Introduce gdb::function_view
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
8b302db8
TT
1455/* Implement la_sniff_from_mangled_name for Ada. */
1456
1457static int
1458ada_sniff_from_mangled_name (const char *mangled, char **out)
1459{
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492}
1493
14f9c5c9 1494/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
14f9c5c9 1500
2c0b251b 1501static int
40658b94 1502match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1503{
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
73589123 1507 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1508 else
1509 {
1510 int len_name = strlen (name);
5b4ee69b 1511
4c4b4cd2
PH
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
61012eef 1514 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1517 }
14f9c5c9 1518}
14f9c5c9 1519\f
d2e4a39e 1520
4c4b4cd2 1521 /* Arrays */
14f9c5c9 1522
28c85d6c
JB
1523/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546void
1547ada_fixup_array_indexes_type (struct type *index_desc_type)
1548{
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
0d5cff50 1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576}
1577
4c4b4cd2 1578/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1579
d2e4a39e
AS
1580static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583};
1584
1585/* Maximum number of array dimensions we are prepared to handle. */
1586
4c4b4cd2 1587#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1588
14f9c5c9 1589
4c4b4cd2
PH
1590/* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
14f9c5c9
AS
1592
1593/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1594 level of indirection, if needed. */
1595
d2e4a39e
AS
1596static struct type *
1597desc_base_type (struct type *type)
14f9c5c9
AS
1598{
1599 if (type == NULL)
1600 return NULL;
61ee279c 1601 type = ada_check_typedef (type);
720d1a40
JB
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1265e4aa
JB
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1609 else
1610 return type;
1611}
1612
4c4b4cd2
PH
1613/* True iff TYPE indicates a "thin" array pointer type. */
1614
14f9c5c9 1615static int
d2e4a39e 1616is_thin_pntr (struct type *type)
14f9c5c9 1617{
d2e4a39e 1618 return
14f9c5c9
AS
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621}
1622
4c4b4cd2
PH
1623/* The descriptor type for thin pointer type TYPE. */
1624
d2e4a39e
AS
1625static struct type *
1626thin_descriptor_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *base_type = desc_base_type (type);
5b4ee69b 1629
14f9c5c9
AS
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
d2e4a39e 1634 else
14f9c5c9 1635 {
d2e4a39e 1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1637
14f9c5c9 1638 if (alt_type == NULL)
4c4b4cd2 1639 return base_type;
14f9c5c9 1640 else
4c4b4cd2 1641 return alt_type;
14f9c5c9
AS
1642 }
1643}
1644
4c4b4cd2
PH
1645/* A pointer to the array data for thin-pointer value VAL. */
1646
d2e4a39e
AS
1647static struct value *
1648thin_data_pntr (struct value *val)
14f9c5c9 1649{
828292f2 1650 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1652
556bdfd4
UW
1653 data_type = lookup_pointer_type (data_type);
1654
14f9c5c9 1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1656 return value_cast (data_type, value_copy (val));
d2e4a39e 1657 else
42ae5230 1658 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1659}
1660
4c4b4cd2
PH
1661/* True iff TYPE indicates a "thick" array pointer type. */
1662
14f9c5c9 1663static int
d2e4a39e 1664is_thick_pntr (struct type *type)
14f9c5c9
AS
1665{
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1669}
1670
4c4b4cd2
PH
1671/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1673
d2e4a39e
AS
1674static struct type *
1675desc_bounds_type (struct type *type)
14f9c5c9 1676{
d2e4a39e 1677 struct type *r;
14f9c5c9
AS
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
4c4b4cd2 1687 return NULL;
14f9c5c9
AS
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (r);
14f9c5c9
AS
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
61ee279c 1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1697 }
1698 return NULL;
1699}
1700
1701/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
d2e4a39e
AS
1704static struct value *
1705desc_bounds (struct value *arr)
14f9c5c9 1706{
df407dfe 1707 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1708
d2e4a39e 1709 if (is_thin_pntr (type))
14f9c5c9 1710 {
d2e4a39e 1711 struct type *bounds_type =
4c4b4cd2 1712 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1713 LONGEST addr;
1714
4cdfadb1 1715 if (bounds_type == NULL)
323e0a4a 1716 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1717
1718 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1719 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1720 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1722 addr = value_as_long (arr);
d2e4a39e 1723 else
42ae5230 1724 addr = value_address (arr);
14f9c5c9 1725
d2e4a39e 1726 return
4c4b4cd2
PH
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1729 }
1730
1731 else if (is_thick_pntr (type))
05e522ef
JB
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
14f9c5c9
AS
1752 else
1753 return NULL;
1754}
1755
4c4b4cd2
PH
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1761{
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763}
1764
1765/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1766 size of the field containing the address of the bounds data. */
1767
14f9c5c9 1768static int
d2e4a39e 1769fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1770{
1771 type = desc_base_type (type);
1772
d2e4a39e 1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
61ee279c 1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1777}
1778
4c4b4cd2 1779/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
4c4b4cd2 1783
d2e4a39e 1784static struct type *
556bdfd4 1785desc_data_target_type (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
4c4b4cd2 1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1790 if (is_thin_pntr (type))
556bdfd4 1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1792 else if (is_thick_pntr (type))
556bdfd4
UW
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1799 }
1800
1801 return NULL;
14f9c5c9
AS
1802}
1803
1804/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
4c4b4cd2 1806
d2e4a39e
AS
1807static struct value *
1808desc_data (struct value *arr)
14f9c5c9 1809{
df407dfe 1810 struct type *type = value_type (arr);
5b4ee69b 1811
14f9c5c9
AS
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
d2e4a39e 1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1816 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1817 else
1818 return NULL;
1819}
1820
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 position of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1827{
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829}
1830
1831/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1832 size of the field containing the address of the data. */
1833
14f9c5c9 1834static int
d2e4a39e 1835fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1841 else
14f9c5c9
AS
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843}
1844
4c4b4cd2 1845/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
d2e4a39e
AS
1849static struct value *
1850desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1851{
d2e4a39e 1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1853 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1854}
1855
1856/* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
14f9c5c9 1860static int
d2e4a39e 1861desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1862{
d2e4a39e 1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1864}
1865
1866/* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
76a01679 1870static int
d2e4a39e 1871desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1872{
1873 type = desc_base_type (type);
1874
d2e4a39e
AS
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1879}
1880
1881/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
d2e4a39e
AS
1884static struct type *
1885desc_index_type (struct type *type, int i)
14f9c5c9
AS
1886{
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
14f9c5c9
AS
1892 return NULL;
1893}
1894
4c4b4cd2
PH
1895/* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
14f9c5c9 1898static int
d2e4a39e 1899desc_arity (struct type *type)
14f9c5c9
AS
1900{
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906}
1907
4c4b4cd2
PH
1908/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
76a01679
JB
1912static int
1913ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1914{
1915 if (type == NULL)
1916 return 0;
61ee279c 1917 type = ada_check_typedef (type);
4c4b4cd2 1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1919 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1920}
1921
52ce6436 1922/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1923 * to one. */
52ce6436 1924
2c0b251b 1925static int
52ce6436
PH
1926ada_is_array_type (struct type *type)
1927{
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933}
1934
4c4b4cd2 1935/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1936
14f9c5c9 1937int
4c4b4cd2 1938ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1939{
1940 if (type == NULL)
1941 return 0;
61ee279c 1942 type = ada_check_typedef (type);
14f9c5c9 1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1947}
1948
4c4b4cd2
PH
1949/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
14f9c5c9 1951int
4c4b4cd2 1952ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1953{
556bdfd4 1954 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1955
1956 if (type == NULL)
1957 return 0;
61ee279c 1958 type = ada_check_typedef (type);
556bdfd4
UW
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1962}
1963
1964/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1965 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1966 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1967 is still needed. */
1968
14f9c5c9 1969int
ebf56fd3 1970ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1971{
d2e4a39e 1972 return
14f9c5c9
AS
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1978}
1979
1980
4c4b4cd2 1981/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1982 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1984 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1987 a descriptor. */
d2e4a39e
AS
1988struct type *
1989ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1990{
ad82864c
JB
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1993
df407dfe
AC
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
d2e4a39e
AS
1996
1997 if (!bounds)
ad82864c
JB
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
14f9c5c9
AS
2008 else
2009 {
d2e4a39e 2010 struct type *elt_type;
14f9c5c9 2011 int arity;
d2e4a39e 2012 struct value *descriptor;
14f9c5c9 2013
df407dfe
AC
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
14f9c5c9 2016
d2e4a39e 2017 if (elt_type == NULL || arity == 0)
df407dfe 2018 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2019
2020 descriptor = desc_bounds (arr);
d2e4a39e 2021 if (value_as_long (descriptor) == 0)
4c4b4cd2 2022 return NULL;
d2e4a39e 2023 while (arity > 0)
4c4b4cd2 2024 {
e9bb382b
UW
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2029
5b4ee69b 2030 arity -= 1;
0c9c3474
SA
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
4c4b4cd2 2034 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
4c4b4cd2 2056 }
14f9c5c9
AS
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060}
2061
2062/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
d2e4a39e
AS
2067struct value *
2068ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2069{
df407dfe 2070 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2071 {
d2e4a39e 2072 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2073
14f9c5c9 2074 if (arrType == NULL)
4c4b4cd2 2075 return NULL;
14f9c5c9
AS
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
ad82864c
JB
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2080 else
2081 return arr;
2082}
2083
2084/* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2086 be ARR itself if it already is in the proper form). */
2087
720d1a40 2088struct value *
d2e4a39e 2089ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2090{
df407dfe 2091 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2092 {
d2e4a39e 2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2094
14f9c5c9 2095 if (arrVal == NULL)
323e0a4a 2096 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2098 return value_ind (arrVal);
2099 }
ad82864c
JB
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
d2e4a39e 2102 else
14f9c5c9
AS
2103 return arr;
2104}
2105
2106/* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2108 packing). For other types, is the identity. */
2109
d2e4a39e
AS
2110struct type *
2111ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2112{
ad82864c
JB
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
17280b9f
UW
2115
2116 if (ada_is_array_descriptor_type (type))
556bdfd4 2117 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2118
2119 return type;
14f9c5c9
AS
2120}
2121
4c4b4cd2
PH
2122/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
ad82864c
JB
2124static int
2125ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2126{
2127 if (type == NULL)
2128 return 0;
4c4b4cd2 2129 type = desc_base_type (type);
61ee279c 2130 type = ada_check_typedef (type);
d2e4a39e 2131 return
14f9c5c9
AS
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134}
2135
ad82864c
JB
2136/* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139int
2140ada_is_constrained_packed_array_type (struct type *type)
2141{
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144}
2145
2146/* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149static int
2150ada_is_unconstrained_packed_array_type (struct type *type)
2151{
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154}
2155
2156/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159static long
2160decode_packed_array_bitsize (struct type *type)
2161{
0d5cff50
DE
2162 const char *raw_name;
2163 const char *tail;
ad82864c
JB
2164 long bits;
2165
720d1a40
JB
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
720d1a40 2180 gdb_assert (tail != NULL);
ad82864c
JB
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190}
2191
14f9c5c9
AS
2192/* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
4c4b4cd2 2208
d2e4a39e 2209static struct type *
ad82864c 2210constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2211{
d2e4a39e
AS
2212 struct type *new_elt_type;
2213 struct type *new_type;
99b1c762
JB
2214 struct type *index_type_desc;
2215 struct type *index_type;
14f9c5c9
AS
2216 LONGEST low_bound, high_bound;
2217
61ee279c 2218 type = ada_check_typedef (type);
14f9c5c9
AS
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
99b1c762
JB
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
e9bb382b 2229 new_type = alloc_type_copy (type);
ad82864c
JB
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
99b1c762 2233 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
4a46959e
JB
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2243 else
14f9c5c9
AS
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2246 TYPE_LENGTH (new_type) =
4c4b4cd2 2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2248 }
2249
876cecd0 2250 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2251 return new_type;
2252}
2253
ad82864c
JB
2254/* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2256
d2e4a39e 2257static struct type *
ad82864c 2258decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2259{
0d5cff50 2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2261 char *name;
0d5cff50 2262 const char *tail;
d2e4a39e 2263 struct type *shadow_type;
14f9c5c9 2264 long bits;
14f9c5c9 2265
727e3d2e
JB
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2274 type = desc_base_type (type);
2275
14f9c5c9
AS
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
b4ba55a1
JB
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
14f9c5c9 2282 {
323e0a4a 2283 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2284 return NULL;
2285 }
f168693b 2286 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
0963b4bd
MS
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
14f9c5c9
AS
2292 return NULL;
2293 }
d2e4a39e 2294
ad82864c
JB
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2297}
2298
ad82864c
JB
2299/* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
4c4b4cd2 2303 type length is set appropriately. */
14f9c5c9 2304
d2e4a39e 2305static struct value *
ad82864c 2306decode_constrained_packed_array (struct value *arr)
14f9c5c9 2307{
4c4b4cd2 2308 struct type *type;
14f9c5c9 2309
11aa919a
PMR
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
828292f2 2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2319 arr = value_ind (arr);
4c4b4cd2 2320
ad82864c 2321 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2322 if (type == NULL)
2323 {
323e0a4a 2324 error (_("can't unpack array"));
14f9c5c9
AS
2325 return NULL;
2326 }
61ee279c 2327
50810684 2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2329 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
df407dfe 2338 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
df407dfe 2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
4c4b4cd2 2353 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2354}
2355
2356
2357/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2358 given in IND. ARR must be a simple array. */
14f9c5c9 2359
d2e4a39e
AS
2360static struct value *
2361value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2362{
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
d2e4a39e
AS
2366 struct type *elt_type;
2367 struct value *v;
14f9c5c9
AS
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
df407dfe 2371 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2372 for (i = 0; i < arity; i += 1)
14f9c5c9 2373 {
d2e4a39e 2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
0963b4bd
MS
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
14f9c5c9 2379 else
4c4b4cd2
PH
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
323e0a4a 2387 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2388 lowerbound = upperbound = 0;
2389 }
2390
3cb382c9 2391 idx = pos_atr (ind[i]);
4c4b4cd2 2392 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
4c4b4cd2
PH
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2398 }
14f9c5c9
AS
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2404 bits, elt_type);
14f9c5c9
AS
2405 return v;
2406}
2407
4c4b4cd2 2408/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2409
2410static int
d2e4a39e 2411has_negatives (struct type *type)
14f9c5c9 2412{
d2e4a39e
AS
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
14f9c5c9 2422}
d2e4a39e 2423
f93fca70 2424/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2426 the unpacked buffer.
14f9c5c9 2427
5b639dea
JB
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
f93fca70
JB
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
14f9c5c9 2433
f93fca70 2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2435
f93fca70
JB
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438static void
2439ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443{
a1c95e6b
JB
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
a1c95e6b
JB
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
4c4b4cd2 2454 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2455 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2456 unsigned char sign;
a1c95e6b 2457
4c4b4cd2
PH
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
f93fca70 2460 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2461
5b639dea
JB
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
14f9c5c9 2468 srcBitsLeft = bit_size;
086ca51f 2469 src_bytes_left = src_len;
f93fca70 2470 unpacked_bytes_left = unpacked_len;
14f9c5c9 2471 sign = 0;
f93fca70
JB
2472
2473 if (is_big_endian)
14f9c5c9 2474 {
086ca51f 2475 src_idx = src_len - 1;
f93fca70
JB
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2478 sign = ~0;
d2e4a39e
AS
2479
2480 unusedLS =
4c4b4cd2
PH
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
14f9c5c9 2483
f93fca70
JB
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
4c4b4cd2
PH
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
086ca51f
JB
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2498 }
14f9c5c9 2499 }
d2e4a39e 2500 else
14f9c5c9
AS
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
086ca51f 2504 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
f93fca70 2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2509 sign = ~0;
14f9c5c9 2510 }
d2e4a39e 2511
14f9c5c9 2512 accum = 0;
086ca51f 2513 while (src_bytes_left > 0)
14f9c5c9
AS
2514 {
2515 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2516 part of the value. */
d2e4a39e 2517 unsigned int unusedMSMask =
4c4b4cd2
PH
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
14f9c5c9 2521 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2522
d2e4a39e 2523 accum |=
086ca51f 2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2525 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2526 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2527 {
db297a65 2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
4c4b4cd2 2533 }
14f9c5c9
AS
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
086ca51f
JB
2536 src_bytes_left -= 1;
2537 src_idx += delta;
14f9c5c9 2538 }
086ca51f 2539 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2540 {
2541 accum |= sign << accumSize;
db297a65 2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2543 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2544 if (accumSize < 0)
2545 accumSize = 0;
14f9c5c9 2546 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
14f9c5c9 2549 }
f93fca70
JB
2550}
2551
2552/* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561struct value *
2562ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565{
2566 struct value *v;
bfb1c796 2567 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2568 gdb_byte *unpacked;
220475ed 2569 const int is_scalar = is_scalar_type (type);
d0a9e810 2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
200069c7 2571 std::unique_ptr<gdb_byte[]> staging;
d0a9e810 2572 int staging_len = 0;
f93fca70
JB
2573
2574 type = ada_check_typedef (type);
2575
d0a9e810 2576 if (obj == NULL)
bfb1c796 2577 src = valaddr + offset;
d0a9e810 2578 else
bfb1c796 2579 src = value_contents (obj) + offset;
d0a9e810
JB
2580
2581 if (is_dynamic_type (type))
2582 {
2583 /* The length of TYPE might by dynamic, so we need to resolve
2584 TYPE in order to know its actual size, which we then use
2585 to create the contents buffer of the value we return.
2586 The difficulty is that the data containing our object is
2587 packed, and therefore maybe not at a byte boundary. So, what
2588 we do, is unpack the data into a byte-aligned buffer, and then
2589 use that buffer as our object's value for resolving the type. */
2590 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
200069c7 2591 staging.reset (new gdb_byte[staging_len]);
d0a9e810
JB
2592
2593 ada_unpack_from_contents (src, bit_offset, bit_size,
200069c7 2594 staging.get (), staging_len,
d0a9e810
JB
2595 is_big_endian, has_negatives (type),
2596 is_scalar);
200069c7 2597 type = resolve_dynamic_type (type, staging.get (), 0);
0cafa88c
JB
2598 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2599 {
2600 /* This happens when the length of the object is dynamic,
2601 and is actually smaller than the space reserved for it.
2602 For instance, in an array of variant records, the bit_size
2603 we're given is the array stride, which is constant and
2604 normally equal to the maximum size of its element.
2605 But, in reality, each element only actually spans a portion
2606 of that stride. */
2607 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2608 }
d0a9e810
JB
2609 }
2610
f93fca70
JB
2611 if (obj == NULL)
2612 {
2613 v = allocate_value (type);
bfb1c796 2614 src = valaddr + offset;
f93fca70
JB
2615 }
2616 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2617 {
0cafa88c 2618 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2619 gdb_byte *buf;
0cafa88c 2620
f93fca70 2621 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2622 buf = (gdb_byte *) alloca (src_len);
2623 read_memory (value_address (v), buf, src_len);
2624 src = buf;
f93fca70
JB
2625 }
2626 else
2627 {
2628 v = allocate_value (type);
bfb1c796 2629 src = value_contents (obj) + offset;
f93fca70
JB
2630 }
2631
2632 if (obj != NULL)
2633 {
2634 long new_offset = offset;
2635
2636 set_value_component_location (v, obj);
2637 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2638 set_value_bitsize (v, bit_size);
2639 if (value_bitpos (v) >= HOST_CHAR_BIT)
2640 {
2641 ++new_offset;
2642 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2643 }
2644 set_value_offset (v, new_offset);
2645
2646 /* Also set the parent value. This is needed when trying to
2647 assign a new value (in inferior memory). */
2648 set_value_parent (v, obj);
2649 }
2650 else
2651 set_value_bitsize (v, bit_size);
bfb1c796 2652 unpacked = value_contents_writeable (v);
f93fca70
JB
2653
2654 if (bit_size == 0)
2655 {
2656 memset (unpacked, 0, TYPE_LENGTH (type));
2657 return v;
2658 }
2659
d0a9e810 2660 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2661 {
d0a9e810
JB
2662 /* Small short-cut: If we've unpacked the data into a buffer
2663 of the same size as TYPE's length, then we can reuse that,
2664 instead of doing the unpacking again. */
200069c7 2665 memcpy (unpacked, staging.get (), staging_len);
f93fca70 2666 }
d0a9e810
JB
2667 else
2668 ada_unpack_from_contents (src, bit_offset, bit_size,
2669 unpacked, TYPE_LENGTH (type),
2670 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2671
14f9c5c9
AS
2672 return v;
2673}
d2e4a39e 2674
14f9c5c9
AS
2675/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2676 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2677 not overlap. */
14f9c5c9 2678static void
fc1a4b47 2679move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2680 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2681{
2682 unsigned int accum, mask;
2683 int accum_bits, chunk_size;
2684
2685 target += targ_offset / HOST_CHAR_BIT;
2686 targ_offset %= HOST_CHAR_BIT;
2687 source += src_offset / HOST_CHAR_BIT;
2688 src_offset %= HOST_CHAR_BIT;
50810684 2689 if (bits_big_endian_p)
14f9c5c9
AS
2690 {
2691 accum = (unsigned char) *source;
2692 source += 1;
2693 accum_bits = HOST_CHAR_BIT - src_offset;
2694
d2e4a39e 2695 while (n > 0)
4c4b4cd2
PH
2696 {
2697 int unused_right;
5b4ee69b 2698
4c4b4cd2
PH
2699 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2700 accum_bits += HOST_CHAR_BIT;
2701 source += 1;
2702 chunk_size = HOST_CHAR_BIT - targ_offset;
2703 if (chunk_size > n)
2704 chunk_size = n;
2705 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2706 mask = ((1 << chunk_size) - 1) << unused_right;
2707 *target =
2708 (*target & ~mask)
2709 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2710 n -= chunk_size;
2711 accum_bits -= chunk_size;
2712 target += 1;
2713 targ_offset = 0;
2714 }
14f9c5c9
AS
2715 }
2716 else
2717 {
2718 accum = (unsigned char) *source >> src_offset;
2719 source += 1;
2720 accum_bits = HOST_CHAR_BIT - src_offset;
2721
d2e4a39e 2722 while (n > 0)
4c4b4cd2
PH
2723 {
2724 accum = accum + ((unsigned char) *source << accum_bits);
2725 accum_bits += HOST_CHAR_BIT;
2726 source += 1;
2727 chunk_size = HOST_CHAR_BIT - targ_offset;
2728 if (chunk_size > n)
2729 chunk_size = n;
2730 mask = ((1 << chunk_size) - 1) << targ_offset;
2731 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2732 n -= chunk_size;
2733 accum_bits -= chunk_size;
2734 accum >>= chunk_size;
2735 target += 1;
2736 targ_offset = 0;
2737 }
14f9c5c9
AS
2738 }
2739}
2740
14f9c5c9
AS
2741/* Store the contents of FROMVAL into the location of TOVAL.
2742 Return a new value with the location of TOVAL and contents of
2743 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2744 floating-point or non-scalar types. */
14f9c5c9 2745
d2e4a39e
AS
2746static struct value *
2747ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2748{
df407dfe
AC
2749 struct type *type = value_type (toval);
2750 int bits = value_bitsize (toval);
14f9c5c9 2751
52ce6436
PH
2752 toval = ada_coerce_ref (toval);
2753 fromval = ada_coerce_ref (fromval);
2754
2755 if (ada_is_direct_array_type (value_type (toval)))
2756 toval = ada_coerce_to_simple_array (toval);
2757 if (ada_is_direct_array_type (value_type (fromval)))
2758 fromval = ada_coerce_to_simple_array (fromval);
2759
88e3b34b 2760 if (!deprecated_value_modifiable (toval))
323e0a4a 2761 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2762
d2e4a39e 2763 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2764 && bits > 0
d2e4a39e 2765 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2766 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2767 {
df407dfe
AC
2768 int len = (value_bitpos (toval)
2769 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2770 int from_size;
224c3ddb 2771 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2772 struct value *val;
42ae5230 2773 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2774
2775 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2776 fromval = value_cast (type, fromval);
14f9c5c9 2777
52ce6436 2778 read_memory (to_addr, buffer, len);
aced2898
PH
2779 from_size = value_bitsize (fromval);
2780 if (from_size == 0)
2781 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2782 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2783 move_bits (buffer, value_bitpos (toval),
50810684 2784 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2785 else
50810684
UW
2786 move_bits (buffer, value_bitpos (toval),
2787 value_contents (fromval), 0, bits, 0);
972daa01 2788 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2789
14f9c5c9 2790 val = value_copy (toval);
0fd88904 2791 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2792 TYPE_LENGTH (type));
04624583 2793 deprecated_set_value_type (val, type);
d2e4a39e 2794
14f9c5c9
AS
2795 return val;
2796 }
2797
2798 return value_assign (toval, fromval);
2799}
2800
2801
7c512744
JB
2802/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2803 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2804 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2805 COMPONENT, and not the inferior's memory. The current contents
2806 of COMPONENT are ignored.
2807
2808 Although not part of the initial design, this function also works
2809 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2810 had a null address, and COMPONENT had an address which is equal to
2811 its offset inside CONTAINER. */
2812
52ce6436
PH
2813static void
2814value_assign_to_component (struct value *container, struct value *component,
2815 struct value *val)
2816{
2817 LONGEST offset_in_container =
42ae5230 2818 (LONGEST) (value_address (component) - value_address (container));
7c512744 2819 int bit_offset_in_container =
52ce6436
PH
2820 value_bitpos (component) - value_bitpos (container);
2821 int bits;
7c512744 2822
52ce6436
PH
2823 val = value_cast (value_type (component), val);
2824
2825 if (value_bitsize (component) == 0)
2826 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2827 else
2828 bits = value_bitsize (component);
2829
50810684 2830 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2831 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2832 value_bitpos (container) + bit_offset_in_container,
2833 value_contents (val),
2834 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2835 bits, 1);
52ce6436 2836 else
7c512744 2837 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2838 value_bitpos (container) + bit_offset_in_container,
50810684 2839 value_contents (val), 0, bits, 0);
7c512744
JB
2840}
2841
4c4b4cd2
PH
2842/* The value of the element of array ARR at the ARITY indices given in IND.
2843 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2844 thereto. */
2845
d2e4a39e
AS
2846struct value *
2847ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2848{
2849 int k;
d2e4a39e
AS
2850 struct value *elt;
2851 struct type *elt_type;
14f9c5c9
AS
2852
2853 elt = ada_coerce_to_simple_array (arr);
2854
df407dfe 2855 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2856 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2857 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2858 return value_subscript_packed (elt, arity, ind);
2859
2860 for (k = 0; k < arity; k += 1)
2861 {
2862 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2863 error (_("too many subscripts (%d expected)"), k);
2497b498 2864 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2865 }
2866 return elt;
2867}
2868
deede10c
JB
2869/* Assuming ARR is a pointer to a GDB array, the value of the element
2870 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2871 Does not read the entire array into memory.
2872
2873 Note: Unlike what one would expect, this function is used instead of
2874 ada_value_subscript for basically all non-packed array types. The reason
2875 for this is that a side effect of doing our own pointer arithmetics instead
2876 of relying on value_subscript is that there is no implicit typedef peeling.
2877 This is important for arrays of array accesses, where it allows us to
2878 preserve the fact that the array's element is an array access, where the
2879 access part os encoded in a typedef layer. */
14f9c5c9 2880
2c0b251b 2881static struct value *
deede10c 2882ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2883{
2884 int k;
919e6dbe 2885 struct value *array_ind = ada_value_ind (arr);
deede10c 2886 struct type *type
919e6dbe
PMR
2887 = check_typedef (value_enclosing_type (array_ind));
2888
2889 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2890 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2891 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2892
2893 for (k = 0; k < arity; k += 1)
2894 {
2895 LONGEST lwb, upb;
aa715135 2896 struct value *lwb_value;
14f9c5c9
AS
2897
2898 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2899 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2900 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2901 value_copy (arr));
14f9c5c9 2902 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2903 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2904 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2905 type = TYPE_TARGET_TYPE (type);
2906 }
2907
2908 return value_ind (arr);
2909}
2910
0b5d8877 2911/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2912 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2913 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2914 this array is LOW, as per Ada rules. */
0b5d8877 2915static struct value *
f5938064
JG
2916ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2917 int low, int high)
0b5d8877 2918{
b0dd7688 2919 struct type *type0 = ada_check_typedef (type);
aa715135 2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2921 struct type *index_type
aa715135 2922 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2923 struct type *slice_type =
b0dd7688 2924 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2925 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2926 LONGEST base_low_pos, low_pos;
2927 CORE_ADDR base;
2928
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, base_low, &base_low_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 base_low_pos = base_low;
2935 }
5b4ee69b 2936
aa715135
JG
2937 base = value_as_address (array_ptr)
2938 + ((low_pos - base_low_pos)
2939 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2940 return value_at_lazy (slice_type, base);
0b5d8877
PH
2941}
2942
2943
2944static struct value *
2945ada_value_slice (struct value *array, int low, int high)
2946{
b0dd7688 2947 struct type *type = ada_check_typedef (value_type (array));
aa715135 2948 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2949 struct type *index_type
2950 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2951 struct type *slice_type =
0b5d8877 2952 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2953 LONGEST low_pos, high_pos;
5b4ee69b 2954
aa715135
JG
2955 if (!discrete_position (base_index_type, low, &low_pos)
2956 || !discrete_position (base_index_type, high, &high_pos))
2957 {
2958 warning (_("unable to get positions in slice, use bounds instead"));
2959 low_pos = low;
2960 high_pos = high;
2961 }
2962
2963 return value_cast (slice_type,
2964 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2965}
2966
14f9c5c9
AS
2967/* If type is a record type in the form of a standard GNAT array
2968 descriptor, returns the number of dimensions for type. If arr is a
2969 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2970 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2971
2972int
d2e4a39e 2973ada_array_arity (struct type *type)
14f9c5c9
AS
2974{
2975 int arity;
2976
2977 if (type == NULL)
2978 return 0;
2979
2980 type = desc_base_type (type);
2981
2982 arity = 0;
d2e4a39e 2983 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2984 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2985 else
2986 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2987 {
4c4b4cd2 2988 arity += 1;
61ee279c 2989 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2990 }
d2e4a39e 2991
14f9c5c9
AS
2992 return arity;
2993}
2994
2995/* If TYPE is a record type in the form of a standard GNAT array
2996 descriptor or a simple array type, returns the element type for
2997 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2998 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2999
d2e4a39e
AS
3000struct type *
3001ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3002{
3003 type = desc_base_type (type);
3004
d2e4a39e 3005 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3006 {
3007 int k;
d2e4a39e 3008 struct type *p_array_type;
14f9c5c9 3009
556bdfd4 3010 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3011
3012 k = ada_array_arity (type);
3013 if (k == 0)
4c4b4cd2 3014 return NULL;
d2e4a39e 3015
4c4b4cd2 3016 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3017 if (nindices >= 0 && k > nindices)
4c4b4cd2 3018 k = nindices;
d2e4a39e 3019 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3020 {
61ee279c 3021 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3022 k -= 1;
3023 }
14f9c5c9
AS
3024 return p_array_type;
3025 }
3026 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3027 {
3028 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3029 {
3030 type = TYPE_TARGET_TYPE (type);
3031 nindices -= 1;
3032 }
14f9c5c9
AS
3033 return type;
3034 }
3035
3036 return NULL;
3037}
3038
4c4b4cd2 3039/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3040 Does not examine memory. Throws an error if N is invalid or TYPE
3041 is not an array type. NAME is the name of the Ada attribute being
3042 evaluated ('range, 'first, 'last, or 'length); it is used in building
3043 the error message. */
14f9c5c9 3044
1eea4ebd
UW
3045static struct type *
3046ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3047{
4c4b4cd2
PH
3048 struct type *result_type;
3049
14f9c5c9
AS
3050 type = desc_base_type (type);
3051
1eea4ebd
UW
3052 if (n < 0 || n > ada_array_arity (type))
3053 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3054
4c4b4cd2 3055 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3056 {
3057 int i;
3058
3059 for (i = 1; i < n; i += 1)
4c4b4cd2 3060 type = TYPE_TARGET_TYPE (type);
262452ec 3061 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3062 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3063 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3064 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3065 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3066 result_type = NULL;
14f9c5c9 3067 }
d2e4a39e 3068 else
1eea4ebd
UW
3069 {
3070 result_type = desc_index_type (desc_bounds_type (type), n);
3071 if (result_type == NULL)
3072 error (_("attempt to take bound of something that is not an array"));
3073 }
3074
3075 return result_type;
14f9c5c9
AS
3076}
3077
3078/* Given that arr is an array type, returns the lower bound of the
3079 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3080 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3081 array-descriptor type. It works for other arrays with bounds supplied
3082 by run-time quantities other than discriminants. */
14f9c5c9 3083
abb68b3e 3084static LONGEST
fb5e3d5c 3085ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3086{
8a48ac95 3087 struct type *type, *index_type_desc, *index_type;
1ce677a4 3088 int i;
262452ec
JK
3089
3090 gdb_assert (which == 0 || which == 1);
14f9c5c9 3091
ad82864c
JB
3092 if (ada_is_constrained_packed_array_type (arr_type))
3093 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3094
4c4b4cd2 3095 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3096 return (LONGEST) - which;
14f9c5c9
AS
3097
3098 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3099 type = TYPE_TARGET_TYPE (arr_type);
3100 else
3101 type = arr_type;
3102
bafffb51
JB
3103 if (TYPE_FIXED_INSTANCE (type))
3104 {
3105 /* The array has already been fixed, so we do not need to
3106 check the parallel ___XA type again. That encoding has
3107 already been applied, so ignore it now. */
3108 index_type_desc = NULL;
3109 }
3110 else
3111 {
3112 index_type_desc = ada_find_parallel_type (type, "___XA");
3113 ada_fixup_array_indexes_type (index_type_desc);
3114 }
3115
262452ec 3116 if (index_type_desc != NULL)
28c85d6c
JB
3117 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3118 NULL);
262452ec 3119 else
8a48ac95
JB
3120 {
3121 struct type *elt_type = check_typedef (type);
3122
3123 for (i = 1; i < n; i++)
3124 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3125
3126 index_type = TYPE_INDEX_TYPE (elt_type);
3127 }
262452ec 3128
43bbcdc2
PH
3129 return
3130 (LONGEST) (which == 0
3131 ? ada_discrete_type_low_bound (index_type)
3132 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3133}
3134
3135/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3136 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3137 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3138 supplied by run-time quantities other than discriminants. */
14f9c5c9 3139
1eea4ebd 3140static LONGEST
4dc81987 3141ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3142{
eb479039
JB
3143 struct type *arr_type;
3144
3145 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3146 arr = value_ind (arr);
3147 arr_type = value_enclosing_type (arr);
14f9c5c9 3148
ad82864c
JB
3149 if (ada_is_constrained_packed_array_type (arr_type))
3150 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3151 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3152 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3153 else
1eea4ebd 3154 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3155}
3156
3157/* Given that arr is an array value, returns the length of the
3158 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3159 supplied by run-time quantities other than discriminants.
