9428 tmp = strstr (name, "$");
9429 if (tmp != NULL)
4c4b4cd2
PH
9430 {
9431 GROW_VECT (result, result_len, tmp - name + 1);
9432 strncpy (result, name, tmp - name);
9433 result[tmp - name] = '\0';
9434 return result;
9435 }
9436
9437 return name;
9438 }
14f9c5c9
AS
9439}
9440
14f9c5c9
AS
9441/* Evaluate the subexpression of EXP starting at *POS as for
9442 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9443 expression. */
14f9c5c9 9444
d2e4a39e
AS
9445static struct value *
9446evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9447{
4b27a620 9448 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9449}
9450
9451/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9452 value it wraps. */
14f9c5c9 9453
d2e4a39e
AS
9454static struct value *
9455unwrap_value (struct value *val)
14f9c5c9 9456{
df407dfe 9457 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9458
14f9c5c9
AS
9459 if (ada_is_aligner_type (type))
9460 {
de4d072f 9461 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9462 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9463
14f9c5c9 9464 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9465 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9466
9467 return unwrap_value (v);
9468 }
d2e4a39e 9469 else
14f9c5c9 9470 {
d2e4a39e 9471 struct type *raw_real_type =
61ee279c 9472 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9473
5bf03f13
JB
9474 /* If there is no parallel XVS or XVE type, then the value is
9475 already unwrapped. Return it without further modification. */
9476 if ((type == raw_real_type)
9477 && ada_find_parallel_type (type, "___XVE") == NULL)
9478 return val;
14f9c5c9 9479
d2e4a39e 9480 return
4c4b4cd2
PH
9481 coerce_unspec_val_to_type
9482 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9483 value_address (val),
1ed6ede0 9484 NULL, 1));
14f9c5c9
AS
9485 }
9486}
d2e4a39e
AS
9487
9488static struct value *
50eff16b 9489cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9490{
50eff16b
UW
9491 struct value *scale = ada_scaling_factor (value_type (arg));
9492 arg = value_cast (value_type (scale), arg);
14f9c5c9 9493
50eff16b
UW
9494 arg = value_binop (arg, scale, BINOP_MUL);
9495 return value_cast (type, arg);
14f9c5c9
AS
9496}
9497
d2e4a39e 9498static struct value *
50eff16b 9499cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9500{
50eff16b
UW
9501 if (type == value_type (arg))
9502 return arg;
5b4ee69b 9503
50eff16b
UW
9504 struct value *scale = ada_scaling_factor (type);
9505 if (ada_is_fixed_point_type (value_type (arg)))
9506 arg = cast_from_fixed (value_type (scale), arg);
9507 else
9508 arg = value_cast (value_type (scale), arg);
9509
9510 arg = value_binop (arg, scale, BINOP_DIV);
9511 return value_cast (type, arg);
14f9c5c9
AS
9512}
9513
d99dcf51
JB
9514/* Given two array types T1 and T2, return nonzero iff both arrays
9515 contain the same number of elements. */
9516
9517static int
9518ada_same_array_size_p (struct type *t1, struct type *t2)
9519{
9520 LONGEST lo1, hi1, lo2, hi2;
9521
9522 /* Get the array bounds in order to verify that the size of
9523 the two arrays match. */
9524 if (!get_array_bounds (t1, &lo1, &hi1)
9525 || !get_array_bounds (t2, &lo2, &hi2))
9526 error (_("unable to determine array bounds"));
9527
9528 /* To make things easier for size comparison, normalize a bit
9529 the case of empty arrays by making sure that the difference
9530 between upper bound and lower bound is always -1. */
9531 if (lo1 > hi1)
9532 hi1 = lo1 - 1;
9533 if (lo2 > hi2)
9534 hi2 = lo2 - 1;
9535
9536 return (hi1 - lo1 == hi2 - lo2);
9537}
9538
9539/* Assuming that VAL is an array of integrals, and TYPE represents
9540 an array with the same number of elements, but with wider integral
9541 elements, return an array "casted" to TYPE. In practice, this
9542 means that the returned array is built by casting each element
9543 of the original array into TYPE's (wider) element type. */
9544
9545static struct value *
9546ada_promote_array_of_integrals (struct type *type, struct value *val)
9547{
9548 struct type *elt_type = TYPE_TARGET_TYPE (type);
9549 LONGEST lo, hi;
9550 struct value *res;
9551 LONGEST i;
9552
9553 /* Verify that both val and type are arrays of scalars, and
9554 that the size of val's elements is smaller than the size
9555 of type's element. */
9556 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9557 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9558 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9559 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9560 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9561 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9562
9563 if (!get_array_bounds (type, &lo, &hi))
9564 error (_("unable to determine array bounds"));
9565
9566 res = allocate_value (type);
9567
9568 /* Promote each array element. */
9569 for (i = 0; i < hi - lo + 1; i++)
9570 {
9571 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9572
9573 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9574 value_contents_all (elt), TYPE_LENGTH (elt_type));
9575 }
9576
9577 return res;
9578}
9579
4c4b4cd2
PH
9580/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9581 return the converted value. */
9582
d2e4a39e
AS
9583static struct value *
9584coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9585{
df407dfe 9586 struct type *type2 = value_type (val);
5b4ee69b 9587
14f9c5c9
AS
9588 if (type == type2)
9589 return val;
9590
61ee279c
PH
9591 type2 = ada_check_typedef (type2);
9592 type = ada_check_typedef (type);
14f9c5c9 9593
d2e4a39e
AS
9594 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9595 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9596 {
9597 val = ada_value_ind (val);
df407dfe 9598 type2 = value_type (val);
14f9c5c9
AS
9599 }
9600
d2e4a39e 9601 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9602 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9603 {
d99dcf51
JB
9604 if (!ada_same_array_size_p (type, type2))
9605 error (_("cannot assign arrays of different length"));
9606
9607 if (is_integral_type (TYPE_TARGET_TYPE (type))
9608 && is_integral_type (TYPE_TARGET_TYPE (type2))
9609 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9610 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9611 {
9612 /* Allow implicit promotion of the array elements to
9613 a wider type. */
9614 return ada_promote_array_of_integrals (type, val);
9615 }
9616
9617 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9618 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9619 error (_("Incompatible types in assignment"));
04624583 9620 deprecated_set_value_type (val, type);
14f9c5c9 9621 }
d2e4a39e 9622 return val;
14f9c5c9
AS
9623}
9624
4c4b4cd2
PH
9625static struct value *
9626ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9627{
9628 struct value *val;
9629 struct type *type1, *type2;
9630 LONGEST v, v1, v2;
9631
994b9211
AC
9632 arg1 = coerce_ref (arg1);
9633 arg2 = coerce_ref (arg2);
18af8284
JB
9634 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9635 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9636
76a01679
JB
9637 if (TYPE_CODE (type1) != TYPE_CODE_INT
9638 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9639 return value_binop (arg1, arg2, op);
9640
76a01679 9641 switch (op)
4c4b4cd2
PH
9642 {
9643 case BINOP_MOD:
9644 case BINOP_DIV:
9645 case BINOP_REM:
9646 break;
9647 default:
9648 return value_binop (arg1, arg2, op);
9649 }
9650
9651 v2 = value_as_long (arg2);
9652 if (v2 == 0)
323e0a4a 9653 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9654
9655 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9656 return value_binop (arg1, arg2, op);
9657
9658 v1 = value_as_long (arg1);
9659 switch (op)
9660 {
9661 case BINOP_DIV:
9662 v = v1 / v2;
76a01679
JB
9663 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9664 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9665 break;
9666 case BINOP_REM:
9667 v = v1 % v2;
76a01679
JB
9668 if (v * v1 < 0)
9669 v -= v2;
4c4b4cd2
PH
9670 break;
9671 default:
9672 /* Should not reach this point. */
9673 v = 0;
9674 }
9675
9676 val = allocate_value (type1);
990a07ab 9677 store_unsigned_integer (value_contents_raw (val),
e17a4113 9678 TYPE_LENGTH (value_type (val)),
34877895 9679 type_byte_order (type1), v);
4c4b4cd2
PH
9680 return val;
9681}
9682
9683static int
9684ada_value_equal (struct value *arg1, struct value *arg2)
9685{
df407dfe
AC
9686 if (ada_is_direct_array_type (value_type (arg1))
9687 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9688 {
79e8fcaa
JB
9689 struct type *arg1_type, *arg2_type;
9690
f58b38bf
JB
9691 /* Automatically dereference any array reference before
9692 we attempt to perform the comparison. */
9693 arg1 = ada_coerce_ref (arg1);
9694 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9695
4c4b4cd2
PH
9696 arg1 = ada_coerce_to_simple_array (arg1);
9697 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9698
9699 arg1_type = ada_check_typedef (value_type (arg1));
9700 arg2_type = ada_check_typedef (value_type (arg2));
9701
9702 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9703 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9704 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9705 /* FIXME: The following works only for types whose
76a01679
JB
9706 representations use all bits (no padding or undefined bits)
9707 and do not have user-defined equality. */
79e8fcaa
JB
9708 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9709 && memcmp (value_contents (arg1), value_contents (arg2),
9710 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9711 }
9712 return value_equal (arg1, arg2);
9713}
9714
52ce6436
PH
9715/* Total number of component associations in the aggregate starting at
9716 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9717 OP_AGGREGATE. */
52ce6436
PH
9718
9719static int
9720num_component_specs (struct expression *exp, int pc)
9721{
9722 int n, m, i;
5b4ee69b 9723
52ce6436
PH
9724 m = exp->elts[pc + 1].longconst;
9725 pc += 3;
9726 n = 0;
9727 for (i = 0; i < m; i += 1)
9728 {
9729 switch (exp->elts[pc].opcode)
9730 {
9731 default:
9732 n += 1;
9733 break;
9734 case OP_CHOICES:
9735 n += exp->elts[pc + 1].longconst;
9736 break;
9737 }
9738 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9739 }
9740 return n;
9741}
9742
9743/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9744 component of LHS (a simple array or a record), updating *POS past
9745 the expression, assuming that LHS is contained in CONTAINER. Does
9746 not modify the inferior's memory, nor does it modify LHS (unless
9747 LHS == CONTAINER). */
9748
9749static void
9750assign_component (struct value *container, struct value *lhs, LONGEST index,
9751 struct expression *exp, int *pos)
9752{
9753 struct value *mark = value_mark ();
9754 struct value *elt;
0e2da9f0 9755 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9756
0e2da9f0 9757 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9758 {
22601c15
UW
9759 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9760 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9761
52ce6436
PH
9762 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9763 }
9764 else
9765 {
9766 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9767 elt = ada_to_fixed_value (elt);
52ce6436
PH
9768 }
9769
9770 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9771 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9772 else
9773 value_assign_to_component (container, elt,
9774 ada_evaluate_subexp (NULL, exp, pos,
9775 EVAL_NORMAL));
9776
9777 value_free_to_mark (mark);
9778}
9779
9780/* Assuming that LHS represents an lvalue having a record or array
9781 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9782 of that aggregate's value to LHS, advancing *POS past the
9783 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9784 lvalue containing LHS (possibly LHS itself). Does not modify
9785 the inferior's memory, nor does it modify the contents of
0963b4bd 9786 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9787
9788static struct value *
9789assign_aggregate (struct value *container,
9790 struct value *lhs, struct expression *exp,
9791 int *pos, enum noside noside)
9792{
9793 struct type *lhs_type;
9794 int n = exp->elts[*pos+1].longconst;
9795 LONGEST low_index, high_index;
9796 int num_specs;
9797 LONGEST *indices;
9798 int max_indices, num_indices;
52ce6436 9799 int i;
52ce6436
PH
9800
9801 *pos += 3;
9802 if (noside != EVAL_NORMAL)
9803 {
52ce6436
PH
9804 for (i = 0; i < n; i += 1)
9805 ada_evaluate_subexp (NULL, exp, pos, noside);
9806 return container;
9807 }
9808
9809 container = ada_coerce_ref (container);
9810 if (ada_is_direct_array_type (value_type (container)))
9811 container = ada_coerce_to_simple_array (container);
9812 lhs = ada_coerce_ref (lhs);
9813 if (!deprecated_value_modifiable (lhs))
9814 error (_("Left operand of assignment is not a modifiable lvalue."));
9815
0e2da9f0 9816 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9817 if (ada_is_direct_array_type (lhs_type))
9818 {
9819 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9820 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9821 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9822 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9823 }
9824 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9825 {
9826 low_index = 0;
9827 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9828 }
9829 else
9830 error (_("Left-hand side must be array or record."));
9831
9832 num_specs = num_component_specs (exp, *pos - 3);
9833 max_indices = 4 * num_specs + 4;
8d749320 9834 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9835 indices[0] = indices[1] = low_index - 1;
9836 indices[2] = indices[3] = high_index + 1;
9837 num_indices = 4;
9838
9839 for (i = 0; i < n; i += 1)
9840 {
9841 switch (exp->elts[*pos].opcode)
9842 {
1fbf5ada
JB
9843 case OP_CHOICES:
9844 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9845 &num_indices, max_indices,
9846 low_index, high_index);
9847 break;
9848 case OP_POSITIONAL:
9849 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9850 &num_indices, max_indices,
9851 low_index, high_index);
1fbf5ada
JB
9852 break;
9853 case OP_OTHERS:
9854 if (i != n-1)
9855 error (_("Misplaced 'others' clause"));
9856 aggregate_assign_others (container, lhs, exp, pos, indices,
9857 num_indices, low_index, high_index);
9858 break;
9859 default:
9860 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9861 }
9862 }
9863
9864 return container;
9865}
9866
9867/* Assign into the component of LHS indexed by the OP_POSITIONAL
9868 construct at *POS, updating *POS past the construct, given that
9869 the positions are relative to lower bound LOW, where HIGH is the
9870 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9871 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9872 assign_aggregate. */
52ce6436
PH
9873static void
9874aggregate_assign_positional (struct value *container,
9875 struct value *lhs, struct expression *exp,
9876 int *pos, LONGEST *indices, int *num_indices,
9877 int max_indices, LONGEST low, LONGEST high)
9878{
9879 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9880
9881 if (ind - 1 == high)
e1d5a0d2 9882 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9883 if (ind <= high)
9884 {
9885 add_component_interval (ind, ind, indices, num_indices, max_indices);
9886 *pos += 3;
9887 assign_component (container, lhs, ind, exp, pos);
9888 }
9889 else
9890 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9891}
9892
9893/* Assign into the components of LHS indexed by the OP_CHOICES
9894 construct at *POS, updating *POS past the construct, given that
9895 the allowable indices are LOW..HIGH. Record the indices assigned
9896 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9897 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9898static void
9899aggregate_assign_from_choices (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903{
9904 int j;
9905 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9906 int choice_pos, expr_pc;
9907 int is_array = ada_is_direct_array_type (value_type (lhs));
9908
9909 choice_pos = *pos += 3;
9910
9911 for (j = 0; j < n_choices; j += 1)
9912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9913 expr_pc = *pos;
9914 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9915
9916 for (j = 0; j < n_choices; j += 1)
9917 {
9918 LONGEST lower, upper;
9919 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9920
52ce6436
PH
9921 if (op == OP_DISCRETE_RANGE)
9922 {
9923 choice_pos += 1;
9924 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9925 EVAL_NORMAL));
9926 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9927 EVAL_NORMAL));
9928 }
9929 else if (is_array)
9930 {
9931 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9932 EVAL_NORMAL));
9933 upper = lower;
9934 }
9935 else
9936 {
9937 int ind;
0d5cff50 9938 const char *name;
5b4ee69b 9939
52ce6436
PH
9940 switch (op)
9941 {
9942 case OP_NAME:
9943 name = &exp->elts[choice_pos + 2].string;
9944 break;
9945 case OP_VAR_VALUE:
987012b8 9946 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9947 break;
9948 default:
9949 error (_("Invalid record component association."));
9950 }
9951 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9952 ind = 0;
9953 if (! find_struct_field (name, value_type (lhs), 0,
9954 NULL, NULL, NULL, NULL, &ind))
9955 error (_("Unknown component name: %s."), name);
9956 lower = upper = ind;
9957 }
9958
9959 if (lower <= upper && (lower < low || upper > high))
9960 error (_("Index in component association out of bounds."));
9961
9962 add_component_interval (lower, upper, indices, num_indices,
9963 max_indices);
9964 while (lower <= upper)
9965 {
9966 int pos1;
5b4ee69b 9967
52ce6436
PH
9968 pos1 = expr_pc;
9969 assign_component (container, lhs, lower, exp, &pos1);
9970 lower += 1;
9971 }
9972 }
9973}
9974
9975/* Assign the value of the expression in the OP_OTHERS construct in
9976 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9977 have not been previously assigned. The index intervals already assigned
9978 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9979 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9980static void
9981aggregate_assign_others (struct value *container,
9982 struct value *lhs, struct expression *exp,
9983 int *pos, LONGEST *indices, int num_indices,
9984 LONGEST low, LONGEST high)
9985{
9986 int i;
5ce64950 9987 int expr_pc = *pos + 1;
52ce6436
PH
9988
9989 for (i = 0; i < num_indices - 2; i += 2)
9990 {
9991 LONGEST ind;
5b4ee69b 9992
52ce6436
PH
9993 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9994 {
5ce64950 9995 int localpos;
5b4ee69b 9996
5ce64950
MS
9997 localpos = expr_pc;
9998 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9999 }
10000 }
10001 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10002}
10003
10004/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10005 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10006 modifying *SIZE as needed. It is an error if *SIZE exceeds
10007 MAX_SIZE. The resulting intervals do not overlap. */
10008static void
10009add_component_interval (LONGEST low, LONGEST high,
10010 LONGEST* indices, int *size, int max_size)
10011{
10012 int i, j;
5b4ee69b 10013
52ce6436
PH
10014 for (i = 0; i < *size; i += 2) {
10015 if (high >= indices[i] && low <= indices[i + 1])
10016 {
10017 int kh;
5b4ee69b 10018
52ce6436
PH
10019 for (kh = i + 2; kh < *size; kh += 2)
10020 if (high < indices[kh])
10021 break;
10022 if (low < indices[i])
10023 indices[i] = low;
10024 indices[i + 1] = indices[kh - 1];
10025 if (high > indices[i + 1])
10026 indices[i + 1] = high;
10027 memcpy (indices + i + 2, indices + kh, *size - kh);
10028 *size -= kh - i - 2;
10029 return;
10030 }
10031 else if (high < indices[i])
10032 break;
10033 }
10034
10035 if (*size == max_size)
10036 error (_("Internal error: miscounted aggregate components."));
10037 *size += 2;
10038 for (j = *size-1; j >= i+2; j -= 1)
10039 indices[j] = indices[j - 2];
10040 indices[i] = low;
10041 indices[i + 1] = high;
10042}
10043
6e48bd2c
JB
10044/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10045 is different. */
10046
10047static struct value *
b7e22850 10048ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10049{
10050 if (type == ada_check_typedef (value_type (arg2)))
10051 return arg2;
10052
10053 if (ada_is_fixed_point_type (type))
95f39a5b 10054 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10055
10056 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10057 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10058
10059 return value_cast (type, arg2);
10060}
10061
284614f0
JB
10062/* Evaluating Ada expressions, and printing their result.
10063 ------------------------------------------------------
10064
21649b50
JB
10065 1. Introduction:
10066 ----------------
10067
284614f0
JB
10068 We usually evaluate an Ada expression in order to print its value.
10069 We also evaluate an expression in order to print its type, which
10070 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10071 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10072 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10073 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10074 similar.
10075
10076 Evaluating expressions is a little more complicated for Ada entities
10077 than it is for entities in languages such as C. The main reason for
10078 this is that Ada provides types whose definition might be dynamic.
10079 One example of such types is variant records. Or another example
10080 would be an array whose bounds can only be known at run time.
