x86: move ImmExt processing
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
53a47a3e
TT
199static struct value *val_atr (struct type *, LONGEST);
200
d2e4a39e 201static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
14f9c5c9 205
108d56a4 206static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
207 struct type *);
208
0d5cff50 209static int find_struct_field (const char *, struct type *, int,
52ce6436 210 struct type **, int *, int *, int *, int *);
4c4b4cd2 211
d12307c1 212static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 213 struct value **, int, const char *,
2a612529 214 struct type *, int);
4c4b4cd2 215
4c4b4cd2
PH
216static int ada_is_direct_array_type (struct type *);
217
52ce6436
PH
218static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
222 struct expression *,
223 int *, enum noside);
52ce6436
PH
224
225static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
852dff6c
JB
249
250static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
251
252static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
4c4b4cd2
PH
255\f
256
ee01b665
JB
257/* The result of a symbol lookup to be stored in our symbol cache. */
258
259struct cache_entry
260{
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
fe978cb0 264 domain_enum domain;
ee01b665
JB
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273};
274
275/* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284#define HASH_SIZE 1009
285
286struct ada_symbol_cache
287{
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293};
294
295static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 296
4c4b4cd2 297/* Maximum-sized dynamic type. */
14f9c5c9
AS
298static unsigned int varsize_limit;
299
67cb5b2d 300static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
301#ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303#else
14f9c5c9 304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 305#endif
14f9c5c9 306
4c4b4cd2 307/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 308static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 309 = "__gnat_ada_main_program_name";
14f9c5c9 310
4c4b4cd2
PH
311/* Limit on the number of warnings to raise per expression evaluation. */
312static int warning_limit = 2;
313
314/* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316static int warnings_issued = 0;
317
318static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320};
321
322static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324};
325
c6044dd1
JB
326/* Maintenance-related settings for this module. */
327
328static struct cmd_list_element *maint_set_ada_cmdlist;
329static struct cmd_list_element *maint_show_ada_cmdlist;
330
c6044dd1
JB
331/* The "maintenance ada set/show ignore-descriptive-type" value. */
332
491144b5 333static bool ada_ignore_descriptive_types_p = false;
c6044dd1 334
e802dbe0
JB
335 /* Inferior-specific data. */
336
337/* Per-inferior data for this module. */
338
339struct ada_inferior_data
340{
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
f37b313d 345 struct type *tsd_type = nullptr;
3eecfa55
JB
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
f37b313d 350 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
351};
352
353/* Our key to this module's inferior data. */
f37b313d 354static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
355
356/* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364static struct ada_inferior_data *
365get_ada_inferior_data (struct inferior *inf)
366{
367 struct ada_inferior_data *data;
368
f37b313d 369 data = ada_inferior_data.get (inf);
e802dbe0 370 if (data == NULL)
f37b313d 371 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
372
373 return data;
374}
375
376/* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379static void
380ada_inferior_exit (struct inferior *inf)
381{
f37b313d 382 ada_inferior_data.clear (inf);
e802dbe0
JB
383}
384
ee01b665
JB
385
386 /* program-space-specific data. */
387
388/* This module's per-program-space data. */
389struct ada_pspace_data
390{
f37b313d
TT
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
ee01b665 397 /* The Ada symbol cache. */
f37b313d 398 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
399};
400
401/* Key to our per-program-space data. */
f37b313d 402static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
403
404/* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409static struct ada_pspace_data *
410get_ada_pspace_data (struct program_space *pspace)
411{
412 struct ada_pspace_data *data;
413
f37b313d 414 data = ada_pspace_data_handle.get (pspace);
ee01b665 415 if (data == NULL)
f37b313d 416 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
417
418 return data;
419}
420
4c4b4cd2
PH
421 /* Utilities */
422
720d1a40 423/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 424 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450static struct type *
451ada_typedef_target_type (struct type *type)
452{
78134374 453 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456}
457
41d27058
JB
458/* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462static const char *
463ada_unqualified_name (const char *decoded_name)
464{
2b0f535a
JB
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
41d27058
JB
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481}
482
39e7af3e 483/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 484
39e7af3e 485static std::string
41d27058
JB
486add_angle_brackets (const char *str)
487{
39e7af3e 488 return string_printf ("<%s>", str);
41d27058 489}
96d887e8 490
de93309a
SM
491/* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
493
494#define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
496
f27cf670 497/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 499 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 500
de93309a 501static void *
f27cf670 502grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 503{
d2e4a39e
AS
504 if (*size < min_size)
505 {
506 *size *= 2;
507 if (*size < min_size)
4c4b4cd2 508 *size = min_size;
f27cf670 509 vect = xrealloc (vect, *size * element_size);
d2e4a39e 510 }
f27cf670 511 return vect;
14f9c5c9
AS
512}
513
514/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 515 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
516
517static int
ebf56fd3 518field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
519{
520 int len = strlen (target);
5b4ee69b 521
d2e4a39e 522 return
4c4b4cd2
PH
523 (strncmp (field_name, target, len) == 0
524 && (field_name[len] == '\0'
61012eef 525 || (startswith (field_name + len, "___")
76a01679
JB
526 && strcmp (field_name + strlen (field_name) - 6,
527 "___XVN") != 0)));
14f9c5c9
AS
528}
529
530
872c8b51
JB
531/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
538
539int
540ada_get_field_index (const struct type *type, const char *field_name,
541 int maybe_missing)
542{
543 int fieldno;
872c8b51
JB
544 struct type *struct_type = check_typedef ((struct type *) type);
545
1f704f76 546 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 547 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
548 return fieldno;
549
550 if (!maybe_missing)
323e0a4a 551 error (_("Unable to find field %s in struct %s. Aborting"),
7d93a1e0 552 field_name, struct_type->name ());
4c4b4cd2
PH
553
554 return -1;
555}
556
557/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
558
559int
d2e4a39e 560ada_name_prefix_len (const char *name)
14f9c5c9
AS
561{
562 if (name == NULL)
563 return 0;
d2e4a39e 564 else
14f9c5c9 565 {
d2e4a39e 566 const char *p = strstr (name, "___");
5b4ee69b 567
14f9c5c9 568 if (p == NULL)
4c4b4cd2 569 return strlen (name);
14f9c5c9 570 else
4c4b4cd2 571 return p - name;
14f9c5c9
AS
572 }
573}
574
4c4b4cd2
PH
575/* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
577
14f9c5c9 578static int
d2e4a39e 579is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
580{
581 int len1, len2;
5b4ee69b 582
14f9c5c9
AS
583 if (str == NULL)
584 return 0;
585 len1 = strlen (str);
586 len2 = strlen (suffix);
4c4b4cd2 587 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
588}
589
4c4b4cd2
PH
590/* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
14f9c5c9 592
d2e4a39e 593static struct value *
4c4b4cd2 594coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 595{
61ee279c 596 type = ada_check_typedef (type);
df407dfe 597 if (value_type (val) == type)
4c4b4cd2 598 return val;
d2e4a39e 599 else
14f9c5c9 600 {
4c4b4cd2
PH
601 struct value *result;
602
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
c1b5a1a6 605 ada_ensure_varsize_limit (type);
4c4b4cd2 606
41e8491f
JK
607 if (value_lazy (val)
608 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
609 result = allocate_value_lazy (type);
610 else
611 {
612 result = allocate_value (type);
9a0dc9e3 613 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 614 }
74bcbdf3 615 set_value_component_location (result, val);
9bbda503
AC
616 set_value_bitsize (result, value_bitsize (val));
617 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
618 if (VALUE_LVAL (result) == lval_memory)
619 set_value_address (result, value_address (val));
14f9c5c9
AS
620 return result;
621 }
622}
623
fc1a4b47
AC
624static const gdb_byte *
625cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
626{
627 if (valaddr == NULL)
628 return NULL;
629 else
630 return valaddr + offset;
631}
632
633static CORE_ADDR
ebf56fd3 634cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
635{
636 if (address == 0)
637 return 0;
d2e4a39e 638 else
14f9c5c9
AS
639 return address + offset;
640}
641
4c4b4cd2
PH
642/* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
645 expression. */
a2249542 646
77109804
AC
647/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
a0b31db1 649static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 650
14f9c5c9 651static void
a2249542 652lim_warning (const char *format, ...)
14f9c5c9 653{
a2249542 654 va_list args;
a2249542 655
5b4ee69b 656 va_start (args, format);
4c4b4cd2
PH
657 warnings_issued += 1;
658 if (warnings_issued <= warning_limit)
a2249542
MK
659 vwarning (format, args);
660
661 va_end (args);
4c4b4cd2
PH
662}
663
714e53ab
PH
664/* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
666 GDB. */
667
c1b5a1a6
JB
668void
669ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
670{
671 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 672 error (_("object size is larger than varsize-limit"));
714e53ab
PH
673}
674
0963b4bd 675/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 676static LONGEST
c3e5cd34 677max_of_size (int size)
4c4b4cd2 678{
76a01679 679 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 680
76a01679 681 return top_bit | (top_bit - 1);
4c4b4cd2
PH
682}
683
0963b4bd 684/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 685static LONGEST
c3e5cd34 686min_of_size (int size)
4c4b4cd2 687{
c3e5cd34 688 return -max_of_size (size) - 1;
4c4b4cd2
PH
689}
690
0963b4bd 691/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 692static ULONGEST
c3e5cd34 693umax_of_size (int size)
4c4b4cd2 694{
76a01679 695 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 696
76a01679 697 return top_bit | (top_bit - 1);
4c4b4cd2
PH
698}
699
0963b4bd 700/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
701static LONGEST
702max_of_type (struct type *t)
4c4b4cd2 703{
c3e5cd34
PH
704 if (TYPE_UNSIGNED (t))
705 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
706 else
707 return max_of_size (TYPE_LENGTH (t));
708}
709
0963b4bd 710/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
711static LONGEST
712min_of_type (struct type *t)
713{
714 if (TYPE_UNSIGNED (t))
715 return 0;
716 else
717 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
718}
719
720/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
721LONGEST
722ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 723{
b249d2c2 724 type = resolve_dynamic_type (type, {}, 0);
78134374 725 switch (type->code ())
4c4b4cd2
PH
726 {
727 case TYPE_CODE_RANGE:
690cc4eb 728 return TYPE_HIGH_BOUND (type);
4c4b4cd2 729 case TYPE_CODE_ENUM:
1f704f76 730 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
731 case TYPE_CODE_BOOL:
732 return 1;
733 case TYPE_CODE_CHAR:
76a01679 734 case TYPE_CODE_INT:
690cc4eb 735 return max_of_type (type);
4c4b4cd2 736 default:
43bbcdc2 737 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
738 }
739}
740
14e75d8e 741/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
742LONGEST
743ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 744{
b249d2c2 745 type = resolve_dynamic_type (type, {}, 0);
78134374 746 switch (type->code ())
4c4b4cd2
PH
747 {
748 case TYPE_CODE_RANGE:
690cc4eb 749 return TYPE_LOW_BOUND (type);
4c4b4cd2 750 case TYPE_CODE_ENUM:
14e75d8e 751 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
752 case TYPE_CODE_BOOL:
753 return 0;
754 case TYPE_CODE_CHAR:
76a01679 755 case TYPE_CODE_INT:
690cc4eb 756 return min_of_type (type);
4c4b4cd2 757 default:
43bbcdc2 758 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
759 }
760}
761
762/* The identity on non-range types. For range types, the underlying
76a01679 763 non-range scalar type. */
4c4b4cd2
PH
764
765static struct type *
18af8284 766get_base_type (struct type *type)
4c4b4cd2 767{
78134374 768 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 769 {
76a01679
JB
770 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
771 return type;
4c4b4cd2
PH
772 type = TYPE_TARGET_TYPE (type);
773 }
774 return type;
14f9c5c9 775}
41246937
JB
776
777/* Return a decoded version of the given VALUE. This means returning
778 a value whose type is obtained by applying all the GNAT-specific
85102364 779 encodings, making the resulting type a static but standard description
41246937
JB
780 of the initial type. */
781
782struct value *
783ada_get_decoded_value (struct value *value)
784{
785 struct type *type = ada_check_typedef (value_type (value));
786
787 if (ada_is_array_descriptor_type (type)
788 || (ada_is_constrained_packed_array_type (type)
78134374 789 && type->code () != TYPE_CODE_PTR))
41246937 790 {
78134374 791 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
41246937
JB
792 value = ada_coerce_to_simple_array_ptr (value);
793 else
794 value = ada_coerce_to_simple_array (value);
795 }
796 else
797 value = ada_to_fixed_value (value);
798
799 return value;
800}
801
802/* Same as ada_get_decoded_value, but with the given TYPE.
803 Because there is no associated actual value for this type,
804 the resulting type might be a best-effort approximation in
805 the case of dynamic types. */
806
807struct type *
808ada_get_decoded_type (struct type *type)
809{
810 type = to_static_fixed_type (type);
811 if (ada_is_constrained_packed_array_type (type))
812 type = ada_coerce_to_simple_array_type (type);
813 return type;
814}
815
4c4b4cd2 816\f
76a01679 817
4c4b4cd2 818 /* Language Selection */
14f9c5c9
AS
819
820/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 821 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 822
de93309a 823static enum language
ccefe4c4 824ada_update_initial_language (enum language lang)
14f9c5c9 825{
cafb3438 826 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 827 return language_ada;
14f9c5c9
AS
828
829 return lang;
830}
96d887e8
PH
831
832/* If the main procedure is written in Ada, then return its name.
833 The result is good until the next call. Return NULL if the main
834 procedure doesn't appear to be in Ada. */
835
836char *
837ada_main_name (void)
838{
3b7344d5 839 struct bound_minimal_symbol msym;
e83e4e24 840 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 841
96d887e8
PH
842 /* For Ada, the name of the main procedure is stored in a specific
843 string constant, generated by the binder. Look for that symbol,
844 extract its address, and then read that string. If we didn't find
845 that string, then most probably the main procedure is not written
846 in Ada. */
847 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
848
3b7344d5 849 if (msym.minsym != NULL)
96d887e8 850 {
66920317 851 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 852 if (main_program_name_addr == 0)
323e0a4a 853 error (_("Invalid address for Ada main program name."));
96d887e8 854
66920317 855 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 856 return main_program_name.get ();
96d887e8
PH
857 }
858
859 /* The main procedure doesn't seem to be in Ada. */
860 return NULL;
861}
14f9c5c9 862\f
4c4b4cd2 863 /* Symbols */
d2e4a39e 864
4c4b4cd2
PH
865/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
866 of NULLs. */
14f9c5c9 867
d2e4a39e
AS
868const struct ada_opname_map ada_opname_table[] = {
869 {"Oadd", "\"+\"", BINOP_ADD},
870 {"Osubtract", "\"-\"", BINOP_SUB},
871 {"Omultiply", "\"*\"", BINOP_MUL},
872 {"Odivide", "\"/\"", BINOP_DIV},
873 {"Omod", "\"mod\"", BINOP_MOD},
874 {"Orem", "\"rem\"", BINOP_REM},
875 {"Oexpon", "\"**\"", BINOP_EXP},
876 {"Olt", "\"<\"", BINOP_LESS},
877 {"Ole", "\"<=\"", BINOP_LEQ},
878 {"Ogt", "\">\"", BINOP_GTR},
879 {"Oge", "\">=\"", BINOP_GEQ},
880 {"Oeq", "\"=\"", BINOP_EQUAL},
881 {"One", "\"/=\"", BINOP_NOTEQUAL},
882 {"Oand", "\"and\"", BINOP_BITWISE_AND},
883 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
884 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
885 {"Oconcat", "\"&\"", BINOP_CONCAT},
886 {"Oabs", "\"abs\"", UNOP_ABS},
887 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
888 {"Oadd", "\"+\"", UNOP_PLUS},
889 {"Osubtract", "\"-\"", UNOP_NEG},
890 {NULL, NULL}
14f9c5c9
AS
891};
892
b5ec771e
PA
893/* The "encoded" form of DECODED, according to GNAT conventions. The
894 result is valid until the next call to ada_encode. If
895 THROW_ERRORS, throw an error if invalid operator name is found.
896 Otherwise, return NULL in that case. */
4c4b4cd2 897
b5ec771e
PA
898static char *
899ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 900{
4c4b4cd2
PH
901 static char *encoding_buffer = NULL;
902 static size_t encoding_buffer_size = 0;
d2e4a39e 903 const char *p;
14f9c5c9 904 int k;
d2e4a39e 905
4c4b4cd2 906 if (decoded == NULL)
14f9c5c9
AS
907 return NULL;
908
4c4b4cd2
PH
909 GROW_VECT (encoding_buffer, encoding_buffer_size,
910 2 * strlen (decoded) + 10);
14f9c5c9
AS
911
912 k = 0;
4c4b4cd2 913 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 914 {
cdc7bb92 915 if (*p == '.')
4c4b4cd2
PH
916 {
917 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
918 k += 2;
919 }
14f9c5c9 920 else if (*p == '"')
4c4b4cd2
PH
921 {
922 const struct ada_opname_map *mapping;
923
924 for (mapping = ada_opname_table;
1265e4aa 925 mapping->encoded != NULL
61012eef 926 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
927 ;
928 if (mapping->encoded == NULL)
b5ec771e
PA
929 {
930 if (throw_errors)
931 error (_("invalid Ada operator name: %s"), p);
932 else
933 return NULL;
934 }
4c4b4cd2
PH
935 strcpy (encoding_buffer + k, mapping->encoded);
936 k += strlen (mapping->encoded);
937 break;
938 }
d2e4a39e 939 else
4c4b4cd2
PH
940 {
941 encoding_buffer[k] = *p;
942 k += 1;
943 }
14f9c5c9
AS
944 }
945
4c4b4cd2
PH
946 encoding_buffer[k] = '\0';
947 return encoding_buffer;
14f9c5c9
AS
948}
949
b5ec771e
PA
950/* The "encoded" form of DECODED, according to GNAT conventions.
951 The result is valid until the next call to ada_encode. */
952
953char *
954ada_encode (const char *decoded)
955{
956 return ada_encode_1 (decoded, true);
957}
958
14f9c5c9 959/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
960 quotes, unfolded, but with the quotes stripped away. Result good
961 to next call. */
962
de93309a 963static char *
e0802d59 964ada_fold_name (gdb::string_view name)
14f9c5c9 965{
d2e4a39e 966 static char *fold_buffer = NULL;
14f9c5c9
AS
967 static size_t fold_buffer_size = 0;
968
e0802d59 969 int len = name.size ();
d2e4a39e 970 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
971
972 if (name[0] == '\'')
973 {
e0802d59 974 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 975 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
976 }
977 else
978 {
979 int i;
5b4ee69b 980
14f9c5c9 981 for (i = 0; i <= len; i += 1)
4c4b4cd2 982 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
983 }
984
985 return fold_buffer;
986}
987
529cad9c
PH
988/* Return nonzero if C is either a digit or a lowercase alphabet character. */
989
990static int
991is_lower_alphanum (const char c)
992{
993 return (isdigit (c) || (isalpha (c) && islower (c)));
994}
995
c90092fe
JB
996/* ENCODED is the linkage name of a symbol and LEN contains its length.
997 This function saves in LEN the length of that same symbol name but
998 without either of these suffixes:
29480c32
JB
999 . .{DIGIT}+
1000 . ${DIGIT}+
1001 . ___{DIGIT}+
1002 . __{DIGIT}+.
c90092fe 1003
29480c32
JB
1004 These are suffixes introduced by the compiler for entities such as
1005 nested subprogram for instance, in order to avoid name clashes.
1006 They do not serve any purpose for the debugger. */
1007
1008static void
1009ada_remove_trailing_digits (const char *encoded, int *len)
1010{
1011 if (*len > 1 && isdigit (encoded[*len - 1]))
1012 {
1013 int i = *len - 2;
5b4ee69b 1014
29480c32
JB
1015 while (i > 0 && isdigit (encoded[i]))
1016 i--;
1017 if (i >= 0 && encoded[i] == '.')
1018 *len = i;
1019 else if (i >= 0 && encoded[i] == '$')
1020 *len = i;
61012eef 1021 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1022 *len = i - 2;
61012eef 1023 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1024 *len = i - 1;
1025 }
1026}
1027
1028/* Remove the suffix introduced by the compiler for protected object
1029 subprograms. */
1030
1031static void
1032ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1033{
1034 /* Remove trailing N. */
1035
1036 /* Protected entry subprograms are broken into two
1037 separate subprograms: The first one is unprotected, and has
1038 a 'N' suffix; the second is the protected version, and has
0963b4bd 1039 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1040 the protection. Since the P subprograms are internally generated,
1041 we leave these names undecoded, giving the user a clue that this
1042 entity is internal. */
1043
1044 if (*len > 1
1045 && encoded[*len - 1] == 'N'
1046 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1047 *len = *len - 1;
1048}
1049
1050/* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1052 replaced by ENCODED. */
14f9c5c9 1053
f945dedf 1054std::string
4c4b4cd2 1055ada_decode (const char *encoded)
14f9c5c9
AS
1056{
1057 int i, j;
1058 int len0;
d2e4a39e 1059 const char *p;
14f9c5c9 1060 int at_start_name;
f945dedf 1061 std::string decoded;
d2e4a39e 1062
0d81f350
JG
1063 /* With function descriptors on PPC64, the value of a symbol named
1064 ".FN", if it exists, is the entry point of the function "FN". */
1065 if (encoded[0] == '.')
1066 encoded += 1;
1067
29480c32
JB
1068 /* The name of the Ada main procedure starts with "_ada_".
1069 This prefix is not part of the decoded name, so skip this part
1070 if we see this prefix. */
61012eef 1071 if (startswith (encoded, "_ada_"))
4c4b4cd2 1072 encoded += 5;
14f9c5c9 1073
29480c32
JB
1074 /* If the name starts with '_', then it is not a properly encoded
1075 name, so do not attempt to decode it. Similarly, if the name
1076 starts with '<', the name should not be decoded. */
4c4b4cd2 1077 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1078 goto Suppress;
1079
4c4b4cd2 1080 len0 = strlen (encoded);
4c4b4cd2 1081
29480c32
JB
1082 ada_remove_trailing_digits (encoded, &len0);
1083 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1084
4c4b4cd2
PH
1085 /* Remove the ___X.* suffix if present. Do not forget to verify that
1086 the suffix is located before the current "end" of ENCODED. We want
1087 to avoid re-matching parts of ENCODED that have previously been
1088 marked as discarded (by decrementing LEN0). */
1089 p = strstr (encoded, "___");
1090 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1091 {
1092 if (p[3] == 'X')
4c4b4cd2 1093 len0 = p - encoded;
14f9c5c9 1094 else
4c4b4cd2 1095 goto Suppress;
14f9c5c9 1096 }
4c4b4cd2 1097
29480c32
JB
1098 /* Remove any trailing TKB suffix. It tells us that this symbol
1099 is for the body of a task, but that information does not actually
1100 appear in the decoded name. */
1101
61012eef 1102 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1103 len0 -= 3;
76a01679 1104
a10967fa
JB
1105 /* Remove any trailing TB suffix. The TB suffix is slightly different
1106 from the TKB suffix because it is used for non-anonymous task
1107 bodies. */
1108
61012eef 1109 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1110 len0 -= 2;
1111
29480c32
JB
1112 /* Remove trailing "B" suffixes. */
1113 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1114
61012eef 1115 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1116 len0 -= 1;
1117
4c4b4cd2 1118 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1119
f945dedf 1120 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1121
29480c32
JB
1122 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1123
4c4b4cd2 1124 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1125 {
4c4b4cd2
PH
1126 i = len0 - 2;
1127 while ((i >= 0 && isdigit (encoded[i]))
1128 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1129 i -= 1;
1130 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1131 len0 = i - 1;
1132 else if (encoded[i] == '$')
1133 len0 = i;
d2e4a39e 1134 }
14f9c5c9 1135
29480c32
JB
1136 /* The first few characters that are not alphabetic are not part
1137 of any encoding we use, so we can copy them over verbatim. */
1138
4c4b4cd2
PH
1139 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1140 decoded[j] = encoded[i];
14f9c5c9
AS
1141
1142 at_start_name = 1;
1143 while (i < len0)
1144 {
29480c32 1145 /* Is this a symbol function? */
4c4b4cd2
PH
1146 if (at_start_name && encoded[i] == 'O')
1147 {
1148 int k;
5b4ee69b 1149
4c4b4cd2
PH
1150 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1151 {
1152 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1153 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1154 op_len - 1) == 0)
1155 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1156 {
f945dedf 1157 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1158 at_start_name = 0;
1159 i += op_len;
1160 j += strlen (ada_opname_table[k].decoded);
1161 break;
1162 }
1163 }
1164 if (ada_opname_table[k].encoded != NULL)
1165 continue;
1166 }
14f9c5c9
AS
1167 at_start_name = 0;
1168
529cad9c
PH
1169 /* Replace "TK__" with "__", which will eventually be translated
1170 into "." (just below). */
1171
61012eef 1172 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1173 i += 2;
529cad9c 1174
29480c32
JB
1175 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1176 be translated into "." (just below). These are internal names
1177 generated for anonymous blocks inside which our symbol is nested. */
1178
1179 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1180 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1181 && isdigit (encoded [i+4]))
1182 {
1183 int k = i + 5;
1184
1185 while (k < len0 && isdigit (encoded[k]))
1186 k++; /* Skip any extra digit. */
1187
1188 /* Double-check that the "__B_{DIGITS}+" sequence we found
1189 is indeed followed by "__". */
1190 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1191 i = k;
1192 }
1193
529cad9c
PH
1194 /* Remove _E{DIGITS}+[sb] */
1195
1196 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1197 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1198 one implements the actual entry code, and has a suffix following
1199 the convention above; the second one implements the barrier and
1200 uses the same convention as above, except that the 'E' is replaced
1201 by a 'B'.
1202
1203 Just as above, we do not decode the name of barrier functions
1204 to give the user a clue that the code he is debugging has been
1205 internally generated. */
1206
1207 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1208 && isdigit (encoded[i+2]))
1209 {
1210 int k = i + 3;
1211
1212 while (k < len0 && isdigit (encoded[k]))
1213 k++;
1214
1215 if (k < len0
1216 && (encoded[k] == 'b' || encoded[k] == 's'))
1217 {
1218 k++;
1219 /* Just as an extra precaution, make sure that if this
1220 suffix is followed by anything else, it is a '_'.
1221 Otherwise, we matched this sequence by accident. */
1222 if (k == len0
1223 || (k < len0 && encoded[k] == '_'))
1224 i = k;
1225 }
1226 }
1227
1228 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1229 the GNAT front-end in protected object subprograms. */
1230
1231 if (i < len0 + 3
1232 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1233 {
1234 /* Backtrack a bit up until we reach either the begining of
1235 the encoded name, or "__". Make sure that we only find
1236 digits or lowercase characters. */
1237 const char *ptr = encoded + i - 1;
1238
1239 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1240 ptr--;
1241 if (ptr < encoded
1242 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1243 i++;
1244 }
1245
4c4b4cd2
PH
1246 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1247 {
29480c32
JB
1248 /* This is a X[bn]* sequence not separated from the previous
1249 part of the name with a non-alpha-numeric character (in other
1250 words, immediately following an alpha-numeric character), then
1251 verify that it is placed at the end of the encoded name. If
1252 not, then the encoding is not valid and we should abort the
1253 decoding. Otherwise, just skip it, it is used in body-nested
1254 package names. */
4c4b4cd2
PH
1255 do
1256 i += 1;
1257 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1258 if (i < len0)
1259 goto Suppress;
1260 }
cdc7bb92 1261 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1262 {
29480c32 1263 /* Replace '__' by '.'. */
4c4b4cd2
PH
1264 decoded[j] = '.';
1265 at_start_name = 1;
1266 i += 2;
1267 j += 1;
1268 }
14f9c5c9 1269 else
4c4b4cd2 1270 {
29480c32
JB
1271 /* It's a character part of the decoded name, so just copy it
1272 over. */
4c4b4cd2
PH
1273 decoded[j] = encoded[i];
1274 i += 1;
1275 j += 1;
1276 }
14f9c5c9 1277 }
f945dedf 1278 decoded.resize (j);
14f9c5c9 1279
29480c32
JB
1280 /* Decoded names should never contain any uppercase character.
1281 Double-check this, and abort the decoding if we find one. */
1282
f945dedf 1283 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1284 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1285 goto Suppress;
1286
f945dedf 1287 return decoded;
14f9c5c9
AS
1288
1289Suppress:
4c4b4cd2 1290 if (encoded[0] == '<')
f945dedf 1291 decoded = encoded;
14f9c5c9 1292 else
f945dedf 1293 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1294 return decoded;
1295
1296}
1297
1298/* Table for keeping permanent unique copies of decoded names. Once
1299 allocated, names in this table are never released. While this is a
1300 storage leak, it should not be significant unless there are massive
1301 changes in the set of decoded names in successive versions of a
1302 symbol table loaded during a single session. */
1303static struct htab *decoded_names_store;
1304
1305/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1306 in the language-specific part of GSYMBOL, if it has not been
1307 previously computed. Tries to save the decoded name in the same
1308 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1309 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1310 GSYMBOL).
4c4b4cd2
PH
1311 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1312 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1313 when a decoded name is cached in it. */
4c4b4cd2 1314
45e6c716 1315const char *
f85f34ed 1316ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1317{
f85f34ed
TT
1318 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1319 const char **resultp =
615b3f62 1320 &gsymbol->language_specific.demangled_name;
5b4ee69b 1321
f85f34ed 1322 if (!gsymbol->ada_mangled)
4c4b4cd2 1323 {
4d4eaa30 1324 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1325 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1326
f85f34ed 1327 gsymbol->ada_mangled = 1;
5b4ee69b 1328
f85f34ed 1329 if (obstack != NULL)
f945dedf 1330 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1331 else
76a01679 1332 {
f85f34ed
TT
1333 /* Sometimes, we can't find a corresponding objfile, in
1334 which case, we put the result on the heap. Since we only
1335 decode when needed, we hope this usually does not cause a
1336 significant memory leak (FIXME). */
1337
76a01679 1338 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1339 decoded.c_str (), INSERT);
5b4ee69b 1340
76a01679 1341 if (*slot == NULL)
f945dedf 1342 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1343 *resultp = *slot;
1344 }
4c4b4cd2 1345 }
14f9c5c9 1346
4c4b4cd2
PH
1347 return *resultp;
1348}
76a01679 1349
2c0b251b 1350static char *
76a01679 1351ada_la_decode (const char *encoded, int options)
4c4b4cd2 1352{
f945dedf 1353 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1354}
1355
14f9c5c9 1356\f
d2e4a39e 1357
4c4b4cd2 1358 /* Arrays */
14f9c5c9 1359
28c85d6c
JB
1360/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1361 generated by the GNAT compiler to describe the index type used
1362 for each dimension of an array, check whether it follows the latest
1363 known encoding. If not, fix it up to conform to the latest encoding.
1364 Otherwise, do nothing. This function also does nothing if
1365 INDEX_DESC_TYPE is NULL.
1366
85102364 1367 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1368 Initially, the information would be provided through the name of each
1369 field of the structure type only, while the type of these fields was
1370 described as unspecified and irrelevant. The debugger was then expected
1371 to perform a global type lookup using the name of that field in order
1372 to get access to the full index type description. Because these global
1373 lookups can be very expensive, the encoding was later enhanced to make
1374 the global lookup unnecessary by defining the field type as being
1375 the full index type description.
1376
1377 The purpose of this routine is to allow us to support older versions
1378 of the compiler by detecting the use of the older encoding, and by
1379 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1380 we essentially replace each field's meaningless type by the associated
1381 index subtype). */
1382
1383void
1384ada_fixup_array_indexes_type (struct type *index_desc_type)
1385{
1386 int i;
1387
1388 if (index_desc_type == NULL)
1389 return;
1f704f76 1390 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1391
1392 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1393 to check one field only, no need to check them all). If not, return
1394 now.
1395
1396 If our INDEX_DESC_TYPE was generated using the older encoding,
1397 the field type should be a meaningless integer type whose name
1398 is not equal to the field name. */
940da03e
SM
1399 if (index_desc_type->field (0).type ()->name () != NULL
1400 && strcmp (index_desc_type->field (0).type ()->name (),
28c85d6c
JB
1401 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1402 return;
1403
1404 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1405 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1406 {
0d5cff50 1407 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1408 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1409
1410 if (raw_type)
5d14b6e5 1411 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1412 }
1413}
1414
4c4b4cd2
PH
1415/* The desc_* routines return primitive portions of array descriptors
1416 (fat pointers). */
14f9c5c9
AS
1417
1418/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1419 level of indirection, if needed. */
1420
d2e4a39e
AS
1421static struct type *
1422desc_base_type (struct type *type)
14f9c5c9
AS
1423{
1424 if (type == NULL)
1425 return NULL;
61ee279c 1426 type = ada_check_typedef (type);
78134374 1427 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1428 type = ada_typedef_target_type (type);
1429
1265e4aa 1430 if (type != NULL
78134374
SM
1431 && (type->code () == TYPE_CODE_PTR
1432 || type->code () == TYPE_CODE_REF))
61ee279c 1433 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1434 else
1435 return type;
1436}
1437
4c4b4cd2
PH
1438/* True iff TYPE indicates a "thin" array pointer type. */
1439
14f9c5c9 1440static int
d2e4a39e 1441is_thin_pntr (struct type *type)
14f9c5c9 1442{
d2e4a39e 1443 return
14f9c5c9
AS
1444 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1445 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1446}
1447
4c4b4cd2
PH
1448/* The descriptor type for thin pointer type TYPE. */
1449
d2e4a39e
AS
1450static struct type *
1451thin_descriptor_type (struct type *type)
14f9c5c9 1452{
d2e4a39e 1453 struct type *base_type = desc_base_type (type);
5b4ee69b 1454
14f9c5c9
AS
1455 if (base_type == NULL)
1456 return NULL;
1457 if (is_suffix (ada_type_name (base_type), "___XVE"))
1458 return base_type;
d2e4a39e 1459 else
14f9c5c9 1460 {
d2e4a39e 1461 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1462
14f9c5c9 1463 if (alt_type == NULL)
4c4b4cd2 1464 return base_type;
14f9c5c9 1465 else
4c4b4cd2 1466 return alt_type;
14f9c5c9
AS
1467 }
1468}
1469
4c4b4cd2
PH
1470/* A pointer to the array data for thin-pointer value VAL. */
1471
d2e4a39e
AS
1472static struct value *
1473thin_data_pntr (struct value *val)
14f9c5c9 1474{
828292f2 1475 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1476 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1477
556bdfd4
UW
1478 data_type = lookup_pointer_type (data_type);
1479
78134374 1480 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1481 return value_cast (data_type, value_copy (val));
d2e4a39e 1482 else
42ae5230 1483 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1484}
1485
4c4b4cd2
PH
1486/* True iff TYPE indicates a "thick" array pointer type. */
1487
14f9c5c9 1488static int
d2e4a39e 1489is_thick_pntr (struct type *type)
14f9c5c9
AS
1490{
1491 type = desc_base_type (type);
78134374 1492 return (type != NULL && type->code () == TYPE_CODE_STRUCT
4c4b4cd2 1493 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1494}
1495
4c4b4cd2
PH
1496/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1497 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1498
d2e4a39e
AS
1499static struct type *
1500desc_bounds_type (struct type *type)
14f9c5c9 1501{
d2e4a39e 1502 struct type *r;
14f9c5c9
AS
1503
1504 type = desc_base_type (type);
1505
1506 if (type == NULL)
1507 return NULL;
1508 else if (is_thin_pntr (type))
1509 {
1510 type = thin_descriptor_type (type);
1511 if (type == NULL)
4c4b4cd2 1512 return NULL;
14f9c5c9
AS
1513 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1514 if (r != NULL)
61ee279c 1515 return ada_check_typedef (r);
14f9c5c9 1516 }
78134374 1517 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1518 {
1519 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1520 if (r != NULL)
61ee279c 1521 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1522 }
1523 return NULL;
1524}
1525
1526/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1527 one, a pointer to its bounds data. Otherwise NULL. */
1528
d2e4a39e
AS
1529static struct value *
1530desc_bounds (struct value *arr)
14f9c5c9 1531{
df407dfe 1532 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1533
d2e4a39e 1534 if (is_thin_pntr (type))
14f9c5c9 1535 {
d2e4a39e 1536 struct type *bounds_type =
4c4b4cd2 1537 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1538 LONGEST addr;
1539
4cdfadb1 1540 if (bounds_type == NULL)
323e0a4a 1541 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1542
1543 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1544 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1545 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1546 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 1547 addr = value_as_long (arr);
d2e4a39e 1548 else
42ae5230 1549 addr = value_address (arr);
14f9c5c9 1550
d2e4a39e 1551 return
4c4b4cd2
PH
1552 value_from_longest (lookup_pointer_type (bounds_type),
1553 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1554 }
1555
1556 else if (is_thick_pntr (type))
05e522ef
JB
1557 {
1558 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1559 _("Bad GNAT array descriptor"));
1560 struct type *p_bounds_type = value_type (p_bounds);
1561
1562 if (p_bounds_type
78134374 1563 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1564 {
1565 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1566
1567 if (TYPE_STUB (target_type))
1568 p_bounds = value_cast (lookup_pointer_type
1569 (ada_check_typedef (target_type)),
1570 p_bounds);
1571 }
1572 else
1573 error (_("Bad GNAT array descriptor"));
1574
1575 return p_bounds;
1576 }
14f9c5c9
AS
1577 else
1578 return NULL;
1579}
1580
4c4b4cd2
PH
1581/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1582 position of the field containing the address of the bounds data. */
1583
14f9c5c9 1584static int
d2e4a39e 1585fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1586{
1587 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1588}
1589
1590/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1591 size of the field containing the address of the bounds data. */
1592
14f9c5c9 1593static int
d2e4a39e 1594fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1595{
1596 type = desc_base_type (type);
1597
d2e4a39e 1598 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1599 return TYPE_FIELD_BITSIZE (type, 1);
1600 else
940da03e 1601 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1602}
1603
4c4b4cd2 1604/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1605 pointer to one, the type of its array data (a array-with-no-bounds type);
1606 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1607 data. */
4c4b4cd2 1608
d2e4a39e 1609static struct type *
556bdfd4 1610desc_data_target_type (struct type *type)
14f9c5c9
AS
1611{
1612 type = desc_base_type (type);
1613
4c4b4cd2 1614 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1615 if (is_thin_pntr (type))
940da03e 1616 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1617 else if (is_thick_pntr (type))
556bdfd4
UW
1618 {
1619 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1620
1621 if (data_type
78134374 1622 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1623 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1624 }
1625
1626 return NULL;
14f9c5c9
AS
1627}
1628
1629/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1630 its array data. */
4c4b4cd2 1631
d2e4a39e
AS
1632static struct value *
1633desc_data (struct value *arr)
14f9c5c9 1634{
df407dfe 1635 struct type *type = value_type (arr);
5b4ee69b 1636
14f9c5c9
AS
1637 if (is_thin_pntr (type))
1638 return thin_data_pntr (arr);
1639 else if (is_thick_pntr (type))
d2e4a39e 1640 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1641 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1642 else
1643 return NULL;
1644}
1645
1646
1647/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1648 position of the field containing the address of the data. */
1649
14f9c5c9 1650static int
d2e4a39e 1651fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1652{
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1654}
1655
1656/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1657 size of the field containing the address of the data. */
1658
14f9c5c9 1659static int
d2e4a39e 1660fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1661{
1662 type = desc_base_type (type);
1663
1664 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1665 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1666 else
940da03e 1667 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1668}
1669
4c4b4cd2 1670/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1671 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1672 bound, if WHICH is 1. The first bound is I=1. */
1673
d2e4a39e
AS
1674static struct value *
1675desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1676{
250106a7
TT
1677 char bound_name[20];
1678 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1679 which ? 'U' : 'L', i - 1);
1680 return value_struct_elt (&bounds, NULL, bound_name, NULL,
323e0a4a 1681 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1682}
1683
1684/* If BOUNDS is an array-bounds structure type, return the bit position
1685 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1686 bound, if WHICH is 1. The first bound is I=1. */
1687
14f9c5c9 1688static int
d2e4a39e 1689desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1690{
d2e4a39e 1691 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1692}
1693
1694/* If BOUNDS is an array-bounds structure type, return the bit field size
1695 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
76a01679 1698static int
d2e4a39e 1699desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1700{
1701 type = desc_base_type (type);
1702
d2e4a39e
AS
1703 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1704 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1705 else
940da03e 1706 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1707}
1708
1709/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1710 Ith bound (numbering from 1). Otherwise, NULL. */
1711
d2e4a39e
AS
1712static struct type *
1713desc_index_type (struct type *type, int i)
14f9c5c9
AS
1714{
1715 type = desc_base_type (type);
1716
78134374 1717 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1718 {
1719 char bound_name[20];
1720 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1721 return lookup_struct_elt_type (type, bound_name, 1);
1722 }
d2e4a39e 1723 else
14f9c5c9
AS
1724 return NULL;
1725}
1726
4c4b4cd2
PH
1727/* The number of index positions in the array-bounds type TYPE.
1728 Return 0 if TYPE is NULL. */
1729
14f9c5c9 1730static int
d2e4a39e 1731desc_arity (struct type *type)
14f9c5c9
AS
1732{
1733 type = desc_base_type (type);
1734
1735 if (type != NULL)
1f704f76 1736 return type->num_fields () / 2;
14f9c5c9
AS
1737 return 0;
1738}
1739
4c4b4cd2
PH
1740/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1741 an array descriptor type (representing an unconstrained array
1742 type). */
1743
76a01679
JB
1744static int
1745ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1746{
1747 if (type == NULL)
1748 return 0;
61ee279c 1749 type = ada_check_typedef (type);
78134374 1750 return (type->code () == TYPE_CODE_ARRAY
76a01679 1751 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1752}
1753
52ce6436 1754/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1755 * to one. */
52ce6436 1756
2c0b251b 1757static int
52ce6436
PH
1758ada_is_array_type (struct type *type)
1759{
78134374
SM
1760 while (type != NULL
1761 && (type->code () == TYPE_CODE_PTR
1762 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1763 type = TYPE_TARGET_TYPE (type);
1764 return ada_is_direct_array_type (type);
1765}
1766
4c4b4cd2 1767/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1768
14f9c5c9 1769int
4c4b4cd2 1770ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1771{
1772 if (type == NULL)
1773 return 0;
61ee279c 1774 type = ada_check_typedef (type);
78134374
SM
1775 return (type->code () == TYPE_CODE_ARRAY
1776 || (type->code () == TYPE_CODE_PTR
1777 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1778 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1779}
1780
4c4b4cd2
PH
1781/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1782
14f9c5c9 1783int
4c4b4cd2 1784ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1785{
556bdfd4 1786 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1787
1788 if (type == NULL)
1789 return 0;
61ee279c 1790 type = ada_check_typedef (type);
556bdfd4 1791 return (data_type != NULL
78134374 1792 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1793 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1794}
1795
1796/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1797 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1798 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1799 is still needed. */
1800
14f9c5c9 1801int
ebf56fd3 1802ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1803{
d2e4a39e 1804 return
14f9c5c9 1805 type != NULL
78134374 1806 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1807 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1808 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1809 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1810}
1811
1812
4c4b4cd2 1813/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1814 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1815 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1816 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1817 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1818 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1819 a descriptor. */
de93309a
SM
1820
1821static struct type *
d2e4a39e 1822ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1823{
ad82864c
JB
1824 if (ada_is_constrained_packed_array_type (value_type (arr)))
1825 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1826
df407dfe
AC
1827 if (!ada_is_array_descriptor_type (value_type (arr)))
1828 return value_type (arr);
d2e4a39e
AS
1829
1830 if (!bounds)
ad82864c
JB
1831 {
1832 struct type *array_type =
1833 ada_check_typedef (desc_data_target_type (value_type (arr)));
1834
1835 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1836 TYPE_FIELD_BITSIZE (array_type, 0) =
1837 decode_packed_array_bitsize (value_type (arr));
1838
1839 return array_type;
1840 }
14f9c5c9
AS
1841 else
1842 {
d2e4a39e 1843 struct type *elt_type;
14f9c5c9 1844 int arity;
d2e4a39e 1845 struct value *descriptor;
14f9c5c9 1846
df407dfe
AC
1847 elt_type = ada_array_element_type (value_type (arr), -1);
1848 arity = ada_array_arity (value_type (arr));
14f9c5c9 1849
d2e4a39e 1850 if (elt_type == NULL || arity == 0)
df407dfe 1851 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1852
1853 descriptor = desc_bounds (arr);
d2e4a39e 1854 if (value_as_long (descriptor) == 0)
4c4b4cd2 1855 return NULL;
d2e4a39e 1856 while (arity > 0)
4c4b4cd2 1857 {
e9bb382b
UW
1858 struct type *range_type = alloc_type_copy (value_type (arr));
1859 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1860 struct value *low = desc_one_bound (descriptor, arity, 0);
1861 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1862
5b4ee69b 1863 arity -= 1;
0c9c3474
SA
1864 create_static_range_type (range_type, value_type (low),
1865 longest_to_int (value_as_long (low)),
1866 longest_to_int (value_as_long (high)));
4c4b4cd2 1867 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1868
1869 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1870 {
1871 /* We need to store the element packed bitsize, as well as
1872 recompute the array size, because it was previously
1873 computed based on the unpacked element size. */
1874 LONGEST lo = value_as_long (low);
1875 LONGEST hi = value_as_long (high);
1876
1877 TYPE_FIELD_BITSIZE (elt_type, 0) =
1878 decode_packed_array_bitsize (value_type (arr));
1879 /* If the array has no element, then the size is already
1880 zero, and does not need to be recomputed. */
1881 if (lo < hi)
1882 {
1883 int array_bitsize =
1884 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1885
1886 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1887 }
1888 }
4c4b4cd2 1889 }
14f9c5c9
AS
1890
1891 return lookup_pointer_type (elt_type);
1892 }
1893}
1894
1895/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1896 Otherwise, returns either a standard GDB array with bounds set
1897 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1898 GDB array. Returns NULL if ARR is a null fat pointer. */
1899
d2e4a39e
AS
1900struct value *
1901ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1902{
df407dfe 1903 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1904 {
d2e4a39e 1905 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1906
14f9c5c9 1907 if (arrType == NULL)
4c4b4cd2 1908 return NULL;
14f9c5c9
AS
1909 return value_cast (arrType, value_copy (desc_data (arr)));
1910 }
ad82864c
JB
1911 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1912 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1913 else
1914 return arr;
1915}
1916
1917/* If ARR does not represent an array, returns ARR unchanged.
1918 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1919 be ARR itself if it already is in the proper form). */
1920
720d1a40 1921struct value *
d2e4a39e 1922ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1923{
df407dfe 1924 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1925 {
d2e4a39e 1926 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1927
14f9c5c9 1928 if (arrVal == NULL)
323e0a4a 1929 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1930 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1931 return value_ind (arrVal);
1932 }
ad82864c
JB
1933 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1934 return decode_constrained_packed_array (arr);
d2e4a39e 1935 else
14f9c5c9
AS
1936 return arr;
1937}
1938
1939/* If TYPE represents a GNAT array type, return it translated to an
1940 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1941 packing). For other types, is the identity. */
1942
d2e4a39e
AS
1943struct type *
1944ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1945{
ad82864c
JB
1946 if (ada_is_constrained_packed_array_type (type))
1947 return decode_constrained_packed_array_type (type);
17280b9f
UW
1948
1949 if (ada_is_array_descriptor_type (type))
556bdfd4 1950 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1951
1952 return type;
14f9c5c9
AS
1953}
1954
4c4b4cd2
PH
1955/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1956
ad82864c
JB
1957static int
1958ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1959{
1960 if (type == NULL)
1961 return 0;
4c4b4cd2 1962 type = desc_base_type (type);
61ee279c 1963 type = ada_check_typedef (type);
d2e4a39e 1964 return
14f9c5c9
AS
1965 ada_type_name (type) != NULL
1966 && strstr (ada_type_name (type), "___XP") != NULL;
1967}
1968
ad82864c
JB
1969/* Non-zero iff TYPE represents a standard GNAT constrained
1970 packed-array type. */
1971
1972int
1973ada_is_constrained_packed_array_type (struct type *type)
1974{
1975 return ada_is_packed_array_type (type)
1976 && !ada_is_array_descriptor_type (type);
1977}
1978
1979/* Non-zero iff TYPE represents an array descriptor for a
1980 unconstrained packed-array type. */
1981
1982static int
1983ada_is_unconstrained_packed_array_type (struct type *type)
1984{
1985 return ada_is_packed_array_type (type)
1986 && ada_is_array_descriptor_type (type);
1987}
1988
1989/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1990 return the size of its elements in bits. */
1991
1992static long
1993decode_packed_array_bitsize (struct type *type)
1994{
0d5cff50
DE
1995 const char *raw_name;
1996 const char *tail;
ad82864c
JB
1997 long bits;
1998
720d1a40
JB
1999 /* Access to arrays implemented as fat pointers are encoded as a typedef
2000 of the fat pointer type. We need the name of the fat pointer type
2001 to do the decoding, so strip the typedef layer. */
78134374 2002 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2003 type = ada_typedef_target_type (type);
2004
2005 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2006 if (!raw_name)
2007 raw_name = ada_type_name (desc_base_type (type));
2008
2009 if (!raw_name)
2010 return 0;
2011
2012 tail = strstr (raw_name, "___XP");
720d1a40 2013 gdb_assert (tail != NULL);
ad82864c
JB
2014
2015 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2016 {
2017 lim_warning
2018 (_("could not understand bit size information on packed array"));
2019 return 0;
2020 }
2021
2022 return bits;
2023}
2024
14f9c5c9
AS
2025/* Given that TYPE is a standard GDB array type with all bounds filled
2026 in, and that the element size of its ultimate scalar constituents
2027 (that is, either its elements, or, if it is an array of arrays, its
2028 elements' elements, etc.) is *ELT_BITS, return an identical type,
2029 but with the bit sizes of its elements (and those of any
2030 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2031 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2032 in bits.
2033
2034 Note that, for arrays whose index type has an XA encoding where
2035 a bound references a record discriminant, getting that discriminant,
2036 and therefore the actual value of that bound, is not possible
2037 because none of the given parameters gives us access to the record.
2038 This function assumes that it is OK in the context where it is being
2039 used to return an array whose bounds are still dynamic and where
2040 the length is arbitrary. */
4c4b4cd2 2041
d2e4a39e 2042static struct type *
ad82864c 2043constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2044{
d2e4a39e
AS
2045 struct type *new_elt_type;
2046 struct type *new_type;
99b1c762
JB
2047 struct type *index_type_desc;
2048 struct type *index_type;
14f9c5c9
AS
2049 LONGEST low_bound, high_bound;
2050
61ee279c 2051 type = ada_check_typedef (type);
78134374 2052 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2053 return type;
2054
99b1c762
JB
2055 index_type_desc = ada_find_parallel_type (type, "___XA");
2056 if (index_type_desc)
940da03e 2057 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2058 NULL);
2059 else
3d967001 2060 index_type = type->index_type ();
99b1c762 2061
e9bb382b 2062 new_type = alloc_type_copy (type);
ad82864c
JB
2063 new_elt_type =
2064 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2065 elt_bits);
99b1c762 2066 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2067 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2068 new_type->set_name (ada_type_name (type));
14f9c5c9 2069
78134374 2070 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2071 && is_dynamic_type (check_typedef (index_type)))
2072 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2073 low_bound = high_bound = 0;
2074 if (high_bound < low_bound)
2075 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2076 else
14f9c5c9
AS
2077 {
2078 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2079 TYPE_LENGTH (new_type) =
4c4b4cd2 2080 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2081 }
2082
876cecd0 2083 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2084 return new_type;
2085}
2086
ad82864c
JB
2087/* The array type encoded by TYPE, where
2088 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2089
d2e4a39e 2090static struct type *
ad82864c 2091decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2092{
0d5cff50 2093 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2094 char *name;
0d5cff50 2095 const char *tail;
d2e4a39e 2096 struct type *shadow_type;
14f9c5c9 2097 long bits;
14f9c5c9 2098
727e3d2e
JB
2099 if (!raw_name)
2100 raw_name = ada_type_name (desc_base_type (type));
2101
2102 if (!raw_name)
2103 return NULL;
2104
2105 name = (char *) alloca (strlen (raw_name) + 1);
2106 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2107 type = desc_base_type (type);
2108
14f9c5c9
AS
2109 memcpy (name, raw_name, tail - raw_name);
2110 name[tail - raw_name] = '\000';
2111
b4ba55a1
JB
2112 shadow_type = ada_find_parallel_type_with_name (type, name);
2113
2114 if (shadow_type == NULL)
14f9c5c9 2115 {
323e0a4a 2116 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2117 return NULL;
2118 }
f168693b 2119 shadow_type = check_typedef (shadow_type);
14f9c5c9 2120
78134374 2121 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2122 {
0963b4bd
MS
2123 lim_warning (_("could not understand bounds "
2124 "information on packed array"));
14f9c5c9
AS
2125 return NULL;
2126 }
d2e4a39e 2127
ad82864c
JB
2128 bits = decode_packed_array_bitsize (type);
2129 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2130}
2131
ad82864c
JB
2132/* Given that ARR is a struct value *indicating a GNAT constrained packed
2133 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2134 standard GDB array type except that the BITSIZEs of the array
2135 target types are set to the number of bits in each element, and the
4c4b4cd2 2136 type length is set appropriately. */
14f9c5c9 2137
d2e4a39e 2138static struct value *
ad82864c 2139decode_constrained_packed_array (struct value *arr)
14f9c5c9 2140{
4c4b4cd2 2141 struct type *type;
14f9c5c9 2142
11aa919a
PMR
2143 /* If our value is a pointer, then dereference it. Likewise if
2144 the value is a reference. Make sure that this operation does not
2145 cause the target type to be fixed, as this would indirectly cause
2146 this array to be decoded. The rest of the routine assumes that
2147 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2148 and "value_ind" routines to perform the dereferencing, as opposed
2149 to using "ada_coerce_ref" or "ada_value_ind". */
2150 arr = coerce_ref (arr);
78134374 2151 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2152 arr = value_ind (arr);
4c4b4cd2 2153
ad82864c 2154 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2155 if (type == NULL)
2156 {
323e0a4a 2157 error (_("can't unpack array"));
14f9c5c9
AS
2158 return NULL;
2159 }
61ee279c 2160
d5a22e77 2161 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2162 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2163 {
2164 /* This is a (right-justified) modular type representing a packed
2165 array with no wrapper. In order to interpret the value through
2166 the (left-justified) packed array type we just built, we must
2167 first left-justify it. */
2168 int bit_size, bit_pos;
2169 ULONGEST mod;
2170
df407dfe 2171 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2172 bit_size = 0;
2173 while (mod > 0)
2174 {
2175 bit_size += 1;
2176 mod >>= 1;
2177 }
df407dfe 2178 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2179 arr = ada_value_primitive_packed_val (arr, NULL,
2180 bit_pos / HOST_CHAR_BIT,
2181 bit_pos % HOST_CHAR_BIT,
2182 bit_size,
2183 type);
2184 }
2185
4c4b4cd2 2186 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2187}
2188
2189
2190/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2191 given in IND. ARR must be a simple array. */
14f9c5c9 2192
d2e4a39e
AS
2193static struct value *
2194value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2195{
2196 int i;
2197 int bits, elt_off, bit_off;
2198 long elt_total_bit_offset;
d2e4a39e
AS
2199 struct type *elt_type;
2200 struct value *v;
14f9c5c9
AS
2201
2202 bits = 0;
2203 elt_total_bit_offset = 0;
df407dfe 2204 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2205 for (i = 0; i < arity; i += 1)
14f9c5c9 2206 {
78134374 2207 if (elt_type->code () != TYPE_CODE_ARRAY
4c4b4cd2
PH
2208 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2209 error
0963b4bd
MS
2210 (_("attempt to do packed indexing of "
2211 "something other than a packed array"));
14f9c5c9 2212 else
4c4b4cd2 2213 {
3d967001 2214 struct type *range_type = elt_type->index_type ();
4c4b4cd2
PH
2215 LONGEST lowerbound, upperbound;
2216 LONGEST idx;
2217
2218 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2219 {
323e0a4a 2220 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2221 lowerbound = upperbound = 0;
2222 }
2223
3cb382c9 2224 idx = pos_atr (ind[i]);
4c4b4cd2 2225 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2226 lim_warning (_("packed array index %ld out of bounds"),
2227 (long) idx);
4c4b4cd2
PH
2228 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2229 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2230 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2231 }
14f9c5c9
AS
2232 }
2233 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2234 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2235
2236 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2237 bits, elt_type);
14f9c5c9
AS
2238 return v;
2239}
2240
4c4b4cd2 2241/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2242
2243static int
d2e4a39e 2244has_negatives (struct type *type)
14f9c5c9 2245{
78134374 2246 switch (type->code ())
d2e4a39e
AS
2247 {
2248 default:
2249 return 0;
2250 case TYPE_CODE_INT:
2251 return !TYPE_UNSIGNED (type);
2252 case TYPE_CODE_RANGE:
4e962e74 2253 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2254 }
14f9c5c9 2255}
d2e4a39e 2256
f93fca70 2257/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2258 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2259 the unpacked buffer.