3160 Does not work for arrays indexed by enumeration types with representation
3161 clauses at the moment. */
14f9c5c9 3162
1eea4ebd 3163static LONGEST
d2e4a39e 3164ada_array_length (struct value *arr, int n)
14f9c5c9 3165{
aa715135
JG
3166 struct type *arr_type, *index_type;
3167 int low, high;
eb479039
JB
3168
3169 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3170 arr = value_ind (arr);
3171 arr_type = value_enclosing_type (arr);
14f9c5c9 3172
ad82864c
JB
3173 if (ada_is_constrained_packed_array_type (arr_type))
3174 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3175
4c4b4cd2 3176 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3177 {
3178 low = ada_array_bound_from_type (arr_type, n, 0);
3179 high = ada_array_bound_from_type (arr_type, n, 1);
3180 }
14f9c5c9 3181 else
aa715135
JG
3182 {
3183 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3184 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3185 }
3186
f168693b 3187 arr_type = check_typedef (arr_type);
aa715135
JG
3188 index_type = TYPE_INDEX_TYPE (arr_type);
3189 if (index_type != NULL)
3190 {
3191 struct type *base_type;
3192 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3193 base_type = TYPE_TARGET_TYPE (index_type);
3194 else
3195 base_type = index_type;
3196
3197 low = pos_atr (value_from_longest (base_type, low));
3198 high = pos_atr (value_from_longest (base_type, high));
3199 }
3200 return high - low + 1;
4c4b4cd2
PH
3201}
3202
3203/* An empty array whose type is that of ARR_TYPE (an array type),
3204 with bounds LOW to LOW-1. */
3205
3206static struct value *
3207empty_array (struct type *arr_type, int low)
3208{
b0dd7688 3209 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3210 struct type *index_type
3211 = create_static_range_type
3212 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3213 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3214
0b5d8877 3215 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3216}
14f9c5c9 3217\f
d2e4a39e 3218
4c4b4cd2 3219 /* Name resolution */
14f9c5c9 3220
4c4b4cd2
PH
3221/* The "decoded" name for the user-definable Ada operator corresponding
3222 to OP. */
14f9c5c9 3223
d2e4a39e 3224static const char *
4c4b4cd2 3225ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3226{
3227 int i;
3228
4c4b4cd2 3229 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3230 {
3231 if (ada_opname_table[i].op == op)
4c4b4cd2 3232 return ada_opname_table[i].decoded;
14f9c5c9 3233 }
323e0a4a 3234 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3235}
3236
3237
4c4b4cd2
PH
3238/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3239 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3240 undefined namespace) and converts operators that are
3241 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3242 non-null, it provides a preferred result type [at the moment, only
3243 type void has any effect---causing procedures to be preferred over
3244 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3245 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3246
4c4b4cd2
PH
3247static void
3248resolve (struct expression **expp, int void_context_p)
14f9c5c9 3249{
30b15541
UW
3250 struct type *context_type = NULL;
3251 int pc = 0;
3252
3253 if (void_context_p)
3254 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3255
3256 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3257}
3258
4c4b4cd2
PH
3259/* Resolve the operator of the subexpression beginning at
3260 position *POS of *EXPP. "Resolving" consists of replacing
3261 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3262 with their resolutions, replacing built-in operators with
3263 function calls to user-defined operators, where appropriate, and,
3264 when DEPROCEDURE_P is non-zero, converting function-valued variables
3265 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3266 are as in ada_resolve, above. */
14f9c5c9 3267
d2e4a39e 3268static struct value *
4c4b4cd2 3269resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3270 struct type *context_type)
14f9c5c9
AS
3271{
3272 int pc = *pos;
3273 int i;
4c4b4cd2 3274 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3275 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3276 struct value **argvec; /* Vector of operand types (alloca'ed). */
3277 int nargs; /* Number of operands. */
52ce6436 3278 int oplen;
14f9c5c9
AS
3279
3280 argvec = NULL;
3281 nargs = 0;
3282 exp = *expp;
3283
52ce6436
PH
3284 /* Pass one: resolve operands, saving their types and updating *pos,
3285 if needed. */
14f9c5c9
AS
3286 switch (op)
3287 {
4c4b4cd2
PH
3288 case OP_FUNCALL:
3289 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3290 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3291 *pos += 7;
4c4b4cd2
PH
3292 else
3293 {
3294 *pos += 3;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 }
3297 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3298 break;
3299
14f9c5c9 3300 case UNOP_ADDR:
4c4b4cd2
PH
3301 *pos += 1;
3302 resolve_subexp (expp, pos, 0, NULL);
3303 break;
3304
52ce6436
PH
3305 case UNOP_QUAL:
3306 *pos += 3;
17466c1a 3307 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3308 break;
3309
52ce6436 3310 case OP_ATR_MODULUS:
4c4b4cd2
PH
3311 case OP_ATR_SIZE:
3312 case OP_ATR_TAG:
4c4b4cd2
PH
3313 case OP_ATR_FIRST:
3314 case OP_ATR_LAST:
3315 case OP_ATR_LENGTH:
3316 case OP_ATR_POS:
3317 case OP_ATR_VAL:
4c4b4cd2
PH
3318 case OP_ATR_MIN:
3319 case OP_ATR_MAX:
52ce6436
PH
3320 case TERNOP_IN_RANGE:
3321 case BINOP_IN_BOUNDS:
3322 case UNOP_IN_RANGE:
3323 case OP_AGGREGATE:
3324 case OP_OTHERS:
3325 case OP_CHOICES:
3326 case OP_POSITIONAL:
3327 case OP_DISCRETE_RANGE:
3328 case OP_NAME:
3329 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3330 *pos += oplen;
14f9c5c9
AS
3331 break;
3332
3333 case BINOP_ASSIGN:
3334 {
4c4b4cd2
PH
3335 struct value *arg1;
3336
3337 *pos += 1;
3338 arg1 = resolve_subexp (expp, pos, 0, NULL);
3339 if (arg1 == NULL)
3340 resolve_subexp (expp, pos, 1, NULL);
3341 else
df407dfe 3342 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3343 break;
14f9c5c9
AS
3344 }
3345
4c4b4cd2 3346 case UNOP_CAST:
4c4b4cd2
PH
3347 *pos += 3;
3348 nargs = 1;
3349 break;
14f9c5c9 3350
4c4b4cd2
PH
3351 case BINOP_ADD:
3352 case BINOP_SUB:
3353 case BINOP_MUL:
3354 case BINOP_DIV:
3355 case BINOP_REM:
3356 case BINOP_MOD:
3357 case BINOP_EXP:
3358 case BINOP_CONCAT:
3359 case BINOP_LOGICAL_AND:
3360 case BINOP_LOGICAL_OR:
3361 case BINOP_BITWISE_AND:
3362 case BINOP_BITWISE_IOR:
3363 case BINOP_BITWISE_XOR:
14f9c5c9 3364
4c4b4cd2
PH
3365 case BINOP_EQUAL:
3366 case BINOP_NOTEQUAL:
3367 case BINOP_LESS:
3368 case BINOP_GTR:
3369 case BINOP_LEQ:
3370 case BINOP_GEQ:
14f9c5c9 3371
4c4b4cd2
PH
3372 case BINOP_REPEAT:
3373 case BINOP_SUBSCRIPT:
3374 case BINOP_COMMA:
40c8aaa9
JB
3375 *pos += 1;
3376 nargs = 2;
3377 break;
14f9c5c9 3378
4c4b4cd2
PH
3379 case UNOP_NEG:
3380 case UNOP_PLUS:
3381 case UNOP_LOGICAL_NOT:
3382 case UNOP_ABS:
3383 case UNOP_IND:
3384 *pos += 1;
3385 nargs = 1;
3386 break;
14f9c5c9 3387
4c4b4cd2
PH
3388 case OP_LONG:
3389 case OP_DOUBLE:
3390 case OP_VAR_VALUE:
3391 *pos += 4;
3392 break;
14f9c5c9 3393
4c4b4cd2
PH
3394 case OP_TYPE:
3395 case OP_BOOL:
3396 case OP_LAST:
4c4b4cd2
PH
3397 case OP_INTERNALVAR:
3398 *pos += 3;
3399 break;
14f9c5c9 3400
4c4b4cd2
PH
3401 case UNOP_MEMVAL:
3402 *pos += 3;
3403 nargs = 1;
3404 break;
3405
67f3407f
DJ
3406 case OP_REGISTER:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 break;
3409
4c4b4cd2
PH
3410 case STRUCTOP_STRUCT:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 nargs = 1;
3413 break;
3414
4c4b4cd2 3415 case TERNOP_SLICE:
4c4b4cd2
PH
3416 *pos += 1;
3417 nargs = 3;
3418 break;
3419
52ce6436 3420 case OP_STRING:
14f9c5c9 3421 break;
4c4b4cd2
PH
3422
3423 default:
323e0a4a 3424 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3425 }
3426
8d749320 3427 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3428 for (i = 0; i < nargs; i += 1)
3429 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3430 argvec[i] = NULL;
3431 exp = *expp;
3432
3433 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3434 switch (op)
3435 {
3436 default:
3437 break;
3438
14f9c5c9 3439 case OP_VAR_VALUE:
4c4b4cd2 3440 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3441 {
d12307c1 3442 struct block_symbol *candidates;
76a01679
JB
3443 int n_candidates;
3444
3445 n_candidates =
3446 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3447 (exp->elts[pc + 2].symbol),
3448 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3449 &candidates);
76a01679
JB
3450
3451 if (n_candidates > 1)
3452 {
3453 /* Types tend to get re-introduced locally, so if there
3454 are any local symbols that are not types, first filter
3455 out all types. */
3456 int j;
3457 for (j = 0; j < n_candidates; j += 1)
d12307c1 3458 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3459 {
3460 case LOC_REGISTER:
3461 case LOC_ARG:
3462 case LOC_REF_ARG:
76a01679
JB
3463 case LOC_REGPARM_ADDR:
3464 case LOC_LOCAL:
76a01679 3465 case LOC_COMPUTED:
76a01679
JB
3466 goto FoundNonType;
3467 default:
3468 break;
3469 }
3470 FoundNonType:
3471 if (j < n_candidates)
3472 {
3473 j = 0;
3474 while (j < n_candidates)
3475 {
d12307c1 3476 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3477 {
3478 candidates[j] = candidates[n_candidates - 1];
3479 n_candidates -= 1;
3480 }
3481 else
3482 j += 1;
3483 }
3484 }
3485 }
3486
3487 if (n_candidates == 0)
323e0a4a 3488 error (_("No definition found for %s"),
76a01679
JB
3489 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3490 else if (n_candidates == 1)
3491 i = 0;
3492 else if (deprocedure_p
3493 && !is_nonfunction (candidates, n_candidates))
3494 {
06d5cf63
JB
3495 i = ada_resolve_function
3496 (candidates, n_candidates, NULL, 0,
3497 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3498 context_type);
76a01679 3499 if (i < 0)
323e0a4a 3500 error (_("Could not find a match for %s"),
76a01679
JB
3501 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3502 }
3503 else
3504 {
323e0a4a 3505 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3506 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3507 user_select_syms (candidates, n_candidates, 1);
3508 i = 0;
3509 }
3510
3511 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3512 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3513 if (innermost_block == NULL
3514 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3515 innermost_block = candidates[i].block;
3516 }
3517
3518 if (deprocedure_p
3519 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3520 == TYPE_CODE_FUNC))
3521 {
3522 replace_operator_with_call (expp, pc, 0, 0,
3523 exp->elts[pc + 2].symbol,
3524 exp->elts[pc + 1].block);
3525 exp = *expp;
3526 }
14f9c5c9
AS
3527 break;
3528
3529 case OP_FUNCALL:
3530 {
4c4b4cd2 3531 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3532 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3533 {
d12307c1 3534 struct block_symbol *candidates;
4c4b4cd2
PH
3535 int n_candidates;
3536
3537 n_candidates =
76a01679
JB
3538 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3539 (exp->elts[pc + 5].symbol),
3540 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3541 &candidates);
4c4b4cd2
PH
3542 if (n_candidates == 1)
3543 i = 0;
3544 else
3545 {
06d5cf63
JB
3546 i = ada_resolve_function
3547 (candidates, n_candidates,
3548 argvec, nargs,
3549 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3550 context_type);
4c4b4cd2 3551 if (i < 0)
323e0a4a 3552 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3553 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3554 }
3555
3556 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3557 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3558 if (innermost_block == NULL
3559 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3560 innermost_block = candidates[i].block;
3561 }
14f9c5c9
AS
3562 }
3563 break;
3564 case BINOP_ADD:
3565 case BINOP_SUB:
3566 case BINOP_MUL:
3567 case BINOP_DIV:
3568 case BINOP_REM:
3569 case BINOP_MOD:
3570 case BINOP_CONCAT:
3571 case BINOP_BITWISE_AND:
3572 case BINOP_BITWISE_IOR:
3573 case BINOP_BITWISE_XOR:
3574 case BINOP_EQUAL:
3575 case BINOP_NOTEQUAL:
3576 case BINOP_LESS:
3577 case BINOP_GTR:
3578 case BINOP_LEQ:
3579 case BINOP_GEQ:
3580 case BINOP_EXP:
3581 case UNOP_NEG:
3582 case UNOP_PLUS:
3583 case UNOP_LOGICAL_NOT:
3584 case UNOP_ABS:
3585 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3586 {
d12307c1 3587 struct block_symbol *candidates;
4c4b4cd2
PH
3588 int n_candidates;
3589
3590 n_candidates =
3591 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3592 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3593 &candidates);
4c4b4cd2 3594 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3595 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3596 if (i < 0)
3597 break;
3598
d12307c1
PMR
3599 replace_operator_with_call (expp, pc, nargs, 1,
3600 candidates[i].symbol,
3601 candidates[i].block);
4c4b4cd2
PH
3602 exp = *expp;
3603 }
14f9c5c9 3604 break;
4c4b4cd2
PH
3605
3606 case OP_TYPE:
b3dbf008 3607 case OP_REGISTER:
4c4b4cd2 3608 return NULL;
14f9c5c9
AS
3609 }
3610
3611 *pos = pc;
3612 return evaluate_subexp_type (exp, pos);
3613}
3614
3615/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3617 a non-pointer. */
14f9c5c9 3618/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3619 liberal. */
14f9c5c9
AS
3620
3621static int
4dc81987 3622ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3623{
61ee279c
PH
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
14f9c5c9
AS
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
d2e4a39e 3632 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3633 {
3634 default:
5b3d5b7d 3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3640 else
1265e4aa
JB
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
14f9c5c9
AS
3655
3656 case TYPE_CODE_ARRAY:
d2e4a39e 3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3658 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3659
3660 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
14f9c5c9 3664 else
4c4b4cd2
PH
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672}
3673
3674/* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3677 argument function. */
14f9c5c9
AS
3678
3679static int
d2e4a39e 3680ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3681{
3682 int i;
d2e4a39e 3683 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3684
1265e4aa
JB
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
4c4b4cd2 3696 if (actuals[i] == NULL)
76a01679
JB
3697 return 0;
3698 else
3699 {
5b4ee69b
MS
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
df407dfe 3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3703
76a01679
JB
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
14f9c5c9
AS
3707 }
3708 return 1;
3709}
3710
3711/* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716static int
d2e4a39e 3717return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3718{
d2e4a39e 3719 struct type *return_type;
14f9c5c9
AS
3720
3721 if (func_type == NULL)
3722 return 1;
3723
4c4b4cd2 3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3726 else
18af8284 3727 return_type = get_base_type (func_type);
14f9c5c9
AS
3728 if (return_type == NULL)
3729 return 1;
3730
18af8284 3731 context_type = get_base_type (context_type);
14f9c5c9
AS
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739}
3740
3741
4c4b4cd2 3742/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3743 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
14f9c5c9
AS
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
14f9c5c9 3753
4c4b4cd2 3754static int
d12307c1 3755ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
14f9c5c9 3758{
30b15541 3759 int fallback;
14f9c5c9 3760 int k;
4c4b4cd2 3761 int m; /* Number of hits */
14f9c5c9 3762
d2e4a39e 3763 m = 0;
30b15541
UW
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3768 {
3769 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3770 {
d12307c1 3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3772
d12307c1 3773 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3774 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
14f9c5c9
AS
3780 }
3781
dc5c8746
PMR
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3786 if (m == 0)
3787 return -1;
dc5c8746 3788 else if (m > 1 && !parse_completion)
14f9c5c9 3789 {
323e0a4a 3790 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3791 user_select_syms (syms, m, 1);
14f9c5c9
AS
3792 return 0;
3793 }
3794 return 0;
3795}
3796
4c4b4cd2
PH
3797/* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
14f9c5c9 3803static int
0d5cff50 3804encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3805{
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
5b4ee69b 3813
d2e4a39e 3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3815 ;
d2e4a39e 3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3817 ;
d2e4a39e 3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
5b4ee69b 3822
4c4b4cd2
PH
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
14f9c5c9
AS
3832 return (strcmp (N0, N1) < 0);
3833 }
3834}
d2e4a39e 3835
4c4b4cd2
PH
3836/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
d2e4a39e 3839static void
d12307c1 3840sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3841{
4c4b4cd2 3842 int i;
5b4ee69b 3843
d2e4a39e 3844 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3845 {
d12307c1 3846 struct block_symbol sym = syms[i];
14f9c5c9
AS
3847 int j;
3848
d2e4a39e 3849 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3850 {
d12307c1
PMR
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
d2e4a39e 3856 syms[j + 1] = sym;
14f9c5c9
AS
3857 }
3858}
3859
d72413e6
PMR
3860/* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862static int print_signatures = 1;
3863
3864/* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869static void
3870ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872{
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901}
3902
4c4b4cd2
PH
3903/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
14f9c5c9
AS
3907
3908/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3909 to be re-integrated one of these days. */
14f9c5c9
AS
3910
3911int
d12307c1 3912user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3913{
3914 int i;
8d749320 3915 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3918 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3919
3920 if (max_results < 1)
323e0a4a 3921 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3922 if (nsyms <= 1)
3923 return nsyms;
3924
717d2f5a
JB
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927canceled because the command is ambiguous\n\
3928See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
323e0a4a 3936 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3937 if (max_results > 1)
323e0a4a 3938 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3939
4c4b4cd2 3940 sort_choices (syms, nsyms);
14f9c5c9
AS
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
d12307c1 3944 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3945 continue;
3946
d12307c1 3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3948 {
76a01679 3949 struct symtab_and_line sal =
d12307c1 3950 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3951
d72413e6
PMR
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
323e0a4a 3955 if (sal.symtab == NULL)
d72413e6 3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3957 sal.line);
3958 else
d72413e6 3959 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
4c4b4cd2
PH
3962 continue;
3963 }
d2e4a39e 3964 else
4c4b4cd2
PH
3965 {
3966 int is_enumeral =
d12307c1
PMR
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3970 struct symtab *symtab = NULL;
3971
d12307c1
PMR
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3974
d12307c1 3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
76a01679 3984 else if (is_enumeral
d12307c1 3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3986 {
a3f17187 3987 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3989 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3991 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3992 }
d72413e6
PMR
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4c4b4cd2 4009 }
14f9c5c9 4010 }
d2e4a39e 4011
14f9c5c9 4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4013 "overload-choice");
14f9c5c9
AS
4014
4015 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4016 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4017
4018 return n_chosen;
4019}
4020
4021/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4022 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4c4b4cd2 4028 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4c4b4cd2 4032 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4035 prompts (for use with the -f switch). */
14f9c5c9
AS
4036
4037int
d2e4a39e 4038get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 4039 int is_all_choice, char *annotation_suffix)
14f9c5c9 4040{
d2e4a39e 4041 char *args;
0bcd0149 4042 char *prompt;
14f9c5c9
AS
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4045
14f9c5c9
AS
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
0bcd0149 4048 prompt = "> ";
14f9c5c9 4049
0bcd0149 4050 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4051
14f9c5c9 4052 if (args == NULL)
323e0a4a 4053 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4054
4055 n_chosen = 0;
76a01679 4056
4c4b4cd2
PH
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
14f9c5c9
AS
4059 while (1)
4060 {
d2e4a39e 4061 char *args2;
14f9c5c9
AS
4062 int choice, j;
4063
0fcd72ba 4064 args = skip_spaces (args);
14f9c5c9 4065 if (*args == '\0' && n_chosen == 0)
323e0a4a 4066 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4067 else if (*args == '\0')
4c4b4cd2 4068 break;
14f9c5c9
AS
4069
4070 choice = strtol (args, &args2, 10);
d2e4a39e 4071 if (args == args2 || choice < 0
4c4b4cd2 4072 || choice > n_choices + first_choice - 1)
323e0a4a 4073 error (_("Argument must be choice number"));
14f9c5c9
AS
4074 args = args2;
4075
d2e4a39e 4076 if (choice == 0)
323e0a4a 4077 error (_("cancelled"));
14f9c5c9
AS
4078
4079 if (choice < first_choice)
4c4b4cd2
PH
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
14f9c5c9
AS
4086 choice -= first_choice;
4087
d2e4a39e 4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4089 {
4090 }
14f9c5c9
AS
4091
4092 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4093 {
4094 int k;
5b4ee69b 4095
4c4b4cd2
PH
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
14f9c5c9
AS
4101 }
4102
4103 if (n_chosen > max_results)
323e0a4a 4104 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4105
14f9c5c9
AS
4106 return n_chosen;
4107}
4108
4c4b4cd2
PH
4109/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4112
4113static void
d2e4a39e 4114replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4115 int oplen, struct symbol *sym,
270140bd 4116 const struct block *block)
14f9c5c9
AS
4117{
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4119 symbol, -oplen for operator being replaced). */
d2e4a39e 4120 struct expression *newexp = (struct expression *)
8c1a34e7 4121 xzalloc (sizeof (struct expression)
4c4b4cd2 4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4123 struct expression *exp = *expp;
14f9c5c9
AS
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
3489610d 4127 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 *expp = newexp;
aacb1f0a 4140 xfree (exp);
d2e4a39e 4141}
14f9c5c9
AS
4142
4143/* Type-class predicates */
4144
4c4b4cd2
PH
4145/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4146 or FLOAT). */
14f9c5c9
AS
4147
4148static int
d2e4a39e 4149numeric_type_p (struct type *type)
14f9c5c9
AS
4150{
4151 if (type == NULL)
4152 return 0;
d2e4a39e
AS
4153 else
4154 {
4155 switch (TYPE_CODE (type))
4c4b4cd2
PH
4156 {
4157 case TYPE_CODE_INT:
4158 case TYPE_CODE_FLT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
d2e4a39e 4166 }
14f9c5c9
AS
4167}
4168
4c4b4cd2 4169/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4170
4171static int
d2e4a39e 4172integer_type_p (struct type *type)
14f9c5c9
AS
4173{
4174 if (type == NULL)
4175 return 0;
d2e4a39e
AS
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4c4b4cd2
PH
4179 {
4180 case TYPE_CODE_INT:
4181 return 1;
4182 case TYPE_CODE_RANGE:
4183 return (type == TYPE_TARGET_TYPE (type)
4184 || integer_type_p (TYPE_TARGET_TYPE (type)));
4185 default:
4186 return 0;
4187 }
d2e4a39e 4188 }
14f9c5c9
AS
4189}
4190
4c4b4cd2 4191/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4192
4193static int
d2e4a39e 4194scalar_type_p (struct type *type)
14f9c5c9
AS
4195{
4196 if (type == NULL)
4197 return 0;
d2e4a39e
AS
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4c4b4cd2
PH
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_FLT:
4206 return 1;
4207 default:
4208 return 0;
4209 }
d2e4a39e 4210 }
14f9c5c9
AS
4211}
4212
4c4b4cd2 4213/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4214
4215static int
d2e4a39e 4216discrete_type_p (struct type *type)
14f9c5c9
AS
4217{
4218 if (type == NULL)
4219 return 0;
d2e4a39e
AS
4220 else
4221 {
4222 switch (TYPE_CODE (type))
4c4b4cd2
PH
4223 {
4224 case TYPE_CODE_INT:
4225 case TYPE_CODE_RANGE:
4226 case TYPE_CODE_ENUM:
872f0337 4227 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4228 return 1;
4229 default:
4230 return 0;
4231 }
d2e4a39e 4232 }
14f9c5c9
AS
4233}
4234
4c4b4cd2
PH
4235/* Returns non-zero if OP with operands in the vector ARGS could be
4236 a user-defined function. Errs on the side of pre-defined operators
4237 (i.e., result 0). */
14f9c5c9
AS
4238
4239static int
d2e4a39e 4240possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4241{
76a01679 4242 struct type *type0 =
df407dfe 4243 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4244 struct type *type1 =
df407dfe 4245 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4246
4c4b4cd2
PH
4247 if (type0 == NULL)
4248 return 0;
4249
14f9c5c9
AS
4250 switch (op)
4251 {
4252 default:
4253 return 0;
4254
4255 case BINOP_ADD:
4256 case BINOP_SUB:
4257 case BINOP_MUL:
4258 case BINOP_DIV:
d2e4a39e 4259 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4260
4261 case BINOP_REM:
4262 case BINOP_MOD:
4263 case BINOP_BITWISE_AND:
4264 case BINOP_BITWISE_IOR:
4265 case BINOP_BITWISE_XOR:
d2e4a39e 4266 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4267
4268 case BINOP_EQUAL:
4269 case BINOP_NOTEQUAL:
4270 case BINOP_LESS:
4271 case BINOP_GTR:
4272 case BINOP_LEQ:
4273 case BINOP_GEQ:
d2e4a39e 4274 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4275
4276 case BINOP_CONCAT:
ee90b9ab 4277 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4278
4279 case BINOP_EXP:
d2e4a39e 4280 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4281
4282 case UNOP_NEG:
4283 case UNOP_PLUS:
4284 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4285 case UNOP_ABS:
4286 return (!numeric_type_p (type0));
14f9c5c9
AS
4287
4288 }
4289}
4290\f
4c4b4cd2 4291 /* Renaming */
14f9c5c9 4292
aeb5907d
JB
4293/* NOTES:
4294
4295 1. In the following, we assume that a renaming type's name may
4296 have an ___XD suffix. It would be nice if this went away at some
4297 point.
4298 2. We handle both the (old) purely type-based representation of
4299 renamings and the (new) variable-based encoding. At some point,
4300 it is devoutly to be hoped that the former goes away
4301 (FIXME: hilfinger-2007-07-09).
4302 3. Subprogram renamings are not implemented, although the XRS
4303 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304
4305/* If SYM encodes a renaming,
4306
4307 <renaming> renames <renamed entity>,
4308
4309 sets *LEN to the length of the renamed entity's name,
4310 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4311 the string describing the subcomponent selected from the renamed
0963b4bd 4312 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4313 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4314 are undefined). Otherwise, returns a value indicating the category
4315 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4316 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4317 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4318 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4319 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4320 may be NULL, in which case they are not assigned.
4321
4322 [Currently, however, GCC does not generate subprogram renamings.] */
4323
4324enum ada_renaming_category
4325ada_parse_renaming (struct symbol *sym,
4326 const char **renamed_entity, int *len,
4327 const char **renaming_expr)
4328{
4329 enum ada_renaming_category kind;
4330 const char *info;
4331 const char *suffix;
4332
4333 if (sym == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (SYMBOL_CLASS (sym))
14f9c5c9 4336 {
aeb5907d
JB
4337 default:
4338 return ADA_NOT_RENAMING;
4339 case LOC_TYPEDEF:
4340 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4341 renamed_entity, len, renaming_expr);
4342 case LOC_LOCAL:
4343 case LOC_STATIC:
4344 case LOC_COMPUTED:
4345 case LOC_OPTIMIZED_OUT:
4346 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 if (info == NULL)
4348 return ADA_NOT_RENAMING;
4349 switch (info[5])
4350 {
4351 case '_':
4352 kind = ADA_OBJECT_RENAMING;
4353 info += 6;
4354 break;
4355 case 'E':
4356 kind = ADA_EXCEPTION_RENAMING;
4357 info += 7;
4358 break;
4359 case 'P':
4360 kind = ADA_PACKAGE_RENAMING;
4361 info += 7;
4362 break;
4363 case 'S':
4364 kind = ADA_SUBPROGRAM_RENAMING;
4365 info += 7;
4366 break;
4367 default:
4368 return ADA_NOT_RENAMING;
4369 }
14f9c5c9 4370 }
4c4b4cd2 4371
aeb5907d
JB
4372 if (renamed_entity != NULL)
4373 *renamed_entity = info;
4374 suffix = strstr (info, "___XE");
4375 if (suffix == NULL || suffix == info)
4376 return ADA_NOT_RENAMING;
4377 if (len != NULL)
4378 *len = strlen (info) - strlen (suffix);
4379 suffix += 5;
4380 if (renaming_expr != NULL)
4381 *renaming_expr = suffix;
4382 return kind;
4383}
4384
4385/* Assuming TYPE encodes a renaming according to the old encoding in
4386 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4387 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4388 ADA_NOT_RENAMING otherwise. */
4389static enum ada_renaming_category
4390parse_old_style_renaming (struct type *type,
4391 const char **renamed_entity, int *len,
4392 const char **renaming_expr)
4393{
4394 enum ada_renaming_category kind;
4395 const char *name;
4396 const char *info;
4397 const char *suffix;
14f9c5c9 4398
aeb5907d
JB
4399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4400 || TYPE_NFIELDS (type) != 1)
4401 return ADA_NOT_RENAMING;
14f9c5c9 4402
aeb5907d
JB
4403 name = type_name_no_tag (type);
4404 if (name == NULL)
4405 return ADA_NOT_RENAMING;
4406
4407 name = strstr (name, "___XR");
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410 switch (name[5])
4411 {
4412 case '\0':
4413 case '_':
4414 kind = ADA_OBJECT_RENAMING;
4415 break;
4416 case 'E':
4417 kind = ADA_EXCEPTION_RENAMING;
4418 break;
4419 case 'P':
4420 kind = ADA_PACKAGE_RENAMING;
4421 break;
4422 case 'S':
4423 kind = ADA_SUBPROGRAM_RENAMING;
4424 break;
4425 default:
4426 return ADA_NOT_RENAMING;
4427 }
14f9c5c9 4428
aeb5907d
JB
4429 info = TYPE_FIELD_NAME (type, 0);
4430 if (info == NULL)
4431 return ADA_NOT_RENAMING;
4432 if (renamed_entity != NULL)
4433 *renamed_entity = info;
4434 suffix = strstr (info, "___XE");
4435 if (renaming_expr != NULL)
4436 *renaming_expr = suffix + 5;
4437 if (suffix == NULL || suffix == info)
4438 return ADA_NOT_RENAMING;
4439 if (len != NULL)
4440 *len = suffix - info;
4441 return kind;
a5ee536b
JB
4442}
4443
4444/* Compute the value of the given RENAMING_SYM, which is expected to
4445 be a symbol encoding a renaming expression. BLOCK is the block
4446 used to evaluate the renaming. */
52ce6436 4447
a5ee536b
JB
4448static struct value *
4449ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4450 const struct block *block)
a5ee536b 4451{
bbc13ae3 4452 const char *sym_name;
a5ee536b 4453
bbc13ae3 4454 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4455 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4456 return evaluate_expression (expr.get ());
a5ee536b 4457}
14f9c5c9 4458\f
d2e4a39e 4459
4c4b4cd2 4460 /* Evaluation: Function Calls */
14f9c5c9 4461
4c4b4cd2 4462/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4463 lvalues, and otherwise has the side-effect of allocating memory
4464 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4465
d2e4a39e 4466static struct value *
40bc484c 4467ensure_lval (struct value *val)
14f9c5c9 4468{
40bc484c
JB
4469 if (VALUE_LVAL (val) == not_lval
4470 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4471 {
df407dfe 4472 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4473 const CORE_ADDR addr =
4474 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4475
a84a8a0d 4476 VALUE_LVAL (val) = lval_memory;
1a088441 4477 set_value_address (val, addr);
40bc484c 4478 write_memory (addr, value_contents (val), len);
c3e5cd34 4479 }
14f9c5c9
AS
4480
4481 return val;
4482}
4483
4484/* Return the value ACTUAL, converted to be an appropriate value for a
4485 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4486 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4487 values not residing in memory, updating it as needed. */
14f9c5c9 4488
a93c0eb6 4489struct value *
40bc484c 4490ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4491{
df407dfe 4492 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4493 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4494 struct type *formal_target =
4495 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4496 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4497 struct type *actual_target =
4498 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4499 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4500
4c4b4cd2 4501 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4502 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4503 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4504 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4505 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4506 {
a84a8a0d 4507 struct value *result;
5b4ee69b 4508
14f9c5c9 4509 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4510 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4511 result = desc_data (actual);
14f9c5c9 4512 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4513 {
4514 if (VALUE_LVAL (actual) != lval_memory)
4515 {
4516 struct value *val;
5b4ee69b 4517
df407dfe 4518 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4519 val = allocate_value (actual_type);
990a07ab 4520 memcpy ((char *) value_contents_raw (val),
0fd88904 4521 (char *) value_contents (actual),
4c4b4cd2 4522 TYPE_LENGTH (actual_type));
40bc484c 4523 actual = ensure_lval (val);
4c4b4cd2 4524 }
a84a8a0d 4525 result = value_addr (actual);
4c4b4cd2 4526 }
a84a8a0d
JB
4527 else
4528 return actual;
b1af9e97 4529 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4530 }
4531 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4532 return ada_value_ind (actual);
8344af1e
JB
4533 else if (ada_is_aligner_type (formal_type))
4534 {
4535 /* We need to turn this parameter into an aligner type
4536 as well. */
4537 struct value *aligner = allocate_value (formal_type);
4538 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539
4540 value_assign_to_component (aligner, component, actual);
4541 return aligner;
4542 }
14f9c5c9
AS
4543
4544 return actual;
4545}
4546
438c98a1
JB
4547/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4548 type TYPE. This is usually an inefficient no-op except on some targets
4549 (such as AVR) where the representation of a pointer and an address
4550 differs. */
4551
4552static CORE_ADDR
4553value_pointer (struct value *value, struct type *type)
4554{
4555 struct gdbarch *gdbarch = get_type_arch (type);
4556 unsigned len = TYPE_LENGTH (type);
224c3ddb 4557 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4558 CORE_ADDR addr;
4559
4560 addr = value_address (value);
4561 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4562 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4563 return addr;
4564}
4565
14f9c5c9 4566
4c4b4cd2
PH
4567/* Push a descriptor of type TYPE for array value ARR on the stack at
4568 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4569 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4570 to-descriptor type rather than a descriptor type), a struct value *
4571 representing a pointer to this descriptor. */
14f9c5c9 4572
d2e4a39e 4573static struct value *
40bc484c 4574make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4575{
d2e4a39e
AS
4576 struct type *bounds_type = desc_bounds_type (type);
4577 struct type *desc_type = desc_base_type (type);
4578 struct value *descriptor = allocate_value (desc_type);
4579 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4580 int i;
d2e4a39e 4581
0963b4bd
MS
4582 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4583 i > 0; i -= 1)
14f9c5c9 4584 {
19f220c3
JK
4585 modify_field (value_type (bounds), value_contents_writeable (bounds),
4586 ada_array_bound (arr, i, 0),
4587 desc_bound_bitpos (bounds_type, i, 0),
4588 desc_bound_bitsize (bounds_type, i, 0));
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 1),
4591 desc_bound_bitpos (bounds_type, i, 1),
4592 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4593 }
d2e4a39e 4594
40bc484c 4595 bounds = ensure_lval (bounds);
d2e4a39e 4596
19f220c3
JK
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (ensure_lval (arr),
4600 TYPE_FIELD_TYPE (desc_type, 0)),
4601 fat_pntr_data_bitpos (desc_type),
4602 fat_pntr_data_bitsize (desc_type));
4603
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (bounds,
4607 TYPE_FIELD_TYPE (desc_type, 1)),
4608 fat_pntr_bounds_bitpos (desc_type),
4609 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4610
40bc484c 4611 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4612
4613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4614 return value_addr (descriptor);
4615 else
4616 return descriptor;
4617}
14f9c5c9 4618\f
3d9434b5
JB
4619 /* Symbol Cache Module */
4620
3d9434b5 4621/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4622 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4623 on the type of entity being printed, the cache can make it as much
4624 as an order of magnitude faster than without it.
4625
4626 The descriptive type DWARF extension has significantly reduced
4627 the need for this cache, at least when DWARF is being used. However,
4628 even in this case, some expensive name-based symbol searches are still
4629 sometimes necessary - to find an XVZ variable, mostly. */
4630
ee01b665 4631/* Initialize the contents of SYM_CACHE. */
3d9434b5 4632
ee01b665
JB
4633static void
4634ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635{
4636 obstack_init (&sym_cache->cache_space);
4637 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4638}
3d9434b5 4639
ee01b665
JB
4640/* Free the memory used by SYM_CACHE. */
4641
4642static void
4643ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4644{
ee01b665
JB
4645 obstack_free (&sym_cache->cache_space, NULL);
4646 xfree (sym_cache);
4647}
3d9434b5 4648
ee01b665
JB
4649/* Return the symbol cache associated to the given program space PSPACE.