10081
10082 The following description is a general guide as to what should be
10083 done (and what should NOT be done) in order to evaluate an expression
10084 involving such types, and when. This does not cover how the semantic
10085 information is encoded by GNAT as this is covered separatly. For the
10086 document used as the reference for the GNAT encoding, see exp_dbug.ads
10087 in the GNAT sources.
10088
10089 Ideally, we should embed each part of this description next to its
10090 associated code. Unfortunately, the amount of code is so vast right
10091 now that it's hard to see whether the code handling a particular
10092 situation might be duplicated or not. One day, when the code is
10093 cleaned up, this guide might become redundant with the comments
10094 inserted in the code, and we might want to remove it.
10095
21649b50
JB
10096 2. ``Fixing'' an Entity, the Simple Case:
10097 -----------------------------------------
10098
284614f0
JB
10099 When evaluating Ada expressions, the tricky issue is that they may
10100 reference entities whose type contents and size are not statically
10101 known. Consider for instance a variant record:
10102
10103 type Rec (Empty : Boolean := True) is record
10104 case Empty is
10105 when True => null;
10106 when False => Value : Integer;
10107 end case;
10108 end record;
10109 Yes : Rec := (Empty => False, Value => 1);
10110 No : Rec := (empty => True);
10111
10112 The size and contents of that record depends on the value of the
10113 descriminant (Rec.Empty). At this point, neither the debugging
10114 information nor the associated type structure in GDB are able to
10115 express such dynamic types. So what the debugger does is to create
10116 "fixed" versions of the type that applies to the specific object.
30baf67b 10117 We also informally refer to this operation as "fixing" an object,
284614f0
JB
10118 which means creating its associated fixed type.
10119
10120 Example: when printing the value of variable "Yes" above, its fixed
10121 type would look like this:
10122
10123 type Rec is record
10124 Empty : Boolean;
10125 Value : Integer;
10126 end record;
10127
10128 On the other hand, if we printed the value of "No", its fixed type
10129 would become:
10130
10131 type Rec is record
10132 Empty : Boolean;
10133 end record;
10134
10135 Things become a little more complicated when trying to fix an entity
10136 with a dynamic type that directly contains another dynamic type,
10137 such as an array of variant records, for instance. There are
10138 two possible cases: Arrays, and records.
10139
21649b50
JB
10140 3. ``Fixing'' Arrays:
10141 ---------------------
10142
10143 The type structure in GDB describes an array in terms of its bounds,
10144 and the type of its elements. By design, all elements in the array
10145 have the same type and we cannot represent an array of variant elements
10146 using the current type structure in GDB. When fixing an array,
10147 we cannot fix the array element, as we would potentially need one
10148 fixed type per element of the array. As a result, the best we can do
10149 when fixing an array is to produce an array whose bounds and size
10150 are correct (allowing us to read it from memory), but without having
10151 touched its element type. Fixing each element will be done later,
10152 when (if) necessary.
10153
10154 Arrays are a little simpler to handle than records, because the same
10155 amount of memory is allocated for each element of the array, even if
1b536f04 10156 the amount of space actually used by each element differs from element
21649b50 10157 to element. Consider for instance the following array of type Rec:
284614f0
JB
10158
10159 type Rec_Array is array (1 .. 2) of Rec;
10160
1b536f04
JB
10161 The actual amount of memory occupied by each element might be different
10162 from element to element, depending on the value of their discriminant.
21649b50 10163 But the amount of space reserved for each element in the array remains
1b536f04 10164 fixed regardless. So we simply need to compute that size using
21649b50
JB
10165 the debugging information available, from which we can then determine
10166 the array size (we multiply the number of elements of the array by
10167 the size of each element).
10168
10169 The simplest case is when we have an array of a constrained element
10170 type. For instance, consider the following type declarations:
10171
10172 type Bounded_String (Max_Size : Integer) is
10173 Length : Integer;
10174 Buffer : String (1 .. Max_Size);
10175 end record;
10176 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10177
10178 In this case, the compiler describes the array as an array of
10179 variable-size elements (identified by its XVS suffix) for which
10180 the size can be read in the parallel XVZ variable.
10181
10182 In the case of an array of an unconstrained element type, the compiler
10183 wraps the array element inside a private PAD type. This type should not
10184 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10185 that we also use the adjective "aligner" in our code to designate
10186 these wrapper types.
10187
1b536f04 10188 In some cases, the size allocated for each element is statically
21649b50
JB
10189 known. In that case, the PAD type already has the correct size,
10190 and the array element should remain unfixed.
10191
10192 But there are cases when this size is not statically known.
10193 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10194
10195 type Dynamic is array (1 .. Five) of Integer;
10196 type Wrapper (Has_Length : Boolean := False) is record
10197 Data : Dynamic;
10198 case Has_Length is
10199 when True => Length : Integer;
10200 when False => null;
10201 end case;
10202 end record;
10203 type Wrapper_Array is array (1 .. 2) of Wrapper;
10204
10205 Hello : Wrapper_Array := (others => (Has_Length => True,
10206 Data => (others => 17),
10207 Length => 1));
10208
10209
10210 The debugging info would describe variable Hello as being an
10211 array of a PAD type. The size of that PAD type is not statically
10212 known, but can be determined using a parallel XVZ variable.
10213 In that case, a copy of the PAD type with the correct size should
10214 be used for the fixed array.
10215
21649b50
JB
10216 3. ``Fixing'' record type objects:
10217 ----------------------------------
10218
10219 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10220 record types. In this case, in order to compute the associated
10221 fixed type, we need to determine the size and offset of each of
10222 its components. This, in turn, requires us to compute the fixed
10223 type of each of these components.
10224
10225 Consider for instance the example:
10226
10227 type Bounded_String (Max_Size : Natural) is record
10228 Str : String (1 .. Max_Size);
10229 Length : Natural;
10230 end record;
10231 My_String : Bounded_String (Max_Size => 10);
10232
10233 In that case, the position of field "Length" depends on the size
10234 of field Str, which itself depends on the value of the Max_Size
21649b50 10235 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10236 we need to fix the type of field Str. Therefore, fixing a variant
10237 record requires us to fix each of its components.
10238
10239 However, if a component does not have a dynamic size, the component
10240 should not be fixed. In particular, fields that use a PAD type
10241 should not fixed. Here is an example where this might happen
10242 (assuming type Rec above):
10243
10244 type Container (Big : Boolean) is record
10245 First : Rec;
10246 After : Integer;
10247 case Big is
10248 when True => Another : Integer;
10249 when False => null;
10250 end case;
10251 end record;
10252 My_Container : Container := (Big => False,
10253 First => (Empty => True),
10254 After => 42);
10255
10256 In that example, the compiler creates a PAD type for component First,
10257 whose size is constant, and then positions the component After just
10258 right after it. The offset of component After is therefore constant
10259 in this case.
10260
10261 The debugger computes the position of each field based on an algorithm
10262 that uses, among other things, the actual position and size of the field
21649b50
JB
10263 preceding it. Let's now imagine that the user is trying to print
10264 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10265 end up computing the offset of field After based on the size of the
10266 fixed version of field First. And since in our example First has
10267 only one actual field, the size of the fixed type is actually smaller
10268 than the amount of space allocated to that field, and thus we would
10269 compute the wrong offset of field After.
10270
21649b50
JB
10271 To make things more complicated, we need to watch out for dynamic
10272 components of variant records (identified by the ___XVL suffix in
10273 the component name). Even if the target type is a PAD type, the size
10274 of that type might not be statically known. So the PAD type needs
10275 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10276 we might end up with the wrong size for our component. This can be
10277 observed with the following type declarations:
284614f0
JB
10278
10279 type Octal is new Integer range 0 .. 7;
10280 type Octal_Array is array (Positive range <>) of Octal;
10281 pragma Pack (Octal_Array);
10282
10283 type Octal_Buffer (Size : Positive) is record
10284 Buffer : Octal_Array (1 .. Size);
10285 Length : Integer;
10286 end record;
10287
10288 In that case, Buffer is a PAD type whose size is unset and needs
10289 to be computed by fixing the unwrapped type.
10290
21649b50
JB
10291 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10292 ----------------------------------------------------------
10293
10294 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10295 thus far, be actually fixed?
10296
10297 The answer is: Only when referencing that element. For instance
10298 when selecting one component of a record, this specific component
10299 should be fixed at that point in time. Or when printing the value
10300 of a record, each component should be fixed before its value gets
10301 printed. Similarly for arrays, the element of the array should be
10302 fixed when printing each element of the array, or when extracting
10303 one element out of that array. On the other hand, fixing should
10304 not be performed on the elements when taking a slice of an array!
10305
31432a67 10306 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10307 size of each field is that we end up also miscomputing the size
10308 of the containing type. This can have adverse results when computing
10309 the value of an entity. GDB fetches the value of an entity based
10310 on the size of its type, and thus a wrong size causes GDB to fetch
10311 the wrong amount of memory. In the case where the computed size is
10312 too small, GDB fetches too little data to print the value of our
31432a67 10313 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10314 past the buffer containing the data =:-o. */
10315
ced9779b
JB
10316/* Evaluate a subexpression of EXP, at index *POS, and return a value
10317 for that subexpression cast to TO_TYPE. Advance *POS over the
10318 subexpression. */
10319
10320static value *
10321ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10322 enum noside noside, struct type *to_type)
10323{
10324 int pc = *pos;
10325
10326 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10327 || exp->elts[pc].opcode == OP_VAR_VALUE)
10328 {
10329 (*pos) += 4;
10330
10331 value *val;
10332 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10333 {
10334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10335 return value_zero (to_type, not_lval);
10336
10337 val = evaluate_var_msym_value (noside,
10338 exp->elts[pc + 1].objfile,
10339 exp->elts[pc + 2].msymbol);
10340 }
10341 else
10342 val = evaluate_var_value (noside,
10343 exp->elts[pc + 1].block,
10344 exp->elts[pc + 2].symbol);
10345
10346 if (noside == EVAL_SKIP)
10347 return eval_skip_value (exp);
10348
10349 val = ada_value_cast (to_type, val);
10350
10351 /* Follow the Ada language semantics that do not allow taking
10352 an address of the result of a cast (view conversion in Ada). */
10353 if (VALUE_LVAL (val) == lval_memory)
10354 {
10355 if (value_lazy (val))
10356 value_fetch_lazy (val);
10357 VALUE_LVAL (val) = not_lval;
10358 }
10359 return val;
10360 }
10361
10362 value *val = evaluate_subexp (to_type, exp, pos, noside);
10363 if (noside == EVAL_SKIP)
10364 return eval_skip_value (exp);
10365 return ada_value_cast (to_type, val);
10366}
10367
284614f0
JB
10368/* Implement the evaluate_exp routine in the exp_descriptor structure
10369 for the Ada language. */
10370
52ce6436 10371static struct value *
ebf56fd3 10372ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10373 int *pos, enum noside noside)
14f9c5c9
AS
10374{
10375 enum exp_opcode op;
b5385fc0 10376 int tem;
14f9c5c9 10377 int pc;
5ec18f2b 10378 int preeval_pos;
14f9c5c9
AS
10379 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10380 struct type *type;
52ce6436 10381 int nargs, oplen;
d2e4a39e 10382 struct value **argvec;
14f9c5c9 10383
d2e4a39e
AS
10384 pc = *pos;
10385 *pos += 1;
14f9c5c9
AS
10386 op = exp->elts[pc].opcode;
10387
d2e4a39e 10388 switch (op)
14f9c5c9
AS
10389 {
10390 default:
10391 *pos -= 1;
6e48bd2c 10392 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10393
10394 if (noside == EVAL_NORMAL)
10395 arg1 = unwrap_value (arg1);
6e48bd2c 10396
edd079d9 10397 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10398 then we need to perform the conversion manually, because
10399 evaluate_subexp_standard doesn't do it. This conversion is
10400 necessary in Ada because the different kinds of float/fixed
10401 types in Ada have different representations.
10402
10403 Similarly, we need to perform the conversion from OP_LONG
10404 ourselves. */
edd079d9 10405 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10406 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10407
10408 return arg1;
4c4b4cd2
PH
10409
10410 case OP_STRING:
10411 {
76a01679 10412 struct value *result;
5b4ee69b 10413
76a01679
JB
10414 *pos -= 1;
10415 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10416 /* The result type will have code OP_STRING, bashed there from
10417 OP_ARRAY. Bash it back. */
df407dfe
AC
10418 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10419 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10420 return result;
4c4b4cd2 10421 }
14f9c5c9
AS
10422
10423 case UNOP_CAST:
10424 (*pos) += 2;
10425 type = exp->elts[pc + 1].type;
ced9779b 10426 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10427
4c4b4cd2
PH
10428 case UNOP_QUAL:
10429 (*pos) += 2;
10430 type = exp->elts[pc + 1].type;
10431 return ada_evaluate_subexp (type, exp, pos, noside);
10432
14f9c5c9
AS
10433 case BINOP_ASSIGN:
10434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10435 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10436 {
10437 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10438 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10439 return arg1;
10440 return ada_value_assign (arg1, arg1);
10441 }
003f3813
JB
10442 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10443 except if the lhs of our assignment is a convenience variable.
10444 In the case of assigning to a convenience variable, the lhs
10445 should be exactly the result of the evaluation of the rhs. */
10446 type = value_type (arg1);
10447 if (VALUE_LVAL (arg1) == lval_internalvar)
10448 type = NULL;
10449 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10450 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10451 return arg1;
f411722c
TT
10452 if (VALUE_LVAL (arg1) == lval_internalvar)
10453 {
10454 /* Nothing. */
10455 }
10456 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10457 arg2 = cast_to_fixed (value_type (arg1), arg2);
10458 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10459 error
323e0a4a 10460 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10461 else
df407dfe 10462 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10463 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10464
10465 case BINOP_ADD:
10466 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10467 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10468 if (noside == EVAL_SKIP)
4c4b4cd2 10469 goto nosideret;
2ac8a782
JB
10470 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10471 return (value_from_longest
10472 (value_type (arg1),
10473 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10474 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10475 return (value_from_longest
10476 (value_type (arg2),
10477 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10478 if ((ada_is_fixed_point_type (value_type (arg1))
10479 || ada_is_fixed_point_type (value_type (arg2)))
10480 && value_type (arg1) != value_type (arg2))
323e0a4a 10481 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10482 /* Do the addition, and cast the result to the type of the first
10483 argument. We cannot cast the result to a reference type, so if
10484 ARG1 is a reference type, find its underlying type. */
10485 type = value_type (arg1);
10486 while (TYPE_CODE (type) == TYPE_CODE_REF)
10487 type = TYPE_TARGET_TYPE (type);
f44316fa 10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10489 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10490
10491 case BINOP_SUB:
10492 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 if (noside == EVAL_SKIP)
4c4b4cd2 10495 goto nosideret;
2ac8a782
JB
10496 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg1),
10499 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10500 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10501 return (value_from_longest
10502 (value_type (arg2),
10503 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10504 if ((ada_is_fixed_point_type (value_type (arg1))
10505 || ada_is_fixed_point_type (value_type (arg2)))
10506 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10507 error (_("Operands of fixed-point subtraction "
10508 "must have the same type"));
b7789565
JB
10509 /* Do the substraction, and cast the result to the type of the first
10510 argument. We cannot cast the result to a reference type, so if
10511 ARG1 is a reference type, find its underlying type. */
10512 type = value_type (arg1);
10513 while (TYPE_CODE (type) == TYPE_CODE_REF)
10514 type = TYPE_TARGET_TYPE (type);
f44316fa 10515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10516 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10517
10518 case BINOP_MUL:
10519 case BINOP_DIV:
e1578042
JB
10520 case BINOP_REM:
10521 case BINOP_MOD:
14f9c5c9
AS
10522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10524 if (noside == EVAL_SKIP)
4c4b4cd2 10525 goto nosideret;
e1578042 10526 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10527 {
10528 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10529 return value_zero (value_type (arg1), not_lval);
10530 }
14f9c5c9 10531 else
4c4b4cd2 10532 {
a53b7a21 10533 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10534 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10535 arg1 = cast_from_fixed (type, arg1);
df407dfe 10536 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10537 arg2 = cast_from_fixed (type, arg2);
f44316fa 10538 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10539 return ada_value_binop (arg1, arg2, op);
10540 }
10541
4c4b4cd2
PH
10542 case BINOP_EQUAL:
10543 case BINOP_NOTEQUAL:
14f9c5c9 10544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10545 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10546 if (noside == EVAL_SKIP)
76a01679 10547 goto nosideret;
4c4b4cd2 10548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10549 tem = 0;
4c4b4cd2 10550 else
f44316fa
UW
10551 {
10552 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10553 tem = ada_value_equal (arg1, arg2);
10554 }
4c4b4cd2 10555 if (op == BINOP_NOTEQUAL)
76a01679 10556 tem = !tem;
fbb06eb1
UW
10557 type = language_bool_type (exp->language_defn, exp->gdbarch);
10558 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10559
10560 case UNOP_NEG:
10561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10562 if (noside == EVAL_SKIP)
10563 goto nosideret;
df407dfe
AC
10564 else if (ada_is_fixed_point_type (value_type (arg1)))
10565 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10566 else
f44316fa
UW
10567 {
10568 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10569 return value_neg (arg1);
10570 }
4c4b4cd2 10571
2330c6c6
JB
10572 case BINOP_LOGICAL_AND:
10573 case BINOP_LOGICAL_OR:
10574 case UNOP_LOGICAL_NOT:
000d5124
JB
10575 {
10576 struct value *val;
10577
10578 *pos -= 1;
10579 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10580 type = language_bool_type (exp->language_defn, exp->gdbarch);
10581 return value_cast (type, val);
000d5124 10582 }
2330c6c6
JB
10583
10584 case BINOP_BITWISE_AND:
10585 case BINOP_BITWISE_IOR:
10586 case BINOP_BITWISE_XOR:
000d5124
JB
10587 {
10588 struct value *val;
10589
10590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10591 *pos = pc;
10592 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593
10594 return value_cast (value_type (arg1), val);
10595 }
2330c6c6 10596
14f9c5c9
AS
10597 case OP_VAR_VALUE:
10598 *pos -= 1;
6799def4 10599
14f9c5c9 10600 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10601 {
10602 *pos += 4;
10603 goto nosideret;
10604 }
da5c522f
JB
10605
10606 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10607 /* Only encountered when an unresolved symbol occurs in a
10608 context other than a function call, in which case, it is
52ce6436 10609 invalid. */
323e0a4a 10610 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10611 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10612
10613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10614 {
0c1f74cf 10615 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10616 /* Check to see if this is a tagged type. We also need to handle
10617 the case where the type is a reference to a tagged type, but
10618 we have to be careful to exclude pointers to tagged types.
10619 The latter should be shown as usual (as a pointer), whereas
10620 a reference should mostly be transparent to the user. */
10621 if (ada_is_tagged_type (type, 0)
023db19c 10622 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10623 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10624 {
10625 /* Tagged types are a little special in the fact that the real
10626 type is dynamic and can only be determined by inspecting the
10627 object's tag. This means that we need to get the object's
10628 value first (EVAL_NORMAL) and then extract the actual object
10629 type from its tag.
10630
10631 Note that we cannot skip the final step where we extract
10632 the object type from its tag, because the EVAL_NORMAL phase
10633 results in dynamic components being resolved into fixed ones.
10634 This can cause problems when trying to print the type
10635 description of tagged types whose parent has a dynamic size:
10636 We use the type name of the "_parent" component in order
10637 to print the name of the ancestor type in the type description.
10638 If that component had a dynamic size, the resolution into
10639 a fixed type would result in the loss of that type name,
10640 thus preventing us from printing the name of the ancestor
10641 type in the type description. */
10642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10643
10644 if (TYPE_CODE (type) != TYPE_CODE_REF)
10645 {
10646 struct type *actual_type;
10647
10648 actual_type = type_from_tag (ada_value_tag (arg1));
10649 if (actual_type == NULL)
10650 /* If, for some reason, we were unable to determine
10651 the actual type from the tag, then use the static
10652 approximation that we just computed as a fallback.