14f9c5c9 2260
5b639dea
JB
2261 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2262 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2263
f93fca70
JB
2264 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2265 zero otherwise.
14f9c5c9 2266
f93fca70 2267 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2268
f93fca70
JB
2269 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2270
2271static void
2272ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2273 gdb_byte *unpacked, int unpacked_len,
2274 int is_big_endian, int is_signed_type,
2275 int is_scalar)
2276{
a1c95e6b
JB
2277 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2278 int src_idx; /* Index into the source area */
2279 int src_bytes_left; /* Number of source bytes left to process. */
2280 int srcBitsLeft; /* Number of source bits left to move */
2281 int unusedLS; /* Number of bits in next significant
2282 byte of source that are unused */
2283
a1c95e6b
JB
2284 int unpacked_idx; /* Index into the unpacked buffer */
2285 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2286
4c4b4cd2 2287 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2288 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2289 unsigned char sign;
a1c95e6b 2290
4c4b4cd2
PH
2291 /* Transmit bytes from least to most significant; delta is the direction
2292 the indices move. */
f93fca70 2293 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2294
5b639dea
JB
2295 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2296 bits from SRC. .*/
2297 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2298 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2299 bit_size, unpacked_len);
2300
14f9c5c9 2301 srcBitsLeft = bit_size;
086ca51f 2302 src_bytes_left = src_len;
f93fca70 2303 unpacked_bytes_left = unpacked_len;
14f9c5c9 2304 sign = 0;
f93fca70
JB
2305
2306 if (is_big_endian)
14f9c5c9 2307 {
086ca51f 2308 src_idx = src_len - 1;
f93fca70
JB
2309 if (is_signed_type
2310 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2311 sign = ~0;
d2e4a39e
AS
2312
2313 unusedLS =
4c4b4cd2
PH
2314 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2315 % HOST_CHAR_BIT;
14f9c5c9 2316
f93fca70
JB
2317 if (is_scalar)
2318 {
2319 accumSize = 0;
2320 unpacked_idx = unpacked_len - 1;
2321 }
2322 else
2323 {
4c4b4cd2
PH
2324 /* Non-scalar values must be aligned at a byte boundary... */
2325 accumSize =
2326 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2327 /* ... And are placed at the beginning (most-significant) bytes
2328 of the target. */
086ca51f
JB
2329 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2330 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2331 }
14f9c5c9 2332 }
d2e4a39e 2333 else
14f9c5c9
AS
2334 {
2335 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2336
086ca51f 2337 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2338 unusedLS = bit_offset;
2339 accumSize = 0;
2340
f93fca70 2341 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2342 sign = ~0;
14f9c5c9 2343 }
d2e4a39e 2344
14f9c5c9 2345 accum = 0;
086ca51f 2346 while (src_bytes_left > 0)
14f9c5c9
AS
2347 {
2348 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2349 part of the value. */
d2e4a39e 2350 unsigned int unusedMSMask =
4c4b4cd2
PH
2351 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2352 1;
2353 /* Sign-extend bits for this byte. */
14f9c5c9 2354 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2355
d2e4a39e 2356 accum |=
086ca51f 2357 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2358 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2359 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2360 {
db297a65 2361 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2364 unpacked_bytes_left -= 1;
2365 unpacked_idx += delta;
4c4b4cd2 2366 }
14f9c5c9
AS
2367 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2368 unusedLS = 0;
086ca51f
JB
2369 src_bytes_left -= 1;
2370 src_idx += delta;
14f9c5c9 2371 }
086ca51f 2372 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2373 {
2374 accum |= sign << accumSize;
db297a65 2375 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2376 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2377 if (accumSize < 0)
2378 accumSize = 0;
14f9c5c9 2379 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2380 unpacked_bytes_left -= 1;
2381 unpacked_idx += delta;
14f9c5c9 2382 }
f93fca70
JB
2383}
2384
2385/* Create a new value of type TYPE from the contents of OBJ starting
2386 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2387 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2388 assigning through the result will set the field fetched from.
2389 VALADDR is ignored unless OBJ is NULL, in which case,
2390 VALADDR+OFFSET must address the start of storage containing the
2391 packed value. The value returned in this case is never an lval.
2392 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2393
2394struct value *
2395ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2396 long offset, int bit_offset, int bit_size,
2397 struct type *type)
2398{
2399 struct value *v;
bfb1c796 2400 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2401 gdb_byte *unpacked;
220475ed 2402 const int is_scalar = is_scalar_type (type);
d5a22e77 2403 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2404 gdb::byte_vector staging;
f93fca70
JB
2405
2406 type = ada_check_typedef (type);
2407
d0a9e810 2408 if (obj == NULL)
bfb1c796 2409 src = valaddr + offset;
d0a9e810 2410 else
bfb1c796 2411 src = value_contents (obj) + offset;
d0a9e810
JB
2412
2413 if (is_dynamic_type (type))
2414 {
2415 /* The length of TYPE might by dynamic, so we need to resolve
2416 TYPE in order to know its actual size, which we then use
2417 to create the contents buffer of the value we return.
2418 The difficulty is that the data containing our object is
2419 packed, and therefore maybe not at a byte boundary. So, what
2420 we do, is unpack the data into a byte-aligned buffer, and then
2421 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2422 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2423 staging.resize (staging_len);
d0a9e810
JB
2424
2425 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2426 staging.data (), staging.size (),
d0a9e810
JB
2427 is_big_endian, has_negatives (type),
2428 is_scalar);
b249d2c2 2429 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2430 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2431 {
2432 /* This happens when the length of the object is dynamic,
2433 and is actually smaller than the space reserved for it.
2434 For instance, in an array of variant records, the bit_size
2435 we're given is the array stride, which is constant and
2436 normally equal to the maximum size of its element.
2437 But, in reality, each element only actually spans a portion
2438 of that stride. */
2439 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2440 }
d0a9e810
JB
2441 }
2442
f93fca70
JB
2443 if (obj == NULL)
2444 {
2445 v = allocate_value (type);
bfb1c796 2446 src = valaddr + offset;
f93fca70
JB
2447 }
2448 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2449 {
0cafa88c 2450 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2451 gdb_byte *buf;
0cafa88c 2452
f93fca70 2453 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2454 buf = (gdb_byte *) alloca (src_len);
2455 read_memory (value_address (v), buf, src_len);
2456 src = buf;
f93fca70
JB
2457 }
2458 else
2459 {
2460 v = allocate_value (type);
bfb1c796 2461 src = value_contents (obj) + offset;
f93fca70
JB
2462 }
2463
2464 if (obj != NULL)
2465 {
2466 long new_offset = offset;
2467
2468 set_value_component_location (v, obj);
2469 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2470 set_value_bitsize (v, bit_size);
2471 if (value_bitpos (v) >= HOST_CHAR_BIT)
2472 {
2473 ++new_offset;
2474 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2475 }
2476 set_value_offset (v, new_offset);
2477
2478 /* Also set the parent value. This is needed when trying to
2479 assign a new value (in inferior memory). */
2480 set_value_parent (v, obj);
2481 }
2482 else
2483 set_value_bitsize (v, bit_size);
bfb1c796 2484 unpacked = value_contents_writeable (v);
f93fca70
JB
2485
2486 if (bit_size == 0)
2487 {
2488 memset (unpacked, 0, TYPE_LENGTH (type));
2489 return v;
2490 }
2491
d5722aa2 2492 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2493 {
d0a9e810
JB
2494 /* Small short-cut: If we've unpacked the data into a buffer
2495 of the same size as TYPE's length, then we can reuse that,
2496 instead of doing the unpacking again. */
d5722aa2 2497 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2498 }
d0a9e810
JB
2499 else
2500 ada_unpack_from_contents (src, bit_offset, bit_size,
2501 unpacked, TYPE_LENGTH (type),
2502 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2503
14f9c5c9
AS
2504 return v;
2505}
d2e4a39e 2506
14f9c5c9
AS
2507/* Store the contents of FROMVAL into the location of TOVAL.
2508 Return a new value with the location of TOVAL and contents of
2509 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2510 floating-point or non-scalar types. */
14f9c5c9 2511
d2e4a39e
AS
2512static struct value *
2513ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2514{
df407dfe
AC
2515 struct type *type = value_type (toval);
2516 int bits = value_bitsize (toval);
14f9c5c9 2517
52ce6436
PH
2518 toval = ada_coerce_ref (toval);
2519 fromval = ada_coerce_ref (fromval);
2520
2521 if (ada_is_direct_array_type (value_type (toval)))
2522 toval = ada_coerce_to_simple_array (toval);
2523 if (ada_is_direct_array_type (value_type (fromval)))
2524 fromval = ada_coerce_to_simple_array (fromval);
2525
88e3b34b 2526 if (!deprecated_value_modifiable (toval))
323e0a4a 2527 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2528
d2e4a39e 2529 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2530 && bits > 0
78134374
SM
2531 && (type->code () == TYPE_CODE_FLT
2532 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2533 {
df407dfe
AC
2534 int len = (value_bitpos (toval)
2535 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2536 int from_size;
224c3ddb 2537 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2538 struct value *val;
42ae5230 2539 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2540
78134374 2541 if (type->code () == TYPE_CODE_FLT)
4c4b4cd2 2542 fromval = value_cast (type, fromval);
14f9c5c9 2543
52ce6436 2544 read_memory (to_addr, buffer, len);
aced2898
PH
2545 from_size = value_bitsize (fromval);
2546 if (from_size == 0)
2547 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2548
d5a22e77 2549 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2550 ULONGEST from_offset = 0;
2551 if (is_big_endian && is_scalar_type (value_type (fromval)))
2552 from_offset = from_size - bits;
2553 copy_bitwise (buffer, value_bitpos (toval),
2554 value_contents (fromval), from_offset,
2555 bits, is_big_endian);
972daa01 2556 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2557
14f9c5c9 2558 val = value_copy (toval);
0fd88904 2559 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2560 TYPE_LENGTH (type));
04624583 2561 deprecated_set_value_type (val, type);
d2e4a39e 2562
14f9c5c9
AS
2563 return val;
2564 }
2565
2566 return value_assign (toval, fromval);
2567}
2568
2569
7c512744
JB
2570/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2571 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2572 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2573 COMPONENT, and not the inferior's memory. The current contents
2574 of COMPONENT are ignored.
2575
2576 Although not part of the initial design, this function also works
2577 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2578 had a null address, and COMPONENT had an address which is equal to
2579 its offset inside CONTAINER. */
2580
52ce6436
PH
2581static void
2582value_assign_to_component (struct value *container, struct value *component,
2583 struct value *val)
2584{
2585 LONGEST offset_in_container =
42ae5230 2586 (LONGEST) (value_address (component) - value_address (container));
7c512744 2587 int bit_offset_in_container =
52ce6436
PH
2588 value_bitpos (component) - value_bitpos (container);
2589 int bits;
7c512744 2590
52ce6436
PH
2591 val = value_cast (value_type (component), val);
2592
2593 if (value_bitsize (component) == 0)
2594 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2595 else
2596 bits = value_bitsize (component);
2597
d5a22e77 2598 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2599 {
2600 int src_offset;
2601
2602 if (is_scalar_type (check_typedef (value_type (component))))
2603 src_offset
2604 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2605 else
2606 src_offset = 0;
a99bc3d2
JB
2607 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2608 value_bitpos (container) + bit_offset_in_container,
2609 value_contents (val), src_offset, bits, 1);
2a62dfa9 2610 }
52ce6436 2611 else
a99bc3d2
JB
2612 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2613 value_bitpos (container) + bit_offset_in_container,
2614 value_contents (val), 0, bits, 0);
7c512744
JB
2615}
2616
736ade86
XR
2617/* Determine if TYPE is an access to an unconstrained array. */
2618
d91e9ea8 2619bool
736ade86
XR
2620ada_is_access_to_unconstrained_array (struct type *type)
2621{
78134374 2622 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2623 && is_thick_pntr (ada_typedef_target_type (type)));
2624}
2625
4c4b4cd2
PH
2626/* The value of the element of array ARR at the ARITY indices given in IND.
2627 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2628 thereto. */
2629
d2e4a39e
AS
2630struct value *
2631ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2632{
2633 int k;
d2e4a39e
AS
2634 struct value *elt;
2635 struct type *elt_type;
14f9c5c9
AS
2636
2637 elt = ada_coerce_to_simple_array (arr);
2638
df407dfe 2639 elt_type = ada_check_typedef (value_type (elt));
78134374 2640 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2641 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2642 return value_subscript_packed (elt, arity, ind);
2643
2644 for (k = 0; k < arity; k += 1)
2645 {
b9c50e9a
XR
2646 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2647
78134374 2648 if (elt_type->code () != TYPE_CODE_ARRAY)
323e0a4a 2649 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2650
2497b498 2651 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2652
2653 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2654 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2655 {
2656 /* The element is a typedef to an unconstrained array,
2657 except that the value_subscript call stripped the
2658 typedef layer. The typedef layer is GNAT's way to
2659 specify that the element is, at the source level, an
2660 access to the unconstrained array, rather than the
2661 unconstrained array. So, we need to restore that
2662 typedef layer, which we can do by forcing the element's
2663 type back to its original type. Otherwise, the returned
2664 value is going to be printed as the array, rather
2665 than as an access. Another symptom of the same issue
2666 would be that an expression trying to dereference the
2667 element would also be improperly rejected. */
2668 deprecated_set_value_type (elt, saved_elt_type);
2669 }
2670
2671 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2672 }
b9c50e9a 2673
14f9c5c9
AS
2674 return elt;
2675}
2676
deede10c
JB
2677/* Assuming ARR is a pointer to a GDB array, the value of the element
2678 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2679 Does not read the entire array into memory.
2680
2681 Note: Unlike what one would expect, this function is used instead of
2682 ada_value_subscript for basically all non-packed array types. The reason
2683 for this is that a side effect of doing our own pointer arithmetics instead
2684 of relying on value_subscript is that there is no implicit typedef peeling.
2685 This is important for arrays of array accesses, where it allows us to
2686 preserve the fact that the array's element is an array access, where the
2687 access part os encoded in a typedef layer. */
14f9c5c9 2688
2c0b251b 2689static struct value *
deede10c 2690ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2691{
2692 int k;
919e6dbe 2693 struct value *array_ind = ada_value_ind (arr);
deede10c 2694 struct type *type
919e6dbe
PMR
2695 = check_typedef (value_enclosing_type (array_ind));
2696
78134374 2697 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2698 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2699 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2700
2701 for (k = 0; k < arity; k += 1)
2702 {
2703 LONGEST lwb, upb;
14f9c5c9 2704
78134374 2705 if (type->code () != TYPE_CODE_ARRAY)
323e0a4a 2706 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2707 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2708 value_copy (arr));
3d967001 2709 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2710 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2711 type = TYPE_TARGET_TYPE (type);
2712 }
2713
2714 return value_ind (arr);
2715}
2716
0b5d8877 2717/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2718 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2719 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2720 this array is LOW, as per Ada rules. */
0b5d8877 2721static struct value *
f5938064
JG
2722ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2723 int low, int high)
0b5d8877 2724{
b0dd7688 2725 struct type *type0 = ada_check_typedef (type);
3d967001 2726 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2727 struct type *index_type
aa715135 2728 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2729 struct type *slice_type = create_array_type_with_stride
2730 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2731 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2732 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2733 int base_low = ada_discrete_type_low_bound (type0->index_type ());
aa715135
JG
2734 LONGEST base_low_pos, low_pos;
2735 CORE_ADDR base;
2736
2737 if (!discrete_position (base_index_type, low, &low_pos)
2738 || !discrete_position (base_index_type, base_low, &base_low_pos))
2739 {
2740 warning (_("unable to get positions in slice, use bounds instead"));
2741 low_pos = low;
2742 base_low_pos = base_low;
2743 }
5b4ee69b 2744
aa715135
JG
2745 base = value_as_address (array_ptr)
2746 + ((low_pos - base_low_pos)
2747 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2748 return value_at_lazy (slice_type, base);
0b5d8877
PH
2749}
2750
2751
2752static struct value *
2753ada_value_slice (struct value *array, int low, int high)
2754{
b0dd7688 2755 struct type *type = ada_check_typedef (value_type (array));
3d967001 2756 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2757 struct type *index_type
3d967001 2758 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2759 struct type *slice_type = create_array_type_with_stride
2760 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2761 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2762 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2763 LONGEST low_pos, high_pos;
5b4ee69b 2764
aa715135
JG
2765 if (!discrete_position (base_index_type, low, &low_pos)
2766 || !discrete_position (base_index_type, high, &high_pos))
2767 {
2768 warning (_("unable to get positions in slice, use bounds instead"));
2769 low_pos = low;
2770 high_pos = high;
2771 }
2772
2773 return value_cast (slice_type,
2774 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2775}
2776
14f9c5c9
AS
2777/* If type is a record type in the form of a standard GNAT array
2778 descriptor, returns the number of dimensions for type. If arr is a
2779 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2780 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2781
2782int
d2e4a39e 2783ada_array_arity (struct type *type)
14f9c5c9
AS
2784{
2785 int arity;
2786
2787 if (type == NULL)
2788 return 0;
2789
2790 type = desc_base_type (type);
2791
2792 arity = 0;
78134374 2793 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2794 return desc_arity (desc_bounds_type (type));
d2e4a39e 2795 else
78134374 2796 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2797 {
4c4b4cd2 2798 arity += 1;
61ee279c 2799 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2800 }
d2e4a39e 2801
14f9c5c9
AS
2802 return arity;
2803}
2804
2805/* If TYPE is a record type in the form of a standard GNAT array
2806 descriptor or a simple array type, returns the element type for
2807 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2808 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2809
d2e4a39e
AS
2810struct type *
2811ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2812{
2813 type = desc_base_type (type);
2814
78134374 2815 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2816 {
2817 int k;
d2e4a39e 2818 struct type *p_array_type;
14f9c5c9 2819
556bdfd4 2820 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2821
2822 k = ada_array_arity (type);
2823 if (k == 0)
4c4b4cd2 2824 return NULL;
d2e4a39e 2825
4c4b4cd2 2826 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2827 if (nindices >= 0 && k > nindices)
4c4b4cd2 2828 k = nindices;
d2e4a39e 2829 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2830 {
61ee279c 2831 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2832 k -= 1;
2833 }
14f9c5c9
AS
2834 return p_array_type;
2835 }
78134374 2836 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2837 {
78134374 2838 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2839 {
2840 type = TYPE_TARGET_TYPE (type);
2841 nindices -= 1;
2842 }
14f9c5c9
AS
2843 return type;
2844 }
2845
2846 return NULL;
2847}
2848
4c4b4cd2 2849/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2850 Does not examine memory. Throws an error if N is invalid or TYPE
2851 is not an array type. NAME is the name of the Ada attribute being
2852 evaluated ('range, 'first, 'last, or 'length); it is used in building
2853 the error message. */
14f9c5c9 2854
1eea4ebd
UW
2855static struct type *
2856ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2857{
4c4b4cd2
PH
2858 struct type *result_type;
2859
14f9c5c9
AS
2860 type = desc_base_type (type);
2861
1eea4ebd
UW
2862 if (n < 0 || n > ada_array_arity (type))
2863 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2864
4c4b4cd2 2865 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2866 {
2867 int i;
2868
2869 for (i = 1; i < n; i += 1)
4c4b4cd2 2870 type = TYPE_TARGET_TYPE (type);
3d967001 2871 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2
PH
2872 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2873 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2874 perhaps stabsread.c would make more sense. */
78134374 2875 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
1eea4ebd 2876 result_type = NULL;
14f9c5c9 2877 }
d2e4a39e 2878 else
1eea4ebd
UW
2879 {
2880 result_type = desc_index_type (desc_bounds_type (type), n);
2881 if (result_type == NULL)
2882 error (_("attempt to take bound of something that is not an array"));
2883 }
2884
2885 return result_type;
14f9c5c9
AS
2886}
2887
2888/* Given that arr is an array type, returns the lower bound of the
2889 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2890 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2891 array-descriptor type. It works for other arrays with bounds supplied
2892 by run-time quantities other than discriminants. */
14f9c5c9 2893
abb68b3e 2894static LONGEST
fb5e3d5c 2895ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2896{
8a48ac95 2897 struct type *type, *index_type_desc, *index_type;
1ce677a4 2898 int i;
262452ec
JK
2899
2900 gdb_assert (which == 0 || which == 1);
14f9c5c9 2901
ad82864c
JB
2902 if (ada_is_constrained_packed_array_type (arr_type))
2903 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2904
4c4b4cd2 2905 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2906 return (LONGEST) - which;
14f9c5c9 2907
78134374 2908 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2909 type = TYPE_TARGET_TYPE (arr_type);
2910 else
2911 type = arr_type;
2912
bafffb51
JB
2913 if (TYPE_FIXED_INSTANCE (type))
2914 {
2915 /* The array has already been fixed, so we do not need to
2916 check the parallel ___XA type again. That encoding has
2917 already been applied, so ignore it now. */
2918 index_type_desc = NULL;
2919 }
2920 else
2921 {
2922 index_type_desc = ada_find_parallel_type (type, "___XA");
2923 ada_fixup_array_indexes_type (index_type_desc);
2924 }
2925
262452ec 2926 if (index_type_desc != NULL)
940da03e 2927 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2928 NULL);
262452ec 2929 else
8a48ac95
JB
2930 {
2931 struct type *elt_type = check_typedef (type);
2932
2933 for (i = 1; i < n; i++)
2934 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2935
3d967001 2936 index_type = elt_type->index_type ();
8a48ac95 2937 }
262452ec 2938
43bbcdc2
PH
2939 return
2940 (LONGEST) (which == 0
2941 ? ada_discrete_type_low_bound (index_type)
2942 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2943}
2944
2945/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2946 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2947 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2948 supplied by run-time quantities other than discriminants. */
14f9c5c9 2949
1eea4ebd 2950static LONGEST
4dc81987 2951ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2952{
eb479039
JB
2953 struct type *arr_type;
2954
78134374 2955 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2956 arr = value_ind (arr);
2957 arr_type = value_enclosing_type (arr);
14f9c5c9 2958
ad82864c
JB
2959 if (ada_is_constrained_packed_array_type (arr_type))
2960 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2961 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2962 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2963 else
1eea4ebd 2964 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2965}
2966
2967/* Given that arr is an array value, returns the length of the
2968 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2969 supplied by run-time quantities other than discriminants.
2970 Does not work for arrays indexed by enumeration types with representation
2971 clauses at the moment. */
14f9c5c9 2972
1eea4ebd 2973static LONGEST
d2e4a39e 2974ada_array_length (struct value *arr, int n)
14f9c5c9 2975{
aa715135
JG
2976 struct type *arr_type, *index_type;
2977 int low, high;
eb479039 2978
78134374 2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
14f9c5c9 2982
ad82864c
JB
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2985
4c4b4cd2 2986 if (ada_is_simple_array_type (arr_type))
aa715135
JG
2987 {
2988 low = ada_array_bound_from_type (arr_type, n, 0);
2989 high = ada_array_bound_from_type (arr_type, n, 1);
2990 }
14f9c5c9 2991 else
aa715135
JG
2992 {
2993 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
2994 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
2995 }
2996
f168693b 2997 arr_type = check_typedef (arr_type);
7150d33c 2998 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
2999 if (index_type != NULL)
3000 {
3001 struct type *base_type;
78134374 3002 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3003 base_type = TYPE_TARGET_TYPE (index_type);
3004 else
3005 base_type = index_type;
3006
3007 low = pos_atr (value_from_longest (base_type, low));
3008 high = pos_atr (value_from_longest (base_type, high));
3009 }
3010 return high - low + 1;
4c4b4cd2
PH
3011}
3012
bff8c71f
TT
3013/* An array whose type is that of ARR_TYPE (an array type), with
3014 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3015 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3016
3017static struct value *
bff8c71f 3018empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3019{
b0dd7688 3020 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3021 struct type *index_type
3022 = create_static_range_type
3d967001 3023 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3024 high < low ? low - 1 : high);
b0dd7688 3025 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3026
0b5d8877 3027 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3028}
14f9c5c9 3029\f
d2e4a39e 3030
4c4b4cd2 3031 /* Name resolution */
14f9c5c9 3032
4c4b4cd2
PH
3033/* The "decoded" name for the user-definable Ada operator corresponding
3034 to OP. */
14f9c5c9 3035
d2e4a39e 3036static const char *
4c4b4cd2 3037ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3038{
3039 int i;
3040
4c4b4cd2 3041 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3042 {
3043 if (ada_opname_table[i].op == op)
4c4b4cd2 3044 return ada_opname_table[i].decoded;
14f9c5c9 3045 }
323e0a4a 3046 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3047}
3048
de93309a
SM
3049/* Returns true (non-zero) iff decoded name N0 should appear before N1
3050 in a listing of choices during disambiguation (see sort_choices, below).
3051 The idea is that overloadings of a subprogram name from the
3052 same package should sort in their source order. We settle for ordering
3053 such symbols by their trailing number (__N or $N). */
14f9c5c9 3054
de93309a
SM
3055static int
3056encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3057{
de93309a
SM
3058 if (N1 == NULL)
3059 return 0;
3060 else if (N0 == NULL)
3061 return 1;
3062 else
3063 {
3064 int k0, k1;
30b15541 3065
de93309a
SM
3066 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3067 ;
3068 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3069 ;
3070 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3071 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3072 {
3073 int n0, n1;
30b15541 3074
de93309a
SM
3075 n0 = k0;
3076 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3077 n0 -= 1;
3078 n1 = k1;
3079 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3080 n1 -= 1;
3081 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3082 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3083 }
3084 return (strcmp (N0, N1) < 0);
3085 }
14f9c5c9
AS
3086}
3087
de93309a
SM
3088/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3089 encoded names. */
14f9c5c9 3090
de93309a
SM
3091static void
3092sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3093{
14f9c5c9 3094 int i;
14f9c5c9 3095
de93309a 3096 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3097 {
de93309a
SM
3098 struct block_symbol sym = syms[i];
3099 int j;
3100
3101 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3102 {
987012b8
CB
3103 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3104 sym.symbol->linkage_name ()))
de93309a
SM
3105 break;
3106 syms[j + 1] = syms[j];
4c4b4cd2 3107 }
de93309a
SM
3108 syms[j + 1] = sym;
3109 }
3110}
14f9c5c9 3111
de93309a
SM
3112/* Whether GDB should display formals and return types for functions in the
3113 overloads selection menu. */
3114static bool print_signatures = true;
4c4b4cd2 3115
de93309a
SM
3116/* Print the signature for SYM on STREAM according to the FLAGS options. For
3117 all but functions, the signature is just the name of the symbol. For
3118 functions, this is the name of the function, the list of types for formals
3119 and the return type (if any). */
4c4b4cd2 3120
de93309a
SM
3121static void
3122ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3123 const struct type_print_options *flags)
3124{
3125 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3126
987012b8 3127 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3128 if (!print_signatures
3129 || type == NULL
78134374 3130 || type->code () != TYPE_CODE_FUNC)
de93309a 3131 return;
4c4b4cd2 3132
1f704f76 3133 if (type->num_fields () > 0)
de93309a
SM
3134 {
3135 int i;
14f9c5c9 3136
de93309a 3137 fprintf_filtered (stream, " (");
1f704f76 3138 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3139 {
3140 if (i > 0)
3141 fprintf_filtered (stream, "; ");
940da03e 3142 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3143 flags);
3144 }
3145 fprintf_filtered (stream, ")");
3146 }
3147 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3148 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3149 {
3150 fprintf_filtered (stream, " return ");
3151 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3152 }
3153}
14f9c5c9 3154
de93309a
SM
3155/* Read and validate a set of numeric choices from the user in the
3156 range 0 .. N_CHOICES-1. Place the results in increasing
3157 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3158
de93309a
SM
3159 The user types choices as a sequence of numbers on one line
3160 separated by blanks, encoding them as follows:
14f9c5c9 3161
de93309a
SM
3162 + A choice of 0 means to cancel the selection, throwing an error.
3163 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3164 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3165
de93309a 3166 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3167
de93309a
SM
3168 ANNOTATION_SUFFIX, if present, is used to annotate the input
3169 prompts (for use with the -f switch). */
14f9c5c9 3170
de93309a
SM
3171static int
3172get_selections (int *choices, int n_choices, int max_results,
3173 int is_all_choice, const char *annotation_suffix)
3174{
992a7040 3175 const char *args;
de93309a
SM
3176 const char *prompt;
3177 int n_chosen;
3178 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3179
de93309a
SM
3180 prompt = getenv ("PS2");
3181 if (prompt == NULL)
3182 prompt = "> ";
4c4b4cd2 3183
de93309a 3184 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3185
de93309a
SM
3186 if (args == NULL)
3187 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3188
de93309a 3189 n_chosen = 0;
4c4b4cd2 3190
de93309a
SM
3191 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3192 order, as given in args. Choices are validated. */
3193 while (1)
14f9c5c9 3194 {
de93309a
SM
3195 char *args2;
3196 int choice, j;
76a01679 3197
de93309a
SM
3198 args = skip_spaces (args);
3199 if (*args == '\0' && n_chosen == 0)
3200 error_no_arg (_("one or more choice numbers"));
3201 else if (*args == '\0')
3202 break;
76a01679 3203
de93309a
SM
3204 choice = strtol (args, &args2, 10);
3205 if (args == args2 || choice < 0
3206 || choice > n_choices + first_choice - 1)
3207 error (_("Argument must be choice number"));
3208 args = args2;
76a01679 3209
de93309a
SM
3210 if (choice == 0)
3211 error (_("cancelled"));
76a01679 3212
de93309a
SM
3213 if (choice < first_choice)
3214 {
3215 n_chosen = n_choices;
3216 for (j = 0; j < n_choices; j += 1)
3217 choices[j] = j;
3218 break;
76a01679 3219 }
de93309a 3220 choice -= first_choice;
76a01679 3221
de93309a 3222 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3223 {
76a01679 3224 }
4c4b4cd2 3225
de93309a 3226 if (j < 0 || choice != choices[j])
4c4b4cd2 3227 {
de93309a 3228 int k;
4c4b4cd2 3229
de93309a
SM
3230 for (k = n_chosen - 1; k > j; k -= 1)
3231 choices[k + 1] = choices[k];
3232 choices[j + 1] = choice;
3233 n_chosen += 1;
4c4b4cd2 3234 }
14f9c5c9
AS
3235 }
3236
de93309a
SM
3237 if (n_chosen > max_results)
3238 error (_("Select no more than %d of the above"), max_results);
3239
3240 return n_chosen;
14f9c5c9
AS
3241}
3242
de93309a
SM
3243/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3244 by asking the user (if necessary), returning the number selected,
3245 and setting the first elements of SYMS items. Error if no symbols
3246 selected. */
3247
3248/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3249 to be re-integrated one of these days. */
14f9c5c9
AS
3250
3251static int
de93309a 3252user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3253{
de93309a
SM
3254 int i;
3255 int *chosen = XALLOCAVEC (int , nsyms);
3256 int n_chosen;
3257 int first_choice = (max_results == 1) ? 1 : 2;
3258 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3259
de93309a
SM
3260 if (max_results < 1)
3261 error (_("Request to select 0 symbols!"));
3262 if (nsyms <= 1)
3263 return nsyms;
14f9c5c9 3264
de93309a
SM
3265 if (select_mode == multiple_symbols_cancel)
3266 error (_("\
3267canceled because the command is ambiguous\n\
3268See set/show multiple-symbol."));
14f9c5c9 3269
de93309a
SM
3270 /* If select_mode is "all", then return all possible symbols.
3271 Only do that if more than one symbol can be selected, of course.
3272 Otherwise, display the menu as usual. */
3273 if (select_mode == multiple_symbols_all && max_results > 1)
3274 return nsyms;
14f9c5c9 3275
de93309a
SM
3276 printf_filtered (_("[0] cancel\n"));
3277 if (max_results > 1)
3278 printf_filtered (_("[1] all\n"));
14f9c5c9 3279
de93309a 3280 sort_choices (syms, nsyms);
14f9c5c9 3281
de93309a
SM
3282 for (i = 0; i < nsyms; i += 1)
3283 {
3284 if (syms[i].symbol == NULL)
3285 continue;
14f9c5c9 3286
de93309a
SM
3287 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3288 {
3289 struct symtab_and_line sal =
3290 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3291
de93309a
SM
3292 printf_filtered ("[%d] ", i + first_choice);
3293 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3294 &type_print_raw_options);
3295 if (sal.symtab == NULL)
3296 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3297 metadata_style.style ().ptr (), nullptr, sal.line);
3298 else
3299 printf_filtered
3300 (_(" at %ps:%d\n"),
3301 styled_string (file_name_style.style (),
3302 symtab_to_filename_for_display (sal.symtab)),
3303 sal.line);
3304 continue;
3305 }
76a01679
JB
3306 else
3307 {
de93309a
SM
3308 int is_enumeral =
3309 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3310 && SYMBOL_TYPE (syms[i].symbol) != NULL
78134374 3311 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3312 struct symtab *symtab = NULL;
4c4b4cd2 3313
de93309a
SM
3314 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3315 symtab = symbol_symtab (syms[i].symbol);
3316
3317 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3318 {
3319 printf_filtered ("[%d] ", i + first_choice);
3320 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3321 &type_print_raw_options);
3322 printf_filtered (_(" at %s:%d\n"),
3323 symtab_to_filename_for_display (symtab),
3324 SYMBOL_LINE (syms[i].symbol));
3325 }
3326 else if (is_enumeral
7d93a1e0 3327 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
de93309a
SM
3328 {
3329 printf_filtered (("[%d] "), i + first_choice);
3330 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3331 gdb_stdout, -1, 0, &type_print_raw_options);
3332 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3333 syms[i].symbol->print_name ());
de93309a
SM
3334 }
3335 else
3336 {
3337 printf_filtered ("[%d] ", i + first_choice);
3338 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3339 &type_print_raw_options);
3340
3341 if (symtab != NULL)
3342 printf_filtered (is_enumeral
3343 ? _(" in %s (enumeral)\n")
3344 : _(" at %s:?\n"),
3345 symtab_to_filename_for_display (symtab));
3346 else
3347 printf_filtered (is_enumeral
3348 ? _(" (enumeral)\n")
3349 : _(" at ?\n"));
3350 }
76a01679 3351 }
14f9c5c9 3352 }
14f9c5c9 3353
de93309a
SM
3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3355 "overload-choice");
14f9c5c9 3356
de93309a
SM
3357 for (i = 0; i < n_chosen; i += 1)
3358 syms[i] = syms[chosen[i]];
14f9c5c9 3359
de93309a
SM
3360 return n_chosen;
3361}
14f9c5c9 3362
de93309a
SM
3363/* Resolve the operator of the subexpression beginning at
3364 position *POS of *EXPP. "Resolving" consists of replacing
3365 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3366 with their resolutions, replacing built-in operators with
3367 function calls to user-defined operators, where appropriate, and,
3368 when DEPROCEDURE_P is non-zero, converting function-valued variables
3369 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3370 are as in ada_resolve, above. */
14f9c5c9 3371
de93309a
SM
3372static struct value *
3373resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3374 struct type *context_type, int parse_completion,
3375 innermost_block_tracker *tracker)
14f9c5c9 3376{
de93309a
SM
3377 int pc = *pos;
3378 int i;
3379 struct expression *exp; /* Convenience: == *expp. */
3380 enum exp_opcode op = (*expp)->elts[pc].opcode;
3381 struct value **argvec; /* Vector of operand types (alloca'ed). */
3382 int nargs; /* Number of operands. */
3383 int oplen;
14f9c5c9 3384
de93309a
SM
3385 argvec = NULL;
3386 nargs = 0;
3387 exp = expp->get ();
4c4b4cd2 3388
de93309a
SM
3389 /* Pass one: resolve operands, saving their types and updating *pos,
3390 if needed. */
3391 switch (op)
3392 {
3393 case OP_FUNCALL:
3394 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3395 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3396 *pos += 7;
3397 else
3398 {
3399 *pos += 3;
3400 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3401 }
de93309a
SM
3402 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3403 break;
14f9c5c9 3404
de93309a
SM
3405 case UNOP_ADDR:
3406 *pos += 1;
3407 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3408 break;
3409
3410 case UNOP_QUAL:
3411 *pos += 3;
3412 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3413 parse_completion, tracker);
3414 break;
3415
3416 case OP_ATR_MODULUS:
3417 case OP_ATR_SIZE:
3418 case OP_ATR_TAG:
3419 case OP_ATR_FIRST:
3420 case OP_ATR_LAST:
3421 case OP_ATR_LENGTH:
3422 case OP_ATR_POS:
3423 case OP_ATR_VAL:
3424 case OP_ATR_MIN:
3425 case OP_ATR_MAX:
3426 case TERNOP_IN_RANGE:
3427 case BINOP_IN_BOUNDS:
3428 case UNOP_IN_RANGE:
3429 case OP_AGGREGATE:
3430 case OP_OTHERS:
3431 case OP_CHOICES:
3432 case OP_POSITIONAL:
3433 case OP_DISCRETE_RANGE:
3434 case OP_NAME:
3435 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3436 *pos += oplen;
3437 break;
3438
3439 case BINOP_ASSIGN:
3440 {
3441 struct value *arg1;
3442
3443 *pos += 1;
3444 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3445 if (arg1 == NULL)
3446 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3447 else
3448 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3449 tracker);
3450 break;
3451 }
3452
3453 case UNOP_CAST:
3454 *pos += 3;
3455 nargs = 1;
3456 break;
3457
3458 case BINOP_ADD:
3459 case BINOP_SUB:
3460 case BINOP_MUL:
3461 case BINOP_DIV:
3462 case BINOP_REM:
3463 case BINOP_MOD:
3464 case BINOP_EXP:
3465 case BINOP_CONCAT:
3466 case BINOP_LOGICAL_AND:
3467 case BINOP_LOGICAL_OR:
3468 case BINOP_BITWISE_AND:
3469 case BINOP_BITWISE_IOR:
3470 case BINOP_BITWISE_XOR:
3471
3472 case BINOP_EQUAL:
3473 case BINOP_NOTEQUAL:
3474 case BINOP_LESS:
3475 case BINOP_GTR:
3476 case BINOP_LEQ:
3477 case BINOP_GEQ:
3478
3479 case BINOP_REPEAT:
3480 case BINOP_SUBSCRIPT:
3481 case BINOP_COMMA:
3482 *pos += 1;
3483 nargs = 2;
3484 break;
3485
3486 case UNOP_NEG:
3487 case UNOP_PLUS:
3488 case UNOP_LOGICAL_NOT:
3489 case UNOP_ABS:
3490 case UNOP_IND:
3491 *pos += 1;
3492 nargs = 1;
3493 break;
3494
3495 case OP_LONG:
3496 case OP_FLOAT:
3497 case OP_VAR_VALUE:
3498 case OP_VAR_MSYM_VALUE:
3499 *pos += 4;
3500 break;
3501
3502 case OP_TYPE:
3503 case OP_BOOL:
3504 case OP_LAST:
3505 case OP_INTERNALVAR:
3506 *pos += 3;
3507 break;
3508
3509 case UNOP_MEMVAL:
3510 *pos += 3;
3511 nargs = 1;
3512 break;
3513
3514 case OP_REGISTER:
3515 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3516 break;
3517
3518 case STRUCTOP_STRUCT:
3519 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3520 nargs = 1;
3521 break;
3522
3523 case TERNOP_SLICE:
3524 *pos += 1;
3525 nargs = 3;
3526 break;
3527
3528 case OP_STRING:
3529 break;
3530
3531 default:
3532 error (_("Unexpected operator during name resolution"));
14f9c5c9 3533 }
14f9c5c9 3534
de93309a
SM
3535 argvec = XALLOCAVEC (struct value *, nargs + 1);
3536 for (i = 0; i < nargs; i += 1)
3537 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3538 tracker);
3539 argvec[i] = NULL;
3540 exp = expp->get ();
4c4b4cd2 3541
de93309a
SM
3542 /* Pass two: perform any resolution on principal operator. */
3543 switch (op)
14f9c5c9 3544 {
de93309a
SM
3545 default:
3546 break;
5b4ee69b 3547
de93309a
SM
3548 case OP_VAR_VALUE:
3549 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3550 {
de93309a
SM
3551 std::vector<struct block_symbol> candidates;
3552 int n_candidates;
5b4ee69b 3553
de93309a 3554 n_candidates =
987012b8 3555 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3556 exp->elts[pc + 1].block, VAR_DOMAIN,
3557 &candidates);
d2e4a39e 3558
de93309a
SM
3559 if (n_candidates > 1)
3560 {
3561 /* Types tend to get re-introduced locally, so if there
3562 are any local symbols that are not types, first filter
3563 out all types. */
3564 int j;
3565 for (j = 0; j < n_candidates; j += 1)
3566 switch (SYMBOL_CLASS (candidates[j].symbol))
3567 {
3568 case LOC_REGISTER:
3569 case LOC_ARG:
3570 case LOC_REF_ARG:
3571 case LOC_REGPARM_ADDR:
3572 case LOC_LOCAL:
3573 case LOC_COMPUTED:
3574 goto FoundNonType;
3575 default:
3576 break;
3577 }
3578 FoundNonType:
3579 if (j < n_candidates)
3580 {
3581 j = 0;
3582 while (j < n_candidates)
3583 {
3584 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3585 {
3586 candidates[j] = candidates[n_candidates - 1];
3587 n_candidates -= 1;
3588 }
3589 else
3590 j += 1;
3591 }
3592 }
3593 }
4c4b4cd2 3594
de93309a
SM
3595 if (n_candidates == 0)
3596 error (_("No definition found for %s"),
987012b8 3597 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3598 else if (n_candidates == 1)
3599 i = 0;
3600 else if (deprocedure_p
3601 && !is_nonfunction (candidates.data (), n_candidates))
3602 {
3603 i = ada_resolve_function
3604 (candidates.data (), n_candidates, NULL, 0,
987012b8 3605 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3606 context_type, parse_completion);
3607 if (i < 0)
3608 error (_("Could not find a match for %s"),
987012b8 3609 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3610 }
3611 else
3612 {
3613 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3614 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3615 user_select_syms (candidates.data (), n_candidates, 1);
3616 i = 0;
3617 }
5b4ee69b 3618
de93309a
SM
3619 exp->elts[pc + 1].block = candidates[i].block;
3620 exp->elts[pc + 2].symbol = candidates[i].symbol;
3621 tracker->update (candidates[i]);
3622 }
14f9c5c9 3623
de93309a 3624 if (deprocedure_p
78134374 3625 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
de93309a 3626 == TYPE_CODE_FUNC))
4c4b4cd2 3627 {
de93309a
SM
3628 replace_operator_with_call (expp, pc, 0, 4,
3629 exp->elts[pc + 2].symbol,
3630 exp->elts[pc + 1].block);
3631 exp = expp->get ();
4c4b4cd2 3632 }
de93309a
SM
3633 break;
3634
3635 case OP_FUNCALL:
3636 {
3637 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3638 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3639 {
3640 std::vector<struct block_symbol> candidates;
3641 int n_candidates;
3642
3643 n_candidates =
987012b8 3644 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3645 exp->elts[pc + 4].block, VAR_DOMAIN,
3646 &candidates);
14f9c5c9 3647
de93309a
SM
3648 if (n_candidates == 1)
3649 i = 0;
3650 else
3651 {
3652 i = ada_resolve_function
3653 (candidates.data (), n_candidates,
3654 argvec, nargs,
987012b8 3655 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3656 context_type, parse_completion);
3657 if (i < 0)
3658 error (_("Could not find a match for %s"),
987012b8 3659 exp->elts[pc + 5].symbol->print_name ());
de93309a 3660 }
d72413e6 3661
de93309a
SM
3662 exp->elts[pc + 4].block = candidates[i].block;
3663 exp->elts[pc + 5].symbol = candidates[i].symbol;
3664 tracker->update (candidates[i]);
3665 }
3666 }
3667 break;
3668 case BINOP_ADD:
3669 case BINOP_SUB:
3670 case BINOP_MUL:
3671 case BINOP_DIV:
3672 case BINOP_REM:
3673 case BINOP_MOD:
3674 case BINOP_CONCAT:
3675 case BINOP_BITWISE_AND:
3676 case BINOP_BITWISE_IOR:
3677 case BINOP_BITWISE_XOR:
3678 case BINOP_EQUAL:
3679 case BINOP_NOTEQUAL:
3680 case BINOP_LESS:
3681 case BINOP_GTR:
3682 case BINOP_LEQ:
3683 case BINOP_GEQ:
3684 case BINOP_EXP:
3685 case UNOP_NEG:
3686 case UNOP_PLUS:
3687 case UNOP_LOGICAL_NOT:
3688 case UNOP_ABS:
3689 if (possible_user_operator_p (op, argvec))
3690 {
3691 std::vector<struct block_symbol> candidates;
3692 int n_candidates;
d72413e6 3693
de93309a
SM
3694 n_candidates =
3695 ada_lookup_symbol_list (ada_decoded_op_name (op),
3696 NULL, VAR_DOMAIN,
3697 &candidates);
d72413e6 3698
de93309a
SM
3699 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3700 nargs, ada_decoded_op_name (op), NULL,
3701 parse_completion);
3702 if (i < 0)
3703 break;
d72413e6 3704
de93309a
SM
3705 replace_operator_with_call (expp, pc, nargs, 1,
3706 candidates[i].symbol,
3707 candidates[i].block);
3708 exp = expp->get ();
3709 }
3710 break;
d72413e6 3711
de93309a
SM
3712 case OP_TYPE:
3713 case OP_REGISTER:
3714 return NULL;
d72413e6 3715 }
d72413e6 3716
de93309a
SM
3717 *pos = pc;
3718 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3719 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3720 exp->elts[pc + 1].objfile,
3721 exp->elts[pc + 2].msymbol);
3722 else
3723 return evaluate_subexp_type (exp, pos);
3724}
14f9c5c9 3725
de93309a
SM
3726/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3727 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3728 a non-pointer. */
3729/* The term "match" here is rather loose. The match is heuristic and
3730 liberal. */
14f9c5c9 3731
de93309a
SM
3732static int
3733ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3734{
de93309a
SM
3735 ftype = ada_check_typedef (ftype);
3736 atype = ada_check_typedef (atype);
14f9c5c9 3737
78134374 3738 if (ftype->code () == TYPE_CODE_REF)
de93309a 3739 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3740 if (atype->code () == TYPE_CODE_REF)
de93309a 3741 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3742
78134374 3743 switch (ftype->code ())
14f9c5c9 3744 {
de93309a 3745 default:
78134374 3746 return ftype->code () == atype->code ();
de93309a 3747 case TYPE_CODE_PTR:
78134374 3748 if (atype->code () == TYPE_CODE_PTR)
de93309a
SM
3749 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3750 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3751 else
de93309a
SM
3752 return (may_deref
3753 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3754 case TYPE_CODE_INT:
3755 case TYPE_CODE_ENUM:
3756 case TYPE_CODE_RANGE:
78134374 3757 switch (atype->code ())
4c4b4cd2 3758 {
de93309a
SM
3759 case TYPE_CODE_INT:
3760 case TYPE_CODE_ENUM:
3761 case TYPE_CODE_RANGE:
3762 return 1;
3763 default:
3764 return 0;
4c4b4cd2 3765 }
d2e4a39e 3766
de93309a 3767 case TYPE_CODE_ARRAY:
78134374 3768 return (atype->code () == TYPE_CODE_ARRAY
de93309a 3769 || ada_is_array_descriptor_type (atype));
14f9c5c9 3770
de93309a
SM
3771 case TYPE_CODE_STRUCT:
3772 if (ada_is_array_descriptor_type (ftype))
78134374 3773 return (atype->code () == TYPE_CODE_ARRAY
de93309a
SM
3774 || ada_is_array_descriptor_type (atype));
3775 else
78134374 3776 return (atype->code () == TYPE_CODE_STRUCT
de93309a 3777 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3778
de93309a
SM
3779 case TYPE_CODE_UNION:
3780 case TYPE_CODE_FLT:
78134374 3781 return (atype->code () == ftype->code ());
de93309a 3782 }
14f9c5c9
AS
3783}
3784
de93309a
SM
3785/* Return non-zero if the formals of FUNC "sufficiently match" the
3786 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3787 may also be an enumeral, in which case it is treated as a 0-
3788 argument function. */
14f9c5c9 3789
de93309a
SM
3790static int
3791ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3792{
3793 int i;
3794 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3795
de93309a 3796 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3797 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3798 return (n_actuals == 0);
78134374 3799 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3800 return 0;
14f9c5c9 3801
1f704f76 3802 if (func_type->num_fields () != n_actuals)
de93309a 3803 return 0;
14f9c5c9 3804
de93309a
SM
3805 for (i = 0; i < n_actuals; i += 1)
3806 {
3807 if (actuals[i] == NULL)
3808 return 0;
3809 else
3810 {
940da03e 3811 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
de93309a 3812 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3813
de93309a
SM
3814 if (!ada_type_match (ftype, atype, 1))
3815 return 0;
3816 }
3817 }
3818 return 1;
3819}
d2e4a39e 3820
de93309a
SM
3821/* False iff function type FUNC_TYPE definitely does not produce a value
3822 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3823 FUNC_TYPE is not a valid function type with a non-null return type
3824 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3825
de93309a
SM
3826static int
3827return_match (struct type *func_type, struct type *context_type)
3828{
3829 struct type *return_type;
d2e4a39e 3830
de93309a
SM
3831 if (func_type == NULL)
3832 return 1;
14f9c5c9 3833
78134374 3834 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3835 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3836 else
3837 return_type = get_base_type (func_type);
3838 if (return_type == NULL)
3839 return 1;
76a01679 3840
de93309a 3841 context_type = get_base_type (context_type);
14f9c5c9 3842
78134374 3843 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3844 return context_type == NULL || return_type == context_type;
3845 else if (context_type == NULL)
78134374 3846 return return_type->code () != TYPE_CODE_VOID;
de93309a 3847 else
78134374 3848 return return_type->code () == context_type->code ();
de93309a 3849}
14f9c5c9 3850
14f9c5c9 3851
de93309a
SM
3852/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3853 function (if any) that matches the types of the NARGS arguments in
3854 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3855 that returns that type, then eliminate matches that don't. If
3856 CONTEXT_TYPE is void and there is at least one match that does not
3857 return void, eliminate all matches that do.
14f9c5c9 3858
de93309a
SM
3859 Asks the user if there is more than one match remaining. Returns -1
3860 if there is no such symbol or none is selected. NAME is used
3861 solely for messages. May re-arrange and modify SYMS in
3862 the process; the index returned is for the modified vector. */
14f9c5c9 3863
de93309a
SM
3864static int
3865ada_resolve_function (struct block_symbol syms[],
3866 int nsyms, struct value **args, int nargs,
3867 const char *name, struct type *context_type,
3868 int parse_completion)
3869{
3870 int fallback;
3871 int k;
3872 int m; /* Number of hits */
14f9c5c9 3873
de93309a
SM
3874 m = 0;
3875 /* In the first pass of the loop, we only accept functions matching
3876 context_type. If none are found, we add a second pass of the loop
3877 where every function is accepted. */
3878 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3879 {
3880 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3881 {
de93309a 3882 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3883
de93309a
SM
3884 if (ada_args_match (syms[k].symbol, args, nargs)
3885 && (fallback || return_match (type, context_type)))
3886 {
3887 syms[m] = syms[k];
3888 m += 1;
3889 }
4c4b4cd2 3890 }
14f9c5c9
AS
3891 }
3892
de93309a
SM
3893 /* If we got multiple matches, ask the user which one to use. Don't do this
3894 interactive thing during completion, though, as the purpose of the
3895 completion is providing a list of all possible matches. Prompting the
3896 user to filter it down would be completely unexpected in this case. */
3897 if (m == 0)
3898 return -1;
3899 else if (m > 1 && !parse_completion)
3900 {
3901 printf_filtered (_("Multiple matches for %s\n"), name);
3902 user_select_syms (syms, m, 1);
3903 return 0;
3904 }
3905 return 0;
14f9c5c9
AS
3906}
3907
4c4b4cd2
PH
3908/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3909 on the function identified by SYM and BLOCK, and taking NARGS
3910 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3911
3912static void
e9d9f57e 3913replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 3914 int oplen, struct symbol *sym,
270140bd 3915 const struct block *block)
14f9c5c9
AS
3916{
3917 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3918 symbol, -oplen for operator being replaced). */
d2e4a39e 3919 struct expression *newexp = (struct expression *)
8c1a34e7 3920 xzalloc (sizeof (struct expression)
4c4b4cd2 3921 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 3922 struct expression *exp = expp->get ();
14f9c5c9
AS
3923
3924 newexp->nelts = exp->nelts + 7 - oplen;
3925 newexp->language_defn = exp->language_defn;
3489610d 3926 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3927 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3928 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3929 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3930
3931 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3932 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3933
3934 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3935 newexp->elts[pc + 4].block = block;
3936 newexp->elts[pc + 5].symbol = sym;
3937
e9d9f57e 3938 expp->reset (newexp);
d2e4a39e 3939}
14f9c5c9
AS
3940
3941/* Type-class predicates */
3942
4c4b4cd2
PH
3943/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3944 or FLOAT). */
14f9c5c9
AS
3945
3946static int
d2e4a39e 3947numeric_type_p (struct type *type)
14f9c5c9
AS
3948{
3949 if (type == NULL)
3950 return 0;
d2e4a39e
AS
3951 else
3952 {
78134374 3953 switch (type->code ())
4c4b4cd2
PH
3954 {
3955 case TYPE_CODE_INT:
3956 case TYPE_CODE_FLT:
3957 return 1;
3958 case TYPE_CODE_RANGE:
3959 return (type == TYPE_TARGET_TYPE (type)
3960 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3961 default:
3962 return 0;
3963 }
d2e4a39e 3964 }
14f9c5c9
AS
3965}
3966
4c4b4cd2 3967/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3968
3969static int
d2e4a39e 3970integer_type_p (struct type *type)
14f9c5c9
AS
3971{
3972 if (type == NULL)
3973 return 0;
d2e4a39e
AS
3974 else
3975 {
78134374 3976 switch (type->code ())
4c4b4cd2
PH
3977 {
3978 case TYPE_CODE_INT:
3979 return 1;
3980 case TYPE_CODE_RANGE:
3981 return (type == TYPE_TARGET_TYPE (type)
3982 || integer_type_p (TYPE_TARGET_TYPE (type)));
3983 default:
3984 return 0;
3985 }
d2e4a39e 3986 }
14f9c5c9
AS
3987}
3988
4c4b4cd2 3989/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3990
3991static int
d2e4a39e 3992scalar_type_p (struct type *type)
14f9c5c9
AS
3993{
3994 if (type == NULL)
3995 return 0;
d2e4a39e
AS
3996 else
3997 {
78134374 3998 switch (type->code ())
4c4b4cd2
PH
3999 {
4000 case TYPE_CODE_INT:
4001 case TYPE_CODE_RANGE:
4002 case TYPE_CODE_ENUM:
4003 case TYPE_CODE_FLT:
4004 return 1;
4005 default:
4006 return 0;
4007 }
d2e4a39e 4008 }
14f9c5c9
AS
4009}
4010
4c4b4cd2 4011/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4012
4013static int
d2e4a39e 4014discrete_type_p (struct type *type)
14f9c5c9
AS
4015{
4016 if (type == NULL)
4017 return 0;
d2e4a39e
AS
4018 else
4019 {
78134374 4020 switch (type->code ())
4c4b4cd2
PH
4021 {
4022 case TYPE_CODE_INT:
4023 case TYPE_CODE_RANGE:
4024 case TYPE_CODE_ENUM:
872f0337 4025 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4026 return 1;
4027 default:
4028 return 0;
4029 }
d2e4a39e 4030 }
14f9c5c9
AS
4031}
4032
4c4b4cd2
PH
4033/* Returns non-zero if OP with operands in the vector ARGS could be
4034 a user-defined function. Errs on the side of pre-defined operators
4035 (i.e., result 0). */
14f9c5c9
AS
4036
4037static int
d2e4a39e 4038possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4039{
76a01679 4040 struct type *type0 =
df407dfe 4041 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4042 struct type *type1 =
df407dfe 4043 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4044
4c4b4cd2
PH
4045 if (type0 == NULL)
4046 return 0;
4047
14f9c5c9
AS
4048 switch (op)
4049 {
4050 default:
4051 return 0;
4052
4053 case BINOP_ADD:
4054 case BINOP_SUB:
4055 case BINOP_MUL:
4056 case BINOP_DIV:
d2e4a39e 4057 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4058
4059 case BINOP_REM:
4060 case BINOP_MOD:
4061 case BINOP_BITWISE_AND:
4062 case BINOP_BITWISE_IOR:
4063 case BINOP_BITWISE_XOR:
d2e4a39e 4064 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4065
4066 case BINOP_EQUAL:
4067 case BINOP_NOTEQUAL:
4068 case BINOP_LESS:
4069 case BINOP_GTR:
4070 case BINOP_LEQ:
4071 case BINOP_GEQ:
d2e4a39e 4072 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4073
4074 case BINOP_CONCAT:
ee90b9ab 4075 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4076
4077 case BINOP_EXP:
d2e4a39e 4078 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4079
4080 case UNOP_NEG:
4081 case UNOP_PLUS:
4082 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4083 case UNOP_ABS:
4084 return (!numeric_type_p (type0));
14f9c5c9
AS
4085
4086 }
4087}
4088\f
4c4b4cd2 4089 /* Renaming */
14f9c5c9 4090
aeb5907d
JB
4091/* NOTES:
4092
4093 1. In the following, we assume that a renaming type's name may
4094 have an ___XD suffix. It would be nice if this went away at some
4095 point.