4650 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4651
ee01b665
JB
4652static struct ada_symbol_cache *
4653ada_get_symbol_cache (struct program_space *pspace)
4654{
4655 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4656
66c168ae 4657 if (pspace_data->sym_cache == NULL)
ee01b665 4658 {
66c168ae
JB
4659 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4660 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4661 }
4662
66c168ae 4663 return pspace_data->sym_cache;
ee01b665 4664}
3d9434b5
JB
4665
4666/* Clear all entries from the symbol cache. */
4667
4668static void
4669ada_clear_symbol_cache (void)
4670{
ee01b665
JB
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673
4674 obstack_free (&sym_cache->cache_space, NULL);
4675 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4676}
4677
fe978cb0 4678/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4679 Return it if found, or NULL otherwise. */
4680
4681static struct cache_entry **
fe978cb0 4682find_entry (const char *name, domain_enum domain)
3d9434b5 4683{
ee01b665
JB
4684 struct ada_symbol_cache *sym_cache
4685 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4686 int h = msymbol_hash (name) % HASH_SIZE;
4687 struct cache_entry **e;
4688
ee01b665 4689 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4690 {
fe978cb0 4691 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4692 return e;
4693 }
4694 return NULL;
4695}
4696
fe978cb0 4697/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4698 Return 1 if found, 0 otherwise.
4699
4700 If an entry was found and SYM is not NULL, set *SYM to the entry's
4701 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4702
96d887e8 4703static int
fe978cb0 4704lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4705 struct symbol **sym, const struct block **block)
96d887e8 4706{
fe978cb0 4707 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4708
4709 if (e == NULL)
4710 return 0;
4711 if (sym != NULL)
4712 *sym = (*e)->sym;
4713 if (block != NULL)
4714 *block = (*e)->block;
4715 return 1;
96d887e8
PH
4716}
4717
3d9434b5 4718/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4719 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4720
96d887e8 4721static void
fe978cb0 4722cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4723 const struct block *block)
96d887e8 4724{
ee01b665
JB
4725 struct ada_symbol_cache *sym_cache
4726 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4727 int h;
4728 char *copy;
4729 struct cache_entry *e;
4730
1994afbf
DE
4731 /* Symbols for builtin types don't have a block.
4732 For now don't cache such symbols. */
4733 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4734 return;
4735
3d9434b5
JB
4736 /* If the symbol is a local symbol, then do not cache it, as a search
4737 for that symbol depends on the context. To determine whether
4738 the symbol is local or not, we check the block where we found it
4739 against the global and static blocks of its associated symtab. */
4740 if (sym
08be3fe3 4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4742 GLOBAL_BLOCK) != block
08be3fe3 4743 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4744 STATIC_BLOCK) != block)
3d9434b5
JB
4745 return;
4746
4747 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4748 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4749 sizeof (*e));
4750 e->next = sym_cache->root[h];
4751 sym_cache->root[h] = e;
224c3ddb
SM
4752 e->name = copy
4753 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4754 strcpy (copy, name);
4755 e->sym = sym;
fe978cb0 4756 e->domain = domain;
3d9434b5 4757 e->block = block;
96d887e8 4758}
4c4b4cd2
PH
4759\f
4760 /* Symbol Lookup */
4761
c0431670
JB
4762/* Return nonzero if wild matching should be used when searching for
4763 all symbols matching LOOKUP_NAME.
4764
4765 LOOKUP_NAME is expected to be a symbol name after transformation
4766 for Ada lookups (see ada_name_for_lookup). */
4767
4768static int
4769should_use_wild_match (const char *lookup_name)
4770{
4771 return (strstr (lookup_name, "__") == NULL);
4772}
4773
4c4b4cd2
PH
4774/* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777static struct symbol *
4778standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780{
acbd605d 4781 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4782 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4783
d12307c1
PMR
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
2570f2b7 4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4c4b4cd2
PH
4789}
4790
4791
4792/* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795static int
d12307c1 4796is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4797{
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
d12307c1
PMR
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4804 return 1;
4805
4806 return 0;
4807}
4808
4809/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4810 struct types. Otherwise, they may not. */
14f9c5c9
AS
4811
4812static int
d2e4a39e 4813equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4814{
d2e4a39e 4815 if (type0 == type1)
14f9c5c9 4816 return 1;
d2e4a39e 4817 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
d2e4a39e 4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4824 return 1;
d2e4a39e 4825
14f9c5c9
AS
4826 return 0;
4827}
4828
4829/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4830 no more defined than that of SYM1. */
14f9c5c9
AS
4831
4832static int
d2e4a39e 4833lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4834{
4835 if (sym0 == sym1)
4836 return 1;
176620f1 4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
d2e4a39e 4841 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4c4b4cd2
PH
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4851 int len0 = strlen (name0);
5b4ee69b 4852
4c4b4cd2
PH
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4857 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4862 default:
4863 return 0;
14f9c5c9
AS
4864 }
4865}
4866
d12307c1 4867/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4869
4870static void
76a01679
JB
4871add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
f0c5f9b2 4873 const struct block *block)
14f9c5c9
AS
4874{
4875 int i;
d12307c1 4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4877
529cad9c
PH
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4c4b4cd2
PH
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
d12307c1 4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4890 return;
d12307c1 4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4892 {
d12307c1 4893 prevDefns[i].symbol = sym;
4c4b4cd2 4894 prevDefns[i].block = block;
4c4b4cd2 4895 return;
76a01679 4896 }
4c4b4cd2
PH
4897 }
4898
4899 {
d12307c1 4900 struct block_symbol info;
4c4b4cd2 4901
d12307c1 4902 info.symbol = sym;
4c4b4cd2 4903 info.block = block;
d12307c1 4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4905 }
4906}
4907
d12307c1
PMR
4908/* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4c4b4cd2 4910
76a01679
JB
4911static int
4912num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4913{
d12307c1 4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4915}
4916
d12307c1
PMR
4917/* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4919
d12307c1 4920static struct block_symbol *
4c4b4cd2
PH
4921defns_collected (struct obstack *obstackp, int finish)
4922{
4923 if (finish)
224c3ddb 4924 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4925 else
d12307c1 4926 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4927}
4928
7c7b6655
TT
4929/* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4c4b4cd2 4934
7c7b6655 4935struct bound_minimal_symbol
96d887e8 4936ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4937{
7c7b6655 4938 struct bound_minimal_symbol result;
4c4b4cd2 4939 struct objfile *objfile;
96d887e8 4940 struct minimal_symbol *msymbol;
dc4024cd 4941 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4942
7c7b6655
TT
4943 memset (&result, 0, sizeof (result));
4944
c0431670
JB
4945 /* Special case: If the user specifies a symbol name inside package
4946 Standard, do a non-wild matching of the symbol name without
4947 the "standard__" prefix. This was primarily introduced in order
4948 to allow the user to specifically access the standard exceptions
4949 using, for instance, Standard.Constraint_Error when Constraint_Error
4950 is ambiguous (due to the user defining its own Constraint_Error
4951 entity inside its program). */
61012eef 4952 if (startswith (name, "standard__"))
c0431670 4953 name += sizeof ("standard__") - 1;
4c4b4cd2 4954
96d887e8
PH
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
efd66ac6 4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
96d887e8 4964 }
4c4b4cd2 4965
7c7b6655 4966 return result;
96d887e8 4967}
4c4b4cd2 4968
96d887e8
PH
4969/* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4c4b4cd2 4974
96d887e8
PH
4975static void
4976add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4977 const char *name, domain_enum domain,
48b78332 4978 int wild_match_p)
96d887e8 4979{
96d887e8 4980}
14f9c5c9 4981
96d887e8
PH
4982/* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
14f9c5c9 4984
96d887e8
PH
4985static int
4986is_nondebugging_type (struct type *type)
4987{
0d5cff50 4988 const char *name = ada_type_name (type);
5b4ee69b 4989
96d887e8
PH
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991}
4c4b4cd2 4992
8f17729f
JB
4993/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000static int
5001ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002{
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
0d5cff50
DE
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034}
5035
5036/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056static int
d12307c1 5057symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5058{
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
d12307c1 5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
d12307c1 5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5090 return 0;
5091
5092 return 1;
5093}
5094
96d887e8
PH
5095/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
4c4b4cd2 5101
96d887e8 5102static int
d12307c1 5103remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5104{
5105 int i, j;
4c4b4cd2 5106
8f17729f
JB
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
96d887e8
PH
5113 i = 0;
5114 while (i < nsyms)
5115 {
a35ddb44 5116 int remove_p = 0;
339c13b6
JB
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
d12307c1
PMR
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
d12307c1
PMR
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5131 remove_p = 1;
339c13b6
JB
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
d12307c1
PMR
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
d12307c1
PMR
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5152 remove_p = 1;
4c4b4cd2 5153 }
4c4b4cd2 5154 }
339c13b6 5155
a35ddb44 5156 if (remove_p)
339c13b6
JB
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
96d887e8 5163 i += 1;
14f9c5c9 5164 }
8f17729f
JB
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
96d887e8 5181 return nsyms;
14f9c5c9
AS
5182}
5183
96d887e8
PH
5184/* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5188
96d887e8
PH
5189static char *
5190xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5191{
96d887e8 5192 /* The renaming types adhere to the following convention:
0963b4bd 5193 <scope>__<rename>___<XR extension>.
96d887e8
PH
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
76a01679 5196
96d887e8 5197 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
96d887e8
PH
5200 int scope_len;
5201 char *scope;
14f9c5c9 5202
96d887e8
PH
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5205
96d887e8
PH
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
76a01679 5209
96d887e8 5210 /* Make a copy of scope and return it. */
14f9c5c9 5211
96d887e8
PH
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5214
96d887e8
PH
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
4c4b4cd2 5217
96d887e8 5218 return scope;
4c4b4cd2
PH
5219}
5220
96d887e8 5221/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5222
96d887e8
PH
5223static int
5224is_package_name (const char *name)
4c4b4cd2 5225{
96d887e8
PH
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
4c4b4cd2 5231
96d887e8 5232 char *fun_name;
76a01679 5233
96d887e8
PH
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
14f9c5c9 5238
96d887e8
PH
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
14f9c5c9 5241
96d887e8 5242 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5243 functions names cannot contain "__" in them. */
96d887e8
PH
5244 if (strstr (name, "__") != NULL)
5245 return 0;
4c4b4cd2 5246
b435e160 5247 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5248
96d887e8
PH
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250}
14f9c5c9 5251
96d887e8 5252/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5253 not visible from FUNCTION_NAME. */
14f9c5c9 5254
96d887e8 5255static int
0d5cff50 5256old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5257{
aeb5907d 5258 char *scope;
1509e573 5259 struct cleanup *old_chain;
aeb5907d
JB
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5265 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5266
96d887e8
PH
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
1509e573
JB
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
14f9c5c9 5273
96d887e8
PH
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
76a01679 5276
96d887e8
PH
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
61012eef 5281 if (startswith (function_name, "_ada_"))
96d887e8 5282 function_name += 5;
f26caa11 5283
1509e573 5284 {
61012eef 5285 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
f26caa11
PH
5290}
5291
aeb5907d
JB
5292/* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
96d887e8
PH
5297
5298 Rationale:
aeb5907d
JB
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
f26caa11 5311
96d887e8
PH
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
4c4b4cd2 5328
14f9c5c9 5329static int
d12307c1 5330remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5331 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5332{
5333 struct symbol *current_function;
0d5cff50 5334 const char *current_function_name;
4c4b4cd2 5335 int i;
aeb5907d
JB
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
0963b4bd 5340 First, zero out such symbols, then compress. */
aeb5907d
JB
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
d12307c1 5344 struct symbol *sym = syms[i].symbol;
270140bd 5345 const struct block *block = syms[i].block;
aeb5907d
JB
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5b4ee69b 5358
aeb5907d
JB
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5363 name_len) == 0
5364 && block == syms[j].block)
d12307c1 5365 syms[j].symbol = NULL;
aeb5907d
JB
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5373 if (syms[j].symbol != NULL)
aeb5907d
JB
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
4c4b4cd2
PH
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
76a01679 5383
4c4b4cd2
PH
5384 if (current_block == NULL)
5385 return nsyms;
76a01679 5386
7f0df278 5387 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
d12307c1 5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5403 == ADA_OBJECT_RENAMING
d12307c1 5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5405 {
5406 int j;
5b4ee69b 5407
aeb5907d 5408 for (j = i + 1; j < nsyms; j += 1)
76a01679 5409 syms[j - 1] = syms[j];
4c4b4cd2
PH
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417}
5418
339c13b6
JB
5419/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429static void
5430ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5431 const struct block *block, domain_enum domain,
d0a8ab18 5432 int wild_match_p)
339c13b6
JB
5433{
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
d0a8ab18
JB
5439 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5440 wild_match_p);
339c13b6
JB
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5453 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5454}
5455
ccefe4c4 5456/* An object of this type is used as the user_data argument when
40658b94 5457 calling the map_matching_symbols method. */
ccefe4c4 5458
40658b94 5459struct match_data
ccefe4c4 5460{
40658b94 5461 struct objfile *objfile;
ccefe4c4 5462 struct obstack *obstackp;
40658b94
PH
5463 struct symbol *arg_sym;
5464 int found_sym;
ccefe4c4
TT
5465};
5466
22cee43f 5467/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
ccefe4c4 5475
40658b94
PH
5476static int
5477aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5478{
40658b94
PH
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505}
5506
22cee43f
PMR
5507/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5508 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5509 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5510 function "wild_match" for more information). Return whether we found such
5511 symbols. */
5512
5513static int
5514ada_add_block_renamings (struct obstack *obstackp,
5515 const struct block *block,
5516 const char *name,
5517 domain_enum domain,
5518 int wild_match_p)
5519{
5520 struct using_direct *renaming;
5521 int defns_mark = num_defns_collected (obstackp);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528 int name_match;
5529
5530 /* Avoid infinite recursions: skip this renaming if we are actually
5531 already traversing it.
5532
5533 Currently, symbol lookup in Ada don't use the namespace machinery from
5534 C++/Fortran support: skip namespace imports that use them. */
5535 if (renaming->searched
5536 || (renaming->import_src != NULL
5537 && renaming->import_src[0] != '\0')
5538 || (renaming->import_dest != NULL
5539 && renaming->import_dest[0] != '\0'))
5540 continue;
5541 renaming->searched = 1;
5542
5543 /* TODO: here, we perform another name-based symbol lookup, which can
5544 pull its own multiple overloads. In theory, we should be able to do
5545 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5546 not a simple name. But in order to do this, we would need to enhance
5547 the DWARF reader to associate a symbol to this renaming, instead of a
5548 name. So, for now, we do something simpler: re-use the C++/Fortran
5549 namespace machinery. */
5550 r_name = (renaming->alias != NULL
5551 ? renaming->alias
5552 : renaming->declaration);
5553 name_match
5554 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5555 if (name_match == 0)
5556 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5557 1, NULL);
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561}
5562
db230ce3
JB
5563/* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5b4ee69b 5565
40658b94 5566static int
db230ce3
JB
5567compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
40658b94
PH
5569{
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
db230ce3
JB
5572 char c1, c2;
5573
40658b94
PH
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
40658b94 5588 break;
db230ce3 5589
40658b94
PH
5590 string1 += 1;
5591 string2 += 1;
5592 }
db230ce3 5593
40658b94
PH
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
052874e8 5601 if (is_name_suffix (string1))
40658b94
PH
5602 return 0;
5603 else
1a1d5513 5604 return 1;
40658b94 5605 }
dbb8534f 5606 /* FALLTHROUGH */
40658b94
PH
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
db230ce3
JB
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
40658b94 5617 }
ccefe4c4
TT
5618}
5619
db230ce3
JB
5620/* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631static int
5632compare_names (const char *string1, const char *string2)
5633{
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646}
5647
339c13b6
JB
5648/* Add to OBSTACKP all non-local symbols whose name and domain match
5649 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5650 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5651
5652static void
40658b94
PH
5653add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5654 domain_enum domain, int global,
5655 int is_wild_match)
339c13b6
JB
5656{
5657 struct objfile *objfile;
22cee43f 5658 struct compunit_symtab *cu;
40658b94 5659 struct match_data data;
339c13b6 5660
6475f2fe 5661 memset (&data, 0, sizeof data);
ccefe4c4 5662 data.obstackp = obstackp;
339c13b6 5663
ccefe4c4 5664 ALL_OBJFILES (objfile)
40658b94
PH
5665 {
5666 data.objfile = objfile;
5667
5668 if (is_wild_match)
4186eb54
KS
5669 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5670 aux_add_nonlocal_symbols, &data,
5671 wild_match, NULL);
40658b94 5672 else
4186eb54
KS
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 full_match, compare_names);
22cee43f
PMR
5676
5677 ALL_OBJFILE_COMPUNITS (objfile, cu)
5678 {
5679 const struct block *global_block
5680 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5681
5682 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5683 is_wild_match))
5684 data.found_sym = 1;
5685 }
40658b94
PH
5686 }
5687
5688 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5689 {
5690 ALL_OBJFILES (objfile)
5691 {
224c3ddb 5692 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5693 strcpy (name1, "_ada_");
5694 strcpy (name1 + sizeof ("_ada_") - 1, name);
5695 data.objfile = objfile;
ade7ed9e
DE
5696 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5697 global,
0963b4bd
MS
5698 aux_add_nonlocal_symbols,
5699 &data,
40658b94
PH
5700 full_match, compare_names);
5701 }
5702 }
339c13b6
JB
5703}
5704
22cee43f 5705/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5706 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5707 matches. Add these to OBSTACKP.
4eeaa230 5708
22cee43f
PMR
5709 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5710 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5711 is the one match returned (no other matches in that or
d9680e73 5712 enclosing blocks is returned). If there are any matches in or
22cee43f 5713 surrounding BLOCK, then these alone are returned.
4eeaa230 5714
9f88c959 5715 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5716 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5717
22cee43f
PMR
5718 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5719 to lookup global symbols. */
5720
5721static void
5722ada_add_all_symbols (struct obstack *obstackp,
5723 const struct block *block,
5724 const char *name,
5725 domain_enum domain,
5726 int full_search,
5727 int *made_global_lookup_p)
14f9c5c9
AS
5728{
5729 struct symbol *sym;
22cee43f 5730 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5731
22cee43f
PMR
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 0;
339c13b6
JB
5734
5735 /* Special case: If the user specifies a symbol name inside package
5736 Standard, do a non-wild matching of the symbol name without
5737 the "standard__" prefix. This was primarily introduced in order
5738 to allow the user to specifically access the standard exceptions
5739 using, for instance, Standard.Constraint_Error when Constraint_Error
5740 is ambiguous (due to the user defining its own Constraint_Error
5741 entity inside its program). */
22cee43f 5742 if (startswith (name, "standard__"))
4c4b4cd2 5743 {
4c4b4cd2 5744 block = NULL;
22cee43f 5745 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5746 }
5747
339c13b6 5748 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5749
4eeaa230
DE
5750 if (block != NULL)
5751 {
5752 if (full_search)
22cee43f 5753 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5754 else
5755 {
5756 /* In the !full_search case we're are being called by
5757 ada_iterate_over_symbols, and we don't want to search
5758 superblocks. */
22cee43f
PMR
5759 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5760 wild_match_p);
4eeaa230 5761 }
22cee43f
PMR
5762 if (num_defns_collected (obstackp) > 0 || !full_search)
5763 return;
4eeaa230 5764 }
d2e4a39e 5765
339c13b6
JB
5766 /* No non-global symbols found. Check our cache to see if we have
5767 already performed this search before. If we have, then return
5768 the same result. */
5769
22cee43f 5770 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5771 {
5772 if (sym != NULL)
22cee43f
PMR
5773 add_defn_to_vec (obstackp, sym, block);
5774 return;
4c4b4cd2 5775 }
14f9c5c9 5776
22cee43f
PMR
5777 if (made_global_lookup_p)
5778 *made_global_lookup_p = 1;
b1eedac9 5779
339c13b6
JB
5780 /* Search symbols from all global blocks. */
5781
22cee43f 5782 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5783
4c4b4cd2 5784 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5785 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5786
22cee43f
PMR
5787 if (num_defns_collected (obstackp) == 0)
5788 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5789}
5790
5791/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5792 non-zero, enclosing scope and in global scopes, returning the number of
5793 matches.
5794 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5795 indicating the symbols found and the blocks and symbol tables (if
5796 any) in which they were found. This vector is transient---good only to
5797 the next call of ada_lookup_symbol_list.
5798
5799 When full_search is non-zero, any non-function/non-enumeral
5800 symbol match within the nest of blocks whose innermost member is BLOCK,
5801 is the one match returned (no other matches in that or
5802 enclosing blocks is returned). If there are any matches in or
5803 surrounding BLOCK, then these alone are returned.
5804
5805 Names prefixed with "standard__" are handled specially: "standard__"
5806 is first stripped off, and only static and global symbols are searched. */
5807
5808static int
5809ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5810 domain_enum domain,
5811 struct block_symbol **results,
5812 int full_search)
5813{
5814 const int wild_match_p = should_use_wild_match (name);
5815 int syms_from_global_search;
5816 int ndefns;
5817
5818 obstack_free (&symbol_list_obstack, NULL);
5819 obstack_init (&symbol_list_obstack);
5820 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5821 full_search, &syms_from_global_search);
14f9c5c9 5822
4c4b4cd2
PH
5823 ndefns = num_defns_collected (&symbol_list_obstack);
5824 *results = defns_collected (&symbol_list_obstack, 1);
5825
5826 ndefns = remove_extra_symbols (*results, ndefns);
5827
b1eedac9 5828 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5829 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5830
b1eedac9 5831 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5832 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5833
22cee43f 5834 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5835 return ndefns;
5836}
5837
4eeaa230
DE
5838/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5839 in global scopes, returning the number of matches, and setting *RESULTS
5840 to a vector of (SYM,BLOCK) tuples.
5841 See ada_lookup_symbol_list_worker for further details. */
5842
5843int
5844ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5845 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5846{
5847 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5848}
5849
5850/* Implementation of the la_iterate_over_symbols method. */
5851
5852static void
5853ada_iterate_over_symbols (const struct block *block,
5854 const char *name, domain_enum domain,
5855 symbol_found_callback_ftype *callback,
5856 void *data)
5857{
5858 int ndefs, i;
d12307c1 5859 struct block_symbol *results;
4eeaa230
DE
5860
5861 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5862 for (i = 0; i < ndefs; ++i)
5863 {
d12307c1 5864 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5865 break;
5866 }
5867}
5868
f8eba3c6 5869/* If NAME is the name of an entity, return a string that should
2f408ecb 5870 be used to look that entity up in Ada units.
f8eba3c6
TT
5871
5872 NAME can have any form that the "break" or "print" commands might
5873 recognize. In other words, it does not have to be the "natural"
5874 name, or the "encoded" name. */
5875
2f408ecb 5876std::string
f8eba3c6
TT
5877ada_name_for_lookup (const char *name)
5878{
f8eba3c6
TT
5879 int nlen = strlen (name);
5880
5881 if (name[0] == '<' && name[nlen - 1] == '>')
2f408ecb 5882 return std::string (name + 1, nlen - 2);
f8eba3c6 5883 else
2f408ecb 5884 return ada_encode (ada_fold_name (name));
f8eba3c6
TT
5885}
5886
4e5c77fe
JB
5887/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5888 to 1, but choosing the first symbol found if there are multiple
5889 choices.
5890
5e2336be
JB
5891 The result is stored in *INFO, which must be non-NULL.
5892 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5893
5894void
5895ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5896 domain_enum domain,
d12307c1 5897 struct block_symbol *info)
14f9c5c9 5898{
d12307c1 5899 struct block_symbol *candidates;
14f9c5c9
AS
5900 int n_candidates;
5901
5e2336be 5902 gdb_assert (info != NULL);
d12307c1 5903 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5904
fe978cb0 5905 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5906 if (n_candidates == 0)
4e5c77fe 5907 return;
4c4b4cd2 5908
5e2336be 5909 *info = candidates[0];
d12307c1 5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5911}
aeb5907d
JB
5912
5913/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5916 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
d12307c1 5919struct block_symbol
aeb5907d 5920ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5921 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5922{
d12307c1 5923 struct block_symbol info;
4e5c77fe 5924
aeb5907d
JB
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
4e5c77fe 5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5929 block0, domain, &info);
d12307c1 5930 return info;
4c4b4cd2 5931}
14f9c5c9 5932
d12307c1 5933static struct block_symbol
f606139a
DE
5934ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
76a01679 5936 const struct block *block,
21b556f4 5937 const domain_enum domain)
4c4b4cd2 5938{
d12307c1 5939 struct block_symbol sym;
04dccad0
JB
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5942 if (sym.symbol != NULL)
04dccad0
JB
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
d12307c1
PMR
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
04dccad0
JB
5967 return sym;
5968 }
5969
d12307c1 5970 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5971}
5972
5973
4c4b4cd2
PH
5974/* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5977 are given by any of the regular expressions:
4c4b4cd2 5978
babe1480
JB
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5981 TKB [subprogram suffix for task bodies]
babe1480 5982 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
4c4b4cd2 5988
14f9c5c9 5989static int
d2e4a39e 5990is_name_suffix (const char *str)
14f9c5c9
AS
5991{
5992 int k;
4c4b4cd2
PH
5993 const char *matching;
5994 const int len = strlen (str);
5995
babe1480
JB
5996 /* Skip optional leading __[0-9]+. */
5997
4c4b4cd2
PH
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
babe1480
JB
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
4c4b4cd2 6003 }
babe1480
JB
6004
6005 /* [.$][0-9]+ */
4c4b4cd2 6006
babe1480 6007 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6008 {
babe1480 6009 matching = str + 1;
4c4b4cd2
PH
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
babe1480 6017
4c4b4cd2
PH
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
9ac7f98e
JB
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
529cad9c
PH
6032#if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
529cad9c 6036 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
0963b4bd 6041 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047#endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
4c4b4cd2
PH
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
d2e4a39e 6068 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
14f9c5c9 6074 }
babe1480 6075
14f9c5c9
AS
6076 if (str[0] == '\000')
6077 return 1;
babe1480 6078
d2e4a39e 6079 if (str[0] == '_')
14f9c5c9
AS
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6082 return 0;
d2e4a39e 6083 if (str[2] == '_')
4c4b4cd2 6084 {
61ee279c
PH
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
4c4b4cd2
PH
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
1265e4aa
JB
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
14f9c5c9
AS
6108 return 1;
6109 }
4c4b4cd2 6110 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6111 {
4c4b4cd2
PH
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
14f9c5c9
AS
6115 return 1;
6116 }
6117 return 0;
6118}
d2e4a39e 6119
aeb5907d
JB
6120/* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
529cad9c
PH
6122
6123static int
6124is_valid_name_for_wild_match (const char *name0)
6125{
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
5823c3ef
JB
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
529cad9c
PH
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140}
6141
73589123
PH
6142/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
4c4b4cd2 6145
14f9c5c9 6146static int
73589123 6147advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6148{
73589123 6149 const char *name = *namep;
5b4ee69b 6150
5823c3ef 6151 while (1)
14f9c5c9 6152 {
aa27d0b3 6153 int t0, t1;
73589123
PH
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
61012eef 6162 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6163 break;
6164 else
6165 name += 1;
6166 }
aa27d0b3
JB
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
73589123
PH
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
5823c3ef 6179 return 0;
73589123
PH
6180 }
6181
6182 *namep = name;
6183 return 1;
6184}
6185
6186/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6187 informational suffixes of NAME (i.e., for which is_name_suffix is
6188 true). Assumes that PATN is a lower-cased Ada simple name. */
6189
6190static int
6191wild_match (const char *name, const char *patn)
6192{
22e048c9 6193 const char *p;
73589123
PH
6194 const char *name0 = name;
6195
6196 while (1)
6197 {
6198 const char *match = name;
6199
6200 if (*name == *patn)
6201 {
6202 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p != *name)
6204 break;
6205 if (*p == '\0' && is_name_suffix (name))
6206 return match != name0 && !is_valid_name_for_wild_match (name0);
6207
6208 if (name[-1] == '_')
6209 name -= 1;
6210 }
6211 if (!advance_wild_match (&name, name0, *patn))
6212 return 1;
96d887e8 6213 }
96d887e8
PH
6214}
6215
40658b94
PH
6216/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6217 informational suffix. */
6218
c4d840bd
PH
6219static int
6220full_match (const char *sym_name, const char *search_name)
6221{
40658b94 6222 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6223}
6224
6225
96d887e8
PH
6226/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6227 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6228 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6229 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6230
6231static void
6232ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6233 const struct block *block, const char *name,
96d887e8 6234 domain_enum domain, struct objfile *objfile,
2570f2b7 6235 int wild)
96d887e8 6236{
8157b174 6237 struct block_iterator iter;
96d887e8
PH
6238 int name_len = strlen (name);
6239 /* A matching argument symbol, if any. */
6240 struct symbol *arg_sym;
6241 /* Set true when we find a matching non-argument symbol. */
6242 int found_sym;
6243 struct symbol *sym;
6244
6245 arg_sym = NULL;
6246 found_sym = 0;
6247 if (wild)
6248 {
8157b174
TT
6249 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6250 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6251 {
4186eb54
KS
6252 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6253 SYMBOL_DOMAIN (sym), domain)
73589123 6254 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6255 {
2a2d4dc3
AS
6256 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6257 continue;
6258 else if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
76a01679
JB
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
2570f2b7 6265 block);
76a01679
JB
6266 }
6267 }
6268 }
96d887e8
PH
6269 }
6270 else
6271 {
8157b174
TT
6272 for (sym = block_iter_match_first (block, name, full_match, &iter);
6273 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6274 {
4186eb54
KS
6275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6276 SYMBOL_DOMAIN (sym), domain))
76a01679 6277 {
c4d840bd
PH
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
2a2d4dc3 6283 {
c4d840bd
PH
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
2a2d4dc3 6288 }
c4d840bd 6289 }
76a01679
JB
6290 }
6291 }
96d887e8
PH
6292 }
6293
22cee43f
PMR
6294 /* Handle renamings. */
6295
6296 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6297 found_sym = 1;
6298
96d887e8
PH
6299 if (!found_sym && arg_sym != NULL)
6300 {
76a01679
JB
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6303 block);
96d887e8
PH
6304 }
6305
6306 if (!wild)
6307 {
6308 arg_sym = NULL;
6309 found_sym = 0;
6310
6311 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6312 {
4186eb54
KS
6313 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6314 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6315 {
6316 int cmp;
6317
6318 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6319 if (cmp == 0)
6320 {
61012eef 6321 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6322 if (cmp == 0)
6323 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6324 name_len);
6325 }
6326
6327 if (cmp == 0
6328 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6329 {
2a2d4dc3
AS
6330 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6331 {
6332 if (SYMBOL_IS_ARGUMENT (sym))
6333 arg_sym = sym;
6334 else
6335 {
6336 found_sym = 1;
6337 add_defn_to_vec (obstackp,
6338 fixup_symbol_section (sym, objfile),
6339 block);
6340 }
6341 }
76a01679
JB
6342 }
6343 }
76a01679 6344 }
96d887e8
PH
6345
6346 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6347 They aren't parameters, right? */
6348 if (!found_sym && arg_sym != NULL)
6349 {
6350 add_defn_to_vec (obstackp,
76a01679 6351 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6352 block);
96d887e8
PH
6353 }
6354 }
6355}
6356\f
41d27058
JB
6357
6358 /* Symbol Completion */
6359
6360/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6361 name in a form that's appropriate for the completion. The result
6362 does not need to be deallocated, but is only good until the next call.
6363
6364 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6365 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6366 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6367 in its encoded form. */
6368
6369static const char *
6370symbol_completion_match (const char *sym_name,
6371 const char *text, int text_len,
6ea35997 6372 int wild_match_p, int encoded_p)
41d27058 6373{
41d27058
JB
6374 const int verbatim_match = (text[0] == '<');
6375 int match = 0;
6376
6377 if (verbatim_match)
6378 {
6379 /* Strip the leading angle bracket. */
6380 text = text + 1;
6381 text_len--;
6382 }
6383
6384 /* First, test against the fully qualified name of the symbol. */
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
6387 match = 1;
6388
6ea35997 6389 if (match && !encoded_p)
41d27058
JB
6390 {
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
6396 int has_angle_bracket;
6397
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
6400 match = (has_angle_bracket == verbatim_match);
6401 sym_name = sym_name_copy;
6402 }
6403
6404 if (match && !verbatim_match)
6405 {
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6411 const char *tmp;
6412
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6414 if (*tmp != '\0')
6415 match = 0;
6416 }
6417
6418 /* Second: Try wild matching... */
6419
e701b3c0 6420 if (!match && wild_match_p)
41d27058
JB
6421 {
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6426
6427 if (strncmp (sym_name, text, text_len) == 0)
6428 match = 1;
6429 }
6430
6431 /* Finally: If we found a mach, prepare the result to return. */
6432
6433 if (!match)
6434 return NULL;
6435
6436 if (verbatim_match)
6437 sym_name = add_angle_brackets (sym_name);
6438
6ea35997 6439 if (!encoded_p)
41d27058
JB
6440 sym_name = ada_decode (sym_name);
6441
6442 return sym_name;
6443}
6444
6445/* A companion function to ada_make_symbol_completion_list().
6446 Check if SYM_NAME represents a symbol which name would be suitable
6447 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6448 it is appended at the end of the given string vector SV.