10653 This can happen if the debugging information is
10654 incomplete, for instance. */
10655 actual_type = type;
10656 return value_zero (actual_type, not_lval);
10657 }
10658 else
10659 {
10660 /* In the case of a ref, ada_coerce_ref takes care
10661 of determining the actual type. But the evaluation
10662 should return a ref as it should be valid to ask
10663 for its address; so rebuild a ref after coerce. */
10664 arg1 = ada_coerce_ref (arg1);
a65cfae5 10665 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10666 }
10667 }
0c1f74cf 10668
84754697
JB
10669 /* Records and unions for which GNAT encodings have been
10670 generated need to be statically fixed as well.
10671 Otherwise, non-static fixing produces a type where
10672 all dynamic properties are removed, which prevents "ptype"
10673 from being able to completely describe the type.
10674 For instance, a case statement in a variant record would be
10675 replaced by the relevant components based on the actual
10676 value of the discriminants. */
10677 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10678 && dynamic_template_type (type) != NULL)
10679 || (TYPE_CODE (type) == TYPE_CODE_UNION
10680 && ada_find_parallel_type (type, "___XVU") != NULL))
10681 {
10682 *pos += 4;
10683 return value_zero (to_static_fixed_type (type), not_lval);
10684 }
4c4b4cd2 10685 }
da5c522f
JB
10686
10687 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10688 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10689
10690 case OP_FUNCALL:
10691 (*pos) += 2;
10692
10693 /* Allocate arg vector, including space for the function to be
10694 called in argvec[0] and a terminating NULL. */
10695 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10696 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10697
10698 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10699 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10700 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10701 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10702 else
10703 {
10704 for (tem = 0; tem <= nargs; tem += 1)
10705 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10706 argvec[tem] = 0;
10707
10708 if (noside == EVAL_SKIP)
10709 goto nosideret;
10710 }
10711
ad82864c
JB
10712 if (ada_is_constrained_packed_array_type
10713 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10714 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10715 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10716 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10717 /* This is a packed array that has already been fixed, and
10718 therefore already coerced to a simple array. Nothing further
10719 to do. */
10720 ;
e6c2c623
PMR
10721 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10722 {
10723 /* Make sure we dereference references so that all the code below
10724 feels like it's really handling the referenced value. Wrapping
10725 types (for alignment) may be there, so make sure we strip them as
10726 well. */
10727 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10728 }
10729 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10730 && VALUE_LVAL (argvec[0]) == lval_memory)
10731 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10732
df407dfe 10733 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10734
10735 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10736 them. So, if this is an array typedef (encoding use for array
10737 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10738 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10739 type = ada_typedef_target_type (type);
10740
4c4b4cd2
PH
10741 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10742 {
61ee279c 10743 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10744 {
10745 case TYPE_CODE_FUNC:
61ee279c 10746 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10747 break;
10748 case TYPE_CODE_ARRAY:
10749 break;
10750 case TYPE_CODE_STRUCT:
10751 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10752 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10753 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10754 break;
10755 default:
323e0a4a 10756 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10757 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10758 break;
10759 }
10760 }
10761
10762 switch (TYPE_CODE (type))
10763 {
10764 case TYPE_CODE_FUNC:
10765 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10766 {
7022349d
PA
10767 if (TYPE_TARGET_TYPE (type) == NULL)
10768 error_call_unknown_return_type (NULL);
10769 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10770 }
e71585ff
PA
10771 return call_function_by_hand (argvec[0], NULL,
10772 gdb::make_array_view (argvec + 1,
10773 nargs));
c8ea1972
PH
10774 case TYPE_CODE_INTERNAL_FUNCTION:
10775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10776 /* We don't know anything about what the internal
10777 function might return, but we have to return
10778 something. */
10779 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10780 not_lval);
10781 else
10782 return call_internal_function (exp->gdbarch, exp->language_defn,
10783 argvec[0], nargs, argvec + 1);
10784
4c4b4cd2
PH
10785 case TYPE_CODE_STRUCT:
10786 {
10787 int arity;
10788
4c4b4cd2
PH
10789 arity = ada_array_arity (type);
10790 type = ada_array_element_type (type, nargs);
10791 if (type == NULL)
323e0a4a 10792 error (_("cannot subscript or call a record"));
4c4b4cd2 10793 if (arity != nargs)
323e0a4a 10794 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10795 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10796 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10797 return
10798 unwrap_value (ada_value_subscript
10799 (argvec[0], nargs, argvec + 1));
10800 }
10801 case TYPE_CODE_ARRAY:
10802 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10803 {
10804 type = ada_array_element_type (type, nargs);
10805 if (type == NULL)
323e0a4a 10806 error (_("element type of array unknown"));
4c4b4cd2 10807 else
0a07e705 10808 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10809 }
10810 return
10811 unwrap_value (ada_value_subscript
10812 (ada_coerce_to_simple_array (argvec[0]),
10813 nargs, argvec + 1));
10814 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10816 {
deede10c 10817 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10818 type = ada_array_element_type (type, nargs);
10819 if (type == NULL)
323e0a4a 10820 error (_("element type of array unknown"));
4c4b4cd2 10821 else
0a07e705 10822 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10823 }
10824 return
deede10c
JB
10825 unwrap_value (ada_value_ptr_subscript (argvec[0],
10826 nargs, argvec + 1));
4c4b4cd2
PH
10827
10828 default:
e1d5a0d2
PH
10829 error (_("Attempt to index or call something other than an "
10830 "array or function"));
4c4b4cd2
PH
10831 }
10832
10833 case TERNOP_SLICE:
10834 {
10835 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 struct value *low_bound_val =
10837 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10838 struct value *high_bound_val =
10839 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10840 LONGEST low_bound;
10841 LONGEST high_bound;
5b4ee69b 10842
994b9211
AC
10843 low_bound_val = coerce_ref (low_bound_val);
10844 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10845 low_bound = value_as_long (low_bound_val);
10846 high_bound = value_as_long (high_bound_val);
963a6417 10847
4c4b4cd2
PH
10848 if (noside == EVAL_SKIP)
10849 goto nosideret;
10850
4c4b4cd2
PH
10851 /* If this is a reference to an aligner type, then remove all
10852 the aligners. */
df407dfe
AC
10853 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10854 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10855 TYPE_TARGET_TYPE (value_type (array)) =
10856 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10857
ad82864c 10858 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10859 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10860
10861 /* If this is a reference to an array or an array lvalue,
10862 convert to a pointer. */
df407dfe
AC
10863 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10864 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10865 && VALUE_LVAL (array) == lval_memory))
10866 array = value_addr (array);
10867
1265e4aa 10868 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10869 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10870 (value_type (array))))
bff8c71f
TT
10871 return empty_array (ada_type_of_array (array, 0), low_bound,
10872 high_bound);
4c4b4cd2
PH
10873
10874 array = ada_coerce_to_simple_array_ptr (array);
10875
714e53ab
PH
10876 /* If we have more than one level of pointer indirection,
10877 dereference the value until we get only one level. */
df407dfe
AC
10878 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10879 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10880 == TYPE_CODE_PTR))
10881 array = value_ind (array);
10882
10883 /* Make sure we really do have an array type before going further,
10884 to avoid a SEGV when trying to get the index type or the target
10885 type later down the road if the debug info generated by
10886 the compiler is incorrect or incomplete. */
df407dfe 10887 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10888 error (_("cannot take slice of non-array"));
714e53ab 10889
828292f2
JB
10890 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10891 == TYPE_CODE_PTR)
4c4b4cd2 10892 {
828292f2
JB
10893 struct type *type0 = ada_check_typedef (value_type (array));
10894
0b5d8877 10895 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10896 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10897 else
10898 {
10899 struct type *arr_type0 =
828292f2 10900 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10901
f5938064
JG
10902 return ada_value_slice_from_ptr (array, arr_type0,
10903 longest_to_int (low_bound),
10904 longest_to_int (high_bound));
4c4b4cd2
PH
10905 }
10906 }
10907 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10908 return array;
10909 else if (high_bound < low_bound)
bff8c71f 10910 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10911 else
529cad9c
PH
10912 return ada_value_slice (array, longest_to_int (low_bound),
10913 longest_to_int (high_bound));
4c4b4cd2 10914 }
14f9c5c9 10915
4c4b4cd2
PH
10916 case UNOP_IN_RANGE:
10917 (*pos) += 2;
10918 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10919 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10920
14f9c5c9 10921 if (noside == EVAL_SKIP)
4c4b4cd2 10922 goto nosideret;
14f9c5c9 10923
4c4b4cd2
PH
10924 switch (TYPE_CODE (type))
10925 {
10926 default:
e1d5a0d2
PH
10927 lim_warning (_("Membership test incompletely implemented; "
10928 "always returns true"));
fbb06eb1
UW
10929 type = language_bool_type (exp->language_defn, exp->gdbarch);
10930 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10931
10932 case TYPE_CODE_RANGE:
030b4912
UW
10933 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10934 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10935 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10936 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10937 type = language_bool_type (exp->language_defn, exp->gdbarch);
10938 return
10939 value_from_longest (type,
4c4b4cd2
PH
10940 (value_less (arg1, arg3)
10941 || value_equal (arg1, arg3))
10942 && (value_less (arg2, arg1)
10943 || value_equal (arg2, arg1)));
10944 }
10945
10946 case BINOP_IN_BOUNDS:
14f9c5c9 10947 (*pos) += 2;
4c4b4cd2
PH
10948 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10949 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10950
4c4b4cd2
PH
10951 if (noside == EVAL_SKIP)
10952 goto nosideret;
14f9c5c9 10953
4c4b4cd2 10954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10955 {
10956 type = language_bool_type (exp->language_defn, exp->gdbarch);
10957 return value_zero (type, not_lval);
10958 }
14f9c5c9 10959
4c4b4cd2 10960 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10961
1eea4ebd
UW
10962 type = ada_index_type (value_type (arg2), tem, "range");
10963 if (!type)
10964 type = value_type (arg1);
14f9c5c9 10965
1eea4ebd
UW
10966 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10967 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10968
f44316fa
UW
10969 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10971 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10972 return
fbb06eb1 10973 value_from_longest (type,
4c4b4cd2
PH
10974 (value_less (arg1, arg3)
10975 || value_equal (arg1, arg3))
10976 && (value_less (arg2, arg1)
10977 || value_equal (arg2, arg1)));
10978
10979 case TERNOP_IN_RANGE:
10980 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10982 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10983
10984 if (noside == EVAL_SKIP)
10985 goto nosideret;
10986
f44316fa
UW
10987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10989 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10990 return
fbb06eb1 10991 value_from_longest (type,
4c4b4cd2
PH
10992 (value_less (arg1, arg3)
10993 || value_equal (arg1, arg3))
10994 && (value_less (arg2, arg1)
10995 || value_equal (arg2, arg1)));
10996
10997 case OP_ATR_FIRST:
10998 case OP_ATR_LAST:
10999 case OP_ATR_LENGTH:
11000 {
76a01679 11001 struct type *type_arg;
5b4ee69b 11002
76a01679
JB
11003 if (exp->elts[*pos].opcode == OP_TYPE)
11004 {
11005 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11006 arg1 = NULL;
5bc23cb3 11007 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11008 }
11009 else
11010 {
11011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 type_arg = NULL;
11013 }
11014
11015 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11016 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11017 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11018 *pos += 4;
11019
11020 if (noside == EVAL_SKIP)
11021 goto nosideret;
680e1bee
TT
11022 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11023 {
11024 if (type_arg == NULL)
11025 type_arg = value_type (arg1);
76a01679 11026
680e1bee
TT
11027 if (ada_is_constrained_packed_array_type (type_arg))
11028 type_arg = decode_constrained_packed_array_type (type_arg);
11029
11030 if (!discrete_type_p (type_arg))
11031 {
11032 switch (op)
11033 {
11034 default: /* Should never happen. */
11035 error (_("unexpected attribute encountered"));
11036 case OP_ATR_FIRST:
11037 case OP_ATR_LAST:
11038 type_arg = ada_index_type (type_arg, tem,
11039 ada_attribute_name (op));
11040 break;
11041 case OP_ATR_LENGTH:
11042 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11043 break;
11044 }
11045 }
11046
11047 return value_zero (type_arg, not_lval);
11048 }
11049 else if (type_arg == NULL)
76a01679
JB
11050 {
11051 arg1 = ada_coerce_ref (arg1);
11052
ad82864c 11053 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11054 arg1 = ada_coerce_to_simple_array (arg1);
11055
aa4fb036 11056 if (op == OP_ATR_LENGTH)
1eea4ebd 11057 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11058 else
11059 {
11060 type = ada_index_type (value_type (arg1), tem,
11061 ada_attribute_name (op));
11062 if (type == NULL)
11063 type = builtin_type (exp->gdbarch)->builtin_int;
11064 }
76a01679 11065
76a01679
JB
11066 switch (op)
11067 {
11068 default: /* Should never happen. */
323e0a4a 11069 error (_("unexpected attribute encountered"));
76a01679 11070 case OP_ATR_FIRST:
1eea4ebd
UW
11071 return value_from_longest
11072 (type, ada_array_bound (arg1, tem, 0));
76a01679 11073 case OP_ATR_LAST:
1eea4ebd
UW
11074 return value_from_longest
11075 (type, ada_array_bound (arg1, tem, 1));
76a01679 11076 case OP_ATR_LENGTH:
1eea4ebd
UW
11077 return value_from_longest
11078 (type, ada_array_length (arg1, tem));
76a01679
JB
11079 }
11080 }
11081 else if (discrete_type_p (type_arg))
11082 {
11083 struct type *range_type;
0d5cff50 11084 const char *name = ada_type_name (type_arg);
5b4ee69b 11085
76a01679
JB
11086 range_type = NULL;
11087 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11088 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11089 if (range_type == NULL)
11090 range_type = type_arg;
11091 switch (op)
11092 {
11093 default:
323e0a4a 11094 error (_("unexpected attribute encountered"));
76a01679 11095 case OP_ATR_FIRST:
690cc4eb 11096 return value_from_longest
43bbcdc2 11097 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11098 case OP_ATR_LAST:
690cc4eb 11099 return value_from_longest
43bbcdc2 11100 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11101 case OP_ATR_LENGTH:
323e0a4a 11102 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11103 }
11104 }
11105 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11106 error (_("unimplemented type attribute"));
76a01679
JB
11107 else
11108 {
11109 LONGEST low, high;
11110
ad82864c
JB
11111 if (ada_is_constrained_packed_array_type (type_arg))
11112 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11113
aa4fb036 11114 if (op == OP_ATR_LENGTH)
1eea4ebd 11115 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11116 else
11117 {
11118 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11119 if (type == NULL)
11120 type = builtin_type (exp->gdbarch)->builtin_int;
11121 }
1eea4ebd 11122
76a01679
JB
11123 switch (op)
11124 {
11125 default:
323e0a4a 11126 error (_("unexpected attribute encountered"));
76a01679 11127 case OP_ATR_FIRST:
1eea4ebd 11128 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11129 return value_from_longest (type, low);
11130 case OP_ATR_LAST:
1eea4ebd 11131 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11132 return value_from_longest (type, high);
11133 case OP_ATR_LENGTH:
1eea4ebd
UW
11134 low = ada_array_bound_from_type (type_arg, tem, 0);
11135 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11136 return value_from_longest (type, high - low + 1);
11137 }
11138 }
14f9c5c9
AS
11139 }
11140
4c4b4cd2
PH
11141 case OP_ATR_TAG:
11142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11143 if (noside == EVAL_SKIP)
76a01679 11144 goto nosideret;
4c4b4cd2
PH
11145
11146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11147 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11148
11149 return ada_value_tag (arg1);
11150
11151 case OP_ATR_MIN:
11152 case OP_ATR_MAX:
11153 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 if (noside == EVAL_SKIP)
76a01679 11157 goto nosideret;
d2e4a39e 11158 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11159 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11160 else
f44316fa
UW
11161 {
11162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11163 return value_binop (arg1, arg2,
11164 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11165 }
14f9c5c9 11166
4c4b4cd2
PH
11167 case OP_ATR_MODULUS:
11168 {
31dedfee 11169 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11170
5b4ee69b 11171 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11172 if (noside == EVAL_SKIP)
11173 goto nosideret;
4c4b4cd2 11174
76a01679 11175 if (!ada_is_modular_type (type_arg))
323e0a4a 11176 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11177
76a01679
JB
11178 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11179 ada_modulus (type_arg));
4c4b4cd2
PH
11180 }
11181
11182
11183 case OP_ATR_POS:
11184 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 if (noside == EVAL_SKIP)
76a01679 11187 goto nosideret;
3cb382c9
UW
11188 type = builtin_type (exp->gdbarch)->builtin_int;
11189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11190 return value_zero (type, not_lval);
14f9c5c9 11191 else
3cb382c9 11192 return value_pos_atr (type, arg1);
14f9c5c9 11193
4c4b4cd2
PH
11194 case OP_ATR_SIZE:
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11196 type = value_type (arg1);
11197
11198 /* If the argument is a reference, then dereference its type, since
11199 the user is really asking for the size of the actual object,
11200 not the size of the pointer. */
11201 if (TYPE_CODE (type) == TYPE_CODE_REF)
11202 type = TYPE_TARGET_TYPE (type);
11203
4c4b4cd2 11204 if (noside == EVAL_SKIP)
76a01679 11205 goto nosideret;
4c4b4cd2 11206 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11207 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11208 else
22601c15 11209 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11210 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11211
11212 case OP_ATR_VAL:
11213 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11214 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11215 type = exp->elts[pc + 2].type;
14f9c5c9 11216 if (noside == EVAL_SKIP)
76a01679 11217 goto nosideret;
4c4b4cd2 11218 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11219 return value_zero (type, not_lval);
4c4b4cd2 11220 else
76a01679 11221 return value_val_atr (type, arg1);
4c4b4cd2
PH
11222
11223 case BINOP_EXP:
11224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 if (noside == EVAL_SKIP)
11227 goto nosideret;
11228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11229 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11230 else
f44316fa
UW
11231 {
11232 /* For integer exponentiation operations,
11233 only promote the first argument. */
11234 if (is_integral_type (value_type (arg2)))
11235 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11236 else
11237 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11238
11239 return value_binop (arg1, arg2, op);
11240 }
4c4b4cd2
PH
11241
11242 case UNOP_PLUS:
11243 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11244 if (noside == EVAL_SKIP)
11245 goto nosideret;
11246 else
11247 return arg1;
11248
11249 case UNOP_ABS:
11250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11251 if (noside == EVAL_SKIP)
11252 goto nosideret;
f44316fa 11253 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11254 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11255 return value_neg (arg1);
14f9c5c9 11256 else
4c4b4cd2 11257 return arg1;
14f9c5c9
AS
11258
11259 case UNOP_IND:
5ec18f2b 11260 preeval_pos = *pos;
6b0d7253 11261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11262 if (noside == EVAL_SKIP)
4c4b4cd2 11263 goto nosideret;
df407dfe 11264 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11266 {
11267 if (ada_is_array_descriptor_type (type))
11268 /* GDB allows dereferencing GNAT array descriptors. */
11269 {
11270 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11271
4c4b4cd2 11272 if (arrType == NULL)
323e0a4a 11273 error (_("Attempt to dereference null array pointer."));
00a4c844 11274 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11275 }
11276 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11277 || TYPE_CODE (type) == TYPE_CODE_REF
11278 /* In C you can dereference an array to get the 1st elt. */
11279 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11280 {
5ec18f2b
JG
11281 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11282 only be determined by inspecting the object's tag.