4096 2. We handle both the (old) purely type-based representation of
4097 renamings and the (new) variable-based encoding. At some point,
4098 it is devoutly to be hoped that the former goes away
4099 (FIXME: hilfinger-2007-07-09).
4100 3. Subprogram renamings are not implemented, although the XRS
4101 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4102
4103/* If SYM encodes a renaming,
4104
4105 <renaming> renames <renamed entity>,
4106
4107 sets *LEN to the length of the renamed entity's name,
4108 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4109 the string describing the subcomponent selected from the renamed
0963b4bd 4110 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4111 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4112 are undefined). Otherwise, returns a value indicating the category
4113 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4114 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4115 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4116 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4117 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4118 may be NULL, in which case they are not assigned.
4119
4120 [Currently, however, GCC does not generate subprogram renamings.] */
4121
4122enum ada_renaming_category
4123ada_parse_renaming (struct symbol *sym,
4124 const char **renamed_entity, int *len,
4125 const char **renaming_expr)
4126{
4127 enum ada_renaming_category kind;
4128 const char *info;
4129 const char *suffix;
4130
4131 if (sym == NULL)
4132 return ADA_NOT_RENAMING;
4133 switch (SYMBOL_CLASS (sym))
14f9c5c9 4134 {
aeb5907d
JB
4135 default:
4136 return ADA_NOT_RENAMING;
aeb5907d
JB
4137 case LOC_LOCAL:
4138 case LOC_STATIC:
4139 case LOC_COMPUTED:
4140 case LOC_OPTIMIZED_OUT:
987012b8 4141 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4142 if (info == NULL)
4143 return ADA_NOT_RENAMING;
4144 switch (info[5])
4145 {
4146 case '_':
4147 kind = ADA_OBJECT_RENAMING;
4148 info += 6;
4149 break;
4150 case 'E':
4151 kind = ADA_EXCEPTION_RENAMING;
4152 info += 7;
4153 break;
4154 case 'P':
4155 kind = ADA_PACKAGE_RENAMING;
4156 info += 7;
4157 break;
4158 case 'S':
4159 kind = ADA_SUBPROGRAM_RENAMING;
4160 info += 7;
4161 break;
4162 default:
4163 return ADA_NOT_RENAMING;
4164 }
14f9c5c9 4165 }
4c4b4cd2 4166
de93309a
SM
4167 if (renamed_entity != NULL)
4168 *renamed_entity = info;
4169 suffix = strstr (info, "___XE");
4170 if (suffix == NULL || suffix == info)
4171 return ADA_NOT_RENAMING;
4172 if (len != NULL)
4173 *len = strlen (info) - strlen (suffix);
4174 suffix += 5;
4175 if (renaming_expr != NULL)
4176 *renaming_expr = suffix;
4177 return kind;
4178}
4179
4180/* Compute the value of the given RENAMING_SYM, which is expected to
4181 be a symbol encoding a renaming expression. BLOCK is the block
4182 used to evaluate the renaming. */
4183
4184static struct value *
4185ada_read_renaming_var_value (struct symbol *renaming_sym,
4186 const struct block *block)
4187{
4188 const char *sym_name;
4189
987012b8 4190 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4191 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4192 return evaluate_expression (expr.get ());
4193}
4194\f
4195
4196 /* Evaluation: Function Calls */
4197
4198/* Return an lvalue containing the value VAL. This is the identity on
4199 lvalues, and otherwise has the side-effect of allocating memory
4200 in the inferior where a copy of the value contents is copied. */
4201
4202static struct value *
4203ensure_lval (struct value *val)
4204{
4205 if (VALUE_LVAL (val) == not_lval
4206 || VALUE_LVAL (val) == lval_internalvar)
4207 {
4208 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4209 const CORE_ADDR addr =
4210 value_as_long (value_allocate_space_in_inferior (len));
4211
4212 VALUE_LVAL (val) = lval_memory;
4213 set_value_address (val, addr);
4214 write_memory (addr, value_contents (val), len);
4215 }
4216
4217 return val;
4218}
4219
4220/* Given ARG, a value of type (pointer or reference to a)*
4221 structure/union, extract the component named NAME from the ultimate
4222 target structure/union and return it as a value with its
4223 appropriate type.
4224
4225 The routine searches for NAME among all members of the structure itself
4226 and (recursively) among all members of any wrapper members
4227 (e.g., '_parent').
4228
4229 If NO_ERR, then simply return NULL in case of error, rather than
4230 calling error. */
4231
4232static struct value *
4233ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4234{
4235 struct type *t, *t1;
4236 struct value *v;
4237 int check_tag;
4238
4239 v = NULL;
4240 t1 = t = ada_check_typedef (value_type (arg));
78134374 4241 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4242 {
4243 t1 = TYPE_TARGET_TYPE (t);
4244 if (t1 == NULL)
4245 goto BadValue;
4246 t1 = ada_check_typedef (t1);
78134374 4247 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4248 {
4249 arg = coerce_ref (arg);
4250 t = t1;
4251 }
4252 }
4253
78134374 4254 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4255 {
4256 t1 = TYPE_TARGET_TYPE (t);
4257 if (t1 == NULL)
4258 goto BadValue;
4259 t1 = ada_check_typedef (t1);
78134374 4260 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4261 {
4262 arg = value_ind (arg);
4263 t = t1;
4264 }
4265 else
4266 break;
4267 }
aeb5907d 4268
78134374 4269 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4270 goto BadValue;
52ce6436 4271
de93309a
SM
4272 if (t1 == t)
4273 v = ada_search_struct_field (name, arg, 0, t);
4274 else
4275 {
4276 int bit_offset, bit_size, byte_offset;
4277 struct type *field_type;
4278 CORE_ADDR address;
a5ee536b 4279
78134374 4280 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4281 address = value_address (ada_value_ind (arg));
4282 else
4283 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4284
de93309a
SM
4285 /* Check to see if this is a tagged type. We also need to handle
4286 the case where the type is a reference to a tagged type, but
4287 we have to be careful to exclude pointers to tagged types.
4288 The latter should be shown as usual (as a pointer), whereas
4289 a reference should mostly be transparent to the user. */
14f9c5c9 4290
de93309a 4291 if (ada_is_tagged_type (t1, 0)
78134374 4292 || (t1->code () == TYPE_CODE_REF
de93309a
SM
4293 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4294 {
4295 /* We first try to find the searched field in the current type.
4296 If not found then let's look in the fixed type. */
14f9c5c9 4297
de93309a
SM
4298 if (!find_struct_field (name, t1, 0,
4299 &field_type, &byte_offset, &bit_offset,
4300 &bit_size, NULL))
4301 check_tag = 1;
4302 else
4303 check_tag = 0;
4304 }
4305 else
4306 check_tag = 0;
c3e5cd34 4307
de93309a
SM
4308 /* Convert to fixed type in all cases, so that we have proper
4309 offsets to each field in unconstrained record types. */
4310 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4311 address, NULL, check_tag);
4312
4313 if (find_struct_field (name, t1, 0,
4314 &field_type, &byte_offset, &bit_offset,
4315 &bit_size, NULL))
4316 {
4317 if (bit_size != 0)
4318 {
78134374 4319 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4320 arg = ada_coerce_ref (arg);
4321 else
4322 arg = ada_value_ind (arg);
4323 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4324 bit_offset, bit_size,
4325 field_type);
4326 }
4327 else
4328 v = value_at_lazy (field_type, address + byte_offset);
4329 }
c3e5cd34 4330 }
14f9c5c9 4331
de93309a
SM
4332 if (v != NULL || no_err)
4333 return v;
4334 else
4335 error (_("There is no member named %s."), name);
4336
4337 BadValue:
4338 if (no_err)
4339 return NULL;
4340 else
4341 error (_("Attempt to extract a component of "
4342 "a value that is not a record."));
14f9c5c9
AS
4343}
4344
4345/* Return the value ACTUAL, converted to be an appropriate value for a
4346 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4347 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4348 values not residing in memory, updating it as needed. */
14f9c5c9 4349
a93c0eb6 4350struct value *
40bc484c 4351ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4352{
df407dfe 4353 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4354 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4355 struct type *formal_target =
78134374 4356 formal_type->code () == TYPE_CODE_PTR
61ee279c 4357 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4358 struct type *actual_target =
78134374 4359 actual_type->code () == TYPE_CODE_PTR
61ee279c 4360 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4361
4c4b4cd2 4362 if (ada_is_array_descriptor_type (formal_target)
78134374 4363 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4364 return make_array_descriptor (formal_type, actual);
78134374
SM
4365 else if (formal_type->code () == TYPE_CODE_PTR
4366 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4367 {
a84a8a0d 4368 struct value *result;
5b4ee69b 4369
78134374 4370 if (formal_target->code () == TYPE_CODE_ARRAY
4c4b4cd2 4371 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4372 result = desc_data (actual);
78134374 4373 else if (formal_type->code () != TYPE_CODE_PTR)
4c4b4cd2
PH
4374 {
4375 if (VALUE_LVAL (actual) != lval_memory)
4376 {
4377 struct value *val;
5b4ee69b 4378
df407dfe 4379 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4380 val = allocate_value (actual_type);
990a07ab 4381 memcpy ((char *) value_contents_raw (val),
0fd88904 4382 (char *) value_contents (actual),
4c4b4cd2 4383 TYPE_LENGTH (actual_type));
40bc484c 4384 actual = ensure_lval (val);
4c4b4cd2 4385 }
a84a8a0d 4386 result = value_addr (actual);
4c4b4cd2 4387 }
a84a8a0d
JB
4388 else
4389 return actual;
b1af9e97 4390 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4391 }
78134374 4392 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4393 return ada_value_ind (actual);
8344af1e
JB
4394 else if (ada_is_aligner_type (formal_type))
4395 {
4396 /* We need to turn this parameter into an aligner type
4397 as well. */
4398 struct value *aligner = allocate_value (formal_type);
4399 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4400
4401 value_assign_to_component (aligner, component, actual);
4402 return aligner;
4403 }
14f9c5c9
AS
4404
4405 return actual;
4406}
4407
438c98a1
JB
4408/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4409 type TYPE. This is usually an inefficient no-op except on some targets
4410 (such as AVR) where the representation of a pointer and an address
4411 differs. */
4412
4413static CORE_ADDR
4414value_pointer (struct value *value, struct type *type)
4415{
4416 struct gdbarch *gdbarch = get_type_arch (type);
4417 unsigned len = TYPE_LENGTH (type);
224c3ddb 4418 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4419 CORE_ADDR addr;
4420
4421 addr = value_address (value);
4422 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4423 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4424 return addr;
4425}
4426
14f9c5c9 4427
4c4b4cd2
PH
4428/* Push a descriptor of type TYPE for array value ARR on the stack at
4429 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4430 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4431 to-descriptor type rather than a descriptor type), a struct value *
4432 representing a pointer to this descriptor. */
14f9c5c9 4433
d2e4a39e 4434static struct value *
40bc484c 4435make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4436{
d2e4a39e
AS
4437 struct type *bounds_type = desc_bounds_type (type);
4438 struct type *desc_type = desc_base_type (type);
4439 struct value *descriptor = allocate_value (desc_type);
4440 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4441 int i;
d2e4a39e 4442
0963b4bd
MS
4443 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4444 i > 0; i -= 1)
14f9c5c9 4445 {
19f220c3
JK
4446 modify_field (value_type (bounds), value_contents_writeable (bounds),
4447 ada_array_bound (arr, i, 0),
4448 desc_bound_bitpos (bounds_type, i, 0),
4449 desc_bound_bitsize (bounds_type, i, 0));
4450 modify_field (value_type (bounds), value_contents_writeable (bounds),
4451 ada_array_bound (arr, i, 1),
4452 desc_bound_bitpos (bounds_type, i, 1),
4453 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4454 }
d2e4a39e 4455
40bc484c 4456 bounds = ensure_lval (bounds);
d2e4a39e 4457
19f220c3
JK
4458 modify_field (value_type (descriptor),
4459 value_contents_writeable (descriptor),
4460 value_pointer (ensure_lval (arr),
940da03e 4461 desc_type->field (0).type ()),
19f220c3
JK
4462 fat_pntr_data_bitpos (desc_type),
4463 fat_pntr_data_bitsize (desc_type));
4464
4465 modify_field (value_type (descriptor),
4466 value_contents_writeable (descriptor),
4467 value_pointer (bounds,
940da03e 4468 desc_type->field (1).type ()),
19f220c3
JK
4469 fat_pntr_bounds_bitpos (desc_type),
4470 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4471
40bc484c 4472 descriptor = ensure_lval (descriptor);
14f9c5c9 4473
78134374 4474 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4475 return value_addr (descriptor);
4476 else
4477 return descriptor;
4478}
14f9c5c9 4479\f
3d9434b5
JB
4480 /* Symbol Cache Module */
4481
3d9434b5 4482/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4483 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4484 on the type of entity being printed, the cache can make it as much
4485 as an order of magnitude faster than without it.
4486
4487 The descriptive type DWARF extension has significantly reduced
4488 the need for this cache, at least when DWARF is being used. However,
4489 even in this case, some expensive name-based symbol searches are still
4490 sometimes necessary - to find an XVZ variable, mostly. */
4491
ee01b665 4492/* Initialize the contents of SYM_CACHE. */
3d9434b5 4493
ee01b665
JB
4494static void
4495ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4496{
4497 obstack_init (&sym_cache->cache_space);
4498 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4499}
3d9434b5 4500
ee01b665
JB
4501/* Free the memory used by SYM_CACHE. */
4502
4503static void
4504ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4505{
ee01b665
JB
4506 obstack_free (&sym_cache->cache_space, NULL);
4507 xfree (sym_cache);
4508}
3d9434b5 4509
ee01b665
JB
4510/* Return the symbol cache associated to the given program space PSPACE.
4511 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4512
ee01b665
JB
4513static struct ada_symbol_cache *
4514ada_get_symbol_cache (struct program_space *pspace)
4515{
4516 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4517
66c168ae 4518 if (pspace_data->sym_cache == NULL)
ee01b665 4519 {
66c168ae
JB
4520 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4521 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4522 }
4523
66c168ae 4524 return pspace_data->sym_cache;
ee01b665 4525}
3d9434b5
JB
4526
4527/* Clear all entries from the symbol cache. */
4528
4529static void
4530ada_clear_symbol_cache (void)
4531{
ee01b665
JB
4532 struct ada_symbol_cache *sym_cache
4533 = ada_get_symbol_cache (current_program_space);
4534
4535 obstack_free (&sym_cache->cache_space, NULL);
4536 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4537}
4538
fe978cb0 4539/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4540 Return it if found, or NULL otherwise. */
4541
4542static struct cache_entry **
fe978cb0 4543find_entry (const char *name, domain_enum domain)
3d9434b5 4544{
ee01b665
JB
4545 struct ada_symbol_cache *sym_cache
4546 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4547 int h = msymbol_hash (name) % HASH_SIZE;
4548 struct cache_entry **e;
4549
ee01b665 4550 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4551 {
fe978cb0 4552 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4553 return e;
4554 }
4555 return NULL;
4556}
4557
fe978cb0 4558/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4559 Return 1 if found, 0 otherwise.
4560
4561 If an entry was found and SYM is not NULL, set *SYM to the entry's
4562 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4563
96d887e8 4564static int
fe978cb0 4565lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4566 struct symbol **sym, const struct block **block)
96d887e8 4567{
fe978cb0 4568 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4569
4570 if (e == NULL)
4571 return 0;
4572 if (sym != NULL)
4573 *sym = (*e)->sym;
4574 if (block != NULL)
4575 *block = (*e)->block;
4576 return 1;
96d887e8
PH
4577}
4578
3d9434b5 4579/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4580 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4581
96d887e8 4582static void
fe978cb0 4583cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4584 const struct block *block)
96d887e8 4585{
ee01b665
JB
4586 struct ada_symbol_cache *sym_cache
4587 = ada_get_symbol_cache (current_program_space);
3d9434b5 4588 int h;
3d9434b5
JB
4589 struct cache_entry *e;
4590
1994afbf
DE
4591 /* Symbols for builtin types don't have a block.
4592 For now don't cache such symbols. */
4593 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4594 return;
4595
3d9434b5
JB
4596 /* If the symbol is a local symbol, then do not cache it, as a search
4597 for that symbol depends on the context. To determine whether
4598 the symbol is local or not, we check the block where we found it
4599 against the global and static blocks of its associated symtab. */
4600 if (sym
08be3fe3 4601 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4602 GLOBAL_BLOCK) != block
08be3fe3 4603 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4604 STATIC_BLOCK) != block)
3d9434b5
JB
4605 return;
4606
4607 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4608 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4609 e->next = sym_cache->root[h];
4610 sym_cache->root[h] = e;
2ef5453b 4611 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4612 e->sym = sym;
fe978cb0 4613 e->domain = domain;
3d9434b5 4614 e->block = block;
96d887e8 4615}
4c4b4cd2
PH
4616\f
4617 /* Symbol Lookup */
4618
b5ec771e
PA
4619/* Return the symbol name match type that should be used used when
4620 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4621
4622 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4623 for Ada lookups. */
c0431670 4624
b5ec771e
PA
4625static symbol_name_match_type
4626name_match_type_from_name (const char *lookup_name)
c0431670 4627{
b5ec771e
PA
4628 return (strstr (lookup_name, "__") == NULL
4629 ? symbol_name_match_type::WILD
4630 : symbol_name_match_type::FULL);
c0431670
JB
4631}
4632
4c4b4cd2
PH
4633/* Return the result of a standard (literal, C-like) lookup of NAME in
4634 given DOMAIN, visible from lexical block BLOCK. */
4635
4636static struct symbol *
4637standard_lookup (const char *name, const struct block *block,
4638 domain_enum domain)
4639{
acbd605d 4640 /* Initialize it just to avoid a GCC false warning. */
6640a367 4641 struct block_symbol sym = {};
4c4b4cd2 4642
d12307c1
PMR
4643 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4644 return sym.symbol;
a2cd4f14 4645 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4646 cache_symbol (name, domain, sym.symbol, sym.block);
4647 return sym.symbol;
4c4b4cd2
PH
4648}
4649
4650
4651/* Non-zero iff there is at least one non-function/non-enumeral symbol
4652 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4653 since they contend in overloading in the same way. */
4654static int
d12307c1 4655is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4656{
4657 int i;
4658
4659 for (i = 0; i < n; i += 1)
78134374
SM
4660 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4661 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
d12307c1 4662 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4663 return 1;
4664
4665 return 0;
4666}
4667
4668/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4669 struct types. Otherwise, they may not. */
14f9c5c9
AS
4670
4671static int
d2e4a39e 4672equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4673{
d2e4a39e 4674 if (type0 == type1)
14f9c5c9 4675 return 1;
d2e4a39e 4676 if (type0 == NULL || type1 == NULL
78134374 4677 || type0->code () != type1->code ())
14f9c5c9 4678 return 0;
78134374
SM
4679 if ((type0->code () == TYPE_CODE_STRUCT
4680 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4681 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4682 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4683 return 1;
d2e4a39e 4684
14f9c5c9
AS
4685 return 0;
4686}
4687
4688/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4689 no more defined than that of SYM1. */
14f9c5c9
AS
4690
4691static int
d2e4a39e 4692lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4693{
4694 if (sym0 == sym1)
4695 return 1;
176620f1 4696 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4697 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4698 return 0;
4699
d2e4a39e 4700 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4701 {
4702 case LOC_UNDEF:
4703 return 1;
4704 case LOC_TYPEDEF:
4705 {
4c4b4cd2
PH
4706 struct type *type0 = SYMBOL_TYPE (sym0);
4707 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4708 const char *name0 = sym0->linkage_name ();
4709 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4710 int len0 = strlen (name0);
5b4ee69b 4711
4c4b4cd2 4712 return
78134374 4713 type0->code () == type1->code ()
4c4b4cd2
PH
4714 && (equiv_types (type0, type1)
4715 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4716 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4717 }
4718 case LOC_CONST:
4719 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4720 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4721
4722 case LOC_STATIC:
4723 {
987012b8
CB
4724 const char *name0 = sym0->linkage_name ();
4725 const char *name1 = sym1->linkage_name ();
4b610737
TT
4726 return (strcmp (name0, name1) == 0
4727 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4728 }
4729
d2e4a39e
AS
4730 default:
4731 return 0;
14f9c5c9
AS
4732 }
4733}
4734
d12307c1 4735/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4736 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4737
4738static void
76a01679
JB
4739add_defn_to_vec (struct obstack *obstackp,
4740 struct symbol *sym,
f0c5f9b2 4741 const struct block *block)
14f9c5c9
AS
4742{
4743 int i;
d12307c1 4744 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4745
529cad9c
PH
4746 /* Do not try to complete stub types, as the debugger is probably
4747 already scanning all symbols matching a certain name at the
4748 time when this function is called. Trying to replace the stub
4749 type by its associated full type will cause us to restart a scan
4750 which may lead to an infinite recursion. Instead, the client
4751 collecting the matching symbols will end up collecting several
4752 matches, with at least one of them complete. It can then filter
4753 out the stub ones if needed. */
4754
4c4b4cd2
PH
4755 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4756 {
d12307c1 4757 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4758 return;
d12307c1 4759 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4760 {
d12307c1 4761 prevDefns[i].symbol = sym;
4c4b4cd2 4762 prevDefns[i].block = block;
4c4b4cd2 4763 return;
76a01679 4764 }
4c4b4cd2
PH
4765 }
4766
4767 {
d12307c1 4768 struct block_symbol info;
4c4b4cd2 4769
d12307c1 4770 info.symbol = sym;
4c4b4cd2 4771 info.block = block;
d12307c1 4772 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4773 }
4774}
4775
d12307c1
PMR
4776/* Number of block_symbol structures currently collected in current vector in
4777 OBSTACKP. */
4c4b4cd2 4778
76a01679
JB
4779static int
4780num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4781{
d12307c1 4782 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4783}
4784
d12307c1
PMR
4785/* Vector of block_symbol structures currently collected in current vector in
4786 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4787
d12307c1 4788static struct block_symbol *
4c4b4cd2
PH
4789defns_collected (struct obstack *obstackp, int finish)
4790{
4791 if (finish)
224c3ddb 4792 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4793 else
d12307c1 4794 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4795}
4796
7c7b6655
TT
4797/* Return a bound minimal symbol matching NAME according to Ada
4798 decoding rules. Returns an invalid symbol if there is no such
4799 minimal symbol. Names prefixed with "standard__" are handled
4800 specially: "standard__" is first stripped off, and only static and
4801 global symbols are searched. */
4c4b4cd2 4802
7c7b6655 4803struct bound_minimal_symbol
96d887e8 4804ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4805{
7c7b6655 4806 struct bound_minimal_symbol result;
4c4b4cd2 4807
7c7b6655
TT
4808 memset (&result, 0, sizeof (result));
4809
b5ec771e
PA
4810 symbol_name_match_type match_type = name_match_type_from_name (name);
4811 lookup_name_info lookup_name (name, match_type);
4812
4813 symbol_name_matcher_ftype *match_name
4814 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4815
2030c079 4816 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4817 {
7932255d 4818 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4819 {
c9d95fa3 4820 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4821 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4822 {
4823 result.minsym = msymbol;
4824 result.objfile = objfile;
4825 break;
4826 }
4827 }
4828 }
4c4b4cd2 4829
7c7b6655 4830 return result;
96d887e8 4831}
4c4b4cd2 4832
96d887e8
PH
4833/* For all subprograms that statically enclose the subprogram of the
4834 selected frame, add symbols matching identifier NAME in DOMAIN
4835 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4836 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4837 with a wildcard prefix. */
4c4b4cd2 4838
96d887e8
PH
4839static void
4840add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4841 const lookup_name_info &lookup_name,
4842 domain_enum domain)
96d887e8 4843{
96d887e8 4844}
14f9c5c9 4845
96d887e8
PH
4846/* True if TYPE is definitely an artificial type supplied to a symbol
4847 for which no debugging information was given in the symbol file. */
14f9c5c9 4848
96d887e8
PH
4849static int
4850is_nondebugging_type (struct type *type)
4851{
0d5cff50 4852 const char *name = ada_type_name (type);
5b4ee69b 4853
96d887e8
PH
4854 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4855}
4c4b4cd2 4856
8f17729f
JB
4857/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4858 that are deemed "identical" for practical purposes.
4859
4860 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4861 types and that their number of enumerals is identical (in other
1f704f76 4862 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4863
4864static int
4865ada_identical_enum_types_p (struct type *type1, struct type *type2)
4866{
4867 int i;
4868
4869 /* The heuristic we use here is fairly conservative. We consider
4870 that 2 enumerate types are identical if they have the same
4871 number of enumerals and that all enumerals have the same
4872 underlying value and name. */
4873
4874 /* All enums in the type should have an identical underlying value. */
1f704f76 4875 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4876 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4877 return 0;
4878
4879 /* All enumerals should also have the same name (modulo any numerical
4880 suffix). */
1f704f76 4881 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4882 {
0d5cff50
DE
4883 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4884 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4885 int len_1 = strlen (name_1);
4886 int len_2 = strlen (name_2);
4887
4888 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4889 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4890 if (len_1 != len_2
4891 || strncmp (TYPE_FIELD_NAME (type1, i),
4892 TYPE_FIELD_NAME (type2, i),
4893 len_1) != 0)
4894 return 0;
4895 }
4896
4897 return 1;
4898}
4899
4900/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4901 that are deemed "identical" for practical purposes. Sometimes,
4902 enumerals are not strictly identical, but their types are so similar
4903 that they can be considered identical.
4904
4905 For instance, consider the following code:
4906
4907 type Color is (Black, Red, Green, Blue, White);
4908 type RGB_Color is new Color range Red .. Blue;
4909
4910 Type RGB_Color is a subrange of an implicit type which is a copy
4911 of type Color. If we call that implicit type RGB_ColorB ("B" is
4912 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4913 As a result, when an expression references any of the enumeral
4914 by name (Eg. "print green"), the expression is technically
4915 ambiguous and the user should be asked to disambiguate. But
4916 doing so would only hinder the user, since it wouldn't matter
4917 what choice he makes, the outcome would always be the same.
4918 So, for practical purposes, we consider them as the same. */
4919
4920static int
54d343a2 4921symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4922{
4923 int i;
4924
4925 /* Before performing a thorough comparison check of each type,
4926 we perform a series of inexpensive checks. We expect that these
4927 checks will quickly fail in the vast majority of cases, and thus
4928 help prevent the unnecessary use of a more expensive comparison.
4929 Said comparison also expects us to make some of these checks
4930 (see ada_identical_enum_types_p). */
4931
4932 /* Quick check: All symbols should have an enum type. */
54d343a2 4933 for (i = 0; i < syms.size (); i++)
78134374 4934 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4935 return 0;
4936
4937 /* Quick check: They should all have the same value. */
54d343a2 4938 for (i = 1; i < syms.size (); i++)
d12307c1 4939 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4940 return 0;
4941
4942 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4943 for (i = 1; i < syms.size (); i++)
1f704f76
SM
4944 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4945 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4946 return 0;
4947
4948 /* All the sanity checks passed, so we might have a set of
4949 identical enumeration types. Perform a more complete
4950 comparison of the type of each symbol. */
54d343a2 4951 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4952 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4953 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4954 return 0;
4955
4956 return 1;
4957}
4958
54d343a2 4959/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4960 duplicate other symbols in the list (The only case I know of where
4961 this happens is when object files containing stabs-in-ecoff are
4962 linked with files containing ordinary ecoff debugging symbols (or no
4963 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4964 Returns the number of items in the modified list. */
4c4b4cd2 4965
96d887e8 4966static int
54d343a2 4967remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4968{
4969 int i, j;
4c4b4cd2 4970
8f17729f
JB
4971 /* We should never be called with less than 2 symbols, as there
4972 cannot be any extra symbol in that case. But it's easy to
4973 handle, since we have nothing to do in that case. */
54d343a2
TT
4974 if (syms->size () < 2)
4975 return syms->size ();
8f17729f 4976
96d887e8 4977 i = 0;
54d343a2 4978 while (i < syms->size ())
96d887e8 4979 {
a35ddb44 4980 int remove_p = 0;
339c13b6
JB
4981
4982 /* If two symbols have the same name and one of them is a stub type,
4983 the get rid of the stub. */
4984
54d343a2 4985 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 4986 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 4987 {
54d343a2 4988 for (j = 0; j < syms->size (); j++)
339c13b6
JB
4989 {
4990 if (j != i
54d343a2 4991 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
4992 && (*syms)[j].symbol->linkage_name () != NULL
4993 && strcmp ((*syms)[i].symbol->linkage_name (),
4994 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 4995 remove_p = 1;
339c13b6
JB
4996 }
4997 }
4998
4999 /* Two symbols with the same name, same class and same address
5000 should be identical. */
5001
987012b8 5002 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5003 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5004 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5005 {
54d343a2 5006 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5007 {
5008 if (i != j
987012b8
CB
5009 && (*syms)[j].symbol->linkage_name () != NULL
5010 && strcmp ((*syms)[i].symbol->linkage_name (),
5011 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5012 && SYMBOL_CLASS ((*syms)[i].symbol)
5013 == SYMBOL_CLASS ((*syms)[j].symbol)
5014 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5015 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5016 remove_p = 1;
4c4b4cd2 5017 }
4c4b4cd2 5018 }
339c13b6 5019
a35ddb44 5020 if (remove_p)
54d343a2 5021 syms->erase (syms->begin () + i);
339c13b6 5022
96d887e8 5023 i += 1;
14f9c5c9 5024 }
8f17729f
JB
5025
5026 /* If all the remaining symbols are identical enumerals, then
5027 just keep the first one and discard the rest.
5028
5029 Unlike what we did previously, we do not discard any entry
5030 unless they are ALL identical. This is because the symbol
5031 comparison is not a strict comparison, but rather a practical
5032 comparison. If all symbols are considered identical, then
5033 we can just go ahead and use the first one and discard the rest.
5034 But if we cannot reduce the list to a single element, we have
5035 to ask the user to disambiguate anyways. And if we have to
5036 present a multiple-choice menu, it's less confusing if the list
5037 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5038 if (symbols_are_identical_enums (*syms))
5039 syms->resize (1);
8f17729f 5040
54d343a2 5041 return syms->size ();
14f9c5c9
AS
5042}
5043
96d887e8
PH
5044/* Given a type that corresponds to a renaming entity, use the type name
5045 to extract the scope (package name or function name, fully qualified,
5046 and following the GNAT encoding convention) where this renaming has been
49d83361 5047 defined. */
4c4b4cd2 5048
49d83361 5049static std::string
96d887e8 5050xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5051{
96d887e8 5052 /* The renaming types adhere to the following convention:
0963b4bd 5053 <scope>__<rename>___<XR extension>.
96d887e8
PH
5054 So, to extract the scope, we search for the "___XR" extension,
5055 and then backtrack until we find the first "__". */
76a01679 5056
7d93a1e0 5057 const char *name = renaming_type->name ();
108d56a4
SM
5058 const char *suffix = strstr (name, "___XR");
5059 const char *last;
14f9c5c9 5060
96d887e8
PH
5061 /* Now, backtrack a bit until we find the first "__". Start looking
5062 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5063
96d887e8
PH
5064 for (last = suffix - 3; last > name; last--)
5065 if (last[0] == '_' && last[1] == '_')
5066 break;
76a01679 5067
96d887e8 5068 /* Make a copy of scope and return it. */
49d83361 5069 return std::string (name, last);
4c4b4cd2
PH
5070}
5071
96d887e8 5072/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5073
96d887e8
PH
5074static int
5075is_package_name (const char *name)
4c4b4cd2 5076{
96d887e8
PH
5077 /* Here, We take advantage of the fact that no symbols are generated
5078 for packages, while symbols are generated for each function.
5079 So the condition for NAME represent a package becomes equivalent
5080 to NAME not existing in our list of symbols. There is only one
5081 small complication with library-level functions (see below). */
4c4b4cd2 5082
96d887e8
PH
5083 /* If it is a function that has not been defined at library level,
5084 then we should be able to look it up in the symbols. */
5085 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5086 return 0;
14f9c5c9 5087
96d887e8
PH
5088 /* Library-level function names start with "_ada_". See if function
5089 "_ada_" followed by NAME can be found. */
14f9c5c9 5090
96d887e8 5091 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5092 functions names cannot contain "__" in them. */
96d887e8
PH
5093 if (strstr (name, "__") != NULL)
5094 return 0;
4c4b4cd2 5095
528e1572 5096 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5097
528e1572 5098 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5099}
14f9c5c9 5100
96d887e8 5101/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5102 not visible from FUNCTION_NAME. */
14f9c5c9 5103
96d887e8 5104static int
0d5cff50 5105old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5106{
aeb5907d
JB
5107 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5108 return 0;
5109
49d83361 5110 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5111
96d887e8 5112 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5113 if (is_package_name (scope.c_str ()))
5114 return 0;
14f9c5c9 5115
96d887e8
PH
5116 /* Check that the rename is in the current function scope by checking
5117 that its name starts with SCOPE. */
76a01679 5118
96d887e8
PH
5119 /* If the function name starts with "_ada_", it means that it is
5120 a library-level function. Strip this prefix before doing the
5121 comparison, as the encoding for the renaming does not contain
5122 this prefix. */
61012eef 5123 if (startswith (function_name, "_ada_"))
96d887e8 5124 function_name += 5;
f26caa11 5125
49d83361 5126 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5127}
5128
aeb5907d
JB
5129/* Remove entries from SYMS that corresponds to a renaming entity that
5130 is not visible from the function associated with CURRENT_BLOCK or
5131 that is superfluous due to the presence of more specific renaming
5132 information. Places surviving symbols in the initial entries of
5133 SYMS and returns the number of surviving symbols.
96d887e8
PH
5134
5135 Rationale:
aeb5907d
JB
5136 First, in cases where an object renaming is implemented as a
5137 reference variable, GNAT may produce both the actual reference
5138 variable and the renaming encoding. In this case, we discard the
5139 latter.
5140
5141 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5142 entity. Unfortunately, STABS currently does not support the definition
5143 of types that are local to a given lexical block, so all renamings types
5144 are emitted at library level. As a consequence, if an application
5145 contains two renaming entities using the same name, and a user tries to
5146 print the value of one of these entities, the result of the ada symbol
5147 lookup will also contain the wrong renaming type.
f26caa11 5148
96d887e8
PH
5149 This function partially covers for this limitation by attempting to
5150 remove from the SYMS list renaming symbols that should be visible
5151 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5152 method with the current information available. The implementation
5153 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5154
5155 - When the user tries to print a rename in a function while there
5156 is another rename entity defined in a package: Normally, the
5157 rename in the function has precedence over the rename in the
5158 package, so the latter should be removed from the list. This is
5159 currently not the case.
5160
5161 - This function will incorrectly remove valid renames if
5162 the CURRENT_BLOCK corresponds to a function which symbol name
5163 has been changed by an "Export" pragma. As a consequence,
5164 the user will be unable to print such rename entities. */
4c4b4cd2 5165
14f9c5c9 5166static int
54d343a2
TT
5167remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5168 const struct block *current_block)
4c4b4cd2
PH
5169{
5170 struct symbol *current_function;
0d5cff50 5171 const char *current_function_name;
4c4b4cd2 5172 int i;
aeb5907d
JB
5173 int is_new_style_renaming;
5174
5175 /* If there is both a renaming foo___XR... encoded as a variable and
5176 a simple variable foo in the same block, discard the latter.
0963b4bd 5177 First, zero out such symbols, then compress. */
aeb5907d 5178 is_new_style_renaming = 0;
54d343a2 5179 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5180 {
54d343a2
TT
5181 struct symbol *sym = (*syms)[i].symbol;
5182 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5183 const char *name;
5184 const char *suffix;
5185
5186 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5187 continue;
987012b8 5188 name = sym->linkage_name ();
aeb5907d
JB
5189 suffix = strstr (name, "___XR");
5190
5191 if (suffix != NULL)
5192 {
5193 int name_len = suffix - name;
5194 int j;
5b4ee69b 5195
aeb5907d 5196 is_new_style_renaming = 1;
54d343a2
TT
5197 for (j = 0; j < syms->size (); j += 1)
5198 if (i != j && (*syms)[j].symbol != NULL
987012b8 5199 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5200 name_len) == 0
54d343a2
TT
5201 && block == (*syms)[j].block)
5202 (*syms)[j].symbol = NULL;
aeb5907d
JB
5203 }
5204 }
5205 if (is_new_style_renaming)
5206 {
5207 int j, k;
5208
54d343a2
TT
5209 for (j = k = 0; j < syms->size (); j += 1)
5210 if ((*syms)[j].symbol != NULL)
aeb5907d 5211 {
54d343a2 5212 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5213 k += 1;
5214 }
5215 return k;
5216 }
4c4b4cd2
PH
5217
5218 /* Extract the function name associated to CURRENT_BLOCK.
5219 Abort if unable to do so. */
76a01679 5220
4c4b4cd2 5221 if (current_block == NULL)
54d343a2 5222 return syms->size ();
76a01679 5223
7f0df278 5224 current_function = block_linkage_function (current_block);
4c4b4cd2 5225 if (current_function == NULL)
54d343a2 5226 return syms->size ();
4c4b4cd2 5227
987012b8 5228 current_function_name = current_function->linkage_name ();
4c4b4cd2 5229 if (current_function_name == NULL)
54d343a2 5230 return syms->size ();
4c4b4cd2
PH
5231
5232 /* Check each of the symbols, and remove it from the list if it is
5233 a type corresponding to a renaming that is out of the scope of
5234 the current block. */
5235
5236 i = 0;
54d343a2 5237 while (i < syms->size ())
4c4b4cd2 5238 {
54d343a2 5239 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5240 == ADA_OBJECT_RENAMING
54d343a2
TT
5241 && old_renaming_is_invisible ((*syms)[i].symbol,
5242 current_function_name))
5243 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5244 else
5245 i += 1;
5246 }
5247
54d343a2 5248 return syms->size ();
4c4b4cd2
PH
5249}
5250
339c13b6
JB
5251/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5252 whose name and domain match NAME and DOMAIN respectively.
5253 If no match was found, then extend the search to "enclosing"
5254 routines (in other words, if we're inside a nested function,
5255 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5256 If WILD_MATCH_P is nonzero, perform the naming matching in
5257 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5258
5259 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5260
5261static void
b5ec771e
PA
5262ada_add_local_symbols (struct obstack *obstackp,
5263 const lookup_name_info &lookup_name,
5264 const struct block *block, domain_enum domain)
339c13b6
JB
5265{
5266 int block_depth = 0;
5267
5268 while (block != NULL)
5269 {
5270 block_depth += 1;
b5ec771e 5271 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5272
5273 /* If we found a non-function match, assume that's the one. */
5274 if (is_nonfunction (defns_collected (obstackp, 0),
5275 num_defns_collected (obstackp)))
5276 return;
5277
5278 block = BLOCK_SUPERBLOCK (block);
5279 }
5280
5281 /* If no luck so far, try to find NAME as a local symbol in some lexically
5282 enclosing subprogram. */
5283 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5284 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5285}
5286
ccefe4c4 5287/* An object of this type is used as the user_data argument when
40658b94 5288 calling the map_matching_symbols method. */
ccefe4c4 5289
40658b94 5290struct match_data
ccefe4c4 5291{
40658b94 5292 struct objfile *objfile;
ccefe4c4 5293 struct obstack *obstackp;
40658b94
PH
5294 struct symbol *arg_sym;
5295 int found_sym;
ccefe4c4
TT
5296};
5297
199b4314
TT
5298/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5299 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5300 containing the obstack that collects the symbol list, the file that SYM
5301 must come from, a flag indicating whether a non-argument symbol has
5302 been found in the current block, and the last argument symbol
5303 passed in SYM within the current block (if any). When SYM is null,
5304 marking the end of a block, the argument symbol is added if no
5305 other has been found. */
ccefe4c4 5306
199b4314
TT
5307static bool
5308aux_add_nonlocal_symbols (struct block_symbol *bsym,
5309 struct match_data *data)
ccefe4c4 5310{
199b4314
TT
5311 const struct block *block = bsym->block;
5312 struct symbol *sym = bsym->symbol;
5313
40658b94
PH
5314 if (sym == NULL)
5315 {
5316 if (!data->found_sym && data->arg_sym != NULL)
5317 add_defn_to_vec (data->obstackp,
5318 fixup_symbol_section (data->arg_sym, data->objfile),
5319 block);
5320 data->found_sym = 0;
5321 data->arg_sym = NULL;
5322 }
5323 else
5324 {
5325 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5326 return true;
40658b94
PH
5327 else if (SYMBOL_IS_ARGUMENT (sym))
5328 data->arg_sym = sym;
5329 else
5330 {
5331 data->found_sym = 1;
5332 add_defn_to_vec (data->obstackp,
5333 fixup_symbol_section (sym, data->objfile),
5334 block);
5335 }
5336 }
199b4314 5337 return true;
40658b94
PH
5338}
5339
b5ec771e
PA
5340/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5341 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5342 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5343
5344static int
5345ada_add_block_renamings (struct obstack *obstackp,
5346 const struct block *block,
b5ec771e
PA
5347 const lookup_name_info &lookup_name,
5348 domain_enum domain)
22cee43f
PMR
5349{
5350 struct using_direct *renaming;
5351 int defns_mark = num_defns_collected (obstackp);
5352
b5ec771e
PA
5353 symbol_name_matcher_ftype *name_match
5354 = ada_get_symbol_name_matcher (lookup_name);
5355
22cee43f
PMR
5356 for (renaming = block_using (block);
5357 renaming != NULL;
5358 renaming = renaming->next)
5359 {
5360 const char *r_name;
22cee43f
PMR
5361
5362 /* Avoid infinite recursions: skip this renaming if we are actually
5363 already traversing it.
5364
5365 Currently, symbol lookup in Ada don't use the namespace machinery from
5366 C++/Fortran support: skip namespace imports that use them. */
5367 if (renaming->searched
5368 || (renaming->import_src != NULL
5369 && renaming->import_src[0] != '\0')
5370 || (renaming->import_dest != NULL
5371 && renaming->import_dest[0] != '\0'))
5372 continue;
5373 renaming->searched = 1;
5374
5375 /* TODO: here, we perform another name-based symbol lookup, which can
5376 pull its own multiple overloads. In theory, we should be able to do
5377 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5378 not a simple name. But in order to do this, we would need to enhance
5379 the DWARF reader to associate a symbol to this renaming, instead of a
5380 name. So, for now, we do something simpler: re-use the C++/Fortran
5381 namespace machinery. */
5382 r_name = (renaming->alias != NULL
5383 ? renaming->alias
5384 : renaming->declaration);
b5ec771e
PA
5385 if (name_match (r_name, lookup_name, NULL))
5386 {
5387 lookup_name_info decl_lookup_name (renaming->declaration,
5388 lookup_name.match_type ());
5389 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5390 1, NULL);
5391 }
22cee43f
PMR
5392 renaming->searched = 0;
5393 }
5394 return num_defns_collected (obstackp) != defns_mark;
5395}
5396
db230ce3
JB
5397/* Implements compare_names, but only applying the comparision using
5398 the given CASING. */
5b4ee69b 5399
40658b94 5400static int
db230ce3
JB
5401compare_names_with_case (const char *string1, const char *string2,
5402 enum case_sensitivity casing)
40658b94
PH
5403{
5404 while (*string1 != '\0' && *string2 != '\0')
5405 {
db230ce3
JB
5406 char c1, c2;
5407
40658b94
PH
5408 if (isspace (*string1) || isspace (*string2))
5409 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5410
5411 if (casing == case_sensitive_off)
5412 {
5413 c1 = tolower (*string1);
5414 c2 = tolower (*string2);
5415 }
5416 else
5417 {
5418 c1 = *string1;
5419 c2 = *string2;
5420 }
5421 if (c1 != c2)
40658b94 5422 break;
db230ce3 5423
40658b94
PH
5424 string1 += 1;
5425 string2 += 1;
5426 }
db230ce3 5427
40658b94
PH
5428 switch (*string1)
5429 {
5430 case '(':
5431 return strcmp_iw_ordered (string1, string2);
5432 case '_':
5433 if (*string2 == '\0')
5434 {
052874e8 5435 if (is_name_suffix (string1))
40658b94
PH
5436 return 0;
5437 else
1a1d5513 5438 return 1;
40658b94 5439 }
dbb8534f 5440 /* FALLTHROUGH */
40658b94
PH
5441 default:
5442 if (*string2 == '(')
5443 return strcmp_iw_ordered (string1, string2);
5444 else
db230ce3
JB
5445 {
5446 if (casing == case_sensitive_off)
5447 return tolower (*string1) - tolower (*string2);
5448 else
5449 return *string1 - *string2;
5450 }
40658b94 5451 }
ccefe4c4
TT
5452}
5453
db230ce3
JB
5454/* Compare STRING1 to STRING2, with results as for strcmp.
5455 Compatible with strcmp_iw_ordered in that...
5456
5457 strcmp_iw_ordered (STRING1, STRING2) <= 0
5458
5459 ... implies...
5460
5461 compare_names (STRING1, STRING2) <= 0
5462
5463 (they may differ as to what symbols compare equal). */
5464
5465static int
5466compare_names (const char *string1, const char *string2)
5467{
5468 int result;
5469
5470 /* Similar to what strcmp_iw_ordered does, we need to perform
5471 a case-insensitive comparison first, and only resort to
5472 a second, case-sensitive, comparison if the first one was
5473 not sufficient to differentiate the two strings. */
5474
5475 result = compare_names_with_case (string1, string2, case_sensitive_off);
5476 if (result == 0)
5477 result = compare_names_with_case (string1, string2, case_sensitive_on);
5478
5479 return result;
5480}
5481
b5ec771e
PA
5482/* Convenience function to get at the Ada encoded lookup name for
5483 LOOKUP_NAME, as a C string. */
5484
5485static const char *
5486ada_lookup_name (const lookup_name_info &lookup_name)
5487{
5488 return lookup_name.ada ().lookup_name ().c_str ();
5489}
5490
339c13b6 5491/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5492 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5493 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5494 symbols otherwise. */
339c13b6
JB
5495
5496static void
b5ec771e
PA
5497add_nonlocal_symbols (struct obstack *obstackp,
5498 const lookup_name_info &lookup_name,
5499 domain_enum domain, int global)
339c13b6 5500{
40658b94 5501 struct match_data data;
339c13b6 5502
6475f2fe 5503 memset (&data, 0, sizeof data);
ccefe4c4 5504 data.obstackp = obstackp;
339c13b6 5505
b5ec771e
PA
5506 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5507
199b4314
TT
5508 auto callback = [&] (struct block_symbol *bsym)
5509 {
5510 return aux_add_nonlocal_symbols (bsym, &data);
5511 };
5512
2030c079 5513 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5514 {
5515 data.objfile = objfile;
5516
b054970d
TT
5517 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5518 domain, global, callback,
5519 (is_wild_match
5520 ? NULL : compare_names));
22cee43f 5521
b669c953 5522 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5523 {
5524 const struct block *global_block
5525 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5526
b5ec771e
PA
5527 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5528 domain))
22cee43f
PMR
5529 data.found_sym = 1;
5530 }
40658b94
PH
5531 }
5532
5533 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5534 {
b5ec771e 5535 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5536 std::string bracket_name = std::string ("<_ada_") + name + '>';
5537 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5538
2030c079 5539 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5540 {
40658b94 5541 data.objfile = objfile;
b054970d 5542 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5543 domain, global, callback,
b5ec771e 5544 compare_names);
40658b94
PH
5545 }
5546 }
339c13b6
JB
5547}
5548
b5ec771e
PA
5549/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5550 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5551 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5552
22cee43f
PMR
5553 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5554 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5555 is the one match returned (no other matches in that or
d9680e73 5556 enclosing blocks is returned). If there are any matches in or
22cee43f 5557 surrounding BLOCK, then these alone are returned.
4eeaa230 5558
b5ec771e
PA
5559 Names prefixed with "standard__" are handled specially:
5560 "standard__" is first stripped off (by the lookup_name
5561 constructor), and only static and global symbols are searched.
14f9c5c9 5562
22cee43f
PMR
5563 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5564 to lookup global symbols. */
5565
5566static void
5567ada_add_all_symbols (struct obstack *obstackp,
5568 const struct block *block,
b5ec771e 5569 const lookup_name_info &lookup_name,
22cee43f
PMR
5570 domain_enum domain,
5571 int full_search,
5572 int *made_global_lookup_p)
14f9c5c9
AS
5573{
5574 struct symbol *sym;
14f9c5c9 5575
22cee43f
PMR
5576 if (made_global_lookup_p)
5577 *made_global_lookup_p = 0;
339c13b6
JB
5578
5579 /* Special case: If the user specifies a symbol name inside package
5580 Standard, do a non-wild matching of the symbol name without
5581 the "standard__" prefix. This was primarily introduced in order
5582 to allow the user to specifically access the standard exceptions
5583 using, for instance, Standard.Constraint_Error when Constraint_Error
5584 is ambiguous (due to the user defining its own Constraint_Error
5585 entity inside its program). */
b5ec771e
PA
5586 if (lookup_name.ada ().standard_p ())
5587 block = NULL;
4c4b4cd2 5588
339c13b6 5589 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5590
4eeaa230
DE
5591 if (block != NULL)
5592 {
5593 if (full_search)
b5ec771e 5594 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5595 else
5596 {
5597 /* In the !full_search case we're are being called by
4009ee92 5598 iterate_over_symbols, and we don't want to search
4eeaa230 5599 superblocks. */
b5ec771e 5600 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5601 }
22cee43f
PMR
5602 if (num_defns_collected (obstackp) > 0 || !full_search)
5603 return;
4eeaa230 5604 }
d2e4a39e 5605
339c13b6
JB
5606 /* No non-global symbols found. Check our cache to see if we have
5607 already performed this search before. If we have, then return
5608 the same result. */
5609
b5ec771e
PA
5610 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5611 domain, &sym, &block))
4c4b4cd2
PH
5612 {
5613 if (sym != NULL)
b5ec771e 5614 add_defn_to_vec (obstackp, sym, block);
22cee43f 5615 return;
4c4b4cd2 5616 }
14f9c5c9 5617
22cee43f
PMR
5618 if (made_global_lookup_p)
5619 *made_global_lookup_p = 1;
b1eedac9 5620
339c13b6
JB
5621 /* Search symbols from all global blocks. */
5622
b5ec771e 5623 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5624
4c4b4cd2 5625 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5626 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5627
22cee43f 5628 if (num_defns_collected (obstackp) == 0)
b5ec771e 5629 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5630}
5631
b5ec771e
PA
5632/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5633 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5634 matches.
54d343a2
TT
5635 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5636 found and the blocks and symbol tables (if any) in which they were
5637 found.
22cee43f
PMR
5638
5639 When full_search is non-zero, any non-function/non-enumeral
5640 symbol match within the nest of blocks whose innermost member is BLOCK,
5641 is the one match returned (no other matches in that or
5642 enclosing blocks is returned). If there are any matches in or
5643 surrounding BLOCK, then these alone are returned.
5644
5645 Names prefixed with "standard__" are handled specially: "standard__"
5646 is first stripped off, and only static and global symbols are searched. */
5647
5648static int
b5ec771e
PA
5649ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5650 const struct block *block,
22cee43f 5651 domain_enum domain,
54d343a2 5652 std::vector<struct block_symbol> *results,
22cee43f
PMR
5653 int full_search)
5654{
22cee43f
PMR
5655 int syms_from_global_search;
5656 int ndefns;
ec6a20c2 5657 auto_obstack obstack;
22cee43f 5658
ec6a20c2 5659 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5660 domain, full_search, &syms_from_global_search);
14f9c5c9 5661
ec6a20c2
JB
5662 ndefns = num_defns_collected (&obstack);
5663
54d343a2
TT
5664 struct block_symbol *base = defns_collected (&obstack, 1);
5665 for (int i = 0; i < ndefns; ++i)
5666 results->push_back (base[i]);
4c4b4cd2 5667
54d343a2 5668 ndefns = remove_extra_symbols (results);
4c4b4cd2 5669
b1eedac9 5670 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5671 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5672
b1eedac9 5673 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5674 cache_symbol (ada_lookup_name (lookup_name), domain,
5675 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5676
54d343a2 5677 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5678
14f9c5c9
AS
5679 return ndefns;
5680}
5681
b5ec771e 5682/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5683 in global scopes, returning the number of matches, and filling *RESULTS
5684 with (SYM,BLOCK) tuples.
ec6a20c2 5685
4eeaa230
DE
5686 See ada_lookup_symbol_list_worker for further details. */
5687
5688int
b5ec771e 5689ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5690 domain_enum domain,
5691 std::vector<struct block_symbol> *results)
4eeaa230 5692{
b5ec771e
PA
5693 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5694 lookup_name_info lookup_name (name, name_match_type);
5695
5696 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5697}
5698
4e5c77fe
JB
5699/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5700 to 1, but choosing the first symbol found if there are multiple
5701 choices.