6449
6450 ORIG_TEXT is the string original string from the user command
6451 that needs to be completed. WORD is the entire command on which
6452 completion should be performed. These two parameters are used to
6453 determine which part of the symbol name should be added to the
6454 completion vector.
c0af1706 6455 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6456 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6457 encoded formed (in which case the completion should also be
6458 encoded). */
6459
6460static void
d6565258 6461symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6462 const char *sym_name,
6463 const char *text, int text_len,
6464 const char *orig_text, const char *word,
cb8e9b97 6465 int wild_match_p, int encoded_p)
41d27058
JB
6466{
6467 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6468 wild_match_p, encoded_p);
41d27058
JB
6469 char *completion;
6470
6471 if (match == NULL)
6472 return;
6473
6474 /* We found a match, so add the appropriate completion to the given
6475 string vector. */
6476
6477 if (word == orig_text)
6478 {
224c3ddb 6479 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6480 strcpy (completion, match);
6481 }
6482 else if (word > orig_text)
6483 {
6484 /* Return some portion of sym_name. */
224c3ddb 6485 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6486 strcpy (completion, match + (word - orig_text));
6487 }
6488 else
6489 {
6490 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6491 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6492 strncpy (completion, word, orig_text - word);
6493 completion[orig_text - word] = '\0';
6494 strcat (completion, match);
6495 }
6496
d6565258 6497 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6498}
6499
ccefe4c4 6500/* An object of this type is passed as the user_data argument to the
bb4142cf 6501 expand_symtabs_matching method. */
ccefe4c4
TT
6502struct add_partial_datum
6503{
6504 VEC(char_ptr) **completions;
6f937416 6505 const char *text;
ccefe4c4 6506 int text_len;
6f937416
PA
6507 const char *text0;
6508 const char *word;
ccefe4c4
TT
6509 int wild_match;
6510 int encoded;
6511};
6512
bb4142cf
DE
6513/* A callback for expand_symtabs_matching. */
6514
7b08b9eb 6515static int
bb4142cf 6516ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6517{
9a3c8263 6518 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6519
6520 return symbol_completion_match (name, data->text, data->text_len,
6521 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6522}
6523
49c4e619
TT
6524/* Return a list of possible symbol names completing TEXT0. WORD is
6525 the entire command on which completion is made. */
41d27058 6526
49c4e619 6527static VEC (char_ptr) *
6f937416
PA
6528ada_make_symbol_completion_list (const char *text0, const char *word,
6529 enum type_code code)
41d27058
JB
6530{
6531 char *text;
6532 int text_len;
b1ed564a
JB
6533 int wild_match_p;
6534 int encoded_p;
2ba95b9b 6535 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6536 struct symbol *sym;
43f3e411 6537 struct compunit_symtab *s;
41d27058
JB
6538 struct minimal_symbol *msymbol;
6539 struct objfile *objfile;
3977b71f 6540 const struct block *b, *surrounding_static_block = 0;
41d27058 6541 int i;
8157b174 6542 struct block_iterator iter;
b8fea896 6543 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6544
2f68a895
TT
6545 gdb_assert (code == TYPE_CODE_UNDEF);
6546
41d27058
JB
6547 if (text0[0] == '<')
6548 {
6549 text = xstrdup (text0);
6550 make_cleanup (xfree, text);
6551 text_len = strlen (text);
b1ed564a
JB
6552 wild_match_p = 0;
6553 encoded_p = 1;
41d27058
JB
6554 }
6555 else
6556 {
6557 text = xstrdup (ada_encode (text0));
6558 make_cleanup (xfree, text);
6559 text_len = strlen (text);
6560 for (i = 0; i < text_len; i++)
6561 text[i] = tolower (text[i]);
6562
b1ed564a 6563 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6564 /* If the name contains a ".", then the user is entering a fully
6565 qualified entity name, and the match must not be done in wild
6566 mode. Similarly, if the user wants to complete what looks like
6567 an encoded name, the match must not be done in wild mode. */
b1ed564a 6568 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6569 }
6570
6571 /* First, look at the partial symtab symbols. */
41d27058 6572 {
ccefe4c4
TT
6573 struct add_partial_datum data;
6574
6575 data.completions = &completions;
6576 data.text = text;
6577 data.text_len = text_len;
6578 data.text0 = text0;
6579 data.word = word;
b1ed564a
JB
6580 data.wild_match = wild_match_p;
6581 data.encoded = encoded_p;
276d885b
GB
6582 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6583 ALL_DOMAIN, &data);
41d27058
JB
6584 }
6585
6586 /* At this point scan through the misc symbol vectors and add each
6587 symbol you find to the list. Eventually we want to ignore
6588 anything that isn't a text symbol (everything else will be
6589 handled by the psymtab code above). */
6590
6591 ALL_MSYMBOLS (objfile, msymbol)
6592 {
6593 QUIT;
efd66ac6 6594 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6595 text, text_len, text0, word, wild_match_p,
6596 encoded_p);
41d27058
JB
6597 }
6598
6599 /* Search upwards from currently selected frame (so that we can
6600 complete on local vars. */
6601
6602 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6603 {
6604 if (!BLOCK_SUPERBLOCK (b))
6605 surrounding_static_block = b; /* For elmin of dups */
6606
6607 ALL_BLOCK_SYMBOLS (b, iter, sym)
6608 {
d6565258 6609 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6610 text, text_len, text0, word,
b1ed564a 6611 wild_match_p, encoded_p);
41d27058
JB
6612 }
6613 }
6614
6615 /* Go through the symtabs and check the externs and statics for
43f3e411 6616 symbols which match. */
41d27058 6617
43f3e411 6618 ALL_COMPUNITS (objfile, s)
41d27058
JB
6619 {
6620 QUIT;
43f3e411 6621 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6622 ALL_BLOCK_SYMBOLS (b, iter, sym)
6623 {
d6565258 6624 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6625 text, text_len, text0, word,
b1ed564a 6626 wild_match_p, encoded_p);
41d27058
JB
6627 }
6628 }
6629
43f3e411 6630 ALL_COMPUNITS (objfile, s)
41d27058
JB
6631 {
6632 QUIT;
43f3e411 6633 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6634 /* Don't do this block twice. */
6635 if (b == surrounding_static_block)
6636 continue;
6637 ALL_BLOCK_SYMBOLS (b, iter, sym)
6638 {
d6565258 6639 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6640 text, text_len, text0, word,
b1ed564a 6641 wild_match_p, encoded_p);
41d27058
JB
6642 }
6643 }
6644
b8fea896 6645 do_cleanups (old_chain);
49c4e619 6646 return completions;
41d27058
JB
6647}
6648
963a6417 6649 /* Field Access */
96d887e8 6650
73fb9985
JB
6651/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6652 for tagged types. */
6653
6654static int
6655ada_is_dispatch_table_ptr_type (struct type *type)
6656{
0d5cff50 6657 const char *name;
73fb9985
JB
6658
6659 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6660 return 0;
6661
6662 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6663 if (name == NULL)
6664 return 0;
6665
6666 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6667}
6668
ac4a2da4
JG
6669/* Return non-zero if TYPE is an interface tag. */
6670
6671static int
6672ada_is_interface_tag (struct type *type)
6673{
6674 const char *name = TYPE_NAME (type);
6675
6676 if (name == NULL)
6677 return 0;
6678
6679 return (strcmp (name, "ada__tags__interface_tag") == 0);
6680}
6681
963a6417
PH
6682/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6683 to be invisible to users. */
96d887e8 6684
963a6417
PH
6685int
6686ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6687{
963a6417
PH
6688 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6689 return 1;
ffde82bf 6690
73fb9985
JB
6691 /* Check the name of that field. */
6692 {
6693 const char *name = TYPE_FIELD_NAME (type, field_num);
6694
6695 /* Anonymous field names should not be printed.
6696 brobecker/2007-02-20: I don't think this can actually happen
6697 but we don't want to print the value of annonymous fields anyway. */
6698 if (name == NULL)
6699 return 1;
6700
ffde82bf
JB
6701 /* Normally, fields whose name start with an underscore ("_")
6702 are fields that have been internally generated by the compiler,
6703 and thus should not be printed. The "_parent" field is special,
6704 however: This is a field internally generated by the compiler
6705 for tagged types, and it contains the components inherited from
6706 the parent type. This field should not be printed as is, but
6707 should not be ignored either. */
61012eef 6708 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6709 return 1;
6710 }
6711
ac4a2da4
JG
6712 /* If this is the dispatch table of a tagged type or an interface tag,
6713 then ignore. */
73fb9985 6714 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6715 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6716 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6717 return 1;
6718
6719 /* Not a special field, so it should not be ignored. */
6720 return 0;
963a6417 6721}
96d887e8 6722
963a6417 6723/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6724 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6725
963a6417
PH
6726int
6727ada_is_tagged_type (struct type *type, int refok)
6728{
6729 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6730}
96d887e8 6731
963a6417 6732/* True iff TYPE represents the type of X'Tag */
96d887e8 6733
963a6417
PH
6734int
6735ada_is_tag_type (struct type *type)
6736{
460efde1
JB
6737 type = ada_check_typedef (type);
6738
963a6417
PH
6739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6740 return 0;
6741 else
96d887e8 6742 {
963a6417 6743 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6744
963a6417
PH
6745 return (name != NULL
6746 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6747 }
96d887e8
PH
6748}
6749
963a6417 6750/* The type of the tag on VAL. */
76a01679 6751
963a6417
PH
6752struct type *
6753ada_tag_type (struct value *val)
96d887e8 6754{
df407dfe 6755 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6756}
96d887e8 6757
b50d69b5
JG
6758/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6759 retired at Ada 05). */
6760
6761static int
6762is_ada95_tag (struct value *tag)
6763{
6764 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6765}
6766
963a6417 6767/* The value of the tag on VAL. */
96d887e8 6768
963a6417
PH
6769struct value *
6770ada_value_tag (struct value *val)
6771{
03ee6b2e 6772 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6773}
6774
963a6417
PH
6775/* The value of the tag on the object of type TYPE whose contents are
6776 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6777 ADDRESS. */
96d887e8 6778
963a6417 6779static struct value *
10a2c479 6780value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6781 const gdb_byte *valaddr,
963a6417 6782 CORE_ADDR address)
96d887e8 6783{
b5385fc0 6784 int tag_byte_offset;
963a6417 6785 struct type *tag_type;
5b4ee69b 6786
963a6417 6787 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6788 NULL, NULL, NULL))
96d887e8 6789 {
fc1a4b47 6790 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6791 ? NULL
6792 : valaddr + tag_byte_offset);
963a6417 6793 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6794
963a6417 6795 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6796 }
963a6417
PH
6797 return NULL;
6798}
96d887e8 6799
963a6417
PH
6800static struct type *
6801type_from_tag (struct value *tag)
6802{
6803 const char *type_name = ada_tag_name (tag);
5b4ee69b 6804
963a6417
PH
6805 if (type_name != NULL)
6806 return ada_find_any_type (ada_encode (type_name));
6807 return NULL;
6808}
96d887e8 6809
b50d69b5
JG
6810/* Given a value OBJ of a tagged type, return a value of this
6811 type at the base address of the object. The base address, as
6812 defined in Ada.Tags, it is the address of the primary tag of
6813 the object, and therefore where the field values of its full
6814 view can be fetched. */
6815
6816struct value *
6817ada_tag_value_at_base_address (struct value *obj)
6818{
b50d69b5
JG
6819 struct value *val;
6820 LONGEST offset_to_top = 0;
6821 struct type *ptr_type, *obj_type;
6822 struct value *tag;
6823 CORE_ADDR base_address;
6824
6825 obj_type = value_type (obj);
6826
6827 /* It is the responsability of the caller to deref pointers. */
6828
6829 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6830 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6831 return obj;
6832
6833 tag = ada_value_tag (obj);
6834 if (!tag)
6835 return obj;
6836
6837 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6838
6839 if (is_ada95_tag (tag))
6840 return obj;
6841
6842 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6843 ptr_type = lookup_pointer_type (ptr_type);
6844 val = value_cast (ptr_type, tag);
6845 if (!val)
6846 return obj;
6847
6848 /* It is perfectly possible that an exception be raised while
6849 trying to determine the base address, just like for the tag;
6850 see ada_tag_name for more details. We do not print the error
6851 message for the same reason. */
6852
492d29ea 6853 TRY
b50d69b5
JG
6854 {
6855 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6856 }
6857
492d29ea
PA
6858 CATCH (e, RETURN_MASK_ERROR)
6859 {
6860 return obj;
6861 }
6862 END_CATCH
b50d69b5
JG
6863
6864 /* If offset is null, nothing to do. */
6865
6866 if (offset_to_top == 0)
6867 return obj;
6868
6869 /* -1 is a special case in Ada.Tags; however, what should be done
6870 is not quite clear from the documentation. So do nothing for
6871 now. */
6872
6873 if (offset_to_top == -1)
6874 return obj;
6875
6876 base_address = value_address (obj) - offset_to_top;
6877 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6878
6879 /* Make sure that we have a proper tag at the new address.
6880 Otherwise, offset_to_top is bogus (which can happen when
6881 the object is not initialized yet). */
6882
6883 if (!tag)
6884 return obj;
6885
6886 obj_type = type_from_tag (tag);
6887
6888 if (!obj_type)
6889 return obj;
6890
6891 return value_from_contents_and_address (obj_type, NULL, base_address);
6892}
6893
1b611343
JB
6894/* Return the "ada__tags__type_specific_data" type. */
6895
6896static struct type *
6897ada_get_tsd_type (struct inferior *inf)
963a6417 6898{
1b611343 6899 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6900
1b611343
JB
6901 if (data->tsd_type == 0)
6902 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6903 return data->tsd_type;
6904}
529cad9c 6905
1b611343
JB
6906/* Return the TSD (type-specific data) associated to the given TAG.
6907 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6908
1b611343 6909 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6910
1b611343
JB
6911static struct value *
6912ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6913{
4c4b4cd2 6914 struct value *val;
1b611343 6915 struct type *type;
5b4ee69b 6916
1b611343
JB
6917 /* First option: The TSD is simply stored as a field of our TAG.
6918 Only older versions of GNAT would use this format, but we have
6919 to test it first, because there are no visible markers for
6920 the current approach except the absence of that field. */
529cad9c 6921
1b611343
JB
6922 val = ada_value_struct_elt (tag, "tsd", 1);
6923 if (val)
6924 return val;
e802dbe0 6925
1b611343
JB
6926 /* Try the second representation for the dispatch table (in which
6927 there is no explicit 'tsd' field in the referent of the tag pointer,
6928 and instead the tsd pointer is stored just before the dispatch
6929 table. */
e802dbe0 6930
1b611343
JB
6931 type = ada_get_tsd_type (current_inferior());
6932 if (type == NULL)
6933 return NULL;
6934 type = lookup_pointer_type (lookup_pointer_type (type));
6935 val = value_cast (type, tag);
6936 if (val == NULL)
6937 return NULL;
6938 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6939}
6940
1b611343
JB
6941/* Given the TSD of a tag (type-specific data), return a string
6942 containing the name of the associated type.
6943
6944 The returned value is good until the next call. May return NULL
6945 if we are unable to determine the tag name. */
6946
6947static char *
6948ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6949{
529cad9c
PH
6950 static char name[1024];
6951 char *p;
1b611343 6952 struct value *val;
529cad9c 6953
1b611343 6954 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6955 if (val == NULL)
1b611343 6956 return NULL;
4c4b4cd2
PH
6957 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6958 for (p = name; *p != '\0'; p += 1)
6959 if (isalpha (*p))
6960 *p = tolower (*p);
1b611343 6961 return name;
4c4b4cd2
PH
6962}
6963
6964/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6965 a C string.
6966
6967 Return NULL if the TAG is not an Ada tag, or if we were unable to
6968 determine the name of that tag. The result is good until the next
6969 call. */
4c4b4cd2
PH
6970
6971const char *
6972ada_tag_name (struct value *tag)
6973{
1b611343 6974 char *name = NULL;
5b4ee69b 6975
df407dfe 6976 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6977 return NULL;
1b611343
JB
6978
6979 /* It is perfectly possible that an exception be raised while trying
6980 to determine the TAG's name, even under normal circumstances:
6981 The associated variable may be uninitialized or corrupted, for
6982 instance. We do not let any exception propagate past this point.
6983 instead we return NULL.
6984
6985 We also do not print the error message either (which often is very
6986 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6987 the caller print a more meaningful message if necessary. */
492d29ea 6988 TRY
1b611343
JB
6989 {
6990 struct value *tsd = ada_get_tsd_from_tag (tag);
6991
6992 if (tsd != NULL)
6993 name = ada_tag_name_from_tsd (tsd);
6994 }
492d29ea
PA
6995 CATCH (e, RETURN_MASK_ERROR)
6996 {
6997 }
6998 END_CATCH
1b611343
JB
6999
7000 return name;
4c4b4cd2
PH
7001}
7002
7003/* The parent type of TYPE, or NULL if none. */
14f9c5c9 7004
d2e4a39e 7005struct type *
ebf56fd3 7006ada_parent_type (struct type *type)
14f9c5c9
AS
7007{
7008 int i;
7009
61ee279c 7010 type = ada_check_typedef (type);
14f9c5c9
AS
7011
7012 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7013 return NULL;
7014
7015 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7016 if (ada_is_parent_field (type, i))
0c1f74cf
JB
7017 {
7018 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7019
7020 /* If the _parent field is a pointer, then dereference it. */
7021 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7022 parent_type = TYPE_TARGET_TYPE (parent_type);
7023 /* If there is a parallel XVS type, get the actual base type. */
7024 parent_type = ada_get_base_type (parent_type);
7025
7026 return ada_check_typedef (parent_type);
7027 }
14f9c5c9
AS
7028
7029 return NULL;
7030}
7031
4c4b4cd2
PH
7032/* True iff field number FIELD_NUM of structure type TYPE contains the
7033 parent-type (inherited) fields of a derived type. Assumes TYPE is
7034 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
7035
7036int
ebf56fd3 7037ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 7038{
61ee279c 7039 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 7040
4c4b4cd2 7041 return (name != NULL
61012eef
GB
7042 && (startswith (name, "PARENT")
7043 || startswith (name, "_parent")));
14f9c5c9
AS
7044}
7045
4c4b4cd2 7046/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 7047 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 7048 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 7049 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 7050 structures. */
14f9c5c9
AS
7051
7052int
ebf56fd3 7053ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 7054{
d2e4a39e 7055 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7056
dddc0e16
JB
7057 if (name != NULL && strcmp (name, "RETVAL") == 0)
7058 {
7059 /* This happens in functions with "out" or "in out" parameters
7060 which are passed by copy. For such functions, GNAT describes
7061 the function's return type as being a struct where the return
7062 value is in a field called RETVAL, and where the other "out"
7063 or "in out" parameters are fields of that struct. This is not
7064 a wrapper. */
7065 return 0;
7066 }
7067
d2e4a39e 7068 return (name != NULL
61012eef 7069 && (startswith (name, "PARENT")
4c4b4cd2 7070 || strcmp (name, "REP") == 0
61012eef 7071 || startswith (name, "_parent")
4c4b4cd2 7072 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7073}
7074
4c4b4cd2
PH
7075/* True iff field number FIELD_NUM of structure or union type TYPE
7076 is a variant wrapper. Assumes TYPE is a structure type with at least
7077 FIELD_NUM+1 fields. */
14f9c5c9
AS
7078
7079int
ebf56fd3 7080ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7081{
d2e4a39e 7082 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7083
14f9c5c9 7084 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7085 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7086 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7087 == TYPE_CODE_UNION)));
14f9c5c9
AS
7088}
7089
7090/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7091 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7092 returns the type of the controlling discriminant for the variant.
7093 May return NULL if the type could not be found. */
14f9c5c9 7094
d2e4a39e 7095struct type *
ebf56fd3 7096ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7097{
d2e4a39e 7098 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7099
7c964f07 7100 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7101}
7102
4c4b4cd2 7103/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7104 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7105 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7106
7107int
ebf56fd3 7108ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7109{
d2e4a39e 7110 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7111
14f9c5c9
AS
7112 return (name != NULL && name[0] == 'O');
7113}
7114
7115/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7116 returns the name of the discriminant controlling the variant.
7117 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7118
d2e4a39e 7119char *
ebf56fd3 7120ada_variant_discrim_name (struct type *type0)
14f9c5c9 7121{
d2e4a39e 7122 static char *result = NULL;
14f9c5c9 7123 static size_t result_len = 0;
d2e4a39e
AS
7124 struct type *type;
7125 const char *name;
7126 const char *discrim_end;
7127 const char *discrim_start;
14f9c5c9
AS
7128
7129 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7130 type = TYPE_TARGET_TYPE (type0);
7131 else
7132 type = type0;
7133
7134 name = ada_type_name (type);
7135
7136 if (name == NULL || name[0] == '\000')
7137 return "";
7138
7139 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7140 discrim_end -= 1)
7141 {
61012eef 7142 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7143 break;
14f9c5c9
AS
7144 }
7145 if (discrim_end == name)
7146 return "";
7147
d2e4a39e 7148 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7149 discrim_start -= 1)
7150 {
d2e4a39e 7151 if (discrim_start == name + 1)
4c4b4cd2 7152 return "";
76a01679 7153 if ((discrim_start > name + 3
61012eef 7154 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7155 || discrim_start[-1] == '.')
7156 break;
14f9c5c9
AS
7157 }
7158
7159 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7160 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7161 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7162 return result;
7163}
7164
4c4b4cd2
PH
7165/* Scan STR for a subtype-encoded number, beginning at position K.
7166 Put the position of the character just past the number scanned in
7167 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7168 Return 1 if there was a valid number at the given position, and 0
7169 otherwise. A "subtype-encoded" number consists of the absolute value
7170 in decimal, followed by the letter 'm' to indicate a negative number.
7171 Assumes 0m does not occur. */
14f9c5c9
AS
7172
7173int
d2e4a39e 7174ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7175{
7176 ULONGEST RU;
7177
d2e4a39e 7178 if (!isdigit (str[k]))
14f9c5c9
AS
7179 return 0;
7180
4c4b4cd2 7181 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7182 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7183 LONGEST. */
14f9c5c9
AS
7184 RU = 0;
7185 while (isdigit (str[k]))
7186 {
d2e4a39e 7187 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7188 k += 1;
7189 }
7190
d2e4a39e 7191 if (str[k] == 'm')
14f9c5c9
AS
7192 {
7193 if (R != NULL)
4c4b4cd2 7194 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7195 k += 1;
7196 }
7197 else if (R != NULL)
7198 *R = (LONGEST) RU;
7199
4c4b4cd2 7200 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7201 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7202 number representable as a LONGEST (although either would probably work
7203 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7204 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7205
7206 if (new_k != NULL)
7207 *new_k = k;
7208 return 1;
7209}
7210
4c4b4cd2
PH
7211/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7212 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7213 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7214
d2e4a39e 7215int
ebf56fd3 7216ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7217{
d2e4a39e 7218 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7219 int p;
7220
7221 p = 0;
7222 while (1)
7223 {
d2e4a39e 7224 switch (name[p])
4c4b4cd2
PH
7225 {
7226 case '\0':
7227 return 0;
7228 case 'S':
7229 {
7230 LONGEST W;
5b4ee69b 7231
4c4b4cd2
PH
7232 if (!ada_scan_number (name, p + 1, &W, &p))
7233 return 0;
7234 if (val == W)
7235 return 1;
7236 break;
7237 }
7238 case 'R':
7239 {
7240 LONGEST L, U;
5b4ee69b 7241
4c4b4cd2
PH
7242 if (!ada_scan_number (name, p + 1, &L, &p)
7243 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7244 return 0;
7245 if (val >= L && val <= U)
7246 return 1;
7247 break;
7248 }
7249 case 'O':
7250 return 1;
7251 default:
7252 return 0;
7253 }
7254 }
7255}
7256
0963b4bd 7257/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7258
7259/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7260 ARG_TYPE, extract and return the value of one of its (non-static)
7261 fields. FIELDNO says which field. Differs from value_primitive_field
7262 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7263
4c4b4cd2 7264static struct value *
d2e4a39e 7265ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7266 struct type *arg_type)
14f9c5c9 7267{
14f9c5c9
AS
7268 struct type *type;
7269
61ee279c 7270 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7271 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7272
4c4b4cd2 7273 /* Handle packed fields. */
14f9c5c9
AS
7274
7275 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7276 {
7277 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7278 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7279
0fd88904 7280 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7281 offset + bit_pos / 8,
7282 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7283 }
7284 else
7285 return value_primitive_field (arg1, offset, fieldno, arg_type);
7286}
7287
52ce6436
PH
7288/* Find field with name NAME in object of type TYPE. If found,
7289 set the following for each argument that is non-null:
7290 - *FIELD_TYPE_P to the field's type;
7291 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7292 an object of that type;
7293 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7294 - *BIT_SIZE_P to its size in bits if the field is packed, and
7295 0 otherwise;
7296 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7297 fields up to but not including the desired field, or by the total
7298 number of fields if not found. A NULL value of NAME never
7299 matches; the function just counts visible fields in this case.
7300
0963b4bd 7301 Returns 1 if found, 0 otherwise. */
52ce6436 7302
4c4b4cd2 7303static int
0d5cff50 7304find_struct_field (const char *name, struct type *type, int offset,
76a01679 7305 struct type **field_type_p,
52ce6436
PH
7306 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7307 int *index_p)
4c4b4cd2
PH
7308{
7309 int i;
7310
61ee279c 7311 type = ada_check_typedef (type);
76a01679 7312
52ce6436
PH
7313 if (field_type_p != NULL)
7314 *field_type_p = NULL;
7315 if (byte_offset_p != NULL)
d5d6fca5 7316 *byte_offset_p = 0;
52ce6436
PH
7317 if (bit_offset_p != NULL)
7318 *bit_offset_p = 0;
7319 if (bit_size_p != NULL)
7320 *bit_size_p = 0;
7321
7322 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7323 {
7324 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7325 int fld_offset = offset + bit_pos / 8;
0d5cff50 7326 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7327
4c4b4cd2
PH
7328 if (t_field_name == NULL)
7329 continue;
7330
52ce6436 7331 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7332 {
7333 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7334
52ce6436
PH
7335 if (field_type_p != NULL)
7336 *field_type_p = TYPE_FIELD_TYPE (type, i);
7337 if (byte_offset_p != NULL)
7338 *byte_offset_p = fld_offset;
7339 if (bit_offset_p != NULL)
7340 *bit_offset_p = bit_pos % 8;
7341 if (bit_size_p != NULL)
7342 *bit_size_p = bit_size;
76a01679
JB
7343 return 1;
7344 }
4c4b4cd2
PH
7345 else if (ada_is_wrapper_field (type, i))
7346 {
52ce6436
PH
7347 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7348 field_type_p, byte_offset_p, bit_offset_p,
7349 bit_size_p, index_p))
76a01679
JB
7350 return 1;
7351 }
4c4b4cd2
PH
7352 else if (ada_is_variant_part (type, i))
7353 {
52ce6436
PH
7354 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7355 fixed type?? */
4c4b4cd2 7356 int j;
52ce6436
PH
7357 struct type *field_type
7358 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7359
52ce6436 7360 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7361 {
76a01679
JB
7362 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7363 fld_offset
7364 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7365 field_type_p, byte_offset_p,
52ce6436 7366 bit_offset_p, bit_size_p, index_p))
76a01679 7367 return 1;
4c4b4cd2
PH
7368 }
7369 }
52ce6436
PH
7370 else if (index_p != NULL)
7371 *index_p += 1;
4c4b4cd2
PH
7372 }
7373 return 0;
7374}
7375
0963b4bd 7376/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7377
52ce6436
PH
7378static int
7379num_visible_fields (struct type *type)
7380{
7381 int n;
5b4ee69b 7382
52ce6436
PH
7383 n = 0;
7384 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7385 return n;
7386}
14f9c5c9 7387
4c4b4cd2 7388/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7389 and search in it assuming it has (class) type TYPE.
7390 If found, return value, else return NULL.
7391
4c4b4cd2 7392 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7393
4c4b4cd2 7394static struct value *
108d56a4 7395ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7396 struct type *type)
14f9c5c9
AS
7397{
7398 int i;
14f9c5c9 7399
5b4ee69b 7400 type = ada_check_typedef (type);
52ce6436 7401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7402 {
0d5cff50 7403 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7404
7405 if (t_field_name == NULL)
4c4b4cd2 7406 continue;
14f9c5c9
AS
7407
7408 else if (field_name_match (t_field_name, name))
4c4b4cd2 7409 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7410
7411 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7412 {
0963b4bd 7413 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7414 ada_search_struct_field (name, arg,
7415 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7416 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7417
4c4b4cd2
PH
7418 if (v != NULL)
7419 return v;
7420 }
14f9c5c9
AS
7421
7422 else if (ada_is_variant_part (type, i))
4c4b4cd2 7423 {
0963b4bd 7424 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7425 int j;
5b4ee69b
MS
7426 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7427 i));
4c4b4cd2
PH
7428 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7429
52ce6436 7430 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7431 {
0963b4bd
MS
7432 struct value *v = ada_search_struct_field /* Force line
7433 break. */
06d5cf63
JB
7434 (name, arg,
7435 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7436 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7437
4c4b4cd2
PH
7438 if (v != NULL)
7439 return v;
7440 }
7441 }
14f9c5c9
AS
7442 }
7443 return NULL;
7444}
d2e4a39e 7445
52ce6436
PH
7446static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7448
7449
7450/* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7453 * If found, return value, else return NULL. */
52ce6436
PH
7454
7455static struct value *
7456ada_index_struct_field (int index, struct value *arg, int offset,
7457 struct type *type)
7458{
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7460}
7461
7462
7463/* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7465 * *INDEX_P. */
52ce6436
PH
7466
7467static struct value *
7468ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7469 struct type *type)
7470{
7471 int i;
7472 type = ada_check_typedef (type);
7473
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7475 {
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7477 continue;
7478 else if (ada_is_wrapper_field (type, i))
7479 {
0963b4bd 7480 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7484
52ce6436
PH
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 else if (ada_is_variant_part (type, i))
7490 {
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7492 find_struct_field. */
52ce6436
PH
7493 error (_("Cannot assign this kind of variant record"));
7494 }
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7497 else
7498 *index_p -= 1;
7499 }
7500 return NULL;
7501}
7502
4c4b4cd2
PH
7503/* Given ARG, a value of type (pointer or reference to a)*
7504 structure/union, extract the component named NAME from the ultimate
7505 target structure/union and return it as a value with its
f5938064 7506 appropriate type.
14f9c5c9 7507
4c4b4cd2
PH
7508 The routine searches for NAME among all members of the structure itself
7509 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7510 (e.g., '_parent').
7511
03ee6b2e
PH
7512 If NO_ERR, then simply return NULL in case of error, rather than
7513 calling error. */
14f9c5c9 7514
d2e4a39e 7515struct value *
03ee6b2e 7516ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7517{
4c4b4cd2 7518 struct type *t, *t1;
d2e4a39e 7519 struct value *v;
14f9c5c9 7520
4c4b4cd2 7521 v = NULL;
df407dfe 7522 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7523 if (TYPE_CODE (t) == TYPE_CODE_REF)
7524 {
7525 t1 = TYPE_TARGET_TYPE (t);
7526 if (t1 == NULL)
03ee6b2e 7527 goto BadValue;
61ee279c 7528 t1 = ada_check_typedef (t1);
4c4b4cd2 7529 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7530 {
994b9211 7531 arg = coerce_ref (arg);
76a01679
JB
7532 t = t1;
7533 }
4c4b4cd2 7534 }
14f9c5c9 7535
4c4b4cd2
PH
7536 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7537 {
7538 t1 = TYPE_TARGET_TYPE (t);
7539 if (t1 == NULL)
03ee6b2e 7540 goto BadValue;
61ee279c 7541 t1 = ada_check_typedef (t1);
4c4b4cd2 7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7543 {
7544 arg = value_ind (arg);
7545 t = t1;
7546 }
4c4b4cd2 7547 else
76a01679 7548 break;
4c4b4cd2 7549 }
14f9c5c9 7550
4c4b4cd2 7551 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7552 goto BadValue;
14f9c5c9 7553
4c4b4cd2
PH
7554 if (t1 == t)
7555 v = ada_search_struct_field (name, arg, 0, t);
7556 else
7557 {
7558 int bit_offset, bit_size, byte_offset;
7559 struct type *field_type;
7560 CORE_ADDR address;
7561
76a01679 7562 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7563 address = value_address (ada_value_ind (arg));
4c4b4cd2 7564 else
b50d69b5 7565 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7566
1ed6ede0 7567 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7568 if (find_struct_field (name, t1, 0,
7569 &field_type, &byte_offset, &bit_offset,
52ce6436 7570 &bit_size, NULL))
76a01679
JB
7571 {
7572 if (bit_size != 0)
7573 {
714e53ab
PH
7574 if (TYPE_CODE (t) == TYPE_CODE_REF)
7575 arg = ada_coerce_ref (arg);
7576 else
7577 arg = ada_value_ind (arg);
76a01679
JB
7578 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7579 bit_offset, bit_size,
7580 field_type);
7581 }
7582 else
f5938064 7583 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7584 }
7585 }
7586
03ee6b2e
PH
7587 if (v != NULL || no_err)
7588 return v;
7589 else
323e0a4a 7590 error (_("There is no member named %s."), name);
14f9c5c9 7591
03ee6b2e
PH
7592 BadValue:
7593 if (no_err)
7594 return NULL;
7595 else
0963b4bd
MS
7596 error (_("Attempt to extract a component of "
7597 "a value that is not a record."));
14f9c5c9
AS
7598}
7599
3b4de39c 7600/* Return a string representation of type TYPE. */
99bbb428 7601
3b4de39c 7602static std::string
99bbb428
PA
7603type_as_string (struct type *type)
7604{
d7e74731 7605 string_file tmp_stream;
99bbb428 7606
d7e74731 7607 type_print (type, "", &tmp_stream, -1);
99bbb428 7608
d7e74731 7609 return std::move (tmp_stream.string ());
99bbb428
PA
7610}
7611
14f9c5c9 7612/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7613 If DISPP is non-null, add its byte displacement from the beginning of a
7614 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7615 work for packed fields).
7616
7617 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7618 followed by "___".
14f9c5c9 7619
0963b4bd 7620 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7621 be a (pointer or reference)+ to a struct or union, and the
7622 ultimate target type will be searched.
14f9c5c9
AS
7623
7624 Looks recursively into variant clauses and parent types.
7625
4c4b4cd2
PH
7626 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7627 TYPE is not a type of the right kind. */
14f9c5c9 7628
4c4b4cd2 7629static struct type *
76a01679
JB
7630ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7631 int noerr, int *dispp)
14f9c5c9
AS
7632{
7633 int i;
7634
7635 if (name == NULL)
7636 goto BadName;
7637
76a01679 7638 if (refok && type != NULL)
4c4b4cd2
PH
7639 while (1)
7640 {
61ee279c 7641 type = ada_check_typedef (type);
76a01679
JB
7642 if (TYPE_CODE (type) != TYPE_CODE_PTR
7643 && TYPE_CODE (type) != TYPE_CODE_REF)
7644 break;
7645 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7646 }
14f9c5c9 7647
76a01679 7648 if (type == NULL
1265e4aa
JB
7649 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7650 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7651 {
4c4b4cd2 7652 if (noerr)
76a01679 7653 return NULL;
99bbb428 7654
3b4de39c
PA
7655 error (_("Type %s is not a structure or union type"),
7656 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7657 }
7658
7659 type = to_static_fixed_type (type);
7660
7661 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7662 {
0d5cff50 7663 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7664 struct type *t;
7665 int disp;
d2e4a39e 7666
14f9c5c9 7667 if (t_field_name == NULL)
4c4b4cd2 7668 continue;
14f9c5c9
AS
7669
7670 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7671 {
7672 if (dispp != NULL)
7673 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7674 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7675 }
14f9c5c9
AS
7676
7677 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7678 {
7679 disp = 0;
7680 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7681 0, 1, &disp);
7682 if (t != NULL)
7683 {
7684 if (dispp != NULL)
7685 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7686 return t;
7687 }
7688 }
14f9c5c9
AS
7689
7690 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7691 {
7692 int j;
5b4ee69b
MS
7693 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7694 i));
4c4b4cd2
PH
7695
7696 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7697 {
b1f33ddd
JB
7698 /* FIXME pnh 2008/01/26: We check for a field that is
7699 NOT wrapped in a struct, since the compiler sometimes
7700 generates these for unchecked variant types. Revisit
0963b4bd 7701 if the compiler changes this practice. */
0d5cff50 7702 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7703 disp = 0;
b1f33ddd
JB
7704 if (v_field_name != NULL
7705 && field_name_match (v_field_name, name))
460efde1 7706 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7707 else
0963b4bd
MS
7708 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7709 j),
b1f33ddd
JB
7710 name, 0, 1, &disp);
7711
4c4b4cd2
PH
7712 if (t != NULL)
7713 {
7714 if (dispp != NULL)
7715 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7716 return t;
7717 }
7718 }
7719 }
14f9c5c9
AS
7720
7721 }
7722
7723BadName:
d2e4a39e 7724 if (!noerr)
14f9c5c9 7725 {
2b2798cc 7726 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7727
7728 error (_("Type %s has no component named %s"),
3b4de39c 7729 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7730 }
7731
7732 return NULL;
7733}
7734
b1f33ddd
JB
7735/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7736 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7737 represents an unchecked union (that is, the variant part of a
0963b4bd 7738 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7739
7740static int
7741is_unchecked_variant (struct type *var_type, struct type *outer_type)
7742{
7743 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7744
b1f33ddd
JB
7745 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7746 == NULL);
7747}
7748
7749
14f9c5c9
AS
7750/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7751 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7752 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7753 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7754
d2e4a39e 7755int
ebf56fd3 7756ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7757 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7758{
7759 int others_clause;
7760 int i;
d2e4a39e 7761 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7762 struct value *outer;
7763 struct value *discrim;
14f9c5c9
AS
7764 LONGEST discrim_val;
7765
012370f6
TT
7766 /* Using plain value_from_contents_and_address here causes problems
7767 because we will end up trying to resolve a type that is currently
7768 being constructed. */
7769 outer = value_from_contents_and_address_unresolved (outer_type,
7770 outer_valaddr, 0);
0c281816
JB
7771 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7772 if (discrim == NULL)
14f9c5c9 7773 return -1;
0c281816 7774 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7775
7776 others_clause = -1;
7777 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7778 {
7779 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7780 others_clause = i;
14f9c5c9 7781 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7782 return i;
14f9c5c9
AS
7783 }
7784
7785 return others_clause;
7786}
d2e4a39e 7787\f
14f9c5c9
AS
7788
7789
4c4b4cd2 7790 /* Dynamic-Sized Records */
14f9c5c9
AS
7791
7792/* Strategy: The type ostensibly attached to a value with dynamic size
7793 (i.e., a size that is not statically recorded in the debugging
7794 data) does not accurately reflect the size or layout of the value.
7795 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7796 conventional types that are constructed on the fly. */
14f9c5c9
AS
7797
7798/* There is a subtle and tricky problem here. In general, we cannot
7799 determine the size of dynamic records without its data. However,
7800 the 'struct value' data structure, which GDB uses to represent
7801 quantities in the inferior process (the target), requires the size
7802 of the type at the time of its allocation in order to reserve space
7803 for GDB's internal copy of the data. That's why the
7804 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7805 rather than struct value*s.