11283 This means that we need to evaluate completely the
11284 expression in order to get its type. */
11285
023db19c
JB
11286 if ((TYPE_CODE (type) == TYPE_CODE_REF
11287 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11288 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11289 {
11290 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11291 EVAL_NORMAL);
11292 type = value_type (ada_value_ind (arg1));
11293 }
11294 else
11295 {
11296 type = to_static_fixed_type
11297 (ada_aligned_type
11298 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11299 }
c1b5a1a6 11300 ada_ensure_varsize_limit (type);
714e53ab
PH
11301 return value_zero (type, lval_memory);
11302 }
4c4b4cd2 11303 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11304 {
11305 /* GDB allows dereferencing an int. */
11306 if (expect_type == NULL)
11307 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11308 lval_memory);
11309 else
11310 {
11311 expect_type =
11312 to_static_fixed_type (ada_aligned_type (expect_type));
11313 return value_zero (expect_type, lval_memory);
11314 }
11315 }
4c4b4cd2 11316 else
323e0a4a 11317 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11318 }
0963b4bd 11319 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11320 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11321
96967637
JB
11322 if (TYPE_CODE (type) == TYPE_CODE_INT)
11323 /* GDB allows dereferencing an int. If we were given
11324 the expect_type, then use that as the target type.
11325 Otherwise, assume that the target type is an int. */
11326 {
11327 if (expect_type != NULL)
11328 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11329 arg1));
11330 else
11331 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11332 (CORE_ADDR) value_as_address (arg1));
11333 }
6b0d7253 11334
4c4b4cd2
PH
11335 if (ada_is_array_descriptor_type (type))
11336 /* GDB allows dereferencing GNAT array descriptors. */
11337 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11338 else
4c4b4cd2 11339 return ada_value_ind (arg1);
14f9c5c9
AS
11340
11341 case STRUCTOP_STRUCT:
11342 tem = longest_to_int (exp->elts[pc + 1].longconst);
11343 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11344 preeval_pos = *pos;
14f9c5c9
AS
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11346 if (noside == EVAL_SKIP)
4c4b4cd2 11347 goto nosideret;
14f9c5c9 11348 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11349 {
df407dfe 11350 struct type *type1 = value_type (arg1);
5b4ee69b 11351
76a01679
JB
11352 if (ada_is_tagged_type (type1, 1))
11353 {
11354 type = ada_lookup_struct_elt_type (type1,
11355 &exp->elts[pc + 2].string,
988f6b3d 11356 1, 1);
5ec18f2b
JG
11357
11358 /* If the field is not found, check if it exists in the
11359 extension of this object's type. This means that we
11360 need to evaluate completely the expression. */
11361
76a01679 11362 if (type == NULL)
5ec18f2b
JG
11363 {
11364 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11365 EVAL_NORMAL);
11366 arg1 = ada_value_struct_elt (arg1,
11367 &exp->elts[pc + 2].string,
11368 0);
11369 arg1 = unwrap_value (arg1);
11370 type = value_type (ada_to_fixed_value (arg1));
11371 }
76a01679
JB
11372 }
11373 else
11374 type =
11375 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11376 0);
76a01679
JB
11377
11378 return value_zero (ada_aligned_type (type), lval_memory);
11379 }
14f9c5c9 11380 else
a579cd9a
MW
11381 {
11382 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11383 arg1 = unwrap_value (arg1);
11384 return ada_to_fixed_value (arg1);
11385 }
284614f0 11386
14f9c5c9 11387 case OP_TYPE:
4c4b4cd2
PH
11388 /* The value is not supposed to be used. This is here to make it
11389 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11390 (*pos) += 2;
11391 if (noside == EVAL_SKIP)
4c4b4cd2 11392 goto nosideret;
14f9c5c9 11393 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11394 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11395 else
323e0a4a 11396 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11397
11398 case OP_AGGREGATE:
11399 case OP_CHOICES:
11400 case OP_OTHERS:
11401 case OP_DISCRETE_RANGE:
11402 case OP_POSITIONAL:
11403 case OP_NAME:
11404 if (noside == EVAL_NORMAL)
11405 switch (op)
11406 {
11407 case OP_NAME:
11408 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11409 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11410 case OP_AGGREGATE:
11411 error (_("Aggregates only allowed on the right of an assignment"));
11412 default:
0963b4bd
MS
11413 internal_error (__FILE__, __LINE__,
11414 _("aggregate apparently mangled"));
52ce6436
PH
11415 }
11416
11417 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11418 *pos += oplen - 1;
11419 for (tem = 0; tem < nargs; tem += 1)
11420 ada_evaluate_subexp (NULL, exp, pos, noside);
11421 goto nosideret;
14f9c5c9
AS
11422 }
11423
11424nosideret:
ced9779b 11425 return eval_skip_value (exp);
14f9c5c9 11426}
14f9c5c9 11427\f
d2e4a39e 11428
4c4b4cd2 11429 /* Fixed point */
14f9c5c9
AS
11430
11431/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11432 type name that encodes the 'small and 'delta information.
4c4b4cd2 11433 Otherwise, return NULL. */
14f9c5c9 11434
d2e4a39e 11435static const char *
ebf56fd3 11436fixed_type_info (struct type *type)
14f9c5c9 11437{
d2e4a39e 11438 const char *name = ada_type_name (type);
14f9c5c9
AS
11439 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11440
d2e4a39e
AS
11441 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11442 {
14f9c5c9 11443 const char *tail = strstr (name, "___XF_");
5b4ee69b 11444
14f9c5c9 11445 if (tail == NULL)
4c4b4cd2 11446 return NULL;
d2e4a39e 11447 else
4c4b4cd2 11448 return tail + 5;
14f9c5c9
AS
11449 }
11450 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11451 return fixed_type_info (TYPE_TARGET_TYPE (type));
11452 else
11453 return NULL;
11454}
11455
4c4b4cd2 11456/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11457
11458int
ebf56fd3 11459ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11460{
11461 return fixed_type_info (type) != NULL;
11462}
11463
4c4b4cd2
PH
11464/* Return non-zero iff TYPE represents a System.Address type. */
11465
11466int
11467ada_is_system_address_type (struct type *type)
11468{
11469 return (TYPE_NAME (type)
11470 && strcmp (TYPE_NAME (type), "system__address") == 0);
11471}
11472
14f9c5c9 11473/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11474 type, return the target floating-point type to be used to represent
11475 of this type during internal computation. */
11476
11477static struct type *
11478ada_scaling_type (struct type *type)
11479{
11480 return builtin_type (get_type_arch (type))->builtin_long_double;
11481}
11482
11483/* Assuming that TYPE is the representation of an Ada fixed-point
11484 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11485 delta cannot be determined. */
14f9c5c9 11486
50eff16b 11487struct value *
ebf56fd3 11488ada_delta (struct type *type)
14f9c5c9
AS
11489{
11490 const char *encoding = fixed_type_info (type);
50eff16b
UW
11491 struct type *scale_type = ada_scaling_type (type);
11492
11493 long long num, den;
11494
11495 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11496 return nullptr;
d2e4a39e 11497 else
50eff16b
UW
11498 return value_binop (value_from_longest (scale_type, num),
11499 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11500}
11501
11502/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11503 factor ('SMALL value) associated with the type. */
14f9c5c9 11504
50eff16b
UW
11505struct value *
11506ada_scaling_factor (struct type *type)
14f9c5c9
AS
11507{
11508 const char *encoding = fixed_type_info (type);
50eff16b
UW
11509 struct type *scale_type = ada_scaling_type (type);
11510
11511 long long num0, den0, num1, den1;
14f9c5c9 11512 int n;
d2e4a39e 11513
50eff16b 11514 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11515 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11516
11517 if (n < 2)
50eff16b 11518 return value_from_longest (scale_type, 1);
14f9c5c9 11519 else if (n == 4)
50eff16b
UW
11520 return value_binop (value_from_longest (scale_type, num1),
11521 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11522 else
50eff16b
UW
11523 return value_binop (value_from_longest (scale_type, num0),
11524 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11525}
11526
14f9c5c9 11527\f
d2e4a39e 11528
4c4b4cd2 11529 /* Range types */
14f9c5c9
AS
11530
11531/* Scan STR beginning at position K for a discriminant name, and
11532 return the value of that discriminant field of DVAL in *PX. If
11533 PNEW_K is not null, put the position of the character beyond the
11534 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11535 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11536
11537static int
108d56a4 11538scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11539 int *pnew_k)
14f9c5c9
AS
11540{
11541 static char *bound_buffer = NULL;
11542 static size_t bound_buffer_len = 0;
5da1a4d3 11543 const char *pstart, *pend, *bound;
d2e4a39e 11544 struct value *bound_val;
14f9c5c9
AS
11545
11546 if (dval == NULL || str == NULL || str[k] == '\0')
11547 return 0;
11548
5da1a4d3
SM
11549 pstart = str + k;
11550 pend = strstr (pstart, "__");
14f9c5c9
AS
11551 if (pend == NULL)
11552 {
5da1a4d3 11553 bound = pstart;
14f9c5c9
AS
11554 k += strlen (bound);
11555 }
d2e4a39e 11556 else
14f9c5c9 11557 {
5da1a4d3
SM
11558 int len = pend - pstart;
11559
11560 /* Strip __ and beyond. */
11561 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11562 strncpy (bound_buffer, pstart, len);
11563 bound_buffer[len] = '\0';
11564
14f9c5c9 11565 bound = bound_buffer;
d2e4a39e 11566 k = pend - str;
14f9c5c9 11567 }
d2e4a39e 11568
df407dfe 11569 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11570 if (bound_val == NULL)
11571 return 0;
11572
11573 *px = value_as_long (bound_val);
11574 if (pnew_k != NULL)
11575 *pnew_k = k;
11576 return 1;
11577}
11578
11579/* Value of variable named NAME in the current environment. If
11580 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11581 otherwise causes an error with message ERR_MSG. */
11582
d2e4a39e 11583static struct value *
edb0c9cb 11584get_var_value (const char *name, const char *err_msg)
14f9c5c9 11585{
b5ec771e 11586 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11587
54d343a2 11588 std::vector<struct block_symbol> syms;
b5ec771e
PA
11589 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11590 get_selected_block (0),
11591 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11592
11593 if (nsyms != 1)
11594 {
11595 if (err_msg == NULL)
4c4b4cd2 11596 return 0;
14f9c5c9 11597 else
8a3fe4f8 11598 error (("%s"), err_msg);
14f9c5c9
AS
11599 }
11600
54d343a2 11601 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11602}
d2e4a39e 11603
edb0c9cb
PA
11604/* Value of integer variable named NAME in the current environment.
11605 If no such variable is found, returns false. Otherwise, sets VALUE
11606 to the variable's value and returns true. */
4c4b4cd2 11607
edb0c9cb
PA
11608bool
11609get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11610{
4c4b4cd2 11611 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11612
14f9c5c9 11613 if (var_val == 0)
edb0c9cb
PA
11614 return false;
11615
11616 value = value_as_long (var_val);
11617 return true;
14f9c5c9 11618}
d2e4a39e 11619
14f9c5c9
AS
11620
11621/* Return a range type whose base type is that of the range type named
11622 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11623 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11624 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11625 corresponding range type from debug information; fall back to using it
11626 if symbol lookup fails. If a new type must be created, allocate it
11627 like ORIG_TYPE was. The bounds information, in general, is encoded
11628 in NAME, the base type given in the named range type. */
14f9c5c9 11629
d2e4a39e 11630static struct type *
28c85d6c 11631to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11632{
0d5cff50 11633 const char *name;
14f9c5c9 11634 struct type *base_type;
108d56a4 11635 const char *subtype_info;
14f9c5c9 11636
28c85d6c
JB
11637 gdb_assert (raw_type != NULL);
11638 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11639
1ce677a4 11640 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11641 base_type = TYPE_TARGET_TYPE (raw_type);
11642 else
11643 base_type = raw_type;
11644
28c85d6c 11645 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11646 subtype_info = strstr (name, "___XD");
11647 if (subtype_info == NULL)
690cc4eb 11648 {
43bbcdc2
PH
11649 LONGEST L = ada_discrete_type_low_bound (raw_type);
11650 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11651
690cc4eb
PH
11652 if (L < INT_MIN || U > INT_MAX)
11653 return raw_type;
11654 else
0c9c3474
SA
11655 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11656 L, U);
690cc4eb 11657 }
14f9c5c9
AS
11658 else
11659 {
11660 static char *name_buf = NULL;
11661 static size_t name_len = 0;
11662 int prefix_len = subtype_info - name;
11663 LONGEST L, U;
11664 struct type *type;
108d56a4 11665 const char *bounds_str;
14f9c5c9
AS
11666 int n;
11667
11668 GROW_VECT (name_buf, name_len, prefix_len + 5);
11669 strncpy (name_buf, name, prefix_len);
11670 name_buf[prefix_len] = '\0';
11671
11672 subtype_info += 5;
11673 bounds_str = strchr (subtype_info, '_');
11674 n = 1;
11675
d2e4a39e 11676 if (*subtype_info == 'L')
4c4b4cd2
PH
11677 {
11678 if (!ada_scan_number (bounds_str, n, &L, &n)
11679 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11680 return raw_type;
11681 if (bounds_str[n] == '_')
11682 n += 2;
0963b4bd 11683 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11684 n += 1;
11685 subtype_info += 1;
11686 }
d2e4a39e 11687 else
4c4b4cd2 11688 {
4c4b4cd2 11689 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11690 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11691 {
323e0a4a 11692 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11693 L = 1;
11694 }
11695 }
14f9c5c9 11696
d2e4a39e 11697 if (*subtype_info == 'U')
4c4b4cd2
PH
11698 {
11699 if (!ada_scan_number (bounds_str, n, &U, &n)
11700 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11701 return raw_type;
11702 }
d2e4a39e 11703 else
4c4b4cd2 11704 {
4c4b4cd2 11705 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11706 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11707 {
323e0a4a 11708 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11709 U = L;
11710 }
11711 }
14f9c5c9 11712
0c9c3474
SA
11713 type = create_static_range_type (alloc_type_copy (raw_type),
11714 base_type, L, U);
f5a91472
JB
11715 /* create_static_range_type alters the resulting type's length
11716 to match the size of the base_type, which is not what we want.
11717 Set it back to the original range type's length. */
11718 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11719 TYPE_NAME (type) = name;
14f9c5c9
AS
11720 return type;
11721 }
11722}
11723
4c4b4cd2
PH
11724/* True iff NAME is the name of a range type. */
11725
14f9c5c9 11726int
d2e4a39e 11727ada_is_range_type_name (const char *name)
14f9c5c9
AS
11728{
11729 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11730}
14f9c5c9 11731\f
d2e4a39e 11732
4c4b4cd2
PH
11733 /* Modular types */
11734
11735/* True iff TYPE is an Ada modular type. */
14f9c5c9 11736
14f9c5c9 11737int
d2e4a39e 11738ada_is_modular_type (struct type *type)
14f9c5c9 11739{
18af8284 11740 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11741
11742 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11743 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11744 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11745}
11746
4c4b4cd2
PH
11747/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11748
61ee279c 11749ULONGEST
0056e4d5 11750ada_modulus (struct type *type)
14f9c5c9 11751{
43bbcdc2 11752 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11753}
d2e4a39e 11754\f
f7f9143b
JB
11755
11756/* Ada exception catchpoint support:
11757 ---------------------------------
11758
11759 We support 3 kinds of exception catchpoints:
11760 . catchpoints on Ada exceptions
11761 . catchpoints on unhandled Ada exceptions
11762 . catchpoints on failed assertions
11763
11764 Exceptions raised during failed assertions, or unhandled exceptions
11765 could perfectly be caught with the general catchpoint on Ada exceptions.
11766 However, we can easily differentiate these two special cases, and having
11767 the option to distinguish these two cases from the rest can be useful
11768 to zero-in on certain situations.
11769
11770 Exception catchpoints are a specialized form of breakpoint,
11771 since they rely on inserting breakpoints inside known routines
11772 of the GNAT runtime. The implementation therefore uses a standard
11773 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11774 of breakpoint_ops.
11775
0259addd
JB
11776 Support in the runtime for exception catchpoints have been changed
11777 a few times already, and these changes affect the implementation
11778 of these catchpoints. In order to be able to support several
11779 variants of the runtime, we use a sniffer that will determine
28010a5d 11780 the runtime variant used by the program being debugged. */
f7f9143b 11781
82eacd52
JB
11782/* Ada's standard exceptions.
11783
11784 The Ada 83 standard also defined Numeric_Error. But there so many
11785 situations where it was unclear from the Ada 83 Reference Manual
11786 (RM) whether Constraint_Error or Numeric_Error should be raised,
11787 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11788 Interpretation saying that anytime the RM says that Numeric_Error
11789 should be raised, the implementation may raise Constraint_Error.
11790 Ada 95 went one step further and pretty much removed Numeric_Error
11791 from the list of standard exceptions (it made it a renaming of
11792 Constraint_Error, to help preserve compatibility when compiling
11793 an Ada83 compiler). As such, we do not include Numeric_Error from
11794 this list of standard exceptions. */
3d0b0fa3 11795
a121b7c1 11796static const char *standard_exc[] = {
3d0b0fa3
JB
11797 "constraint_error",
11798 "program_error",
11799 "storage_error",
11800 "tasking_error"
11801};
11802
0259addd
JB
11803typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11804
11805/* A structure that describes how to support exception catchpoints
11806 for a given executable. */
11807
11808struct exception_support_info
11809{
11810 /* The name of the symbol to break on in order to insert
11811 a catchpoint on exceptions. */
11812 const char *catch_exception_sym;
11813
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on unhandled exceptions. */
11816 const char *catch_exception_unhandled_sym;
11817
11818 /* The name of the symbol to break on in order to insert
11819 a catchpoint on failed assertions. */
11820 const char *catch_assert_sym;
11821
9f757bf7
XR
11822 /* The name of the symbol to break on in order to insert
11823 a catchpoint on exception handling. */
11824 const char *catch_handlers_sym;
11825
0259addd
JB
11826 /* Assuming that the inferior just triggered an unhandled exception
11827 catchpoint, this function is responsible for returning the address
11828 in inferior memory where the name of that exception is stored.
11829 Return zero if the address could not be computed. */
11830 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11831};
11832
11833static CORE_ADDR ada_unhandled_exception_name_addr (void);
11834static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11835
11836/* The following exception support info structure describes how to
11837 implement exception catchpoints with the latest version of the
ca683e3a 11838 Ada runtime (as of 2019-08-??). */
0259addd
JB
11839
11840static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11841{
11842 "__gnat_debug_raise_exception", /* catch_exception_sym */
11843 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11844 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11845 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11846 ada_unhandled_exception_name_addr
11847};
11848
11849/* The following exception support info structure describes how to
11850 implement exception catchpoints with an earlier version of the
11851 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11852
11853static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11854{
11855 "__gnat_debug_raise_exception", /* catch_exception_sym */
11856 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11857 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11858 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11859 ada_unhandled_exception_name_addr
11860};
11861
11862/* The following exception support info structure describes how to
11863 implement exception catchpoints with a slightly older version
11864 of the Ada runtime. */
11865
11866static const struct exception_support_info exception_support_info_fallback =
11867{
11868 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11869 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11870 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11871 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11872 ada_unhandled_exception_name_addr_from_raise
11873};
11874
f17011e0
JB
11875/* Return nonzero if we can detect the exception support routines
11876 described in EINFO.
11877
11878 This function errors out if an abnormal situation is detected
11879 (for instance, if we find the exception support routines, but
11880 that support is found to be incomplete). */
11881
11882static int
11883ada_has_this_exception_support (const struct exception_support_info *einfo)
11884{
11885 struct symbol *sym;
11886
11887 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11888 that should be compiled with debugging information. As a result, we
11889 expect to find that symbol in the symtabs. */
11890
11891 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11892 if (sym == NULL)
a6af7abe
JB
11893 {
11894 /* Perhaps we did not find our symbol because the Ada runtime was
11895 compiled without debugging info, or simply stripped of it.
11896 It happens on some GNU/Linux distributions for instance, where
11897 users have to install a separate debug package in order to get
11898 the runtime's debugging info. In that situation, let the user
11899 know why we cannot insert an Ada exception catchpoint.