5702
5e2336be
JB
5703 The result is stored in *INFO, which must be non-NULL.
5704 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5705
5706void
5707ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5708 domain_enum domain,
d12307c1 5709 struct block_symbol *info)
14f9c5c9 5710{
b5ec771e
PA
5711 /* Since we already have an encoded name, wrap it in '<>' to force a
5712 verbatim match. Otherwise, if the name happens to not look like
5713 an encoded name (because it doesn't include a "__"),
5714 ada_lookup_name_info would re-encode/fold it again, and that
5715 would e.g., incorrectly lowercase object renaming names like
5716 "R28b" -> "r28b". */
5717 std::string verbatim = std::string ("<") + name + '>';
5718
5e2336be 5719 gdb_assert (info != NULL);
65392b3e 5720 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5721}
aeb5907d
JB
5722
5723/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5724 scope and in global scopes, or NULL if none. NAME is folded and
5725 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5726 choosing the first symbol if there are multiple choices. */
4e5c77fe 5727
d12307c1 5728struct block_symbol
aeb5907d 5729ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5730 domain_enum domain)
aeb5907d 5731{
54d343a2 5732 std::vector<struct block_symbol> candidates;
f98fc17b 5733 int n_candidates;
f98fc17b
PA
5734
5735 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5736
5737 if (n_candidates == 0)
54d343a2 5738 return {};
f98fc17b
PA
5739
5740 block_symbol info = candidates[0];
5741 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5742 return info;
4c4b4cd2 5743}
14f9c5c9 5744
14f9c5c9 5745
4c4b4cd2
PH
5746/* True iff STR is a possible encoded suffix of a normal Ada name
5747 that is to be ignored for matching purposes. Suffixes of parallel
5748 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5749 are given by any of the regular expressions:
4c4b4cd2 5750
babe1480
JB
5751 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5752 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5753 TKB [subprogram suffix for task bodies]
babe1480 5754 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5755 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5756
5757 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5758 match is performed. This sequence is used to differentiate homonyms,
5759 is an optional part of a valid name suffix. */
4c4b4cd2 5760
14f9c5c9 5761static int
d2e4a39e 5762is_name_suffix (const char *str)
14f9c5c9
AS
5763{
5764 int k;
4c4b4cd2
PH
5765 const char *matching;
5766 const int len = strlen (str);
5767
babe1480
JB
5768 /* Skip optional leading __[0-9]+. */
5769
4c4b4cd2
PH
5770 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5771 {
babe1480
JB
5772 str += 3;
5773 while (isdigit (str[0]))
5774 str += 1;
4c4b4cd2 5775 }
babe1480
JB
5776
5777 /* [.$][0-9]+ */
4c4b4cd2 5778
babe1480 5779 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5780 {
babe1480 5781 matching = str + 1;
4c4b4cd2
PH
5782 while (isdigit (matching[0]))
5783 matching += 1;
5784 if (matching[0] == '\0')
5785 return 1;
5786 }
5787
5788 /* ___[0-9]+ */
babe1480 5789
4c4b4cd2
PH
5790 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5791 {
5792 matching = str + 3;
5793 while (isdigit (matching[0]))
5794 matching += 1;
5795 if (matching[0] == '\0')
5796 return 1;
5797 }
5798
9ac7f98e
JB
5799 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5800
5801 if (strcmp (str, "TKB") == 0)
5802 return 1;
5803
529cad9c
PH
5804#if 0
5805 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5806 with a N at the end. Unfortunately, the compiler uses the same
5807 convention for other internal types it creates. So treating
529cad9c 5808 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5809 some regressions. For instance, consider the case of an enumerated
5810 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5811 name ends with N.
5812 Having a single character like this as a suffix carrying some
0963b4bd 5813 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5814 to be something like "_N" instead. In the meantime, do not do
5815 the following check. */
5816 /* Protected Object Subprograms */
5817 if (len == 1 && str [0] == 'N')
5818 return 1;
5819#endif
5820
5821 /* _E[0-9]+[bs]$ */
5822 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5823 {
5824 matching = str + 3;
5825 while (isdigit (matching[0]))
5826 matching += 1;
5827 if ((matching[0] == 'b' || matching[0] == 's')
5828 && matching [1] == '\0')
5829 return 1;
5830 }
5831
4c4b4cd2
PH
5832 /* ??? We should not modify STR directly, as we are doing below. This
5833 is fine in this case, but may become problematic later if we find
5834 that this alternative did not work, and want to try matching
5835 another one from the begining of STR. Since we modified it, we
5836 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5837 if (str[0] == 'X')
5838 {
5839 str += 1;
d2e4a39e 5840 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5841 {
5842 if (str[0] != 'n' && str[0] != 'b')
5843 return 0;
5844 str += 1;
5845 }
14f9c5c9 5846 }
babe1480 5847
14f9c5c9
AS
5848 if (str[0] == '\000')
5849 return 1;
babe1480 5850
d2e4a39e 5851 if (str[0] == '_')
14f9c5c9
AS
5852 {
5853 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5854 return 0;
d2e4a39e 5855 if (str[2] == '_')
4c4b4cd2 5856 {
61ee279c
PH
5857 if (strcmp (str + 3, "JM") == 0)
5858 return 1;
5859 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5860 the LJM suffix in favor of the JM one. But we will
5861 still accept LJM as a valid suffix for a reasonable
5862 amount of time, just to allow ourselves to debug programs
5863 compiled using an older version of GNAT. */
4c4b4cd2
PH
5864 if (strcmp (str + 3, "LJM") == 0)
5865 return 1;
5866 if (str[3] != 'X')
5867 return 0;
1265e4aa
JB
5868 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5869 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5870 return 1;
5871 if (str[4] == 'R' && str[5] != 'T')
5872 return 1;
5873 return 0;
5874 }
5875 if (!isdigit (str[2]))
5876 return 0;
5877 for (k = 3; str[k] != '\0'; k += 1)
5878 if (!isdigit (str[k]) && str[k] != '_')
5879 return 0;
14f9c5c9
AS
5880 return 1;
5881 }
4c4b4cd2 5882 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5883 {
4c4b4cd2
PH
5884 for (k = 2; str[k] != '\0'; k += 1)
5885 if (!isdigit (str[k]) && str[k] != '_')
5886 return 0;
14f9c5c9
AS
5887 return 1;
5888 }
5889 return 0;
5890}
d2e4a39e 5891
aeb5907d
JB
5892/* Return non-zero if the string starting at NAME and ending before
5893 NAME_END contains no capital letters. */
529cad9c
PH
5894
5895static int
5896is_valid_name_for_wild_match (const char *name0)
5897{
f945dedf 5898 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5899 int i;
5900
5823c3ef
JB
5901 /* If the decoded name starts with an angle bracket, it means that
5902 NAME0 does not follow the GNAT encoding format. It should then
5903 not be allowed as a possible wild match. */
5904 if (decoded_name[0] == '<')
5905 return 0;
5906
529cad9c
PH
5907 for (i=0; decoded_name[i] != '\0'; i++)
5908 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5909 return 0;
5910
5911 return 1;
5912}
5913
73589123
PH
5914/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5915 that could start a simple name. Assumes that *NAMEP points into
5916 the string beginning at NAME0. */
4c4b4cd2 5917
14f9c5c9 5918static int
73589123 5919advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5920{
73589123 5921 const char *name = *namep;
5b4ee69b 5922
5823c3ef 5923 while (1)
14f9c5c9 5924 {
aa27d0b3 5925 int t0, t1;
73589123
PH
5926
5927 t0 = *name;
5928 if (t0 == '_')
5929 {
5930 t1 = name[1];
5931 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5932 {
5933 name += 1;
61012eef 5934 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5935 break;
5936 else
5937 name += 1;
5938 }
aa27d0b3
JB
5939 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5940 || name[2] == target0))
73589123
PH
5941 {
5942 name += 2;
5943 break;
5944 }
5945 else
5946 return 0;
5947 }
5948 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5949 name += 1;
5950 else
5823c3ef 5951 return 0;
73589123
PH
5952 }
5953
5954 *namep = name;
5955 return 1;
5956}
5957
b5ec771e
PA
5958/* Return true iff NAME encodes a name of the form prefix.PATN.
5959 Ignores any informational suffixes of NAME (i.e., for which
5960 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5961 simple name. */
73589123 5962
b5ec771e 5963static bool
73589123
PH
5964wild_match (const char *name, const char *patn)
5965{
22e048c9 5966 const char *p;
73589123
PH
5967 const char *name0 = name;
5968
5969 while (1)
5970 {
5971 const char *match = name;
5972
5973 if (*name == *patn)
5974 {
5975 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5976 if (*p != *name)
5977 break;
5978 if (*p == '\0' && is_name_suffix (name))
b5ec771e 5979 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
5980
5981 if (name[-1] == '_')
5982 name -= 1;
5983 }
5984 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 5985 return false;
96d887e8 5986 }
96d887e8
PH
5987}
5988
b5ec771e
PA
5989/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
5990 any trailing suffixes that encode debugging information or leading
5991 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
5992 information that is ignored). */
40658b94 5993
b5ec771e 5994static bool
c4d840bd
PH
5995full_match (const char *sym_name, const char *search_name)
5996{
b5ec771e
PA
5997 size_t search_name_len = strlen (search_name);
5998
5999 if (strncmp (sym_name, search_name, search_name_len) == 0
6000 && is_name_suffix (sym_name + search_name_len))
6001 return true;
6002
6003 if (startswith (sym_name, "_ada_")
6004 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6005 && is_name_suffix (sym_name + search_name_len + 5))
6006 return true;
c4d840bd 6007
b5ec771e
PA
6008 return false;
6009}
c4d840bd 6010
b5ec771e
PA
6011/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6012 *defn_symbols, updating the list of symbols in OBSTACKP (if
6013 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6014
6015static void
6016ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6017 const struct block *block,
6018 const lookup_name_info &lookup_name,
6019 domain_enum domain, struct objfile *objfile)
96d887e8 6020{
8157b174 6021 struct block_iterator iter;
96d887e8
PH
6022 /* A matching argument symbol, if any. */
6023 struct symbol *arg_sym;
6024 /* Set true when we find a matching non-argument symbol. */
6025 int found_sym;
6026 struct symbol *sym;
6027
6028 arg_sym = NULL;
6029 found_sym = 0;
b5ec771e
PA
6030 for (sym = block_iter_match_first (block, lookup_name, &iter);
6031 sym != NULL;
6032 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6033 {
c1b5c1eb 6034 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6035 {
6036 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6037 {
6038 if (SYMBOL_IS_ARGUMENT (sym))
6039 arg_sym = sym;
6040 else
6041 {
6042 found_sym = 1;
6043 add_defn_to_vec (obstackp,
6044 fixup_symbol_section (sym, objfile),
6045 block);
6046 }
6047 }
6048 }
96d887e8
PH
6049 }
6050
22cee43f
PMR
6051 /* Handle renamings. */
6052
b5ec771e 6053 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6054 found_sym = 1;
6055
96d887e8
PH
6056 if (!found_sym && arg_sym != NULL)
6057 {
76a01679
JB
6058 add_defn_to_vec (obstackp,
6059 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6060 block);
96d887e8
PH
6061 }
6062
b5ec771e 6063 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6064 {
6065 arg_sym = NULL;
6066 found_sym = 0;
b5ec771e
PA
6067 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6068 const char *name = ada_lookup_name.c_str ();
6069 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6070
6071 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6072 {
c1b5c1eb 6073 if (symbol_matches_domain (sym->language (),
4186eb54 6074 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6075 {
6076 int cmp;
6077
987012b8 6078 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6079 if (cmp == 0)
6080 {
987012b8 6081 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6082 if (cmp == 0)
987012b8 6083 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6084 name_len);
6085 }
6086
6087 if (cmp == 0
987012b8 6088 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6089 {
2a2d4dc3
AS
6090 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6091 {
6092 if (SYMBOL_IS_ARGUMENT (sym))
6093 arg_sym = sym;
6094 else
6095 {
6096 found_sym = 1;
6097 add_defn_to_vec (obstackp,
6098 fixup_symbol_section (sym, objfile),
6099 block);
6100 }
6101 }
76a01679
JB
6102 }
6103 }
76a01679 6104 }
96d887e8
PH
6105
6106 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6107 They aren't parameters, right? */
6108 if (!found_sym && arg_sym != NULL)
6109 {
6110 add_defn_to_vec (obstackp,
76a01679 6111 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6112 block);
96d887e8
PH
6113 }
6114 }
6115}
6116\f
41d27058
JB
6117
6118 /* Symbol Completion */
6119
b5ec771e 6120/* See symtab.h. */
41d27058 6121
b5ec771e
PA
6122bool
6123ada_lookup_name_info::matches
6124 (const char *sym_name,
6125 symbol_name_match_type match_type,
a207cff2 6126 completion_match_result *comp_match_res) const
41d27058 6127{
b5ec771e
PA
6128 bool match = false;
6129 const char *text = m_encoded_name.c_str ();
6130 size_t text_len = m_encoded_name.size ();
41d27058
JB
6131
6132 /* First, test against the fully qualified name of the symbol. */
6133
6134 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6135 match = true;
41d27058 6136
f945dedf 6137 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6138 if (match && !m_encoded_p)
41d27058
JB
6139 {
6140 /* One needed check before declaring a positive match is to verify
6141 that iff we are doing a verbatim match, the decoded version
6142 of the symbol name starts with '<'. Otherwise, this symbol name
6143 is not a suitable completion. */
41d27058 6144
f945dedf 6145 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6146 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6147 }
6148
b5ec771e 6149 if (match && !m_verbatim_p)
41d27058
JB
6150 {
6151 /* When doing non-verbatim match, another check that needs to
6152 be done is to verify that the potentially matching symbol name
6153 does not include capital letters, because the ada-mode would
6154 not be able to understand these symbol names without the
6155 angle bracket notation. */
6156 const char *tmp;
6157
6158 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6159 if (*tmp != '\0')
b5ec771e 6160 match = false;
41d27058
JB
6161 }
6162
6163 /* Second: Try wild matching... */
6164
b5ec771e 6165 if (!match && m_wild_match_p)
41d27058
JB
6166 {
6167 /* Since we are doing wild matching, this means that TEXT
6168 may represent an unqualified symbol name. We therefore must
6169 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6170 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6171
6172 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6173 match = true;
41d27058
JB
6174 }
6175
b5ec771e 6176 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6177
6178 if (!match)
b5ec771e 6179 return false;
41d27058 6180
a207cff2 6181 if (comp_match_res != NULL)
b5ec771e 6182 {
a207cff2 6183 std::string &match_str = comp_match_res->match.storage ();
41d27058 6184
b5ec771e 6185 if (!m_encoded_p)
a207cff2 6186 match_str = ada_decode (sym_name);
b5ec771e
PA
6187 else
6188 {
6189 if (m_verbatim_p)
6190 match_str = add_angle_brackets (sym_name);
6191 else
6192 match_str = sym_name;
41d27058 6193
b5ec771e 6194 }
a207cff2
PA
6195
6196 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6197 }
6198
b5ec771e 6199 return true;
41d27058
JB
6200}
6201
963a6417 6202 /* Field Access */
96d887e8 6203
73fb9985
JB
6204/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6205 for tagged types. */
6206
6207static int
6208ada_is_dispatch_table_ptr_type (struct type *type)
6209{
0d5cff50 6210 const char *name;
73fb9985 6211
78134374 6212 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6213 return 0;
6214
7d93a1e0 6215 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6216 if (name == NULL)
6217 return 0;
6218
6219 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6220}
6221
ac4a2da4
JG
6222/* Return non-zero if TYPE is an interface tag. */
6223
6224static int
6225ada_is_interface_tag (struct type *type)
6226{
7d93a1e0 6227 const char *name = type->name ();
ac4a2da4
JG
6228
6229 if (name == NULL)
6230 return 0;
6231
6232 return (strcmp (name, "ada__tags__interface_tag") == 0);
6233}
6234
963a6417
PH
6235/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6236 to be invisible to users. */
96d887e8 6237
963a6417
PH
6238int
6239ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6240{
1f704f76 6241 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6242 return 1;
ffde82bf 6243
73fb9985
JB
6244 /* Check the name of that field. */
6245 {
6246 const char *name = TYPE_FIELD_NAME (type, field_num);
6247
6248 /* Anonymous field names should not be printed.
6249 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6250 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6251 if (name == NULL)
6252 return 1;
6253
ffde82bf
JB
6254 /* Normally, fields whose name start with an underscore ("_")
6255 are fields that have been internally generated by the compiler,
6256 and thus should not be printed. The "_parent" field is special,
6257 however: This is a field internally generated by the compiler
6258 for tagged types, and it contains the components inherited from
6259 the parent type. This field should not be printed as is, but
6260 should not be ignored either. */
61012eef 6261 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6262 return 1;
6263 }
6264
ac4a2da4
JG
6265 /* If this is the dispatch table of a tagged type or an interface tag,
6266 then ignore. */
73fb9985 6267 if (ada_is_tagged_type (type, 1)
940da03e
SM
6268 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6269 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6270 return 1;
6271
6272 /* Not a special field, so it should not be ignored. */
6273 return 0;
963a6417 6274}
96d887e8 6275
963a6417 6276/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6277 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6278
963a6417
PH
6279int
6280ada_is_tagged_type (struct type *type, int refok)
6281{
988f6b3d 6282 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6283}
96d887e8 6284
963a6417 6285/* True iff TYPE represents the type of X'Tag */
96d887e8 6286
963a6417
PH
6287int
6288ada_is_tag_type (struct type *type)
6289{
460efde1
JB
6290 type = ada_check_typedef (type);
6291
78134374 6292 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6293 return 0;
6294 else
96d887e8 6295 {
963a6417 6296 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6297
963a6417
PH
6298 return (name != NULL
6299 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6300 }
96d887e8
PH
6301}
6302
963a6417 6303/* The type of the tag on VAL. */
76a01679 6304
de93309a 6305static struct type *
963a6417 6306ada_tag_type (struct value *val)
96d887e8 6307{
988f6b3d 6308 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6309}
96d887e8 6310
b50d69b5
JG
6311/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6312 retired at Ada 05). */
6313
6314static int
6315is_ada95_tag (struct value *tag)
6316{
6317 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6318}
6319
963a6417 6320/* The value of the tag on VAL. */
96d887e8 6321
de93309a 6322static struct value *
963a6417
PH
6323ada_value_tag (struct value *val)
6324{
03ee6b2e 6325 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6326}
6327
963a6417
PH
6328/* The value of the tag on the object of type TYPE whose contents are
6329 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6330 ADDRESS. */
96d887e8 6331
963a6417 6332static struct value *
10a2c479 6333value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6334 const gdb_byte *valaddr,
963a6417 6335 CORE_ADDR address)
96d887e8 6336{
b5385fc0 6337 int tag_byte_offset;
963a6417 6338 struct type *tag_type;
5b4ee69b 6339
963a6417 6340 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6341 NULL, NULL, NULL))
96d887e8 6342 {
fc1a4b47 6343 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6344 ? NULL
6345 : valaddr + tag_byte_offset);
963a6417 6346 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6347
963a6417 6348 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6349 }
963a6417
PH
6350 return NULL;
6351}
96d887e8 6352
963a6417
PH
6353static struct type *
6354type_from_tag (struct value *tag)
6355{
f5272a3b 6356 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6357
963a6417 6358 if (type_name != NULL)
f5272a3b 6359 return ada_find_any_type (ada_encode (type_name.get ()));
963a6417
PH
6360 return NULL;
6361}
96d887e8 6362
b50d69b5
JG
6363/* Given a value OBJ of a tagged type, return a value of this
6364 type at the base address of the object. The base address, as
6365 defined in Ada.Tags, it is the address of the primary tag of
6366 the object, and therefore where the field values of its full
6367 view can be fetched. */
6368
6369struct value *
6370ada_tag_value_at_base_address (struct value *obj)
6371{
b50d69b5
JG
6372 struct value *val;
6373 LONGEST offset_to_top = 0;
6374 struct type *ptr_type, *obj_type;
6375 struct value *tag;
6376 CORE_ADDR base_address;
6377
6378 obj_type = value_type (obj);
6379
6380 /* It is the responsability of the caller to deref pointers. */
6381
78134374 6382 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6383 return obj;
6384
6385 tag = ada_value_tag (obj);
6386 if (!tag)
6387 return obj;
6388
6389 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6390
6391 if (is_ada95_tag (tag))
6392 return obj;
6393
08f49010
XR
6394 ptr_type = language_lookup_primitive_type
6395 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6396 ptr_type = lookup_pointer_type (ptr_type);
6397 val = value_cast (ptr_type, tag);
6398 if (!val)
6399 return obj;
6400
6401 /* It is perfectly possible that an exception be raised while
6402 trying to determine the base address, just like for the tag;
6403 see ada_tag_name for more details. We do not print the error
6404 message for the same reason. */
6405
a70b8144 6406 try
b50d69b5
JG
6407 {
6408 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6409 }
6410
230d2906 6411 catch (const gdb_exception_error &e)
492d29ea
PA
6412 {
6413 return obj;
6414 }
b50d69b5
JG
6415
6416 /* If offset is null, nothing to do. */
6417
6418 if (offset_to_top == 0)
6419 return obj;
6420
6421 /* -1 is a special case in Ada.Tags; however, what should be done
6422 is not quite clear from the documentation. So do nothing for
6423 now. */
6424
6425 if (offset_to_top == -1)
6426 return obj;
6427
08f49010
XR
6428 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6429 from the base address. This was however incompatible with
6430 C++ dispatch table: C++ uses a *negative* value to *add*
6431 to the base address. Ada's convention has therefore been
6432 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6433 use the same convention. Here, we support both cases by
6434 checking the sign of OFFSET_TO_TOP. */
6435
6436 if (offset_to_top > 0)
6437 offset_to_top = -offset_to_top;
6438
6439 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6440 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6441
6442 /* Make sure that we have a proper tag at the new address.
6443 Otherwise, offset_to_top is bogus (which can happen when
6444 the object is not initialized yet). */
6445
6446 if (!tag)
6447 return obj;
6448
6449 obj_type = type_from_tag (tag);
6450
6451 if (!obj_type)
6452 return obj;
6453
6454 return value_from_contents_and_address (obj_type, NULL, base_address);
6455}
6456
1b611343
JB
6457/* Return the "ada__tags__type_specific_data" type. */
6458
6459static struct type *
6460ada_get_tsd_type (struct inferior *inf)
963a6417 6461{
1b611343 6462 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6463
1b611343
JB
6464 if (data->tsd_type == 0)
6465 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6466 return data->tsd_type;
6467}
529cad9c 6468
1b611343
JB
6469/* Return the TSD (type-specific data) associated to the given TAG.
6470 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6471
1b611343 6472 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6473
1b611343
JB
6474static struct value *
6475ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6476{
4c4b4cd2 6477 struct value *val;
1b611343 6478 struct type *type;
5b4ee69b 6479
1b611343
JB
6480 /* First option: The TSD is simply stored as a field of our TAG.
6481 Only older versions of GNAT would use this format, but we have
6482 to test it first, because there are no visible markers for
6483 the current approach except the absence of that field. */
529cad9c 6484
1b611343
JB
6485 val = ada_value_struct_elt (tag, "tsd", 1);
6486 if (val)
6487 return val;
e802dbe0 6488
1b611343
JB
6489 /* Try the second representation for the dispatch table (in which
6490 there is no explicit 'tsd' field in the referent of the tag pointer,
6491 and instead the tsd pointer is stored just before the dispatch
6492 table. */
e802dbe0 6493
1b611343
JB
6494 type = ada_get_tsd_type (current_inferior());
6495 if (type == NULL)
6496 return NULL;
6497 type = lookup_pointer_type (lookup_pointer_type (type));
6498 val = value_cast (type, tag);
6499 if (val == NULL)
6500 return NULL;
6501 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6502}
6503
1b611343
JB
6504/* Given the TSD of a tag (type-specific data), return a string
6505 containing the name of the associated type.
6506
f5272a3b 6507 May return NULL if we are unable to determine the tag name. */
1b611343 6508
f5272a3b 6509static gdb::unique_xmalloc_ptr<char>
1b611343 6510ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6511{
529cad9c 6512 char *p;
1b611343 6513 struct value *val;
529cad9c 6514
1b611343 6515 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6516 if (val == NULL)
1b611343 6517 return NULL;
66920317
TT
6518 gdb::unique_xmalloc_ptr<char> buffer
6519 = target_read_string (value_as_address (val), INT_MAX);
6520 if (buffer == nullptr)
f5272a3b
TT
6521 return nullptr;
6522
6523 for (p = buffer.get (); *p != '\0'; ++p)
6524 {
6525 if (isalpha (*p))
6526 *p = tolower (*p);
6527 }
6528
6529 return buffer;
4c4b4cd2
PH
6530}
6531
6532/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6533 a C string.
6534
6535 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6536 determine the name of that tag. */
4c4b4cd2 6537
f5272a3b 6538gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6539ada_tag_name (struct value *tag)
6540{
f5272a3b 6541 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6542
df407dfe 6543 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6544 return NULL;
1b611343
JB
6545
6546 /* It is perfectly possible that an exception be raised while trying
6547 to determine the TAG's name, even under normal circumstances:
6548 The associated variable may be uninitialized or corrupted, for
6549 instance. We do not let any exception propagate past this point.
6550 instead we return NULL.
6551
6552 We also do not print the error message either (which often is very
6553 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6554 the caller print a more meaningful message if necessary. */
a70b8144 6555 try
1b611343
JB
6556 {
6557 struct value *tsd = ada_get_tsd_from_tag (tag);
6558
6559 if (tsd != NULL)
6560 name = ada_tag_name_from_tsd (tsd);
6561 }
230d2906 6562 catch (const gdb_exception_error &e)
492d29ea
PA
6563 {
6564 }
1b611343
JB
6565
6566 return name;
4c4b4cd2
PH
6567}
6568
6569/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6570
d2e4a39e 6571struct type *
ebf56fd3 6572ada_parent_type (struct type *type)
14f9c5c9
AS
6573{
6574 int i;
6575
61ee279c 6576 type = ada_check_typedef (type);
14f9c5c9 6577
78134374 6578 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6579 return NULL;
6580
1f704f76 6581 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6582 if (ada_is_parent_field (type, i))
0c1f74cf 6583 {
940da03e 6584 struct type *parent_type = type->field (i).type ();
0c1f74cf
JB
6585
6586 /* If the _parent field is a pointer, then dereference it. */
78134374 6587 if (parent_type->code () == TYPE_CODE_PTR)
0c1f74cf
JB
6588 parent_type = TYPE_TARGET_TYPE (parent_type);
6589 /* If there is a parallel XVS type, get the actual base type. */
6590 parent_type = ada_get_base_type (parent_type);
6591
6592 return ada_check_typedef (parent_type);
6593 }
14f9c5c9
AS
6594
6595 return NULL;
6596}
6597
4c4b4cd2
PH
6598/* True iff field number FIELD_NUM of structure type TYPE contains the
6599 parent-type (inherited) fields of a derived type. Assumes TYPE is
6600 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6601
6602int
ebf56fd3 6603ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6604{
61ee279c 6605 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6606
4c4b4cd2 6607 return (name != NULL
61012eef
GB
6608 && (startswith (name, "PARENT")
6609 || startswith (name, "_parent")));
14f9c5c9
AS
6610}
6611
4c4b4cd2 6612/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6613 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6614 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6615 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6616 structures. */
14f9c5c9
AS
6617
6618int
ebf56fd3 6619ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6620{
d2e4a39e 6621 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6622
dddc0e16
JB
6623 if (name != NULL && strcmp (name, "RETVAL") == 0)
6624 {
6625 /* This happens in functions with "out" or "in out" parameters
6626 which are passed by copy. For such functions, GNAT describes
6627 the function's return type as being a struct where the return
6628 value is in a field called RETVAL, and where the other "out"
6629 or "in out" parameters are fields of that struct. This is not
6630 a wrapper. */
6631 return 0;
6632 }
6633
d2e4a39e 6634 return (name != NULL
61012eef 6635 && (startswith (name, "PARENT")
4c4b4cd2 6636 || strcmp (name, "REP") == 0
61012eef 6637 || startswith (name, "_parent")
4c4b4cd2 6638 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6639}
6640
4c4b4cd2
PH
6641/* True iff field number FIELD_NUM of structure or union type TYPE
6642 is a variant wrapper. Assumes TYPE is a structure type with at least
6643 FIELD_NUM+1 fields. */
14f9c5c9
AS
6644
6645int
ebf56fd3 6646ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6647{
8ecb59f8
TT
6648 /* Only Ada types are eligible. */
6649 if (!ADA_TYPE_P (type))
6650 return 0;
6651
940da03e 6652 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6653
78134374
SM
6654 return (field_type->code () == TYPE_CODE_UNION
6655 || (is_dynamic_field (type, field_num)
6656 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6657 == TYPE_CODE_UNION)));
14f9c5c9
AS
6658}
6659
6660/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6661 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6662 returns the type of the controlling discriminant for the variant.
6663 May return NULL if the type could not be found. */
14f9c5c9 6664
d2e4a39e 6665struct type *
ebf56fd3 6666ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6667{
a121b7c1 6668 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6669
988f6b3d 6670 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6671}
6672
4c4b4cd2 6673/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6674 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6675 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6676
de93309a 6677static int
ebf56fd3 6678ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6679{
d2e4a39e 6680 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6681
14f9c5c9
AS
6682 return (name != NULL && name[0] == 'O');
6683}
6684
6685/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6686 returns the name of the discriminant controlling the variant.
6687 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6688
a121b7c1 6689const char *
ebf56fd3 6690ada_variant_discrim_name (struct type *type0)
14f9c5c9 6691{
d2e4a39e 6692 static char *result = NULL;
14f9c5c9 6693 static size_t result_len = 0;
d2e4a39e
AS
6694 struct type *type;
6695 const char *name;
6696 const char *discrim_end;
6697 const char *discrim_start;
14f9c5c9 6698
78134374 6699 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6700 type = TYPE_TARGET_TYPE (type0);
6701 else
6702 type = type0;
6703
6704 name = ada_type_name (type);
6705
6706 if (name == NULL || name[0] == '\000')
6707 return "";
6708
6709 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6710 discrim_end -= 1)
6711 {
61012eef 6712 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6713 break;
14f9c5c9
AS
6714 }
6715 if (discrim_end == name)
6716 return "";
6717
d2e4a39e 6718 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6719 discrim_start -= 1)
6720 {
d2e4a39e 6721 if (discrim_start == name + 1)
4c4b4cd2 6722 return "";
76a01679 6723 if ((discrim_start > name + 3
61012eef 6724 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6725 || discrim_start[-1] == '.')
6726 break;
14f9c5c9
AS
6727 }
6728
6729 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6730 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6731 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6732 return result;
6733}
6734
4c4b4cd2
PH
6735/* Scan STR for a subtype-encoded number, beginning at position K.
6736 Put the position of the character just past the number scanned in
6737 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6738 Return 1 if there was a valid number at the given position, and 0
6739 otherwise. A "subtype-encoded" number consists of the absolute value
6740 in decimal, followed by the letter 'm' to indicate a negative number.
6741 Assumes 0m does not occur. */
14f9c5c9
AS
6742
6743int
d2e4a39e 6744ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6745{
6746 ULONGEST RU;
6747
d2e4a39e 6748 if (!isdigit (str[k]))
14f9c5c9
AS
6749 return 0;
6750
4c4b4cd2 6751 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6752 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6753 LONGEST. */
14f9c5c9
AS
6754 RU = 0;
6755 while (isdigit (str[k]))
6756 {
d2e4a39e 6757 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6758 k += 1;
6759 }
6760
d2e4a39e 6761 if (str[k] == 'm')
14f9c5c9
AS
6762 {
6763 if (R != NULL)
4c4b4cd2 6764 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6765 k += 1;
6766 }
6767 else if (R != NULL)
6768 *R = (LONGEST) RU;
6769
4c4b4cd2 6770 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6771 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6772 number representable as a LONGEST (although either would probably work
6773 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6774 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6775
6776 if (new_k != NULL)
6777 *new_k = k;
6778 return 1;
6779}
6780
4c4b4cd2
PH
6781/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6782 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6783 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6784
de93309a 6785static int
ebf56fd3 6786ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6787{
d2e4a39e 6788 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6789 int p;
6790
6791 p = 0;
6792 while (1)
6793 {
d2e4a39e 6794 switch (name[p])
4c4b4cd2
PH
6795 {
6796 case '\0':
6797 return 0;
6798 case 'S':
6799 {
6800 LONGEST W;
5b4ee69b 6801
4c4b4cd2
PH
6802 if (!ada_scan_number (name, p + 1, &W, &p))
6803 return 0;
6804 if (val == W)
6805 return 1;
6806 break;
6807 }
6808 case 'R':
6809 {
6810 LONGEST L, U;
5b4ee69b 6811
4c4b4cd2
PH
6812 if (!ada_scan_number (name, p + 1, &L, &p)
6813 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6814 return 0;
6815 if (val >= L && val <= U)
6816 return 1;
6817 break;
6818 }
6819 case 'O':
6820 return 1;
6821 default:
6822 return 0;
6823 }
6824 }
6825}
6826
0963b4bd 6827/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6828
6829/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6830 ARG_TYPE, extract and return the value of one of its (non-static)
6831 fields. FIELDNO says which field. Differs from value_primitive_field
6832 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6833
5eb68a39 6834struct value *
d2e4a39e 6835ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6836 struct type *arg_type)
14f9c5c9 6837{
14f9c5c9
AS
6838 struct type *type;
6839
61ee279c 6840 arg_type = ada_check_typedef (arg_type);
940da03e 6841 type = arg_type->field (fieldno).type ();
14f9c5c9 6842
4504bbde
TT
6843 /* Handle packed fields. It might be that the field is not packed
6844 relative to its containing structure, but the structure itself is
6845 packed; in this case we must take the bit-field path. */
6846 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6847 {
6848 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6849 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6850
0fd88904 6851 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6852 offset + bit_pos / 8,
6853 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6854 }
6855 else
6856 return value_primitive_field (arg1, offset, fieldno, arg_type);
6857}
6858
52ce6436
PH
6859/* Find field with name NAME in object of type TYPE. If found,
6860 set the following for each argument that is non-null:
6861 - *FIELD_TYPE_P to the field's type;
6862 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6863 an object of that type;
6864 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6865 - *BIT_SIZE_P to its size in bits if the field is packed, and
6866 0 otherwise;
6867 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6868 fields up to but not including the desired field, or by the total
6869 number of fields if not found. A NULL value of NAME never
6870 matches; the function just counts visible fields in this case.
6871
828d5846
XR
6872 Notice that we need to handle when a tagged record hierarchy
6873 has some components with the same name, like in this scenario:
6874
6875 type Top_T is tagged record
6876 N : Integer := 1;
6877 U : Integer := 974;
6878 A : Integer := 48;
6879 end record;
6880
6881 type Middle_T is new Top.Top_T with record
6882 N : Character := 'a';
6883 C : Integer := 3;
6884 end record;
6885
6886 type Bottom_T is new Middle.Middle_T with record
6887 N : Float := 4.0;
6888 C : Character := '5';
6889 X : Integer := 6;
6890 A : Character := 'J';
6891 end record;
6892
6893 Let's say we now have a variable declared and initialized as follow:
6894
6895 TC : Top_A := new Bottom_T;
6896
6897 And then we use this variable to call this function
6898
6899 procedure Assign (Obj: in out Top_T; TV : Integer);
6900
6901 as follow:
6902
6903 Assign (Top_T (B), 12);
6904
6905 Now, we're in the debugger, and we're inside that procedure
6906 then and we want to print the value of obj.c:
6907
6908 Usually, the tagged record or one of the parent type owns the
6909 component to print and there's no issue but in this particular
6910 case, what does it mean to ask for Obj.C? Since the actual
6911 type for object is type Bottom_T, it could mean two things: type
6912 component C from the Middle_T view, but also component C from
6913 Bottom_T. So in that "undefined" case, when the component is
6914 not found in the non-resolved type (which includes all the
6915 components of the parent type), then resolve it and see if we
6916 get better luck once expanded.
6917
6918 In the case of homonyms in the derived tagged type, we don't
6919 guaranty anything, and pick the one that's easiest for us
6920 to program.
6921
0963b4bd 6922 Returns 1 if found, 0 otherwise. */
52ce6436 6923
4c4b4cd2 6924static int
0d5cff50 6925find_struct_field (const char *name, struct type *type, int offset,
76a01679 6926 struct type **field_type_p,
52ce6436
PH
6927 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6928 int *index_p)
4c4b4cd2
PH
6929{
6930 int i;
828d5846 6931 int parent_offset = -1;
4c4b4cd2 6932
61ee279c 6933 type = ada_check_typedef (type);
76a01679 6934
52ce6436
PH
6935 if (field_type_p != NULL)
6936 *field_type_p = NULL;
6937 if (byte_offset_p != NULL)
d5d6fca5 6938 *byte_offset_p = 0;
52ce6436
PH
6939 if (bit_offset_p != NULL)
6940 *bit_offset_p = 0;
6941 if (bit_size_p != NULL)
6942 *bit_size_p = 0;
6943
1f704f76 6944 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
6945 {
6946 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6947 int fld_offset = offset + bit_pos / 8;
0d5cff50 6948 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6949
4c4b4cd2
PH
6950 if (t_field_name == NULL)
6951 continue;
6952
828d5846
XR
6953 else if (ada_is_parent_field (type, i))
6954 {
6955 /* This is a field pointing us to the parent type of a tagged
6956 type. As hinted in this function's documentation, we give
6957 preference to fields in the current record first, so what
6958 we do here is just record the index of this field before
6959 we skip it. If it turns out we couldn't find our field
6960 in the current record, then we'll get back to it and search
6961 inside it whether the field might exist in the parent. */
6962
6963 parent_offset = i;
6964 continue;
6965 }
6966
52ce6436 6967 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6968 {
6969 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6970
52ce6436 6971 if (field_type_p != NULL)
940da03e 6972 *field_type_p = type->field (i).type ();
52ce6436
PH
6973 if (byte_offset_p != NULL)
6974 *byte_offset_p = fld_offset;
6975 if (bit_offset_p != NULL)
6976 *bit_offset_p = bit_pos % 8;
6977 if (bit_size_p != NULL)
6978 *bit_size_p = bit_size;
76a01679
JB
6979 return 1;
6980 }
4c4b4cd2
PH
6981 else if (ada_is_wrapper_field (type, i))
6982 {
940da03e 6983 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
6984 field_type_p, byte_offset_p, bit_offset_p,
6985 bit_size_p, index_p))
76a01679
JB
6986 return 1;
6987 }
4c4b4cd2
PH
6988 else if (ada_is_variant_part (type, i))
6989 {
52ce6436
PH
6990 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6991 fixed type?? */
4c4b4cd2 6992 int j;
52ce6436 6993 struct type *field_type
940da03e 6994 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 6995
1f704f76 6996 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 6997 {
940da03e 6998 if (find_struct_field (name, field_type->field (j).type (),
76a01679
JB
6999 fld_offset
7000 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7001 field_type_p, byte_offset_p,
52ce6436 7002 bit_offset_p, bit_size_p, index_p))
76a01679 7003 return 1;
4c4b4cd2
PH
7004 }
7005 }
52ce6436
PH
7006 else if (index_p != NULL)
7007 *index_p += 1;
4c4b4cd2 7008 }
828d5846
XR
7009
7010 /* Field not found so far. If this is a tagged type which
7011 has a parent, try finding that field in the parent now. */
7012
7013 if (parent_offset != -1)
7014 {
7015 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7016 int fld_offset = offset + bit_pos / 8;
7017
940da03e 7018 if (find_struct_field (name, type->field (parent_offset).type (),
828d5846
XR
7019 fld_offset, field_type_p, byte_offset_p,
7020 bit_offset_p, bit_size_p, index_p))
7021 return 1;
7022 }
7023
4c4b4cd2
PH
7024 return 0;
7025}
7026
0963b4bd 7027/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7028
52ce6436
PH
7029static int
7030num_visible_fields (struct type *type)
7031{
7032 int n;
5b4ee69b 7033
52ce6436
PH
7034 n = 0;
7035 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7036 return n;
7037}
14f9c5c9 7038
4c4b4cd2 7039/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7040 and search in it assuming it has (class) type TYPE.
7041 If found, return value, else return NULL.
7042
828d5846
XR
7043 Searches recursively through wrapper fields (e.g., '_parent').
7044
7045 In the case of homonyms in the tagged types, please refer to the
7046 long explanation in find_struct_field's function documentation. */
14f9c5c9 7047
4c4b4cd2 7048static struct value *
108d56a4 7049ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7050 struct type *type)
14f9c5c9
AS
7051{
7052 int i;
828d5846 7053 int parent_offset = -1;
14f9c5c9 7054
5b4ee69b 7055 type = ada_check_typedef (type);
1f704f76 7056 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7057 {
0d5cff50 7058 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7059
7060 if (t_field_name == NULL)
4c4b4cd2 7061 continue;
14f9c5c9 7062
828d5846
XR
7063 else if (ada_is_parent_field (type, i))
7064 {
7065 /* This is a field pointing us to the parent type of a tagged
7066 type. As hinted in this function's documentation, we give
7067 preference to fields in the current record first, so what
7068 we do here is just record the index of this field before
7069 we skip it. If it turns out we couldn't find our field
7070 in the current record, then we'll get back to it and search
7071 inside it whether the field might exist in the parent. */
7072
7073 parent_offset = i;
7074 continue;
7075 }
7076
14f9c5c9 7077 else if (field_name_match (t_field_name, name))
4c4b4cd2 7078 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7079
7080 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7081 {
0963b4bd 7082 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7083 ada_search_struct_field (name, arg,
7084 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7085 type->field (i).type ());
5b4ee69b 7086
4c4b4cd2
PH
7087 if (v != NULL)
7088 return v;
7089 }
14f9c5c9
AS
7090
7091 else if (ada_is_variant_part (type, i))
4c4b4cd2 7092 {
0963b4bd 7093 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7094 int j;
940da03e 7095 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2
PH
7096 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7097
1f704f76 7098 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7099 {
0963b4bd
MS
7100 struct value *v = ada_search_struct_field /* Force line
7101 break. */
06d5cf63
JB
7102 (name, arg,
7103 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
940da03e 7104 field_type->field (j).type ());
5b4ee69b 7105
4c4b4cd2
PH
7106 if (v != NULL)
7107 return v;
7108 }
7109 }
14f9c5c9 7110 }
828d5846
XR
7111
7112 /* Field not found so far. If this is a tagged type which
7113 has a parent, try finding that field in the parent now. */
7114
7115 if (parent_offset != -1)
7116 {
7117 struct value *v = ada_search_struct_field (
7118 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7119 type->field (parent_offset).type ());
828d5846
XR
7120
7121 if (v != NULL)
7122 return v;
7123 }
7124
14f9c5c9
AS
7125 return NULL;
7126}
d2e4a39e 7127
52ce6436
PH
7128static struct value *ada_index_struct_field_1 (int *, struct value *,
7129 int, struct type *);
7130
7131
7132/* Return field #INDEX in ARG, where the index is that returned by
7133 * find_struct_field through its INDEX_P argument. Adjust the address
7134 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7135 * If found, return value, else return NULL. */
52ce6436
PH
7136
7137static struct value *
7138ada_index_struct_field (int index, struct value *arg, int offset,
7139 struct type *type)
7140{
7141 return ada_index_struct_field_1 (&index, arg, offset, type);
7142}
7143
7144
7145/* Auxiliary function for ada_index_struct_field. Like
7146 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7147 * *INDEX_P. */
52ce6436
PH
7148
7149static struct value *
7150ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7151 struct type *type)
7152{
7153 int i;
7154 type = ada_check_typedef (type);
7155
1f704f76 7156 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7157 {
7158 if (TYPE_FIELD_NAME (type, i) == NULL)
7159 continue;
7160 else if (ada_is_wrapper_field (type, i))
7161 {
0963b4bd 7162 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7163 ada_index_struct_field_1 (index_p, arg,
7164 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7165 type->field (i).type ());
5b4ee69b 7166
52ce6436
PH
7167 if (v != NULL)
7168 return v;
7169 }
7170
7171 else if (ada_is_variant_part (type, i))
7172 {
7173 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7174 find_struct_field. */
52ce6436
PH
7175 error (_("Cannot assign this kind of variant record"));
7176 }
7177 else if (*index_p == 0)
7178 return ada_value_primitive_field (arg, offset, i, type);
7179 else
7180 *index_p -= 1;
7181 }
7182 return NULL;
7183}
7184
3b4de39c 7185/* Return a string representation of type TYPE. */
99bbb428 7186
3b4de39c 7187static std::string
99bbb428
PA
7188type_as_string (struct type *type)
7189{
d7e74731 7190 string_file tmp_stream;
99bbb428 7191
d7e74731 7192 type_print (type, "", &tmp_stream, -1);
99bbb428 7193
d7e74731 7194 return std::move (tmp_stream.string ());
99bbb428
PA
7195}
7196
14f9c5c9 7197/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7198 If DISPP is non-null, add its byte displacement from the beginning of a
7199 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7200 work for packed fields).
7201
7202 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7203 followed by "___".
14f9c5c9 7204
0963b4bd 7205 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7206 be a (pointer or reference)+ to a struct or union, and the
7207 ultimate target type will be searched.
14f9c5c9
AS
7208
7209 Looks recursively into variant clauses and parent types.
7210
828d5846
XR
7211 In the case of homonyms in the tagged types, please refer to the
7212 long explanation in find_struct_field's function documentation.
7213
4c4b4cd2
PH
7214 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7215 TYPE is not a type of the right kind. */
14f9c5c9 7216
4c4b4cd2 7217static struct type *
a121b7c1 7218ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7219 int noerr)
14f9c5c9
AS
7220{
7221 int i;
828d5846 7222 int parent_offset = -1;
14f9c5c9
AS
7223
7224 if (name == NULL)
7225 goto BadName;
7226
76a01679 7227 if (refok && type != NULL)
4c4b4cd2
PH
7228 while (1)
7229 {
61ee279c 7230 type = ada_check_typedef (type);
78134374 7231 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
76a01679
JB
7232 break;
7233 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7234 }
14f9c5c9 7235
76a01679 7236 if (type == NULL
78134374
SM
7237 || (type->code () != TYPE_CODE_STRUCT
7238 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7239 {
4c4b4cd2 7240 if (noerr)
76a01679 7241 return NULL;
99bbb428 7242
3b4de39c
PA
7243 error (_("Type %s is not a structure or union type"),
7244 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7245 }
7246
7247 type = to_static_fixed_type (type);
7248
1f704f76 7249 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7250 {
0d5cff50 7251 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7252 struct type *t;
d2e4a39e 7253
14f9c5c9 7254 if (t_field_name == NULL)
4c4b4cd2 7255 continue;
14f9c5c9 7256
828d5846
XR
7257 else if (ada_is_parent_field (type, i))
7258 {
7259 /* This is a field pointing us to the parent type of a tagged
7260 type. As hinted in this function's documentation, we give
7261 preference to fields in the current record first, so what
7262 we do here is just record the index of this field before
7263 we skip it. If it turns out we couldn't find our field
7264 in the current record, then we'll get back to it and search
7265 inside it whether the field might exist in the parent. */
7266
7267 parent_offset = i;
7268 continue;
7269 }
7270
14f9c5c9 7271 else if (field_name_match (t_field_name, name))
940da03e 7272 return type->field (i).type ();
14f9c5c9
AS
7273
7274 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7275 {
940da03e 7276 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
988f6b3d 7277 0, 1);
4c4b4cd2 7278 if (t != NULL)
988f6b3d 7279 return t;
4c4b4cd2 7280 }
14f9c5c9
AS
7281
7282 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7283 {
7284 int j;
940da03e 7285 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7286
1f704f76 7287 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
4c4b4cd2 7288 {
b1f33ddd
JB
7289 /* FIXME pnh 2008/01/26: We check for a field that is
7290 NOT wrapped in a struct, since the compiler sometimes
7291 generates these for unchecked variant types. Revisit
0963b4bd 7292 if the compiler changes this practice. */
0d5cff50 7293 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7294
b1f33ddd
JB
7295 if (v_field_name != NULL
7296 && field_name_match (v_field_name, name))
940da03e 7297 t = field_type->field (j).type ();
b1f33ddd 7298 else
940da03e 7299 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7300 name, 0, 1);
b1f33ddd 7301
4c4b4cd2 7302 if (t != NULL)
988f6b3d 7303 return t;
4c4b4cd2
PH
7304 }
7305 }
14f9c5c9
AS
7306
7307 }
7308
828d5846
XR
7309 /* Field not found so far. If this is a tagged type which
7310 has a parent, try finding that field in the parent now. */
7311
7312 if (parent_offset != -1)
7313 {
7314 struct type *t;
7315
940da03e 7316 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
828d5846
XR
7317 name, 0, 1);
7318 if (t != NULL)
7319 return t;
7320 }
7321
14f9c5c9 7322BadName:
d2e4a39e 7323 if (!noerr)
14f9c5c9 7324 {
2b2798cc 7325 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7326
7327 error (_("Type %s has no component named %s"),
3b4de39c 7328 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7329 }
7330
7331 return NULL;
7332}
7333
b1f33ddd
JB
7334/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7335 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7336 represents an unchecked union (that is, the variant part of a
0963b4bd 7337 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7338
7339static int
7340is_unchecked_variant (struct type *var_type, struct type *outer_type)
7341{
a121b7c1 7342 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7343
988f6b3d 7344 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7345}
7346
7347
14f9c5c9 7348/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7349 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7350 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7351
d2e4a39e 7352int
d8af9068 7353ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7354{
7355 int others_clause;
7356 int i;
a121b7c1 7357 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7358 struct value *discrim;
14f9c5c9
AS
7359 LONGEST discrim_val;
7360
012370f6
TT
7361 /* Using plain value_from_contents_and_address here causes problems
7362 because we will end up trying to resolve a type that is currently
7363 being constructed. */
0c281816
JB
7364 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7365 if (discrim == NULL)
14f9c5c9 7366 return -1;
0c281816 7367 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7368
7369 others_clause = -1;
1f704f76 7370 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7371 {
7372 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7373 others_clause = i;
14f9c5c9 7374 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7375 return i;
14f9c5c9
AS
7376 }
7377
7378 return others_clause;
7379}
d2e4a39e 7380\f
14f9c5c9
AS
7381
7382
4c4b4cd2 7383 /* Dynamic-Sized Records */
14f9c5c9
AS
7384
7385/* Strategy: The type ostensibly attached to a value with dynamic size
7386 (i.e., a size that is not statically recorded in the debugging
7387 data) does not accurately reflect the size or layout of the value.
7388 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7389 conventional types that are constructed on the fly. */
14f9c5c9
AS
7390
7391/* There is a subtle and tricky problem here. In general, we cannot
7392 determine the size of dynamic records without its data. However,
7393 the 'struct value' data structure, which GDB uses to represent
7394 quantities in the inferior process (the target), requires the size
7395 of the type at the time of its allocation in order to reserve space
7396 for GDB's internal copy of the data. That's why the
7397 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7398 rather than struct value*s.
14f9c5c9
AS
7399
7400 However, GDB's internal history variables ($1, $2, etc.) are
7401 struct value*s containing internal copies of the data that are not, in
7402 general, the same as the data at their corresponding addresses in
7403 the target. Fortunately, the types we give to these values are all
7404 conventional, fixed-size types (as per the strategy described
7405 above), so that we don't usually have to perform the
7406 'to_fixed_xxx_type' conversions to look at their values.
7407 Unfortunately, there is one exception: if one of the internal
7408 history variables is an array whose elements are unconstrained
7409 records, then we will need to create distinct fixed types for each
7410 element selected. */
7411
7412/* The upshot of all of this is that many routines take a (type, host
7413 address, target address) triple as arguments to represent a value.
7414 The host address, if non-null, is supposed to contain an internal
7415 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7416 target at the target address. */
14f9c5c9
AS
7417
7418/* Assuming that VAL0 represents a pointer value, the result of
7419 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7420 dynamic-sized types. */
14f9c5c9 7421
d2e4a39e
AS
7422struct value *
7423ada_value_ind (struct value *val0)
14f9c5c9 7424{
c48db5ca 7425 struct value *val = value_ind (val0);
5b4ee69b 7426
b50d69b5
JG
7427 if (ada_is_tagged_type (value_type (val), 0))
7428 val = ada_tag_value_at_base_address (val);
7429
4c4b4cd2 7430 return ada_to_fixed_value (val);
14f9c5c9
AS
7431}
7432
7433/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7434 qualifiers on VAL0. */
7435
d2e4a39e
AS
7436static struct value *
7437ada_coerce_ref (struct value *val0)
7438{
78134374 7439 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7440 {
7441 struct value *val = val0;
5b4ee69b 7442
994b9211 7443 val = coerce_ref (val);
b50d69b5
JG
7444
7445 if (ada_is_tagged_type (value_type (val), 0))
7446 val = ada_tag_value_at_base_address (val);
7447
4c4b4cd2 7448 return ada_to_fixed_value (val);
d2e4a39e
AS
7449 }
7450 else
14f9c5c9
AS
7451 return val0;
7452}
7453
4c4b4cd2 7454/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7455
7456static unsigned int
ebf56fd3 7457field_alignment (struct type *type, int f)
14f9c5c9 7458{
d2e4a39e 7459 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7460 int len;
14f9c5c9
AS
7461 int align_offset;
7462
64a1bf19
JB
7463 /* The field name should never be null, unless the debugging information
7464 is somehow malformed. In this case, we assume the field does not
7465 require any alignment. */
7466 if (name == NULL)
7467 return 1;
7468
7469 len = strlen (name);
7470
4c4b4cd2
PH
7471 if (!isdigit (name[len - 1]))
7472 return 1;
14f9c5c9 7473
d2e4a39e 7474 if (isdigit (name[len - 2]))
14f9c5c9
AS
7475 align_offset = len - 2;
7476 else
7477 align_offset = len - 1;
7478
61012eef 7479 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7480 return TARGET_CHAR_BIT;
7481
4c4b4cd2
PH
7482 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7483}
7484
852dff6c 7485/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7486
852dff6c
JB
7487static struct symbol *
7488ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7489{
7490 struct symbol *sym;
7491
7492 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7493 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7494 return sym;
7495
4186eb54
KS
7496 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7497 return sym;
14f9c5c9
AS
7498}
7499
dddfab26
UW
7500/* Find a type named NAME. Ignores ambiguity. This routine will look
7501 solely for types defined by debug info, it will not search the GDB
7502 primitive types. */
4c4b4cd2 7503
852dff6c 7504static struct type *
ebf56fd3 7505ada_find_any_type (const char *name)
14f9c5c9 7506{
852dff6c 7507 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7508
14f9c5c9 7509 if (sym != NULL)
dddfab26 7510 return SYMBOL_TYPE (sym);
14f9c5c9 7511
dddfab26 7512 return NULL;
14f9c5c9
AS
7513}
7514
739593e0
JB
7515/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7516 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7517 symbol, in which case it is returned. Otherwise, this looks for
7518 symbols whose name is that of NAME_SYM suffixed with "___XR".