14f9c5c9
AS
7806
7807 However, GDB's internal history variables ($1, $2, etc.) are
7808 struct value*s containing internal copies of the data that are not, in
7809 general, the same as the data at their corresponding addresses in
7810 the target. Fortunately, the types we give to these values are all
7811 conventional, fixed-size types (as per the strategy described
7812 above), so that we don't usually have to perform the
7813 'to_fixed_xxx_type' conversions to look at their values.
7814 Unfortunately, there is one exception: if one of the internal
7815 history variables is an array whose elements are unconstrained
7816 records, then we will need to create distinct fixed types for each
7817 element selected. */
7818
7819/* The upshot of all of this is that many routines take a (type, host
7820 address, target address) triple as arguments to represent a value.
7821 The host address, if non-null, is supposed to contain an internal
7822 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7823 target at the target address. */
14f9c5c9
AS
7824
7825/* Assuming that VAL0 represents a pointer value, the result of
7826 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7827 dynamic-sized types. */
14f9c5c9 7828
d2e4a39e
AS
7829struct value *
7830ada_value_ind (struct value *val0)
14f9c5c9 7831{
c48db5ca 7832 struct value *val = value_ind (val0);
5b4ee69b 7833
b50d69b5
JG
7834 if (ada_is_tagged_type (value_type (val), 0))
7835 val = ada_tag_value_at_base_address (val);
7836
4c4b4cd2 7837 return ada_to_fixed_value (val);
14f9c5c9
AS
7838}
7839
7840/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7841 qualifiers on VAL0. */
7842
d2e4a39e
AS
7843static struct value *
7844ada_coerce_ref (struct value *val0)
7845{
df407dfe 7846 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7847 {
7848 struct value *val = val0;
5b4ee69b 7849
994b9211 7850 val = coerce_ref (val);
b50d69b5
JG
7851
7852 if (ada_is_tagged_type (value_type (val), 0))
7853 val = ada_tag_value_at_base_address (val);
7854
4c4b4cd2 7855 return ada_to_fixed_value (val);
d2e4a39e
AS
7856 }
7857 else
14f9c5c9
AS
7858 return val0;
7859}
7860
7861/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7862 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7863
7864static unsigned int
ebf56fd3 7865align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7866{
7867 return (off + alignment - 1) & ~(alignment - 1);
7868}
7869
4c4b4cd2 7870/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7871
7872static unsigned int
ebf56fd3 7873field_alignment (struct type *type, int f)
14f9c5c9 7874{
d2e4a39e 7875 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7876 int len;
14f9c5c9
AS
7877 int align_offset;
7878
64a1bf19
JB
7879 /* The field name should never be null, unless the debugging information
7880 is somehow malformed. In this case, we assume the field does not
7881 require any alignment. */
7882 if (name == NULL)
7883 return 1;
7884
7885 len = strlen (name);
7886
4c4b4cd2
PH
7887 if (!isdigit (name[len - 1]))
7888 return 1;
14f9c5c9 7889
d2e4a39e 7890 if (isdigit (name[len - 2]))
14f9c5c9
AS
7891 align_offset = len - 2;
7892 else
7893 align_offset = len - 1;
7894
61012eef 7895 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7896 return TARGET_CHAR_BIT;
7897
4c4b4cd2
PH
7898 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7899}
7900
852dff6c 7901/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7902
852dff6c
JB
7903static struct symbol *
7904ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7905{
7906 struct symbol *sym;
7907
7908 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7909 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7910 return sym;
7911
4186eb54
KS
7912 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7913 return sym;
14f9c5c9
AS
7914}
7915
dddfab26
UW
7916/* Find a type named NAME. Ignores ambiguity. This routine will look
7917 solely for types defined by debug info, it will not search the GDB
7918 primitive types. */
4c4b4cd2 7919
852dff6c 7920static struct type *
ebf56fd3 7921ada_find_any_type (const char *name)
14f9c5c9 7922{
852dff6c 7923 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7924
14f9c5c9 7925 if (sym != NULL)
dddfab26 7926 return SYMBOL_TYPE (sym);
14f9c5c9 7927
dddfab26 7928 return NULL;
14f9c5c9
AS
7929}
7930
739593e0
JB
7931/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7932 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7933 symbol, in which case it is returned. Otherwise, this looks for
7934 symbols whose name is that of NAME_SYM suffixed with "___XR".
7935 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7936
7937struct symbol *
270140bd 7938ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7939{
739593e0 7940 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7941 struct symbol *sym;
7942
739593e0
JB
7943 if (strstr (name, "___XR") != NULL)
7944 return name_sym;
7945
aeb5907d
JB
7946 sym = find_old_style_renaming_symbol (name, block);
7947
7948 if (sym != NULL)
7949 return sym;
7950
0963b4bd 7951 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7952 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7953 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7954 return sym;
7955 else
7956 return NULL;
7957}
7958
7959static struct symbol *
270140bd 7960find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7961{
7f0df278 7962 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7963 char *rename;
7964
7965 if (function_sym != NULL)
7966 {
7967 /* If the symbol is defined inside a function, NAME is not fully
7968 qualified. This means we need to prepend the function name
7969 as well as adding the ``___XR'' suffix to build the name of
7970 the associated renaming symbol. */
0d5cff50 7971 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7972 /* Function names sometimes contain suffixes used
7973 for instance to qualify nested subprograms. When building
7974 the XR type name, we need to make sure that this suffix is
7975 not included. So do not include any suffix in the function
7976 name length below. */
69fadcdf 7977 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7978 const int rename_len = function_name_len + 2 /* "__" */
7979 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7980
529cad9c 7981 /* Strip the suffix if necessary. */
69fadcdf
JB
7982 ada_remove_trailing_digits (function_name, &function_name_len);
7983 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7984 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7985
4c4b4cd2
PH
7986 /* Library-level functions are a special case, as GNAT adds
7987 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7988 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7989 have this prefix, so we need to skip this prefix if present. */
7990 if (function_name_len > 5 /* "_ada_" */
7991 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7992 {
7993 function_name += 5;
7994 function_name_len -= 5;
7995 }
4c4b4cd2
PH
7996
7997 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7998 strncpy (rename, function_name, function_name_len);
7999 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8000 "__%s___XR", name);
4c4b4cd2
PH
8001 }
8002 else
8003 {
8004 const int rename_len = strlen (name) + 6;
5b4ee69b 8005
4c4b4cd2 8006 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8007 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8008 }
8009
852dff6c 8010 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8011}
8012
14f9c5c9 8013/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8014 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8015 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8016 otherwise return 0. */
8017
14f9c5c9 8018int
d2e4a39e 8019ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8020{
8021 if (type1 == NULL)
8022 return 1;
8023 else if (type0 == NULL)
8024 return 0;
8025 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8026 return 1;
8027 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8028 return 0;
4c4b4cd2
PH
8029 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8030 return 1;
ad82864c 8031 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8032 return 1;
4c4b4cd2
PH
8033 else if (ada_is_array_descriptor_type (type0)
8034 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8035 return 1;
aeb5907d
JB
8036 else
8037 {
8038 const char *type0_name = type_name_no_tag (type0);
8039 const char *type1_name = type_name_no_tag (type1);
8040
8041 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8042 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8043 return 1;
8044 }
14f9c5c9
AS
8045 return 0;
8046}
8047
8048/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8049 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8050
0d5cff50 8051const char *
d2e4a39e 8052ada_type_name (struct type *type)
14f9c5c9 8053{
d2e4a39e 8054 if (type == NULL)
14f9c5c9
AS
8055 return NULL;
8056 else if (TYPE_NAME (type) != NULL)
8057 return TYPE_NAME (type);
8058 else
8059 return TYPE_TAG_NAME (type);
8060}
8061
b4ba55a1
JB
8062/* Search the list of "descriptive" types associated to TYPE for a type
8063 whose name is NAME. */
8064
8065static struct type *
8066find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8067{
931e5bc3 8068 struct type *result, *tmp;
b4ba55a1 8069
c6044dd1
JB
8070 if (ada_ignore_descriptive_types_p)
8071 return NULL;
8072
b4ba55a1
JB
8073 /* If there no descriptive-type info, then there is no parallel type
8074 to be found. */
8075 if (!HAVE_GNAT_AUX_INFO (type))
8076 return NULL;
8077
8078 result = TYPE_DESCRIPTIVE_TYPE (type);
8079 while (result != NULL)
8080 {
0d5cff50 8081 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8082
8083 if (result_name == NULL)
8084 {
8085 warning (_("unexpected null name on descriptive type"));
8086 return NULL;
8087 }
8088
8089 /* If the names match, stop. */
8090 if (strcmp (result_name, name) == 0)
8091 break;
8092
8093 /* Otherwise, look at the next item on the list, if any. */
8094 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8095 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8096 else
8097 tmp = NULL;
8098
8099 /* If not found either, try after having resolved the typedef. */
8100 if (tmp != NULL)
8101 result = tmp;
b4ba55a1 8102 else
931e5bc3 8103 {
f168693b 8104 result = check_typedef (result);
931e5bc3
JG
8105 if (HAVE_GNAT_AUX_INFO (result))
8106 result = TYPE_DESCRIPTIVE_TYPE (result);
8107 else
8108 result = NULL;
8109 }
b4ba55a1
JB
8110 }
8111
8112 /* If we didn't find a match, see whether this is a packed array. With
8113 older compilers, the descriptive type information is either absent or
8114 irrelevant when it comes to packed arrays so the above lookup fails.
8115 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8116 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8117 return ada_find_any_type (name);
8118
8119 return result;
8120}
8121
8122/* Find a parallel type to TYPE with the specified NAME, using the
8123 descriptive type taken from the debugging information, if available,
8124 and otherwise using the (slower) name-based method. */
8125
8126static struct type *
8127ada_find_parallel_type_with_name (struct type *type, const char *name)
8128{
8129 struct type *result = NULL;
8130
8131 if (HAVE_GNAT_AUX_INFO (type))
8132 result = find_parallel_type_by_descriptive_type (type, name);
8133 else
8134 result = ada_find_any_type (name);
8135
8136 return result;
8137}
8138
8139/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8140 SUFFIX to the name of TYPE. */
14f9c5c9 8141
d2e4a39e 8142struct type *
ebf56fd3 8143ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8144{
0d5cff50 8145 char *name;
fe978cb0 8146 const char *type_name = ada_type_name (type);
14f9c5c9 8147 int len;
d2e4a39e 8148
fe978cb0 8149 if (type_name == NULL)
14f9c5c9
AS
8150 return NULL;
8151
fe978cb0 8152 len = strlen (type_name);
14f9c5c9 8153
b4ba55a1 8154 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8155
fe978cb0 8156 strcpy (name, type_name);
14f9c5c9
AS
8157 strcpy (name + len, suffix);
8158
b4ba55a1 8159 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8160}
8161
14f9c5c9 8162/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8163 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8164
d2e4a39e
AS
8165static struct type *
8166dynamic_template_type (struct type *type)
14f9c5c9 8167{
61ee279c 8168 type = ada_check_typedef (type);
14f9c5c9
AS
8169
8170 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8171 || ada_type_name (type) == NULL)
14f9c5c9 8172 return NULL;
d2e4a39e 8173 else
14f9c5c9
AS
8174 {
8175 int len = strlen (ada_type_name (type));
5b4ee69b 8176
4c4b4cd2
PH
8177 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8178 return type;
14f9c5c9 8179 else
4c4b4cd2 8180 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8181 }
8182}
8183
8184/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8185 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8186
d2e4a39e
AS
8187static int
8188is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8189{
8190 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8191
d2e4a39e 8192 return name != NULL
14f9c5c9
AS
8193 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8194 && strstr (name, "___XVL") != NULL;
8195}
8196
4c4b4cd2
PH
8197/* The index of the variant field of TYPE, or -1 if TYPE does not
8198 represent a variant record type. */
14f9c5c9 8199
d2e4a39e 8200static int
4c4b4cd2 8201variant_field_index (struct type *type)
14f9c5c9
AS
8202{
8203 int f;
8204
4c4b4cd2
PH
8205 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8206 return -1;
8207
8208 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8209 {
8210 if (ada_is_variant_part (type, f))
8211 return f;
8212 }
8213 return -1;
14f9c5c9
AS
8214}
8215
4c4b4cd2
PH
8216/* A record type with no fields. */
8217
d2e4a39e 8218static struct type *
fe978cb0 8219empty_record (struct type *templ)
14f9c5c9 8220{
fe978cb0 8221 struct type *type = alloc_type_copy (templ);
5b4ee69b 8222
14f9c5c9
AS
8223 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8224 TYPE_NFIELDS (type) = 0;
8225 TYPE_FIELDS (type) = NULL;
b1f33ddd 8226 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8227 TYPE_NAME (type) = "<empty>";
8228 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8229 TYPE_LENGTH (type) = 0;
8230 return type;
8231}
8232
8233/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8234 the value of type TYPE at VALADDR or ADDRESS (see comments at
8235 the beginning of this section) VAL according to GNAT conventions.
8236 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8237 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8238 an outer-level type (i.e., as opposed to a branch of a variant.) A
8239 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8240 of the variant.
14f9c5c9 8241
4c4b4cd2
PH
8242 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8243 length are not statically known are discarded. As a consequence,
8244 VALADDR, ADDRESS and DVAL0 are ignored.
8245
8246 NOTE: Limitations: For now, we assume that dynamic fields and
8247 variants occupy whole numbers of bytes. However, they need not be
8248 byte-aligned. */
8249
8250struct type *
10a2c479 8251ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8252 const gdb_byte *valaddr,
4c4b4cd2
PH
8253 CORE_ADDR address, struct value *dval0,
8254 int keep_dynamic_fields)
14f9c5c9 8255{
d2e4a39e
AS
8256 struct value *mark = value_mark ();
8257 struct value *dval;
8258 struct type *rtype;
14f9c5c9 8259 int nfields, bit_len;
4c4b4cd2 8260 int variant_field;
14f9c5c9 8261 long off;
d94e4f4f 8262 int fld_bit_len;
14f9c5c9
AS
8263 int f;
8264
4c4b4cd2
PH
8265 /* Compute the number of fields in this record type that are going
8266 to be processed: unless keep_dynamic_fields, this includes only
8267 fields whose position and length are static will be processed. */
8268 if (keep_dynamic_fields)
8269 nfields = TYPE_NFIELDS (type);
8270 else
8271 {
8272 nfields = 0;
76a01679 8273 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8274 && !ada_is_variant_part (type, nfields)
8275 && !is_dynamic_field (type, nfields))
8276 nfields++;
8277 }
8278
e9bb382b 8279 rtype = alloc_type_copy (type);
14f9c5c9
AS
8280 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8281 INIT_CPLUS_SPECIFIC (rtype);
8282 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8283 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8284 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8285 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8286 TYPE_NAME (rtype) = ada_type_name (type);
8287 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8288 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8289
d2e4a39e
AS
8290 off = 0;
8291 bit_len = 0;
4c4b4cd2
PH
8292 variant_field = -1;
8293
14f9c5c9
AS
8294 for (f = 0; f < nfields; f += 1)
8295 {
6c038f32
PH
8296 off = align_value (off, field_alignment (type, f))
8297 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8298 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8299 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8300
d2e4a39e 8301 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8302 {
8303 variant_field = f;
d94e4f4f 8304 fld_bit_len = 0;
4c4b4cd2 8305 }
14f9c5c9 8306 else if (is_dynamic_field (type, f))
4c4b4cd2 8307 {
284614f0
JB
8308 const gdb_byte *field_valaddr = valaddr;
8309 CORE_ADDR field_address = address;
8310 struct type *field_type =
8311 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8312
4c4b4cd2 8313 if (dval0 == NULL)
b5304971
JG
8314 {
8315 /* rtype's length is computed based on the run-time
8316 value of discriminants. If the discriminants are not
8317 initialized, the type size may be completely bogus and
0963b4bd 8318 GDB may fail to allocate a value for it. So check the
b5304971 8319 size first before creating the value. */
c1b5a1a6 8320 ada_ensure_varsize_limit (rtype);
012370f6
TT
8321 /* Using plain value_from_contents_and_address here
8322 causes problems because we will end up trying to
8323 resolve a type that is currently being
8324 constructed. */
8325 dval = value_from_contents_and_address_unresolved (rtype,
8326 valaddr,
8327 address);
9f1f738a 8328 rtype = value_type (dval);
b5304971 8329 }
4c4b4cd2
PH
8330 else
8331 dval = dval0;
8332
284614f0
JB
8333 /* If the type referenced by this field is an aligner type, we need
8334 to unwrap that aligner type, because its size might not be set.
8335 Keeping the aligner type would cause us to compute the wrong
8336 size for this field, impacting the offset of the all the fields
8337 that follow this one. */
8338 if (ada_is_aligner_type (field_type))
8339 {
8340 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8341
8342 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8343 field_address = cond_offset_target (field_address, field_offset);
8344 field_type = ada_aligned_type (field_type);
8345 }
8346
8347 field_valaddr = cond_offset_host (field_valaddr,
8348 off / TARGET_CHAR_BIT);
8349 field_address = cond_offset_target (field_address,
8350 off / TARGET_CHAR_BIT);
8351
8352 /* Get the fixed type of the field. Note that, in this case,
8353 we do not want to get the real type out of the tag: if
8354 the current field is the parent part of a tagged record,
8355 we will get the tag of the object. Clearly wrong: the real
8356 type of the parent is not the real type of the child. We
8357 would end up in an infinite loop. */
8358 field_type = ada_get_base_type (field_type);
8359 field_type = ada_to_fixed_type (field_type, field_valaddr,
8360 field_address, dval, 0);
27f2a97b
JB
8361 /* If the field size is already larger than the maximum
8362 object size, then the record itself will necessarily
8363 be larger than the maximum object size. We need to make
8364 this check now, because the size might be so ridiculously
8365 large (due to an uninitialized variable in the inferior)
8366 that it would cause an overflow when adding it to the
8367 record size. */
c1b5a1a6 8368 ada_ensure_varsize_limit (field_type);
284614f0
JB
8369
8370 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8371 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8372 /* The multiplication can potentially overflow. But because
8373 the field length has been size-checked just above, and
8374 assuming that the maximum size is a reasonable value,
8375 an overflow should not happen in practice. So rather than
8376 adding overflow recovery code to this already complex code,
8377 we just assume that it's not going to happen. */
d94e4f4f 8378 fld_bit_len =
4c4b4cd2
PH
8379 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8380 }
14f9c5c9 8381 else
4c4b4cd2 8382 {
5ded5331
JB
8383 /* Note: If this field's type is a typedef, it is important
8384 to preserve the typedef layer.
8385
8386 Otherwise, we might be transforming a typedef to a fat
8387 pointer (encoding a pointer to an unconstrained array),
8388 into a basic fat pointer (encoding an unconstrained
8389 array). As both types are implemented using the same
8390 structure, the typedef is the only clue which allows us
8391 to distinguish between the two options. Stripping it
8392 would prevent us from printing this field appropriately. */
8393 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8394 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8395 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8396 fld_bit_len =
4c4b4cd2
PH
8397 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8398 else
5ded5331
JB
8399 {
8400 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8401
8402 /* We need to be careful of typedefs when computing
8403 the length of our field. If this is a typedef,
8404 get the length of the target type, not the length
8405 of the typedef. */
8406 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8407 field_type = ada_typedef_target_type (field_type);
8408
8409 fld_bit_len =
8410 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8411 }
4c4b4cd2 8412 }
14f9c5c9 8413 if (off + fld_bit_len > bit_len)
4c4b4cd2 8414 bit_len = off + fld_bit_len;
d94e4f4f 8415 off += fld_bit_len;
4c4b4cd2
PH
8416 TYPE_LENGTH (rtype) =
8417 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8418 }
4c4b4cd2
PH
8419
8420 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8421 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8422 the record. This can happen in the presence of representation
8423 clauses. */
8424 if (variant_field >= 0)
8425 {
8426 struct type *branch_type;
8427
8428 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8429
8430 if (dval0 == NULL)
9f1f738a 8431 {
012370f6
TT
8432 /* Using plain value_from_contents_and_address here causes
8433 problems because we will end up trying to resolve a type
8434 that is currently being constructed. */
8435 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8436 address);
9f1f738a
SA
8437 rtype = value_type (dval);
8438 }
4c4b4cd2
PH
8439 else
8440 dval = dval0;
8441
8442 branch_type =
8443 to_fixed_variant_branch_type
8444 (TYPE_FIELD_TYPE (type, variant_field),
8445 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8446 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8447 if (branch_type == NULL)
8448 {
8449 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8450 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8451 TYPE_NFIELDS (rtype) -= 1;
8452 }
8453 else
8454 {
8455 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8456 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8457 fld_bit_len =
8458 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8459 TARGET_CHAR_BIT;
8460 if (off + fld_bit_len > bit_len)
8461 bit_len = off + fld_bit_len;
8462 TYPE_LENGTH (rtype) =
8463 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8464 }
8465 }
8466
714e53ab
PH
8467 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8468 should contain the alignment of that record, which should be a strictly
8469 positive value. If null or negative, then something is wrong, most
8470 probably in the debug info. In that case, we don't round up the size
0963b4bd 8471 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8472 the current RTYPE length might be good enough for our purposes. */
8473 if (TYPE_LENGTH (type) <= 0)
8474 {
323e0a4a
AC
8475 if (TYPE_NAME (rtype))
8476 warning (_("Invalid type size for `%s' detected: %d."),
8477 TYPE_NAME (rtype), TYPE_LENGTH (type));
8478 else
8479 warning (_("Invalid type size for <unnamed> detected: %d."),
8480 TYPE_LENGTH (type));
714e53ab
PH
8481 }
8482 else
8483 {
8484 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8485 TYPE_LENGTH (type));
8486 }
14f9c5c9
AS
8487
8488 value_free_to_mark (mark);
d2e4a39e 8489 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8490 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8491 return rtype;
8492}
8493
4c4b4cd2
PH
8494/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8495 of 1. */
14f9c5c9 8496
d2e4a39e 8497static struct type *
fc1a4b47 8498template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8499 CORE_ADDR address, struct value *dval0)
8500{
8501 return ada_template_to_fixed_record_type_1 (type, valaddr,
8502 address, dval0, 1);
8503}
8504
8505/* An ordinary record type in which ___XVL-convention fields and
8506 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8507 static approximations, containing all possible fields. Uses
8508 no runtime values. Useless for use in values, but that's OK,
8509 since the results are used only for type determinations. Works on both
8510 structs and unions. Representation note: to save space, we memorize
8511 the result of this function in the TYPE_TARGET_TYPE of the
8512 template type. */
8513
8514static struct type *
8515template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8516{
8517 struct type *type;
8518 int nfields;
8519 int f;
8520
9e195661
PMR
8521 /* No need no do anything if the input type is already fixed. */
8522 if (TYPE_FIXED_INSTANCE (type0))
8523 return type0;
8524
8525 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8526 if (TYPE_TARGET_TYPE (type0) != NULL)
8527 return TYPE_TARGET_TYPE (type0);
8528
9e195661 8529 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8530 type = type0;
9e195661
PMR
8531 nfields = TYPE_NFIELDS (type0);
8532
8533 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8534 recompute all over next time. */
8535 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8536
8537 for (f = 0; f < nfields; f += 1)
8538 {
460efde1 8539 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8540 struct type *new_type;
14f9c5c9 8541
4c4b4cd2 8542 if (is_dynamic_field (type0, f))
460efde1
JB
8543 {
8544 field_type = ada_check_typedef (field_type);
8545 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8546 }
14f9c5c9 8547 else
f192137b 8548 new_type = static_unwrap_type (field_type);
9e195661
PMR
8549
8550 if (new_type != field_type)
8551 {
8552 /* Clone TYPE0 only the first time we get a new field type. */
8553 if (type == type0)
8554 {
8555 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8556 TYPE_CODE (type) = TYPE_CODE (type0);
8557 INIT_CPLUS_SPECIFIC (type);
8558 TYPE_NFIELDS (type) = nfields;
8559 TYPE_FIELDS (type) = (struct field *)
8560 TYPE_ALLOC (type, nfields * sizeof (struct field));
8561 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8562 sizeof (struct field) * nfields);
8563 TYPE_NAME (type) = ada_type_name (type0);
8564 TYPE_TAG_NAME (type) = NULL;
8565 TYPE_FIXED_INSTANCE (type) = 1;
8566 TYPE_LENGTH (type) = 0;
8567 }
8568 TYPE_FIELD_TYPE (type, f) = new_type;
8569 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8570 }
14f9c5c9 8571 }
9e195661 8572
14f9c5c9
AS
8573 return type;
8574}
8575
4c4b4cd2 8576/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8577 whose address in memory is ADDRESS, returns a revision of TYPE,
8578 which should be a non-dynamic-sized record, in which the variant
8579 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8580 for discriminant values in DVAL0, which can be NULL if the record
8581 contains the necessary discriminant values. */
8582
d2e4a39e 8583static struct type *
fc1a4b47 8584to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8585 CORE_ADDR address, struct value *dval0)
14f9c5c9 8586{
d2e4a39e 8587 struct value *mark = value_mark ();
4c4b4cd2 8588 struct value *dval;
d2e4a39e 8589 struct type *rtype;
14f9c5c9
AS
8590 struct type *branch_type;
8591 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8592 int variant_field = variant_field_index (type);
14f9c5c9 8593
4c4b4cd2 8594 if (variant_field == -1)
14f9c5c9
AS
8595 return type;
8596
4c4b4cd2 8597 if (dval0 == NULL)
9f1f738a
SA
8598 {
8599 dval = value_from_contents_and_address (type, valaddr, address);
8600 type = value_type (dval);
8601 }
4c4b4cd2
PH
8602 else
8603 dval = dval0;
8604
e9bb382b 8605 rtype = alloc_type_copy (type);
14f9c5c9 8606 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8607 INIT_CPLUS_SPECIFIC (rtype);
8608 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8609 TYPE_FIELDS (rtype) =
8610 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8611 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8612 sizeof (struct field) * nfields);
14f9c5c9
AS
8613 TYPE_NAME (rtype) = ada_type_name (type);
8614 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8615 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8616 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8617
4c4b4cd2
PH
8618 branch_type = to_fixed_variant_branch_type
8619 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8620 cond_offset_host (valaddr,
4c4b4cd2
PH
8621 TYPE_FIELD_BITPOS (type, variant_field)
8622 / TARGET_CHAR_BIT),
d2e4a39e 8623 cond_offset_target (address,
4c4b4cd2
PH
8624 TYPE_FIELD_BITPOS (type, variant_field)
8625 / TARGET_CHAR_BIT), dval);
d2e4a39e 8626 if (branch_type == NULL)
14f9c5c9 8627 {
4c4b4cd2 8628 int f;
5b4ee69b 8629
4c4b4cd2
PH
8630 for (f = variant_field + 1; f < nfields; f += 1)
8631 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8632 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8633 }
8634 else
8635 {
4c4b4cd2
PH
8636 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8637 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8638 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8639 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8640 }
4c4b4cd2 8641 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8642
4c4b4cd2 8643 value_free_to_mark (mark);
14f9c5c9
AS
8644 return rtype;
8645}
8646
8647/* An ordinary record type (with fixed-length fields) that describes
8648 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8649 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8650 should be in DVAL, a record value; it may be NULL if the object
8651 at ADDR itself contains any necessary discriminant values.
8652 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8653 values from the record are needed. Except in the case that DVAL,
8654 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8655 unchecked) is replaced by a particular branch of the variant.
8656
8657 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8658 is questionable and may be removed. It can arise during the
8659 processing of an unconstrained-array-of-record type where all the
8660 variant branches have exactly the same size. This is because in
8661 such cases, the compiler does not bother to use the XVS convention
8662 when encoding the record. I am currently dubious of this
8663 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8664
d2e4a39e 8665static struct type *
fc1a4b47 8666to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8667 CORE_ADDR address, struct value *dval)
14f9c5c9 8668{
d2e4a39e 8669 struct type *templ_type;
14f9c5c9 8670
876cecd0 8671 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8672 return type0;
8673
d2e4a39e 8674 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8675
8676 if (templ_type != NULL)
8677 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8678 else if (variant_field_index (type0) >= 0)
8679 {
8680 if (dval == NULL && valaddr == NULL && address == 0)
8681 return type0;
8682 return to_record_with_fixed_variant_part (type0, valaddr, address,
8683 dval);
8684 }
14f9c5c9
AS
8685 else
8686 {
876cecd0 8687 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8688 return type0;
8689 }
8690
8691}
8692
8693/* An ordinary record type (with fixed-length fields) that describes
8694 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8695 union type. Any necessary discriminants' values should be in DVAL,
8696 a record value. That is, this routine selects the appropriate
8697 branch of the union at ADDR according to the discriminant value
b1f33ddd 8698 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8699 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8700
d2e4a39e 8701static struct type *
fc1a4b47 8702to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8703 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8704{
8705 int which;
d2e4a39e
AS
8706 struct type *templ_type;
8707 struct type *var_type;
14f9c5c9
AS
8708
8709 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8710 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8711 else
14f9c5c9
AS
8712 var_type = var_type0;
8713
8714 templ_type = ada_find_parallel_type (var_type, "___XVU");
8715
8716 if (templ_type != NULL)
8717 var_type = templ_type;
8718
b1f33ddd
JB
8719 if (is_unchecked_variant (var_type, value_type (dval)))
8720 return var_type0;
d2e4a39e
AS
8721 which =
8722 ada_which_variant_applies (var_type,
0fd88904 8723 value_type (dval), value_contents (dval));
14f9c5c9
AS
8724
8725 if (which < 0)
e9bb382b 8726 return empty_record (var_type);
14f9c5c9 8727 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8728 return to_fixed_record_type
d2e4a39e
AS
8729 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8730 valaddr, address, dval);
4c4b4cd2 8731 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8732 return
8733 to_fixed_record_type
8734 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8735 else
8736 return TYPE_FIELD_TYPE (var_type, which);
8737}
8738
8908fca5
JB
8739/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8740 ENCODING_TYPE, a type following the GNAT conventions for discrete
8741 type encodings, only carries redundant information. */
8742
8743static int
8744ada_is_redundant_range_encoding (struct type *range_type,
8745 struct type *encoding_type)
8746{
8747 struct type *fixed_range_type;
108d56a4 8748 const char *bounds_str;
8908fca5
JB
8749 int n;
8750 LONGEST lo, hi;
8751
8752 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8753
005e2509
JB
8754 if (TYPE_CODE (get_base_type (range_type))
8755 != TYPE_CODE (get_base_type (encoding_type)))
8756 {
8757 /* The compiler probably used a simple base type to describe
8758 the range type instead of the range's actual base type,
8759 expecting us to get the real base type from the encoding
8760 anyway. In this situation, the encoding cannot be ignored
8761 as redundant. */
8762 return 0;
8763 }
8764
8908fca5
JB
8765 if (is_dynamic_type (range_type))
8766 return 0;
8767
8768 if (TYPE_NAME (encoding_type) == NULL)
8769 return 0;
8770
8771 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8772 if (bounds_str == NULL)
8773 return 0;
8774
8775 n = 8; /* Skip "___XDLU_". */
8776 if (!ada_scan_number (bounds_str, n, &lo, &n))
8777 return 0;
8778 if (TYPE_LOW_BOUND (range_type) != lo)
8779 return 0;
8780
8781 n += 2; /* Skip the "__" separator between the two bounds. */
8782 if (!ada_scan_number (bounds_str, n, &hi, &n))
8783 return 0;
8784 if (TYPE_HIGH_BOUND (range_type) != hi)
8785 return 0;
8786
8787 return 1;
8788}
8789
8790/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8791 a type following the GNAT encoding for describing array type
8792 indices, only carries redundant information. */
8793
8794static int
8795ada_is_redundant_index_type_desc (struct type *array_type,
8796 struct type *desc_type)
8797{
8798 struct type *this_layer = check_typedef (array_type);
8799 int i;
8800
8801 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8802 {
8803 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8804 TYPE_FIELD_TYPE (desc_type, i)))
8805 return 0;
8806 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8807 }
8808
8809 return 1;
8810}
8811
14f9c5c9
AS
8812/* Assuming that TYPE0 is an array type describing the type of a value
8813 at ADDR, and that DVAL describes a record containing any
8814 discriminants used in TYPE0, returns a type for the value that
8815 contains no dynamic components (that is, no components whose sizes
8816 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8817 true, gives an error message if the resulting type's size is over
4c4b4cd2 8818 varsize_limit. */
14f9c5c9 8819
d2e4a39e
AS
8820static struct type *
8821to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8822 int ignore_too_big)
14f9c5c9 8823{
d2e4a39e
AS
8824 struct type *index_type_desc;
8825 struct type *result;
ad82864c 8826 int constrained_packed_array_p;
931e5bc3 8827 static const char *xa_suffix = "___XA";
14f9c5c9 8828
b0dd7688 8829 type0 = ada_check_typedef (type0);
284614f0 8830 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8831 return type0;
14f9c5c9 8832
ad82864c
JB
8833 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8834 if (constrained_packed_array_p)
8835 type0 = decode_constrained_packed_array_type (type0);
284614f0 8836
931e5bc3
JG
8837 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8838
8839 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8840 encoding suffixed with 'P' may still be generated. If so,
8841 it should be used to find the XA type. */
8842
8843 if (index_type_desc == NULL)
8844 {
1da0522e 8845 const char *type_name = ada_type_name (type0);
931e5bc3 8846
1da0522e 8847 if (type_name != NULL)
931e5bc3 8848 {
1da0522e 8849 const int len = strlen (type_name);
931e5bc3
JG
8850 char *name = (char *) alloca (len + strlen (xa_suffix));
8851
1da0522e 8852 if (type_name[len - 1] == 'P')
931e5bc3 8853 {
1da0522e 8854 strcpy (name, type_name);
931e5bc3
JG
8855 strcpy (name + len - 1, xa_suffix);
8856 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8857 }
8858 }
8859 }
8860
28c85d6c 8861 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8862 if (index_type_desc != NULL
8863 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8864 {
8865 /* Ignore this ___XA parallel type, as it does not bring any
8866 useful information. This allows us to avoid creating fixed
8867 versions of the array's index types, which would be identical
8868 to the original ones. This, in turn, can also help avoid
8869 the creation of fixed versions of the array itself. */
8870 index_type_desc = NULL;
8871 }
8872
14f9c5c9
AS
8873 if (index_type_desc == NULL)
8874 {
61ee279c 8875 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8876
14f9c5c9 8877 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8878 depend on the contents of the array in properly constructed
8879 debugging data. */
529cad9c
PH
8880 /* Create a fixed version of the array element type.
8881 We're not providing the address of an element here,
e1d5a0d2 8882 and thus the actual object value cannot be inspected to do
529cad9c
PH
8883 the conversion. This should not be a problem, since arrays of
8884 unconstrained objects are not allowed. In particular, all
8885 the elements of an array of a tagged type should all be of
8886 the same type specified in the debugging info. No need to
8887 consult the object tag. */
1ed6ede0 8888 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8889
284614f0
JB
8890 /* Make sure we always create a new array type when dealing with
8891 packed array types, since we're going to fix-up the array
8892 type length and element bitsize a little further down. */
ad82864c 8893 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8894 result = type0;
14f9c5c9 8895 else
e9bb382b 8896 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8897 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8898 }
8899 else
8900 {
8901 int i;
8902 struct type *elt_type0;
8903
8904 elt_type0 = type0;
8905 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8906 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8907
8908 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8909 depend on the contents of the array in properly constructed
8910 debugging data. */
529cad9c
PH
8911 /* Create a fixed version of the array element type.