11900
11901 Note: Just for the purpose of inserting our Ada exception
11902 catchpoint, we could rely purely on the associated minimal symbol.
11903 But we would be operating in degraded mode anyway, since we are
11904 still lacking the debugging info needed later on to extract
11905 the name of the exception being raised (this name is printed in
11906 the catchpoint message, and is also used when trying to catch
11907 a specific exception). We do not handle this case for now. */
3b7344d5 11908 struct bound_minimal_symbol msym
1c8e84b0
JB
11909 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11910
3b7344d5 11911 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11912 error (_("Your Ada runtime appears to be missing some debugging "
11913 "information.\nCannot insert Ada exception catchpoint "
11914 "in this configuration."));
11915
11916 return 0;
11917 }
f17011e0
JB
11918
11919 /* Make sure that the symbol we found corresponds to a function. */
11920
11921 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11922 {
11923 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11924 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11925 return 0;
11926 }
11927
11928 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11929 if (sym == NULL)
11930 {
11931 struct bound_minimal_symbol msym
11932 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11933
11934 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11935 error (_("Your Ada runtime appears to be missing some debugging "
11936 "information.\nCannot insert Ada exception catchpoint "
11937 "in this configuration."));
11938
11939 return 0;
11940 }
11941
11942 /* Make sure that the symbol we found corresponds to a function. */
11943
11944 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11945 {
11946 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11947 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11948 return 0;
11949 }
f17011e0
JB
11950
11951 return 1;
11952}
11953
0259addd
JB
11954/* Inspect the Ada runtime and determine which exception info structure
11955 should be used to provide support for exception catchpoints.
11956
3eecfa55
JB
11957 This function will always set the per-inferior exception_info,
11958 or raise an error. */
0259addd
JB
11959
11960static void
11961ada_exception_support_info_sniffer (void)
11962{
3eecfa55 11963 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11964
11965 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11966 if (data->exception_info != NULL)
0259addd
JB
11967 return;
11968
11969 /* Check the latest (default) exception support info. */
f17011e0 11970 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11971 {
3eecfa55 11972 data->exception_info = &default_exception_support_info;
0259addd
JB
11973 return;
11974 }
11975
ca683e3a
AO
11976 /* Try the v0 exception suport info. */
11977 if (ada_has_this_exception_support (&exception_support_info_v0))
11978 {
11979 data->exception_info = &exception_support_info_v0;
11980 return;
11981 }
11982
0259addd 11983 /* Try our fallback exception suport info. */
f17011e0 11984 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11985 {
3eecfa55 11986 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11987 return;
11988 }
11989
11990 /* Sometimes, it is normal for us to not be able to find the routine
11991 we are looking for. This happens when the program is linked with
11992 the shared version of the GNAT runtime, and the program has not been
11993 started yet. Inform the user of these two possible causes if
11994 applicable. */
11995
ccefe4c4 11996 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11997 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11998
11999 /* If the symbol does not exist, then check that the program is
12000 already started, to make sure that shared libraries have been
12001 loaded. If it is not started, this may mean that the symbol is
12002 in a shared library. */
12003
e99b03dc 12004 if (inferior_ptid.pid () == 0)
0259addd
JB
12005 error (_("Unable to insert catchpoint. Try to start the program first."));
12006
12007 /* At this point, we know that we are debugging an Ada program and
12008 that the inferior has been started, but we still are not able to
0963b4bd 12009 find the run-time symbols. That can mean that we are in
0259addd
JB
12010 configurable run time mode, or that a-except as been optimized
12011 out by the linker... In any case, at this point it is not worth
12012 supporting this feature. */
12013
7dda8cff 12014 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12015}
12016
f7f9143b
JB
12017/* True iff FRAME is very likely to be that of a function that is
12018 part of the runtime system. This is all very heuristic, but is
12019 intended to be used as advice as to what frames are uninteresting
12020 to most users. */
12021
12022static int
12023is_known_support_routine (struct frame_info *frame)
12024{
692465f1 12025 enum language func_lang;
f7f9143b 12026 int i;
f35a17b5 12027 const char *fullname;
f7f9143b 12028
4ed6b5be
JB
12029 /* If this code does not have any debugging information (no symtab),
12030 This cannot be any user code. */
f7f9143b 12031
51abb421 12032 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12033 if (sal.symtab == NULL)
12034 return 1;
12035
4ed6b5be
JB
12036 /* If there is a symtab, but the associated source file cannot be
12037 located, then assume this is not user code: Selecting a frame
12038 for which we cannot display the code would not be very helpful
12039 for the user. This should also take care of case such as VxWorks
12040 where the kernel has some debugging info provided for a few units. */
f7f9143b 12041
f35a17b5
JK
12042 fullname = symtab_to_fullname (sal.symtab);
12043 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12044 return 1;
12045
85102364 12046 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
12047 We also check the name of the objfile against the name of some
12048 known system libraries that sometimes come with debugging info
12049 too. */
12050
f7f9143b
JB
12051 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12052 {
12053 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12054 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12055 return 1;
eb822aa6
DE
12056 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12057 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12058 return 1;
f7f9143b
JB
12059 }
12060
4ed6b5be 12061 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12062
c6dc63a1
TT
12063 gdb::unique_xmalloc_ptr<char> func_name
12064 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12065 if (func_name == NULL)
12066 return 1;
12067
12068 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12069 {
12070 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12071 if (re_exec (func_name.get ()))
12072 return 1;
f7f9143b
JB
12073 }
12074
12075 return 0;
12076}
12077
12078/* Find the first frame that contains debugging information and that is not
12079 part of the Ada run-time, starting from FI and moving upward. */
12080
0ef643c8 12081void
f7f9143b
JB
12082ada_find_printable_frame (struct frame_info *fi)
12083{
12084 for (; fi != NULL; fi = get_prev_frame (fi))
12085 {
12086 if (!is_known_support_routine (fi))
12087 {
12088 select_frame (fi);
12089 break;
12090 }
12091 }
12092
12093}
12094
12095/* Assuming that the inferior just triggered an unhandled exception
12096 catchpoint, return the address in inferior memory where the name
12097 of the exception is stored.
12098
12099 Return zero if the address could not be computed. */
12100
12101static CORE_ADDR
12102ada_unhandled_exception_name_addr (void)
0259addd
JB
12103{
12104 return parse_and_eval_address ("e.full_name");
12105}
12106
12107/* Same as ada_unhandled_exception_name_addr, except that this function
12108 should be used when the inferior uses an older version of the runtime,
12109 where the exception name needs to be extracted from a specific frame
12110 several frames up in the callstack. */
12111
12112static CORE_ADDR
12113ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12114{
12115 int frame_level;
12116 struct frame_info *fi;
3eecfa55 12117 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12118
12119 /* To determine the name of this exception, we need to select
12120 the frame corresponding to RAISE_SYM_NAME. This frame is
12121 at least 3 levels up, so we simply skip the first 3 frames
12122 without checking the name of their associated function. */
12123 fi = get_current_frame ();
12124 for (frame_level = 0; frame_level < 3; frame_level += 1)
12125 if (fi != NULL)
12126 fi = get_prev_frame (fi);
12127
12128 while (fi != NULL)
12129 {
692465f1
JB
12130 enum language func_lang;
12131
c6dc63a1
TT
12132 gdb::unique_xmalloc_ptr<char> func_name
12133 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12134 if (func_name != NULL)
12135 {
c6dc63a1 12136 if (strcmp (func_name.get (),
55b87a52
KS
12137 data->exception_info->catch_exception_sym) == 0)
12138 break; /* We found the frame we were looking for... */
55b87a52 12139 }
fb44b1a7 12140 fi = get_prev_frame (fi);
f7f9143b
JB
12141 }
12142
12143 if (fi == NULL)
12144 return 0;
12145
12146 select_frame (fi);
12147 return parse_and_eval_address ("id.full_name");
12148}
12149
12150/* Assuming the inferior just triggered an Ada exception catchpoint
12151 (of any type), return the address in inferior memory where the name
12152 of the exception is stored, if applicable.
12153
45db7c09
PA
12154 Assumes the selected frame is the current frame.
12155
f7f9143b
JB
12156 Return zero if the address could not be computed, or if not relevant. */
12157
12158static CORE_ADDR
761269c8 12159ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12160 struct breakpoint *b)
12161{
3eecfa55
JB
12162 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12163
f7f9143b
JB
12164 switch (ex)
12165 {
761269c8 12166 case ada_catch_exception:
f7f9143b
JB
12167 return (parse_and_eval_address ("e.full_name"));
12168 break;
12169
761269c8 12170 case ada_catch_exception_unhandled:
3eecfa55 12171 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12172 break;
9f757bf7
XR
12173
12174 case ada_catch_handlers:
12175 return 0; /* The runtimes does not provide access to the exception
12176 name. */
12177 break;
12178
761269c8 12179 case ada_catch_assert:
f7f9143b
JB
12180 return 0; /* Exception name is not relevant in this case. */
12181 break;
12182
12183 default:
12184 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12185 break;
12186 }
12187
12188 return 0; /* Should never be reached. */
12189}
12190
e547c119
JB
12191/* Assuming the inferior is stopped at an exception catchpoint,
12192 return the message which was associated to the exception, if
12193 available. Return NULL if the message could not be retrieved.
12194
e547c119
JB
12195 Note: The exception message can be associated to an exception
12196 either through the use of the Raise_Exception function, or
12197 more simply (Ada 2005 and later), via:
12198
12199 raise Exception_Name with "exception message";
12200
12201 */
12202
6f46ac85 12203static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12204ada_exception_message_1 (void)
12205{
12206 struct value *e_msg_val;
e547c119 12207 int e_msg_len;
e547c119
JB
12208
12209 /* For runtimes that support this feature, the exception message
12210 is passed as an unbounded string argument called "message". */
12211 e_msg_val = parse_and_eval ("message");
12212 if (e_msg_val == NULL)
12213 return NULL; /* Exception message not supported. */
12214
12215 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12216 gdb_assert (e_msg_val != NULL);
12217 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12218
12219 /* If the message string is empty, then treat it as if there was
12220 no exception message. */
12221 if (e_msg_len <= 0)
12222 return NULL;
12223
6f46ac85
TT
12224 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12225 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12226 e_msg.get ()[e_msg_len] = '\0';
e547c119 12227
e547c119
JB
12228 return e_msg;
12229}
12230
12231/* Same as ada_exception_message_1, except that all exceptions are
12232 contained here (returning NULL instead). */
12233
6f46ac85 12234static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12235ada_exception_message (void)
12236{
6f46ac85 12237 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12238
a70b8144 12239 try
e547c119
JB
12240 {
12241 e_msg = ada_exception_message_1 ();
12242 }
230d2906 12243 catch (const gdb_exception_error &e)
e547c119 12244 {
6f46ac85 12245 e_msg.reset (nullptr);
e547c119 12246 }
e547c119
JB
12247
12248 return e_msg;
12249}
12250
f7f9143b
JB
12251/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12252 any error that ada_exception_name_addr_1 might cause to be thrown.
12253 When an error is intercepted, a warning with the error message is printed,
12254 and zero is returned. */
12255
12256static CORE_ADDR
761269c8 12257ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12258 struct breakpoint *b)
12259{
f7f9143b
JB
12260 CORE_ADDR result = 0;
12261
a70b8144 12262 try
f7f9143b
JB
12263 {
12264 result = ada_exception_name_addr_1 (ex, b);
12265 }
12266
230d2906 12267 catch (const gdb_exception_error &e)
f7f9143b 12268 {
3d6e9d23 12269 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12270 return 0;
12271 }
12272
12273 return result;
12274}
12275
cb7de75e 12276static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12277 (const char *excep_string,
12278 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12279
12280/* Ada catchpoints.
12281
12282 In the case of catchpoints on Ada exceptions, the catchpoint will
12283 stop the target on every exception the program throws. When a user
12284 specifies the name of a specific exception, we translate this
12285 request into a condition expression (in text form), and then parse
12286 it into an expression stored in each of the catchpoint's locations.
12287 We then use this condition to check whether the exception that was
12288 raised is the one the user is interested in. If not, then the
12289 target is resumed again. We store the name of the requested
12290 exception, in order to be able to re-set the condition expression
12291 when symbols change. */
12292
12293/* An instance of this type is used to represent an Ada catchpoint
5625a286 12294 breakpoint location. */
28010a5d 12295
5625a286 12296class ada_catchpoint_location : public bp_location
28010a5d 12297{
5625a286 12298public:
5f486660 12299 ada_catchpoint_location (breakpoint *owner)
f06f1252 12300 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12301 {}
28010a5d
PA
12302
12303 /* The condition that checks whether the exception that was raised
12304 is the specific exception the user specified on catchpoint
12305 creation. */
4d01a485 12306 expression_up excep_cond_expr;
28010a5d
PA
12307};
12308
c1fc2657 12309/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12310
c1fc2657 12311struct ada_catchpoint : public breakpoint
28010a5d 12312{
37f6a7f4
TT
12313 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12314 : m_kind (kind)
12315 {
12316 }
12317
28010a5d 12318 /* The name of the specific exception the user specified. */
bc18fbb5 12319 std::string excep_string;
37f6a7f4
TT
12320
12321 /* What kind of catchpoint this is. */
12322 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12323};
12324
12325/* Parse the exception condition string in the context of each of the
12326 catchpoint's locations, and store them for later evaluation. */
12327
12328static void
9f757bf7
XR
12329create_excep_cond_exprs (struct ada_catchpoint *c,
12330 enum ada_exception_catchpoint_kind ex)
28010a5d 12331{
fccf9de1
TT
12332 struct bp_location *bl;
12333
28010a5d 12334 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12335 if (c->excep_string.empty ())
28010a5d
PA
12336 return;
12337
12338 /* Same if there are no locations... */
c1fc2657 12339 if (c->loc == NULL)
28010a5d
PA
12340 return;
12341
fccf9de1
TT
12342 /* Compute the condition expression in text form, from the specific
12343 expection we want to catch. */
12344 std::string cond_string
12345 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12346
fccf9de1
TT
12347 /* Iterate over all the catchpoint's locations, and parse an
12348 expression for each. */
12349 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12350 {
12351 struct ada_catchpoint_location *ada_loc
fccf9de1 12352 = (struct ada_catchpoint_location *) bl;
4d01a485 12353 expression_up exp;
28010a5d 12354
fccf9de1 12355 if (!bl->shlib_disabled)
28010a5d 12356 {
bbc13ae3 12357 const char *s;
28010a5d 12358
cb7de75e 12359 s = cond_string.c_str ();
a70b8144 12360 try
28010a5d 12361 {
fccf9de1
TT
12362 exp = parse_exp_1 (&s, bl->address,
12363 block_for_pc (bl->address),
036e657b 12364 0);
28010a5d 12365 }
230d2906 12366 catch (const gdb_exception_error &e)
849f2b52
JB
12367 {
12368 warning (_("failed to reevaluate internal exception condition "
12369 "for catchpoint %d: %s"),
3d6e9d23 12370 c->number, e.what ());
849f2b52 12371 }
28010a5d
PA
12372 }
12373
b22e99fd 12374 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12375 }
28010a5d
PA
12376}
12377
28010a5d
PA
12378/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12379 structure for all exception catchpoint kinds. */
12380
12381static struct bp_location *
37f6a7f4 12382allocate_location_exception (struct breakpoint *self)
28010a5d 12383{
5f486660 12384 return new ada_catchpoint_location (self);
28010a5d
PA
12385}
12386
12387/* Implement the RE_SET method in the breakpoint_ops structure for all
12388 exception catchpoint kinds. */
12389
12390static void
37f6a7f4 12391re_set_exception (struct breakpoint *b)
28010a5d
PA
12392{
12393 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12394
12395 /* Call the base class's method. This updates the catchpoint's
12396 locations. */
2060206e 12397 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12398
12399 /* Reparse the exception conditional expressions. One for each
12400 location. */
37f6a7f4 12401 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12402}
12403
12404/* Returns true if we should stop for this breakpoint hit. If the
12405 user specified a specific exception, we only want to cause a stop
12406 if the program thrown that exception. */
12407
12408static int
12409should_stop_exception (const struct bp_location *bl)
12410{
12411 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12412 const struct ada_catchpoint_location *ada_loc
12413 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12414 int stop;
12415
37f6a7f4
TT
12416 struct internalvar *var = lookup_internalvar ("_ada_exception");
12417 if (c->m_kind == ada_catch_assert)
12418 clear_internalvar (var);
12419 else
12420 {
12421 try
12422 {
12423 const char *expr;
12424
12425 if (c->m_kind == ada_catch_handlers)
12426 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12427 ".all.occurrence.id");
12428 else
12429 expr = "e";
12430
12431 struct value *exc = parse_and_eval (expr);
12432 set_internalvar (var, exc);
12433 }
12434 catch (const gdb_exception_error &ex)
12435 {
12436 clear_internalvar (var);
12437 }
12438 }
12439
28010a5d 12440 /* With no specific exception, should always stop. */
bc18fbb5 12441 if (c->excep_string.empty ())
28010a5d
PA
12442 return 1;
12443
12444 if (ada_loc->excep_cond_expr == NULL)
12445 {
12446 /* We will have a NULL expression if back when we were creating
12447 the expressions, this location's had failed to parse. */
12448 return 1;
12449 }
12450
12451 stop = 1;
a70b8144 12452 try
28010a5d
PA
12453 {
12454 struct value *mark;
12455
12456 mark = value_mark ();
4d01a485 12457 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12458 value_free_to_mark (mark);
12459 }
230d2906 12460 catch (const gdb_exception &ex)
492d29ea
PA
12461 {
12462 exception_fprintf (gdb_stderr, ex,
12463 _("Error in testing exception condition:\n"));
12464 }
492d29ea 12465
28010a5d
PA
12466 return stop;
12467}
12468
12469/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12470 for all exception catchpoint kinds. */
12471
12472static void
37f6a7f4 12473check_status_exception (bpstat bs)
28010a5d
PA
12474{
12475 bs->stop = should_stop_exception (bs->bp_location_at);
12476}
12477
f7f9143b
JB
12478/* Implement the PRINT_IT method in the breakpoint_ops structure
12479 for all exception catchpoint kinds. */
12480
12481static enum print_stop_action
37f6a7f4 12482print_it_exception (bpstat bs)
f7f9143b 12483{
79a45e25 12484 struct ui_out *uiout = current_uiout;
348d480f
PA
12485 struct breakpoint *b = bs->breakpoint_at;
12486
956a9fb9 12487 annotate_catchpoint (b->number);
f7f9143b 12488
112e8700 12489 if (uiout->is_mi_like_p ())
f7f9143b 12490 {
112e8700 12491 uiout->field_string ("reason",
956a9fb9 12492 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12493 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12494 }
12495
112e8700
SM
12496 uiout->text (b->disposition == disp_del
12497 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12498 uiout->field_signed ("bkptno", b->number);
112e8700 12499 uiout->text (", ");
f7f9143b 12500
45db7c09
PA
12501 /* ada_exception_name_addr relies on the selected frame being the
12502 current frame. Need to do this here because this function may be
12503 called more than once when printing a stop, and below, we'll
12504 select the first frame past the Ada run-time (see
12505 ada_find_printable_frame). */
12506 select_frame (get_current_frame ());
12507
37f6a7f4
TT
12508 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12509 switch (c->m_kind)
f7f9143b 12510 {
761269c8
JB
12511 case ada_catch_exception:
12512 case ada_catch_exception_unhandled:
9f757bf7 12513 case ada_catch_handlers:
956a9fb9 12514 {
37f6a7f4 12515 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12516 char exception_name[256];
12517
12518 if (addr != 0)
12519 {
c714b426
PA
12520 read_memory (addr, (gdb_byte *) exception_name,
12521 sizeof (exception_name) - 1);
956a9fb9
JB
12522 exception_name [sizeof (exception_name) - 1] = '\0';
12523 }
12524 else
12525 {
12526 /* For some reason, we were unable to read the exception
12527 name. This could happen if the Runtime was compiled
12528 without debugging info, for instance. In that case,
12529 just replace the exception name by the generic string
12530 "exception" - it will read as "an exception" in the
12531 notification we are about to print. */
967cff16 12532 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12533 }
12534 /* In the case of unhandled exception breakpoints, we print
12535 the exception name as "unhandled EXCEPTION_NAME", to make
12536 it clearer to the user which kind of catchpoint just got
12537 hit. We used ui_out_text to make sure that this extra
12538 info does not pollute the exception name in the MI case. */
37f6a7f4 12539 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12540 uiout->text ("unhandled ");
12541 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12542 }
12543 break;
761269c8 12544 case ada_catch_assert:
956a9fb9
JB
12545 /* In this case, the name of the exception is not really
12546 important. Just print "failed assertion" to make it clearer
12547 that his program just hit an assertion-failure catchpoint.