7519 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7520
c0e70c62
TT
7521static bool
7522ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7523{
987012b8 7524 const char *name = name_sym->linkage_name ();
c0e70c62 7525 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7526}
7527
14f9c5c9 7528/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7529 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7530 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7531 otherwise return 0. */
7532
14f9c5c9 7533int
d2e4a39e 7534ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7535{
7536 if (type1 == NULL)
7537 return 1;
7538 else if (type0 == NULL)
7539 return 0;
78134374 7540 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7541 return 1;
78134374 7542 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7543 return 0;
7d93a1e0 7544 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7545 return 1;
ad82864c 7546 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7547 return 1;
4c4b4cd2
PH
7548 else if (ada_is_array_descriptor_type (type0)
7549 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7550 return 1;
aeb5907d
JB
7551 else
7552 {
7d93a1e0
SM
7553 const char *type0_name = type0->name ();
7554 const char *type1_name = type1->name ();
aeb5907d
JB
7555
7556 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7557 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7558 return 1;
7559 }
14f9c5c9
AS
7560 return 0;
7561}
7562
e86ca25f
TT
7563/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7564 null. */
4c4b4cd2 7565
0d5cff50 7566const char *
d2e4a39e 7567ada_type_name (struct type *type)
14f9c5c9 7568{
d2e4a39e 7569 if (type == NULL)
14f9c5c9 7570 return NULL;
7d93a1e0 7571 return type->name ();
14f9c5c9
AS
7572}
7573
b4ba55a1
JB
7574/* Search the list of "descriptive" types associated to TYPE for a type
7575 whose name is NAME. */
7576
7577static struct type *
7578find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7579{
931e5bc3 7580 struct type *result, *tmp;
b4ba55a1 7581
c6044dd1
JB
7582 if (ada_ignore_descriptive_types_p)
7583 return NULL;
7584
b4ba55a1
JB
7585 /* If there no descriptive-type info, then there is no parallel type
7586 to be found. */
7587 if (!HAVE_GNAT_AUX_INFO (type))
7588 return NULL;
7589
7590 result = TYPE_DESCRIPTIVE_TYPE (type);
7591 while (result != NULL)
7592 {
0d5cff50 7593 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7594
7595 if (result_name == NULL)
7596 {
7597 warning (_("unexpected null name on descriptive type"));
7598 return NULL;
7599 }
7600
7601 /* If the names match, stop. */
7602 if (strcmp (result_name, name) == 0)
7603 break;
7604
7605 /* Otherwise, look at the next item on the list, if any. */
7606 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7607 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7608 else
7609 tmp = NULL;
7610
7611 /* If not found either, try after having resolved the typedef. */
7612 if (tmp != NULL)
7613 result = tmp;
b4ba55a1 7614 else
931e5bc3 7615 {
f168693b 7616 result = check_typedef (result);
931e5bc3
JG
7617 if (HAVE_GNAT_AUX_INFO (result))
7618 result = TYPE_DESCRIPTIVE_TYPE (result);
7619 else
7620 result = NULL;
7621 }
b4ba55a1
JB
7622 }
7623
7624 /* If we didn't find a match, see whether this is a packed array. With
7625 older compilers, the descriptive type information is either absent or
7626 irrelevant when it comes to packed arrays so the above lookup fails.
7627 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7628 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7629 return ada_find_any_type (name);
7630
7631 return result;
7632}
7633
7634/* Find a parallel type to TYPE with the specified NAME, using the
7635 descriptive type taken from the debugging information, if available,
7636 and otherwise using the (slower) name-based method. */
7637
7638static struct type *
7639ada_find_parallel_type_with_name (struct type *type, const char *name)
7640{
7641 struct type *result = NULL;
7642
7643 if (HAVE_GNAT_AUX_INFO (type))
7644 result = find_parallel_type_by_descriptive_type (type, name);
7645 else
7646 result = ada_find_any_type (name);
7647
7648 return result;
7649}
7650
7651/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7652 SUFFIX to the name of TYPE. */
14f9c5c9 7653
d2e4a39e 7654struct type *
ebf56fd3 7655ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7656{
0d5cff50 7657 char *name;
fe978cb0 7658 const char *type_name = ada_type_name (type);
14f9c5c9 7659 int len;
d2e4a39e 7660
fe978cb0 7661 if (type_name == NULL)
14f9c5c9
AS
7662 return NULL;
7663
fe978cb0 7664 len = strlen (type_name);
14f9c5c9 7665
b4ba55a1 7666 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7667
fe978cb0 7668 strcpy (name, type_name);
14f9c5c9
AS
7669 strcpy (name + len, suffix);
7670
b4ba55a1 7671 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7672}
7673
14f9c5c9 7674/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7675 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7676
d2e4a39e
AS
7677static struct type *
7678dynamic_template_type (struct type *type)
14f9c5c9 7679{
61ee279c 7680 type = ada_check_typedef (type);
14f9c5c9 7681
78134374 7682 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7683 || ada_type_name (type) == NULL)
14f9c5c9 7684 return NULL;
d2e4a39e 7685 else
14f9c5c9
AS
7686 {
7687 int len = strlen (ada_type_name (type));
5b4ee69b 7688
4c4b4cd2
PH
7689 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7690 return type;
14f9c5c9 7691 else
4c4b4cd2 7692 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7693 }
7694}
7695
7696/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7697 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7698
d2e4a39e
AS
7699static int
7700is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7701{
7702 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7703
d2e4a39e 7704 return name != NULL
940da03e 7705 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7706 && strstr (name, "___XVL") != NULL;
7707}
7708
4c4b4cd2
PH
7709/* The index of the variant field of TYPE, or -1 if TYPE does not
7710 represent a variant record type. */
14f9c5c9 7711
d2e4a39e 7712static int
4c4b4cd2 7713variant_field_index (struct type *type)
14f9c5c9
AS
7714{
7715 int f;
7716
78134374 7717 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7718 return -1;
7719
1f704f76 7720 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7721 {
7722 if (ada_is_variant_part (type, f))
7723 return f;
7724 }
7725 return -1;
14f9c5c9
AS
7726}
7727
4c4b4cd2
PH
7728/* A record type with no fields. */
7729
d2e4a39e 7730static struct type *
fe978cb0 7731empty_record (struct type *templ)
14f9c5c9 7732{
fe978cb0 7733 struct type *type = alloc_type_copy (templ);
5b4ee69b 7734
67607e24 7735 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7736 INIT_NONE_SPECIFIC (type);
d0e39ea2 7737 type->set_name ("<empty>");
14f9c5c9
AS
7738 TYPE_LENGTH (type) = 0;
7739 return type;
7740}
7741
7742/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7743 the value of type TYPE at VALADDR or ADDRESS (see comments at
7744 the beginning of this section) VAL according to GNAT conventions.
7745 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7746 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7747 an outer-level type (i.e., as opposed to a branch of a variant.) A
7748 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7749 of the variant.
14f9c5c9 7750
4c4b4cd2
PH
7751 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7752 length are not statically known are discarded. As a consequence,
7753 VALADDR, ADDRESS and DVAL0 are ignored.
7754
7755 NOTE: Limitations: For now, we assume that dynamic fields and
7756 variants occupy whole numbers of bytes. However, they need not be
7757 byte-aligned. */
7758
7759struct type *
10a2c479 7760ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7761 const gdb_byte *valaddr,
4c4b4cd2
PH
7762 CORE_ADDR address, struct value *dval0,
7763 int keep_dynamic_fields)
14f9c5c9 7764{
d2e4a39e
AS
7765 struct value *mark = value_mark ();
7766 struct value *dval;
7767 struct type *rtype;
14f9c5c9 7768 int nfields, bit_len;
4c4b4cd2 7769 int variant_field;
14f9c5c9 7770 long off;
d94e4f4f 7771 int fld_bit_len;
14f9c5c9
AS
7772 int f;
7773
4c4b4cd2
PH
7774 /* Compute the number of fields in this record type that are going
7775 to be processed: unless keep_dynamic_fields, this includes only
7776 fields whose position and length are static will be processed. */
7777 if (keep_dynamic_fields)
1f704f76 7778 nfields = type->num_fields ();
4c4b4cd2
PH
7779 else
7780 {
7781 nfields = 0;
1f704f76 7782 while (nfields < type->num_fields ()
4c4b4cd2
PH
7783 && !ada_is_variant_part (type, nfields)
7784 && !is_dynamic_field (type, nfields))
7785 nfields++;
7786 }
7787
e9bb382b 7788 rtype = alloc_type_copy (type);
67607e24 7789 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7790 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7791 rtype->set_num_fields (nfields);
3cabb6b0
SM
7792 rtype->set_fields
7793 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7794 rtype->set_name (ada_type_name (type));
876cecd0 7795 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7796
d2e4a39e
AS
7797 off = 0;
7798 bit_len = 0;
4c4b4cd2
PH
7799 variant_field = -1;
7800
14f9c5c9
AS
7801 for (f = 0; f < nfields; f += 1)
7802 {
a89febbd 7803 off = align_up (off, field_alignment (type, f))
6c038f32 7804 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7805 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7806 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7807
d2e4a39e 7808 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7809 {
7810 variant_field = f;
d94e4f4f 7811 fld_bit_len = 0;
4c4b4cd2 7812 }
14f9c5c9 7813 else if (is_dynamic_field (type, f))
4c4b4cd2 7814 {
284614f0
JB
7815 const gdb_byte *field_valaddr = valaddr;
7816 CORE_ADDR field_address = address;
7817 struct type *field_type =
940da03e 7818 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7819
4c4b4cd2 7820 if (dval0 == NULL)
b5304971
JG
7821 {
7822 /* rtype's length is computed based on the run-time
7823 value of discriminants. If the discriminants are not
7824 initialized, the type size may be completely bogus and
0963b4bd 7825 GDB may fail to allocate a value for it. So check the
b5304971 7826 size first before creating the value. */
c1b5a1a6 7827 ada_ensure_varsize_limit (rtype);
012370f6
TT
7828 /* Using plain value_from_contents_and_address here
7829 causes problems because we will end up trying to
7830 resolve a type that is currently being
7831 constructed. */
7832 dval = value_from_contents_and_address_unresolved (rtype,
7833 valaddr,
7834 address);
9f1f738a 7835 rtype = value_type (dval);
b5304971 7836 }
4c4b4cd2
PH
7837 else
7838 dval = dval0;
7839
284614f0
JB
7840 /* If the type referenced by this field is an aligner type, we need
7841 to unwrap that aligner type, because its size might not be set.
7842 Keeping the aligner type would cause us to compute the wrong
7843 size for this field, impacting the offset of the all the fields
7844 that follow this one. */
7845 if (ada_is_aligner_type (field_type))
7846 {
7847 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7848
7849 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7850 field_address = cond_offset_target (field_address, field_offset);
7851 field_type = ada_aligned_type (field_type);
7852 }
7853
7854 field_valaddr = cond_offset_host (field_valaddr,
7855 off / TARGET_CHAR_BIT);
7856 field_address = cond_offset_target (field_address,
7857 off / TARGET_CHAR_BIT);
7858
7859 /* Get the fixed type of the field. Note that, in this case,
7860 we do not want to get the real type out of the tag: if
7861 the current field is the parent part of a tagged record,
7862 we will get the tag of the object. Clearly wrong: the real
7863 type of the parent is not the real type of the child. We
7864 would end up in an infinite loop. */
7865 field_type = ada_get_base_type (field_type);
7866 field_type = ada_to_fixed_type (field_type, field_valaddr,
7867 field_address, dval, 0);
27f2a97b
JB
7868 /* If the field size is already larger than the maximum
7869 object size, then the record itself will necessarily
7870 be larger than the maximum object size. We need to make
7871 this check now, because the size might be so ridiculously
7872 large (due to an uninitialized variable in the inferior)
7873 that it would cause an overflow when adding it to the
7874 record size. */
c1b5a1a6 7875 ada_ensure_varsize_limit (field_type);
284614f0 7876
5d14b6e5 7877 rtype->field (f).set_type (field_type);
4c4b4cd2 7878 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7879 /* The multiplication can potentially overflow. But because
7880 the field length has been size-checked just above, and
7881 assuming that the maximum size is a reasonable value,
7882 an overflow should not happen in practice. So rather than
7883 adding overflow recovery code to this already complex code,
7884 we just assume that it's not going to happen. */
d94e4f4f 7885 fld_bit_len =
940da03e 7886 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
4c4b4cd2 7887 }
14f9c5c9 7888 else
4c4b4cd2 7889 {
5ded5331
JB
7890 /* Note: If this field's type is a typedef, it is important
7891 to preserve the typedef layer.
7892
7893 Otherwise, we might be transforming a typedef to a fat
7894 pointer (encoding a pointer to an unconstrained array),
7895 into a basic fat pointer (encoding an unconstrained
7896 array). As both types are implemented using the same
7897 structure, the typedef is the only clue which allows us
7898 to distinguish between the two options. Stripping it
7899 would prevent us from printing this field appropriately. */
940da03e 7900 rtype->field (f).set_type (type->field (f).type ());
4c4b4cd2
PH
7901 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7902 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7903 fld_bit_len =
4c4b4cd2
PH
7904 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7905 else
5ded5331 7906 {
940da03e 7907 struct type *field_type = type->field (f).type ();
5ded5331
JB
7908
7909 /* We need to be careful of typedefs when computing
7910 the length of our field. If this is a typedef,
7911 get the length of the target type, not the length
7912 of the typedef. */
78134374 7913 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7914 field_type = ada_typedef_target_type (field_type);
7915
7916 fld_bit_len =
7917 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7918 }
4c4b4cd2 7919 }
14f9c5c9 7920 if (off + fld_bit_len > bit_len)
4c4b4cd2 7921 bit_len = off + fld_bit_len;
d94e4f4f 7922 off += fld_bit_len;
4c4b4cd2 7923 TYPE_LENGTH (rtype) =
a89febbd 7924 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7925 }
4c4b4cd2
PH
7926
7927 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7928 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7929 the record. This can happen in the presence of representation
7930 clauses. */
7931 if (variant_field >= 0)
7932 {
7933 struct type *branch_type;
7934
7935 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7936
7937 if (dval0 == NULL)
9f1f738a 7938 {
012370f6
TT
7939 /* Using plain value_from_contents_and_address here causes
7940 problems because we will end up trying to resolve a type
7941 that is currently being constructed. */
7942 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7943 address);
9f1f738a
SA
7944 rtype = value_type (dval);
7945 }
4c4b4cd2
PH
7946 else
7947 dval = dval0;
7948
7949 branch_type =
7950 to_fixed_variant_branch_type
940da03e 7951 (type->field (variant_field).type (),
4c4b4cd2
PH
7952 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7953 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7954 if (branch_type == NULL)
7955 {
1f704f76 7956 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
80fc5e77 7957 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7958 rtype->set_num_fields (rtype->num_fields () - 1);
4c4b4cd2
PH
7959 }
7960 else
7961 {
5d14b6e5 7962 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
7963 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7964 fld_bit_len =
940da03e 7965 TYPE_LENGTH (rtype->field (variant_field).type ()) *
4c4b4cd2
PH
7966 TARGET_CHAR_BIT;
7967 if (off + fld_bit_len > bit_len)
7968 bit_len = off + fld_bit_len;
7969 TYPE_LENGTH (rtype) =
a89febbd 7970 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
4c4b4cd2
PH
7971 }
7972 }
7973
714e53ab
PH
7974 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7975 should contain the alignment of that record, which should be a strictly
7976 positive value. If null or negative, then something is wrong, most
7977 probably in the debug info. In that case, we don't round up the size
0963b4bd 7978 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7979 the current RTYPE length might be good enough for our purposes. */
7980 if (TYPE_LENGTH (type) <= 0)
7981 {
7d93a1e0 7982 if (rtype->name ())
cc1defb1 7983 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 7984 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 7985 else
cc1defb1
KS
7986 warning (_("Invalid type size for <unnamed> detected: %s."),
7987 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
7988 }
7989 else
7990 {
a89febbd
TT
7991 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7992 TYPE_LENGTH (type));
714e53ab 7993 }
14f9c5c9
AS
7994
7995 value_free_to_mark (mark);
d2e4a39e 7996 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7997 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7998 return rtype;
7999}
8000
4c4b4cd2
PH
8001/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8002 of 1. */
14f9c5c9 8003
d2e4a39e 8004static struct type *
fc1a4b47 8005template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8006 CORE_ADDR address, struct value *dval0)
8007{
8008 return ada_template_to_fixed_record_type_1 (type, valaddr,
8009 address, dval0, 1);
8010}
8011
8012/* An ordinary record type in which ___XVL-convention fields and
8013 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8014 static approximations, containing all possible fields. Uses
8015 no runtime values. Useless for use in values, but that's OK,
8016 since the results are used only for type determinations. Works on both
8017 structs and unions. Representation note: to save space, we memorize
8018 the result of this function in the TYPE_TARGET_TYPE of the
8019 template type. */
8020
8021static struct type *
8022template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8023{
8024 struct type *type;
8025 int nfields;
8026 int f;
8027
9e195661
PMR
8028 /* No need no do anything if the input type is already fixed. */
8029 if (TYPE_FIXED_INSTANCE (type0))
8030 return type0;
8031
8032 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8033 if (TYPE_TARGET_TYPE (type0) != NULL)
8034 return TYPE_TARGET_TYPE (type0);
8035
9e195661 8036 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8037 type = type0;
1f704f76 8038 nfields = type0->num_fields ();
9e195661
PMR
8039
8040 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8041 recompute all over next time. */
8042 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8043
8044 for (f = 0; f < nfields; f += 1)
8045 {
940da03e 8046 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8047 struct type *new_type;
14f9c5c9 8048
4c4b4cd2 8049 if (is_dynamic_field (type0, f))
460efde1
JB
8050 {
8051 field_type = ada_check_typedef (field_type);
8052 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8053 }
14f9c5c9 8054 else
f192137b 8055 new_type = static_unwrap_type (field_type);
9e195661
PMR
8056
8057 if (new_type != field_type)
8058 {
8059 /* Clone TYPE0 only the first time we get a new field type. */
8060 if (type == type0)
8061 {
8062 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8063 type->set_code (type0->code ());
8ecb59f8 8064 INIT_NONE_SPECIFIC (type);
5e33d5f4 8065 type->set_num_fields (nfields);
3cabb6b0
SM
8066
8067 field *fields =
8068 ((struct field *)
8069 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8070 memcpy (fields, type0->fields (),
9e195661 8071 sizeof (struct field) * nfields);
3cabb6b0
SM
8072 type->set_fields (fields);
8073
d0e39ea2 8074 type->set_name (ada_type_name (type0));
9e195661
PMR
8075 TYPE_FIXED_INSTANCE (type) = 1;
8076 TYPE_LENGTH (type) = 0;
8077 }
5d14b6e5 8078 type->field (f).set_type (new_type);
9e195661
PMR
8079 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8080 }
14f9c5c9 8081 }
9e195661 8082
14f9c5c9
AS
8083 return type;
8084}
8085
4c4b4cd2 8086/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8087 whose address in memory is ADDRESS, returns a revision of TYPE,
8088 which should be a non-dynamic-sized record, in which the variant
8089 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8090 for discriminant values in DVAL0, which can be NULL if the record
8091 contains the necessary discriminant values. */
8092
d2e4a39e 8093static struct type *
fc1a4b47 8094to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8095 CORE_ADDR address, struct value *dval0)
14f9c5c9 8096{
d2e4a39e 8097 struct value *mark = value_mark ();
4c4b4cd2 8098 struct value *dval;
d2e4a39e 8099 struct type *rtype;
14f9c5c9 8100 struct type *branch_type;
1f704f76 8101 int nfields = type->num_fields ();
4c4b4cd2 8102 int variant_field = variant_field_index (type);
14f9c5c9 8103
4c4b4cd2 8104 if (variant_field == -1)
14f9c5c9
AS
8105 return type;
8106
4c4b4cd2 8107 if (dval0 == NULL)
9f1f738a
SA
8108 {
8109 dval = value_from_contents_and_address (type, valaddr, address);
8110 type = value_type (dval);
8111 }
4c4b4cd2
PH
8112 else
8113 dval = dval0;
8114
e9bb382b 8115 rtype = alloc_type_copy (type);
67607e24 8116 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8117 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8118 rtype->set_num_fields (nfields);
3cabb6b0
SM
8119
8120 field *fields =
d2e4a39e 8121 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8122 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8123 rtype->set_fields (fields);
8124
d0e39ea2 8125 rtype->set_name (ada_type_name (type));
876cecd0 8126 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8127 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8128
4c4b4cd2 8129 branch_type = to_fixed_variant_branch_type
940da03e 8130 (type->field (variant_field).type (),
d2e4a39e 8131 cond_offset_host (valaddr,
4c4b4cd2
PH
8132 TYPE_FIELD_BITPOS (type, variant_field)
8133 / TARGET_CHAR_BIT),
d2e4a39e 8134 cond_offset_target (address,
4c4b4cd2
PH
8135 TYPE_FIELD_BITPOS (type, variant_field)
8136 / TARGET_CHAR_BIT), dval);
d2e4a39e 8137 if (branch_type == NULL)
14f9c5c9 8138 {
4c4b4cd2 8139 int f;
5b4ee69b 8140
4c4b4cd2 8141 for (f = variant_field + 1; f < nfields; f += 1)
80fc5e77 8142 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8143 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8144 }
8145 else
8146 {
5d14b6e5 8147 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8148 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8149 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8150 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8151 }
940da03e 8152 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8153
4c4b4cd2 8154 value_free_to_mark (mark);
14f9c5c9
AS
8155 return rtype;
8156}
8157
8158/* An ordinary record type (with fixed-length fields) that describes
8159 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8160 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8161 should be in DVAL, a record value; it may be NULL if the object
8162 at ADDR itself contains any necessary discriminant values.
8163 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8164 values from the record are needed. Except in the case that DVAL,
8165 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8166 unchecked) is replaced by a particular branch of the variant.
8167
8168 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8169 is questionable and may be removed. It can arise during the
8170 processing of an unconstrained-array-of-record type where all the
8171 variant branches have exactly the same size. This is because in
8172 such cases, the compiler does not bother to use the XVS convention
8173 when encoding the record. I am currently dubious of this
8174 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8175
d2e4a39e 8176static struct type *
fc1a4b47 8177to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8178 CORE_ADDR address, struct value *dval)
14f9c5c9 8179{
d2e4a39e 8180 struct type *templ_type;
14f9c5c9 8181
876cecd0 8182 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8183 return type0;
8184
d2e4a39e 8185 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8186
8187 if (templ_type != NULL)
8188 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8189 else if (variant_field_index (type0) >= 0)
8190 {
8191 if (dval == NULL && valaddr == NULL && address == 0)
8192 return type0;
8193 return to_record_with_fixed_variant_part (type0, valaddr, address,
8194 dval);
8195 }
14f9c5c9
AS
8196 else
8197 {
876cecd0 8198 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8199 return type0;
8200 }
8201
8202}
8203
8204/* An ordinary record type (with fixed-length fields) that describes
8205 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8206 union type. Any necessary discriminants' values should be in DVAL,
8207 a record value. That is, this routine selects the appropriate
8208 branch of the union at ADDR according to the discriminant value
b1f33ddd 8209 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8210 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8211
d2e4a39e 8212static struct type *
fc1a4b47 8213to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8214 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8215{
8216 int which;
d2e4a39e
AS
8217 struct type *templ_type;
8218 struct type *var_type;
14f9c5c9 8219
78134374 8220 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8221 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8222 else
14f9c5c9
AS
8223 var_type = var_type0;
8224
8225 templ_type = ada_find_parallel_type (var_type, "___XVU");
8226
8227 if (templ_type != NULL)
8228 var_type = templ_type;
8229
b1f33ddd
JB
8230 if (is_unchecked_variant (var_type, value_type (dval)))
8231 return var_type0;
d8af9068 8232 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8233
8234 if (which < 0)
e9bb382b 8235 return empty_record (var_type);
14f9c5c9 8236 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8237 return to_fixed_record_type
940da03e 8238 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8239 valaddr, address, dval);
940da03e 8240 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8241 return
8242 to_fixed_record_type
940da03e 8243 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8244 else
940da03e 8245 return var_type->field (which).type ();
14f9c5c9
AS
8246}
8247
8908fca5
JB
8248/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8249 ENCODING_TYPE, a type following the GNAT conventions for discrete
8250 type encodings, only carries redundant information. */
8251
8252static int
8253ada_is_redundant_range_encoding (struct type *range_type,
8254 struct type *encoding_type)
8255{
108d56a4 8256 const char *bounds_str;
8908fca5
JB
8257 int n;
8258 LONGEST lo, hi;
8259
78134374 8260 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8261
78134374
SM
8262 if (get_base_type (range_type)->code ()
8263 != get_base_type (encoding_type)->code ())
005e2509
JB
8264 {
8265 /* The compiler probably used a simple base type to describe
8266 the range type instead of the range's actual base type,
8267 expecting us to get the real base type from the encoding
8268 anyway. In this situation, the encoding cannot be ignored
8269 as redundant. */
8270 return 0;
8271 }
8272
8908fca5
JB
8273 if (is_dynamic_type (range_type))
8274 return 0;
8275
7d93a1e0 8276 if (encoding_type->name () == NULL)
8908fca5
JB
8277 return 0;
8278
7d93a1e0 8279 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8280 if (bounds_str == NULL)
8281 return 0;
8282
8283 n = 8; /* Skip "___XDLU_". */
8284 if (!ada_scan_number (bounds_str, n, &lo, &n))
8285 return 0;
8286 if (TYPE_LOW_BOUND (range_type) != lo)
8287 return 0;
8288
8289 n += 2; /* Skip the "__" separator between the two bounds. */
8290 if (!ada_scan_number (bounds_str, n, &hi, &n))
8291 return 0;
8292 if (TYPE_HIGH_BOUND (range_type) != hi)
8293 return 0;
8294
8295 return 1;
8296}
8297
8298/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8299 a type following the GNAT encoding for describing array type
8300 indices, only carries redundant information. */
8301
8302static int
8303ada_is_redundant_index_type_desc (struct type *array_type,
8304 struct type *desc_type)
8305{
8306 struct type *this_layer = check_typedef (array_type);
8307 int i;
8308
1f704f76 8309 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8310 {
3d967001 8311 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8312 desc_type->field (i).type ()))
8908fca5
JB
8313 return 0;
8314 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8315 }
8316
8317 return 1;
8318}
8319
14f9c5c9
AS
8320/* Assuming that TYPE0 is an array type describing the type of a value
8321 at ADDR, and that DVAL describes a record containing any
8322 discriminants used in TYPE0, returns a type for the value that
8323 contains no dynamic components (that is, no components whose sizes
8324 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8325 true, gives an error message if the resulting type's size is over
4c4b4cd2 8326 varsize_limit. */
14f9c5c9 8327
d2e4a39e
AS
8328static struct type *
8329to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8330 int ignore_too_big)
14f9c5c9 8331{
d2e4a39e
AS
8332 struct type *index_type_desc;
8333 struct type *result;
ad82864c 8334 int constrained_packed_array_p;
931e5bc3 8335 static const char *xa_suffix = "___XA";
14f9c5c9 8336
b0dd7688 8337 type0 = ada_check_typedef (type0);
284614f0 8338 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8339 return type0;
14f9c5c9 8340
ad82864c
JB
8341 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8342 if (constrained_packed_array_p)
8343 type0 = decode_constrained_packed_array_type (type0);
284614f0 8344
931e5bc3
JG
8345 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8346
8347 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8348 encoding suffixed with 'P' may still be generated. If so,
8349 it should be used to find the XA type. */
8350
8351 if (index_type_desc == NULL)
8352 {
1da0522e 8353 const char *type_name = ada_type_name (type0);
931e5bc3 8354
1da0522e 8355 if (type_name != NULL)
931e5bc3 8356 {
1da0522e 8357 const int len = strlen (type_name);
931e5bc3
JG
8358 char *name = (char *) alloca (len + strlen (xa_suffix));
8359
1da0522e 8360 if (type_name[len - 1] == 'P')
931e5bc3 8361 {
1da0522e 8362 strcpy (name, type_name);
931e5bc3
JG
8363 strcpy (name + len - 1, xa_suffix);
8364 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8365 }
8366 }
8367 }
8368
28c85d6c 8369 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8370 if (index_type_desc != NULL
8371 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8372 {
8373 /* Ignore this ___XA parallel type, as it does not bring any
8374 useful information. This allows us to avoid creating fixed
8375 versions of the array's index types, which would be identical
8376 to the original ones. This, in turn, can also help avoid
8377 the creation of fixed versions of the array itself. */
8378 index_type_desc = NULL;
8379 }
8380
14f9c5c9
AS
8381 if (index_type_desc == NULL)
8382 {
61ee279c 8383 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8384
14f9c5c9 8385 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8386 depend on the contents of the array in properly constructed
8387 debugging data. */
529cad9c
PH
8388 /* Create a fixed version of the array element type.
8389 We're not providing the address of an element here,
e1d5a0d2 8390 and thus the actual object value cannot be inspected to do
529cad9c
PH
8391 the conversion. This should not be a problem, since arrays of
8392 unconstrained objects are not allowed. In particular, all
8393 the elements of an array of a tagged type should all be of
8394 the same type specified in the debugging info. No need to
8395 consult the object tag. */
1ed6ede0 8396 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8397
284614f0
JB
8398 /* Make sure we always create a new array type when dealing with
8399 packed array types, since we're going to fix-up the array
8400 type length and element bitsize a little further down. */
ad82864c 8401 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8402 result = type0;
14f9c5c9 8403 else
e9bb382b 8404 result = create_array_type (alloc_type_copy (type0),
3d967001 8405 elt_type, type0->index_type ());
14f9c5c9
AS
8406 }
8407 else
8408 {
8409 int i;
8410 struct type *elt_type0;
8411
8412 elt_type0 = type0;
1f704f76 8413 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
4c4b4cd2 8414 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8415
8416 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8417 depend on the contents of the array in properly constructed
8418 debugging data. */
529cad9c
PH
8419 /* Create a fixed version of the array element type.
8420 We're not providing the address of an element here,
e1d5a0d2 8421 and thus the actual object value cannot be inspected to do
529cad9c
PH
8422 the conversion. This should not be a problem, since arrays of
8423 unconstrained objects are not allowed. In particular, all
8424 the elements of an array of a tagged type should all be of
8425 the same type specified in the debugging info. No need to
8426 consult the object tag. */
1ed6ede0
JB
8427 result =
8428 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8429
8430 elt_type0 = type0;
1f704f76 8431 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8432 {
8433 struct type *range_type =
940da03e 8434 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8435
e9bb382b 8436 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8437 result, range_type);
1ce677a4 8438 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8439 }
d2e4a39e 8440 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8441 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8442 }
8443
2e6fda7d
JB
8444 /* We want to preserve the type name. This can be useful when
8445 trying to get the type name of a value that has already been
8446 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8447 result->set_name (type0->name ());
2e6fda7d 8448
ad82864c 8449 if (constrained_packed_array_p)
284614f0
JB
8450 {
8451 /* So far, the resulting type has been created as if the original
8452 type was a regular (non-packed) array type. As a result, the
8453 bitsize of the array elements needs to be set again, and the array
8454 length needs to be recomputed based on that bitsize. */
8455 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8456 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8457
8458 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8459 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8460 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8461 TYPE_LENGTH (result)++;
8462 }
8463
876cecd0 8464 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8465 return result;
d2e4a39e 8466}
14f9c5c9
AS
8467
8468
8469/* A standard type (containing no dynamically sized components)
8470 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8471 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8472 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8473 ADDRESS or in VALADDR contains these discriminants.
8474
1ed6ede0
JB
8475 If CHECK_TAG is not null, in the case of tagged types, this function
8476 attempts to locate the object's tag and use it to compute the actual
8477 type. However, when ADDRESS is null, we cannot use it to determine the
8478 location of the tag, and therefore compute the tagged type's actual type.
8479 So we return the tagged type without consulting the tag. */
529cad9c 8480
f192137b
JB
8481static struct type *
8482ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8483 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8484{
61ee279c 8485 type = ada_check_typedef (type);
8ecb59f8
TT
8486
8487 /* Only un-fixed types need to be handled here. */
8488 if (!HAVE_GNAT_AUX_INFO (type))
8489 return type;
8490
78134374 8491 switch (type->code ())
d2e4a39e
AS
8492 {
8493 default:
14f9c5c9 8494 return type;
d2e4a39e 8495 case TYPE_CODE_STRUCT:
4c4b4cd2 8496 {
76a01679 8497 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8498 struct type *fixed_record_type =
8499 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8500
529cad9c
PH
8501 /* If STATIC_TYPE is a tagged type and we know the object's address,
8502 then we can determine its tag, and compute the object's actual
0963b4bd 8503 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8504 type (the parent part of the record may have dynamic fields
8505 and the way the location of _tag is expressed may depend on
8506 them). */
529cad9c 8507
1ed6ede0 8508 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8509 {
b50d69b5
JG
8510 struct value *tag =
8511 value_tag_from_contents_and_address
8512 (fixed_record_type,
8513 valaddr,
8514 address);
8515 struct type *real_type = type_from_tag (tag);
8516 struct value *obj =
8517 value_from_contents_and_address (fixed_record_type,
8518 valaddr,
8519 address);
9f1f738a 8520 fixed_record_type = value_type (obj);
76a01679 8521 if (real_type != NULL)
b50d69b5
JG
8522 return to_fixed_record_type
8523 (real_type, NULL,
8524 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8525 }
4af88198
JB
8526
8527 /* Check to see if there is a parallel ___XVZ variable.
8528 If there is, then it provides the actual size of our type. */
8529 else if (ada_type_name (fixed_record_type) != NULL)
8530 {
0d5cff50 8531 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8532 char *xvz_name
8533 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8534 bool xvz_found = false;
4af88198
JB
8535 LONGEST size;
8536
88c15c34 8537 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8538 try
eccab96d
JB
8539 {
8540 xvz_found = get_int_var_value (xvz_name, size);
8541 }
230d2906 8542 catch (const gdb_exception_error &except)
eccab96d
JB
8543 {
8544 /* We found the variable, but somehow failed to read
8545 its value. Rethrow the same error, but with a little
8546 bit more information, to help the user understand
8547 what went wrong (Eg: the variable might have been
8548 optimized out). */
8549 throw_error (except.error,
8550 _("unable to read value of %s (%s)"),
3d6e9d23 8551 xvz_name, except.what ());
eccab96d 8552 }
eccab96d
JB
8553
8554 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8555 {
8556 fixed_record_type = copy_type (fixed_record_type);
8557 TYPE_LENGTH (fixed_record_type) = size;
8558
8559 /* The FIXED_RECORD_TYPE may have be a stub. We have
8560 observed this when the debugging info is STABS, and
8561 apparently it is something that is hard to fix.
8562
8563 In practice, we don't need the actual type definition
8564 at all, because the presence of the XVZ variable allows us
8565 to assume that there must be a XVS type as well, which we
8566 should be able to use later, when we need the actual type
8567 definition.
8568
8569 In the meantime, pretend that the "fixed" type we are
8570 returning is NOT a stub, because this can cause trouble
8571 when using this type to create new types targeting it.
8572 Indeed, the associated creation routines often check
8573 whether the target type is a stub and will try to replace
0963b4bd 8574 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8575 might cause the new type to have the wrong size too.
8576 Consider the case of an array, for instance, where the size
8577 of the array is computed from the number of elements in
8578 our array multiplied by the size of its element. */
8579 TYPE_STUB (fixed_record_type) = 0;
8580 }
8581 }
1ed6ede0 8582 return fixed_record_type;
4c4b4cd2 8583 }
d2e4a39e 8584 case TYPE_CODE_ARRAY:
4c4b4cd2 8585 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8586 case TYPE_CODE_UNION:
8587 if (dval == NULL)
4c4b4cd2 8588 return type;
d2e4a39e 8589 else
4c4b4cd2 8590 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8591 }
14f9c5c9
AS
8592}
8593
f192137b
JB
8594/* The same as ada_to_fixed_type_1, except that it preserves the type
8595 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8596
8597 The typedef layer needs be preserved in order to differentiate between
8598 arrays and array pointers when both types are implemented using the same
8599 fat pointer. In the array pointer case, the pointer is encoded as
8600 a typedef of the pointer type. For instance, considering:
8601
8602 type String_Access is access String;
8603 S1 : String_Access := null;
8604
8605 To the debugger, S1 is defined as a typedef of type String. But
8606 to the user, it is a pointer. So if the user tries to print S1,
8607 we should not dereference the array, but print the array address
8608 instead.
8609
8610 If we didn't preserve the typedef layer, we would lose the fact that
8611 the type is to be presented as a pointer (needs de-reference before
8612 being printed). And we would also use the source-level type name. */
f192137b
JB
8613
8614struct type *
8615ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8616 CORE_ADDR address, struct value *dval, int check_tag)
8617
8618{
8619 struct type *fixed_type =
8620 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8621
96dbd2c1
JB
8622 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8623 then preserve the typedef layer.
8624
8625 Implementation note: We can only check the main-type portion of
8626 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8627 from TYPE now returns a type that has the same instance flags
8628 as TYPE. For instance, if TYPE is a "typedef const", and its
8629 target type is a "struct", then the typedef elimination will return
8630 a "const" version of the target type. See check_typedef for more
8631 details about how the typedef layer elimination is done.
8632
8633 brobecker/2010-11-19: It seems to me that the only case where it is
8634 useful to preserve the typedef layer is when dealing with fat pointers.
8635 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8636 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8637 because we call check_typedef/ada_check_typedef pretty much everywhere.
8638 */
78134374 8639 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8640 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8641 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8642 return type;
8643
8644 return fixed_type;
8645}
8646
14f9c5c9 8647/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8648 TYPE0, but based on no runtime data. */
14f9c5c9 8649
d2e4a39e
AS
8650static struct type *
8651to_static_fixed_type (struct type *type0)
14f9c5c9 8652{
d2e4a39e 8653 struct type *type;
14f9c5c9
AS
8654
8655 if (type0 == NULL)
8656 return NULL;
8657
876cecd0 8658 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8659 return type0;
8660
61ee279c 8661 type0 = ada_check_typedef (type0);
d2e4a39e 8662
78134374 8663 switch (type0->code ())
14f9c5c9
AS
8664 {
8665 default:
8666 return type0;
8667 case TYPE_CODE_STRUCT:
8668 type = dynamic_template_type (type0);
d2e4a39e 8669 if (type != NULL)
4c4b4cd2
PH
8670 return template_to_static_fixed_type (type);
8671 else
8672 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8673 case TYPE_CODE_UNION:
8674 type = ada_find_parallel_type (type0, "___XVU");
8675 if (type != NULL)
4c4b4cd2
PH
8676 return template_to_static_fixed_type (type);
8677 else
8678 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8679 }
8680}
8681
4c4b4cd2
PH
8682/* A static approximation of TYPE with all type wrappers removed. */
8683
d2e4a39e
AS
8684static struct type *
8685static_unwrap_type (struct type *type)
14f9c5c9
AS
8686{
8687 if (ada_is_aligner_type (type))
8688 {
940da03e 8689 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8690 if (ada_type_name (type1) == NULL)
d0e39ea2 8691 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8692
8693 return static_unwrap_type (type1);
8694 }
d2e4a39e 8695 else
14f9c5c9 8696 {
d2e4a39e 8697 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8698
d2e4a39e 8699 if (raw_real_type == type)
4c4b4cd2 8700 return type;
14f9c5c9 8701 else
4c4b4cd2 8702 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8703 }
8704}
8705
8706/* In some cases, incomplete and private types require
4c4b4cd2 8707 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8708 type Foo;
8709 type FooP is access Foo;
8710 V: FooP;
8711 type Foo is array ...;
4c4b4cd2 8712 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8713 cross-references to such types, we instead substitute for FooP a
8714 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8715 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8716
8717/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8718 exists, otherwise TYPE. */
8719
d2e4a39e 8720struct type *
61ee279c 8721ada_check_typedef (struct type *type)
14f9c5c9 8722{
727e3d2e
JB
8723 if (type == NULL)
8724 return NULL;
8725
736ade86
XR
8726 /* If our type is an access to an unconstrained array, which is encoded
8727 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8728 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8729 what allows us to distinguish between fat pointers that represent
8730 array types, and fat pointers that represent array access types
8731 (in both cases, the compiler implements them as fat pointers). */
736ade86 8732 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8733 return type;
8734
f168693b 8735 type = check_typedef (type);
78134374 8736 if (type == NULL || type->code () != TYPE_CODE_ENUM
529cad9c 8737 || !TYPE_STUB (type)
7d93a1e0 8738 || type->name () == NULL)
14f9c5c9 8739 return type;
d2e4a39e 8740 else
14f9c5c9 8741 {
7d93a1e0 8742 const char *name = type->name ();
d2e4a39e 8743 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8744
05e522ef
JB
8745 if (type1 == NULL)
8746 return type;
8747
8748 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8749 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8750 types, only for the typedef-to-array types). If that's the case,
8751 strip the typedef layer. */
78134374 8752 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8753 type1 = ada_check_typedef (type1);
8754
8755 return type1;
14f9c5c9
AS
8756 }
8757}
8758
8759/* A value representing the data at VALADDR/ADDRESS as described by
8760 type TYPE0, but with a standard (static-sized) type that correctly
8761 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8762 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8763 creation of struct values]. */
14f9c5c9 8764
4c4b4cd2
PH
8765static struct value *
8766ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8767 struct value *val0)
14f9c5c9 8768{
1ed6ede0 8769 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8770
14f9c5c9
AS
8771 if (type == type0 && val0 != NULL)
8772 return val0;
cc0e770c
JB
8773
8774 if (VALUE_LVAL (val0) != lval_memory)
8775 {
8776 /* Our value does not live in memory; it could be a convenience
8777 variable, for instance. Create a not_lval value using val0's
8778 contents. */
8779 return value_from_contents (type, value_contents (val0));
8780 }
8781
8782 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8783}
8784
8785/* A value representing VAL, but with a standard (static-sized) type
8786 that correctly describes it. Does not necessarily create a new
8787 value. */
8788
0c3acc09 8789struct value *
4c4b4cd2
PH
8790ada_to_fixed_value (struct value *val)
8791{
c48db5ca 8792 val = unwrap_value (val);
d8ce9127 8793 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8794 return val;
14f9c5c9 8795}
d2e4a39e 8796\f
14f9c5c9 8797
14f9c5c9
AS
8798/* Attributes */
8799
4c4b4cd2
PH
8800/* Table mapping attribute numbers to names.
8801 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8802
d2e4a39e 8803static const char *attribute_names[] = {
14f9c5c9
AS
8804 "<?>",
8805
d2e4a39e 8806 "first",
14f9c5c9
AS
8807 "last",
8808 "length",
8809 "image",
14f9c5c9
AS
8810 "max",
8811 "min",
4c4b4cd2
PH
8812 "modulus",
8813 "pos",
8814 "size",
8815 "tag",
14f9c5c9 8816 "val",
14f9c5c9
AS
8817 0
8818};
8819
de93309a 8820static const char *
4c4b4cd2 8821ada_attribute_name (enum exp_opcode n)
14f9c5c9 8822{
4c4b4cd2
PH
8823 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8824 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8825 else
8826 return attribute_names[0];
8827}
8828
4c4b4cd2 8829/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8830
4c4b4cd2
PH
8831static LONGEST
8832pos_atr (struct value *arg)
14f9c5c9 8833{
24209737
PH
8834 struct value *val = coerce_ref (arg);
8835 struct type *type = value_type (val);
aa715135 8836 LONGEST result;
14f9c5c9 8837
d2e4a39e 8838 if (!discrete_type_p (type))
323e0a4a 8839 error (_("'POS only defined on discrete types"));
14f9c5c9 8840
aa715135
JG
8841 if (!discrete_position (type, value_as_long (val), &result))
8842 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8843
aa715135 8844 return result;
4c4b4cd2
PH
8845}
8846
8847static struct value *
3cb382c9 8848value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8849{
3cb382c9 8850 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8851}
8852
4c4b4cd2 8853/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8854
d2e4a39e 8855static struct value *
53a47a3e 8856val_atr (struct type *type, LONGEST val)
14f9c5c9 8857{
53a47a3e 8858 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8859 if (type->code () == TYPE_CODE_RANGE)
8860 type = TYPE_TARGET_TYPE (type);
78134374 8861 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8862 {
53a47a3e 8863 if (val < 0 || val >= type->num_fields ())
323e0a4a 8864 error (_("argument to 'VAL out of range"));
53a47a3e 8865 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8866 }
53a47a3e
TT
8867 return value_from_longest (type, val);
8868}
8869
8870static struct value *
8871value_val_atr (struct type *type, struct value *arg)
8872{
8873 if (!discrete_type_p (type))
8874 error (_("'VAL only defined on discrete types"));
8875 if (!integer_type_p (value_type (arg)))
8876 error (_("'VAL requires integral argument"));
8877
8878 return val_atr (type, value_as_long (arg));
14f9c5c9 8879}
14f9c5c9 8880\f
d2e4a39e 8881
4c4b4cd2 8882 /* Evaluation */
14f9c5c9 8883
4c4b4cd2
PH
8884/* True if TYPE appears to be an Ada character type.
8885 [At the moment, this is true only for Character and Wide_Character;
8886 It is a heuristic test that could stand improvement]. */
14f9c5c9 8887
fc913e53 8888bool
d2e4a39e 8889ada_is_character_type (struct type *type)
14f9c5c9 8890{
7b9f71f2
JB
8891 const char *name;
8892
8893 /* If the type code says it's a character, then assume it really is,
8894 and don't check any further. */
78134374 8895 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8896 return true;
7b9f71f2
JB
8897
8898 /* Otherwise, assume it's a character type iff it is a discrete type
8899 with a known character type name. */
8900 name = ada_type_name (type);
8901 return (name != NULL
78134374
SM
8902 && (type->code () == TYPE_CODE_INT
8903 || type->code () == TYPE_CODE_RANGE)
7b9f71f2
JB
8904 && (strcmp (name, "character") == 0
8905 || strcmp (name, "wide_character") == 0
5a517ebd 8906 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8907 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8908}
8909
4c4b4cd2 8910/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8911
fc913e53 8912bool
ebf56fd3 8913ada_is_string_type (struct type *type)
14f9c5c9 8914{
61ee279c 8915 type = ada_check_typedef (type);
d2e4a39e 8916 if (type != NULL
78134374 8917 && type->code () != TYPE_CODE_PTR
76a01679
JB
8918 && (ada_is_simple_array_type (type)
8919 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8920 && ada_array_arity (type) == 1)
8921 {
8922 struct type *elttype = ada_array_element_type (type, 1);
8923
8924 return ada_is_character_type (elttype);
8925 }
d2e4a39e 8926 else
fc913e53 8927 return false;
14f9c5c9
AS
8928}
8929
5bf03f13
JB
8930/* The compiler sometimes provides a parallel XVS type for a given
8931 PAD type. Normally, it is safe to follow the PAD type directly,
8932 but older versions of the compiler have a bug that causes the offset
8933 of its "F" field to be wrong. Following that field in that case
8934 would lead to incorrect results, but this can be worked around
8935 by ignoring the PAD type and using the associated XVS type instead.
8936
8937 Set to True if the debugger should trust the contents of PAD types.
8938 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 8939static bool trust_pad_over_xvs = true;
14f9c5c9
AS
8940
8941/* True if TYPE is a struct type introduced by the compiler to force the
8942 alignment of a value. Such types have a single field with a
4c4b4cd2 8943 distinctive name. */
14f9c5c9
AS
8944
8945int
ebf56fd3 8946ada_is_aligner_type (struct type *type)
14f9c5c9 8947{
61ee279c 8948 type = ada_check_typedef (type);
714e53ab 8949
5bf03f13 8950 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8951 return 0;
8952
78134374 8953 return (type->code () == TYPE_CODE_STRUCT
1f704f76 8954 && type->num_fields () == 1
4c4b4cd2 8955 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8956}
8957
8958/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8959 the parallel type. */
14f9c5c9 8960
d2e4a39e
AS
8961struct type *
8962ada_get_base_type (struct type *raw_type)
14f9c5c9 8963{
d2e4a39e
AS
8964 struct type *real_type_namer;
8965 struct type *raw_real_type;
14f9c5c9 8966
78134374 8967 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
8968 return raw_type;
8969
284614f0
JB
8970 if (ada_is_aligner_type (raw_type))
8971 /* The encoding specifies that we should always use the aligner type.
8972 So, even if this aligner type has an associated XVS type, we should
8973 simply ignore it.
8974
8975 According to the compiler gurus, an XVS type parallel to an aligner
8976 type may exist because of a stabs limitation. In stabs, aligner
8977 types are empty because the field has a variable-sized type, and
8978 thus cannot actually be used as an aligner type. As a result,
8979 we need the associated parallel XVS type to decode the type.
8980 Since the policy in the compiler is to not change the internal
8981 representation based on the debugging info format, we sometimes
8982 end up having a redundant XVS type parallel to the aligner type. */
8983 return raw_type;
8984
14f9c5c9 8985 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8986 if (real_type_namer == NULL
78134374 8987 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 8988 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
8989 return raw_type;
8990
940da03e 8991 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
8992 {
8993 /* This is an older encoding form where the base type needs to be
85102364 8994 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
8995 more efficient. */
8996 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8997 if (raw_real_type == NULL)
8998 return raw_type;
8999 else
9000 return raw_real_type;
9001 }
9002
9003 /* The field in our XVS type is a reference to the base type. */
940da03e 9004 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9005}
14f9c5c9 9006
4c4b4cd2 9007/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9008
d2e4a39e
AS
9009struct type *
9010ada_aligned_type (struct type *type)
14f9c5c9
AS
9011{
9012 if (ada_is_aligner_type (type))
940da03e 9013 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9014 else
9015 return ada_get_base_type (type);
9016}
9017
9018
9019/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9020 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9021
fc1a4b47
AC
9022const gdb_byte *
9023ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9024{
d2e4a39e 9025 if (ada_is_aligner_type (type))
940da03e 9026 return ada_aligned_value_addr (type->field (0).type (),
4c4b4cd2
PH
9027 valaddr +
9028 TYPE_FIELD_BITPOS (type,
9029 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9030 else
9031 return valaddr;
9032}
9033
4c4b4cd2
PH
9034
9035
14f9c5c9 9036/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9037 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9038const char *
9039ada_enum_name (const char *name)
14f9c5c9 9040{
4c4b4cd2
PH
9041 static char *result;
9042 static size_t result_len = 0;
e6a959d6 9043 const char *tmp;
14f9c5c9 9044
4c4b4cd2
PH
9045 /* First, unqualify the enumeration name:
9046 1. Search for the last '.' character. If we find one, then skip
177b42fe 9047 all the preceding characters, the unqualified name starts
76a01679 9048 right after that dot.