8912 We're not providing the address of an element here,
e1d5a0d2 8913 and thus the actual object value cannot be inspected to do
529cad9c
PH
8914 the conversion. This should not be a problem, since arrays of
8915 unconstrained objects are not allowed. In particular, all
8916 the elements of an array of a tagged type should all be of
8917 the same type specified in the debugging info. No need to
8918 consult the object tag. */
1ed6ede0
JB
8919 result =
8920 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8921
8922 elt_type0 = type0;
14f9c5c9 8923 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8924 {
8925 struct type *range_type =
28c85d6c 8926 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8927
e9bb382b 8928 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8929 result, range_type);
1ce677a4 8930 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8931 }
d2e4a39e 8932 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8933 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8934 }
8935
2e6fda7d
JB
8936 /* We want to preserve the type name. This can be useful when
8937 trying to get the type name of a value that has already been
8938 printed (for instance, if the user did "print VAR; whatis $". */
8939 TYPE_NAME (result) = TYPE_NAME (type0);
8940
ad82864c 8941 if (constrained_packed_array_p)
284614f0
JB
8942 {
8943 /* So far, the resulting type has been created as if the original
8944 type was a regular (non-packed) array type. As a result, the
8945 bitsize of the array elements needs to be set again, and the array
8946 length needs to be recomputed based on that bitsize. */
8947 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8948 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8949
8950 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8951 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8952 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8953 TYPE_LENGTH (result)++;
8954 }
8955
876cecd0 8956 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8957 return result;
d2e4a39e 8958}
14f9c5c9
AS
8959
8960
8961/* A standard type (containing no dynamically sized components)
8962 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8963 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8964 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8965 ADDRESS or in VALADDR contains these discriminants.
8966
1ed6ede0
JB
8967 If CHECK_TAG is not null, in the case of tagged types, this function
8968 attempts to locate the object's tag and use it to compute the actual
8969 type. However, when ADDRESS is null, we cannot use it to determine the
8970 location of the tag, and therefore compute the tagged type's actual type.
8971 So we return the tagged type without consulting the tag. */
529cad9c 8972
f192137b
JB
8973static struct type *
8974ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8975 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8976{
61ee279c 8977 type = ada_check_typedef (type);
d2e4a39e
AS
8978 switch (TYPE_CODE (type))
8979 {
8980 default:
14f9c5c9 8981 return type;
d2e4a39e 8982 case TYPE_CODE_STRUCT:
4c4b4cd2 8983 {
76a01679 8984 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8985 struct type *fixed_record_type =
8986 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8987
529cad9c
PH
8988 /* If STATIC_TYPE is a tagged type and we know the object's address,
8989 then we can determine its tag, and compute the object's actual
0963b4bd 8990 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8991 type (the parent part of the record may have dynamic fields
8992 and the way the location of _tag is expressed may depend on
8993 them). */
529cad9c 8994
1ed6ede0 8995 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8996 {
b50d69b5
JG
8997 struct value *tag =
8998 value_tag_from_contents_and_address
8999 (fixed_record_type,
9000 valaddr,
9001 address);
9002 struct type *real_type = type_from_tag (tag);
9003 struct value *obj =
9004 value_from_contents_and_address (fixed_record_type,
9005 valaddr,
9006 address);
9f1f738a 9007 fixed_record_type = value_type (obj);
76a01679 9008 if (real_type != NULL)
b50d69b5
JG
9009 return to_fixed_record_type
9010 (real_type, NULL,
9011 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9012 }
4af88198
JB
9013
9014 /* Check to see if there is a parallel ___XVZ variable.
9015 If there is, then it provides the actual size of our type. */
9016 else if (ada_type_name (fixed_record_type) != NULL)
9017 {
0d5cff50 9018 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9019 char *xvz_name
9020 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
9021 int xvz_found = 0;
9022 LONGEST size;
9023
88c15c34 9024 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
9025 size = get_int_var_value (xvz_name, &xvz_found);
9026 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9027 {
9028 fixed_record_type = copy_type (fixed_record_type);
9029 TYPE_LENGTH (fixed_record_type) = size;
9030
9031 /* The FIXED_RECORD_TYPE may have be a stub. We have
9032 observed this when the debugging info is STABS, and
9033 apparently it is something that is hard to fix.
9034
9035 In practice, we don't need the actual type definition
9036 at all, because the presence of the XVZ variable allows us
9037 to assume that there must be a XVS type as well, which we
9038 should be able to use later, when we need the actual type
9039 definition.
9040
9041 In the meantime, pretend that the "fixed" type we are
9042 returning is NOT a stub, because this can cause trouble
9043 when using this type to create new types targeting it.
9044 Indeed, the associated creation routines often check
9045 whether the target type is a stub and will try to replace
0963b4bd 9046 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9047 might cause the new type to have the wrong size too.
9048 Consider the case of an array, for instance, where the size
9049 of the array is computed from the number of elements in
9050 our array multiplied by the size of its element. */
9051 TYPE_STUB (fixed_record_type) = 0;
9052 }
9053 }
1ed6ede0 9054 return fixed_record_type;
4c4b4cd2 9055 }
d2e4a39e 9056 case TYPE_CODE_ARRAY:
4c4b4cd2 9057 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9058 case TYPE_CODE_UNION:
9059 if (dval == NULL)
4c4b4cd2 9060 return type;
d2e4a39e 9061 else
4c4b4cd2 9062 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9063 }
14f9c5c9
AS
9064}
9065
f192137b
JB
9066/* The same as ada_to_fixed_type_1, except that it preserves the type
9067 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9068
9069 The typedef layer needs be preserved in order to differentiate between
9070 arrays and array pointers when both types are implemented using the same
9071 fat pointer. In the array pointer case, the pointer is encoded as
9072 a typedef of the pointer type. For instance, considering:
9073
9074 type String_Access is access String;
9075 S1 : String_Access := null;
9076
9077 To the debugger, S1 is defined as a typedef of type String. But
9078 to the user, it is a pointer. So if the user tries to print S1,
9079 we should not dereference the array, but print the array address
9080 instead.
9081
9082 If we didn't preserve the typedef layer, we would lose the fact that
9083 the type is to be presented as a pointer (needs de-reference before
9084 being printed). And we would also use the source-level type name. */
f192137b
JB
9085
9086struct type *
9087ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9088 CORE_ADDR address, struct value *dval, int check_tag)
9089
9090{
9091 struct type *fixed_type =
9092 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9093
96dbd2c1
JB
9094 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9095 then preserve the typedef layer.
9096
9097 Implementation note: We can only check the main-type portion of
9098 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9099 from TYPE now returns a type that has the same instance flags
9100 as TYPE. For instance, if TYPE is a "typedef const", and its
9101 target type is a "struct", then the typedef elimination will return
9102 a "const" version of the target type. See check_typedef for more
9103 details about how the typedef layer elimination is done.
9104
9105 brobecker/2010-11-19: It seems to me that the only case where it is
9106 useful to preserve the typedef layer is when dealing with fat pointers.
9107 Perhaps, we could add a check for that and preserve the typedef layer
9108 only in that situation. But this seems unecessary so far, probably
9109 because we call check_typedef/ada_check_typedef pretty much everywhere.
9110 */
f192137b 9111 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9112 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9113 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9114 return type;
9115
9116 return fixed_type;
9117}
9118
14f9c5c9 9119/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9120 TYPE0, but based on no runtime data. */
14f9c5c9 9121
d2e4a39e
AS
9122static struct type *
9123to_static_fixed_type (struct type *type0)
14f9c5c9 9124{
d2e4a39e 9125 struct type *type;
14f9c5c9
AS
9126
9127 if (type0 == NULL)
9128 return NULL;
9129
876cecd0 9130 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9131 return type0;
9132
61ee279c 9133 type0 = ada_check_typedef (type0);
d2e4a39e 9134
14f9c5c9
AS
9135 switch (TYPE_CODE (type0))
9136 {
9137 default:
9138 return type0;
9139 case TYPE_CODE_STRUCT:
9140 type = dynamic_template_type (type0);
d2e4a39e 9141 if (type != NULL)
4c4b4cd2
PH
9142 return template_to_static_fixed_type (type);
9143 else
9144 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9145 case TYPE_CODE_UNION:
9146 type = ada_find_parallel_type (type0, "___XVU");
9147 if (type != NULL)
4c4b4cd2
PH
9148 return template_to_static_fixed_type (type);
9149 else
9150 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9151 }
9152}
9153
4c4b4cd2
PH
9154/* A static approximation of TYPE with all type wrappers removed. */
9155
d2e4a39e
AS
9156static struct type *
9157static_unwrap_type (struct type *type)
14f9c5c9
AS
9158{
9159 if (ada_is_aligner_type (type))
9160 {
61ee279c 9161 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9162 if (ada_type_name (type1) == NULL)
4c4b4cd2 9163 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9164
9165 return static_unwrap_type (type1);
9166 }
d2e4a39e 9167 else
14f9c5c9 9168 {
d2e4a39e 9169 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9170
d2e4a39e 9171 if (raw_real_type == type)
4c4b4cd2 9172 return type;
14f9c5c9 9173 else
4c4b4cd2 9174 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9175 }
9176}
9177
9178/* In some cases, incomplete and private types require
4c4b4cd2 9179 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9180 type Foo;
9181 type FooP is access Foo;
9182 V: FooP;
9183 type Foo is array ...;
4c4b4cd2 9184 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9185 cross-references to such types, we instead substitute for FooP a
9186 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9187 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9188
9189/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9190 exists, otherwise TYPE. */
9191
d2e4a39e 9192struct type *
61ee279c 9193ada_check_typedef (struct type *type)
14f9c5c9 9194{
727e3d2e
JB
9195 if (type == NULL)
9196 return NULL;
9197
720d1a40
JB
9198 /* If our type is a typedef type of a fat pointer, then we're done.
9199 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9200 what allows us to distinguish between fat pointers that represent
9201 array types, and fat pointers that represent array access types
9202 (in both cases, the compiler implements them as fat pointers). */
9203 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9204 && is_thick_pntr (ada_typedef_target_type (type)))
9205 return type;
9206
f168693b 9207 type = check_typedef (type);
14f9c5c9 9208 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9209 || !TYPE_STUB (type)
14f9c5c9
AS
9210 || TYPE_TAG_NAME (type) == NULL)
9211 return type;
d2e4a39e 9212 else
14f9c5c9 9213 {
0d5cff50 9214 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9215 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9216
05e522ef
JB
9217 if (type1 == NULL)
9218 return type;
9219
9220 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9221 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9222 types, only for the typedef-to-array types). If that's the case,
9223 strip the typedef layer. */
9224 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9225 type1 = ada_check_typedef (type1);
9226
9227 return type1;
14f9c5c9
AS
9228 }
9229}
9230
9231/* A value representing the data at VALADDR/ADDRESS as described by
9232 type TYPE0, but with a standard (static-sized) type that correctly
9233 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9234 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9235 creation of struct values]. */
14f9c5c9 9236
4c4b4cd2
PH
9237static struct value *
9238ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9239 struct value *val0)
14f9c5c9 9240{
1ed6ede0 9241 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9242
14f9c5c9
AS
9243 if (type == type0 && val0 != NULL)
9244 return val0;
d2e4a39e 9245 else
4c4b4cd2
PH
9246 return value_from_contents_and_address (type, 0, address);
9247}
9248
9249/* A value representing VAL, but with a standard (static-sized) type
9250 that correctly describes it. Does not necessarily create a new
9251 value. */
9252
0c3acc09 9253struct value *
4c4b4cd2
PH
9254ada_to_fixed_value (struct value *val)
9255{
c48db5ca
JB
9256 val = unwrap_value (val);
9257 val = ada_to_fixed_value_create (value_type (val),
9258 value_address (val),
9259 val);
9260 return val;
14f9c5c9 9261}
d2e4a39e 9262\f
14f9c5c9 9263
14f9c5c9
AS
9264/* Attributes */
9265
4c4b4cd2
PH
9266/* Table mapping attribute numbers to names.
9267 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9268
d2e4a39e 9269static const char *attribute_names[] = {
14f9c5c9
AS
9270 "<?>",
9271
d2e4a39e 9272 "first",
14f9c5c9
AS
9273 "last",
9274 "length",
9275 "image",
14f9c5c9
AS
9276 "max",
9277 "min",
4c4b4cd2
PH
9278 "modulus",
9279 "pos",
9280 "size",
9281 "tag",
14f9c5c9 9282 "val",
14f9c5c9
AS
9283 0
9284};
9285
d2e4a39e 9286const char *
4c4b4cd2 9287ada_attribute_name (enum exp_opcode n)
14f9c5c9 9288{
4c4b4cd2
PH
9289 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9290 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9291 else
9292 return attribute_names[0];
9293}
9294
4c4b4cd2 9295/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9296
4c4b4cd2
PH
9297static LONGEST
9298pos_atr (struct value *arg)
14f9c5c9 9299{
24209737
PH
9300 struct value *val = coerce_ref (arg);
9301 struct type *type = value_type (val);
aa715135 9302 LONGEST result;
14f9c5c9 9303
d2e4a39e 9304 if (!discrete_type_p (type))
323e0a4a 9305 error (_("'POS only defined on discrete types"));
14f9c5c9 9306
aa715135
JG
9307 if (!discrete_position (type, value_as_long (val), &result))
9308 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9309
aa715135 9310 return result;
4c4b4cd2
PH
9311}
9312
9313static struct value *
3cb382c9 9314value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9315{
3cb382c9 9316 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9317}
9318
4c4b4cd2 9319/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9320
d2e4a39e
AS
9321static struct value *
9322value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9323{
d2e4a39e 9324 if (!discrete_type_p (type))
323e0a4a 9325 error (_("'VAL only defined on discrete types"));
df407dfe 9326 if (!integer_type_p (value_type (arg)))
323e0a4a 9327 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9328
9329 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9330 {
9331 long pos = value_as_long (arg);
5b4ee69b 9332
14f9c5c9 9333 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9334 error (_("argument to 'VAL out of range"));
14e75d8e 9335 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9336 }
9337 else
9338 return value_from_longest (type, value_as_long (arg));
9339}
14f9c5c9 9340\f
d2e4a39e 9341
4c4b4cd2 9342 /* Evaluation */
14f9c5c9 9343
4c4b4cd2
PH
9344/* True if TYPE appears to be an Ada character type.
9345 [At the moment, this is true only for Character and Wide_Character;
9346 It is a heuristic test that could stand improvement]. */
14f9c5c9 9347
d2e4a39e
AS
9348int
9349ada_is_character_type (struct type *type)
14f9c5c9 9350{
7b9f71f2
JB
9351 const char *name;
9352
9353 /* If the type code says it's a character, then assume it really is,
9354 and don't check any further. */
9355 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9356 return 1;
9357
9358 /* Otherwise, assume it's a character type iff it is a discrete type
9359 with a known character type name. */
9360 name = ada_type_name (type);
9361 return (name != NULL
9362 && (TYPE_CODE (type) == TYPE_CODE_INT
9363 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9364 && (strcmp (name, "character") == 0
9365 || strcmp (name, "wide_character") == 0
5a517ebd 9366 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9367 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9368}
9369
4c4b4cd2 9370/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9371
9372int
ebf56fd3 9373ada_is_string_type (struct type *type)
14f9c5c9 9374{
61ee279c 9375 type = ada_check_typedef (type);
d2e4a39e 9376 if (type != NULL
14f9c5c9 9377 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9378 && (ada_is_simple_array_type (type)
9379 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9380 && ada_array_arity (type) == 1)
9381 {
9382 struct type *elttype = ada_array_element_type (type, 1);
9383
9384 return ada_is_character_type (elttype);
9385 }
d2e4a39e 9386 else
14f9c5c9
AS
9387 return 0;
9388}
9389
5bf03f13
JB
9390/* The compiler sometimes provides a parallel XVS type for a given
9391 PAD type. Normally, it is safe to follow the PAD type directly,
9392 but older versions of the compiler have a bug that causes the offset
9393 of its "F" field to be wrong. Following that field in that case
9394 would lead to incorrect results, but this can be worked around
9395 by ignoring the PAD type and using the associated XVS type instead.
9396
9397 Set to True if the debugger should trust the contents of PAD types.
9398 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9399static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9400
9401/* True if TYPE is a struct type introduced by the compiler to force the
9402 alignment of a value. Such types have a single field with a
4c4b4cd2 9403 distinctive name. */
14f9c5c9
AS
9404
9405int
ebf56fd3 9406ada_is_aligner_type (struct type *type)
14f9c5c9 9407{
61ee279c 9408 type = ada_check_typedef (type);
714e53ab 9409
5bf03f13 9410 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9411 return 0;
9412
14f9c5c9 9413 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9414 && TYPE_NFIELDS (type) == 1
9415 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9416}
9417
9418/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9419 the parallel type. */
14f9c5c9 9420
d2e4a39e
AS
9421struct type *
9422ada_get_base_type (struct type *raw_type)
14f9c5c9 9423{
d2e4a39e
AS
9424 struct type *real_type_namer;
9425 struct type *raw_real_type;
14f9c5c9
AS
9426
9427 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9428 return raw_type;
9429
284614f0
JB
9430 if (ada_is_aligner_type (raw_type))
9431 /* The encoding specifies that we should always use the aligner type.
9432 So, even if this aligner type has an associated XVS type, we should
9433 simply ignore it.
9434
9435 According to the compiler gurus, an XVS type parallel to an aligner
9436 type may exist because of a stabs limitation. In stabs, aligner
9437 types are empty because the field has a variable-sized type, and
9438 thus cannot actually be used as an aligner type. As a result,
9439 we need the associated parallel XVS type to decode the type.
9440 Since the policy in the compiler is to not change the internal
9441 representation based on the debugging info format, we sometimes
9442 end up having a redundant XVS type parallel to the aligner type. */
9443 return raw_type;
9444
14f9c5c9 9445 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9446 if (real_type_namer == NULL
14f9c5c9
AS
9447 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9448 || TYPE_NFIELDS (real_type_namer) != 1)
9449 return raw_type;
9450
f80d3ff2
JB
9451 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9452 {
9453 /* This is an older encoding form where the base type needs to be
9454 looked up by name. We prefer the newer enconding because it is
9455 more efficient. */
9456 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9457 if (raw_real_type == NULL)
9458 return raw_type;
9459 else
9460 return raw_real_type;
9461 }
9462
9463 /* The field in our XVS type is a reference to the base type. */
9464 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9465}
14f9c5c9 9466
4c4b4cd2 9467/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9468
d2e4a39e
AS
9469struct type *
9470ada_aligned_type (struct type *type)
14f9c5c9
AS
9471{
9472 if (ada_is_aligner_type (type))
9473 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9474 else
9475 return ada_get_base_type (type);
9476}
9477
9478
9479/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9480 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9481
fc1a4b47
AC
9482const gdb_byte *
9483ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9484{
d2e4a39e 9485 if (ada_is_aligner_type (type))
14f9c5c9 9486 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9487 valaddr +
9488 TYPE_FIELD_BITPOS (type,
9489 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9490 else
9491 return valaddr;
9492}
9493
4c4b4cd2
PH
9494
9495
14f9c5c9 9496/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9497 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9498const char *
9499ada_enum_name (const char *name)
14f9c5c9 9500{
4c4b4cd2
PH
9501 static char *result;
9502 static size_t result_len = 0;
e6a959d6 9503 const char *tmp;
14f9c5c9 9504
4c4b4cd2
PH
9505 /* First, unqualify the enumeration name:
9506 1. Search for the last '.' character. If we find one, then skip
177b42fe 9507 all the preceding characters, the unqualified name starts
76a01679 9508 right after that dot.
4c4b4cd2 9509 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9510 translates dots into "__". Search forward for double underscores,
9511 but stop searching when we hit an overloading suffix, which is
9512 of the form "__" followed by digits. */
4c4b4cd2 9513
c3e5cd34
PH
9514 tmp = strrchr (name, '.');
9515 if (tmp != NULL)
4c4b4cd2
PH
9516 name = tmp + 1;
9517 else
14f9c5c9 9518 {
4c4b4cd2
PH
9519 while ((tmp = strstr (name, "__")) != NULL)
9520 {
9521 if (isdigit (tmp[2]))
9522 break;
9523 else
9524 name = tmp + 2;
9525 }
14f9c5c9
AS
9526 }
9527
9528 if (name[0] == 'Q')
9529 {
14f9c5c9 9530 int v;
5b4ee69b 9531
14f9c5c9 9532 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9533 {
9534 if (sscanf (name + 2, "%x", &v) != 1)
9535 return name;
9536 }
14f9c5c9 9537 else
4c4b4cd2 9538 return name;
14f9c5c9 9539
4c4b4cd2 9540 GROW_VECT (result, result_len, 16);
14f9c5c9 9541 if (isascii (v) && isprint (v))
88c15c34 9542 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9543 else if (name[1] == 'U')
88c15c34 9544 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9545 else
88c15c34 9546 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9547
9548 return result;
9549 }
d2e4a39e 9550 else
4c4b4cd2 9551 {
c3e5cd34
PH
9552 tmp = strstr (name, "__");
9553 if (tmp == NULL)
9554 tmp = strstr (name, "$");
9555 if (tmp != NULL)
4c4b4cd2
PH
9556 {
9557 GROW_VECT (result, result_len, tmp - name + 1);
9558 strncpy (result, name, tmp - name);
9559 result[tmp - name] = '\0';
9560 return result;
9561 }
9562
9563 return name;
9564 }
14f9c5c9
AS
9565}
9566
14f9c5c9
AS
9567/* Evaluate the subexpression of EXP starting at *POS as for
9568 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9569 expression. */
14f9c5c9 9570
d2e4a39e
AS
9571static struct value *
9572evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9573{
4b27a620 9574 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9575}
9576
9577/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9578 value it wraps. */
14f9c5c9 9579
d2e4a39e
AS
9580static struct value *
9581unwrap_value (struct value *val)
14f9c5c9 9582{
df407dfe 9583 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9584
14f9c5c9
AS
9585 if (ada_is_aligner_type (type))
9586 {
de4d072f 9587 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9588 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9589
14f9c5c9 9590 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9591 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9592
9593 return unwrap_value (v);
9594 }
d2e4a39e 9595 else
14f9c5c9 9596 {
d2e4a39e 9597 struct type *raw_real_type =
61ee279c 9598 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9599
5bf03f13
JB
9600 /* If there is no parallel XVS or XVE type, then the value is
9601 already unwrapped. Return it without further modification. */
9602 if ((type == raw_real_type)
9603 && ada_find_parallel_type (type, "___XVE") == NULL)
9604 return val;
14f9c5c9 9605
d2e4a39e 9606 return
4c4b4cd2
PH
9607 coerce_unspec_val_to_type
9608 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9609 value_address (val),
1ed6ede0 9610 NULL, 1));
14f9c5c9
AS
9611 }
9612}
d2e4a39e
AS
9613
9614static struct value *
9615cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9616{
9617 LONGEST val;
9618
df407dfe 9619 if (type == value_type (arg))
14f9c5c9 9620 return arg;
df407dfe 9621 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9622 val = ada_float_to_fixed (type,
df407dfe 9623 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9624 value_as_long (arg)));
d2e4a39e 9625 else
14f9c5c9 9626 {
a53b7a21 9627 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9628
14f9c5c9
AS
9629 val = ada_float_to_fixed (type, argd);
9630 }
9631
9632 return value_from_longest (type, val);
9633}
9634
d2e4a39e 9635static struct value *
a53b7a21 9636cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9637{
df407dfe 9638 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9639 value_as_long (arg));
5b4ee69b 9640
a53b7a21 9641 return value_from_double (type, val);
14f9c5c9
AS
9642}
9643
d99dcf51
JB
9644/* Given two array types T1 and T2, return nonzero iff both arrays
9645 contain the same number of elements. */
9646
9647static int
9648ada_same_array_size_p (struct type *t1, struct type *t2)
9649{
9650 LONGEST lo1, hi1, lo2, hi2;
9651
9652 /* Get the array bounds in order to verify that the size of
9653 the two arrays match. */
9654 if (!get_array_bounds (t1, &lo1, &hi1)
9655 || !get_array_bounds (t2, &lo2, &hi2))
9656 error (_("unable to determine array bounds"));
9657
9658 /* To make things easier for size comparison, normalize a bit
9659 the case of empty arrays by making sure that the difference
9660 between upper bound and lower bound is always -1. */
9661 if (lo1 > hi1)
9662 hi1 = lo1 - 1;
9663 if (lo2 > hi2)
9664 hi2 = lo2 - 1;
9665
9666 return (hi1 - lo1 == hi2 - lo2);
9667}
9668
9669/* Assuming that VAL is an array of integrals, and TYPE represents
9670 an array with the same number of elements, but with wider integral
9671 elements, return an array "casted" to TYPE. In practice, this
9672 means that the returned array is built by casting each element
9673 of the original array into TYPE's (wider) element type. */
9674
9675static struct value *
9676ada_promote_array_of_integrals (struct type *type, struct value *val)
9677{
9678 struct type *elt_type = TYPE_TARGET_TYPE (type);
9679 LONGEST lo, hi;
9680 struct value *res;
9681 LONGEST i;
9682
9683 /* Verify that both val and type are arrays of scalars, and
9684 that the size of val's elements is smaller than the size
9685 of type's element. */
9686 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9687 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9688 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9689 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9690 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9691 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9692
9693 if (!get_array_bounds (type, &lo, &hi))
9694 error (_("unable to determine array bounds"));
9695
9696 res = allocate_value (type);
9697
9698 /* Promote each array element. */
9699 for (i = 0; i < hi - lo + 1; i++)
9700 {
9701 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9702
9703 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9704 value_contents_all (elt), TYPE_LENGTH (elt_type));
9705 }
9706
9707 return res;
9708}
9709
4c4b4cd2
PH
9710/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9711 return the converted value. */
9712
d2e4a39e
AS
9713static struct value *
9714coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9715{
df407dfe 9716 struct type *type2 = value_type (val);
5b4ee69b 9717
14f9c5c9
AS
9718 if (type == type2)
9719 return val;
9720
61ee279c
PH
9721 type2 = ada_check_typedef (type2);
9722 type = ada_check_typedef (type);
14f9c5c9 9723
d2e4a39e
AS
9724 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9725 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9726 {
9727 val = ada_value_ind (val);
df407dfe 9728 type2 = value_type (val);
14f9c5c9
AS
9729 }
9730
d2e4a39e 9731 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9732 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9733 {
d99dcf51
JB
9734 if (!ada_same_array_size_p (type, type2))
9735 error (_("cannot assign arrays of different length"));
9736
9737 if (is_integral_type (TYPE_TARGET_TYPE (type))
9738 && is_integral_type (TYPE_TARGET_TYPE (type2))
9739 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9740 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9741 {
9742 /* Allow implicit promotion of the array elements to
9743 a wider type. */
9744 return ada_promote_array_of_integrals (type, val);
9745 }
9746
9747 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9748 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9749 error (_("Incompatible types in assignment"));
04624583 9750 deprecated_set_value_type (val, type);
14f9c5c9 9751 }
d2e4a39e 9752 return val;
14f9c5c9
AS
9753}
9754
4c4b4cd2
PH
9755static struct value *
9756ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9757{
9758 struct value *val;
9759 struct type *type1, *type2;
9760 LONGEST v, v1, v2;
9761
994b9211
AC
9762 arg1 = coerce_ref (arg1);
9763 arg2 = coerce_ref (arg2);
18af8284
JB
9764 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9765 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9766
76a01679
JB
9767 if (TYPE_CODE (type1) != TYPE_CODE_INT
9768 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9769 return value_binop (arg1, arg2, op);
9770
76a01679 9771 switch (op)
4c4b4cd2
PH
9772 {
9773 case BINOP_MOD:
9774 case BINOP_DIV:
9775 case BINOP_REM:
9776 break;
9777 default:
9778 return value_binop (arg1, arg2, op);
9779 }
9780
9781 v2 = value_as_long (arg2);
9782 if (v2 == 0)
323e0a4a 9783 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9784
9785 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9786 return value_binop (arg1, arg2, op);
9787
9788 v1 = value_as_long (arg1);
9789 switch (op)
9790 {
9791 case BINOP_DIV:
9792 v = v1 / v2;
76a01679
JB
9793 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9794 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9795 break;
9796 case BINOP_REM:
9797 v = v1 % v2;
76a01679
JB
9798 if (v * v1 < 0)
9799 v -= v2;
4c4b4cd2
PH
9800 break;
9801 default:
9802 /* Should not reach this point. */
9803 v = 0;
9804 }
9805
9806 val = allocate_value (type1);
990a07ab 9807 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9808 TYPE_LENGTH (value_type (val)),
9809 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9810 return val;
9811}
9812
9813static int
9814ada_value_equal (struct value *arg1, struct value *arg2)
9815{
df407dfe
AC
9816 if (ada_is_direct_array_type (value_type (arg1))
9817 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9818 {
f58b38bf
JB
9819 /* Automatically dereference any array reference before
9820 we attempt to perform the comparison. */
9821 arg1 = ada_coerce_ref (arg1);
9822 arg2 = ada_coerce_ref (arg2);
9823
4c4b4cd2
PH
9824 arg1 = ada_coerce_to_simple_array (arg1);
9825 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9826 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9827 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9828 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9829 /* FIXME: The following works only for types whose
76a01679
JB
9830 representations use all bits (no padding or undefined bits)
9831 and do not have user-defined equality. */
9832 return
df407dfe 9833 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9834 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9835 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9836 }
9837 return value_equal (arg1, arg2);
9838}
9839
52ce6436
PH
9840/* Total number of component associations in the aggregate starting at
9841 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9842 OP_AGGREGATE. */
52ce6436
PH
9843
9844static int
9845num_component_specs (struct expression *exp, int pc)
9846{
9847 int n, m, i;
5b4ee69b 9848
52ce6436
PH
9849 m = exp->elts[pc + 1].longconst;
9850 pc += 3;
9851 n = 0;
9852 for (i = 0; i < m; i += 1)
9853 {
9854 switch (exp->elts[pc].opcode)
9855 {
9856 default:
9857 n += 1;
9858 break;
9859 case OP_CHOICES:
9860 n += exp->elts[pc + 1].longconst;
9861 break;
9862 }
9863 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9864 }
9865 return n;
9866}
9867
9868/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9869 component of LHS (a simple array or a record), updating *POS past
9870 the expression, assuming that LHS is contained in CONTAINER. Does
9871 not modify the inferior's memory, nor does it modify LHS (unless
9872 LHS == CONTAINER). */
9873
9874static void
9875assign_component (struct value *container, struct value *lhs, LONGEST index,
9876 struct expression *exp, int *pos)
9877{
9878 struct value *mark = value_mark ();
9879 struct value *elt;
5b4ee69b 9880
52ce6436
PH
9881 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9882 {
22601c15
UW
9883 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9884 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9885
52ce6436
PH
9886 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9887 }
9888 else
9889 {
9890 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9891 elt = ada_to_fixed_value (elt);
52ce6436
PH
9892 }
9893
9894 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9895 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9896 else
9897 value_assign_to_component (container, elt,
9898 ada_evaluate_subexp (NULL, exp, pos,
9899 EVAL_NORMAL));
9900
9901 value_free_to_mark (mark);
9902}
9903
9904/* Assuming that LHS represents an lvalue having a record or array
9905 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9906 of that aggregate's value to LHS, advancing *POS past the
9907 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9908 lvalue containing LHS (possibly LHS itself). Does not modify
9909 the inferior's memory, nor does it modify the contents of
0963b4bd 9910 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9911
9912static struct value *
9913assign_aggregate (struct value *container,
9914 struct value *lhs, struct expression *exp,
9915 int *pos, enum noside noside)
9916{
9917 struct type *lhs_type;
9918 int n = exp->elts[*pos+1].longconst;
9919 LONGEST low_index, high_index;
9920 int num_specs;
9921 LONGEST *indices;
9922 int max_indices, num_indices;
52ce6436 9923 int i;
52ce6436
PH
9924
9925 *pos += 3;
9926 if (noside != EVAL_NORMAL)
9927 {
52ce6436
PH
9928 for (i = 0; i < n; i += 1)
9929 ada_evaluate_subexp (NULL, exp, pos, noside);
9930 return container;
9931 }
9932
9933 container = ada_coerce_ref (container);
9934 if (ada_is_direct_array_type (value_type (container)))
9935 container = ada_coerce_to_simple_array (container);
9936 lhs = ada_coerce_ref (lhs);
9937 if (!deprecated_value_modifiable (lhs))
9938 error (_("Left operand of assignment is not a modifiable lvalue."));
9939
9940 lhs_type = value_type (lhs);
9941 if (ada_is_direct_array_type (lhs_type))
9942 {
9943 lhs = ada_coerce_to_simple_array (lhs);
9944 lhs_type = value_type (lhs);
9945 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9946 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9947 }
9948 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9949 {
9950 low_index = 0;
9951 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9952 }
9953 else
9954 error (_("Left-hand side must be array or record."));
9955
9956 num_specs = num_component_specs (exp, *pos - 3);
9957 max_indices = 4 * num_specs + 4;
8d749320 9958 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9959 indices[0] = indices[1] = low_index - 1;
9960 indices[2] = indices[3] = high_index + 1;
9961 num_indices = 4;
9962
9963 for (i = 0; i < n; i += 1)
9964 {
9965 switch (exp->elts[*pos].opcode)
9966 {
1fbf5ada
JB
9967 case OP_CHOICES:
9968 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9969 &num_indices, max_indices,
9970 low_index, high_index);
9971 break;
9972 case OP_POSITIONAL:
9973 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9974 &num_indices, max_indices,
9975 low_index, high_index);
1fbf5ada
JB
9976 break;
9977 case OP_OTHERS:
9978 if (i != n-1)
9979 error (_("Misplaced 'others' clause"));
9980 aggregate_assign_others (container, lhs, exp, pos, indices,
9981 num_indices, low_index, high_index);
9982 break;
9983 default:
9984 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9985 }
9986 }
9987
9988 return container;
9989}
9990
9991/* Assign into the component of LHS indexed by the OP_POSITIONAL
9992 construct at *POS, updating *POS past the construct, given that
9993 the positions are relative to lower bound LOW, where HIGH is the
9994 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9995 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9996 assign_aggregate. */
52ce6436
PH
9997static void
9998aggregate_assign_positional (struct value *container,
9999 struct value *lhs, struct expression *exp,
10000 int *pos, LONGEST *indices, int *num_indices,
10001 int max_indices, LONGEST low, LONGEST high)
10002{
10003 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10004
10005 if (ind - 1 == high)
e1d5a0d2 10006 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10007 if (ind <= high)
10008 {
10009 add_component_interval (ind, ind, indices, num_indices, max_indices);
10010 *pos += 3;
10011 assign_component (container, lhs, ind, exp, pos);
10012 }
10013 else
10014 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10015}
10016
10017/* Assign into the components of LHS indexed by the OP_CHOICES
10018 construct at *POS, updating *POS past the construct, given that
10019 the allowable indices are LOW..HIGH. Record the indices assigned
10020 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10021 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10022static void
10023aggregate_assign_from_choices (struct value *container,
10024 struct value *lhs, struct expression *exp,
10025 int *pos, LONGEST *indices, int *num_indices,
10026 int max_indices, LONGEST low, LONGEST high)
10027{
10028 int j;
10029 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10030 int choice_pos, expr_pc;
10031 int is_array = ada_is_direct_array_type (value_type (lhs));
10032
10033 choice_pos = *pos += 3;
10034
10035 for (j = 0; j < n_choices; j += 1)
10036 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10037 expr_pc = *pos;
10038 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10039
10040 for (j = 0; j < n_choices; j += 1)
10041 {
10042 LONGEST lower, upper;
10043 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10044
52ce6436
PH
10045 if (op == OP_DISCRETE_RANGE)
10046 {
10047 choice_pos += 1;
10048 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10049 EVAL_NORMAL));
10050 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10051 EVAL_NORMAL));
10052 }
10053 else if (is_array)
10054 {
10055 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10056 EVAL_NORMAL));
10057 upper = lower;
10058 }
10059 else
10060 {
10061 int ind;
0d5cff50 10062 const char *name;
5b4ee69b 10063
52ce6436
PH
10064 switch (op)
10065 {
10066 case OP_NAME:
10067 name = &exp->elts[choice_pos + 2].string;
10068 break;
10069 case OP_VAR_VALUE:
10070 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10071 break;
10072 default:
10073 error (_("Invalid record component association."));
10074 }
10075 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10076 ind = 0;
10077 if (! find_struct_field (name, value_type (lhs), 0,
10078 NULL, NULL, NULL, NULL, &ind))
10079 error (_("Unknown component name: %s."), name);
10080 lower = upper = ind;
10081 }
10082
10083 if (lower <= upper && (lower < low || upper > high))
10084 error (_("Index in component association out of bounds."));
10085
10086 add_component_interval (lower, upper, indices, num_indices,
10087 max_indices);
10088 while (lower <= upper)
10089 {
10090 int pos1;
5b4ee69b 10091
52ce6436
PH
10092 pos1 = expr_pc;
10093 assign_component (container, lhs, lower, exp, &pos1);
10094 lower += 1;
10095 }
10096 }
10097}
10098
10099/* Assign the value of the expression in the OP_OTHERS construct in
10100 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10101 have not been previously assigned. The index intervals already assigned
10102 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10103 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10104static void
10105aggregate_assign_others (struct value *container,
10106 struct value *lhs, struct expression *exp,
10107 int *pos, LONGEST *indices, int num_indices,
10108 LONGEST low, LONGEST high)
10109{
10110 int i;
5ce64950 10111 int expr_pc = *pos + 1;
52ce6436
PH
10112
10113 for (i = 0; i < num_indices - 2; i += 2)
10114 {
10115 LONGEST ind;
5b4ee69b 10116
52ce6436
PH
10117 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10118 {
5ce64950 10119 int localpos;
5b4ee69b 10120
5ce64950
MS
10121 localpos = expr_pc;
10122 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10123 }
10124 }
10125 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10126}
10127
10128/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10129 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10130 modifying *SIZE as needed. It is an error if *SIZE exceeds
10131 MAX_SIZE. The resulting intervals do not overlap. */
10132static void
10133add_component_interval (LONGEST low, LONGEST high,
10134 LONGEST* indices, int *size, int max_size)
10135{
10136 int i, j;
5b4ee69b 10137
52ce6436
PH
10138 for (i = 0; i < *size; i += 2) {
10139 if (high >= indices[i] && low <= indices[i + 1])
10140 {
10141 int kh;
5b4ee69b 10142
52ce6436
PH
10143 for (kh = i + 2; kh < *size; kh += 2)
10144 if (high < indices[kh])
10145 break;
10146 if (low < indices[i])
10147 indices[i] = low;
10148 indices[i + 1] = indices[kh - 1];
10149 if (high > indices[i + 1])
10150 indices[i + 1] = high;
10151 memcpy (indices + i + 2, indices + kh, *size - kh);
10152 *size -= kh - i - 2;
10153 return;
10154 }
10155 else if (high < indices[i])
10156 break;
10157 }
10158
10159 if (*size == max_size)
10160 error (_("Internal error: miscounted aggregate components."));
10161 *size += 2;
10162 for (j = *size-1; j >= i+2; j -= 1)
10163 indices[j] = indices[j - 2];
10164 indices[i] = low;
10165 indices[i + 1] = high;
10166}
10167
6e48bd2c
JB
10168/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10169 is different. */
10170
10171static struct value *
10172ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10173{
10174 if (type == ada_check_typedef (value_type (arg2)))
10175 return arg2;
10176
10177 if (ada_is_fixed_point_type (type))
10178 return (cast_to_fixed (type, arg2));
10179
10180 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10181 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10182
10183 return value_cast (type, arg2);
10184}
10185
284614f0
JB
10186/* Evaluating Ada expressions, and printing their result.