12548 We used ui_out_text because this info does not belong in
12549 the MI output. */
112e8700 12550 uiout->text ("failed assertion");
956a9fb9 12551 break;
f7f9143b 12552 }
e547c119 12553
6f46ac85 12554 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12555 if (exception_message != NULL)
12556 {
e547c119 12557 uiout->text (" (");
6f46ac85 12558 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12559 uiout->text (")");
e547c119
JB
12560 }
12561
112e8700 12562 uiout->text (" at ");
956a9fb9 12563 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12564
12565 return PRINT_SRC_AND_LOC;
12566}
12567
12568/* Implement the PRINT_ONE method in the breakpoint_ops structure
12569 for all exception catchpoint kinds. */
12570
12571static void
37f6a7f4 12572print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12573{
79a45e25 12574 struct ui_out *uiout = current_uiout;
28010a5d 12575 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12576 struct value_print_options opts;
12577
12578 get_user_print_options (&opts);
f06f1252 12579
79a45b7d 12580 if (opts.addressprint)
f06f1252 12581 uiout->field_skip ("addr");
f7f9143b
JB
12582
12583 annotate_field (5);
37f6a7f4 12584 switch (c->m_kind)
f7f9143b 12585 {
761269c8 12586 case ada_catch_exception:
bc18fbb5 12587 if (!c->excep_string.empty ())
f7f9143b 12588 {
bc18fbb5
TT
12589 std::string msg = string_printf (_("`%s' Ada exception"),
12590 c->excep_string.c_str ());
28010a5d 12591
112e8700 12592 uiout->field_string ("what", msg);
f7f9143b
JB
12593 }
12594 else
112e8700 12595 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12596
12597 break;
12598
761269c8 12599 case ada_catch_exception_unhandled:
112e8700 12600 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12601 break;
12602
9f757bf7 12603 case ada_catch_handlers:
bc18fbb5 12604 if (!c->excep_string.empty ())
9f757bf7
XR
12605 {
12606 uiout->field_fmt ("what",
12607 _("`%s' Ada exception handlers"),
bc18fbb5 12608 c->excep_string.c_str ());
9f757bf7
XR
12609 }
12610 else
12611 uiout->field_string ("what", "all Ada exceptions handlers");
12612 break;
12613
761269c8 12614 case ada_catch_assert:
112e8700 12615 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12616 break;
12617
12618 default:
12619 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12620 break;
12621 }
12622}
12623
12624/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12625 for all exception catchpoint kinds. */
12626
12627static void
37f6a7f4 12628print_mention_exception (struct breakpoint *b)
f7f9143b 12629{
28010a5d 12630 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12631 struct ui_out *uiout = current_uiout;
28010a5d 12632
112e8700 12633 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12634 : _("Catchpoint "));
381befee 12635 uiout->field_signed ("bkptno", b->number);
112e8700 12636 uiout->text (": ");
00eb2c4a 12637
37f6a7f4 12638 switch (c->m_kind)
f7f9143b 12639 {
761269c8 12640 case ada_catch_exception:
bc18fbb5 12641 if (!c->excep_string.empty ())
00eb2c4a 12642 {
862d101a 12643 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12644 c->excep_string.c_str ());
862d101a 12645 uiout->text (info.c_str ());
00eb2c4a 12646 }
f7f9143b 12647 else
112e8700 12648 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12649 break;
12650
761269c8 12651 case ada_catch_exception_unhandled:
112e8700 12652 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12653 break;
9f757bf7
XR
12654
12655 case ada_catch_handlers:
bc18fbb5 12656 if (!c->excep_string.empty ())
9f757bf7
XR
12657 {
12658 std::string info
12659 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12660 c->excep_string.c_str ());
9f757bf7
XR
12661 uiout->text (info.c_str ());
12662 }
12663 else
12664 uiout->text (_("all Ada exceptions handlers"));
12665 break;
12666
761269c8 12667 case ada_catch_assert:
112e8700 12668 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12669 break;
12670
12671 default:
12672 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12673 break;
12674 }
12675}
12676
6149aea9
PA
12677/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12678 for all exception catchpoint kinds. */
12679
12680static void
37f6a7f4 12681print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12682{
28010a5d
PA
12683 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12684
37f6a7f4 12685 switch (c->m_kind)
6149aea9 12686 {
761269c8 12687 case ada_catch_exception:
6149aea9 12688 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12689 if (!c->excep_string.empty ())
12690 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12691 break;
12692
761269c8 12693 case ada_catch_exception_unhandled:
78076abc 12694 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12695 break;
12696
9f757bf7
XR
12697 case ada_catch_handlers:
12698 fprintf_filtered (fp, "catch handlers");
12699 break;
12700
761269c8 12701 case ada_catch_assert:
6149aea9
PA
12702 fprintf_filtered (fp, "catch assert");
12703 break;
12704
12705 default:
12706 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12707 }
d9b3f62e 12708 print_recreate_thread (b, fp);
6149aea9
PA
12709}
12710
37f6a7f4 12711/* Virtual tables for various breakpoint types. */
2060206e 12712static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12713static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12714static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12715static struct breakpoint_ops catch_handlers_breakpoint_ops;
12716
f06f1252
TT
12717/* See ada-lang.h. */
12718
12719bool
12720is_ada_exception_catchpoint (breakpoint *bp)
12721{
12722 return (bp->ops == &catch_exception_breakpoint_ops
12723 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12724 || bp->ops == &catch_assert_breakpoint_ops
12725 || bp->ops == &catch_handlers_breakpoint_ops);
12726}
12727
f7f9143b
JB
12728/* Split the arguments specified in a "catch exception" command.
12729 Set EX to the appropriate catchpoint type.
28010a5d 12730 Set EXCEP_STRING to the name of the specific exception if
5845583d 12731 specified by the user.
9f757bf7
XR
12732 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12733 "catch handlers" command. False otherwise.
5845583d
JB
12734 If a condition is found at the end of the arguments, the condition
12735 expression is stored in COND_STRING (memory must be deallocated
12736 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12737
12738static void
a121b7c1 12739catch_ada_exception_command_split (const char *args,
9f757bf7 12740 bool is_catch_handlers_cmd,
761269c8 12741 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12742 std::string *excep_string,
12743 std::string *cond_string)
f7f9143b 12744{
bc18fbb5 12745 std::string exception_name;
f7f9143b 12746
bc18fbb5
TT
12747 exception_name = extract_arg (&args);
12748 if (exception_name == "if")
5845583d
JB
12749 {
12750 /* This is not an exception name; this is the start of a condition
12751 expression for a catchpoint on all exceptions. So, "un-get"
12752 this token, and set exception_name to NULL. */
bc18fbb5 12753 exception_name.clear ();
5845583d
JB
12754 args -= 2;
12755 }
f7f9143b 12756
5845583d 12757 /* Check to see if we have a condition. */
f7f9143b 12758
f1735a53 12759 args = skip_spaces (args);
61012eef 12760 if (startswith (args, "if")
5845583d
JB
12761 && (isspace (args[2]) || args[2] == '\0'))
12762 {
12763 args += 2;
f1735a53 12764 args = skip_spaces (args);
5845583d
JB
12765
12766 if (args[0] == '\0')
12767 error (_("Condition missing after `if' keyword"));
bc18fbb5 12768 *cond_string = args;
5845583d
JB
12769
12770 args += strlen (args);
12771 }
12772
12773 /* Check that we do not have any more arguments. Anything else
12774 is unexpected. */
f7f9143b
JB
12775
12776 if (args[0] != '\0')
12777 error (_("Junk at end of expression"));
12778
9f757bf7
XR
12779 if (is_catch_handlers_cmd)
12780 {
12781 /* Catch handling of exceptions. */
12782 *ex = ada_catch_handlers;
12783 *excep_string = exception_name;
12784 }
bc18fbb5 12785 else if (exception_name.empty ())
f7f9143b
JB
12786 {
12787 /* Catch all exceptions. */
761269c8 12788 *ex = ada_catch_exception;
bc18fbb5 12789 excep_string->clear ();
f7f9143b 12790 }
bc18fbb5 12791 else if (exception_name == "unhandled")
f7f9143b
JB
12792 {
12793 /* Catch unhandled exceptions. */
761269c8 12794 *ex = ada_catch_exception_unhandled;
bc18fbb5 12795 excep_string->clear ();
f7f9143b
JB
12796 }
12797 else
12798 {
12799 /* Catch a specific exception. */
761269c8 12800 *ex = ada_catch_exception;
28010a5d 12801 *excep_string = exception_name;
f7f9143b
JB
12802 }
12803}
12804
12805/* Return the name of the symbol on which we should break in order to
12806 implement a catchpoint of the EX kind. */
12807
12808static const char *
761269c8 12809ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12810{
3eecfa55
JB
12811 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12812
12813 gdb_assert (data->exception_info != NULL);
0259addd 12814
f7f9143b
JB
12815 switch (ex)
12816 {
761269c8 12817 case ada_catch_exception:
3eecfa55 12818 return (data->exception_info->catch_exception_sym);
f7f9143b 12819 break;
761269c8 12820 case ada_catch_exception_unhandled:
3eecfa55 12821 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12822 break;
761269c8 12823 case ada_catch_assert:
3eecfa55 12824 return (data->exception_info->catch_assert_sym);
f7f9143b 12825 break;
9f757bf7
XR
12826 case ada_catch_handlers:
12827 return (data->exception_info->catch_handlers_sym);
12828 break;
f7f9143b
JB
12829 default:
12830 internal_error (__FILE__, __LINE__,
12831 _("unexpected catchpoint kind (%d)"), ex);
12832 }
12833}
12834
12835/* Return the breakpoint ops "virtual table" used for catchpoints
12836 of the EX kind. */
12837
c0a91b2b 12838static const struct breakpoint_ops *
761269c8 12839ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12840{
12841 switch (ex)
12842 {
761269c8 12843 case ada_catch_exception:
f7f9143b
JB
12844 return (&catch_exception_breakpoint_ops);
12845 break;
761269c8 12846 case ada_catch_exception_unhandled:
f7f9143b
JB
12847 return (&catch_exception_unhandled_breakpoint_ops);
12848 break;
761269c8 12849 case ada_catch_assert:
f7f9143b
JB
12850 return (&catch_assert_breakpoint_ops);
12851 break;
9f757bf7
XR
12852 case ada_catch_handlers:
12853 return (&catch_handlers_breakpoint_ops);
12854 break;
f7f9143b
JB
12855 default:
12856 internal_error (__FILE__, __LINE__,
12857 _("unexpected catchpoint kind (%d)"), ex);
12858 }
12859}
12860
12861/* Return the condition that will be used to match the current exception
12862 being raised with the exception that the user wants to catch. This
12863 assumes that this condition is used when the inferior just triggered
12864 an exception catchpoint.
cb7de75e 12865 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12866
cb7de75e 12867static std::string
9f757bf7
XR
12868ada_exception_catchpoint_cond_string (const char *excep_string,
12869 enum ada_exception_catchpoint_kind ex)
f7f9143b 12870{
3d0b0fa3 12871 int i;
fccf9de1 12872 bool is_standard_exc = false;
cb7de75e 12873 std::string result;
9f757bf7
XR
12874
12875 if (ex == ada_catch_handlers)
12876 {
12877 /* For exception handlers catchpoints, the condition string does
12878 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12879 result = ("long_integer (GNAT_GCC_exception_Access"
12880 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12881 }
12882 else
fccf9de1 12883 result = "long_integer (e)";
3d0b0fa3 12884
0963b4bd 12885 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12886 runtime units that have been compiled without debugging info; if
28010a5d 12887 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12888 exception (e.g. "constraint_error") then, during the evaluation
12889 of the condition expression, the symbol lookup on this name would
0963b4bd 12890 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12891 may then be set only on user-defined exceptions which have the
12892 same not-fully-qualified name (e.g. my_package.constraint_error).
12893
12894 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12895 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12896 exception constraint_error" is rewritten into "catch exception
12897 standard.constraint_error".
12898
85102364 12899 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12900 the inferior program, then the only way to specify this exception as a
12901 breakpoint condition is to use its fully-qualified named:
fccf9de1 12902 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12903
12904 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12905 {
28010a5d 12906 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12907 {
fccf9de1 12908 is_standard_exc = true;
9f757bf7 12909 break;
3d0b0fa3
JB
12910 }
12911 }
9f757bf7 12912
fccf9de1
TT
12913 result += " = ";
12914
12915 if (is_standard_exc)
12916 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12917 else
12918 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12919
9f757bf7 12920 return result;
f7f9143b
JB
12921}
12922
12923/* Return the symtab_and_line that should be used to insert an exception
12924 catchpoint of the TYPE kind.
12925
28010a5d
PA
12926 ADDR_STRING returns the name of the function where the real
12927 breakpoint that implements the catchpoints is set, depending on the
12928 type of catchpoint we need to create. */
f7f9143b
JB
12929
12930static struct symtab_and_line
bc18fbb5 12931ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12932 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12933{
12934 const char *sym_name;
12935 struct symbol *sym;
f7f9143b 12936
0259addd
JB
12937 /* First, find out which exception support info to use. */
12938 ada_exception_support_info_sniffer ();
12939
12940 /* Then lookup the function on which we will break in order to catch
f7f9143b 12941 the Ada exceptions requested by the user. */
f7f9143b
JB
12942 sym_name = ada_exception_sym_name (ex);
12943 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12944
57aff202
JB
12945 if (sym == NULL)
12946 error (_("Catchpoint symbol not found: %s"), sym_name);
12947
12948 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12949 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12950
12951 /* Set ADDR_STRING. */
cc12f4a8 12952 *addr_string = sym_name;
f7f9143b 12953
f7f9143b 12954 /* Set OPS. */
4b9eee8c 12955 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12956
f17011e0 12957 return find_function_start_sal (sym, 1);
f7f9143b
JB
12958}
12959
b4a5b78b 12960/* Create an Ada exception catchpoint.
f7f9143b 12961
b4a5b78b 12962 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12963
bc18fbb5 12964 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12965 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12966 of the exception to which this catchpoint applies.
2df4d1d5 12967
bc18fbb5 12968 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12969
b4a5b78b
JB
12970 TEMPFLAG, if nonzero, means that the underlying breakpoint
12971 should be temporary.
28010a5d 12972
b4a5b78b 12973 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12974
349774ef 12975void
28010a5d 12976create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12977 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12978 const std::string &excep_string,
56ecd069 12979 const std::string &cond_string,
28010a5d 12980 int tempflag,
349774ef 12981 int disabled,
28010a5d
PA
12982 int from_tty)
12983{
cc12f4a8 12984 std::string addr_string;
b4a5b78b 12985 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12986 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12987
37f6a7f4 12988 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12989 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12990 ops, tempflag, disabled, from_tty);
28010a5d 12991 c->excep_string = excep_string;
9f757bf7 12992 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12993 if (!cond_string.empty ())
12994 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12995 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12996}
12997
9ac4176b
PA
12998/* Implement the "catch exception" command. */
12999
13000static void
eb4c3f4a 13001catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13002 struct cmd_list_element *command)
13003{
a121b7c1 13004 const char *arg = arg_entry;
9ac4176b
PA
13005 struct gdbarch *gdbarch = get_current_arch ();
13006 int tempflag;
761269c8 13007 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13008 std::string excep_string;
56ecd069 13009 std::string cond_string;
9ac4176b
PA
13010
13011 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13012
13013 if (!arg)
13014 arg = "";
9f757bf7 13015 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13016 &cond_string);
9f757bf7
XR
13017 create_ada_exception_catchpoint (gdbarch, ex_kind,
13018 excep_string, cond_string,
13019 tempflag, 1 /* enabled */,
13020 from_tty);
13021}
13022
13023/* Implement the "catch handlers" command. */
13024
13025static void
13026catch_ada_handlers_command (const char *arg_entry, int from_tty,
13027 struct cmd_list_element *command)
13028{
13029 const char *arg = arg_entry;
13030 struct gdbarch *gdbarch = get_current_arch ();
13031 int tempflag;
13032 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13033 std::string excep_string;
56ecd069 13034 std::string cond_string;
9f757bf7
XR
13035
13036 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13037
13038 if (!arg)
13039 arg = "";
13040 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13041 &cond_string);
b4a5b78b
JB
13042 create_ada_exception_catchpoint (gdbarch, ex_kind,
13043 excep_string, cond_string,
349774ef
JB
13044 tempflag, 1 /* enabled */,
13045 from_tty);
9ac4176b
PA
13046}
13047
71bed2db
TT
13048/* Completion function for the Ada "catch" commands. */
13049
13050static void
13051catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13052 const char *text, const char *word)
13053{
13054 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13055
13056 for (const ada_exc_info &info : exceptions)
13057 {
13058 if (startswith (info.name, word))
b02f78f9 13059 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13060 }
13061}
13062
b4a5b78b 13063/* Split the arguments specified in a "catch assert" command.
5845583d 13064
b4a5b78b
JB
13065 ARGS contains the command's arguments (or the empty string if
13066 no arguments were passed).
5845583d
JB
13067
13068 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13069 (the memory needs to be deallocated after use). */
5845583d 13070
b4a5b78b 13071static void
56ecd069 13072catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13073{
f1735a53 13074 args = skip_spaces (args);
f7f9143b 13075
5845583d 13076 /* Check whether a condition was provided. */
61012eef 13077 if (startswith (args, "if")
5845583d 13078 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13079 {
5845583d 13080 args += 2;
f1735a53 13081 args = skip_spaces (args);
5845583d
JB
13082 if (args[0] == '\0')
13083 error (_("condition missing after `if' keyword"));
56ecd069 13084 cond_string.assign (args);
f7f9143b
JB
13085 }
13086
5845583d
JB
13087 /* Otherwise, there should be no other argument at the end of
13088 the command. */
13089 else if (args[0] != '\0')
13090 error (_("Junk at end of arguments."));
f7f9143b
JB
13091}
13092
9ac4176b
PA
13093/* Implement the "catch assert" command. */
13094
13095static void
eb4c3f4a 13096catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13097 struct cmd_list_element *command)
13098{
a121b7c1 13099 const char *arg = arg_entry;
9ac4176b
PA
13100 struct gdbarch *gdbarch = get_current_arch ();
13101 int tempflag;
56ecd069 13102 std::string cond_string;
9ac4176b
PA
13103
13104 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13105
13106 if (!arg)
13107 arg = "";
56ecd069 13108 catch_ada_assert_command_split (arg, cond_string);
761269c8 13109 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13110 "", cond_string,
349774ef
JB
13111 tempflag, 1 /* enabled */,
13112 from_tty);
9ac4176b 13113}
778865d3
JB
13114
13115/* Return non-zero if the symbol SYM is an Ada exception object. */
13116
13117static int
13118ada_is_exception_sym (struct symbol *sym)
13119{
a737d952 13120 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13121
13122 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13123 && SYMBOL_CLASS (sym) != LOC_BLOCK
13124 && SYMBOL_CLASS (sym) != LOC_CONST
13125 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13126 && type_name != NULL && strcmp (type_name, "exception") == 0);
13127}
13128
13129/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13130 Ada exception object. This matches all exceptions except the ones
13131 defined by the Ada language. */
13132
13133static int
13134ada_is_non_standard_exception_sym (struct symbol *sym)
13135{
13136 int i;
13137
13138 if (!ada_is_exception_sym (sym))
13139 return 0;
13140
13141 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 13142 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
13143 return 0; /* A standard exception. */
13144
13145 /* Numeric_Error is also a standard exception, so exclude it.