4c4b4cd2 9049 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9050 translates dots into "__". Search forward for double underscores,
9051 but stop searching when we hit an overloading suffix, which is
9052 of the form "__" followed by digits. */
4c4b4cd2 9053
c3e5cd34
PH
9054 tmp = strrchr (name, '.');
9055 if (tmp != NULL)
4c4b4cd2
PH
9056 name = tmp + 1;
9057 else
14f9c5c9 9058 {
4c4b4cd2
PH
9059 while ((tmp = strstr (name, "__")) != NULL)
9060 {
9061 if (isdigit (tmp[2]))
9062 break;
9063 else
9064 name = tmp + 2;
9065 }
14f9c5c9
AS
9066 }
9067
9068 if (name[0] == 'Q')
9069 {
14f9c5c9 9070 int v;
5b4ee69b 9071
14f9c5c9 9072 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9073 {
9074 if (sscanf (name + 2, "%x", &v) != 1)
9075 return name;
9076 }
272560b5
TT
9077 else if (((name[1] >= '0' && name[1] <= '9')
9078 || (name[1] >= 'a' && name[1] <= 'z'))
9079 && name[2] == '\0')
9080 {
9081 GROW_VECT (result, result_len, 4);
9082 xsnprintf (result, result_len, "'%c'", name[1]);
9083 return result;
9084 }
14f9c5c9 9085 else
4c4b4cd2 9086 return name;
14f9c5c9 9087
4c4b4cd2 9088 GROW_VECT (result, result_len, 16);
14f9c5c9 9089 if (isascii (v) && isprint (v))
88c15c34 9090 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9091 else if (name[1] == 'U')
88c15c34 9092 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9093 else
88c15c34 9094 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9095
9096 return result;
9097 }
d2e4a39e 9098 else
4c4b4cd2 9099 {
c3e5cd34
PH
9100 tmp = strstr (name, "__");
9101 if (tmp == NULL)
9102 tmp = strstr (name, "$");
9103 if (tmp != NULL)
4c4b4cd2
PH
9104 {
9105 GROW_VECT (result, result_len, tmp - name + 1);
9106 strncpy (result, name, tmp - name);
9107 result[tmp - name] = '\0';
9108 return result;
9109 }
9110
9111 return name;
9112 }
14f9c5c9
AS
9113}
9114
14f9c5c9
AS
9115/* Evaluate the subexpression of EXP starting at *POS as for
9116 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9117 expression. */
14f9c5c9 9118
d2e4a39e
AS
9119static struct value *
9120evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9121{
4b27a620 9122 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9123}
9124
9125/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9126 value it wraps. */
14f9c5c9 9127
d2e4a39e
AS
9128static struct value *
9129unwrap_value (struct value *val)
14f9c5c9 9130{
df407dfe 9131 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9132
14f9c5c9
AS
9133 if (ada_is_aligner_type (type))
9134 {
de4d072f 9135 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9136 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9137
14f9c5c9 9138 if (ada_type_name (val_type) == NULL)
d0e39ea2 9139 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9140
9141 return unwrap_value (v);
9142 }
d2e4a39e 9143 else
14f9c5c9 9144 {
d2e4a39e 9145 struct type *raw_real_type =
61ee279c 9146 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9147
5bf03f13
JB
9148 /* If there is no parallel XVS or XVE type, then the value is
9149 already unwrapped. Return it without further modification. */
9150 if ((type == raw_real_type)
9151 && ada_find_parallel_type (type, "___XVE") == NULL)
9152 return val;
14f9c5c9 9153
d2e4a39e 9154 return
4c4b4cd2
PH
9155 coerce_unspec_val_to_type
9156 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9157 value_address (val),
1ed6ede0 9158 NULL, 1));
14f9c5c9
AS
9159 }
9160}
d2e4a39e
AS
9161
9162static struct value *
50eff16b 9163cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9164{
50eff16b
UW
9165 struct value *scale = ada_scaling_factor (value_type (arg));
9166 arg = value_cast (value_type (scale), arg);
14f9c5c9 9167
50eff16b
UW
9168 arg = value_binop (arg, scale, BINOP_MUL);
9169 return value_cast (type, arg);
14f9c5c9
AS
9170}
9171
d2e4a39e 9172static struct value *
50eff16b 9173cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9174{
50eff16b
UW
9175 if (type == value_type (arg))
9176 return arg;
5b4ee69b 9177
50eff16b 9178 struct value *scale = ada_scaling_factor (type);
b2188a06 9179 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
50eff16b
UW
9180 arg = cast_from_fixed (value_type (scale), arg);
9181 else
9182 arg = value_cast (value_type (scale), arg);
9183
9184 arg = value_binop (arg, scale, BINOP_DIV);
9185 return value_cast (type, arg);
14f9c5c9
AS
9186}
9187
d99dcf51
JB
9188/* Given two array types T1 and T2, return nonzero iff both arrays
9189 contain the same number of elements. */
9190
9191static int
9192ada_same_array_size_p (struct type *t1, struct type *t2)
9193{
9194 LONGEST lo1, hi1, lo2, hi2;
9195
9196 /* Get the array bounds in order to verify that the size of
9197 the two arrays match. */
9198 if (!get_array_bounds (t1, &lo1, &hi1)
9199 || !get_array_bounds (t2, &lo2, &hi2))
9200 error (_("unable to determine array bounds"));
9201
9202 /* To make things easier for size comparison, normalize a bit
9203 the case of empty arrays by making sure that the difference
9204 between upper bound and lower bound is always -1. */
9205 if (lo1 > hi1)
9206 hi1 = lo1 - 1;
9207 if (lo2 > hi2)
9208 hi2 = lo2 - 1;
9209
9210 return (hi1 - lo1 == hi2 - lo2);
9211}
9212
9213/* Assuming that VAL is an array of integrals, and TYPE represents
9214 an array with the same number of elements, but with wider integral
9215 elements, return an array "casted" to TYPE. In practice, this
9216 means that the returned array is built by casting each element
9217 of the original array into TYPE's (wider) element type. */
9218
9219static struct value *
9220ada_promote_array_of_integrals (struct type *type, struct value *val)
9221{
9222 struct type *elt_type = TYPE_TARGET_TYPE (type);
9223 LONGEST lo, hi;
9224 struct value *res;
9225 LONGEST i;
9226
9227 /* Verify that both val and type are arrays of scalars, and
9228 that the size of val's elements is smaller than the size
9229 of type's element. */
78134374 9230 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9231 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9232 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9233 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9234 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9235 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9236
9237 if (!get_array_bounds (type, &lo, &hi))
9238 error (_("unable to determine array bounds"));
9239
9240 res = allocate_value (type);
9241
9242 /* Promote each array element. */
9243 for (i = 0; i < hi - lo + 1; i++)
9244 {
9245 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9246
9247 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9248 value_contents_all (elt), TYPE_LENGTH (elt_type));
9249 }
9250
9251 return res;
9252}
9253
4c4b4cd2
PH
9254/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9255 return the converted value. */
9256
d2e4a39e
AS
9257static struct value *
9258coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9259{
df407dfe 9260 struct type *type2 = value_type (val);
5b4ee69b 9261
14f9c5c9
AS
9262 if (type == type2)
9263 return val;
9264
61ee279c
PH
9265 type2 = ada_check_typedef (type2);
9266 type = ada_check_typedef (type);
14f9c5c9 9267
78134374
SM
9268 if (type2->code () == TYPE_CODE_PTR
9269 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9270 {
9271 val = ada_value_ind (val);
df407dfe 9272 type2 = value_type (val);
14f9c5c9
AS
9273 }
9274
78134374
SM
9275 if (type2->code () == TYPE_CODE_ARRAY
9276 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9277 {
d99dcf51
JB
9278 if (!ada_same_array_size_p (type, type2))
9279 error (_("cannot assign arrays of different length"));
9280
9281 if (is_integral_type (TYPE_TARGET_TYPE (type))
9282 && is_integral_type (TYPE_TARGET_TYPE (type2))
9283 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9284 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9285 {
9286 /* Allow implicit promotion of the array elements to
9287 a wider type. */
9288 return ada_promote_array_of_integrals (type, val);
9289 }
9290
9291 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9292 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9293 error (_("Incompatible types in assignment"));
04624583 9294 deprecated_set_value_type (val, type);
14f9c5c9 9295 }
d2e4a39e 9296 return val;
14f9c5c9
AS
9297}
9298
4c4b4cd2
PH
9299static struct value *
9300ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9301{
9302 struct value *val;
9303 struct type *type1, *type2;
9304 LONGEST v, v1, v2;
9305
994b9211
AC
9306 arg1 = coerce_ref (arg1);
9307 arg2 = coerce_ref (arg2);
18af8284
JB
9308 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9309 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9310
78134374
SM
9311 if (type1->code () != TYPE_CODE_INT
9312 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9313 return value_binop (arg1, arg2, op);
9314
76a01679 9315 switch (op)
4c4b4cd2
PH
9316 {
9317 case BINOP_MOD:
9318 case BINOP_DIV:
9319 case BINOP_REM:
9320 break;
9321 default:
9322 return value_binop (arg1, arg2, op);
9323 }
9324
9325 v2 = value_as_long (arg2);
9326 if (v2 == 0)
323e0a4a 9327 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9328
9329 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9330 return value_binop (arg1, arg2, op);
9331
9332 v1 = value_as_long (arg1);
9333 switch (op)
9334 {
9335 case BINOP_DIV:
9336 v = v1 / v2;
76a01679
JB
9337 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9338 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9339 break;
9340 case BINOP_REM:
9341 v = v1 % v2;
76a01679
JB
9342 if (v * v1 < 0)
9343 v -= v2;
4c4b4cd2
PH
9344 break;
9345 default:
9346 /* Should not reach this point. */
9347 v = 0;
9348 }
9349
9350 val = allocate_value (type1);
990a07ab 9351 store_unsigned_integer (value_contents_raw (val),
e17a4113 9352 TYPE_LENGTH (value_type (val)),
34877895 9353 type_byte_order (type1), v);
4c4b4cd2
PH
9354 return val;
9355}
9356
9357static int
9358ada_value_equal (struct value *arg1, struct value *arg2)
9359{
df407dfe
AC
9360 if (ada_is_direct_array_type (value_type (arg1))
9361 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9362 {
79e8fcaa
JB
9363 struct type *arg1_type, *arg2_type;
9364
f58b38bf
JB
9365 /* Automatically dereference any array reference before
9366 we attempt to perform the comparison. */
9367 arg1 = ada_coerce_ref (arg1);
9368 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9369
4c4b4cd2
PH
9370 arg1 = ada_coerce_to_simple_array (arg1);
9371 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9372
9373 arg1_type = ada_check_typedef (value_type (arg1));
9374 arg2_type = ada_check_typedef (value_type (arg2));
9375
78134374
SM
9376 if (arg1_type->code () != TYPE_CODE_ARRAY
9377 || arg2_type->code () != TYPE_CODE_ARRAY)
323e0a4a 9378 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9379 /* FIXME: The following works only for types whose
76a01679
JB
9380 representations use all bits (no padding or undefined bits)
9381 and do not have user-defined equality. */
79e8fcaa
JB
9382 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9383 && memcmp (value_contents (arg1), value_contents (arg2),
9384 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9385 }
9386 return value_equal (arg1, arg2);
9387}
9388
52ce6436
PH
9389/* Total number of component associations in the aggregate starting at
9390 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9391 OP_AGGREGATE. */
52ce6436
PH
9392
9393static int
9394num_component_specs (struct expression *exp, int pc)
9395{
9396 int n, m, i;
5b4ee69b 9397
52ce6436
PH
9398 m = exp->elts[pc + 1].longconst;
9399 pc += 3;
9400 n = 0;
9401 for (i = 0; i < m; i += 1)
9402 {
9403 switch (exp->elts[pc].opcode)
9404 {
9405 default:
9406 n += 1;
9407 break;
9408 case OP_CHOICES:
9409 n += exp->elts[pc + 1].longconst;
9410 break;
9411 }
9412 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9413 }
9414 return n;
9415}
9416
9417/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9418 component of LHS (a simple array or a record), updating *POS past
9419 the expression, assuming that LHS is contained in CONTAINER. Does
9420 not modify the inferior's memory, nor does it modify LHS (unless
9421 LHS == CONTAINER). */
9422
9423static void
9424assign_component (struct value *container, struct value *lhs, LONGEST index,
9425 struct expression *exp, int *pos)
9426{
9427 struct value *mark = value_mark ();
9428 struct value *elt;
0e2da9f0 9429 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9430
78134374 9431 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9432 {
22601c15
UW
9433 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9434 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9435
52ce6436
PH
9436 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9437 }
9438 else
9439 {
9440 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9441 elt = ada_to_fixed_value (elt);
52ce6436
PH
9442 }
9443
9444 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9445 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9446 else
9447 value_assign_to_component (container, elt,
9448 ada_evaluate_subexp (NULL, exp, pos,
9449 EVAL_NORMAL));
9450
9451 value_free_to_mark (mark);
9452}
9453
9454/* Assuming that LHS represents an lvalue having a record or array
9455 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9456 of that aggregate's value to LHS, advancing *POS past the
9457 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9458 lvalue containing LHS (possibly LHS itself). Does not modify
9459 the inferior's memory, nor does it modify the contents of
0963b4bd 9460 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9461
9462static struct value *
9463assign_aggregate (struct value *container,
9464 struct value *lhs, struct expression *exp,
9465 int *pos, enum noside noside)
9466{
9467 struct type *lhs_type;
9468 int n = exp->elts[*pos+1].longconst;
9469 LONGEST low_index, high_index;
9470 int num_specs;
9471 LONGEST *indices;
9472 int max_indices, num_indices;
52ce6436 9473 int i;
52ce6436
PH
9474
9475 *pos += 3;
9476 if (noside != EVAL_NORMAL)
9477 {
52ce6436
PH
9478 for (i = 0; i < n; i += 1)
9479 ada_evaluate_subexp (NULL, exp, pos, noside);
9480 return container;
9481 }
9482
9483 container = ada_coerce_ref (container);
9484 if (ada_is_direct_array_type (value_type (container)))
9485 container = ada_coerce_to_simple_array (container);
9486 lhs = ada_coerce_ref (lhs);
9487 if (!deprecated_value_modifiable (lhs))
9488 error (_("Left operand of assignment is not a modifiable lvalue."));
9489
0e2da9f0 9490 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9491 if (ada_is_direct_array_type (lhs_type))
9492 {
9493 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9494 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9495 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9496 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436 9497 }
78134374 9498 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9499 {
9500 low_index = 0;
9501 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9502 }
9503 else
9504 error (_("Left-hand side must be array or record."));
9505
9506 num_specs = num_component_specs (exp, *pos - 3);
9507 max_indices = 4 * num_specs + 4;
8d749320 9508 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9509 indices[0] = indices[1] = low_index - 1;
9510 indices[2] = indices[3] = high_index + 1;
9511 num_indices = 4;
9512
9513 for (i = 0; i < n; i += 1)
9514 {
9515 switch (exp->elts[*pos].opcode)
9516 {
1fbf5ada
JB
9517 case OP_CHOICES:
9518 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9519 &num_indices, max_indices,
9520 low_index, high_index);
9521 break;
9522 case OP_POSITIONAL:
9523 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9524 &num_indices, max_indices,
9525 low_index, high_index);
1fbf5ada
JB
9526 break;
9527 case OP_OTHERS:
9528 if (i != n-1)
9529 error (_("Misplaced 'others' clause"));
9530 aggregate_assign_others (container, lhs, exp, pos, indices,
9531 num_indices, low_index, high_index);
9532 break;
9533 default:
9534 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9535 }
9536 }
9537
9538 return container;
9539}
9540
9541/* Assign into the component of LHS indexed by the OP_POSITIONAL
9542 construct at *POS, updating *POS past the construct, given that
9543 the positions are relative to lower bound LOW, where HIGH is the
9544 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9545 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9546 assign_aggregate. */
52ce6436
PH
9547static void
9548aggregate_assign_positional (struct value *container,
9549 struct value *lhs, struct expression *exp,
9550 int *pos, LONGEST *indices, int *num_indices,
9551 int max_indices, LONGEST low, LONGEST high)
9552{
9553 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9554
9555 if (ind - 1 == high)
e1d5a0d2 9556 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9557 if (ind <= high)
9558 {
9559 add_component_interval (ind, ind, indices, num_indices, max_indices);
9560 *pos += 3;
9561 assign_component (container, lhs, ind, exp, pos);
9562 }
9563 else
9564 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9565}
9566
9567/* Assign into the components of LHS indexed by the OP_CHOICES
9568 construct at *POS, updating *POS past the construct, given that
9569 the allowable indices are LOW..HIGH. Record the indices assigned
9570 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9571 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9572static void
9573aggregate_assign_from_choices (struct value *container,
9574 struct value *lhs, struct expression *exp,
9575 int *pos, LONGEST *indices, int *num_indices,
9576 int max_indices, LONGEST low, LONGEST high)
9577{
9578 int j;
9579 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9580 int choice_pos, expr_pc;
9581 int is_array = ada_is_direct_array_type (value_type (lhs));
9582
9583 choice_pos = *pos += 3;
9584
9585 for (j = 0; j < n_choices; j += 1)
9586 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9587 expr_pc = *pos;
9588 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9589
9590 for (j = 0; j < n_choices; j += 1)
9591 {
9592 LONGEST lower, upper;
9593 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9594
52ce6436
PH
9595 if (op == OP_DISCRETE_RANGE)
9596 {
9597 choice_pos += 1;
9598 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9599 EVAL_NORMAL));
9600 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9601 EVAL_NORMAL));
9602 }
9603 else if (is_array)
9604 {
9605 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9606 EVAL_NORMAL));
9607 upper = lower;
9608 }
9609 else
9610 {
9611 int ind;
0d5cff50 9612 const char *name;
5b4ee69b 9613
52ce6436
PH
9614 switch (op)
9615 {
9616 case OP_NAME:
9617 name = &exp->elts[choice_pos + 2].string;
9618 break;
9619 case OP_VAR_VALUE:
987012b8 9620 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9621 break;
9622 default:
9623 error (_("Invalid record component association."));
9624 }
9625 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9626 ind = 0;
9627 if (! find_struct_field (name, value_type (lhs), 0,
9628 NULL, NULL, NULL, NULL, &ind))
9629 error (_("Unknown component name: %s."), name);
9630 lower = upper = ind;
9631 }
9632
9633 if (lower <= upper && (lower < low || upper > high))
9634 error (_("Index in component association out of bounds."));
9635
9636 add_component_interval (lower, upper, indices, num_indices,
9637 max_indices);
9638 while (lower <= upper)
9639 {
9640 int pos1;
5b4ee69b 9641
52ce6436
PH
9642 pos1 = expr_pc;
9643 assign_component (container, lhs, lower, exp, &pos1);
9644 lower += 1;
9645 }
9646 }
9647}
9648
9649/* Assign the value of the expression in the OP_OTHERS construct in
9650 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9651 have not been previously assigned. The index intervals already assigned
9652 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9653 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9654static void
9655aggregate_assign_others (struct value *container,
9656 struct value *lhs, struct expression *exp,
9657 int *pos, LONGEST *indices, int num_indices,
9658 LONGEST low, LONGEST high)
9659{
9660 int i;
5ce64950 9661 int expr_pc = *pos + 1;
52ce6436
PH
9662
9663 for (i = 0; i < num_indices - 2; i += 2)
9664 {
9665 LONGEST ind;
5b4ee69b 9666
52ce6436
PH
9667 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9668 {
5ce64950 9669 int localpos;
5b4ee69b 9670
5ce64950
MS
9671 localpos = expr_pc;
9672 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9673 }
9674 }
9675 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9676}
9677
9678/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9679 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9680 modifying *SIZE as needed. It is an error if *SIZE exceeds
9681 MAX_SIZE. The resulting intervals do not overlap. */
9682static void
9683add_component_interval (LONGEST low, LONGEST high,
9684 LONGEST* indices, int *size, int max_size)
9685{
9686 int i, j;
5b4ee69b 9687
52ce6436
PH
9688 for (i = 0; i < *size; i += 2) {
9689 if (high >= indices[i] && low <= indices[i + 1])
9690 {
9691 int kh;
5b4ee69b 9692
52ce6436
PH
9693 for (kh = i + 2; kh < *size; kh += 2)
9694 if (high < indices[kh])
9695 break;
9696 if (low < indices[i])
9697 indices[i] = low;
9698 indices[i + 1] = indices[kh - 1];
9699 if (high > indices[i + 1])
9700 indices[i + 1] = high;
9701 memcpy (indices + i + 2, indices + kh, *size - kh);
9702 *size -= kh - i - 2;
9703 return;
9704 }
9705 else if (high < indices[i])
9706 break;
9707 }
9708
9709 if (*size == max_size)
9710 error (_("Internal error: miscounted aggregate components."));
9711 *size += 2;
9712 for (j = *size-1; j >= i+2; j -= 1)
9713 indices[j] = indices[j - 2];
9714 indices[i] = low;
9715 indices[i + 1] = high;
9716}
9717
6e48bd2c
JB
9718/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9719 is different. */
9720
9721static struct value *
b7e22850 9722ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9723{
9724 if (type == ada_check_typedef (value_type (arg2)))
9725 return arg2;
9726
b2188a06 9727 if (ada_is_gnat_encoded_fixed_point_type (type))
95f39a5b 9728 return cast_to_fixed (type, arg2);
6e48bd2c 9729
b2188a06 9730 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 9731 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9732
9733 return value_cast (type, arg2);
9734}
9735
284614f0
JB
9736/* Evaluating Ada expressions, and printing their result.
9737 ------------------------------------------------------
9738
21649b50
JB
9739 1. Introduction:
9740 ----------------
9741
284614f0
JB
9742 We usually evaluate an Ada expression in order to print its value.
9743 We also evaluate an expression in order to print its type, which
9744 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9745 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9746 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9747 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9748 similar.
9749
9750 Evaluating expressions is a little more complicated for Ada entities
9751 than it is for entities in languages such as C. The main reason for
9752 this is that Ada provides types whose definition might be dynamic.
9753 One example of such types is variant records. Or another example
9754 would be an array whose bounds can only be known at run time.
9755
9756 The following description is a general guide as to what should be
9757 done (and what should NOT be done) in order to evaluate an expression
9758 involving such types, and when. This does not cover how the semantic
9759 information is encoded by GNAT as this is covered separatly. For the
9760 document used as the reference for the GNAT encoding, see exp_dbug.ads
9761 in the GNAT sources.
9762
9763 Ideally, we should embed each part of this description next to its
9764 associated code. Unfortunately, the amount of code is so vast right
9765 now that it's hard to see whether the code handling a particular
9766 situation might be duplicated or not. One day, when the code is
9767 cleaned up, this guide might become redundant with the comments
9768 inserted in the code, and we might want to remove it.
9769
21649b50
JB
9770 2. ``Fixing'' an Entity, the Simple Case:
9771 -----------------------------------------
9772
284614f0
JB
9773 When evaluating Ada expressions, the tricky issue is that they may
9774 reference entities whose type contents and size are not statically
9775 known. Consider for instance a variant record:
9776
9777 type Rec (Empty : Boolean := True) is record
9778 case Empty is
9779 when True => null;
9780 when False => Value : Integer;
9781 end case;
9782 end record;
9783 Yes : Rec := (Empty => False, Value => 1);
9784 No : Rec := (empty => True);
9785
9786 The size and contents of that record depends on the value of the
9787 descriminant (Rec.Empty). At this point, neither the debugging
9788 information nor the associated type structure in GDB are able to
9789 express such dynamic types. So what the debugger does is to create
9790 "fixed" versions of the type that applies to the specific object.
30baf67b 9791 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9792 which means creating its associated fixed type.
9793
9794 Example: when printing the value of variable "Yes" above, its fixed
9795 type would look like this:
9796
9797 type Rec is record
9798 Empty : Boolean;
9799 Value : Integer;
9800 end record;
9801
9802 On the other hand, if we printed the value of "No", its fixed type
9803 would become:
9804
9805 type Rec is record
9806 Empty : Boolean;
9807 end record;
9808
9809 Things become a little more complicated when trying to fix an entity
9810 with a dynamic type that directly contains another dynamic type,
9811 such as an array of variant records, for instance. There are
9812 two possible cases: Arrays, and records.
9813
21649b50
JB
9814 3. ``Fixing'' Arrays:
9815 ---------------------
9816
9817 The type structure in GDB describes an array in terms of its bounds,
9818 and the type of its elements. By design, all elements in the array
9819 have the same type and we cannot represent an array of variant elements
9820 using the current type structure in GDB. When fixing an array,
9821 we cannot fix the array element, as we would potentially need one
9822 fixed type per element of the array. As a result, the best we can do
9823 when fixing an array is to produce an array whose bounds and size
9824 are correct (allowing us to read it from memory), but without having
9825 touched its element type. Fixing each element will be done later,
9826 when (if) necessary.
9827
9828 Arrays are a little simpler to handle than records, because the same
9829 amount of memory is allocated for each element of the array, even if
1b536f04 9830 the amount of space actually used by each element differs from element
21649b50 9831 to element. Consider for instance the following array of type Rec:
284614f0
JB
9832
9833 type Rec_Array is array (1 .. 2) of Rec;
9834
1b536f04
JB
9835 The actual amount of memory occupied by each element might be different
9836 from element to element, depending on the value of their discriminant.
21649b50 9837 But the amount of space reserved for each element in the array remains
1b536f04 9838 fixed regardless. So we simply need to compute that size using
21649b50
JB
9839 the debugging information available, from which we can then determine
9840 the array size (we multiply the number of elements of the array by
9841 the size of each element).
9842
9843 The simplest case is when we have an array of a constrained element
9844 type. For instance, consider the following type declarations:
9845
9846 type Bounded_String (Max_Size : Integer) is
9847 Length : Integer;
9848 Buffer : String (1 .. Max_Size);
9849 end record;
9850 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9851
9852 In this case, the compiler describes the array as an array of
9853 variable-size elements (identified by its XVS suffix) for which
9854 the size can be read in the parallel XVZ variable.
9855
9856 In the case of an array of an unconstrained element type, the compiler
9857 wraps the array element inside a private PAD type. This type should not
9858 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9859 that we also use the adjective "aligner" in our code to designate
9860 these wrapper types.
9861
1b536f04 9862 In some cases, the size allocated for each element is statically
21649b50
JB
9863 known. In that case, the PAD type already has the correct size,
9864 and the array element should remain unfixed.
9865
9866 But there are cases when this size is not statically known.
9867 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9868
9869 type Dynamic is array (1 .. Five) of Integer;
9870 type Wrapper (Has_Length : Boolean := False) is record
9871 Data : Dynamic;
9872 case Has_Length is
9873 when True => Length : Integer;
9874 when False => null;
9875 end case;
9876 end record;
9877 type Wrapper_Array is array (1 .. 2) of Wrapper;
9878
9879 Hello : Wrapper_Array := (others => (Has_Length => True,
9880 Data => (others => 17),
9881 Length => 1));
9882
9883
9884 The debugging info would describe variable Hello as being an
9885 array of a PAD type. The size of that PAD type is not statically
9886 known, but can be determined using a parallel XVZ variable.
9887 In that case, a copy of the PAD type with the correct size should
9888 be used for the fixed array.
9889
21649b50
JB
9890 3. ``Fixing'' record type objects:
9891 ----------------------------------
9892
9893 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9894 record types. In this case, in order to compute the associated
9895 fixed type, we need to determine the size and offset of each of
9896 its components. This, in turn, requires us to compute the fixed
9897 type of each of these components.
9898
9899 Consider for instance the example:
9900
9901 type Bounded_String (Max_Size : Natural) is record
9902 Str : String (1 .. Max_Size);
9903 Length : Natural;
9904 end record;
9905 My_String : Bounded_String (Max_Size => 10);
9906
9907 In that case, the position of field "Length" depends on the size
9908 of field Str, which itself depends on the value of the Max_Size
21649b50 9909 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9910 we need to fix the type of field Str. Therefore, fixing a variant
9911 record requires us to fix each of its components.
9912
9913 However, if a component does not have a dynamic size, the component
9914 should not be fixed. In particular, fields that use a PAD type
9915 should not fixed. Here is an example where this might happen
9916 (assuming type Rec above):
9917
9918 type Container (Big : Boolean) is record
9919 First : Rec;
9920 After : Integer;
9921 case Big is
9922 when True => Another : Integer;
9923 when False => null;
9924 end case;
9925 end record;
9926 My_Container : Container := (Big => False,
9927 First => (Empty => True),
9928 After => 42);
9929
9930 In that example, the compiler creates a PAD type for component First,
9931 whose size is constant, and then positions the component After just
9932 right after it. The offset of component After is therefore constant
9933 in this case.
9934
9935 The debugger computes the position of each field based on an algorithm
9936 that uses, among other things, the actual position and size of the field
21649b50
JB
9937 preceding it. Let's now imagine that the user is trying to print
9938 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9939 end up computing the offset of field After based on the size of the
9940 fixed version of field First. And since in our example First has
9941 only one actual field, the size of the fixed type is actually smaller
9942 than the amount of space allocated to that field, and thus we would
9943 compute the wrong offset of field After.
9944
21649b50
JB
9945 To make things more complicated, we need to watch out for dynamic
9946 components of variant records (identified by the ___XVL suffix in
9947 the component name). Even if the target type is a PAD type, the size
9948 of that type might not be statically known. So the PAD type needs
9949 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9950 we might end up with the wrong size for our component. This can be
9951 observed with the following type declarations:
284614f0
JB
9952
9953 type Octal is new Integer range 0 .. 7;
9954 type Octal_Array is array (Positive range <>) of Octal;
9955 pragma Pack (Octal_Array);
9956
9957 type Octal_Buffer (Size : Positive) is record
9958 Buffer : Octal_Array (1 .. Size);
9959 Length : Integer;
9960 end record;
9961
9962 In that case, Buffer is a PAD type whose size is unset and needs
9963 to be computed by fixing the unwrapped type.
9964
21649b50
JB
9965 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9966 ----------------------------------------------------------
9967
9968 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9969 thus far, be actually fixed?
9970
9971 The answer is: Only when referencing that element. For instance
9972 when selecting one component of a record, this specific component
9973 should be fixed at that point in time. Or when printing the value
9974 of a record, each component should be fixed before its value gets
9975 printed. Similarly for arrays, the element of the array should be
9976 fixed when printing each element of the array, or when extracting
9977 one element out of that array. On the other hand, fixing should
9978 not be performed on the elements when taking a slice of an array!
9979
31432a67 9980 Note that one of the side effects of miscomputing the offset and
284614f0
JB
9981 size of each field is that we end up also miscomputing the size
9982 of the containing type. This can have adverse results when computing
9983 the value of an entity. GDB fetches the value of an entity based
9984 on the size of its type, and thus a wrong size causes GDB to fetch
9985 the wrong amount of memory. In the case where the computed size is
9986 too small, GDB fetches too little data to print the value of our
31432a67 9987 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
9988 past the buffer containing the data =:-o. */
9989
ced9779b
JB
9990/* Evaluate a subexpression of EXP, at index *POS, and return a value
9991 for that subexpression cast to TO_TYPE. Advance *POS over the
9992 subexpression. */
9993
9994static value *
9995ada_evaluate_subexp_for_cast (expression *exp, int *pos,
9996 enum noside noside, struct type *to_type)
9997{
9998 int pc = *pos;
9999
10000 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10001 || exp->elts[pc].opcode == OP_VAR_VALUE)
10002 {
10003 (*pos) += 4;
10004
10005 value *val;
10006 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10007 {
10008 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10009 return value_zero (to_type, not_lval);
10010
10011 val = evaluate_var_msym_value (noside,
10012 exp->elts[pc + 1].objfile,
10013 exp->elts[pc + 2].msymbol);
10014 }
10015 else
10016 val = evaluate_var_value (noside,
10017 exp->elts[pc + 1].block,
10018 exp->elts[pc + 2].symbol);
10019
10020 if (noside == EVAL_SKIP)
10021 return eval_skip_value (exp);
10022
10023 val = ada_value_cast (to_type, val);
10024
10025 /* Follow the Ada language semantics that do not allow taking
10026 an address of the result of a cast (view conversion in Ada). */
10027 if (VALUE_LVAL (val) == lval_memory)
10028 {
10029 if (value_lazy (val))
10030 value_fetch_lazy (val);
10031 VALUE_LVAL (val) = not_lval;
10032 }
10033 return val;
10034 }
10035
10036 value *val = evaluate_subexp (to_type, exp, pos, noside);
10037 if (noside == EVAL_SKIP)
10038 return eval_skip_value (exp);
10039 return ada_value_cast (to_type, val);
10040}
10041
284614f0
JB
10042/* Implement the evaluate_exp routine in the exp_descriptor structure
10043 for the Ada language. */
10044
52ce6436 10045static struct value *
ebf56fd3 10046ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10047 int *pos, enum noside noside)
14f9c5c9
AS
10048{
10049 enum exp_opcode op;
b5385fc0 10050 int tem;
14f9c5c9 10051 int pc;
5ec18f2b 10052 int preeval_pos;
14f9c5c9
AS
10053 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10054 struct type *type;
52ce6436 10055 int nargs, oplen;
d2e4a39e 10056 struct value **argvec;
14f9c5c9 10057
d2e4a39e
AS
10058 pc = *pos;
10059 *pos += 1;
14f9c5c9
AS
10060 op = exp->elts[pc].opcode;
10061
d2e4a39e 10062 switch (op)
14f9c5c9
AS
10063 {
10064 default:
10065 *pos -= 1;
6e48bd2c 10066 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10067
10068 if (noside == EVAL_NORMAL)
10069 arg1 = unwrap_value (arg1);
6e48bd2c 10070
edd079d9 10071 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10072 then we need to perform the conversion manually, because
10073 evaluate_subexp_standard doesn't do it. This conversion is
10074 necessary in Ada because the different kinds of float/fixed
10075 types in Ada have different representations.
10076
10077 Similarly, we need to perform the conversion from OP_LONG
10078 ourselves. */
edd079d9 10079 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10080 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10081
10082 return arg1;
4c4b4cd2
PH
10083
10084 case OP_STRING:
10085 {
76a01679 10086 struct value *result;
5b4ee69b 10087
76a01679
JB
10088 *pos -= 1;
10089 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10090 /* The result type will have code OP_STRING, bashed there from
10091 OP_ARRAY. Bash it back. */
78134374 10092 if (value_type (result)->code () == TYPE_CODE_STRING)
67607e24 10093 value_type (result)->set_code (TYPE_CODE_ARRAY);
76a01679 10094 return result;
4c4b4cd2 10095 }
14f9c5c9
AS
10096
10097 case UNOP_CAST:
10098 (*pos) += 2;
10099 type = exp->elts[pc + 1].type;
ced9779b 10100 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10101
4c4b4cd2
PH
10102 case UNOP_QUAL:
10103 (*pos) += 2;
10104 type = exp->elts[pc + 1].type;
10105 return ada_evaluate_subexp (type, exp, pos, noside);
10106
14f9c5c9
AS
10107 case BINOP_ASSIGN:
10108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10109 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10110 {
10111 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10112 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10113 return arg1;
10114 return ada_value_assign (arg1, arg1);
10115 }
003f3813
JB
10116 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10117 except if the lhs of our assignment is a convenience variable.
10118 In the case of assigning to a convenience variable, the lhs
10119 should be exactly the result of the evaluation of the rhs. */
10120 type = value_type (arg1);
10121 if (VALUE_LVAL (arg1) == lval_internalvar)
10122 type = NULL;
10123 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10124 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10125 return arg1;
f411722c
TT
10126 if (VALUE_LVAL (arg1) == lval_internalvar)
10127 {
10128 /* Nothing. */
10129 }
b2188a06 10130 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10131 arg2 = cast_to_fixed (value_type (arg1), arg2);
b2188a06 10132 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
76a01679 10133 error
323e0a4a 10134 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10135 else
df407dfe 10136 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10137 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10138
10139 case BINOP_ADD:
10140 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10141 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10142 if (noside == EVAL_SKIP)
4c4b4cd2 10143 goto nosideret;
78134374 10144 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10145 return (value_from_longest
10146 (value_type (arg1),
10147 value_as_long (arg1) + value_as_long (arg2)));
78134374 10148 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10149 return (value_from_longest
10150 (value_type (arg2),
10151 value_as_long (arg1) + value_as_long (arg2)));
b2188a06
JB
10152 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10153 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10154 && value_type (arg1) != value_type (arg2))
323e0a4a 10155 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10156 /* Do the addition, and cast the result to the type of the first
10157 argument. We cannot cast the result to a reference type, so if
10158 ARG1 is a reference type, find its underlying type. */
10159 type = value_type (arg1);
78134374 10160 while (type->code () == TYPE_CODE_REF)
b7789565 10161 type = TYPE_TARGET_TYPE (type);
f44316fa 10162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10163 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10164
10165 case BINOP_SUB:
10166 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10167 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10168 if (noside == EVAL_SKIP)
4c4b4cd2 10169 goto nosideret;
78134374 10170 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10171 return (value_from_longest
10172 (value_type (arg1),
10173 value_as_long (arg1) - value_as_long (arg2)));
78134374 10174 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10175 return (value_from_longest
10176 (value_type (arg2),
10177 value_as_long (arg1) - value_as_long (arg2)));
b2188a06
JB
10178 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10179 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10180 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10181 error (_("Operands of fixed-point subtraction "
10182 "must have the same type"));
b7789565
JB
10183 /* Do the substraction, and cast the result to the type of the first
10184 argument. We cannot cast the result to a reference type, so if
10185 ARG1 is a reference type, find its underlying type. */
10186 type = value_type (arg1);
78134374 10187 while (type->code () == TYPE_CODE_REF)
b7789565 10188 type = TYPE_TARGET_TYPE (type);
f44316fa 10189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10190 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10191
10192 case BINOP_MUL:
10193 case BINOP_DIV:
e1578042
JB
10194 case BINOP_REM:
10195 case BINOP_MOD:
14f9c5c9
AS
10196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10197 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10198 if (noside == EVAL_SKIP)
4c4b4cd2 10199 goto nosideret;
e1578042 10200 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10201 {
10202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10203 return value_zero (value_type (arg1), not_lval);
10204 }
14f9c5c9 10205 else
4c4b4cd2 10206 {
a53b7a21 10207 type = builtin_type (exp->gdbarch)->builtin_double;
b2188a06 10208 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
a53b7a21 10209 arg1 = cast_from_fixed (type, arg1);
b2188a06 10210 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10211 arg2 = cast_from_fixed (type, arg2);
f44316fa 10212 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10213 return ada_value_binop (arg1, arg2, op);
10214 }
10215
4c4b4cd2
PH
10216 case BINOP_EQUAL:
10217 case BINOP_NOTEQUAL:
14f9c5c9 10218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10219 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10220 if (noside == EVAL_SKIP)
76a01679 10221 goto nosideret;
4c4b4cd2 10222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10223 tem = 0;
4c4b4cd2 10224 else
f44316fa
UW
10225 {
10226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10227 tem = ada_value_equal (arg1, arg2);
10228 }
4c4b4cd2 10229 if (op == BINOP_NOTEQUAL)
76a01679 10230 tem = !tem;
fbb06eb1
UW
10231 type = language_bool_type (exp->language_defn, exp->gdbarch);
10232 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10233
10234 case UNOP_NEG:
10235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10236 if (noside == EVAL_SKIP)
10237 goto nosideret;
b2188a06 10238 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10239 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10240 else
f44316fa
UW
10241 {
10242 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10243 return value_neg (arg1);
10244 }
4c4b4cd2 10245
2330c6c6
JB
10246 case BINOP_LOGICAL_AND:
10247 case BINOP_LOGICAL_OR:
10248 case UNOP_LOGICAL_NOT:
000d5124
JB
10249 {
10250 struct value *val;
10251
10252 *pos -= 1;
10253 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10254 type = language_bool_type (exp->language_defn, exp->gdbarch);
10255 return value_cast (type, val);
000d5124 10256 }
2330c6c6
JB
10257
10258 case BINOP_BITWISE_AND:
10259 case BINOP_BITWISE_IOR:
10260 case BINOP_BITWISE_XOR:
000d5124
JB
10261 {
10262 struct value *val;
10263
10264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10265 *pos = pc;
10266 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10267
10268 return value_cast (value_type (arg1), val);
10269 }
2330c6c6 10270
14f9c5c9
AS
10271 case OP_VAR_VALUE:
10272 *pos -= 1;
6799def4 10273
14f9c5c9 10274 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10275 {
10276 *pos += 4;
10277 goto nosideret;
10278 }
da5c522f
JB
10279
10280 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10281 /* Only encountered when an unresolved symbol occurs in a
10282 context other than a function call, in which case, it is
52ce6436 10283 invalid. */
323e0a4a 10284 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10285 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10286
10287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10288 {
0c1f74cf 10289 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10290 /* Check to see if this is a tagged type. We also need to handle
10291 the case where the type is a reference to a tagged type, but
10292 we have to be careful to exclude pointers to tagged types.
10293 The latter should be shown as usual (as a pointer), whereas
10294 a reference should mostly be transparent to the user. */
10295 if (ada_is_tagged_type (type, 0)
78134374 10296 || (type->code () == TYPE_CODE_REF
31dbc1c5 10297 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10298 {
10299 /* Tagged types are a little special in the fact that the real
10300 type is dynamic and can only be determined by inspecting the
10301 object's tag. This means that we need to get the object's
10302 value first (EVAL_NORMAL) and then extract the actual object
10303 type from its tag.
10304
10305 Note that we cannot skip the final step where we extract
10306 the object type from its tag, because the EVAL_NORMAL phase
10307 results in dynamic components being resolved into fixed ones.
10308 This can cause problems when trying to print the type
10309 description of tagged types whose parent has a dynamic size:
10310 We use the type name of the "_parent" component in order
10311 to print the name of the ancestor type in the type description.
10312 If that component had a dynamic size, the resolution into
10313 a fixed type would result in the loss of that type name,
10314 thus preventing us from printing the name of the ancestor
10315 type in the type description. */
10316 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10317
78134374 10318 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10319 {
10320 struct type *actual_type;
10321
10322 actual_type = type_from_tag (ada_value_tag (arg1));
10323 if (actual_type == NULL)
10324 /* If, for some reason, we were unable to determine
10325 the actual type from the tag, then use the static
10326 approximation that we just computed as a fallback.
10327 This can happen if the debugging information is
10328 incomplete, for instance. */
10329 actual_type = type;
10330 return value_zero (actual_type, not_lval);
10331 }
10332 else
10333 {
10334 /* In the case of a ref, ada_coerce_ref takes care
10335 of determining the actual type. But the evaluation
10336 should return a ref as it should be valid to ask
10337 for its address; so rebuild a ref after coerce. */
10338 arg1 = ada_coerce_ref (arg1);
a65cfae5 10339 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10340 }
10341 }
0c1f74cf 10342
84754697
JB
10343 /* Records and unions for which GNAT encodings have been
10344 generated need to be statically fixed as well.
10345 Otherwise, non-static fixing produces a type where
10346 all dynamic properties are removed, which prevents "ptype"
10347 from being able to completely describe the type.
10348 For instance, a case statement in a variant record would be
10349 replaced by the relevant components based on the actual
10350 value of the discriminants. */
78134374 10351 if ((type->code () == TYPE_CODE_STRUCT
84754697 10352 && dynamic_template_type (type) != NULL)
78134374 10353 || (type->code () == TYPE_CODE_UNION
84754697
JB
10354 && ada_find_parallel_type (type, "___XVU") != NULL))
10355 {
10356 *pos += 4;
10357 return value_zero (to_static_fixed_type (type), not_lval);
10358 }
4c4b4cd2 10359 }
da5c522f
JB
10360
10361 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10362 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10363
10364 case OP_FUNCALL:
10365 (*pos) += 2;
10366
10367 /* Allocate arg vector, including space for the function to be
10368 called in argvec[0] and a terminating NULL. */
10369 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10370 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10371
10372 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10373 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10374 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10375 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10376 else
10377 {
10378 for (tem = 0; tem <= nargs; tem += 1)
10379 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10380 argvec[tem] = 0;
10381
10382 if (noside == EVAL_SKIP)
10383 goto nosideret;
10384 }
10385
ad82864c
JB
10386 if (ada_is_constrained_packed_array_type
10387 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10388 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10389 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
284614f0
JB
10390 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10391 /* This is a packed array that has already been fixed, and
10392 therefore already coerced to a simple array. Nothing further
10393 to do. */
10394 ;
78134374 10395 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10396 {
10397 /* Make sure we dereference references so that all the code below
10398 feels like it's really handling the referenced value. Wrapping
10399 types (for alignment) may be there, so make sure we strip them as
10400 well. */
10401 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10402 }
78134374 10403 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10404 && VALUE_LVAL (argvec[0]) == lval_memory)
10405 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10406
df407dfe 10407 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10408
10409 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10410 them. So, if this is an array typedef (encoding use for array
10411 access types encoded as fat pointers), strip it now. */
78134374 10412 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10413 type = ada_typedef_target_type (type);
10414
78134374 10415 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 10416 {
78134374 10417 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
4c4b4cd2
PH
10418 {
10419 case TYPE_CODE_FUNC:
61ee279c 10420 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10421 break;
10422 case TYPE_CODE_ARRAY:
10423 break;
10424 case TYPE_CODE_STRUCT:
10425 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10426 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10427 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10428 break;
10429 default:
323e0a4a 10430 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10431 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10432 break;
10433 }
10434 }
10435
78134374 10436 switch (type->code ())
4c4b4cd2
PH
10437 {
10438 case TYPE_CODE_FUNC:
10439 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10440 {
7022349d
PA
10441 if (TYPE_TARGET_TYPE (type) == NULL)
10442 error_call_unknown_return_type (NULL);
10443 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10444 }
e71585ff
PA
10445 return call_function_by_hand (argvec[0], NULL,
10446 gdb::make_array_view (argvec + 1,
10447 nargs));
c8ea1972
PH
10448 case TYPE_CODE_INTERNAL_FUNCTION:
10449 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10450 /* We don't know anything about what the internal
10451 function might return, but we have to return
10452 something. */
10453 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10454 not_lval);
10455 else
10456 return call_internal_function (exp->gdbarch, exp->language_defn,
10457 argvec[0], nargs, argvec + 1);
10458
4c4b4cd2
PH
10459 case TYPE_CODE_STRUCT:
10460 {
10461 int arity;
10462
4c4b4cd2
PH
10463 arity = ada_array_arity (type);
10464 type = ada_array_element_type (type, nargs);
10465 if (type == NULL)
323e0a4a 10466 error (_("cannot subscript or call a record"));
4c4b4cd2 10467 if (arity != nargs)
323e0a4a 10468 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10469 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10470 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10471 return
10472 unwrap_value (ada_value_subscript
10473 (argvec[0], nargs, argvec + 1));
10474 }
10475 case TYPE_CODE_ARRAY:
10476 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10477 {
10478 type = ada_array_element_type (type, nargs);
10479 if (type == NULL)
323e0a4a 10480 error (_("element type of array unknown"));
4c4b4cd2 10481 else
0a07e705 10482 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10483 }
10484 return
10485 unwrap_value (ada_value_subscript
10486 (ada_coerce_to_simple_array (argvec[0]),
10487 nargs, argvec + 1));
10488 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10489 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10490 {
deede10c 10491 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10492 type = ada_array_element_type (type, nargs);
10493 if (type == NULL)
323e0a4a 10494 error (_("element type of array unknown"));
4c4b4cd2 10495 else
0a07e705 10496 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10497 }
10498 return
deede10c
JB
10499 unwrap_value (ada_value_ptr_subscript (argvec[0],
10500 nargs, argvec + 1));
4c4b4cd2
PH
10501
10502 default:
e1d5a0d2
PH
10503 error (_("Attempt to index or call something other than an "
10504 "array or function"));
4c4b4cd2
PH
10505 }
10506
10507 case TERNOP_SLICE:
10508 {
10509 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10510 struct value *low_bound_val =
10511 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10512 struct value *high_bound_val =
10513 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10514 LONGEST low_bound;
10515 LONGEST high_bound;
5b4ee69b 10516
994b9211
AC
10517 low_bound_val = coerce_ref (low_bound_val);
10518 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10519 low_bound = value_as_long (low_bound_val);
10520 high_bound = value_as_long (high_bound_val);
963a6417 10521
4c4b4cd2
PH
10522 if (noside == EVAL_SKIP)
10523 goto nosideret;
10524
4c4b4cd2
PH
10525 /* If this is a reference to an aligner type, then remove all
10526 the aligners. */
78134374 10527 if (value_type (array)->code () == TYPE_CODE_REF
df407dfe
AC
10528 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10529 TYPE_TARGET_TYPE (value_type (array)) =
10530 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10531
ad82864c 10532 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10533 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10534
10535 /* If this is a reference to an array or an array lvalue,
10536 convert to a pointer. */
78134374
SM
10537 if (value_type (array)->code () == TYPE_CODE_REF
10538 || (value_type (array)->code () == TYPE_CODE_ARRAY
4c4b4cd2
PH
10539 && VALUE_LVAL (array) == lval_memory))
10540 array = value_addr (array);
10541
1265e4aa 10542 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10543 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10544 (value_type (array))))
bff8c71f
TT
10545 return empty_array (ada_type_of_array (array, 0), low_bound,
10546 high_bound);
4c4b4cd2
PH
10547
10548 array = ada_coerce_to_simple_array_ptr (array);
10549
714e53ab
PH
10550 /* If we have more than one level of pointer indirection,
10551 dereference the value until we get only one level. */
78134374
SM
10552 while (value_type (array)->code () == TYPE_CODE_PTR
10553 && (TYPE_TARGET_TYPE (value_type (array))->code ()
714e53ab
PH
10554 == TYPE_CODE_PTR))
10555 array = value_ind (array);
10556
10557 /* Make sure we really do have an array type before going further,
10558 to avoid a SEGV when trying to get the index type or the target
10559 type later down the road if the debug info generated by
10560 the compiler is incorrect or incomplete. */
df407dfe 10561 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10562 error (_("cannot take slice of non-array"));
714e53ab 10563
78134374 10564 if (ada_check_typedef (value_type (array))->code ()
828292f2 10565 == TYPE_CODE_PTR)
4c4b4cd2 10566 {
828292f2
JB
10567 struct type *type0 = ada_check_typedef (value_type (array));
10568
0b5d8877 10569 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10570 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10571 else
10572 {
10573 struct type *arr_type0 =
828292f2 10574 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10575
f5938064
JG
10576 return ada_value_slice_from_ptr (array, arr_type0,
10577 longest_to_int (low_bound),
10578 longest_to_int (high_bound));
4c4b4cd2
PH
10579 }
10580 }
10581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10582 return array;
10583 else if (high_bound < low_bound)
bff8c71f 10584 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10585 else
529cad9c
PH
10586 return ada_value_slice (array, longest_to_int (low_bound),
10587 longest_to_int (high_bound));
4c4b4cd2 10588 }
14f9c5c9 10589
4c4b4cd2
PH
10590 case UNOP_IN_RANGE:
10591 (*pos) += 2;
10592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10593 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10594
14f9c5c9 10595 if (noside == EVAL_SKIP)
4c4b4cd2 10596 goto nosideret;
14f9c5c9 10597
78134374 10598 switch (type->code ())
4c4b4cd2
PH
10599 {
10600 default:
e1d5a0d2
PH
10601 lim_warning (_("Membership test incompletely implemented; "
10602 "always returns true"));
fbb06eb1
UW
10603 type = language_bool_type (exp->language_defn, exp->gdbarch);
10604 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10605
10606 case TYPE_CODE_RANGE:
030b4912
UW
10607 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10608 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10610 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10611 type = language_bool_type (exp->language_defn, exp->gdbarch);
10612 return
10613 value_from_longest (type,
4c4b4cd2
PH
10614 (value_less (arg1, arg3)
10615 || value_equal (arg1, arg3))
10616 && (value_less (arg2, arg1)
10617 || value_equal (arg2, arg1)));
10618 }
10619
10620 case BINOP_IN_BOUNDS:
14f9c5c9 10621 (*pos) += 2;
4c4b4cd2
PH
10622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10623 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10624
4c4b4cd2
PH
10625 if (noside == EVAL_SKIP)
10626 goto nosideret;
14f9c5c9 10627
4c4b4cd2 10628 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10629 {
10630 type = language_bool_type (exp->language_defn, exp->gdbarch);
10631 return value_zero (type, not_lval);
10632 }
14f9c5c9 10633
4c4b4cd2 10634 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10635
1eea4ebd
UW
10636 type = ada_index_type (value_type (arg2), tem, "range");
10637 if (!type)
10638 type = value_type (arg1);
14f9c5c9 10639
1eea4ebd
UW
10640 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10641 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10642
f44316fa
UW
10643 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10644 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10645 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10646 return
fbb06eb1 10647 value_from_longest (type,
4c4b4cd2
PH
10648 (value_less (arg1, arg3)
10649 || value_equal (arg1, arg3))
10650 && (value_less (arg2, arg1)
10651 || value_equal (arg2, arg1)));
10652
10653 case TERNOP_IN_RANGE:
10654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10656 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10657
10658 if (noside == EVAL_SKIP)
10659 goto nosideret;
10660
f44316fa
UW
10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10662 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10663 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10664 return
fbb06eb1 10665 value_from_longest (type,
4c4b4cd2
PH
10666 (value_less (arg1, arg3)
10667 || value_equal (arg1, arg3))
10668 && (value_less (arg2, arg1)
10669 || value_equal (arg2, arg1)));
10670
10671 case OP_ATR_FIRST:
10672 case OP_ATR_LAST:
10673 case OP_ATR_LENGTH:
10674 {
76a01679 10675 struct type *type_arg;
5b4ee69b 10676
76a01679
JB
10677 if (exp->elts[*pos].opcode == OP_TYPE)
10678 {
10679 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10680 arg1 = NULL;
5bc23cb3 10681 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10682 }
10683 else
10684 {
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10686 type_arg = NULL;
10687 }
10688
10689 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10690 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10691 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10692 *pos += 4;
10693
10694 if (noside == EVAL_SKIP)
10695 goto nosideret;
680e1bee
TT
10696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10697 {
10698 if (type_arg == NULL)
10699 type_arg = value_type (arg1);
76a01679 10700
680e1bee
TT
10701 if (ada_is_constrained_packed_array_type (type_arg))
10702 type_arg = decode_constrained_packed_array_type (type_arg);
10703
10704 if (!discrete_type_p (type_arg))
10705 {
10706 switch (op)
10707 {
10708 default: /* Should never happen. */
10709 error (_("unexpected attribute encountered"));
10710 case OP_ATR_FIRST:
10711 case OP_ATR_LAST:
10712 type_arg = ada_index_type (type_arg, tem,
10713 ada_attribute_name (op));
10714 break;
10715 case OP_ATR_LENGTH:
10716 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10717 break;
10718 }
10719 }
10720
10721 return value_zero (type_arg, not_lval);
10722 }
10723 else if (type_arg == NULL)
76a01679
JB
10724 {
10725 arg1 = ada_coerce_ref (arg1);
10726
ad82864c 10727 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10728 arg1 = ada_coerce_to_simple_array (arg1);
10729
aa4fb036 10730 if (op == OP_ATR_LENGTH)
1eea4ebd 10731 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10732 else
10733 {
10734 type = ada_index_type (value_type (arg1), tem,
10735 ada_attribute_name (op));
10736 if (type == NULL)
10737 type = builtin_type (exp->gdbarch)->builtin_int;
10738 }
76a01679 10739
76a01679
JB
10740 switch (op)
10741 {
10742 default: /* Should never happen. */
323e0a4a 10743 error (_("unexpected attribute encountered"));
76a01679 10744 case OP_ATR_FIRST:
1eea4ebd
UW
10745 return value_from_longest
10746 (type, ada_array_bound (arg1, tem, 0));
76a01679 10747 case OP_ATR_LAST:
1eea4ebd
UW
10748 return value_from_longest
10749 (type, ada_array_bound (arg1, tem, 1));
76a01679 10750 case OP_ATR_LENGTH:
1eea4ebd
UW
10751 return value_from_longest
10752 (type, ada_array_length (arg1, tem));
76a01679
JB
10753 }
10754 }
10755 else if (discrete_type_p (type_arg))
10756 {
10757 struct type *range_type;
0d5cff50 10758 const char *name = ada_type_name (type_arg);
5b4ee69b 10759
76a01679 10760 range_type = NULL;
78134374 10761 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
28c85d6c 10762 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10763 if (range_type == NULL)
10764 range_type = type_arg;
10765 switch (op)
10766 {
10767 default:
323e0a4a 10768 error (_("unexpected attribute encountered"));
76a01679 10769 case OP_ATR_FIRST:
690cc4eb 10770 return value_from_longest
43bbcdc2 10771 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10772 case OP_ATR_LAST:
690cc4eb 10773 return value_from_longest
43bbcdc2 10774 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10775 case OP_ATR_LENGTH:
323e0a4a 10776 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10777 }
10778 }
78134374 10779 else if (type_arg->code () == TYPE_CODE_FLT)
323e0a4a 10780 error (_("unimplemented type attribute"));
76a01679
JB
10781 else
10782 {
10783 LONGEST low, high;
10784
ad82864c
JB
10785 if (ada_is_constrained_packed_array_type (type_arg))
10786 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10787
aa4fb036 10788 if (op == OP_ATR_LENGTH)
1eea4ebd 10789 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10790 else
10791 {
10792 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10793 if (type == NULL)
10794 type = builtin_type (exp->gdbarch)->builtin_int;
10795 }
1eea4ebd 10796
76a01679
JB
10797 switch (op)
10798 {
10799 default:
323e0a4a 10800 error (_("unexpected attribute encountered"));
76a01679 10801 case OP_ATR_FIRST:
1eea4ebd 10802 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10803 return value_from_longest (type, low);
10804 case OP_ATR_LAST:
1eea4ebd 10805 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10806 return value_from_longest (type, high);
10807 case OP_ATR_LENGTH:
1eea4ebd
UW
10808 low = ada_array_bound_from_type (type_arg, tem, 0);
10809 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10810 return value_from_longest (type, high - low + 1);
10811 }
10812 }
14f9c5c9
AS
10813 }
10814
4c4b4cd2
PH
10815 case OP_ATR_TAG:
10816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10817 if (noside == EVAL_SKIP)
76a01679 10818 goto nosideret;
4c4b4cd2
PH
10819
10820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10821 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10822
10823 return ada_value_tag (arg1);
10824
10825 case OP_ATR_MIN:
10826 case OP_ATR_MAX:
10827 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10828 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10829 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10830 if (noside == EVAL_SKIP)
76a01679 10831 goto nosideret;
d2e4a39e 10832 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10833 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10834 else
f44316fa
UW
10835 {
10836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10837 return value_binop (arg1, arg2,
10838 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10839 }
14f9c5c9 10840
4c4b4cd2
PH
10841 case OP_ATR_MODULUS:
10842 {
31dedfee 10843 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10844
5b4ee69b 10845 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10846 if (noside == EVAL_SKIP)
10847 goto nosideret;
4c4b4cd2 10848
76a01679 10849 if (!ada_is_modular_type (type_arg))
323e0a4a 10850 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10851
76a01679
JB
10852 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10853 ada_modulus (type_arg));
4c4b4cd2
PH
10854 }
10855
10856
10857 case OP_ATR_POS:
10858 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10860 if (noside == EVAL_SKIP)
76a01679 10861 goto nosideret;
3cb382c9
UW
10862 type = builtin_type (exp->gdbarch)->builtin_int;
10863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10864 return value_zero (type, not_lval);
14f9c5c9 10865 else
3cb382c9 10866 return value_pos_atr (type, arg1);
14f9c5c9 10867
4c4b4cd2
PH
10868 case OP_ATR_SIZE:
10869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10870 type = value_type (arg1);
10871
10872 /* If the argument is a reference, then dereference its type, since
10873 the user is really asking for the size of the actual object,
10874 not the size of the pointer. */
78134374 10875 if (type->code () == TYPE_CODE_REF)
8c1c099f
JB
10876 type = TYPE_TARGET_TYPE (type);
10877
4c4b4cd2 10878 if (noside == EVAL_SKIP)
76a01679 10879 goto nosideret;
4c4b4cd2 10880 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10881 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10882 else
22601c15 10883 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10884 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10885
10886 case OP_ATR_VAL:
10887 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10888 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10889 type = exp->elts[pc + 2].type;
14f9c5c9 10890 if (noside == EVAL_SKIP)
76a01679 10891 goto nosideret;
4c4b4cd2 10892 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10893 return value_zero (type, not_lval);
4c4b4cd2 10894 else
76a01679 10895 return value_val_atr (type, arg1);
4c4b4cd2
PH
10896
10897 case BINOP_EXP:
10898 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10899 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
10902 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10903 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10904 else
f44316fa
UW
10905 {
10906 /* For integer exponentiation operations,
10907 only promote the first argument. */
10908 if (is_integral_type (value_type (arg2)))
10909 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10910 else
10911 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10912
10913 return value_binop (arg1, arg2, op);
10914 }
4c4b4cd2
PH
10915
10916 case UNOP_PLUS:
10917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 if (noside == EVAL_SKIP)
10919 goto nosideret;
10920 else
10921 return arg1;
10922
10923 case UNOP_ABS:
10924 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10925 if (noside == EVAL_SKIP)
10926 goto nosideret;
f44316fa 10927 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10928 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10929 return value_neg (arg1);
14f9c5c9 10930 else
4c4b4cd2 10931 return arg1;
14f9c5c9
AS
10932
10933 case UNOP_IND:
5ec18f2b 10934 preeval_pos = *pos;
6b0d7253 10935 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10936 if (noside == EVAL_SKIP)
4c4b4cd2 10937 goto nosideret;
df407dfe 10938 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10939 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10940 {
10941 if (ada_is_array_descriptor_type (type))
10942 /* GDB allows dereferencing GNAT array descriptors. */
10943 {
10944 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10945
4c4b4cd2 10946 if (arrType == NULL)
323e0a4a 10947 error (_("Attempt to dereference null array pointer."));
00a4c844 10948 return value_at_lazy (arrType, 0);
4c4b4cd2 10949 }
78134374
SM
10950 else if (type->code () == TYPE_CODE_PTR
10951 || type->code () == TYPE_CODE_REF
4c4b4cd2 10952 /* In C you can dereference an array to get the 1st elt. */
78134374 10953 || type->code () == TYPE_CODE_ARRAY)
714e53ab 10954 {
5ec18f2b
JG
10955 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10956 only be determined by inspecting the object's tag.