10187 ------------------------------------------------------
10188
21649b50
JB
10189 1. Introduction:
10190 ----------------
10191
284614f0
JB
10192 We usually evaluate an Ada expression in order to print its value.
10193 We also evaluate an expression in order to print its type, which
10194 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10195 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10196 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10197 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10198 similar.
10199
10200 Evaluating expressions is a little more complicated for Ada entities
10201 than it is for entities in languages such as C. The main reason for
10202 this is that Ada provides types whose definition might be dynamic.
10203 One example of such types is variant records. Or another example
10204 would be an array whose bounds can only be known at run time.
10205
10206 The following description is a general guide as to what should be
10207 done (and what should NOT be done) in order to evaluate an expression
10208 involving such types, and when. This does not cover how the semantic
10209 information is encoded by GNAT as this is covered separatly. For the
10210 document used as the reference for the GNAT encoding, see exp_dbug.ads
10211 in the GNAT sources.
10212
10213 Ideally, we should embed each part of this description next to its
10214 associated code. Unfortunately, the amount of code is so vast right
10215 now that it's hard to see whether the code handling a particular
10216 situation might be duplicated or not. One day, when the code is
10217 cleaned up, this guide might become redundant with the comments
10218 inserted in the code, and we might want to remove it.
10219
21649b50
JB
10220 2. ``Fixing'' an Entity, the Simple Case:
10221 -----------------------------------------
10222
284614f0
JB
10223 When evaluating Ada expressions, the tricky issue is that they may
10224 reference entities whose type contents and size are not statically
10225 known. Consider for instance a variant record:
10226
10227 type Rec (Empty : Boolean := True) is record
10228 case Empty is
10229 when True => null;
10230 when False => Value : Integer;
10231 end case;
10232 end record;
10233 Yes : Rec := (Empty => False, Value => 1);
10234 No : Rec := (empty => True);
10235
10236 The size and contents of that record depends on the value of the
10237 descriminant (Rec.Empty). At this point, neither the debugging
10238 information nor the associated type structure in GDB are able to
10239 express such dynamic types. So what the debugger does is to create
10240 "fixed" versions of the type that applies to the specific object.
10241 We also informally refer to this opperation as "fixing" an object,
10242 which means creating its associated fixed type.
10243
10244 Example: when printing the value of variable "Yes" above, its fixed
10245 type would look like this:
10246
10247 type Rec is record
10248 Empty : Boolean;
10249 Value : Integer;
10250 end record;
10251
10252 On the other hand, if we printed the value of "No", its fixed type
10253 would become:
10254
10255 type Rec is record
10256 Empty : Boolean;
10257 end record;
10258
10259 Things become a little more complicated when trying to fix an entity
10260 with a dynamic type that directly contains another dynamic type,
10261 such as an array of variant records, for instance. There are
10262 two possible cases: Arrays, and records.
10263
21649b50
JB
10264 3. ``Fixing'' Arrays:
10265 ---------------------
10266
10267 The type structure in GDB describes an array in terms of its bounds,
10268 and the type of its elements. By design, all elements in the array
10269 have the same type and we cannot represent an array of variant elements
10270 using the current type structure in GDB. When fixing an array,
10271 we cannot fix the array element, as we would potentially need one
10272 fixed type per element of the array. As a result, the best we can do
10273 when fixing an array is to produce an array whose bounds and size
10274 are correct (allowing us to read it from memory), but without having
10275 touched its element type. Fixing each element will be done later,
10276 when (if) necessary.
10277
10278 Arrays are a little simpler to handle than records, because the same
10279 amount of memory is allocated for each element of the array, even if
1b536f04 10280 the amount of space actually used by each element differs from element
21649b50 10281 to element. Consider for instance the following array of type Rec:
284614f0
JB
10282
10283 type Rec_Array is array (1 .. 2) of Rec;
10284
1b536f04
JB
10285 The actual amount of memory occupied by each element might be different
10286 from element to element, depending on the value of their discriminant.
21649b50 10287 But the amount of space reserved for each element in the array remains
1b536f04 10288 fixed regardless. So we simply need to compute that size using
21649b50
JB
10289 the debugging information available, from which we can then determine
10290 the array size (we multiply the number of elements of the array by
10291 the size of each element).
10292
10293 The simplest case is when we have an array of a constrained element
10294 type. For instance, consider the following type declarations:
10295
10296 type Bounded_String (Max_Size : Integer) is
10297 Length : Integer;
10298 Buffer : String (1 .. Max_Size);
10299 end record;
10300 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10301
10302 In this case, the compiler describes the array as an array of
10303 variable-size elements (identified by its XVS suffix) for which
10304 the size can be read in the parallel XVZ variable.
10305
10306 In the case of an array of an unconstrained element type, the compiler
10307 wraps the array element inside a private PAD type. This type should not
10308 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10309 that we also use the adjective "aligner" in our code to designate
10310 these wrapper types.
10311
1b536f04 10312 In some cases, the size allocated for each element is statically
21649b50
JB
10313 known. In that case, the PAD type already has the correct size,
10314 and the array element should remain unfixed.
10315
10316 But there are cases when this size is not statically known.
10317 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10318
10319 type Dynamic is array (1 .. Five) of Integer;
10320 type Wrapper (Has_Length : Boolean := False) is record
10321 Data : Dynamic;
10322 case Has_Length is
10323 when True => Length : Integer;
10324 when False => null;
10325 end case;
10326 end record;
10327 type Wrapper_Array is array (1 .. 2) of Wrapper;
10328
10329 Hello : Wrapper_Array := (others => (Has_Length => True,
10330 Data => (others => 17),
10331 Length => 1));
10332
10333
10334 The debugging info would describe variable Hello as being an
10335 array of a PAD type. The size of that PAD type is not statically
10336 known, but can be determined using a parallel XVZ variable.
10337 In that case, a copy of the PAD type with the correct size should
10338 be used for the fixed array.
10339
21649b50
JB
10340 3. ``Fixing'' record type objects:
10341 ----------------------------------
10342
10343 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10344 record types. In this case, in order to compute the associated
10345 fixed type, we need to determine the size and offset of each of
10346 its components. This, in turn, requires us to compute the fixed
10347 type of each of these components.
10348
10349 Consider for instance the example:
10350
10351 type Bounded_String (Max_Size : Natural) is record
10352 Str : String (1 .. Max_Size);
10353 Length : Natural;
10354 end record;
10355 My_String : Bounded_String (Max_Size => 10);
10356
10357 In that case, the position of field "Length" depends on the size
10358 of field Str, which itself depends on the value of the Max_Size
21649b50 10359 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10360 we need to fix the type of field Str. Therefore, fixing a variant
10361 record requires us to fix each of its components.
10362
10363 However, if a component does not have a dynamic size, the component
10364 should not be fixed. In particular, fields that use a PAD type
10365 should not fixed. Here is an example where this might happen
10366 (assuming type Rec above):
10367
10368 type Container (Big : Boolean) is record
10369 First : Rec;
10370 After : Integer;
10371 case Big is
10372 when True => Another : Integer;
10373 when False => null;
10374 end case;
10375 end record;
10376 My_Container : Container := (Big => False,
10377 First => (Empty => True),
10378 After => 42);
10379
10380 In that example, the compiler creates a PAD type for component First,
10381 whose size is constant, and then positions the component After just
10382 right after it. The offset of component After is therefore constant
10383 in this case.
10384
10385 The debugger computes the position of each field based on an algorithm
10386 that uses, among other things, the actual position and size of the field
21649b50
JB
10387 preceding it. Let's now imagine that the user is trying to print
10388 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10389 end up computing the offset of field After based on the size of the
10390 fixed version of field First. And since in our example First has
10391 only one actual field, the size of the fixed type is actually smaller
10392 than the amount of space allocated to that field, and thus we would
10393 compute the wrong offset of field After.
10394
21649b50
JB
10395 To make things more complicated, we need to watch out for dynamic
10396 components of variant records (identified by the ___XVL suffix in
10397 the component name). Even if the target type is a PAD type, the size
10398 of that type might not be statically known. So the PAD type needs
10399 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10400 we might end up with the wrong size for our component. This can be
10401 observed with the following type declarations:
284614f0
JB
10402
10403 type Octal is new Integer range 0 .. 7;
10404 type Octal_Array is array (Positive range <>) of Octal;
10405 pragma Pack (Octal_Array);
10406
10407 type Octal_Buffer (Size : Positive) is record
10408 Buffer : Octal_Array (1 .. Size);
10409 Length : Integer;
10410 end record;
10411
10412 In that case, Buffer is a PAD type whose size is unset and needs
10413 to be computed by fixing the unwrapped type.
10414
21649b50
JB
10415 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10416 ----------------------------------------------------------
10417
10418 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10419 thus far, be actually fixed?
10420
10421 The answer is: Only when referencing that element. For instance
10422 when selecting one component of a record, this specific component
10423 should be fixed at that point in time. Or when printing the value
10424 of a record, each component should be fixed before its value gets
10425 printed. Similarly for arrays, the element of the array should be
10426 fixed when printing each element of the array, or when extracting
10427 one element out of that array. On the other hand, fixing should
10428 not be performed on the elements when taking a slice of an array!
10429
10430 Note that one of the side-effects of miscomputing the offset and
10431 size of each field is that we end up also miscomputing the size
10432 of the containing type. This can have adverse results when computing
10433 the value of an entity. GDB fetches the value of an entity based
10434 on the size of its type, and thus a wrong size causes GDB to fetch
10435 the wrong amount of memory. In the case where the computed size is
10436 too small, GDB fetches too little data to print the value of our
10437 entiry. Results in this case as unpredicatble, as we usually read
10438 past the buffer containing the data =:-o. */
10439
10440/* Implement the evaluate_exp routine in the exp_descriptor structure
10441 for the Ada language. */
10442
52ce6436 10443static struct value *
ebf56fd3 10444ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10445 int *pos, enum noside noside)
14f9c5c9
AS
10446{
10447 enum exp_opcode op;
b5385fc0 10448 int tem;
14f9c5c9 10449 int pc;
5ec18f2b 10450 int preeval_pos;
14f9c5c9
AS
10451 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10452 struct type *type;
52ce6436 10453 int nargs, oplen;
d2e4a39e 10454 struct value **argvec;
14f9c5c9 10455
d2e4a39e
AS
10456 pc = *pos;
10457 *pos += 1;
14f9c5c9
AS
10458 op = exp->elts[pc].opcode;
10459
d2e4a39e 10460 switch (op)
14f9c5c9
AS
10461 {
10462 default:
10463 *pos -= 1;
6e48bd2c 10464 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10465
10466 if (noside == EVAL_NORMAL)
10467 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10468
10469 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10470 then we need to perform the conversion manually, because
10471 evaluate_subexp_standard doesn't do it. This conversion is
10472 necessary in Ada because the different kinds of float/fixed
10473 types in Ada have different representations.
10474
10475 Similarly, we need to perform the conversion from OP_LONG
10476 ourselves. */
10477 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10478 arg1 = ada_value_cast (expect_type, arg1, noside);
10479
10480 return arg1;
4c4b4cd2
PH
10481
10482 case OP_STRING:
10483 {
76a01679 10484 struct value *result;
5b4ee69b 10485
76a01679
JB
10486 *pos -= 1;
10487 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10488 /* The result type will have code OP_STRING, bashed there from
10489 OP_ARRAY. Bash it back. */
df407dfe
AC
10490 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10491 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10492 return result;
4c4b4cd2 10493 }
14f9c5c9
AS
10494
10495 case UNOP_CAST:
10496 (*pos) += 2;
10497 type = exp->elts[pc + 1].type;
10498 arg1 = evaluate_subexp (type, exp, pos, noside);
10499 if (noside == EVAL_SKIP)
4c4b4cd2 10500 goto nosideret;
6e48bd2c 10501 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10502 return arg1;
10503
4c4b4cd2
PH
10504 case UNOP_QUAL:
10505 (*pos) += 2;
10506 type = exp->elts[pc + 1].type;
10507 return ada_evaluate_subexp (type, exp, pos, noside);
10508
14f9c5c9
AS
10509 case BINOP_ASSIGN:
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10511 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10512 {
10513 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10514 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10515 return arg1;
10516 return ada_value_assign (arg1, arg1);
10517 }
003f3813
JB
10518 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10519 except if the lhs of our assignment is a convenience variable.
10520 In the case of assigning to a convenience variable, the lhs
10521 should be exactly the result of the evaluation of the rhs. */
10522 type = value_type (arg1);
10523 if (VALUE_LVAL (arg1) == lval_internalvar)
10524 type = NULL;
10525 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10526 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10527 return arg1;
df407dfe
AC
10528 if (ada_is_fixed_point_type (value_type (arg1)))
10529 arg2 = cast_to_fixed (value_type (arg1), arg2);
10530 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10531 error
323e0a4a 10532 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10533 else
df407dfe 10534 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10535 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10536
10537 case BINOP_ADD:
10538 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10539 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10540 if (noside == EVAL_SKIP)
4c4b4cd2 10541 goto nosideret;
2ac8a782
JB
10542 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10543 return (value_from_longest
10544 (value_type (arg1),
10545 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10546 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10547 return (value_from_longest
10548 (value_type (arg2),
10549 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10550 if ((ada_is_fixed_point_type (value_type (arg1))
10551 || ada_is_fixed_point_type (value_type (arg2)))
10552 && value_type (arg1) != value_type (arg2))
323e0a4a 10553 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10554 /* Do the addition, and cast the result to the type of the first
10555 argument. We cannot cast the result to a reference type, so if
10556 ARG1 is a reference type, find its underlying type. */
10557 type = value_type (arg1);
10558 while (TYPE_CODE (type) == TYPE_CODE_REF)
10559 type = TYPE_TARGET_TYPE (type);
f44316fa 10560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10561 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10562
10563 case BINOP_SUB:
10564 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10565 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10566 if (noside == EVAL_SKIP)
4c4b4cd2 10567 goto nosideret;
2ac8a782
JB
10568 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10569 return (value_from_longest
10570 (value_type (arg1),
10571 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10572 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10573 return (value_from_longest
10574 (value_type (arg2),
10575 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10576 if ((ada_is_fixed_point_type (value_type (arg1))
10577 || ada_is_fixed_point_type (value_type (arg2)))
10578 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10579 error (_("Operands of fixed-point subtraction "
10580 "must have the same type"));
b7789565
JB
10581 /* Do the substraction, and cast the result to the type of the first
10582 argument. We cannot cast the result to a reference type, so if
10583 ARG1 is a reference type, find its underlying type. */
10584 type = value_type (arg1);
10585 while (TYPE_CODE (type) == TYPE_CODE_REF)
10586 type = TYPE_TARGET_TYPE (type);
f44316fa 10587 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10588 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10589
10590 case BINOP_MUL:
10591 case BINOP_DIV:
e1578042
JB
10592 case BINOP_REM:
10593 case BINOP_MOD:
14f9c5c9
AS
10594 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10595 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10596 if (noside == EVAL_SKIP)
4c4b4cd2 10597 goto nosideret;
e1578042 10598 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10599 {
10600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10601 return value_zero (value_type (arg1), not_lval);
10602 }
14f9c5c9 10603 else
4c4b4cd2 10604 {
a53b7a21 10605 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10606 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10607 arg1 = cast_from_fixed (type, arg1);
df407dfe 10608 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10609 arg2 = cast_from_fixed (type, arg2);
f44316fa 10610 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10611 return ada_value_binop (arg1, arg2, op);
10612 }
10613
4c4b4cd2
PH
10614 case BINOP_EQUAL:
10615 case BINOP_NOTEQUAL:
14f9c5c9 10616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10617 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10618 if (noside == EVAL_SKIP)
76a01679 10619 goto nosideret;
4c4b4cd2 10620 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10621 tem = 0;
4c4b4cd2 10622 else
f44316fa
UW
10623 {
10624 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10625 tem = ada_value_equal (arg1, arg2);
10626 }
4c4b4cd2 10627 if (op == BINOP_NOTEQUAL)
76a01679 10628 tem = !tem;
fbb06eb1
UW
10629 type = language_bool_type (exp->language_defn, exp->gdbarch);
10630 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10631
10632 case UNOP_NEG:
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 if (noside == EVAL_SKIP)
10635 goto nosideret;
df407dfe
AC
10636 else if (ada_is_fixed_point_type (value_type (arg1)))
10637 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10638 else
f44316fa
UW
10639 {
10640 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10641 return value_neg (arg1);
10642 }
4c4b4cd2 10643
2330c6c6
JB
10644 case BINOP_LOGICAL_AND:
10645 case BINOP_LOGICAL_OR:
10646 case UNOP_LOGICAL_NOT:
000d5124
JB
10647 {
10648 struct value *val;
10649
10650 *pos -= 1;
10651 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10652 type = language_bool_type (exp->language_defn, exp->gdbarch);
10653 return value_cast (type, val);
000d5124 10654 }
2330c6c6
JB
10655
10656 case BINOP_BITWISE_AND:
10657 case BINOP_BITWISE_IOR:
10658 case BINOP_BITWISE_XOR:
000d5124
JB
10659 {
10660 struct value *val;
10661
10662 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10663 *pos = pc;
10664 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10665
10666 return value_cast (value_type (arg1), val);
10667 }
2330c6c6 10668
14f9c5c9
AS
10669 case OP_VAR_VALUE:
10670 *pos -= 1;
6799def4 10671
14f9c5c9 10672 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10673 {
10674 *pos += 4;
10675 goto nosideret;
10676 }
da5c522f
JB
10677
10678 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10679 /* Only encountered when an unresolved symbol occurs in a
10680 context other than a function call, in which case, it is
52ce6436 10681 invalid. */
323e0a4a 10682 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10683 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10684
10685 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10686 {
0c1f74cf 10687 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10688 /* Check to see if this is a tagged type. We also need to handle
10689 the case where the type is a reference to a tagged type, but
10690 we have to be careful to exclude pointers to tagged types.
10691 The latter should be shown as usual (as a pointer), whereas
10692 a reference should mostly be transparent to the user. */
10693 if (ada_is_tagged_type (type, 0)
023db19c 10694 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10695 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10696 {
10697 /* Tagged types are a little special in the fact that the real
10698 type is dynamic and can only be determined by inspecting the
10699 object's tag. This means that we need to get the object's
10700 value first (EVAL_NORMAL) and then extract the actual object
10701 type from its tag.
10702
10703 Note that we cannot skip the final step where we extract
10704 the object type from its tag, because the EVAL_NORMAL phase
10705 results in dynamic components being resolved into fixed ones.
10706 This can cause problems when trying to print the type
10707 description of tagged types whose parent has a dynamic size:
10708 We use the type name of the "_parent" component in order
10709 to print the name of the ancestor type in the type description.
10710 If that component had a dynamic size, the resolution into
10711 a fixed type would result in the loss of that type name,
10712 thus preventing us from printing the name of the ancestor
10713 type in the type description. */
10714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10715
10716 if (TYPE_CODE (type) != TYPE_CODE_REF)
10717 {
10718 struct type *actual_type;
10719
10720 actual_type = type_from_tag (ada_value_tag (arg1));
10721 if (actual_type == NULL)
10722 /* If, for some reason, we were unable to determine
10723 the actual type from the tag, then use the static
10724 approximation that we just computed as a fallback.
10725 This can happen if the debugging information is
10726 incomplete, for instance. */
10727 actual_type = type;
10728 return value_zero (actual_type, not_lval);
10729 }
10730 else
10731 {
10732 /* In the case of a ref, ada_coerce_ref takes care
10733 of determining the actual type. But the evaluation
10734 should return a ref as it should be valid to ask
10735 for its address; so rebuild a ref after coerce. */
10736 arg1 = ada_coerce_ref (arg1);
10737 return value_ref (arg1);
10738 }
10739 }
0c1f74cf 10740
84754697
JB
10741 /* Records and unions for which GNAT encodings have been
10742 generated need to be statically fixed as well.
10743 Otherwise, non-static fixing produces a type where
10744 all dynamic properties are removed, which prevents "ptype"
10745 from being able to completely describe the type.
10746 For instance, a case statement in a variant record would be
10747 replaced by the relevant components based on the actual
10748 value of the discriminants. */
10749 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10750 && dynamic_template_type (type) != NULL)
10751 || (TYPE_CODE (type) == TYPE_CODE_UNION
10752 && ada_find_parallel_type (type, "___XVU") != NULL))
10753 {
10754 *pos += 4;
10755 return value_zero (to_static_fixed_type (type), not_lval);
10756 }
4c4b4cd2 10757 }
da5c522f
JB
10758
10759 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10760 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10761
10762 case OP_FUNCALL:
10763 (*pos) += 2;
10764
10765 /* Allocate arg vector, including space for the function to be
10766 called in argvec[0] and a terminating NULL. */
10767 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10768 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10769
10770 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10771 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10772 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10773 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10774 else
10775 {
10776 for (tem = 0; tem <= nargs; tem += 1)
10777 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10778 argvec[tem] = 0;
10779
10780 if (noside == EVAL_SKIP)
10781 goto nosideret;
10782 }
10783
ad82864c
JB
10784 if (ada_is_constrained_packed_array_type
10785 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10786 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10787 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10788 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10789 /* This is a packed array that has already been fixed, and
10790 therefore already coerced to a simple array. Nothing further
10791 to do. */
10792 ;
e6c2c623
PMR
10793 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10794 {
10795 /* Make sure we dereference references so that all the code below
10796 feels like it's really handling the referenced value. Wrapping
10797 types (for alignment) may be there, so make sure we strip them as
10798 well. */
10799 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10800 }
10801 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10802 && VALUE_LVAL (argvec[0]) == lval_memory)
10803 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10804
df407dfe 10805 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10806
10807 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10808 them. So, if this is an array typedef (encoding use for array
10809 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10810 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10811 type = ada_typedef_target_type (type);
10812
4c4b4cd2
PH
10813 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10814 {
61ee279c 10815 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10816 {
10817 case TYPE_CODE_FUNC:
61ee279c 10818 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10819 break;
10820 case TYPE_CODE_ARRAY:
10821 break;
10822 case TYPE_CODE_STRUCT:
10823 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10824 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10825 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10826 break;
10827 default:
323e0a4a 10828 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10829 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10830 break;
10831 }
10832 }
10833
10834 switch (TYPE_CODE (type))
10835 {
10836 case TYPE_CODE_FUNC:
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10838 {
10839 struct type *rtype = TYPE_TARGET_TYPE (type);
10840
10841 if (TYPE_GNU_IFUNC (type))
10842 return allocate_value (TYPE_TARGET_TYPE (rtype));
10843 return allocate_value (rtype);
10844 }
4c4b4cd2 10845 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10846 case TYPE_CODE_INTERNAL_FUNCTION:
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10848 /* We don't know anything about what the internal
10849 function might return, but we have to return
10850 something. */
10851 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10852 not_lval);
10853 else
10854 return call_internal_function (exp->gdbarch, exp->language_defn,
10855 argvec[0], nargs, argvec + 1);
10856
4c4b4cd2
PH
10857 case TYPE_CODE_STRUCT:
10858 {
10859 int arity;
10860
4c4b4cd2
PH
10861 arity = ada_array_arity (type);
10862 type = ada_array_element_type (type, nargs);
10863 if (type == NULL)
323e0a4a 10864 error (_("cannot subscript or call a record"));
4c4b4cd2 10865 if (arity != nargs)
323e0a4a 10866 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10868 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10869 return
10870 unwrap_value (ada_value_subscript
10871 (argvec[0], nargs, argvec + 1));
10872 }
10873 case TYPE_CODE_ARRAY:
10874 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10875 {
10876 type = ada_array_element_type (type, nargs);
10877 if (type == NULL)
323e0a4a 10878 error (_("element type of array unknown"));
4c4b4cd2 10879 else
0a07e705 10880 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10881 }
10882 return
10883 unwrap_value (ada_value_subscript
10884 (ada_coerce_to_simple_array (argvec[0]),
10885 nargs, argvec + 1));
10886 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10888 {
deede10c 10889 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10890 type = ada_array_element_type (type, nargs);
10891 if (type == NULL)
323e0a4a 10892 error (_("element type of array unknown"));
4c4b4cd2 10893 else
0a07e705 10894 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10895 }
10896 return
deede10c
JB
10897 unwrap_value (ada_value_ptr_subscript (argvec[0],
10898 nargs, argvec + 1));
4c4b4cd2
PH
10899
10900 default:
e1d5a0d2
PH
10901 error (_("Attempt to index or call something other than an "
10902 "array or function"));
4c4b4cd2
PH
10903 }
10904
10905 case TERNOP_SLICE:
10906 {
10907 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10908 struct value *low_bound_val =
10909 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10910 struct value *high_bound_val =
10911 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10912 LONGEST low_bound;
10913 LONGEST high_bound;
5b4ee69b 10914
994b9211
AC
10915 low_bound_val = coerce_ref (low_bound_val);
10916 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10917 low_bound = value_as_long (low_bound_val);
10918 high_bound = value_as_long (high_bound_val);
963a6417 10919
4c4b4cd2
PH
10920 if (noside == EVAL_SKIP)
10921 goto nosideret;
10922
4c4b4cd2
PH
10923 /* If this is a reference to an aligner type, then remove all
10924 the aligners. */
df407dfe
AC
10925 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10926 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10927 TYPE_TARGET_TYPE (value_type (array)) =
10928 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10929
ad82864c 10930 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10931 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10932
10933 /* If this is a reference to an array or an array lvalue,
10934 convert to a pointer. */
df407dfe
AC
10935 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10936 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10937 && VALUE_LVAL (array) == lval_memory))
10938 array = value_addr (array);
10939
1265e4aa 10940 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10941 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10942 (value_type (array))))
0b5d8877 10943 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10944
10945 array = ada_coerce_to_simple_array_ptr (array);
10946
714e53ab
PH
10947 /* If we have more than one level of pointer indirection,
10948 dereference the value until we get only one level. */
df407dfe
AC
10949 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10950 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10951 == TYPE_CODE_PTR))
10952 array = value_ind (array);
10953
10954 /* Make sure we really do have an array type before going further,
10955 to avoid a SEGV when trying to get the index type or the target
10956 type later down the road if the debug info generated by
10957 the compiler is incorrect or incomplete. */
df407dfe 10958 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10959 error (_("cannot take slice of non-array"));
714e53ab 10960
828292f2
JB
10961 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10962 == TYPE_CODE_PTR)
4c4b4cd2 10963 {
828292f2
JB
10964 struct type *type0 = ada_check_typedef (value_type (array));
10965
0b5d8877 10966 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10967 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10968 else
10969 {
10970 struct type *arr_type0 =
828292f2 10971 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10972
f5938064
JG
10973 return ada_value_slice_from_ptr (array, arr_type0,
10974 longest_to_int (low_bound),
10975 longest_to_int (high_bound));
4c4b4cd2
PH
10976 }
10977 }
10978 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10979 return array;
10980 else if (high_bound < low_bound)
df407dfe 10981 return empty_array (value_type (array), low_bound);
4c4b4cd2 10982 else
529cad9c
PH
10983 return ada_value_slice (array, longest_to_int (low_bound),
10984 longest_to_int (high_bound));
4c4b4cd2 10985 }
14f9c5c9 10986
4c4b4cd2
PH
10987 case UNOP_IN_RANGE:
10988 (*pos) += 2;
10989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10990 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10991
14f9c5c9 10992 if (noside == EVAL_SKIP)
4c4b4cd2 10993 goto nosideret;
14f9c5c9 10994
4c4b4cd2
PH
10995 switch (TYPE_CODE (type))
10996 {
10997 default:
e1d5a0d2
PH
10998 lim_warning (_("Membership test incompletely implemented; "
10999 "always returns true"));
fbb06eb1
UW
11000 type = language_bool_type (exp->language_defn, exp->gdbarch);
11001 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11002
11003 case TYPE_CODE_RANGE:
030b4912
UW
11004 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11005 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11008 type = language_bool_type (exp->language_defn, exp->gdbarch);
11009 return
11010 value_from_longest (type,
4c4b4cd2
PH
11011 (value_less (arg1, arg3)
11012 || value_equal (arg1, arg3))
11013 && (value_less (arg2, arg1)
11014 || value_equal (arg2, arg1)));
11015 }
11016
11017 case BINOP_IN_BOUNDS:
14f9c5c9 11018 (*pos) += 2;
4c4b4cd2
PH
11019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11021
4c4b4cd2
PH
11022 if (noside == EVAL_SKIP)
11023 goto nosideret;
14f9c5c9 11024
4c4b4cd2 11025 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11026 {
11027 type = language_bool_type (exp->language_defn, exp->gdbarch);
11028 return value_zero (type, not_lval);
11029 }
14f9c5c9 11030
4c4b4cd2 11031 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11032
1eea4ebd
UW
11033 type = ada_index_type (value_type (arg2), tem, "range");
11034 if (!type)
11035 type = value_type (arg1);
14f9c5c9 11036
1eea4ebd
UW
11037 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11038 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11039
f44316fa
UW
11040 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11041 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11042 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11043 return
fbb06eb1 11044 value_from_longest (type,
4c4b4cd2
PH
11045 (value_less (arg1, arg3)
11046 || value_equal (arg1, arg3))
11047 && (value_less (arg2, arg1)
11048 || value_equal (arg2, arg1)));
11049
11050 case TERNOP_IN_RANGE:
11051 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11052 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054
11055 if (noside == EVAL_SKIP)
11056 goto nosideret;
11057
f44316fa
UW
11058 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11059 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11060 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11061 return
fbb06eb1 11062 value_from_longest (type,
4c4b4cd2
PH
11063 (value_less (arg1, arg3)
11064 || value_equal (arg1, arg3))
11065 && (value_less (arg2, arg1)
11066 || value_equal (arg2, arg1)));
11067
11068 case OP_ATR_FIRST:
11069 case OP_ATR_LAST:
11070 case OP_ATR_LENGTH:
11071 {
76a01679 11072 struct type *type_arg;
5b4ee69b 11073
76a01679
JB
11074 if (exp->elts[*pos].opcode == OP_TYPE)
11075 {
11076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11077 arg1 = NULL;
5bc23cb3 11078 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11079 }
11080 else
11081 {
11082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11083 type_arg = NULL;
11084 }
11085
11086 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11087 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11088 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11089 *pos += 4;
11090
11091 if (noside == EVAL_SKIP)
11092 goto nosideret;
11093
11094 if (type_arg == NULL)
11095 {
11096 arg1 = ada_coerce_ref (arg1);
11097
ad82864c 11098 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11099 arg1 = ada_coerce_to_simple_array (arg1);
11100
aa4fb036 11101 if (op == OP_ATR_LENGTH)
1eea4ebd 11102 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11103 else
11104 {
11105 type = ada_index_type (value_type (arg1), tem,
11106 ada_attribute_name (op));
11107 if (type == NULL)
11108 type = builtin_type (exp->gdbarch)->builtin_int;
11109 }
76a01679
JB
11110
11111 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11112 return allocate_value (type);
76a01679
JB
11113
11114 switch (op)
11115 {
11116 default: /* Should never happen. */
323e0a4a 11117 error (_("unexpected attribute encountered"));
76a01679 11118 case OP_ATR_FIRST:
1eea4ebd
UW
11119 return value_from_longest
11120 (type, ada_array_bound (arg1, tem, 0));
76a01679 11121 case OP_ATR_LAST:
1eea4ebd
UW
11122 return value_from_longest
11123 (type, ada_array_bound (arg1, tem, 1));
76a01679 11124 case OP_ATR_LENGTH:
1eea4ebd
UW
11125 return value_from_longest
11126 (type, ada_array_length (arg1, tem));
76a01679
JB
11127 }
11128 }
11129 else if (discrete_type_p (type_arg))
11130 {
11131 struct type *range_type;
0d5cff50 11132 const char *name = ada_type_name (type_arg);
5b4ee69b 11133
76a01679
JB
11134 range_type = NULL;
11135 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11136 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11137 if (range_type == NULL)
11138 range_type = type_arg;
11139 switch (op)
11140 {
11141 default:
323e0a4a 11142 error (_("unexpected attribute encountered"));
76a01679 11143 case OP_ATR_FIRST:
690cc4eb 11144 return value_from_longest
43bbcdc2 11145 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11146 case OP_ATR_LAST:
690cc4eb 11147 return value_from_longest
43bbcdc2 11148 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11149 case OP_ATR_LENGTH:
323e0a4a 11150 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11151 }
11152 }
11153 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11154 error (_("unimplemented type attribute"));
76a01679
JB
11155 else
11156 {
11157 LONGEST low, high;
11158
ad82864c
JB
11159 if (ada_is_constrained_packed_array_type (type_arg))
11160 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11161
aa4fb036 11162 if (op == OP_ATR_LENGTH)
1eea4ebd 11163 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11164 else
11165 {
11166 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11167 if (type == NULL)
11168 type = builtin_type (exp->gdbarch)->builtin_int;
11169 }
1eea4ebd 11170
76a01679
JB
11171 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11172 return allocate_value (type);
11173
11174 switch (op)
11175 {
11176 default:
323e0a4a 11177 error (_("unexpected attribute encountered"));
76a01679 11178 case OP_ATR_FIRST:
1eea4ebd 11179 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11180 return value_from_longest (type, low);
11181 case OP_ATR_LAST:
1eea4ebd 11182 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11183 return value_from_longest (type, high);
11184 case OP_ATR_LENGTH:
1eea4ebd
UW
11185 low = ada_array_bound_from_type (type_arg, tem, 0);
11186 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11187 return value_from_longest (type, high - low + 1);
11188 }
11189 }
14f9c5c9
AS
11190 }
11191
4c4b4cd2
PH
11192 case OP_ATR_TAG:
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 if (noside == EVAL_SKIP)
76a01679 11195 goto nosideret;
4c4b4cd2
PH
11196
11197 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11198 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11199
11200 return ada_value_tag (arg1);
11201
11202 case OP_ATR_MIN:
11203 case OP_ATR_MAX:
11204 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 if (noside == EVAL_SKIP)
76a01679 11208 goto nosideret;
d2e4a39e 11209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11210 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11211 else
f44316fa
UW
11212 {
11213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11214 return value_binop (arg1, arg2,
11215 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11216 }
14f9c5c9 11217
4c4b4cd2
PH
11218 case OP_ATR_MODULUS:
11219 {
31dedfee 11220 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11221
5b4ee69b 11222 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11223 if (noside == EVAL_SKIP)
11224 goto nosideret;
4c4b4cd2 11225
76a01679 11226 if (!ada_is_modular_type (type_arg))
323e0a4a 11227 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11228
76a01679
JB
11229 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11230 ada_modulus (type_arg));
4c4b4cd2
PH
11231 }
11232
11233
11234 case OP_ATR_POS:
11235 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 if (noside == EVAL_SKIP)
76a01679 11238 goto nosideret;
3cb382c9
UW
11239 type = builtin_type (exp->gdbarch)->builtin_int;
11240 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return value_zero (type, not_lval);
14f9c5c9 11242 else
3cb382c9 11243 return value_pos_atr (type, arg1);
14f9c5c9 11244
4c4b4cd2
PH
11245 case OP_ATR_SIZE:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11247 type = value_type (arg1);
11248
11249 /* If the argument is a reference, then dereference its type, since
11250 the user is really asking for the size of the actual object,
11251 not the size of the pointer. */
11252 if (TYPE_CODE (type) == TYPE_CODE_REF)
11253 type = TYPE_TARGET_TYPE (type);
11254
4c4b4cd2 11255 if (noside == EVAL_SKIP)
76a01679 11256 goto nosideret;
4c4b4cd2 11257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11258 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11259 else
22601c15 11260 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11261 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11262
11263 case OP_ATR_VAL:
11264 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11266 type = exp->elts[pc + 2].type;
14f9c5c9 11267 if (noside == EVAL_SKIP)
76a01679 11268 goto nosideret;
4c4b4cd2 11269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11270 return value_zero (type, not_lval);
4c4b4cd2 11271 else
76a01679 11272 return value_val_atr (type, arg1);
4c4b4cd2
PH
11273
11274 case BINOP_EXP:
11275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11276 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11277 if (noside == EVAL_SKIP)
11278 goto nosideret;
11279 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11280 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11281 else
f44316fa
UW
11282 {
11283 /* For integer exponentiation operations,
11284 only promote the first argument. */
11285 if (is_integral_type (value_type (arg2)))
11286 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11287 else
11288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11289
11290 return value_binop (arg1, arg2, op);
11291 }
4c4b4cd2
PH
11292
11293 case UNOP_PLUS:
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11295 if (noside == EVAL_SKIP)
11296 goto nosideret;
11297 else
11298 return arg1;
11299
11300 case UNOP_ABS:
11301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11302 if (noside == EVAL_SKIP)
11303 goto nosideret;
f44316fa 11304 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11305 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11306 return value_neg (arg1);
14f9c5c9 11307 else
4c4b4cd2 11308 return arg1;
14f9c5c9
AS
11309
11310 case UNOP_IND:
5ec18f2b 11311 preeval_pos = *pos;
6b0d7253 11312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11313 if (noside == EVAL_SKIP)
4c4b4cd2 11314 goto nosideret;
df407dfe 11315 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11317 {
11318 if (ada_is_array_descriptor_type (type))
11319 /* GDB allows dereferencing GNAT array descriptors. */
11320 {
11321 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11322
4c4b4cd2 11323 if (arrType == NULL)
323e0a4a 11324 error (_("Attempt to dereference null array pointer."));
00a4c844 11325 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11326 }
11327 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11328 || TYPE_CODE (type) == TYPE_CODE_REF
11329 /* In C you can dereference an array to get the 1st elt. */
11330 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11331 {
5ec18f2b
JG
11332 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11333 only be determined by inspecting the object's tag.