13146 See the STANDARD_EXC description for more details as to why
13147 this exception is not listed in that array. */
987012b8 13148 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
13149 return 0;
13150
13151 return 1;
13152}
13153
ab816a27 13154/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13155 objects.
13156
13157 The comparison is determined first by exception name, and then
13158 by exception address. */
13159
ab816a27 13160bool
cc536b21 13161ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13162{
778865d3
JB
13163 int result;
13164
ab816a27
TT
13165 result = strcmp (name, other.name);
13166 if (result < 0)
13167 return true;
13168 if (result == 0 && addr < other.addr)
13169 return true;
13170 return false;
13171}
778865d3 13172
ab816a27 13173bool
cc536b21 13174ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13175{
13176 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13177}
13178
13179/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13180 routine, but keeping the first SKIP elements untouched.
13181
13182 All duplicates are also removed. */
13183
13184static void
ab816a27 13185sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13186 int skip)
13187{
ab816a27
TT
13188 std::sort (exceptions->begin () + skip, exceptions->end ());
13189 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13190 exceptions->end ());
778865d3
JB
13191}
13192
778865d3
JB
13193/* Add all exceptions defined by the Ada standard whose name match
13194 a regular expression.
13195
13196 If PREG is not NULL, then this regexp_t object is used to
13197 perform the symbol name matching. Otherwise, no name-based
13198 filtering is performed.
13199
13200 EXCEPTIONS is a vector of exceptions to which matching exceptions
13201 gets pushed. */
13202
13203static void
2d7cc5c7 13204ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13205 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13206{
13207 int i;
13208
13209 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13210 {
13211 if (preg == NULL
2d7cc5c7 13212 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13213 {
13214 struct bound_minimal_symbol msymbol
13215 = ada_lookup_simple_minsym (standard_exc[i]);
13216
13217 if (msymbol.minsym != NULL)
13218 {
13219 struct ada_exc_info info
77e371c0 13220 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13221
ab816a27 13222 exceptions->push_back (info);
778865d3
JB
13223 }
13224 }
13225 }
13226}
13227
13228/* Add all Ada exceptions defined locally and accessible from the given
13229 FRAME.
13230
13231 If PREG is not NULL, then this regexp_t object is used to
13232 perform the symbol name matching. Otherwise, no name-based
13233 filtering is performed.
13234
13235 EXCEPTIONS is a vector of exceptions to which matching exceptions
13236 gets pushed. */
13237
13238static void
2d7cc5c7
PA
13239ada_add_exceptions_from_frame (compiled_regex *preg,
13240 struct frame_info *frame,
ab816a27 13241 std::vector<ada_exc_info> *exceptions)
778865d3 13242{
3977b71f 13243 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13244
13245 while (block != 0)
13246 {
13247 struct block_iterator iter;
13248 struct symbol *sym;
13249
13250 ALL_BLOCK_SYMBOLS (block, iter, sym)
13251 {
13252 switch (SYMBOL_CLASS (sym))
13253 {
13254 case LOC_TYPEDEF:
13255 case LOC_BLOCK:
13256 case LOC_CONST:
13257 break;
13258 default:
13259 if (ada_is_exception_sym (sym))
13260 {
987012b8 13261 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13262 SYMBOL_VALUE_ADDRESS (sym)};
13263
ab816a27 13264 exceptions->push_back (info);
778865d3
JB
13265 }
13266 }
13267 }
13268 if (BLOCK_FUNCTION (block) != NULL)
13269 break;
13270 block = BLOCK_SUPERBLOCK (block);
13271 }
13272}
13273
14bc53a8
PA
13274/* Return true if NAME matches PREG or if PREG is NULL. */
13275
13276static bool
2d7cc5c7 13277name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13278{
13279 return (preg == NULL
f945dedf 13280 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13281}
13282
778865d3
JB
13283/* Add all exceptions defined globally whose name name match
13284 a regular expression, excluding standard exceptions.
13285
13286 The reason we exclude standard exceptions is that they need
13287 to be handled separately: Standard exceptions are defined inside
13288 a runtime unit which is normally not compiled with debugging info,
13289 and thus usually do not show up in our symbol search. However,
13290 if the unit was in fact built with debugging info, we need to
13291 exclude them because they would duplicate the entry we found
13292 during the special loop that specifically searches for those
13293 standard exceptions.
13294
13295 If PREG is not NULL, then this regexp_t object is used to
13296 perform the symbol name matching. Otherwise, no name-based
13297 filtering is performed.
13298
13299 EXCEPTIONS is a vector of exceptions to which matching exceptions
13300 gets pushed. */
13301
13302static void
2d7cc5c7 13303ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13304 std::vector<ada_exc_info> *exceptions)
778865d3 13305{
14bc53a8
PA
13306 /* In Ada, the symbol "search name" is a linkage name, whereas the
13307 regular expression used to do the matching refers to the natural
13308 name. So match against the decoded name. */
13309 expand_symtabs_matching (NULL,
b5ec771e 13310 lookup_name_info::match_any (),
14bc53a8
PA
13311 [&] (const char *search_name)
13312 {
f945dedf
CB
13313 std::string decoded = ada_decode (search_name);
13314 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13315 },
13316 NULL,
13317 VARIABLES_DOMAIN);
778865d3 13318
2030c079 13319 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13320 {
b669c953 13321 for (compunit_symtab *s : objfile->compunits ())
778865d3 13322 {
d8aeb77f
TT
13323 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13324 int i;
778865d3 13325
d8aeb77f
TT
13326 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13327 {
582942f4 13328 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13329 struct block_iterator iter;
13330 struct symbol *sym;
778865d3 13331
d8aeb77f
TT
13332 ALL_BLOCK_SYMBOLS (b, iter, sym)
13333 if (ada_is_non_standard_exception_sym (sym)
987012b8 13334 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13335 {
13336 struct ada_exc_info info
987012b8 13337 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13338
13339 exceptions->push_back (info);
13340 }
13341 }
778865d3
JB
13342 }
13343 }
13344}
13345
13346/* Implements ada_exceptions_list with the regular expression passed
13347 as a regex_t, rather than a string.
13348
13349 If not NULL, PREG is used to filter out exceptions whose names
13350 do not match. Otherwise, all exceptions are listed. */
13351
ab816a27 13352static std::vector<ada_exc_info>
2d7cc5c7 13353ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13354{
ab816a27 13355 std::vector<ada_exc_info> result;
778865d3
JB
13356 int prev_len;
13357
13358 /* First, list the known standard exceptions. These exceptions
13359 need to be handled separately, as they are usually defined in
13360 runtime units that have been compiled without debugging info. */
13361
13362 ada_add_standard_exceptions (preg, &result);
13363
13364 /* Next, find all exceptions whose scope is local and accessible
13365 from the currently selected frame. */
13366
13367 if (has_stack_frames ())
13368 {
ab816a27 13369 prev_len = result.size ();
778865d3
JB
13370 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13371 &result);
ab816a27 13372 if (result.size () > prev_len)
778865d3
JB
13373 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13374 }
13375
13376 /* Add all exceptions whose scope is global. */
13377
ab816a27 13378 prev_len = result.size ();
778865d3 13379 ada_add_global_exceptions (preg, &result);
ab816a27 13380 if (result.size () > prev_len)
778865d3
JB
13381 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13382
778865d3
JB
13383 return result;
13384}
13385
13386/* Return a vector of ada_exc_info.
13387
13388 If REGEXP is NULL, all exceptions are included in the result.
13389 Otherwise, it should contain a valid regular expression,
13390 and only the exceptions whose names match that regular expression
13391 are included in the result.
13392
13393 The exceptions are sorted in the following order:
13394 - Standard exceptions (defined by the Ada language), in
13395 alphabetical order;
13396 - Exceptions only visible from the current frame, in
13397 alphabetical order;
13398 - Exceptions whose scope is global, in alphabetical order. */
13399
ab816a27 13400std::vector<ada_exc_info>
778865d3
JB
13401ada_exceptions_list (const char *regexp)
13402{
2d7cc5c7
PA
13403 if (regexp == NULL)
13404 return ada_exceptions_list_1 (NULL);
778865d3 13405
2d7cc5c7
PA
13406 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13407 return ada_exceptions_list_1 (&reg);
778865d3
JB
13408}
13409
13410/* Implement the "info exceptions" command. */
13411
13412static void
1d12d88f 13413info_exceptions_command (const char *regexp, int from_tty)
778865d3 13414{
778865d3 13415 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13416
ab816a27 13417 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13418
13419 if (regexp != NULL)
13420 printf_filtered
13421 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13422 else
13423 printf_filtered (_("All defined Ada exceptions:\n"));
13424
ab816a27
TT
13425 for (const ada_exc_info &info : exceptions)
13426 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13427}
13428
4c4b4cd2
PH
13429 /* Operators */
13430/* Information about operators given special treatment in functions
13431 below. */
13432/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13433
13434#define ADA_OPERATORS \
13435 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13436 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13437 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13438 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13439 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13440 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13441 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13442 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13443 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13444 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13445 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13446 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13447 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13448 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13449 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13450 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13451 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13452 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13453 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13454
13455static void
554794dc
SDJ
13456ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13457 int *argsp)
4c4b4cd2
PH
13458{
13459 switch (exp->elts[pc - 1].opcode)
13460 {
76a01679 13461 default:
4c4b4cd2
PH
13462 operator_length_standard (exp, pc, oplenp, argsp);
13463 break;
13464
13465#define OP_DEFN(op, len, args, binop) \
13466 case op: *oplenp = len; *argsp = args; break;
13467 ADA_OPERATORS;
13468#undef OP_DEFN
52ce6436
PH
13469
13470 case OP_AGGREGATE:
13471 *oplenp = 3;
13472 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13473 break;
13474
13475 case OP_CHOICES:
13476 *oplenp = 3;
13477 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13478 break;
4c4b4cd2
PH
13479 }
13480}
13481
c0201579
JK
13482/* Implementation of the exp_descriptor method operator_check. */
13483
13484static int
13485ada_operator_check (struct expression *exp, int pos,
13486 int (*objfile_func) (struct objfile *objfile, void *data),
13487 void *data)
13488{
13489 const union exp_element *const elts = exp->elts;
13490 struct type *type = NULL;
13491
13492 switch (elts[pos].opcode)
13493 {
13494 case UNOP_IN_RANGE:
13495 case UNOP_QUAL:
13496 type = elts[pos + 1].type;
13497 break;
13498
13499 default:
13500 return operator_check_standard (exp, pos, objfile_func, data);
13501 }
13502
13503 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13504
13505 if (type && TYPE_OBJFILE (type)
13506 && (*objfile_func) (TYPE_OBJFILE (type), data))
13507 return 1;
13508
13509 return 0;
13510}
13511
a121b7c1 13512static const char *
4c4b4cd2
PH
13513ada_op_name (enum exp_opcode opcode)
13514{
13515 switch (opcode)
13516 {
76a01679 13517 default:
4c4b4cd2 13518 return op_name_standard (opcode);
52ce6436 13519
4c4b4cd2
PH
13520#define OP_DEFN(op, len, args, binop) case op: return #op;
13521 ADA_OPERATORS;
13522#undef OP_DEFN
52ce6436
PH
13523
13524 case OP_AGGREGATE:
13525 return "OP_AGGREGATE";
13526 case OP_CHOICES:
13527 return "OP_CHOICES";
13528 case OP_NAME:
13529 return "OP_NAME";
4c4b4cd2
PH
13530 }
13531}
13532
13533/* As for operator_length, but assumes PC is pointing at the first
13534 element of the operator, and gives meaningful results only for the
52ce6436 13535 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13536
13537static void
76a01679
JB
13538ada_forward_operator_length (struct expression *exp, int pc,
13539 int *oplenp, int *argsp)
4c4b4cd2 13540{
76a01679 13541 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13542 {
13543 default:
13544 *oplenp = *argsp = 0;
13545 break;
52ce6436 13546
4c4b4cd2
PH
13547#define OP_DEFN(op, len, args, binop) \
13548 case op: *oplenp = len; *argsp = args; break;
13549 ADA_OPERATORS;
13550#undef OP_DEFN
52ce6436
PH
13551
13552 case OP_AGGREGATE:
13553 *oplenp = 3;
13554 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13555 break;
13556
13557 case OP_CHOICES:
13558 *oplenp = 3;
13559 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13560 break;
13561
13562 case OP_STRING:
13563 case OP_NAME:
13564 {
13565 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13566
52ce6436
PH
13567 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13568 *argsp = 0;
13569 break;
13570 }
4c4b4cd2
PH
13571 }
13572}
13573
13574static int
13575ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13576{
13577 enum exp_opcode op = exp->elts[elt].opcode;
13578 int oplen, nargs;
13579 int pc = elt;
13580 int i;
76a01679 13581
4c4b4cd2
PH
13582 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13583
76a01679 13584 switch (op)
4c4b4cd2 13585 {
76a01679 13586 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13587 case OP_ATR_FIRST:
13588 case OP_ATR_LAST:
13589 case OP_ATR_LENGTH:
13590 case OP_ATR_IMAGE:
13591 case OP_ATR_MAX:
13592 case OP_ATR_MIN:
13593 case OP_ATR_MODULUS:
13594 case OP_ATR_POS:
13595 case OP_ATR_SIZE:
13596 case OP_ATR_TAG:
13597 case OP_ATR_VAL:
13598 break;
13599
13600 case UNOP_IN_RANGE:
13601 case UNOP_QUAL:
323e0a4a
AC
13602 /* XXX: gdb_sprint_host_address, type_sprint */
13603 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13604 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13605 fprintf_filtered (stream, " (");
13606 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13607 fprintf_filtered (stream, ")");
13608 break;
13609 case BINOP_IN_BOUNDS:
52ce6436
PH
13610 fprintf_filtered (stream, " (%d)",
13611 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13612 break;
13613 case TERNOP_IN_RANGE:
13614 break;
13615
52ce6436
PH
13616 case OP_AGGREGATE:
13617 case OP_OTHERS:
13618 case OP_DISCRETE_RANGE:
13619 case OP_POSITIONAL:
13620 case OP_CHOICES:
13621 break;
13622
13623 case OP_NAME:
13624 case OP_STRING:
13625 {
13626 char *name = &exp->elts[elt + 2].string;
13627 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13628
52ce6436
PH
13629 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13630 break;
13631 }
13632
4c4b4cd2
PH
13633 default:
13634 return dump_subexp_body_standard (exp, stream, elt);
13635 }
13636
13637 elt += oplen;
13638 for (i = 0; i < nargs; i += 1)
13639 elt = dump_subexp (exp, stream, elt);
13640
13641 return elt;
13642}
13643
13644/* The Ada extension of print_subexp (q.v.). */
13645
76a01679
JB
13646static void
13647ada_print_subexp (struct expression *exp, int *pos,
13648 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13649{
52ce6436 13650 int oplen, nargs, i;
4c4b4cd2
PH
13651 int pc = *pos;
13652 enum exp_opcode op = exp->elts[pc].opcode;
13653
13654 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13655
52ce6436 13656 *pos += oplen;
4c4b4cd2
PH
13657 switch (op)
13658 {
13659 default:
52ce6436 13660 *pos -= oplen;
4c4b4cd2
PH
13661 print_subexp_standard (exp, pos, stream, prec);
13662 return;
13663
13664 case OP_VAR_VALUE:
987012b8 13665 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13666 return;
13667
13668 case BINOP_IN_BOUNDS:
323e0a4a 13669 /* XXX: sprint_subexp */
4c4b4cd2 13670 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13671 fputs_filtered (" in ", stream);
4c4b4cd2 13672 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13673 fputs_filtered ("'range", stream);
4c4b4cd2 13674 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13675 fprintf_filtered (stream, "(%ld)",
13676 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13677 return;
13678
13679 case TERNOP_IN_RANGE:
4c4b4cd2 13680 if (prec >= PREC_EQUAL)
76a01679 13681 fputs_filtered ("(", stream);
323e0a4a 13682 /* XXX: sprint_subexp */
4c4b4cd2 13683 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13684 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13685 print_subexp (exp, pos, stream, PREC_EQUAL);
13686 fputs_filtered (" .. ", stream);
13687 print_subexp (exp, pos, stream, PREC_EQUAL);
13688 if (prec >= PREC_EQUAL)
76a01679
JB
13689 fputs_filtered (")", stream);
13690 return;
4c4b4cd2
PH
13691
13692 case OP_ATR_FIRST:
13693 case OP_ATR_LAST:
13694 case OP_ATR_LENGTH:
13695 case OP_ATR_IMAGE:
13696 case OP_ATR_MAX:
13697 case OP_ATR_MIN:
13698 case OP_ATR_MODULUS:
13699 case OP_ATR_POS:
13700 case OP_ATR_SIZE:
13701 case OP_ATR_TAG:
13702 case OP_ATR_VAL:
4c4b4cd2 13703 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13704 {
13705 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13706 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13707 &type_print_raw_options);
76a01679
JB
13708 *pos += 3;
13709 }
4c4b4cd2 13710 else
76a01679 13711 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13712 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13713 if (nargs > 1)
76a01679
JB
13714 {
13715 int tem;
5b4ee69b 13716
76a01679
JB
13717 for (tem = 1; tem < nargs; tem += 1)
13718 {
13719 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13720 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13721 }
13722 fputs_filtered (")", stream);
13723 }
4c4b4cd2 13724 return;
14f9c5c9 13725
4c4b4cd2 13726 case UNOP_QUAL:
4c4b4cd2
PH
13727 type_print (exp->elts[pc + 1].type, "", stream, 0);
13728 fputs_filtered ("'(", stream);
13729 print_subexp (exp, pos, stream, PREC_PREFIX);
13730 fputs_filtered (")", stream);
13731 return;
14f9c5c9 13732
4c4b4cd2 13733 case UNOP_IN_RANGE:
323e0a4a 13734 /* XXX: sprint_subexp */
4c4b4cd2 13735 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13736 fputs_filtered (" in ", stream);
79d43c61
TT
13737 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13738 &type_print_raw_options);
4c4b4cd2 13739 return;
52ce6436
PH
13740
13741 case OP_DISCRETE_RANGE:
13742 print_subexp (exp, pos, stream, PREC_SUFFIX);
13743 fputs_filtered ("..", stream);
13744 print_subexp (exp, pos, stream, PREC_SUFFIX);
13745 return;
13746
13747 case OP_OTHERS:
13748 fputs_filtered ("others => ", stream);
13749 print_subexp (exp, pos, stream, PREC_SUFFIX);
13750 return;
13751
13752 case OP_CHOICES:
13753 for (i = 0; i < nargs-1; i += 1)
13754 {
13755 if (i > 0)
13756 fputs_filtered ("|", stream);
13757 print_subexp (exp, pos, stream, PREC_SUFFIX);
13758 }
13759 fputs_filtered (" => ", stream);
13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 return;
13762
13763 case OP_POSITIONAL:
13764 print_subexp (exp, pos, stream, PREC_SUFFIX);
13765 return;
13766
13767 case OP_AGGREGATE:
13768 fputs_filtered ("(", stream);
13769 for (i = 0; i < nargs; i += 1)
13770 {
13771 if (i > 0)
13772 fputs_filtered (", ", stream);
13773 print_subexp (exp, pos, stream, PREC_SUFFIX);
13774 }
13775 fputs_filtered (")", stream);
13776 return;
4c4b4cd2
PH
13777 }
13778}
14f9c5c9
AS
13779
13780/* Table mapping opcodes into strings for printing operators
13781 and precedences of the operators. */
13782
d2e4a39e
AS
13783static const struct op_print ada_op_print_tab[] = {
13784 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13785 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13786 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13787 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13788 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13789 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13790 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13791 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13792 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13793 {">=", BINOP_GEQ, PREC_ORDER, 0},
13794 {">", BINOP_GTR, PREC_ORDER, 0},
13795 {"<", BINOP_LESS, PREC_ORDER, 0},
13796 {">>", BINOP_RSH, PREC_SHIFT, 0},
13797 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13798 {"+", BINOP_ADD, PREC_ADD, 0},
13799 {"-", BINOP_SUB, PREC_ADD, 0},
13800 {"&", BINOP_CONCAT, PREC_ADD, 0},