10957 This means that we need to evaluate completely the
10958 expression in order to get its type. */
10959
78134374
SM
10960 if ((type->code () == TYPE_CODE_REF
10961 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
10962 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10963 {
10964 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10965 EVAL_NORMAL);
10966 type = value_type (ada_value_ind (arg1));
10967 }
10968 else
10969 {
10970 type = to_static_fixed_type
10971 (ada_aligned_type
10972 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10973 }
c1b5a1a6 10974 ada_ensure_varsize_limit (type);
714e53ab
PH
10975 return value_zero (type, lval_memory);
10976 }
78134374 10977 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
10978 {
10979 /* GDB allows dereferencing an int. */
10980 if (expect_type == NULL)
10981 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10982 lval_memory);
10983 else
10984 {
10985 expect_type =
10986 to_static_fixed_type (ada_aligned_type (expect_type));
10987 return value_zero (expect_type, lval_memory);
10988 }
10989 }
4c4b4cd2 10990 else
323e0a4a 10991 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10992 }
0963b4bd 10993 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10994 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10995
78134374 10996 if (type->code () == TYPE_CODE_INT)
96967637
JB
10997 /* GDB allows dereferencing an int. If we were given
10998 the expect_type, then use that as the target type.
10999 Otherwise, assume that the target type is an int. */
11000 {
11001 if (expect_type != NULL)
11002 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11003 arg1));
11004 else
11005 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11006 (CORE_ADDR) value_as_address (arg1));
11007 }
6b0d7253 11008
4c4b4cd2
PH
11009 if (ada_is_array_descriptor_type (type))
11010 /* GDB allows dereferencing GNAT array descriptors. */
11011 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11012 else
4c4b4cd2 11013 return ada_value_ind (arg1);
14f9c5c9
AS
11014
11015 case STRUCTOP_STRUCT:
11016 tem = longest_to_int (exp->elts[pc + 1].longconst);
11017 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11018 preeval_pos = *pos;
14f9c5c9
AS
11019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020 if (noside == EVAL_SKIP)
4c4b4cd2 11021 goto nosideret;
14f9c5c9 11022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11023 {
df407dfe 11024 struct type *type1 = value_type (arg1);
5b4ee69b 11025
76a01679
JB
11026 if (ada_is_tagged_type (type1, 1))
11027 {
11028 type = ada_lookup_struct_elt_type (type1,
11029 &exp->elts[pc + 2].string,
988f6b3d 11030 1, 1);
5ec18f2b
JG
11031
11032 /* If the field is not found, check if it exists in the
11033 extension of this object's type. This means that we
11034 need to evaluate completely the expression. */
11035
76a01679 11036 if (type == NULL)
5ec18f2b
JG
11037 {
11038 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11039 EVAL_NORMAL);
11040 arg1 = ada_value_struct_elt (arg1,
11041 &exp->elts[pc + 2].string,
11042 0);
11043 arg1 = unwrap_value (arg1);
11044 type = value_type (ada_to_fixed_value (arg1));
11045 }
76a01679
JB
11046 }
11047 else
11048 type =
11049 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11050 0);
76a01679
JB
11051
11052 return value_zero (ada_aligned_type (type), lval_memory);
11053 }
14f9c5c9 11054 else
a579cd9a
MW
11055 {
11056 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11057 arg1 = unwrap_value (arg1);
11058 return ada_to_fixed_value (arg1);
11059 }
284614f0 11060
14f9c5c9 11061 case OP_TYPE:
4c4b4cd2
PH
11062 /* The value is not supposed to be used. This is here to make it
11063 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11064 (*pos) += 2;
11065 if (noside == EVAL_SKIP)
4c4b4cd2 11066 goto nosideret;
14f9c5c9 11067 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11068 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11069 else
323e0a4a 11070 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11071
11072 case OP_AGGREGATE:
11073 case OP_CHOICES:
11074 case OP_OTHERS:
11075 case OP_DISCRETE_RANGE:
11076 case OP_POSITIONAL:
11077 case OP_NAME:
11078 if (noside == EVAL_NORMAL)
11079 switch (op)
11080 {
11081 case OP_NAME:
11082 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11083 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11084 case OP_AGGREGATE:
11085 error (_("Aggregates only allowed on the right of an assignment"));
11086 default:
0963b4bd
MS
11087 internal_error (__FILE__, __LINE__,
11088 _("aggregate apparently mangled"));
52ce6436
PH
11089 }
11090
11091 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11092 *pos += oplen - 1;
11093 for (tem = 0; tem < nargs; tem += 1)
11094 ada_evaluate_subexp (NULL, exp, pos, noside);
11095 goto nosideret;
14f9c5c9
AS
11096 }
11097
11098nosideret:
ced9779b 11099 return eval_skip_value (exp);
14f9c5c9 11100}
14f9c5c9 11101\f
d2e4a39e 11102
4c4b4cd2 11103 /* Fixed point */
14f9c5c9
AS
11104
11105/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11106 type name that encodes the 'small and 'delta information.
4c4b4cd2 11107 Otherwise, return NULL. */
14f9c5c9 11108
d2e4a39e 11109static const char *
b2188a06 11110gnat_encoded_fixed_type_info (struct type *type)
14f9c5c9 11111{
d2e4a39e 11112 const char *name = ada_type_name (type);
78134374 11113 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11114
d2e4a39e
AS
11115 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11116 {
14f9c5c9 11117 const char *tail = strstr (name, "___XF_");
5b4ee69b 11118
14f9c5c9 11119 if (tail == NULL)
4c4b4cd2 11120 return NULL;
d2e4a39e 11121 else
4c4b4cd2 11122 return tail + 5;
14f9c5c9
AS
11123 }
11124 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
b2188a06 11125 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11126 else
11127 return NULL;
11128}
11129
4c4b4cd2 11130/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11131
11132int
b2188a06 11133ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11134{
b2188a06 11135 return gnat_encoded_fixed_type_info (type) != NULL;
14f9c5c9
AS
11136}
11137
4c4b4cd2
PH
11138/* Return non-zero iff TYPE represents a System.Address type. */
11139
11140int
11141ada_is_system_address_type (struct type *type)
11142{
7d93a1e0 11143 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11144}
11145
14f9c5c9 11146/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11147 type, return the target floating-point type to be used to represent
11148 of this type during internal computation. */
11149
11150static struct type *
11151ada_scaling_type (struct type *type)
11152{
11153 return builtin_type (get_type_arch (type))->builtin_long_double;
11154}
11155
11156/* Assuming that TYPE is the representation of an Ada fixed-point
11157 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11158 delta cannot be determined. */
14f9c5c9 11159
50eff16b 11160struct value *
b2188a06 11161gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11162{
b2188a06 11163 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11164 struct type *scale_type = ada_scaling_type (type);
11165
11166 long long num, den;
11167
11168 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11169 return nullptr;
d2e4a39e 11170 else
50eff16b
UW
11171 return value_binop (value_from_longest (scale_type, num),
11172 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11173}
11174
b2188a06
JB
11175/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11176 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11177
50eff16b
UW
11178struct value *
11179ada_scaling_factor (struct type *type)
14f9c5c9 11180{
b2188a06 11181 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11182 struct type *scale_type = ada_scaling_type (type);
11183
11184 long long num0, den0, num1, den1;
14f9c5c9 11185 int n;
d2e4a39e 11186
50eff16b 11187 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11188 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11189
11190 if (n < 2)
50eff16b 11191 return value_from_longest (scale_type, 1);
14f9c5c9 11192 else if (n == 4)
50eff16b
UW
11193 return value_binop (value_from_longest (scale_type, num1),
11194 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11195 else
50eff16b
UW
11196 return value_binop (value_from_longest (scale_type, num0),
11197 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11198}
11199
14f9c5c9 11200\f
d2e4a39e 11201
4c4b4cd2 11202 /* Range types */
14f9c5c9
AS
11203
11204/* Scan STR beginning at position K for a discriminant name, and
11205 return the value of that discriminant field of DVAL in *PX. If
11206 PNEW_K is not null, put the position of the character beyond the
11207 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11208 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11209
11210static int
108d56a4 11211scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11212 int *pnew_k)
14f9c5c9
AS
11213{
11214 static char *bound_buffer = NULL;
11215 static size_t bound_buffer_len = 0;
5da1a4d3 11216 const char *pstart, *pend, *bound;
d2e4a39e 11217 struct value *bound_val;
14f9c5c9
AS
11218
11219 if (dval == NULL || str == NULL || str[k] == '\0')
11220 return 0;
11221
5da1a4d3
SM
11222 pstart = str + k;
11223 pend = strstr (pstart, "__");
14f9c5c9
AS
11224 if (pend == NULL)
11225 {
5da1a4d3 11226 bound = pstart;
14f9c5c9
AS
11227 k += strlen (bound);
11228 }
d2e4a39e 11229 else
14f9c5c9 11230 {
5da1a4d3
SM
11231 int len = pend - pstart;
11232
11233 /* Strip __ and beyond. */
11234 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11235 strncpy (bound_buffer, pstart, len);
11236 bound_buffer[len] = '\0';
11237
14f9c5c9 11238 bound = bound_buffer;
d2e4a39e 11239 k = pend - str;
14f9c5c9 11240 }
d2e4a39e 11241
df407dfe 11242 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11243 if (bound_val == NULL)
11244 return 0;
11245
11246 *px = value_as_long (bound_val);
11247 if (pnew_k != NULL)
11248 *pnew_k = k;
11249 return 1;
11250}
11251
11252/* Value of variable named NAME in the current environment. If
11253 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11254 otherwise causes an error with message ERR_MSG. */
11255
d2e4a39e 11256static struct value *
edb0c9cb 11257get_var_value (const char *name, const char *err_msg)
14f9c5c9 11258{
b5ec771e 11259 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11260
54d343a2 11261 std::vector<struct block_symbol> syms;
b5ec771e
PA
11262 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11263 get_selected_block (0),
11264 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11265
11266 if (nsyms != 1)
11267 {
11268 if (err_msg == NULL)
4c4b4cd2 11269 return 0;
14f9c5c9 11270 else
8a3fe4f8 11271 error (("%s"), err_msg);
14f9c5c9
AS
11272 }
11273
54d343a2 11274 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11275}
d2e4a39e 11276
edb0c9cb
PA
11277/* Value of integer variable named NAME in the current environment.
11278 If no such variable is found, returns false. Otherwise, sets VALUE
11279 to the variable's value and returns true. */
4c4b4cd2 11280
edb0c9cb
PA
11281bool
11282get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11283{
4c4b4cd2 11284 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11285
14f9c5c9 11286 if (var_val == 0)
edb0c9cb
PA
11287 return false;
11288
11289 value = value_as_long (var_val);
11290 return true;
14f9c5c9 11291}
d2e4a39e 11292
14f9c5c9
AS
11293
11294/* Return a range type whose base type is that of the range type named
11295 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11296 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11297 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11298 corresponding range type from debug information; fall back to using it
11299 if symbol lookup fails. If a new type must be created, allocate it
11300 like ORIG_TYPE was. The bounds information, in general, is encoded
11301 in NAME, the base type given in the named range type. */
14f9c5c9 11302
d2e4a39e 11303static struct type *
28c85d6c 11304to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11305{
0d5cff50 11306 const char *name;
14f9c5c9 11307 struct type *base_type;
108d56a4 11308 const char *subtype_info;
14f9c5c9 11309
28c85d6c 11310 gdb_assert (raw_type != NULL);
7d93a1e0 11311 gdb_assert (raw_type->name () != NULL);
dddfab26 11312
78134374 11313 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11314 base_type = TYPE_TARGET_TYPE (raw_type);
11315 else
11316 base_type = raw_type;
11317
7d93a1e0 11318 name = raw_type->name ();
14f9c5c9
AS
11319 subtype_info = strstr (name, "___XD");
11320 if (subtype_info == NULL)
690cc4eb 11321 {
43bbcdc2
PH
11322 LONGEST L = ada_discrete_type_low_bound (raw_type);
11323 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11324
690cc4eb
PH
11325 if (L < INT_MIN || U > INT_MAX)
11326 return raw_type;
11327 else
0c9c3474
SA
11328 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11329 L, U);
690cc4eb 11330 }
14f9c5c9
AS
11331 else
11332 {
11333 static char *name_buf = NULL;
11334 static size_t name_len = 0;
11335 int prefix_len = subtype_info - name;
11336 LONGEST L, U;
11337 struct type *type;
108d56a4 11338 const char *bounds_str;
14f9c5c9
AS
11339 int n;
11340
11341 GROW_VECT (name_buf, name_len, prefix_len + 5);
11342 strncpy (name_buf, name, prefix_len);
11343 name_buf[prefix_len] = '\0';
11344
11345 subtype_info += 5;
11346 bounds_str = strchr (subtype_info, '_');
11347 n = 1;
11348
d2e4a39e 11349 if (*subtype_info == 'L')
4c4b4cd2
PH
11350 {
11351 if (!ada_scan_number (bounds_str, n, &L, &n)
11352 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11353 return raw_type;
11354 if (bounds_str[n] == '_')
11355 n += 2;
0963b4bd 11356 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11357 n += 1;
11358 subtype_info += 1;
11359 }
d2e4a39e 11360 else
4c4b4cd2 11361 {
4c4b4cd2 11362 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11363 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11364 {
323e0a4a 11365 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11366 L = 1;
11367 }
11368 }
14f9c5c9 11369
d2e4a39e 11370 if (*subtype_info == 'U')
4c4b4cd2
PH
11371 {
11372 if (!ada_scan_number (bounds_str, n, &U, &n)
11373 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11374 return raw_type;
11375 }
d2e4a39e 11376 else
4c4b4cd2 11377 {
4c4b4cd2 11378 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11379 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11380 {
323e0a4a 11381 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11382 U = L;
11383 }
11384 }
14f9c5c9 11385
0c9c3474
SA
11386 type = create_static_range_type (alloc_type_copy (raw_type),
11387 base_type, L, U);
f5a91472
JB
11388 /* create_static_range_type alters the resulting type's length
11389 to match the size of the base_type, which is not what we want.
11390 Set it back to the original range type's length. */
11391 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11392 type->set_name (name);
14f9c5c9
AS
11393 return type;
11394 }
11395}
11396
4c4b4cd2
PH
11397/* True iff NAME is the name of a range type. */
11398
14f9c5c9 11399int
d2e4a39e 11400ada_is_range_type_name (const char *name)
14f9c5c9
AS
11401{
11402 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11403}
14f9c5c9 11404\f
d2e4a39e 11405
4c4b4cd2
PH
11406 /* Modular types */
11407
11408/* True iff TYPE is an Ada modular type. */
14f9c5c9 11409
14f9c5c9 11410int
d2e4a39e 11411ada_is_modular_type (struct type *type)
14f9c5c9 11412{
18af8284 11413 struct type *subranged_type = get_base_type (type);
14f9c5c9 11414
78134374
SM
11415 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11416 && subranged_type->code () == TYPE_CODE_INT
4c4b4cd2 11417 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11418}
11419
4c4b4cd2
PH
11420/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11421
61ee279c 11422ULONGEST
0056e4d5 11423ada_modulus (struct type *type)
14f9c5c9 11424{
43bbcdc2 11425 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11426}
d2e4a39e 11427\f
f7f9143b
JB
11428
11429/* Ada exception catchpoint support:
11430 ---------------------------------
11431
11432 We support 3 kinds of exception catchpoints:
11433 . catchpoints on Ada exceptions
11434 . catchpoints on unhandled Ada exceptions
11435 . catchpoints on failed assertions
11436
11437 Exceptions raised during failed assertions, or unhandled exceptions
11438 could perfectly be caught with the general catchpoint on Ada exceptions.
11439 However, we can easily differentiate these two special cases, and having
11440 the option to distinguish these two cases from the rest can be useful
11441 to zero-in on certain situations.
11442
11443 Exception catchpoints are a specialized form of breakpoint,
11444 since they rely on inserting breakpoints inside known routines
11445 of the GNAT runtime. The implementation therefore uses a standard
11446 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11447 of breakpoint_ops.
11448
0259addd
JB
11449 Support in the runtime for exception catchpoints have been changed
11450 a few times already, and these changes affect the implementation
11451 of these catchpoints. In order to be able to support several
11452 variants of the runtime, we use a sniffer that will determine
28010a5d 11453 the runtime variant used by the program being debugged. */
f7f9143b 11454
82eacd52
JB
11455/* Ada's standard exceptions.
11456
11457 The Ada 83 standard also defined Numeric_Error. But there so many
11458 situations where it was unclear from the Ada 83 Reference Manual
11459 (RM) whether Constraint_Error or Numeric_Error should be raised,
11460 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11461 Interpretation saying that anytime the RM says that Numeric_Error
11462 should be raised, the implementation may raise Constraint_Error.
11463 Ada 95 went one step further and pretty much removed Numeric_Error
11464 from the list of standard exceptions (it made it a renaming of
11465 Constraint_Error, to help preserve compatibility when compiling
11466 an Ada83 compiler). As such, we do not include Numeric_Error from
11467 this list of standard exceptions. */
3d0b0fa3 11468
a121b7c1 11469static const char *standard_exc[] = {
3d0b0fa3
JB
11470 "constraint_error",
11471 "program_error",
11472 "storage_error",
11473 "tasking_error"
11474};
11475
0259addd
JB
11476typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11477
11478/* A structure that describes how to support exception catchpoints
11479 for a given executable. */
11480
11481struct exception_support_info
11482{
11483 /* The name of the symbol to break on in order to insert
11484 a catchpoint on exceptions. */
11485 const char *catch_exception_sym;
11486
11487 /* The name of the symbol to break on in order to insert
11488 a catchpoint on unhandled exceptions. */
11489 const char *catch_exception_unhandled_sym;
11490
11491 /* The name of the symbol to break on in order to insert
11492 a catchpoint on failed assertions. */
11493 const char *catch_assert_sym;
11494
9f757bf7
XR
11495 /* The name of the symbol to break on in order to insert
11496 a catchpoint on exception handling. */
11497 const char *catch_handlers_sym;
11498
0259addd
JB
11499 /* Assuming that the inferior just triggered an unhandled exception
11500 catchpoint, this function is responsible for returning the address
11501 in inferior memory where the name of that exception is stored.
11502 Return zero if the address could not be computed. */
11503 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11504};
11505
11506static CORE_ADDR ada_unhandled_exception_name_addr (void);
11507static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11508
11509/* The following exception support info structure describes how to
11510 implement exception catchpoints with the latest version of the
ca683e3a 11511 Ada runtime (as of 2019-08-??). */
0259addd
JB
11512
11513static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11514{
11515 "__gnat_debug_raise_exception", /* catch_exception_sym */
11516 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11517 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11518 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11519 ada_unhandled_exception_name_addr
11520};
11521
11522/* The following exception support info structure describes how to
11523 implement exception catchpoints with an earlier version of the
11524 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11525
11526static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11527{
11528 "__gnat_debug_raise_exception", /* catch_exception_sym */
11529 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11530 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11531 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11532 ada_unhandled_exception_name_addr
11533};
11534
11535/* The following exception support info structure describes how to
11536 implement exception catchpoints with a slightly older version
11537 of the Ada runtime. */
11538
11539static const struct exception_support_info exception_support_info_fallback =
11540{
11541 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11542 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11543 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11544 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11545 ada_unhandled_exception_name_addr_from_raise
11546};
11547
f17011e0
JB
11548/* Return nonzero if we can detect the exception support routines
11549 described in EINFO.
11550
11551 This function errors out if an abnormal situation is detected
11552 (for instance, if we find the exception support routines, but
11553 that support is found to be incomplete). */
11554
11555static int
11556ada_has_this_exception_support (const struct exception_support_info *einfo)
11557{
11558 struct symbol *sym;
11559
11560 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11561 that should be compiled with debugging information. As a result, we
11562 expect to find that symbol in the symtabs. */
11563
11564 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11565 if (sym == NULL)
a6af7abe
JB
11566 {
11567 /* Perhaps we did not find our symbol because the Ada runtime was
11568 compiled without debugging info, or simply stripped of it.
11569 It happens on some GNU/Linux distributions for instance, where
11570 users have to install a separate debug package in order to get
11571 the runtime's debugging info. In that situation, let the user
11572 know why we cannot insert an Ada exception catchpoint.
11573
11574 Note: Just for the purpose of inserting our Ada exception
11575 catchpoint, we could rely purely on the associated minimal symbol.
11576 But we would be operating in degraded mode anyway, since we are
11577 still lacking the debugging info needed later on to extract
11578 the name of the exception being raised (this name is printed in
11579 the catchpoint message, and is also used when trying to catch
11580 a specific exception). We do not handle this case for now. */
3b7344d5 11581 struct bound_minimal_symbol msym
1c8e84b0
JB
11582 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11583
3b7344d5 11584 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11585 error (_("Your Ada runtime appears to be missing some debugging "
11586 "information.\nCannot insert Ada exception catchpoint "
11587 "in this configuration."));
11588
11589 return 0;
11590 }
f17011e0
JB
11591
11592 /* Make sure that the symbol we found corresponds to a function. */
11593
11594 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11595 {
11596 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11597 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11598 return 0;
11599 }
11600
11601 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11602 if (sym == NULL)
11603 {
11604 struct bound_minimal_symbol msym
11605 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11606
11607 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11608 error (_("Your Ada runtime appears to be missing some debugging "
11609 "information.\nCannot insert Ada exception catchpoint "
11610 "in this configuration."));
11611
11612 return 0;
11613 }
11614
11615 /* Make sure that the symbol we found corresponds to a function. */
11616
11617 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11618 {
11619 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11620 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11621 return 0;
11622 }
f17011e0
JB
11623
11624 return 1;
11625}
11626
0259addd
JB
11627/* Inspect the Ada runtime and determine which exception info structure
11628 should be used to provide support for exception catchpoints.
11629
3eecfa55
JB
11630 This function will always set the per-inferior exception_info,
11631 or raise an error. */
0259addd
JB
11632
11633static void
11634ada_exception_support_info_sniffer (void)
11635{
3eecfa55 11636 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11637
11638 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11639 if (data->exception_info != NULL)
0259addd
JB
11640 return;
11641
11642 /* Check the latest (default) exception support info. */
f17011e0 11643 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11644 {
3eecfa55 11645 data->exception_info = &default_exception_support_info;
0259addd
JB
11646 return;
11647 }
11648
ca683e3a
AO
11649 /* Try the v0 exception suport info. */
11650 if (ada_has_this_exception_support (&exception_support_info_v0))
11651 {
11652 data->exception_info = &exception_support_info_v0;
11653 return;
11654 }
11655
0259addd 11656 /* Try our fallback exception suport info. */
f17011e0 11657 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11658 {
3eecfa55 11659 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11660 return;
11661 }
11662
11663 /* Sometimes, it is normal for us to not be able to find the routine
11664 we are looking for. This happens when the program is linked with
11665 the shared version of the GNAT runtime, and the program has not been
11666 started yet. Inform the user of these two possible causes if
11667 applicable. */
11668
ccefe4c4 11669 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11670 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11671
11672 /* If the symbol does not exist, then check that the program is
11673 already started, to make sure that shared libraries have been
11674 loaded. If it is not started, this may mean that the symbol is
11675 in a shared library. */
11676
e99b03dc 11677 if (inferior_ptid.pid () == 0)
0259addd
JB
11678 error (_("Unable to insert catchpoint. Try to start the program first."));
11679
11680 /* At this point, we know that we are debugging an Ada program and
11681 that the inferior has been started, but we still are not able to
0963b4bd 11682 find the run-time symbols. That can mean that we are in
0259addd
JB
11683 configurable run time mode, or that a-except as been optimized
11684 out by the linker... In any case, at this point it is not worth
11685 supporting this feature. */
11686
7dda8cff 11687 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11688}
11689
f7f9143b
JB
11690/* True iff FRAME is very likely to be that of a function that is
11691 part of the runtime system. This is all very heuristic, but is
11692 intended to be used as advice as to what frames are uninteresting
11693 to most users. */
11694
11695static int
11696is_known_support_routine (struct frame_info *frame)
11697{
692465f1 11698 enum language func_lang;
f7f9143b 11699 int i;
f35a17b5 11700 const char *fullname;
f7f9143b 11701
4ed6b5be
JB
11702 /* If this code does not have any debugging information (no symtab),
11703 This cannot be any user code. */
f7f9143b 11704
51abb421 11705 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11706 if (sal.symtab == NULL)
11707 return 1;
11708
4ed6b5be
JB
11709 /* If there is a symtab, but the associated source file cannot be
11710 located, then assume this is not user code: Selecting a frame
11711 for which we cannot display the code would not be very helpful
11712 for the user. This should also take care of case such as VxWorks
11713 where the kernel has some debugging info provided for a few units. */
f7f9143b 11714
f35a17b5
JK
11715 fullname = symtab_to_fullname (sal.symtab);
11716 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11717 return 1;
11718
85102364 11719 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11720 We also check the name of the objfile against the name of some
11721 known system libraries that sometimes come with debugging info
11722 too. */
11723
f7f9143b
JB
11724 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11725 {
11726 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11727 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11728 return 1;
eb822aa6
DE
11729 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11730 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11731 return 1;
f7f9143b
JB
11732 }
11733
4ed6b5be 11734 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11735
c6dc63a1
TT
11736 gdb::unique_xmalloc_ptr<char> func_name
11737 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11738 if (func_name == NULL)
11739 return 1;
11740
11741 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11742 {
11743 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11744 if (re_exec (func_name.get ()))
11745 return 1;
f7f9143b
JB
11746 }
11747
11748 return 0;
11749}
11750
11751/* Find the first frame that contains debugging information and that is not
11752 part of the Ada run-time, starting from FI and moving upward. */
11753
0ef643c8 11754void
f7f9143b
JB
11755ada_find_printable_frame (struct frame_info *fi)
11756{
11757 for (; fi != NULL; fi = get_prev_frame (fi))
11758 {
11759 if (!is_known_support_routine (fi))
11760 {
11761 select_frame (fi);
11762 break;
11763 }
11764 }
11765
11766}
11767
11768/* Assuming that the inferior just triggered an unhandled exception
11769 catchpoint, return the address in inferior memory where the name
11770 of the exception is stored.
11771
11772 Return zero if the address could not be computed. */
11773
11774static CORE_ADDR
11775ada_unhandled_exception_name_addr (void)
0259addd
JB
11776{
11777 return parse_and_eval_address ("e.full_name");
11778}
11779
11780/* Same as ada_unhandled_exception_name_addr, except that this function
11781 should be used when the inferior uses an older version of the runtime,
11782 where the exception name needs to be extracted from a specific frame
11783 several frames up in the callstack. */
11784
11785static CORE_ADDR
11786ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11787{
11788 int frame_level;
11789 struct frame_info *fi;
3eecfa55 11790 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11791
11792 /* To determine the name of this exception, we need to select
11793 the frame corresponding to RAISE_SYM_NAME. This frame is
11794 at least 3 levels up, so we simply skip the first 3 frames
11795 without checking the name of their associated function. */
11796 fi = get_current_frame ();
11797 for (frame_level = 0; frame_level < 3; frame_level += 1)
11798 if (fi != NULL)
11799 fi = get_prev_frame (fi);
11800
11801 while (fi != NULL)
11802 {
692465f1
JB
11803 enum language func_lang;
11804
c6dc63a1
TT
11805 gdb::unique_xmalloc_ptr<char> func_name
11806 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11807 if (func_name != NULL)
11808 {
c6dc63a1 11809 if (strcmp (func_name.get (),
55b87a52
KS
11810 data->exception_info->catch_exception_sym) == 0)
11811 break; /* We found the frame we were looking for... */
55b87a52 11812 }
fb44b1a7 11813 fi = get_prev_frame (fi);
f7f9143b
JB
11814 }
11815
11816 if (fi == NULL)
11817 return 0;
11818
11819 select_frame (fi);
11820 return parse_and_eval_address ("id.full_name");
11821}
11822
11823/* Assuming the inferior just triggered an Ada exception catchpoint
11824 (of any type), return the address in inferior memory where the name
11825 of the exception is stored, if applicable.
11826
45db7c09
PA
11827 Assumes the selected frame is the current frame.
11828
f7f9143b
JB
11829 Return zero if the address could not be computed, or if not relevant. */
11830
11831static CORE_ADDR
761269c8 11832ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11833 struct breakpoint *b)
11834{
3eecfa55
JB
11835 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11836
f7f9143b
JB
11837 switch (ex)
11838 {
761269c8 11839 case ada_catch_exception:
f7f9143b
JB
11840 return (parse_and_eval_address ("e.full_name"));
11841 break;
11842
761269c8 11843 case ada_catch_exception_unhandled:
3eecfa55 11844 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 11845 break;
9f757bf7
XR
11846
11847 case ada_catch_handlers:
11848 return 0; /* The runtimes does not provide access to the exception
11849 name. */
11850 break;
11851
761269c8 11852 case ada_catch_assert:
f7f9143b
JB
11853 return 0; /* Exception name is not relevant in this case. */
11854 break;
11855
11856 default:
11857 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11858 break;
11859 }
11860
11861 return 0; /* Should never be reached. */
11862}
11863
e547c119
JB
11864/* Assuming the inferior is stopped at an exception catchpoint,
11865 return the message which was associated to the exception, if
11866 available. Return NULL if the message could not be retrieved.
11867
e547c119
JB
11868 Note: The exception message can be associated to an exception
11869 either through the use of the Raise_Exception function, or
11870 more simply (Ada 2005 and later), via:
11871
11872 raise Exception_Name with "exception message";
11873
11874 */
11875
6f46ac85 11876static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11877ada_exception_message_1 (void)
11878{
11879 struct value *e_msg_val;
e547c119 11880 int e_msg_len;
e547c119
JB
11881
11882 /* For runtimes that support this feature, the exception message
11883 is passed as an unbounded string argument called "message". */
11884 e_msg_val = parse_and_eval ("message");
11885 if (e_msg_val == NULL)
11886 return NULL; /* Exception message not supported. */
11887
11888 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11889 gdb_assert (e_msg_val != NULL);
11890 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11891
11892 /* If the message string is empty, then treat it as if there was
11893 no exception message. */
11894 if (e_msg_len <= 0)
11895 return NULL;
11896
66920317 11897 return target_read_string (value_address (e_msg_val), INT_MAX);
e547c119
JB
11898}
11899
11900/* Same as ada_exception_message_1, except that all exceptions are
11901 contained here (returning NULL instead). */
11902
6f46ac85 11903static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11904ada_exception_message (void)
11905{
6f46ac85 11906 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11907
a70b8144 11908 try
e547c119
JB
11909 {
11910 e_msg = ada_exception_message_1 ();
11911 }
230d2906 11912 catch (const gdb_exception_error &e)
e547c119 11913 {
6f46ac85 11914 e_msg.reset (nullptr);
e547c119 11915 }
e547c119
JB
11916
11917 return e_msg;
11918}
11919
f7f9143b
JB
11920/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11921 any error that ada_exception_name_addr_1 might cause to be thrown.
11922 When an error is intercepted, a warning with the error message is printed,
11923 and zero is returned. */
11924
11925static CORE_ADDR
761269c8 11926ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11927 struct breakpoint *b)
11928{
f7f9143b
JB
11929 CORE_ADDR result = 0;
11930
a70b8144 11931 try
f7f9143b
JB
11932 {
11933 result = ada_exception_name_addr_1 (ex, b);
11934 }
11935
230d2906 11936 catch (const gdb_exception_error &e)
f7f9143b 11937 {
3d6e9d23 11938 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
11939 return 0;
11940 }
11941
11942 return result;
11943}
11944
cb7de75e 11945static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
11946 (const char *excep_string,
11947 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
11948
11949/* Ada catchpoints.
11950
11951 In the case of catchpoints on Ada exceptions, the catchpoint will
11952 stop the target on every exception the program throws. When a user
11953 specifies the name of a specific exception, we translate this
11954 request into a condition expression (in text form), and then parse
11955 it into an expression stored in each of the catchpoint's locations.
11956 We then use this condition to check whether the exception that was
11957 raised is the one the user is interested in. If not, then the
11958 target is resumed again. We store the name of the requested
11959 exception, in order to be able to re-set the condition expression
11960 when symbols change. */
11961
11962/* An instance of this type is used to represent an Ada catchpoint
5625a286 11963 breakpoint location. */
28010a5d 11964
5625a286 11965class ada_catchpoint_location : public bp_location
28010a5d 11966{
5625a286 11967public:
5f486660 11968 ada_catchpoint_location (breakpoint *owner)
f06f1252 11969 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 11970 {}
28010a5d
PA
11971
11972 /* The condition that checks whether the exception that was raised
11973 is the specific exception the user specified on catchpoint
11974 creation. */
4d01a485 11975 expression_up excep_cond_expr;
28010a5d
PA
11976};
11977
c1fc2657 11978/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 11979
c1fc2657 11980struct ada_catchpoint : public breakpoint
28010a5d 11981{
37f6a7f4
TT
11982 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11983 : m_kind (kind)
11984 {
11985 }
11986
28010a5d 11987 /* The name of the specific exception the user specified. */
bc18fbb5 11988 std::string excep_string;
37f6a7f4
TT
11989
11990 /* What kind of catchpoint this is. */
11991 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
11992};
11993
11994/* Parse the exception condition string in the context of each of the
11995 catchpoint's locations, and store them for later evaluation. */
11996
11997static void
9f757bf7
XR
11998create_excep_cond_exprs (struct ada_catchpoint *c,
11999 enum ada_exception_catchpoint_kind ex)
28010a5d 12000{
fccf9de1
TT
12001 struct bp_location *bl;
12002
28010a5d 12003 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12004 if (c->excep_string.empty ())
28010a5d
PA
12005 return;
12006
12007 /* Same if there are no locations... */
c1fc2657 12008 if (c->loc == NULL)
28010a5d
PA
12009 return;
12010
fccf9de1
TT
12011 /* Compute the condition expression in text form, from the specific
12012 expection we want to catch. */
12013 std::string cond_string
12014 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12015
fccf9de1
TT
12016 /* Iterate over all the catchpoint's locations, and parse an
12017 expression for each. */
12018 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12019 {
12020 struct ada_catchpoint_location *ada_loc
fccf9de1 12021 = (struct ada_catchpoint_location *) bl;
4d01a485 12022 expression_up exp;
28010a5d 12023
fccf9de1 12024 if (!bl->shlib_disabled)
28010a5d 12025 {
bbc13ae3 12026 const char *s;
28010a5d 12027
cb7de75e 12028 s = cond_string.c_str ();
a70b8144 12029 try
28010a5d 12030 {
fccf9de1
TT
12031 exp = parse_exp_1 (&s, bl->address,
12032 block_for_pc (bl->address),
036e657b 12033 0);
28010a5d 12034 }
230d2906 12035 catch (const gdb_exception_error &e)
849f2b52
JB
12036 {
12037 warning (_("failed to reevaluate internal exception condition "
12038 "for catchpoint %d: %s"),
3d6e9d23 12039 c->number, e.what ());
849f2b52 12040 }
28010a5d
PA
12041 }
12042
b22e99fd 12043 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12044 }
28010a5d
PA
12045}
12046
28010a5d
PA
12047/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12048 structure for all exception catchpoint kinds. */
12049
12050static struct bp_location *
37f6a7f4 12051allocate_location_exception (struct breakpoint *self)
28010a5d 12052{
5f486660 12053 return new ada_catchpoint_location (self);
28010a5d
PA
12054}
12055
12056/* Implement the RE_SET method in the breakpoint_ops structure for all
12057 exception catchpoint kinds. */
12058
12059static void
37f6a7f4 12060re_set_exception (struct breakpoint *b)
28010a5d
PA
12061{
12062 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12063
12064 /* Call the base class's method. This updates the catchpoint's
12065 locations. */
2060206e 12066 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12067
12068 /* Reparse the exception conditional expressions. One for each
12069 location. */
37f6a7f4 12070 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12071}
12072
12073/* Returns true if we should stop for this breakpoint hit. If the
12074 user specified a specific exception, we only want to cause a stop
12075 if the program thrown that exception. */
12076
12077static int
12078should_stop_exception (const struct bp_location *bl)
12079{
12080 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12081 const struct ada_catchpoint_location *ada_loc
12082 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12083 int stop;
12084
37f6a7f4
TT
12085 struct internalvar *var = lookup_internalvar ("_ada_exception");
12086 if (c->m_kind == ada_catch_assert)
12087 clear_internalvar (var);
12088 else
12089 {
12090 try
12091 {
12092 const char *expr;
12093
12094 if (c->m_kind == ada_catch_handlers)
12095 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12096 ".all.occurrence.id");
12097 else
12098 expr = "e";
12099
12100 struct value *exc = parse_and_eval (expr);
12101 set_internalvar (var, exc);
12102 }
12103 catch (const gdb_exception_error &ex)
12104 {
12105 clear_internalvar (var);
12106 }
12107 }
12108
28010a5d 12109 /* With no specific exception, should always stop. */
bc18fbb5 12110 if (c->excep_string.empty ())
28010a5d
PA
12111 return 1;
12112
12113 if (ada_loc->excep_cond_expr == NULL)
12114 {
12115 /* We will have a NULL expression if back when we were creating
12116 the expressions, this location's had failed to parse. */
12117 return 1;
12118 }
12119
12120 stop = 1;
a70b8144 12121 try
28010a5d
PA
12122 {
12123 struct value *mark;
12124
12125 mark = value_mark ();
4d01a485 12126 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12127 value_free_to_mark (mark);
12128 }
230d2906 12129 catch (const gdb_exception &ex)
492d29ea
PA
12130 {
12131 exception_fprintf (gdb_stderr, ex,
12132 _("Error in testing exception condition:\n"));
12133 }
492d29ea 12134
28010a5d
PA
12135 return stop;
12136}
12137
12138/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12139 for all exception catchpoint kinds. */
12140
12141static void
37f6a7f4 12142check_status_exception (bpstat bs)
28010a5d
PA
12143{
12144 bs->stop = should_stop_exception (bs->bp_location_at);
12145}
12146
f7f9143b
JB
12147/* Implement the PRINT_IT method in the breakpoint_ops structure
12148 for all exception catchpoint kinds. */
12149
12150static enum print_stop_action
37f6a7f4 12151print_it_exception (bpstat bs)
f7f9143b 12152{
79a45e25 12153 struct ui_out *uiout = current_uiout;
348d480f
PA
12154 struct breakpoint *b = bs->breakpoint_at;
12155
956a9fb9 12156 annotate_catchpoint (b->number);
f7f9143b 12157
112e8700 12158 if (uiout->is_mi_like_p ())
f7f9143b 12159 {
112e8700 12160 uiout->field_string ("reason",
956a9fb9 12161 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12162 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12163 }
12164
112e8700
SM
12165 uiout->text (b->disposition == disp_del
12166 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12167 uiout->field_signed ("bkptno", b->number);
112e8700 12168 uiout->text (", ");
f7f9143b 12169
45db7c09
PA
12170 /* ada_exception_name_addr relies on the selected frame being the
12171 current frame. Need to do this here because this function may be
12172 called more than once when printing a stop, and below, we'll
12173 select the first frame past the Ada run-time (see
12174 ada_find_printable_frame). */
12175 select_frame (get_current_frame ());
12176
37f6a7f4
TT
12177 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12178 switch (c->m_kind)
f7f9143b 12179 {
761269c8
JB
12180 case ada_catch_exception:
12181 case ada_catch_exception_unhandled:
9f757bf7 12182 case ada_catch_handlers:
956a9fb9 12183 {
37f6a7f4 12184 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12185 char exception_name[256];
12186
12187 if (addr != 0)
12188 {
c714b426
PA
12189 read_memory (addr, (gdb_byte *) exception_name,
12190 sizeof (exception_name) - 1);
956a9fb9
JB
12191 exception_name [sizeof (exception_name) - 1] = '\0';
12192 }
12193 else
12194 {
12195 /* For some reason, we were unable to read the exception
12196 name. This could happen if the Runtime was compiled
12197 without debugging info, for instance. In that case,
12198 just replace the exception name by the generic string
12199 "exception" - it will read as "an exception" in the
12200 notification we are about to print. */
967cff16 12201 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12202 }
12203 /* In the case of unhandled exception breakpoints, we print
12204 the exception name as "unhandled EXCEPTION_NAME", to make
12205 it clearer to the user which kind of catchpoint just got
12206 hit. We used ui_out_text to make sure that this extra
12207 info does not pollute the exception name in the MI case. */
37f6a7f4 12208 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12209 uiout->text ("unhandled ");
12210 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12211 }
12212 break;
761269c8 12213 case ada_catch_assert:
956a9fb9
JB
12214 /* In this case, the name of the exception is not really
12215 important. Just print "failed assertion" to make it clearer
12216 that his program just hit an assertion-failure catchpoint.
12217 We used ui_out_text because this info does not belong in
12218 the MI output. */
112e8700 12219 uiout->text ("failed assertion");
956a9fb9 12220 break;
f7f9143b 12221 }
e547c119 12222
6f46ac85 12223 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12224 if (exception_message != NULL)
12225 {
e547c119 12226 uiout->text (" (");
6f46ac85 12227 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12228 uiout->text (")");
e547c119
JB
12229 }
12230
112e8700 12231 uiout->text (" at ");
956a9fb9 12232 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12233
12234 return PRINT_SRC_AND_LOC;
12235}
12236
12237/* Implement the PRINT_ONE method in the breakpoint_ops structure
12238 for all exception catchpoint kinds. */
12239
12240static void
37f6a7f4 12241print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12242{
79a45e25 12243 struct ui_out *uiout = current_uiout;
28010a5d 12244 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12245 struct value_print_options opts;
12246
12247 get_user_print_options (&opts);
f06f1252 12248
79a45b7d 12249 if (opts.addressprint)
f06f1252 12250 uiout->field_skip ("addr");
f7f9143b
JB
12251
12252 annotate_field (5);
37f6a7f4 12253 switch (c->m_kind)
f7f9143b 12254 {
761269c8 12255 case ada_catch_exception:
bc18fbb5 12256 if (!c->excep_string.empty ())
f7f9143b 12257 {
bc18fbb5
TT
12258 std::string msg = string_printf (_("`%s' Ada exception"),
12259 c->excep_string.c_str ());
28010a5d 12260
112e8700 12261 uiout->field_string ("what", msg);
f7f9143b
JB
12262 }
12263 else
112e8700 12264 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12265
12266 break;
12267
761269c8 12268 case ada_catch_exception_unhandled:
112e8700 12269 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12270 break;
12271
9f757bf7 12272 case ada_catch_handlers:
bc18fbb5 12273 if (!c->excep_string.empty ())
9f757bf7
XR
12274 {
12275 uiout->field_fmt ("what",
12276 _("`%s' Ada exception handlers"),
bc18fbb5 12277 c->excep_string.c_str ());
9f757bf7
XR
12278 }
12279 else
12280 uiout->field_string ("what", "all Ada exceptions handlers");
12281 break;
12282
761269c8 12283 case ada_catch_assert:
112e8700 12284 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12285 break;
12286
12287 default:
12288 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12289 break;
12290 }
12291}
12292
12293/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12294 for all exception catchpoint kinds. */
12295
12296static void
37f6a7f4 12297print_mention_exception (struct breakpoint *b)
f7f9143b 12298{
28010a5d 12299 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12300 struct ui_out *uiout = current_uiout;
28010a5d 12301
112e8700 12302 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12303 : _("Catchpoint "));
381befee 12304 uiout->field_signed ("bkptno", b->number);
112e8700 12305 uiout->text (": ");
00eb2c4a 12306
37f6a7f4 12307 switch (c->m_kind)
f7f9143b 12308 {
761269c8 12309 case ada_catch_exception:
bc18fbb5 12310 if (!c->excep_string.empty ())
00eb2c4a 12311 {
862d101a 12312 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12313 c->excep_string.c_str ());
862d101a 12314 uiout->text (info.c_str ());
00eb2c4a 12315 }
f7f9143b 12316 else
112e8700 12317 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12318 break;
12319
761269c8 12320 case ada_catch_exception_unhandled:
112e8700 12321 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12322 break;
9f757bf7
XR
12323
12324 case ada_catch_handlers:
bc18fbb5 12325 if (!c->excep_string.empty ())
9f757bf7
XR
12326 {
12327 std::string info
12328 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12329 c->excep_string.c_str ());
9f757bf7
XR
12330 uiout->text (info.c_str ());
12331 }
12332 else
12333 uiout->text (_("all Ada exceptions handlers"));
12334 break;
12335
761269c8 12336 case ada_catch_assert:
112e8700 12337 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12338 break;
12339
12340 default:
12341 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12342 break;
12343 }
12344}
12345
6149aea9
PA
12346/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12347 for all exception catchpoint kinds. */
12348
12349static void
37f6a7f4 12350print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12351{
28010a5d
PA
12352 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12353
37f6a7f4 12354 switch (c->m_kind)
6149aea9 12355 {
761269c8 12356 case ada_catch_exception:
6149aea9 12357 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12358 if (!c->excep_string.empty ())
12359 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12360 break;
12361
761269c8 12362 case ada_catch_exception_unhandled:
78076abc 12363 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12364 break;
12365
9f757bf7
XR
12366 case ada_catch_handlers:
12367 fprintf_filtered (fp, "catch handlers");
12368 break;
12369
761269c8 12370 case ada_catch_assert:
6149aea9
PA
12371 fprintf_filtered (fp, "catch assert");
12372 break;
12373
12374 default:
12375 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12376 }
d9b3f62e 12377 print_recreate_thread (b, fp);
6149aea9
PA
12378}
12379
37f6a7f4 12380/* Virtual tables for various breakpoint types. */
2060206e 12381static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12382static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12383static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12384static struct breakpoint_ops catch_handlers_breakpoint_ops;
12385
f06f1252
TT
12386/* See ada-lang.h. */
12387
12388bool
12389is_ada_exception_catchpoint (breakpoint *bp)
12390{
12391 return (bp->ops == &catch_exception_breakpoint_ops
12392 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12393 || bp->ops == &catch_assert_breakpoint_ops
12394 || bp->ops == &catch_handlers_breakpoint_ops);
12395}
12396
f7f9143b
JB
12397/* Split the arguments specified in a "catch exception" command.
12398 Set EX to the appropriate catchpoint type.
28010a5d 12399 Set EXCEP_STRING to the name of the specific exception if
5845583d 12400 specified by the user.
9f757bf7
XR
12401 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12402 "catch handlers" command. False otherwise.
5845583d
JB
12403 If a condition is found at the end of the arguments, the condition
12404 expression is stored in COND_STRING (memory must be deallocated
12405 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12406
12407static void
a121b7c1 12408catch_ada_exception_command_split (const char *args,
9f757bf7 12409 bool is_catch_handlers_cmd,
761269c8 12410 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12411 std::string *excep_string,
12412 std::string *cond_string)
f7f9143b 12413{
bc18fbb5 12414 std::string exception_name;
f7f9143b 12415
bc18fbb5
TT
12416 exception_name = extract_arg (&args);
12417 if (exception_name == "if")
5845583d
JB
12418 {
12419 /* This is not an exception name; this is the start of a condition
12420 expression for a catchpoint on all exceptions. So, "un-get"
12421 this token, and set exception_name to NULL. */
bc18fbb5 12422 exception_name.clear ();
5845583d
JB
12423 args -= 2;
12424 }
f7f9143b 12425
5845583d 12426 /* Check to see if we have a condition. */
f7f9143b 12427
f1735a53 12428 args = skip_spaces (args);
61012eef 12429 if (startswith (args, "if")
5845583d
JB
12430 && (isspace (args[2]) || args[2] == '\0'))
12431 {
12432 args += 2;
f1735a53 12433 args = skip_spaces (args);
5845583d
JB
12434
12435 if (args[0] == '\0')
12436 error (_("Condition missing after `if' keyword"));
bc18fbb5 12437 *cond_string = args;
5845583d
JB
12438
12439 args += strlen (args);
12440 }
12441
12442 /* Check that we do not have any more arguments. Anything else
12443 is unexpected. */
f7f9143b
JB
12444
12445 if (args[0] != '\0')
12446 error (_("Junk at end of expression"));
12447
9f757bf7
XR
12448 if (is_catch_handlers_cmd)
12449 {
12450 /* Catch handling of exceptions. */
12451 *ex = ada_catch_handlers;
12452 *excep_string = exception_name;
12453 }
bc18fbb5 12454 else if (exception_name.empty ())
f7f9143b
JB
12455 {
12456 /* Catch all exceptions. */
761269c8 12457 *ex = ada_catch_exception;
bc18fbb5 12458 excep_string->clear ();
f7f9143b 12459 }
bc18fbb5 12460 else if (exception_name == "unhandled")
f7f9143b
JB
12461 {
12462 /* Catch unhandled exceptions. */
761269c8 12463 *ex = ada_catch_exception_unhandled;
bc18fbb5 12464 excep_string->clear ();
f7f9143b
JB
12465 }
12466 else
12467 {
12468 /* Catch a specific exception. */
761269c8 12469 *ex = ada_catch_exception;
28010a5d 12470 *excep_string = exception_name;
f7f9143b
JB
12471 }
12472}
12473
12474/* Return the name of the symbol on which we should break in order to
12475 implement a catchpoint of the EX kind. */
12476
12477static const char *
761269c8 12478ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12479{
3eecfa55
JB
12480 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12481
12482 gdb_assert (data->exception_info != NULL);
0259addd 12483
f7f9143b
JB
12484 switch (ex)
12485 {
761269c8 12486 case ada_catch_exception:
3eecfa55 12487 return (data->exception_info->catch_exception_sym);
f7f9143b 12488 break;
761269c8 12489 case ada_catch_exception_unhandled:
3eecfa55 12490 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12491 break;
761269c8 12492 case ada_catch_assert:
3eecfa55 12493 return (data->exception_info->catch_assert_sym);
f7f9143b 12494 break;
9f757bf7
XR
12495 case ada_catch_handlers:
12496 return (data->exception_info->catch_handlers_sym);
12497 break;
f7f9143b
JB
12498 default:
12499 internal_error (__FILE__, __LINE__,
12500 _("unexpected catchpoint kind (%d)"), ex);
12501 }
12502}
12503
12504/* Return the breakpoint ops "virtual table" used for catchpoints
12505 of the EX kind. */
12506
c0a91b2b 12507static const struct breakpoint_ops *
761269c8 12508ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12509{
12510 switch (ex)
12511 {
761269c8 12512 case ada_catch_exception:
f7f9143b
JB
12513 return (&catch_exception_breakpoint_ops);
12514 break;
761269c8 12515 case ada_catch_exception_unhandled:
f7f9143b
JB
12516 return (&catch_exception_unhandled_breakpoint_ops);
12517 break;
761269c8 12518 case ada_catch_assert:
f7f9143b
JB
12519 return (&catch_assert_breakpoint_ops);
12520 break;
9f757bf7
XR
12521 case ada_catch_handlers:
12522 return (&catch_handlers_breakpoint_ops);
12523 break;
f7f9143b
JB
12524 default:
12525 internal_error (__FILE__, __LINE__,
12526 _("unexpected catchpoint kind (%d)"), ex);
12527 }
12528}
12529
12530/* Return the condition that will be used to match the current exception
12531 being raised with the exception that the user wants to catch. This
12532 assumes that this condition is used when the inferior just triggered
12533 an exception catchpoint.
cb7de75e 12534 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12535
cb7de75e 12536static std::string
9f757bf7
XR
12537ada_exception_catchpoint_cond_string (const char *excep_string,
12538 enum ada_exception_catchpoint_kind ex)
f7f9143b 12539{
3d0b0fa3 12540 int i;
fccf9de1 12541 bool is_standard_exc = false;
cb7de75e 12542 std::string result;
9f757bf7
XR
12543
12544 if (ex == ada_catch_handlers)
12545 {
12546 /* For exception handlers catchpoints, the condition string does
12547 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12548 result = ("long_integer (GNAT_GCC_exception_Access"
12549 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12550 }
12551 else
fccf9de1 12552 result = "long_integer (e)";
3d0b0fa3 12553
0963b4bd 12554 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12555 runtime units that have been compiled without debugging info; if
28010a5d 12556 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12557 exception (e.g. "constraint_error") then, during the evaluation
12558 of the condition expression, the symbol lookup on this name would
0963b4bd 12559 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12560 may then be set only on user-defined exceptions which have the
12561 same not-fully-qualified name (e.g. my_package.constraint_error).
12562
12563 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12564 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12565 exception constraint_error" is rewritten into "catch exception
12566 standard.constraint_error".
12567
85102364 12568 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12569 the inferior program, then the only way to specify this exception as a
12570 breakpoint condition is to use its fully-qualified named:
fccf9de1 12571 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12572
12573 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12574 {
28010a5d 12575 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12576 {
fccf9de1 12577 is_standard_exc = true;
9f757bf7 12578 break;
3d0b0fa3
JB
12579 }
12580 }
9f757bf7 12581
fccf9de1
TT
12582 result += " = ";
12583
12584 if (is_standard_exc)
12585 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12586 else
12587 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12588
9f757bf7 12589 return result;
f7f9143b
JB
12590}
12591
12592/* Return the symtab_and_line that should be used to insert an exception
12593 catchpoint of the TYPE kind.
12594
28010a5d
PA
12595 ADDR_STRING returns the name of the function where the real
12596 breakpoint that implements the catchpoints is set, depending on the
12597 type of catchpoint we need to create. */
f7f9143b
JB
12598
12599static struct symtab_and_line
bc18fbb5 12600ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12601 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12602{
12603 const char *sym_name;
12604 struct symbol *sym;
f7f9143b 12605
0259addd
JB
12606 /* First, find out which exception support info to use. */
12607 ada_exception_support_info_sniffer ();
12608
12609 /* Then lookup the function on which we will break in order to catch
f7f9143b 12610 the Ada exceptions requested by the user. */
f7f9143b
JB
12611 sym_name = ada_exception_sym_name (ex);
12612 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12613
57aff202
JB
12614 if (sym == NULL)
12615 error (_("Catchpoint symbol not found: %s"), sym_name);
12616
12617 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12618 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12619
12620 /* Set ADDR_STRING. */
cc12f4a8 12621 *addr_string = sym_name;
f7f9143b 12622
f7f9143b 12623 /* Set OPS. */
4b9eee8c 12624 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12625
f17011e0 12626 return find_function_start_sal (sym, 1);
f7f9143b
JB
12627}
12628
b4a5b78b 12629/* Create an Ada exception catchpoint.
f7f9143b 12630
b4a5b78b 12631 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12632
bc18fbb5 12633 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12634 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12635 of the exception to which this catchpoint applies.
2df4d1d5 12636
bc18fbb5 12637 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12638
b4a5b78b
JB
12639 TEMPFLAG, if nonzero, means that the underlying breakpoint
12640 should be temporary.
28010a5d 12641
b4a5b78b 12642 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12643
349774ef 12644void
28010a5d 12645create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12646 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12647 const std::string &excep_string,
56ecd069 12648 const std::string &cond_string,
28010a5d 12649 int tempflag,
349774ef 12650 int disabled,
28010a5d
PA
12651 int from_tty)
12652{
cc12f4a8 12653 std::string addr_string;
b4a5b78b 12654 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12655 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12656
37f6a7f4 12657 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12658 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12659 ops, tempflag, disabled, from_tty);
28010a5d 12660 c->excep_string = excep_string;
9f757bf7 12661 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12662 if (!cond_string.empty ())
12663 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12664 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12665}
12666
9ac4176b
PA
12667/* Implement the "catch exception" command. */
12668
12669static void
eb4c3f4a 12670catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12671 struct cmd_list_element *command)
12672{
a121b7c1 12673 const char *arg = arg_entry;
9ac4176b
PA
12674 struct gdbarch *gdbarch = get_current_arch ();
12675 int tempflag;
761269c8 12676 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12677 std::string excep_string;
56ecd069 12678 std::string cond_string;
9ac4176b
PA
12679
12680 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12681
12682 if (!arg)
12683 arg = "";
9f757bf7 12684 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12685 &cond_string);
9f757bf7
XR
12686 create_ada_exception_catchpoint (gdbarch, ex_kind,
12687 excep_string, cond_string,
12688 tempflag, 1 /* enabled */,
12689 from_tty);
12690}
12691
12692/* Implement the "catch handlers" command. */
12693
12694static void
12695catch_ada_handlers_command (const char *arg_entry, int from_tty,
12696 struct cmd_list_element *command)
12697{
12698 const char *arg = arg_entry;
12699 struct gdbarch *gdbarch = get_current_arch ();
12700 int tempflag;
12701 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12702 std::string excep_string;
56ecd069 12703 std::string cond_string;
9f757bf7
XR
12704
12705 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12706
12707 if (!arg)
12708 arg = "";
12709 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12710 &cond_string);
b4a5b78b
JB
12711 create_ada_exception_catchpoint (gdbarch, ex_kind,
12712 excep_string, cond_string,
349774ef
JB
12713 tempflag, 1 /* enabled */,
12714 from_tty);
9ac4176b
PA
12715}
12716
71bed2db
TT
12717/* Completion function for the Ada "catch" commands. */
12718
12719static void
12720catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12721 const char *text, const char *word)
12722{
12723 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12724
12725 for (const ada_exc_info &info : exceptions)
12726 {
12727 if (startswith (info.name, word))
b02f78f9 12728 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12729 }
12730}
12731
b4a5b78b 12732/* Split the arguments specified in a "catch assert" command.
5845583d 12733
b4a5b78b
JB
12734 ARGS contains the command's arguments (or the empty string if
12735 no arguments were passed).
5845583d
JB
12736
12737 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12738 (the memory needs to be deallocated after use). */
5845583d 12739
b4a5b78b 12740static void
56ecd069 12741catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12742{
f1735a53 12743 args = skip_spaces (args);
f7f9143b 12744
5845583d 12745 /* Check whether a condition was provided. */
61012eef 12746 if (startswith (args, "if")
5845583d 12747 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12748 {
5845583d 12749 args += 2;
f1735a53 12750 args = skip_spaces (args);
5845583d
JB
12751 if (args[0] == '\0')
12752 error (_("condition missing after `if' keyword"));
56ecd069 12753 cond_string.assign (args);
f7f9143b
JB
12754 }
12755
5845583d
JB
12756 /* Otherwise, there should be no other argument at the end of
12757 the command. */
12758 else if (args[0] != '\0')
12759 error (_("Junk at end of arguments."));
f7f9143b
JB
12760}
12761
9ac4176b
PA
12762/* Implement the "catch assert" command. */
12763
12764static void
eb4c3f4a 12765catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12766 struct cmd_list_element *command)
12767{
a121b7c1 12768 const char *arg = arg_entry;
9ac4176b
PA
12769 struct gdbarch *gdbarch = get_current_arch ();
12770 int tempflag;
56ecd069 12771 std::string cond_string;
9ac4176b
PA
12772
12773 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12774
12775 if (!arg)
12776 arg = "";
56ecd069 12777 catch_ada_assert_command_split (arg, cond_string);
761269c8 12778 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12779 "", cond_string,
349774ef
JB
12780 tempflag, 1 /* enabled */,
12781 from_tty);
9ac4176b 12782}
778865d3
JB
12783
12784/* Return non-zero if the symbol SYM is an Ada exception object. */
12785
12786static int
12787ada_is_exception_sym (struct symbol *sym)
12788{
7d93a1e0 12789 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12790
12791 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12792 && SYMBOL_CLASS (sym) != LOC_BLOCK
12793 && SYMBOL_CLASS (sym) != LOC_CONST
12794 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12795 && type_name != NULL && strcmp (type_name, "exception") == 0);
12796}
12797
12798/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12799 Ada exception object. This matches all exceptions except the ones
12800 defined by the Ada language. */
12801
12802static int
12803ada_is_non_standard_exception_sym (struct symbol *sym)
12804{
12805 int i;
12806
12807 if (!ada_is_exception_sym (sym))
12808 return 0;
12809
12810 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12811 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12812 return 0; /* A standard exception. */
12813
12814 /* Numeric_Error is also a standard exception, so exclude it.
12815 See the STANDARD_EXC description for more details as to why
12816 this exception is not listed in that array. */
987012b8 12817 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12818 return 0;
12819
12820 return 1;
12821}
12822
ab816a27 12823/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12824 objects.
12825
12826 The comparison is determined first by exception name, and then
12827 by exception address. */
12828
ab816a27 12829bool
cc536b21 12830ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12831{
778865d3
JB
12832 int result;
12833
ab816a27
TT
12834 result = strcmp (name, other.name);
12835 if (result < 0)
12836 return true;
12837 if (result == 0 && addr < other.addr)
12838 return true;
12839 return false;
12840}
778865d3 12841
ab816a27 12842bool
cc536b21 12843ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12844{
12845 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12846}
12847
12848/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12849 routine, but keeping the first SKIP elements untouched.
12850
12851 All duplicates are also removed. */
12852
12853static void
ab816a27 12854sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12855 int skip)
12856{
ab816a27
TT
12857 std::sort (exceptions->begin () + skip, exceptions->end ());
12858 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12859 exceptions->end ());
778865d3
JB
12860}
12861
778865d3
JB
12862/* Add all exceptions defined by the Ada standard whose name match
12863 a regular expression.
12864
12865 If PREG is not NULL, then this regexp_t object is used to
12866 perform the symbol name matching. Otherwise, no name-based
12867 filtering is performed.
12868
12869 EXCEPTIONS is a vector of exceptions to which matching exceptions
12870 gets pushed. */
12871
12872static void
2d7cc5c7 12873ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12874 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12875{
12876 int i;
12877
12878 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12879 {
12880 if (preg == NULL
2d7cc5c7 12881 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12882 {
12883 struct bound_minimal_symbol msymbol
12884 = ada_lookup_simple_minsym (standard_exc[i]);
12885
12886 if (msymbol.minsym != NULL)
12887 {
12888 struct ada_exc_info info
77e371c0 12889 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12890
ab816a27 12891 exceptions->push_back (info);
778865d3
JB
12892 }
12893 }
12894 }
12895}
12896
12897/* Add all Ada exceptions defined locally and accessible from the given
12898 FRAME.
12899
12900 If PREG is not NULL, then this regexp_t object is used to
12901 perform the symbol name matching. Otherwise, no name-based
12902 filtering is performed.
12903
12904 EXCEPTIONS is a vector of exceptions to which matching exceptions
12905 gets pushed. */
12906
12907static void
2d7cc5c7
PA
12908ada_add_exceptions_from_frame (compiled_regex *preg,
12909 struct frame_info *frame,
ab816a27 12910 std::vector<ada_exc_info> *exceptions)
778865d3 12911{
3977b71f 12912 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12913
12914 while (block != 0)
12915 {
12916 struct block_iterator iter;
12917 struct symbol *sym;
12918
12919 ALL_BLOCK_SYMBOLS (block, iter, sym)
12920 {
12921 switch (SYMBOL_CLASS (sym))
12922 {
12923 case LOC_TYPEDEF:
12924 case LOC_BLOCK:
12925 case LOC_CONST:
12926 break;
12927 default:
12928 if (ada_is_exception_sym (sym))
12929 {
987012b8 12930 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
12931 SYMBOL_VALUE_ADDRESS (sym)};
12932
ab816a27 12933 exceptions->push_back (info);
778865d3
JB
12934 }
12935 }
12936 }
12937 if (BLOCK_FUNCTION (block) != NULL)
12938 break;
12939 block = BLOCK_SUPERBLOCK (block);
12940 }
12941}
12942
14bc53a8
PA
12943/* Return true if NAME matches PREG or if PREG is NULL. */
12944
12945static bool
2d7cc5c7 12946name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
12947{
12948 return (preg == NULL
f945dedf 12949 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
12950}
12951
778865d3
JB
12952/* Add all exceptions defined globally whose name name match
12953 a regular expression, excluding standard exceptions.
12954
12955 The reason we exclude standard exceptions is that they need
12956 to be handled separately: Standard exceptions are defined inside
12957 a runtime unit which is normally not compiled with debugging info,
12958 and thus usually do not show up in our symbol search. However,
12959 if the unit was in fact built with debugging info, we need to
12960 exclude them because they would duplicate the entry we found
12961 during the special loop that specifically searches for those
12962 standard exceptions.
12963
12964 If PREG is not NULL, then this regexp_t object is used to
12965 perform the symbol name matching. Otherwise, no name-based
12966 filtering is performed.
12967
12968 EXCEPTIONS is a vector of exceptions to which matching exceptions
12969 gets pushed. */
12970
12971static void
2d7cc5c7 12972ada_add_global_exceptions (compiled_regex *preg,
ab816a27 12973 std::vector<ada_exc_info> *exceptions)
778865d3 12974{
14bc53a8
PA
12975 /* In Ada, the symbol "search name" is a linkage name, whereas the
12976 regular expression used to do the matching refers to the natural
12977 name. So match against the decoded name. */
12978 expand_symtabs_matching (NULL,
b5ec771e 12979 lookup_name_info::match_any (),
14bc53a8
PA
12980 [&] (const char *search_name)
12981 {
f945dedf
CB
12982 std::string decoded = ada_decode (search_name);
12983 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
12984 },
12985 NULL,
12986 VARIABLES_DOMAIN);
778865d3 12987
2030c079 12988 for (objfile *objfile : current_program_space->objfiles ())
778865d3 12989 {
b669c953 12990 for (compunit_symtab *s : objfile->compunits ())
778865d3 12991 {
d8aeb77f
TT
12992 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12993 int i;
778865d3 12994
d8aeb77f
TT
12995 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12996 {
582942f4 12997 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
12998 struct block_iterator iter;
12999 struct symbol *sym;
778865d3 13000
d8aeb77f
TT
13001 ALL_BLOCK_SYMBOLS (b, iter, sym)
13002 if (ada_is_non_standard_exception_sym (sym)
987012b8 13003 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13004 {
13005 struct ada_exc_info info
987012b8 13006 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13007
13008 exceptions->push_back (info);
13009 }
13010 }
778865d3
JB
13011 }
13012 }
13013}
13014
13015/* Implements ada_exceptions_list with the regular expression passed
13016 as a regex_t, rather than a string.
13017
13018 If not NULL, PREG is used to filter out exceptions whose names
13019 do not match. Otherwise, all exceptions are listed. */
13020
ab816a27 13021static std::vector<ada_exc_info>
2d7cc5c7 13022ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13023{
ab816a27 13024 std::vector<ada_exc_info> result;
778865d3
JB
13025 int prev_len;
13026
13027 /* First, list the known standard exceptions. These exceptions
13028 need to be handled separately, as they are usually defined in
13029 runtime units that have been compiled without debugging info. */
13030
13031 ada_add_standard_exceptions (preg, &result);
13032
13033 /* Next, find all exceptions whose scope is local and accessible
13034 from the currently selected frame. */
13035
13036 if (has_stack_frames ())
13037 {
ab816a27 13038 prev_len = result.size ();
778865d3
JB
13039 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13040 &result);
ab816a27 13041 if (result.size () > prev_len)
778865d3
JB
13042 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13043 }
13044
13045 /* Add all exceptions whose scope is global. */
13046
ab816a27 13047 prev_len = result.size ();
778865d3 13048 ada_add_global_exceptions (preg, &result);
ab816a27 13049 if (result.size () > prev_len)
778865d3
JB
13050 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13051
778865d3
JB
13052 return result;
13053}
13054
13055/* Return a vector of ada_exc_info.
13056
13057 If REGEXP is NULL, all exceptions are included in the result.
13058 Otherwise, it should contain a valid regular expression,
13059 and only the exceptions whose names match that regular expression
13060 are included in the result.
13061
13062 The exceptions are sorted in the following order:
13063 - Standard exceptions (defined by the Ada language), in
13064 alphabetical order;
13065 - Exceptions only visible from the current frame, in
13066 alphabetical order;
13067 - Exceptions whose scope is global, in alphabetical order. */
13068
ab816a27 13069std::vector<ada_exc_info>
778865d3
JB
13070ada_exceptions_list (const char *regexp)
13071{
2d7cc5c7
PA
13072 if (regexp == NULL)
13073 return ada_exceptions_list_1 (NULL);
778865d3 13074
2d7cc5c7
PA
13075 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13076 return ada_exceptions_list_1 (&reg);
778865d3
JB
13077}
13078
13079/* Implement the "info exceptions" command. */
13080
13081static void
1d12d88f 13082info_exceptions_command (const char *regexp, int from_tty)
778865d3 13083{
778865d3 13084 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13085
ab816a27 13086 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13087
13088 if (regexp != NULL)
13089 printf_filtered
13090 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13091 else
13092 printf_filtered (_("All defined Ada exceptions:\n"));
13093
ab816a27
TT
13094 for (const ada_exc_info &info : exceptions)
13095 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13096}
13097
4c4b4cd2
PH
13098 /* Operators */
13099/* Information about operators given special treatment in functions
13100 below. */
13101/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13102
13103#define ADA_OPERATORS \
13104 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13105 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13106 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13107 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13108 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13109 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13110 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13111 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13112 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13113 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13114 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13115 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13116 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13117 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13118 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13119 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13120 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13121 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13122 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13123
13124static void
554794dc
SDJ
13125ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13126 int *argsp)
4c4b4cd2
PH
13127{
13128 switch (exp->elts[pc - 1].opcode)
13129 {
76a01679 13130 default:
4c4b4cd2
PH
13131 operator_length_standard (exp, pc, oplenp, argsp);
13132 break;
13133
13134#define OP_DEFN(op, len, args, binop) \
13135 case op: *oplenp = len; *argsp = args; break;
13136 ADA_OPERATORS;
13137#undef OP_DEFN
52ce6436
PH
13138
13139 case OP_AGGREGATE:
13140 *oplenp = 3;
13141 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13142 break;
13143
13144 case OP_CHOICES:
13145 *oplenp = 3;
13146 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13147 break;
4c4b4cd2
PH
13148 }
13149}
13150
c0201579
JK
13151/* Implementation of the exp_descriptor method operator_check. */
13152
13153static int
13154ada_operator_check (struct expression *exp, int pos,
13155 int (*objfile_func) (struct objfile *objfile, void *data),
13156 void *data)
13157{
13158 const union exp_element *const elts = exp->elts;
13159 struct type *type = NULL;
13160
13161 switch (elts[pos].opcode)
13162 {
13163 case UNOP_IN_RANGE:
13164 case UNOP_QUAL:
13165 type = elts[pos + 1].type;
13166 break;
13167
13168 default:
13169 return operator_check_standard (exp, pos, objfile_func, data);
13170 }
13171
13172 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13173
13174 if (type && TYPE_OBJFILE (type)
13175 && (*objfile_func) (TYPE_OBJFILE (type), data))
13176 return 1;
13177
13178 return 0;
13179}
13180
a121b7c1 13181static const char *
4c4b4cd2
PH
13182ada_op_name (enum exp_opcode opcode)
13183{
13184 switch (opcode)
13185 {
76a01679 13186 default:
4c4b4cd2 13187 return op_name_standard (opcode);
52ce6436 13188
4c4b4cd2
PH
13189#define OP_DEFN(op, len, args, binop) case op: return #op;
13190 ADA_OPERATORS;
13191#undef OP_DEFN
52ce6436
PH
13192
13193 case OP_AGGREGATE:
13194 return "OP_AGGREGATE";
13195 case OP_CHOICES:
13196 return "OP_CHOICES";
13197 case OP_NAME:
13198 return "OP_NAME";
4c4b4cd2
PH
13199 }
13200}
13201
13202/* As for operator_length, but assumes PC is pointing at the first
13203 element of the operator, and gives meaningful results only for the
52ce6436 13204 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13205
13206static void
76a01679
JB
13207ada_forward_operator_length (struct expression *exp, int pc,
13208 int *oplenp, int *argsp)
4c4b4cd2 13209{
76a01679 13210 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13211 {
13212 default:
13213 *oplenp = *argsp = 0;
13214 break;
52ce6436 13215
4c4b4cd2
PH
13216#define OP_DEFN(op, len, args, binop) \
13217 case op: *oplenp = len; *argsp = args; break;
13218 ADA_OPERATORS;
13219#undef OP_DEFN
52ce6436
PH
13220
13221 case OP_AGGREGATE:
13222 *oplenp = 3;
13223 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13224 break;
13225
13226 case OP_CHOICES:
13227 *oplenp = 3;
13228 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13229 break;
13230
13231 case OP_STRING:
13232 case OP_NAME:
13233 {
13234 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13235
52ce6436
PH
13236 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13237 *argsp = 0;
13238 break;
13239 }
4c4b4cd2
PH
13240 }
13241}
13242
13243static int
13244ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13245{
13246 enum exp_opcode op = exp->elts[elt].opcode;
13247 int oplen, nargs;
13248 int pc = elt;
13249 int i;
76a01679 13250
4c4b4cd2
PH
13251 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13252
76a01679 13253 switch (op)
4c4b4cd2 13254 {
76a01679 13255 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13256 case OP_ATR_FIRST:
13257 case OP_ATR_LAST:
13258 case OP_ATR_LENGTH:
13259 case OP_ATR_IMAGE:
13260 case OP_ATR_MAX:
13261 case OP_ATR_MIN:
13262 case OP_ATR_MODULUS:
13263 case OP_ATR_POS:
13264 case OP_ATR_SIZE:
13265 case OP_ATR_TAG:
13266 case OP_ATR_VAL:
13267 break;
13268
13269 case UNOP_IN_RANGE:
13270 case UNOP_QUAL:
323e0a4a
AC
13271 /* XXX: gdb_sprint_host_address, type_sprint */
13272 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13273 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13274 fprintf_filtered (stream, " (");
13275 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13276 fprintf_filtered (stream, ")");
13277 break;
13278 case BINOP_IN_BOUNDS:
52ce6436
PH
13279 fprintf_filtered (stream, " (%d)",
13280 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13281 break;
13282 case TERNOP_IN_RANGE:
13283 break;
13284
52ce6436
PH
13285 case OP_AGGREGATE:
13286 case OP_OTHERS:
13287 case OP_DISCRETE_RANGE:
13288 case OP_POSITIONAL:
13289 case OP_CHOICES:
13290 break;
13291
13292 case OP_NAME:
13293 case OP_STRING:
13294 {
13295 char *name = &exp->elts[elt + 2].string;
13296 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13297
52ce6436
PH
13298 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13299 break;
13300 }
13301
4c4b4cd2
PH
13302 default:
13303 return dump_subexp_body_standard (exp, stream, elt);
13304 }
13305
13306 elt += oplen;
13307 for (i = 0; i < nargs; i += 1)
13308 elt = dump_subexp (exp, stream, elt);
13309
13310 return elt;
13311}
13312
13313/* The Ada extension of print_subexp (q.v.). */
13314
76a01679
JB
13315static void
13316ada_print_subexp (struct expression *exp, int *pos,
13317 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13318{
52ce6436 13319 int oplen, nargs, i;
4c4b4cd2
PH
13320 int pc = *pos;
13321 enum exp_opcode op = exp->elts[pc].opcode;
13322
13323 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13324
52ce6436 13325 *pos += oplen;
4c4b4cd2
PH
13326 switch (op)
13327 {
13328 default:
52ce6436 13329 *pos -= oplen;
4c4b4cd2
PH
13330 print_subexp_standard (exp, pos, stream, prec);
13331 return;
13332
13333 case OP_VAR_VALUE:
987012b8 13334 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13335 return;
13336
13337 case BINOP_IN_BOUNDS:
323e0a4a 13338 /* XXX: sprint_subexp */
4c4b4cd2 13339 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13340 fputs_filtered (" in ", stream);
4c4b4cd2 13341 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13342 fputs_filtered ("'range", stream);
4c4b4cd2 13343 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13344 fprintf_filtered (stream, "(%ld)",
13345 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13346 return;
13347
13348 case TERNOP_IN_RANGE:
4c4b4cd2 13349 if (prec >= PREC_EQUAL)
76a01679 13350 fputs_filtered ("(", stream);
323e0a4a 13351 /* XXX: sprint_subexp */
4c4b4cd2 13352 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13353 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13354 print_subexp (exp, pos, stream, PREC_EQUAL);
13355 fputs_filtered (" .. ", stream);
13356 print_subexp (exp, pos, stream, PREC_EQUAL);
13357 if (prec >= PREC_EQUAL)
76a01679
JB
13358 fputs_filtered (")", stream);
13359 return;
4c4b4cd2
PH
13360
13361 case OP_ATR_FIRST:
13362 case OP_ATR_LAST:
13363 case OP_ATR_LENGTH:
13364 case OP_ATR_IMAGE:
13365 case OP_ATR_MAX:
13366 case OP_ATR_MIN:
13367 case OP_ATR_MODULUS:
13368 case OP_ATR_POS:
13369 case OP_ATR_SIZE:
13370 case OP_ATR_TAG:
13371 case OP_ATR_VAL:
4c4b4cd2 13372 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679 13373 {
78134374 13374 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
79d43c61
TT
13375 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13376 &type_print_raw_options);
76a01679
JB
13377 *pos += 3;
13378 }
4c4b4cd2 13379 else
76a01679 13380 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13381 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13382 if (nargs > 1)
76a01679
JB
13383 {
13384 int tem;
5b4ee69b 13385
76a01679
JB
13386 for (tem = 1; tem < nargs; tem += 1)
13387 {
13388 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13389 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13390 }
13391 fputs_filtered (")", stream);
13392 }
4c4b4cd2 13393 return;
14f9c5c9 13394
4c4b4cd2 13395 case UNOP_QUAL:
4c4b4cd2
PH
13396 type_print (exp->elts[pc + 1].type, "", stream, 0);
13397 fputs_filtered ("'(", stream);
13398 print_subexp (exp, pos, stream, PREC_PREFIX);
13399 fputs_filtered (")", stream);
13400 return;
14f9c5c9 13401
4c4b4cd2 13402 case UNOP_IN_RANGE:
323e0a4a 13403 /* XXX: sprint_subexp */
4c4b4cd2 13404 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13405 fputs_filtered (" in ", stream);
79d43c61
TT
13406 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13407 &type_print_raw_options);
4c4b4cd2 13408 return;
52ce6436
PH
13409
13410 case OP_DISCRETE_RANGE:
13411 print_subexp (exp, pos, stream, PREC_SUFFIX);
13412 fputs_filtered ("..", stream);
13413 print_subexp (exp, pos, stream, PREC_SUFFIX);
13414 return;
13415
13416 case OP_OTHERS:
13417 fputs_filtered ("others => ", stream);
13418 print_subexp (exp, pos, stream, PREC_SUFFIX);
13419 return;
13420
13421 case OP_CHOICES:
13422 for (i = 0; i < nargs-1; i += 1)
13423 {
13424 if (i > 0)
13425 fputs_filtered ("|", stream);
13426 print_subexp (exp, pos, stream, PREC_SUFFIX);
13427 }
13428 fputs_filtered (" => ", stream);
13429 print_subexp (exp, pos, stream, PREC_SUFFIX);
13430 return;
13431
13432 case OP_POSITIONAL:
13433 print_subexp (exp, pos, stream, PREC_SUFFIX);
13434 return;
13435
13436 case OP_AGGREGATE:
13437 fputs_filtered ("(", stream);
13438 for (i = 0; i < nargs; i += 1)
13439 {
13440 if (i > 0)
13441 fputs_filtered (", ", stream);
13442 print_subexp (exp, pos, stream, PREC_SUFFIX);
13443 }
13444 fputs_filtered (")", stream);
13445 return;
4c4b4cd2
PH
13446 }
13447}
14f9c5c9
AS
13448
13449/* Table mapping opcodes into strings for printing operators
13450 and precedences of the operators. */
13451
d2e4a39e
AS
13452static const struct op_print ada_op_print_tab[] = {
13453 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13454 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13455 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13456 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13457 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13458 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13459 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13460 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13461 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13462 {">=", BINOP_GEQ, PREC_ORDER, 0},
13463 {">", BINOP_GTR, PREC_ORDER, 0},
13464 {"<", BINOP_LESS, PREC_ORDER, 0},
13465 {">>", BINOP_RSH, PREC_SHIFT, 0},
13466 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13467 {"+", BINOP_ADD, PREC_ADD, 0},
13468 {"-", BINOP_SUB, PREC_ADD, 0},
13469 {"&", BINOP_CONCAT, PREC_ADD, 0},
13470 {"*", BINOP_MUL, PREC_MUL, 0},
13471 {"/", BINOP_DIV, PREC_MUL, 0},
13472 {"rem", BINOP_REM, PREC_MUL, 0},
13473 {"mod", BINOP_MOD, PREC_MUL, 0},
13474 {"**", BINOP_EXP, PREC_REPEAT, 0},
13475 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13476 {"-", UNOP_NEG, PREC_PREFIX, 0},
13477 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13478 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13479 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13480 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13481 {".all", UNOP_IND, PREC_SUFFIX, 1},
13482 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13483 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13484 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13485};
13486\f
72d5681a
PH
13487enum ada_primitive_types {
13488 ada_primitive_type_int,
13489 ada_primitive_type_long,
13490 ada_primitive_type_short,
13491 ada_primitive_type_char,
13492 ada_primitive_type_float,
13493 ada_primitive_type_double,
13494 ada_primitive_type_void,
13495 ada_primitive_type_long_long,
13496 ada_primitive_type_long_double,
13497 ada_primitive_type_natural,
13498 ada_primitive_type_positive,
13499 ada_primitive_type_system_address,
08f49010 13500 ada_primitive_type_storage_offset,
72d5681a
PH
13501 nr_ada_primitive_types
13502};
6c038f32 13503
6c038f32
PH
13504\f
13505 /* Language vector */
13506
6c038f32
PH
13507static const struct exp_descriptor ada_exp_descriptor = {
13508 ada_print_subexp,
13509 ada_operator_length,
c0201579 13510 ada_operator_check,
6c038f32
PH
13511 ada_op_name,
13512 ada_dump_subexp_body,
13513 ada_evaluate_subexp
13514};
13515
b5ec771e
PA
13516/* symbol_name_matcher_ftype adapter for wild_match. */
13517
13518static bool
13519do_wild_match (const char *symbol_search_name,
13520 const lookup_name_info &lookup_name,
a207cff2 13521 completion_match_result *comp_match_res)
b5ec771e
PA
13522{
13523 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13524}
13525
13526/* symbol_name_matcher_ftype adapter for full_match. */
13527
13528static bool
13529do_full_match (const char *symbol_search_name,
13530 const lookup_name_info &lookup_name,
a207cff2 13531 completion_match_result *comp_match_res)
b5ec771e
PA
13532{
13533 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13534}
13535
a2cd4f14
JB
13536/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13537
13538static bool
13539do_exact_match (const char *symbol_search_name,
13540 const lookup_name_info &lookup_name,
13541 completion_match_result *comp_match_res)
13542{
13543 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13544}
13545
b5ec771e
PA
13546/* Build the Ada lookup name for LOOKUP_NAME. */
13547
13548ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13549{
e0802d59 13550 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13551
13552 if (user_name[0] == '<')
13553 {
13554 if (user_name.back () == '>')
e0802d59
TT
13555 m_encoded_name
13556 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13557 else
e0802d59
TT
13558 m_encoded_name
13559 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13560 m_encoded_p = true;
13561 m_verbatim_p = true;
13562 m_wild_match_p = false;
13563 m_standard_p = false;
13564 }
13565 else
13566 {
13567 m_verbatim_p = false;
13568
e0802d59 13569 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13570
13571 if (!m_encoded_p)
13572 {
e0802d59 13573 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13574 const char *encoded = ada_encode_1 (folded, false);
13575 if (encoded != NULL)
13576 m_encoded_name = encoded;
13577 else
e0802d59 13578 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13579 }
13580 else
e0802d59 13581 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13582
13583 /* Handle the 'package Standard' special case. See description
13584 of m_standard_p. */
13585 if (startswith (m_encoded_name.c_str (), "standard__"))
13586 {
13587 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13588 m_standard_p = true;
13589 }
13590 else
13591 m_standard_p = false;
74ccd7f5 13592
b5ec771e
PA
13593 /* If the name contains a ".", then the user is entering a fully
13594 qualified entity name, and the match must not be done in wild
13595 mode. Similarly, if the user wants to complete what looks
13596 like an encoded name, the match must not be done in wild
13597 mode. Also, in the standard__ special case always do
13598 non-wild matching. */
13599 m_wild_match_p
13600 = (lookup_name.match_type () != symbol_name_match_type::FULL
13601 && !m_encoded_p
13602 && !m_standard_p
13603 && user_name.find ('.') == std::string::npos);
13604 }
13605}
13606
13607/* symbol_name_matcher_ftype method for Ada. This only handles
13608 completion mode. */
13609
13610static bool
13611ada_symbol_name_matches (const char *symbol_search_name,
13612 const lookup_name_info &lookup_name,
a207cff2 13613 completion_match_result *comp_match_res)
74ccd7f5 13614{
b5ec771e
PA
13615 return lookup_name.ada ().matches (symbol_search_name,
13616 lookup_name.match_type (),
a207cff2 13617 comp_match_res);
b5ec771e
PA
13618}
13619
de63c46b
PA
13620/* A name matcher that matches the symbol name exactly, with
13621 strcmp. */
13622
13623static bool
13624literal_symbol_name_matcher (const char *symbol_search_name,
13625 const lookup_name_info &lookup_name,
13626 completion_match_result *comp_match_res)
13627{
e0802d59 13628 gdb::string_view name_view = lookup_name.name ();
de63c46b 13629
e0802d59
TT
13630 if (lookup_name.completion_mode ()
13631 ? (strncmp (symbol_search_name, name_view.data (),
13632 name_view.size ()) == 0)
13633 : symbol_search_name == name_view)
de63c46b
PA
13634 {
13635 if (comp_match_res != NULL)
13636 comp_match_res->set_match (symbol_search_name);
13637 return true;
13638 }
13639 else
13640 return false;
13641}
13642
c9debfb9 13643/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13644 Ada. */
13645
13646static symbol_name_matcher_ftype *
13647ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13648{
de63c46b
PA
13649 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13650 return literal_symbol_name_matcher;
13651
b5ec771e
PA
13652 if (lookup_name.completion_mode ())
13653 return ada_symbol_name_matches;
74ccd7f5 13654 else
b5ec771e
PA
13655 {
13656 if (lookup_name.ada ().wild_match_p ())
13657 return do_wild_match;
a2cd4f14
JB
13658 else if (lookup_name.ada ().verbatim_p ())
13659 return do_exact_match;
b5ec771e
PA
13660 else
13661 return do_full_match;
13662 }
74ccd7f5
JB
13663}
13664
56618e20
TT
13665static const char *ada_extensions[] =
13666{
13667 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13668};
13669
0874fd07
AB
13670/* Constant data that describes the Ada language. */
13671
13672extern const struct language_data ada_language_data =
13673{
6c038f32 13674 "ada", /* Language name */
6abde28f 13675 "Ada",
6c038f32 13676 language_ada,
6c038f32 13677 range_check_off,
6c038f32
PH
13678 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13679 that's not quite what this means. */
6c038f32 13680 array_row_major,
9a044a89 13681 macro_expansion_no,
56618e20 13682 ada_extensions,
6c038f32 13683 &ada_exp_descriptor,
2b2d9e11 13684 NULL, /* name_of_this */
59cc4834 13685 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
13686 ada_op_print_tab, /* expression operators for printing */
13687 0, /* c-style arrays */
13688 1, /* String lower bound */
a53b64ea 13689 &ada_varobj_ops,
721b08c6 13690 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
13691};
13692
0874fd07
AB
13693/* Class representing the Ada language. */
13694
13695class ada_language : public language_defn
13696{
13697public:
13698 ada_language ()
13699 : language_defn (language_ada, ada_language_data)
13700 { /* Nothing. */ }
5bd40f2a
AB
13701
13702 /* Print an array element index using the Ada syntax. */
13703
13704 void print_array_index (struct type *index_type,
13705 LONGEST index,
13706 struct ui_file *stream,
13707 const value_print_options *options) const override
13708 {
13709 struct value *index_value = val_atr (index_type, index);
13710
13711 LA_VALUE_PRINT (index_value, stream, options);
13712 fprintf_filtered (stream, " => ");
13713 }
15e5fd35
AB
13714
13715 /* Implement the "read_var_value" language_defn method for Ada. */
13716
13717 struct value *read_var_value (struct symbol *var,
13718 const struct block *var_block,
13719 struct frame_info *frame) const override
13720 {
13721 /* The only case where default_read_var_value is not sufficient
13722 is when VAR is a renaming... */
13723 if (frame != nullptr)
13724 {
13725 const struct block *frame_block = get_frame_block (frame, NULL);
13726 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13727 return ada_read_renaming_var_value (var, frame_block);
13728 }
13729
13730 /* This is a typical case where we expect the default_read_var_value
13731 function to work. */
13732 return language_defn::read_var_value (var, var_block, frame);
13733 }
1fb314aa
AB
13734
13735 /* See language.h. */
13736 void language_arch_info (struct gdbarch *gdbarch,
13737 struct language_arch_info *lai) const override
13738 {
13739 const struct builtin_type *builtin = builtin_type (gdbarch);
13740
13741 lai->primitive_type_vector
13742 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13743 struct type *);
13744
13745 lai->primitive_type_vector [ada_primitive_type_int]
13746 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13747 0, "integer");
13748 lai->primitive_type_vector [ada_primitive_type_long]
13749 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13750 0, "long_integer");
13751 lai->primitive_type_vector [ada_primitive_type_short]
13752 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13753 0, "short_integer");
13754 lai->string_char_type
13755 = lai->primitive_type_vector [ada_primitive_type_char]
13756 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13757 lai->primitive_type_vector [ada_primitive_type_float]
13758 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13759 "float", gdbarch_float_format (gdbarch));
13760 lai->primitive_type_vector [ada_primitive_type_double]
13761 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13762 "long_float", gdbarch_double_format (gdbarch));
13763 lai->primitive_type_vector [ada_primitive_type_long_long]
13764 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13765 0, "long_long_integer");
13766 lai->primitive_type_vector [ada_primitive_type_long_double]
13767 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13768 "long_long_float", gdbarch_long_double_format (gdbarch));
13769 lai->primitive_type_vector [ada_primitive_type_natural]
13770 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13771 0, "natural");
13772 lai->primitive_type_vector [ada_primitive_type_positive]
13773 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13774 0, "positive");
13775 lai->primitive_type_vector [ada_primitive_type_void]
13776 = builtin->builtin_void;
13777
13778 lai->primitive_type_vector [ada_primitive_type_system_address]
13779 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13780 "void"));
13781 lai->primitive_type_vector [ada_primitive_type_system_address]
13782 ->set_name ("system__address");
13783
13784 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13785 type. This is a signed integral type whose size is the same as
13786 the size of addresses. */
13787 {
13788 unsigned int addr_length = TYPE_LENGTH
13789 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13790
13791 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13792 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13793 "storage_offset");
13794 }
13795
13796 lai->bool_type_symbol = NULL;
13797 lai->bool_type_default = builtin->builtin_bool;
13798 }
4009ee92
AB
13799
13800 /* See language.h. */
13801
13802 bool iterate_over_symbols
13803 (const struct block *block, const lookup_name_info &name,
13804 domain_enum domain,
13805 gdb::function_view<symbol_found_callback_ftype> callback) const override
13806 {
13807 std::vector<struct block_symbol> results;
13808
13809 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13810 for (block_symbol &sym : results)
13811 {
13812 if (!callback (&sym))
13813 return false;
13814 }
13815
13816 return true;
13817 }
6f827019
AB
13818
13819 /* See language.h. */
13820 bool sniff_from_mangled_name (const char *mangled,
13821 char **out) const override
13822 {
13823 std::string demangled = ada_decode (mangled);
13824
13825 *out = NULL;
13826
13827 if (demangled != mangled && demangled[0] != '<')
13828 {
13829 /* Set the gsymbol language to Ada, but still return 0.
13830 Two reasons for that:
13831
13832 1. For Ada, we prefer computing the symbol's decoded name
13833 on the fly rather than pre-compute it, in order to save
13834 memory (Ada projects are typically very large).
13835
13836 2. There are some areas in the definition of the GNAT
13837 encoding where, with a bit of bad luck, we might be able
13838 to decode a non-Ada symbol, generating an incorrect
13839 demangled name (Eg: names ending with "TB" for instance
13840 are identified as task bodies and so stripped from
13841 the decoded name returned).
13842
13843 Returning true, here, but not setting *DEMANGLED, helps us get
13844 a little bit of the best of both worlds. Because we're last,
13845 we should not affect any of the other languages that were
13846 able to demangle the symbol before us; we get to correctly
13847 tag Ada symbols as such; and even if we incorrectly tagged a
13848 non-Ada symbol, which should be rare, any routing through the
13849 Ada language should be transparent (Ada tries to behave much
13850 like C/C++ with non-Ada symbols). */
13851 return true;
13852 }
13853
13854 return false;
13855 }
fbfb0a46
AB
13856
13857 /* See language.h. */
13858
0a50df5d
AB
13859 char *demangle (const char *mangled, int options) const override
13860 {
13861 return ada_la_decode (mangled, options);
13862 }
13863
13864 /* See language.h. */
13865
fbfb0a46
AB
13866 void print_type (struct type *type, const char *varstring,
13867 struct ui_file *stream, int show, int level,
13868 const struct type_print_options *flags) const override
13869 {
13870 ada_print_type (type, varstring, stream, show, level, flags);
13871 }
c9debfb9 13872
53fc67f8
AB
13873 /* See language.h. */
13874
13875 const char *word_break_characters (void) const override
13876 {
13877 return ada_completer_word_break_characters;
13878 }
13879
7e56227d
AB
13880 /* See language.h. */
13881
13882 void collect_symbol_completion_matches (completion_tracker &tracker,
13883 complete_symbol_mode mode,
13884 symbol_name_match_type name_match_type,
13885 const char *text, const char *word,
13886 enum type_code code) const override
13887 {
13888 struct symbol *sym;
13889 const struct block *b, *surrounding_static_block = 0;
13890 struct block_iterator iter;
13891
13892 gdb_assert (code == TYPE_CODE_UNDEF);
13893
13894 lookup_name_info lookup_name (text, name_match_type, true);
13895
13896 /* First, look at the partial symtab symbols. */
13897 expand_symtabs_matching (NULL,
13898 lookup_name,
13899 NULL,
13900 NULL,
13901 ALL_DOMAIN);
13902
13903 /* At this point scan through the misc symbol vectors and add each
13904 symbol you find to the list. Eventually we want to ignore
13905 anything that isn't a text symbol (everything else will be
13906 handled by the psymtab code above). */
13907
13908 for (objfile *objfile : current_program_space->objfiles ())
13909 {
13910 for (minimal_symbol *msymbol : objfile->msymbols ())
13911 {
13912 QUIT;
13913
13914 if (completion_skip_symbol (mode, msymbol))
13915 continue;
13916
13917 language symbol_language = msymbol->language ();
13918
13919 /* Ada minimal symbols won't have their language set to Ada. If
13920 we let completion_list_add_name compare using the
13921 default/C-like matcher, then when completing e.g., symbols in a
13922 package named "pck", we'd match internal Ada symbols like
13923 "pckS", which are invalid in an Ada expression, unless you wrap
13924 them in '<' '>' to request a verbatim match.
13925
13926 Unfortunately, some Ada encoded names successfully demangle as
13927 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13928 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13929 with the wrong language set. Paper over that issue here. */
13930 if (symbol_language == language_auto
13931 || symbol_language == language_cplus)
13932 symbol_language = language_ada;
13933
13934 completion_list_add_name (tracker,
13935 symbol_language,
13936 msymbol->linkage_name (),
13937 lookup_name, text, word);
13938 }
13939 }
13940
13941 /* Search upwards from currently selected frame (so that we can
13942 complete on local vars. */
13943
13944 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13945 {
13946 if (!BLOCK_SUPERBLOCK (b))
13947 surrounding_static_block = b; /* For elmin of dups */
13948
13949 ALL_BLOCK_SYMBOLS (b, iter, sym)
13950 {
13951 if (completion_skip_symbol (mode, sym))
13952 continue;
13953
13954 completion_list_add_name (tracker,
13955 sym->language (),
13956 sym->linkage_name (),
13957 lookup_name, text, word);
13958 }
13959 }
13960
13961 /* Go through the symtabs and check the externs and statics for
13962 symbols which match. */
13963
13964 for (objfile *objfile : current_program_space->objfiles ())
13965 {
13966 for (compunit_symtab *s : objfile->compunits ())
13967 {
13968 QUIT;
13969 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13970 ALL_BLOCK_SYMBOLS (b, iter, sym)
13971 {
13972 if (completion_skip_symbol (mode, sym))
13973 continue;
13974
13975 completion_list_add_name (tracker,
13976 sym->language (),
13977 sym->linkage_name (),
13978 lookup_name, text, word);
13979 }
13980 }
13981 }
13982
13983 for (objfile *objfile : current_program_space->objfiles ())
13984 {
13985 for (compunit_symtab *s : objfile->compunits ())
13986 {
13987 QUIT;
13988 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13989 /* Don't do this block twice. */
13990 if (b == surrounding_static_block)
13991 continue;
13992 ALL_BLOCK_SYMBOLS (b, iter, sym)
13993 {
13994 if (completion_skip_symbol (mode, sym))
13995 continue;
13996
13997 completion_list_add_name (tracker,
13998 sym->language (),
13999 sym->linkage_name (),
14000 lookup_name, text, word);
14001 }
14002 }
14003 }
14004 }
14005
f16a9f57
AB
14006 /* See language.h. */
14007
14008 gdb::unique_xmalloc_ptr<char> watch_location_expression
14009 (struct type *type, CORE_ADDR addr) const override
14010 {
14011 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14012 std::string name = type_to_string (type);
14013 return gdb::unique_xmalloc_ptr<char>
14014 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14015 }
14016
a1d1fa3e
AB
14017 /* See language.h. */
14018
14019 void value_print (struct value *val, struct ui_file *stream,
14020 const struct value_print_options *options) const override
14021 {
14022 return ada_value_print (val, stream, options);
14023 }
14024
ebe2334e
AB
14025 /* See language.h. */
14026
14027 void value_print_inner
14028 (struct value *val, struct ui_file *stream, int recurse,
14029 const struct value_print_options *options) const override
14030 {
14031 return ada_value_print_inner (val, stream, recurse, options);
14032 }
14033
a78a19b1
AB
14034 /* See language.h. */
14035
14036 struct block_symbol lookup_symbol_nonlocal
14037 (const char *name, const struct block *block,
14038 const domain_enum domain) const override
14039 {
14040 struct block_symbol sym;
14041
14042 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14043 if (sym.symbol != NULL)
14044 return sym;
14045
14046 /* If we haven't found a match at this point, try the primitive
14047 types. In other languages, this search is performed before
14048 searching for global symbols in order to short-circuit that
14049 global-symbol search if it happens that the name corresponds
14050 to a primitive type. But we cannot do the same in Ada, because
14051 it is perfectly legitimate for a program to declare a type which
14052 has the same name as a standard type. If looking up a type in
14053 that situation, we have traditionally ignored the primitive type
14054 in favor of user-defined types. This is why, unlike most other
14055 languages, we search the primitive types this late and only after
14056 having searched the global symbols without success. */
14057
14058 if (domain == VAR_DOMAIN)
14059 {
14060 struct gdbarch *gdbarch;
14061
14062 if (block == NULL)
14063 gdbarch = target_gdbarch ();
14064 else
14065 gdbarch = block_gdbarch (block);
14066 sym.symbol
14067 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14068 if (sym.symbol != NULL)
14069 return sym;
14070 }
14071
14072 return {};
14073 }
14074
87afa652
AB
14075 /* See language.h. */
14076
14077 int parser (struct parser_state *ps) const override
14078 {
14079 warnings_issued = 0;
14080 return ada_parse (ps);
14081 }
14082
1bf9c363
AB
14083 /* See language.h.
14084
14085 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14086 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14087 namespace) and converts operators that are user-defined into
14088 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14089 a preferred result type [at the moment, only type void has any
14090 effect---causing procedures to be preferred over functions in calls].
14091 A null CONTEXT_TYPE indicates that a non-void return type is
14092 preferred. May change (expand) *EXP. */
14093
14094 void post_parser (expression_up *expp, int void_context_p, int completing,
14095 innermost_block_tracker *tracker) const override
14096 {
14097 struct type *context_type = NULL;
14098 int pc = 0;
14099
14100 if (void_context_p)
14101 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14102
14103 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14104 }
14105
ec8cec5b
AB
14106 /* See language.h. */
14107
14108 void emitchar (int ch, struct type *chtype,
14109 struct ui_file *stream, int quoter) const override
14110 {
14111 ada_emit_char (ch, chtype, stream, quoter, 1);
14112 }
14113
52b50f2c
AB
14114 /* See language.h. */
14115
14116 void printchar (int ch, struct type *chtype,
14117 struct ui_file *stream) const override
14118 {
14119 ada_printchar (ch, chtype, stream);
14120 }
14121
d711ee67
AB
14122 /* See language.h. */
14123
14124 void printstr (struct ui_file *stream, struct type *elttype,
14125 const gdb_byte *string, unsigned int length,
14126 const char *encoding, int force_ellipses,
14127 const struct value_print_options *options) const override
14128 {
14129 ada_printstr (stream, elttype, string, length, encoding,
14130 force_ellipses, options);
14131 }
14132
4ffc13fb
AB
14133 /* See language.h. */
14134
14135 void print_typedef (struct type *type, struct symbol *new_symbol,
14136 struct ui_file *stream) const override
14137 {
14138 ada_print_typedef (type, new_symbol, stream);
14139 }
14140
39e7ecca
AB
14141 /* See language.h. */
14142
14143 bool is_string_type_p (struct type *type) const override
14144 {
14145 return ada_is_string_type (type);
14146 }
14147
14148
c9debfb9
AB
14149protected:
14150 /* See language.h. */
14151
14152 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14153 (const lookup_name_info &lookup_name) const override
14154 {
14155 return ada_get_symbol_name_matcher (lookup_name);
14156 }
0874fd07
AB
14157};
14158
14159/* Single instance of the Ada language class. */
14160
14161static ada_language ada_language_defn;
14162
5bf03f13
JB
14163/* Command-list for the "set/show ada" prefix command. */
14164static struct cmd_list_element *set_ada_list;
14165static struct cmd_list_element *show_ada_list;
14166
2060206e
PA
14167static void
14168initialize_ada_catchpoint_ops (void)
14169{
14170 struct breakpoint_ops *ops;
14171
14172 initialize_breakpoint_ops ();
14173
14174 ops = &catch_exception_breakpoint_ops;
14175 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14176 ops->allocate_location = allocate_location_exception;
14177 ops->re_set = re_set_exception;
14178 ops->check_status = check_status_exception;
14179 ops->print_it = print_it_exception;
14180 ops->print_one = print_one_exception;
14181 ops->print_mention = print_mention_exception;
14182 ops->print_recreate = print_recreate_exception;
2060206e
PA
14183
14184 ops = &catch_exception_unhandled_breakpoint_ops;
14185 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14186 ops->allocate_location = allocate_location_exception;
14187 ops->re_set = re_set_exception;
14188 ops->check_status = check_status_exception;
14189 ops->print_it = print_it_exception;
14190 ops->print_one = print_one_exception;
14191 ops->print_mention = print_mention_exception;
14192 ops->print_recreate = print_recreate_exception;
2060206e
PA
14193
14194 ops = &catch_assert_breakpoint_ops;
14195 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14196 ops->allocate_location = allocate_location_exception;
14197 ops->re_set = re_set_exception;
14198 ops->check_status = check_status_exception;
14199 ops->print_it = print_it_exception;
14200 ops->print_one = print_one_exception;
14201 ops->print_mention = print_mention_exception;
14202 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14203
14204 ops = &catch_handlers_breakpoint_ops;
14205 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14206 ops->allocate_location = allocate_location_exception;
14207 ops->re_set = re_set_exception;
14208 ops->check_status = check_status_exception;
14209 ops->print_it = print_it_exception;
14210 ops->print_one = print_one_exception;
14211 ops->print_mention = print_mention_exception;
14212 ops->print_recreate = print_recreate_exception;
2060206e
PA
14213}
14214
3d9434b5
JB
14215/* This module's 'new_objfile' observer. */
14216
14217static void
14218ada_new_objfile_observer (struct objfile *objfile)
14219{
14220 ada_clear_symbol_cache ();
14221}
14222
14223/* This module's 'free_objfile' observer. */
14224
14225static void
14226ada_free_objfile_observer (struct objfile *objfile)
14227{
14228 ada_clear_symbol_cache ();
14229}
14230
6c265988 14231void _initialize_ada_language ();
d2e4a39e 14232void
6c265988 14233_initialize_ada_language ()
14f9c5c9 14234{
2060206e
PA
14235 initialize_ada_catchpoint_ops ();
14236
0743fc83
TT
14237 add_basic_prefix_cmd ("ada", no_class,
14238 _("Prefix command for changing Ada-specific settings."),
14239 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14240
0743fc83
TT
14241 add_show_prefix_cmd ("ada", no_class,
14242 _("Generic command for showing Ada-specific settings."),
14243 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14244
14245 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14246 &trust_pad_over_xvs, _("\
590042fc
PW
14247Enable or disable an optimization trusting PAD types over XVS types."), _("\
14248Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14249 _("\
14250This is related to the encoding used by the GNAT compiler. The debugger\n\
14251should normally trust the contents of PAD types, but certain older versions\n\
14252of GNAT have a bug that sometimes causes the information in the PAD type\n\
14253to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14254work around this bug. It is always safe to turn this option \"off\", but\n\
14255this incurs a slight performance penalty, so it is recommended to NOT change\n\
14256this option to \"off\" unless necessary."),
14257 NULL, NULL, &set_ada_list, &show_ada_list);
14258
d72413e6
PMR
14259 add_setshow_boolean_cmd ("print-signatures", class_vars,
14260 &print_signatures, _("\
14261Enable or disable the output of formal and return types for functions in the \
590042fc 14262overloads selection menu."), _("\
d72413e6 14263Show whether the output of formal and return types for functions in the \
590042fc 14264overloads selection menu is activated."),
d72413e6
PMR
14265 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14266
9ac4176b
PA
14267 add_catch_command ("exception", _("\
14268Catch Ada exceptions, when raised.\n\
9bf7038b 14269Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14270Without any argument, stop when any Ada exception is raised.\n\
14271If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14272being raised does not have a handler (and will therefore lead to the task's\n\
14273termination).\n\
14274Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14275raised is the same as ARG.\n\
14276CONDITION is a boolean expression that is evaluated to see whether the\n\
14277exception should cause a stop."),
9ac4176b 14278 catch_ada_exception_command,
71bed2db 14279 catch_ada_completer,
9ac4176b
PA
14280 CATCH_PERMANENT,
14281 CATCH_TEMPORARY);
9f757bf7
XR
14282
14283 add_catch_command ("handlers", _("\
14284Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14285Usage: catch handlers [ARG] [if CONDITION]\n\
14286Without any argument, stop when any Ada exception is handled.\n\
14287With an argument, catch only exceptions with the given name.\n\
14288CONDITION is a boolean expression that is evaluated to see whether the\n\
14289exception should cause a stop."),
9f757bf7 14290 catch_ada_handlers_command,
71bed2db 14291 catch_ada_completer,
9f757bf7
XR
14292 CATCH_PERMANENT,
14293 CATCH_TEMPORARY);
9ac4176b
PA
14294 add_catch_command ("assert", _("\
14295Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14296Usage: catch assert [if CONDITION]\n\
14297CONDITION is a boolean expression that is evaluated to see whether the\n\
14298exception should cause a stop."),
9ac4176b
PA
14299 catch_assert_command,
14300 NULL,
14301 CATCH_PERMANENT,
14302 CATCH_TEMPORARY);
14303
6c038f32 14304 varsize_limit = 65536;
3fcded8f
JB
14305 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14306 &varsize_limit, _("\
14307Set the maximum number of bytes allowed in a variable-size object."), _("\
14308Show the maximum number of bytes allowed in a variable-size object."), _("\
14309Attempts to access an object whose size is not a compile-time constant\n\
14310and exceeds this limit will cause an error."),
14311 NULL, NULL, &setlist, &showlist);
6c038f32 14312
778865d3
JB
14313 add_info ("exceptions", info_exceptions_command,
14314 _("\
14315List all Ada exception names.\n\
9bf7038b 14316Usage: info exceptions [REGEXP]\n\
778865d3
JB
14317If a regular expression is passed as an argument, only those matching\n\
14318the regular expression are listed."));
14319
0743fc83
TT
14320 add_basic_prefix_cmd ("ada", class_maintenance,
14321 _("Set Ada maintenance-related variables."),
14322 &maint_set_ada_cmdlist, "maintenance set ada ",
14323 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14324
0743fc83
TT
14325 add_show_prefix_cmd ("ada", class_maintenance,
14326 _("Show Ada maintenance-related variables."),
14327 &maint_show_ada_cmdlist, "maintenance show ada ",
14328 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14329
14330 add_setshow_boolean_cmd
14331 ("ignore-descriptive-types", class_maintenance,
14332 &ada_ignore_descriptive_types_p,
14333 _("Set whether descriptive types generated by GNAT should be ignored."),
14334 _("Show whether descriptive types generated by GNAT should be ignored."),
14335 _("\
14336When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14337DWARF attribute."),
14338 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14339
459a2e4c
TT
14340 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14341 NULL, xcalloc, xfree);
6b69afc4 14342
3d9434b5 14343 /* The ada-lang observers. */
76727919
TT
14344 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14345 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14346 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14347}
This page took 2.853364 seconds and 4 git commands to generate.