13801 {"*", BINOP_MUL, PREC_MUL, 0},
13802 {"/", BINOP_DIV, PREC_MUL, 0},
13803 {"rem", BINOP_REM, PREC_MUL, 0},
13804 {"mod", BINOP_MOD, PREC_MUL, 0},
13805 {"**", BINOP_EXP, PREC_REPEAT, 0},
13806 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13807 {"-", UNOP_NEG, PREC_PREFIX, 0},
13808 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13809 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13810 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13811 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13812 {".all", UNOP_IND, PREC_SUFFIX, 1},
13813 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13814 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13815 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13816};
13817\f
72d5681a
PH
13818enum ada_primitive_types {
13819 ada_primitive_type_int,
13820 ada_primitive_type_long,
13821 ada_primitive_type_short,
13822 ada_primitive_type_char,
13823 ada_primitive_type_float,
13824 ada_primitive_type_double,
13825 ada_primitive_type_void,
13826 ada_primitive_type_long_long,
13827 ada_primitive_type_long_double,
13828 ada_primitive_type_natural,
13829 ada_primitive_type_positive,
13830 ada_primitive_type_system_address,
08f49010 13831 ada_primitive_type_storage_offset,
72d5681a
PH
13832 nr_ada_primitive_types
13833};
6c038f32
PH
13834
13835static void
d4a9a881 13836ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13837 struct language_arch_info *lai)
13838{
d4a9a881 13839 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13840
72d5681a 13841 lai->primitive_type_vector
d4a9a881 13842 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13843 struct type *);
e9bb382b
UW
13844
13845 lai->primitive_type_vector [ada_primitive_type_int]
13846 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13847 0, "integer");
13848 lai->primitive_type_vector [ada_primitive_type_long]
13849 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13850 0, "long_integer");
13851 lai->primitive_type_vector [ada_primitive_type_short]
13852 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13853 0, "short_integer");
13854 lai->string_char_type
13855 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13856 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13857 lai->primitive_type_vector [ada_primitive_type_float]
13858 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13859 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13860 lai->primitive_type_vector [ada_primitive_type_double]
13861 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13862 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13863 lai->primitive_type_vector [ada_primitive_type_long_long]
13864 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13865 0, "long_long_integer");
13866 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13867 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13868 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13869 lai->primitive_type_vector [ada_primitive_type_natural]
13870 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13871 0, "natural");
13872 lai->primitive_type_vector [ada_primitive_type_positive]
13873 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13874 0, "positive");
13875 lai->primitive_type_vector [ada_primitive_type_void]
13876 = builtin->builtin_void;
13877
13878 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13879 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13880 "void"));
72d5681a
PH
13881 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13882 = "system__address";
fbb06eb1 13883
08f49010
XR
13884 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13885 type. This is a signed integral type whose size is the same as
13886 the size of addresses. */
13887 {
13888 unsigned int addr_length = TYPE_LENGTH
13889 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13890
13891 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13892 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13893 "storage_offset");
13894 }
13895
47e729a8 13896 lai->bool_type_symbol = NULL;
fbb06eb1 13897 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13898}
6c038f32
PH
13899\f
13900 /* Language vector */
13901
13902/* Not really used, but needed in the ada_language_defn. */
13903
13904static void
6c7a06a3 13905emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13906{
6c7a06a3 13907 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13908}
13909
13910static int
410a0ff2 13911parse (struct parser_state *ps)
6c038f32
PH
13912{
13913 warnings_issued = 0;
410a0ff2 13914 return ada_parse (ps);
6c038f32
PH
13915}
13916
13917static const struct exp_descriptor ada_exp_descriptor = {
13918 ada_print_subexp,
13919 ada_operator_length,
c0201579 13920 ada_operator_check,
6c038f32
PH
13921 ada_op_name,
13922 ada_dump_subexp_body,
13923 ada_evaluate_subexp
13924};
13925
b5ec771e
PA
13926/* symbol_name_matcher_ftype adapter for wild_match. */
13927
13928static bool
13929do_wild_match (const char *symbol_search_name,
13930 const lookup_name_info &lookup_name,
a207cff2 13931 completion_match_result *comp_match_res)
b5ec771e
PA
13932{
13933 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13934}
13935
13936/* symbol_name_matcher_ftype adapter for full_match. */
13937
13938static bool
13939do_full_match (const char *symbol_search_name,
13940 const lookup_name_info &lookup_name,
a207cff2 13941 completion_match_result *comp_match_res)
b5ec771e
PA
13942{
13943 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13944}
13945
a2cd4f14
JB
13946/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13947
13948static bool
13949do_exact_match (const char *symbol_search_name,
13950 const lookup_name_info &lookup_name,
13951 completion_match_result *comp_match_res)
13952{
13953 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13954}
13955
b5ec771e
PA
13956/* Build the Ada lookup name for LOOKUP_NAME. */
13957
13958ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13959{
13960 const std::string &user_name = lookup_name.name ();
13961
13962 if (user_name[0] == '<')
13963 {
13964 if (user_name.back () == '>')
13965 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13966 else
13967 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13968 m_encoded_p = true;
13969 m_verbatim_p = true;
13970 m_wild_match_p = false;
13971 m_standard_p = false;
13972 }
13973 else
13974 {
13975 m_verbatim_p = false;
13976
13977 m_encoded_p = user_name.find ("__") != std::string::npos;
13978
13979 if (!m_encoded_p)
13980 {
13981 const char *folded = ada_fold_name (user_name.c_str ());
13982 const char *encoded = ada_encode_1 (folded, false);
13983 if (encoded != NULL)
13984 m_encoded_name = encoded;
13985 else
13986 m_encoded_name = user_name;
13987 }
13988 else
13989 m_encoded_name = user_name;
13990
13991 /* Handle the 'package Standard' special case. See description
13992 of m_standard_p. */
13993 if (startswith (m_encoded_name.c_str (), "standard__"))
13994 {
13995 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13996 m_standard_p = true;
13997 }
13998 else
13999 m_standard_p = false;
74ccd7f5 14000
b5ec771e
PA
14001 /* If the name contains a ".", then the user is entering a fully
14002 qualified entity name, and the match must not be done in wild
14003 mode. Similarly, if the user wants to complete what looks
14004 like an encoded name, the match must not be done in wild
14005 mode. Also, in the standard__ special case always do
14006 non-wild matching. */
14007 m_wild_match_p
14008 = (lookup_name.match_type () != symbol_name_match_type::FULL
14009 && !m_encoded_p
14010 && !m_standard_p
14011 && user_name.find ('.') == std::string::npos);
14012 }
14013}
14014
14015/* symbol_name_matcher_ftype method for Ada. This only handles
14016 completion mode. */
14017
14018static bool
14019ada_symbol_name_matches (const char *symbol_search_name,
14020 const lookup_name_info &lookup_name,
a207cff2 14021 completion_match_result *comp_match_res)
74ccd7f5 14022{
b5ec771e
PA
14023 return lookup_name.ada ().matches (symbol_search_name,
14024 lookup_name.match_type (),
a207cff2 14025 comp_match_res);
b5ec771e
PA
14026}
14027
de63c46b
PA
14028/* A name matcher that matches the symbol name exactly, with
14029 strcmp. */
14030
14031static bool
14032literal_symbol_name_matcher (const char *symbol_search_name,
14033 const lookup_name_info &lookup_name,
14034 completion_match_result *comp_match_res)
14035{
14036 const std::string &name = lookup_name.name ();
14037
14038 int cmp = (lookup_name.completion_mode ()
14039 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14040 : strcmp (symbol_search_name, name.c_str ()));
14041 if (cmp == 0)
14042 {
14043 if (comp_match_res != NULL)
14044 comp_match_res->set_match (symbol_search_name);
14045 return true;
14046 }
14047 else
14048 return false;
14049}
14050
b5ec771e
PA
14051/* Implement the "la_get_symbol_name_matcher" language_defn method for
14052 Ada. */
14053
14054static symbol_name_matcher_ftype *
14055ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14056{
de63c46b
PA
14057 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14058 return literal_symbol_name_matcher;
14059
b5ec771e
PA
14060 if (lookup_name.completion_mode ())
14061 return ada_symbol_name_matches;
74ccd7f5 14062 else
b5ec771e
PA
14063 {
14064 if (lookup_name.ada ().wild_match_p ())
14065 return do_wild_match;
a2cd4f14
JB
14066 else if (lookup_name.ada ().verbatim_p ())
14067 return do_exact_match;
b5ec771e
PA
14068 else
14069 return do_full_match;
14070 }
74ccd7f5
JB
14071}
14072
a5ee536b
JB
14073/* Implement the "la_read_var_value" language_defn method for Ada. */
14074
14075static struct value *
63e43d3a
PMR
14076ada_read_var_value (struct symbol *var, const struct block *var_block,
14077 struct frame_info *frame)
a5ee536b 14078{
a5ee536b
JB
14079 /* The only case where default_read_var_value is not sufficient
14080 is when VAR is a renaming... */
c0e70c62
TT
14081 if (frame != nullptr)
14082 {
14083 const struct block *frame_block = get_frame_block (frame, NULL);
14084 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14085 return ada_read_renaming_var_value (var, frame_block);
14086 }
a5ee536b
JB
14087
14088 /* This is a typical case where we expect the default_read_var_value
14089 function to work. */
63e43d3a 14090 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14091}
14092
56618e20
TT
14093static const char *ada_extensions[] =
14094{
14095 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14096};
14097
47e77640 14098extern const struct language_defn ada_language_defn = {
6c038f32 14099 "ada", /* Language name */
6abde28f 14100 "Ada",
6c038f32 14101 language_ada,
6c038f32 14102 range_check_off,
6c038f32
PH
14103 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14104 that's not quite what this means. */
6c038f32 14105 array_row_major,
9a044a89 14106 macro_expansion_no,
56618e20 14107 ada_extensions,
6c038f32
PH
14108 &ada_exp_descriptor,
14109 parse,
6c038f32
PH
14110 resolve,
14111 ada_printchar, /* Print a character constant */
14112 ada_printstr, /* Function to print string constant */
14113 emit_char, /* Function to print single char (not used) */
6c038f32 14114 ada_print_type, /* Print a type using appropriate syntax */
be942545 14115 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14116 ada_val_print, /* Print a value using appropriate syntax */
14117 ada_value_print, /* Print a top-level value */
a5ee536b 14118 ada_read_var_value, /* la_read_var_value */
6c038f32 14119 NULL, /* Language specific skip_trampoline */
2b2d9e11 14120 NULL, /* name_of_this */
59cc4834 14121 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14122 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14123 basic_lookup_transparent_type, /* lookup_transparent_type */
14124 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14125 ada_sniff_from_mangled_name,
0963b4bd
MS
14126 NULL, /* Language specific
14127 class_name_from_physname */
6c038f32
PH
14128 ada_op_print_tab, /* expression operators for printing */
14129 0, /* c-style arrays */
14130 1, /* String lower bound */
6c038f32 14131 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14132 ada_collect_symbol_completion_matches,
72d5681a 14133 ada_language_arch_info,
e79af960 14134 ada_print_array_index,
41f1b697 14135 default_pass_by_reference,
e2b7af72 14136 ada_watch_location_expression,
b5ec771e 14137 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14138 ada_iterate_over_symbols,
5ffa0793 14139 default_search_name_hash,
a53b64ea 14140 &ada_varobj_ops,
bb2ec1b3 14141 NULL,
721b08c6 14142 NULL,
4be290b2 14143 ada_is_string_type,
721b08c6 14144 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14145};
14146
5bf03f13
JB
14147/* Command-list for the "set/show ada" prefix command. */
14148static struct cmd_list_element *set_ada_list;
14149static struct cmd_list_element *show_ada_list;
14150
14151/* Implement the "set ada" prefix command. */
14152
14153static void
981a3fb3 14154set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14155{
14156 printf_unfiltered (_(\
14157"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14158 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14159}
14160
14161/* Implement the "show ada" prefix command. */
14162
14163static void
981a3fb3 14164show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14165{
14166 cmd_show_list (show_ada_list, from_tty, "");
14167}
14168
2060206e
PA
14169static void
14170initialize_ada_catchpoint_ops (void)
14171{
14172 struct breakpoint_ops *ops;
14173
14174 initialize_breakpoint_ops ();
14175
14176 ops = &catch_exception_breakpoint_ops;
14177 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14178 ops->allocate_location = allocate_location_exception;
14179 ops->re_set = re_set_exception;
14180 ops->check_status = check_status_exception;
14181 ops->print_it = print_it_exception;
14182 ops->print_one = print_one_exception;
14183 ops->print_mention = print_mention_exception;
14184 ops->print_recreate = print_recreate_exception;
2060206e
PA
14185
14186 ops = &catch_exception_unhandled_breakpoint_ops;
14187 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14188 ops->allocate_location = allocate_location_exception;
14189 ops->re_set = re_set_exception;
14190 ops->check_status = check_status_exception;
14191 ops->print_it = print_it_exception;
14192 ops->print_one = print_one_exception;
14193 ops->print_mention = print_mention_exception;
14194 ops->print_recreate = print_recreate_exception;
2060206e
PA
14195
14196 ops = &catch_assert_breakpoint_ops;
14197 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14198 ops->allocate_location = allocate_location_exception;
14199 ops->re_set = re_set_exception;
14200 ops->check_status = check_status_exception;
14201 ops->print_it = print_it_exception;
14202 ops->print_one = print_one_exception;
14203 ops->print_mention = print_mention_exception;
14204 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14205
14206 ops = &catch_handlers_breakpoint_ops;
14207 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14208 ops->allocate_location = allocate_location_exception;
14209 ops->re_set = re_set_exception;
14210 ops->check_status = check_status_exception;
14211 ops->print_it = print_it_exception;
14212 ops->print_one = print_one_exception;
14213 ops->print_mention = print_mention_exception;
14214 ops->print_recreate = print_recreate_exception;
2060206e
PA
14215}
14216
3d9434b5
JB
14217/* This module's 'new_objfile' observer. */
14218
14219static void
14220ada_new_objfile_observer (struct objfile *objfile)
14221{
14222 ada_clear_symbol_cache ();
14223}
14224
14225/* This module's 'free_objfile' observer. */
14226
14227static void
14228ada_free_objfile_observer (struct objfile *objfile)
14229{
14230 ada_clear_symbol_cache ();
14231}
14232
d2e4a39e 14233void
6c038f32 14234_initialize_ada_language (void)
14f9c5c9 14235{
2060206e
PA
14236 initialize_ada_catchpoint_ops ();
14237
5bf03f13 14238 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14239 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14240 &set_ada_list, "set ada ", 0, &setlist);
14241
14242 add_prefix_cmd ("ada", no_class, show_ada_command,
14243 _("Generic command for showing Ada-specific settings."),
14244 &show_ada_list, "show ada ", 0, &showlist);
14245
14246 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14247 &trust_pad_over_xvs, _("\
590042fc
PW
14248Enable or disable an optimization trusting PAD types over XVS types."), _("\
14249Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14250 _("\
14251This is related to the encoding used by the GNAT compiler. The debugger\n\
14252should normally trust the contents of PAD types, but certain older versions\n\
14253of GNAT have a bug that sometimes causes the information in the PAD type\n\
14254to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14255work around this bug. It is always safe to turn this option \"off\", but\n\
14256this incurs a slight performance penalty, so it is recommended to NOT change\n\
14257this option to \"off\" unless necessary."),
14258 NULL, NULL, &set_ada_list, &show_ada_list);
14259
d72413e6
PMR
14260 add_setshow_boolean_cmd ("print-signatures", class_vars,
14261 &print_signatures, _("\
14262Enable or disable the output of formal and return types for functions in the \
590042fc 14263overloads selection menu."), _("\
d72413e6 14264Show whether the output of formal and return types for functions in the \
590042fc 14265overloads selection menu is activated."),
d72413e6
PMR
14266 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14267
9ac4176b
PA
14268 add_catch_command ("exception", _("\
14269Catch Ada exceptions, when raised.\n\
9bf7038b 14270Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14271Without any argument, stop when any Ada exception is raised.\n\
14272If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14273being raised does not have a handler (and will therefore lead to the task's\n\
14274termination).\n\
14275Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14276raised is the same as ARG.\n\
14277CONDITION is a boolean expression that is evaluated to see whether the\n\
14278exception should cause a stop."),
9ac4176b 14279 catch_ada_exception_command,
71bed2db 14280 catch_ada_completer,
9ac4176b
PA
14281 CATCH_PERMANENT,
14282 CATCH_TEMPORARY);
9f757bf7
XR
14283
14284 add_catch_command ("handlers", _("\
14285Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14286Usage: catch handlers [ARG] [if CONDITION]\n\
14287Without any argument, stop when any Ada exception is handled.\n\
14288With an argument, catch only exceptions with the given name.\n\
14289CONDITION is a boolean expression that is evaluated to see whether the\n\
14290exception should cause a stop."),
9f757bf7 14291 catch_ada_handlers_command,
71bed2db 14292 catch_ada_completer,
9f757bf7
XR
14293 CATCH_PERMANENT,
14294 CATCH_TEMPORARY);
9ac4176b
PA
14295 add_catch_command ("assert", _("\
14296Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14297Usage: catch assert [if CONDITION]\n\
14298CONDITION is a boolean expression that is evaluated to see whether the\n\
14299exception should cause a stop."),
9ac4176b
PA
14300 catch_assert_command,
14301 NULL,
14302 CATCH_PERMANENT,
14303 CATCH_TEMPORARY);
14304
6c038f32 14305 varsize_limit = 65536;
3fcded8f
JB
14306 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14307 &varsize_limit, _("\
14308Set the maximum number of bytes allowed in a variable-size object."), _("\
14309Show the maximum number of bytes allowed in a variable-size object."), _("\
14310Attempts to access an object whose size is not a compile-time constant\n\
14311and exceeds this limit will cause an error."),
14312 NULL, NULL, &setlist, &showlist);
6c038f32 14313
778865d3
JB
14314 add_info ("exceptions", info_exceptions_command,
14315 _("\
14316List all Ada exception names.\n\
9bf7038b 14317Usage: info exceptions [REGEXP]\n\
778865d3
JB
14318If a regular expression is passed as an argument, only those matching\n\
14319the regular expression are listed."));
14320
c6044dd1
JB
14321 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14322 _("Set Ada maintenance-related variables."),
14323 &maint_set_ada_cmdlist, "maintenance set ada ",
14324 0/*allow-unknown*/, &maintenance_set_cmdlist);
14325
14326 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14327 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14328 &maint_show_ada_cmdlist, "maintenance show ada ",
14329 0/*allow-unknown*/, &maintenance_show_cmdlist);
14330
14331 add_setshow_boolean_cmd
14332 ("ignore-descriptive-types", class_maintenance,
14333 &ada_ignore_descriptive_types_p,
14334 _("Set whether descriptive types generated by GNAT should be ignored."),
14335 _("Show whether descriptive types generated by GNAT should be ignored."),
14336 _("\
14337When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14338DWARF attribute."),
14339 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14340
459a2e4c
TT
14341 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14342 NULL, xcalloc, xfree);
6b69afc4 14343
3d9434b5 14344 /* The ada-lang observers. */
76727919
TT
14345 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14346 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14347 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14348}
This page took 2.735698 seconds and 4 git commands to generate.