11334 This means that we need to evaluate completely the
11335 expression in order to get its type. */
11336
023db19c
JB
11337 if ((TYPE_CODE (type) == TYPE_CODE_REF
11338 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11339 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11340 {
11341 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11342 EVAL_NORMAL);
11343 type = value_type (ada_value_ind (arg1));
11344 }
11345 else
11346 {
11347 type = to_static_fixed_type
11348 (ada_aligned_type
11349 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11350 }
c1b5a1a6 11351 ada_ensure_varsize_limit (type);
714e53ab
PH
11352 return value_zero (type, lval_memory);
11353 }
4c4b4cd2 11354 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11355 {
11356 /* GDB allows dereferencing an int. */
11357 if (expect_type == NULL)
11358 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11359 lval_memory);
11360 else
11361 {
11362 expect_type =
11363 to_static_fixed_type (ada_aligned_type (expect_type));
11364 return value_zero (expect_type, lval_memory);
11365 }
11366 }
4c4b4cd2 11367 else
323e0a4a 11368 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11369 }
0963b4bd 11370 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11371 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11372
96967637
JB
11373 if (TYPE_CODE (type) == TYPE_CODE_INT)
11374 /* GDB allows dereferencing an int. If we were given
11375 the expect_type, then use that as the target type.
11376 Otherwise, assume that the target type is an int. */
11377 {
11378 if (expect_type != NULL)
11379 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11380 arg1));
11381 else
11382 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11383 (CORE_ADDR) value_as_address (arg1));
11384 }
6b0d7253 11385
4c4b4cd2
PH
11386 if (ada_is_array_descriptor_type (type))
11387 /* GDB allows dereferencing GNAT array descriptors. */
11388 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11389 else
4c4b4cd2 11390 return ada_value_ind (arg1);
14f9c5c9
AS
11391
11392 case STRUCTOP_STRUCT:
11393 tem = longest_to_int (exp->elts[pc + 1].longconst);
11394 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11395 preeval_pos = *pos;
14f9c5c9
AS
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
4c4b4cd2 11398 goto nosideret;
14f9c5c9 11399 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11400 {
df407dfe 11401 struct type *type1 = value_type (arg1);
5b4ee69b 11402
76a01679
JB
11403 if (ada_is_tagged_type (type1, 1))
11404 {
11405 type = ada_lookup_struct_elt_type (type1,
11406 &exp->elts[pc + 2].string,
11407 1, 1, NULL);
5ec18f2b
JG
11408
11409 /* If the field is not found, check if it exists in the
11410 extension of this object's type. This means that we
11411 need to evaluate completely the expression. */
11412
76a01679 11413 if (type == NULL)
5ec18f2b
JG
11414 {
11415 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11416 EVAL_NORMAL);
11417 arg1 = ada_value_struct_elt (arg1,
11418 &exp->elts[pc + 2].string,
11419 0);
11420 arg1 = unwrap_value (arg1);
11421 type = value_type (ada_to_fixed_value (arg1));
11422 }
76a01679
JB
11423 }
11424 else
11425 type =
11426 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11427 0, NULL);
11428
11429 return value_zero (ada_aligned_type (type), lval_memory);
11430 }
14f9c5c9 11431 else
a579cd9a
MW
11432 {
11433 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11434 arg1 = unwrap_value (arg1);
11435 return ada_to_fixed_value (arg1);
11436 }
284614f0 11437
14f9c5c9 11438 case OP_TYPE:
4c4b4cd2
PH
11439 /* The value is not supposed to be used. This is here to make it
11440 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11441 (*pos) += 2;
11442 if (noside == EVAL_SKIP)
4c4b4cd2 11443 goto nosideret;
14f9c5c9 11444 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11445 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11446 else
323e0a4a 11447 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11448
11449 case OP_AGGREGATE:
11450 case OP_CHOICES:
11451 case OP_OTHERS:
11452 case OP_DISCRETE_RANGE:
11453 case OP_POSITIONAL:
11454 case OP_NAME:
11455 if (noside == EVAL_NORMAL)
11456 switch (op)
11457 {
11458 case OP_NAME:
11459 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11460 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11461 case OP_AGGREGATE:
11462 error (_("Aggregates only allowed on the right of an assignment"));
11463 default:
0963b4bd
MS
11464 internal_error (__FILE__, __LINE__,
11465 _("aggregate apparently mangled"));
52ce6436
PH
11466 }
11467
11468 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11469 *pos += oplen - 1;
11470 for (tem = 0; tem < nargs; tem += 1)
11471 ada_evaluate_subexp (NULL, exp, pos, noside);
11472 goto nosideret;
14f9c5c9
AS
11473 }
11474
11475nosideret:
22601c15 11476 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11477}
14f9c5c9 11478\f
d2e4a39e 11479
4c4b4cd2 11480 /* Fixed point */
14f9c5c9
AS
11481
11482/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11483 type name that encodes the 'small and 'delta information.
4c4b4cd2 11484 Otherwise, return NULL. */
14f9c5c9 11485
d2e4a39e 11486static const char *
ebf56fd3 11487fixed_type_info (struct type *type)
14f9c5c9 11488{
d2e4a39e 11489 const char *name = ada_type_name (type);
14f9c5c9
AS
11490 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11491
d2e4a39e
AS
11492 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11493 {
14f9c5c9 11494 const char *tail = strstr (name, "___XF_");
5b4ee69b 11495
14f9c5c9 11496 if (tail == NULL)
4c4b4cd2 11497 return NULL;
d2e4a39e 11498 else
4c4b4cd2 11499 return tail + 5;
14f9c5c9
AS
11500 }
11501 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11502 return fixed_type_info (TYPE_TARGET_TYPE (type));
11503 else
11504 return NULL;
11505}
11506
4c4b4cd2 11507/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11508
11509int
ebf56fd3 11510ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11511{
11512 return fixed_type_info (type) != NULL;
11513}
11514
4c4b4cd2
PH
11515/* Return non-zero iff TYPE represents a System.Address type. */
11516
11517int
11518ada_is_system_address_type (struct type *type)
11519{
11520 return (TYPE_NAME (type)
11521 && strcmp (TYPE_NAME (type), "system__address") == 0);
11522}
11523
14f9c5c9
AS
11524/* Assuming that TYPE is the representation of an Ada fixed-point
11525 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11526 delta cannot be determined. */
14f9c5c9
AS
11527
11528DOUBLEST
ebf56fd3 11529ada_delta (struct type *type)
14f9c5c9
AS
11530{
11531 const char *encoding = fixed_type_info (type);
facc390f 11532 DOUBLEST num, den;
14f9c5c9 11533
facc390f
JB
11534 /* Strictly speaking, num and den are encoded as integer. However,
11535 they may not fit into a long, and they will have to be converted
11536 to DOUBLEST anyway. So scan them as DOUBLEST. */
11537 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11538 &num, &den) < 2)
14f9c5c9 11539 return -1.0;
d2e4a39e 11540 else
facc390f 11541 return num / den;
14f9c5c9
AS
11542}
11543
11544/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11545 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11546
11547static DOUBLEST
ebf56fd3 11548scaling_factor (struct type *type)
14f9c5c9
AS
11549{
11550 const char *encoding = fixed_type_info (type);
facc390f 11551 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11552 int n;
d2e4a39e 11553
facc390f
JB
11554 /* Strictly speaking, num's and den's are encoded as integer. However,
11555 they may not fit into a long, and they will have to be converted
11556 to DOUBLEST anyway. So scan them as DOUBLEST. */
11557 n = sscanf (encoding,
11558 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11559 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11560 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11561
11562 if (n < 2)
11563 return 1.0;
11564 else if (n == 4)
facc390f 11565 return num1 / den1;
d2e4a39e 11566 else
facc390f 11567 return num0 / den0;
14f9c5c9
AS
11568}
11569
11570
11571/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11572 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11573
11574DOUBLEST
ebf56fd3 11575ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11576{
d2e4a39e 11577 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11578}
11579
4c4b4cd2
PH
11580/* The representation of a fixed-point value of type TYPE
11581 corresponding to the value X. */
14f9c5c9
AS
11582
11583LONGEST
ebf56fd3 11584ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11585{
11586 return (LONGEST) (x / scaling_factor (type) + 0.5);
11587}
11588
14f9c5c9 11589\f
d2e4a39e 11590
4c4b4cd2 11591 /* Range types */
14f9c5c9
AS
11592
11593/* Scan STR beginning at position K for a discriminant name, and
11594 return the value of that discriminant field of DVAL in *PX. If
11595 PNEW_K is not null, put the position of the character beyond the
11596 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11597 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11598
11599static int
108d56a4 11600scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11601 int *pnew_k)
14f9c5c9
AS
11602{
11603 static char *bound_buffer = NULL;
11604 static size_t bound_buffer_len = 0;
5da1a4d3 11605 const char *pstart, *pend, *bound;
d2e4a39e 11606 struct value *bound_val;
14f9c5c9
AS
11607
11608 if (dval == NULL || str == NULL || str[k] == '\0')
11609 return 0;
11610
5da1a4d3
SM
11611 pstart = str + k;
11612 pend = strstr (pstart, "__");
14f9c5c9
AS
11613 if (pend == NULL)
11614 {
5da1a4d3 11615 bound = pstart;
14f9c5c9
AS
11616 k += strlen (bound);
11617 }
d2e4a39e 11618 else
14f9c5c9 11619 {
5da1a4d3
SM
11620 int len = pend - pstart;
11621
11622 /* Strip __ and beyond. */
11623 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11624 strncpy (bound_buffer, pstart, len);
11625 bound_buffer[len] = '\0';
11626
14f9c5c9 11627 bound = bound_buffer;
d2e4a39e 11628 k = pend - str;
14f9c5c9 11629 }
d2e4a39e 11630
df407dfe 11631 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11632 if (bound_val == NULL)
11633 return 0;
11634
11635 *px = value_as_long (bound_val);
11636 if (pnew_k != NULL)
11637 *pnew_k = k;
11638 return 1;
11639}
11640
11641/* Value of variable named NAME in the current environment. If
11642 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11643 otherwise causes an error with message ERR_MSG. */
11644
d2e4a39e
AS
11645static struct value *
11646get_var_value (char *name, char *err_msg)
14f9c5c9 11647{
d12307c1 11648 struct block_symbol *syms;
14f9c5c9
AS
11649 int nsyms;
11650
4c4b4cd2 11651 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11652 &syms);
14f9c5c9
AS
11653
11654 if (nsyms != 1)
11655 {
11656 if (err_msg == NULL)
4c4b4cd2 11657 return 0;
14f9c5c9 11658 else
8a3fe4f8 11659 error (("%s"), err_msg);
14f9c5c9
AS
11660 }
11661
d12307c1 11662 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11663}
d2e4a39e 11664
14f9c5c9 11665/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11666 no such variable found, returns 0, and sets *FLAG to 0. If
11667 successful, sets *FLAG to 1. */
11668
14f9c5c9 11669LONGEST
4c4b4cd2 11670get_int_var_value (char *name, int *flag)
14f9c5c9 11671{
4c4b4cd2 11672 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11673
14f9c5c9
AS
11674 if (var_val == 0)
11675 {
11676 if (flag != NULL)
4c4b4cd2 11677 *flag = 0;
14f9c5c9
AS
11678 return 0;
11679 }
11680 else
11681 {
11682 if (flag != NULL)
4c4b4cd2 11683 *flag = 1;
14f9c5c9
AS
11684 return value_as_long (var_val);
11685 }
11686}
d2e4a39e 11687
14f9c5c9
AS
11688
11689/* Return a range type whose base type is that of the range type named
11690 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11691 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11692 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11693 corresponding range type from debug information; fall back to using it
11694 if symbol lookup fails. If a new type must be created, allocate it
11695 like ORIG_TYPE was. The bounds information, in general, is encoded
11696 in NAME, the base type given in the named range type. */
14f9c5c9 11697
d2e4a39e 11698static struct type *
28c85d6c 11699to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11700{
0d5cff50 11701 const char *name;
14f9c5c9 11702 struct type *base_type;
108d56a4 11703 const char *subtype_info;
14f9c5c9 11704
28c85d6c
JB
11705 gdb_assert (raw_type != NULL);
11706 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11707
1ce677a4 11708 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11709 base_type = TYPE_TARGET_TYPE (raw_type);
11710 else
11711 base_type = raw_type;
11712
28c85d6c 11713 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11714 subtype_info = strstr (name, "___XD");
11715 if (subtype_info == NULL)
690cc4eb 11716 {
43bbcdc2
PH
11717 LONGEST L = ada_discrete_type_low_bound (raw_type);
11718 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11719
690cc4eb
PH
11720 if (L < INT_MIN || U > INT_MAX)
11721 return raw_type;
11722 else
0c9c3474
SA
11723 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11724 L, U);
690cc4eb 11725 }
14f9c5c9
AS
11726 else
11727 {
11728 static char *name_buf = NULL;
11729 static size_t name_len = 0;
11730 int prefix_len = subtype_info - name;
11731 LONGEST L, U;
11732 struct type *type;
108d56a4 11733 const char *bounds_str;
14f9c5c9
AS
11734 int n;
11735
11736 GROW_VECT (name_buf, name_len, prefix_len + 5);
11737 strncpy (name_buf, name, prefix_len);
11738 name_buf[prefix_len] = '\0';
11739
11740 subtype_info += 5;
11741 bounds_str = strchr (subtype_info, '_');
11742 n = 1;
11743
d2e4a39e 11744 if (*subtype_info == 'L')
4c4b4cd2
PH
11745 {
11746 if (!ada_scan_number (bounds_str, n, &L, &n)
11747 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11748 return raw_type;
11749 if (bounds_str[n] == '_')
11750 n += 2;
0963b4bd 11751 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11752 n += 1;
11753 subtype_info += 1;
11754 }
d2e4a39e 11755 else
4c4b4cd2
PH
11756 {
11757 int ok;
5b4ee69b 11758
4c4b4cd2
PH
11759 strcpy (name_buf + prefix_len, "___L");
11760 L = get_int_var_value (name_buf, &ok);
11761 if (!ok)
11762 {
323e0a4a 11763 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11764 L = 1;
11765 }
11766 }
14f9c5c9 11767
d2e4a39e 11768 if (*subtype_info == 'U')
4c4b4cd2
PH
11769 {
11770 if (!ada_scan_number (bounds_str, n, &U, &n)
11771 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11772 return raw_type;
11773 }
d2e4a39e 11774 else
4c4b4cd2
PH
11775 {
11776 int ok;
5b4ee69b 11777
4c4b4cd2
PH
11778 strcpy (name_buf + prefix_len, "___U");
11779 U = get_int_var_value (name_buf, &ok);
11780 if (!ok)
11781 {
323e0a4a 11782 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11783 U = L;
11784 }
11785 }
14f9c5c9 11786
0c9c3474
SA
11787 type = create_static_range_type (alloc_type_copy (raw_type),
11788 base_type, L, U);
d2e4a39e 11789 TYPE_NAME (type) = name;
14f9c5c9
AS
11790 return type;
11791 }
11792}
11793
4c4b4cd2
PH
11794/* True iff NAME is the name of a range type. */
11795
14f9c5c9 11796int
d2e4a39e 11797ada_is_range_type_name (const char *name)
14f9c5c9
AS
11798{
11799 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11800}
14f9c5c9 11801\f
d2e4a39e 11802
4c4b4cd2
PH
11803 /* Modular types */
11804
11805/* True iff TYPE is an Ada modular type. */
14f9c5c9 11806
14f9c5c9 11807int
d2e4a39e 11808ada_is_modular_type (struct type *type)
14f9c5c9 11809{
18af8284 11810 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11811
11812 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11813 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11814 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11815}
11816
4c4b4cd2
PH
11817/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11818
61ee279c 11819ULONGEST
0056e4d5 11820ada_modulus (struct type *type)
14f9c5c9 11821{
43bbcdc2 11822 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11823}
d2e4a39e 11824\f
f7f9143b
JB
11825
11826/* Ada exception catchpoint support:
11827 ---------------------------------
11828
11829 We support 3 kinds of exception catchpoints:
11830 . catchpoints on Ada exceptions
11831 . catchpoints on unhandled Ada exceptions
11832 . catchpoints on failed assertions
11833
11834 Exceptions raised during failed assertions, or unhandled exceptions
11835 could perfectly be caught with the general catchpoint on Ada exceptions.
11836 However, we can easily differentiate these two special cases, and having
11837 the option to distinguish these two cases from the rest can be useful
11838 to zero-in on certain situations.
11839
11840 Exception catchpoints are a specialized form of breakpoint,
11841 since they rely on inserting breakpoints inside known routines
11842 of the GNAT runtime. The implementation therefore uses a standard
11843 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11844 of breakpoint_ops.
11845
0259addd
JB
11846 Support in the runtime for exception catchpoints have been changed
11847 a few times already, and these changes affect the implementation
11848 of these catchpoints. In order to be able to support several
11849 variants of the runtime, we use a sniffer that will determine
28010a5d 11850 the runtime variant used by the program being debugged. */
f7f9143b 11851
82eacd52
JB
11852/* Ada's standard exceptions.
11853
11854 The Ada 83 standard also defined Numeric_Error. But there so many
11855 situations where it was unclear from the Ada 83 Reference Manual
11856 (RM) whether Constraint_Error or Numeric_Error should be raised,
11857 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11858 Interpretation saying that anytime the RM says that Numeric_Error
11859 should be raised, the implementation may raise Constraint_Error.
11860 Ada 95 went one step further and pretty much removed Numeric_Error
11861 from the list of standard exceptions (it made it a renaming of
11862 Constraint_Error, to help preserve compatibility when compiling
11863 an Ada83 compiler). As such, we do not include Numeric_Error from
11864 this list of standard exceptions. */
3d0b0fa3
JB
11865
11866static char *standard_exc[] = {
11867 "constraint_error",
11868 "program_error",
11869 "storage_error",
11870 "tasking_error"
11871};
11872
0259addd
JB
11873typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11874
11875/* A structure that describes how to support exception catchpoints
11876 for a given executable. */
11877
11878struct exception_support_info
11879{
11880 /* The name of the symbol to break on in order to insert
11881 a catchpoint on exceptions. */
11882 const char *catch_exception_sym;
11883
11884 /* The name of the symbol to break on in order to insert
11885 a catchpoint on unhandled exceptions. */
11886 const char *catch_exception_unhandled_sym;
11887
11888 /* The name of the symbol to break on in order to insert
11889 a catchpoint on failed assertions. */
11890 const char *catch_assert_sym;
11891
11892 /* Assuming that the inferior just triggered an unhandled exception
11893 catchpoint, this function is responsible for returning the address
11894 in inferior memory where the name of that exception is stored.
11895 Return zero if the address could not be computed. */
11896 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11897};
11898
11899static CORE_ADDR ada_unhandled_exception_name_addr (void);
11900static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11901
11902/* The following exception support info structure describes how to
11903 implement exception catchpoints with the latest version of the
11904 Ada runtime (as of 2007-03-06). */
11905
11906static const struct exception_support_info default_exception_support_info =
11907{
11908 "__gnat_debug_raise_exception", /* catch_exception_sym */
11909 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11910 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11911 ada_unhandled_exception_name_addr
11912};
11913
11914/* The following exception support info structure describes how to
11915 implement exception catchpoints with a slightly older version
11916 of the Ada runtime. */
11917
11918static const struct exception_support_info exception_support_info_fallback =
11919{
11920 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11921 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11922 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11923 ada_unhandled_exception_name_addr_from_raise
11924};
11925
f17011e0
JB
11926/* Return nonzero if we can detect the exception support routines
11927 described in EINFO.
11928
11929 This function errors out if an abnormal situation is detected
11930 (for instance, if we find the exception support routines, but
11931 that support is found to be incomplete). */
11932
11933static int
11934ada_has_this_exception_support (const struct exception_support_info *einfo)
11935{
11936 struct symbol *sym;
11937
11938 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11939 that should be compiled with debugging information. As a result, we
11940 expect to find that symbol in the symtabs. */
11941
11942 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11943 if (sym == NULL)
a6af7abe
JB
11944 {
11945 /* Perhaps we did not find our symbol because the Ada runtime was
11946 compiled without debugging info, or simply stripped of it.
11947 It happens on some GNU/Linux distributions for instance, where
11948 users have to install a separate debug package in order to get
11949 the runtime's debugging info. In that situation, let the user
11950 know why we cannot insert an Ada exception catchpoint.
11951
11952 Note: Just for the purpose of inserting our Ada exception
11953 catchpoint, we could rely purely on the associated minimal symbol.
11954 But we would be operating in degraded mode anyway, since we are
11955 still lacking the debugging info needed later on to extract
11956 the name of the exception being raised (this name is printed in
11957 the catchpoint message, and is also used when trying to catch
11958 a specific exception). We do not handle this case for now. */
3b7344d5 11959 struct bound_minimal_symbol msym
1c8e84b0
JB
11960 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11961
3b7344d5 11962 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11963 error (_("Your Ada runtime appears to be missing some debugging "
11964 "information.\nCannot insert Ada exception catchpoint "
11965 "in this configuration."));
11966
11967 return 0;
11968 }
f17011e0
JB
11969
11970 /* Make sure that the symbol we found corresponds to a function. */
11971
11972 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11973 error (_("Symbol \"%s\" is not a function (class = %d)"),
11974 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11975
11976 return 1;
11977}
11978
0259addd
JB
11979/* Inspect the Ada runtime and determine which exception info structure
11980 should be used to provide support for exception catchpoints.
11981
3eecfa55
JB
11982 This function will always set the per-inferior exception_info,
11983 or raise an error. */
0259addd
JB
11984
11985static void
11986ada_exception_support_info_sniffer (void)
11987{
3eecfa55 11988 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11989
11990 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11991 if (data->exception_info != NULL)
0259addd
JB
11992 return;
11993
11994 /* Check the latest (default) exception support info. */
f17011e0 11995 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11996 {
3eecfa55 11997 data->exception_info = &default_exception_support_info;
0259addd
JB
11998 return;
11999 }
12000
12001 /* Try our fallback exception suport info. */
f17011e0 12002 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12003 {
3eecfa55 12004 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12005 return;
12006 }
12007
12008 /* Sometimes, it is normal for us to not be able to find the routine
12009 we are looking for. This happens when the program is linked with
12010 the shared version of the GNAT runtime, and the program has not been
12011 started yet. Inform the user of these two possible causes if
12012 applicable. */
12013
ccefe4c4 12014 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12015 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12016
12017 /* If the symbol does not exist, then check that the program is
12018 already started, to make sure that shared libraries have been
12019 loaded. If it is not started, this may mean that the symbol is
12020 in a shared library. */
12021
12022 if (ptid_get_pid (inferior_ptid) == 0)
12023 error (_("Unable to insert catchpoint. Try to start the program first."));
12024
12025 /* At this point, we know that we are debugging an Ada program and
12026 that the inferior has been started, but we still are not able to
0963b4bd 12027 find the run-time symbols. That can mean that we are in
0259addd
JB
12028 configurable run time mode, or that a-except as been optimized
12029 out by the linker... In any case, at this point it is not worth
12030 supporting this feature. */
12031
7dda8cff 12032 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12033}
12034
f7f9143b
JB
12035/* True iff FRAME is very likely to be that of a function that is
12036 part of the runtime system. This is all very heuristic, but is
12037 intended to be used as advice as to what frames are uninteresting
12038 to most users. */
12039
12040static int
12041is_known_support_routine (struct frame_info *frame)
12042{
4ed6b5be 12043 struct symtab_and_line sal;
55b87a52 12044 char *func_name;
692465f1 12045 enum language func_lang;
f7f9143b 12046 int i;
f35a17b5 12047 const char *fullname;
f7f9143b 12048
4ed6b5be
JB
12049 /* If this code does not have any debugging information (no symtab),
12050 This cannot be any user code. */
f7f9143b 12051
4ed6b5be 12052 find_frame_sal (frame, &sal);
f7f9143b
JB
12053 if (sal.symtab == NULL)
12054 return 1;
12055
4ed6b5be
JB
12056 /* If there is a symtab, but the associated source file cannot be
12057 located, then assume this is not user code: Selecting a frame
12058 for which we cannot display the code would not be very helpful
12059 for the user. This should also take care of case such as VxWorks
12060 where the kernel has some debugging info provided for a few units. */
f7f9143b 12061
f35a17b5
JK
12062 fullname = symtab_to_fullname (sal.symtab);
12063 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12064 return 1;
12065
4ed6b5be
JB
12066 /* Check the unit filename againt the Ada runtime file naming.
12067 We also check the name of the objfile against the name of some
12068 known system libraries that sometimes come with debugging info
12069 too. */
12070
f7f9143b
JB
12071 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12072 {
12073 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12074 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12075 return 1;
eb822aa6
DE
12076 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12077 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12078 return 1;
f7f9143b
JB
12079 }
12080
4ed6b5be 12081 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12082
e9e07ba6 12083 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12084 if (func_name == NULL)
12085 return 1;
12086
12087 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12088 {
12089 re_comp (known_auxiliary_function_name_patterns[i]);
12090 if (re_exec (func_name))
55b87a52
KS
12091 {
12092 xfree (func_name);
12093 return 1;
12094 }
f7f9143b
JB
12095 }
12096
55b87a52 12097 xfree (func_name);
f7f9143b
JB
12098 return 0;
12099}
12100
12101/* Find the first frame that contains debugging information and that is not
12102 part of the Ada run-time, starting from FI and moving upward. */
12103
0ef643c8 12104void
f7f9143b
JB
12105ada_find_printable_frame (struct frame_info *fi)
12106{
12107 for (; fi != NULL; fi = get_prev_frame (fi))
12108 {
12109 if (!is_known_support_routine (fi))
12110 {
12111 select_frame (fi);
12112 break;
12113 }
12114 }
12115
12116}
12117
12118/* Assuming that the inferior just triggered an unhandled exception
12119 catchpoint, return the address in inferior memory where the name
12120 of the exception is stored.
12121
12122 Return zero if the address could not be computed. */
12123
12124static CORE_ADDR
12125ada_unhandled_exception_name_addr (void)
0259addd
JB
12126{
12127 return parse_and_eval_address ("e.full_name");
12128}
12129
12130/* Same as ada_unhandled_exception_name_addr, except that this function
12131 should be used when the inferior uses an older version of the runtime,
12132 where the exception name needs to be extracted from a specific frame
12133 several frames up in the callstack. */
12134
12135static CORE_ADDR
12136ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12137{
12138 int frame_level;
12139 struct frame_info *fi;
3eecfa55 12140 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12141 struct cleanup *old_chain;
f7f9143b
JB
12142
12143 /* To determine the name of this exception, we need to select
12144 the frame corresponding to RAISE_SYM_NAME. This frame is
12145 at least 3 levels up, so we simply skip the first 3 frames
12146 without checking the name of their associated function. */
12147 fi = get_current_frame ();
12148 for (frame_level = 0; frame_level < 3; frame_level += 1)
12149 if (fi != NULL)
12150 fi = get_prev_frame (fi);
12151
55b87a52 12152 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12153 while (fi != NULL)
12154 {
55b87a52 12155 char *func_name;
692465f1
JB
12156 enum language func_lang;
12157
e9e07ba6 12158 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12159 if (func_name != NULL)
12160 {
12161 make_cleanup (xfree, func_name);
12162
12163 if (strcmp (func_name,
12164 data->exception_info->catch_exception_sym) == 0)
12165 break; /* We found the frame we were looking for... */
12166 fi = get_prev_frame (fi);
12167 }
f7f9143b 12168 }
55b87a52 12169 do_cleanups (old_chain);
f7f9143b
JB
12170
12171 if (fi == NULL)
12172 return 0;
12173
12174 select_frame (fi);
12175 return parse_and_eval_address ("id.full_name");
12176}
12177
12178/* Assuming the inferior just triggered an Ada exception catchpoint
12179 (of any type), return the address in inferior memory where the name
12180 of the exception is stored, if applicable.
12181
45db7c09
PA
12182 Assumes the selected frame is the current frame.
12183
f7f9143b
JB
12184 Return zero if the address could not be computed, or if not relevant. */
12185
12186static CORE_ADDR
761269c8 12187ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12188 struct breakpoint *b)
12189{
3eecfa55
JB
12190 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12191
f7f9143b
JB
12192 switch (ex)
12193 {
761269c8 12194 case ada_catch_exception:
f7f9143b
JB
12195 return (parse_and_eval_address ("e.full_name"));
12196 break;
12197
761269c8 12198 case ada_catch_exception_unhandled:
3eecfa55 12199 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12200 break;
12201
761269c8 12202 case ada_catch_assert:
f7f9143b
JB
12203 return 0; /* Exception name is not relevant in this case. */
12204 break;
12205
12206 default:
12207 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12208 break;
12209 }
12210
12211 return 0; /* Should never be reached. */
12212}
12213
12214/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12215 any error that ada_exception_name_addr_1 might cause to be thrown.
12216 When an error is intercepted, a warning with the error message is printed,
12217 and zero is returned. */
12218
12219static CORE_ADDR
761269c8 12220ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12221 struct breakpoint *b)
12222{
f7f9143b
JB
12223 CORE_ADDR result = 0;
12224
492d29ea 12225 TRY
f7f9143b
JB
12226 {
12227 result = ada_exception_name_addr_1 (ex, b);
12228 }
12229
492d29ea 12230 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12231 {
12232 warning (_("failed to get exception name: %s"), e.message);
12233 return 0;
12234 }
492d29ea 12235 END_CATCH
f7f9143b
JB
12236
12237 return result;
12238}
12239
28010a5d
PA
12240static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12241
12242/* Ada catchpoints.
12243
12244 In the case of catchpoints on Ada exceptions, the catchpoint will
12245 stop the target on every exception the program throws. When a user
12246 specifies the name of a specific exception, we translate this
12247 request into a condition expression (in text form), and then parse
12248 it into an expression stored in each of the catchpoint's locations.
12249 We then use this condition to check whether the exception that was
12250 raised is the one the user is interested in. If not, then the
12251 target is resumed again. We store the name of the requested
12252 exception, in order to be able to re-set the condition expression
12253 when symbols change. */
12254
12255/* An instance of this type is used to represent an Ada catchpoint
12256 breakpoint location. It includes a "struct bp_location" as a kind
12257 of base class; users downcast to "struct bp_location *" when
12258 needed. */
12259
12260struct ada_catchpoint_location
12261{
12262 /* The base class. */
12263 struct bp_location base;
12264
12265 /* The condition that checks whether the exception that was raised
12266 is the specific exception the user specified on catchpoint
12267 creation. */
4d01a485 12268 expression_up excep_cond_expr;
28010a5d
PA
12269};
12270
12271/* Implement the DTOR method in the bp_location_ops structure for all
12272 Ada exception catchpoint kinds. */
12273
12274static void
12275ada_catchpoint_location_dtor (struct bp_location *bl)
12276{
12277 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12278
4d01a485 12279 al->excep_cond_expr.reset ();
28010a5d
PA
12280}
12281
12282/* The vtable to be used in Ada catchpoint locations. */
12283
12284static const struct bp_location_ops ada_catchpoint_location_ops =
12285{
12286 ada_catchpoint_location_dtor
12287};
12288
12289/* An instance of this type is used to represent an Ada catchpoint.
12290 It includes a "struct breakpoint" as a kind of base class; users
12291 downcast to "struct breakpoint *" when needed. */
12292
12293struct ada_catchpoint
12294{
12295 /* The base class. */
12296 struct breakpoint base;
12297
12298 /* The name of the specific exception the user specified. */
12299 char *excep_string;
12300};
12301
12302/* Parse the exception condition string in the context of each of the
12303 catchpoint's locations, and store them for later evaluation. */
12304
12305static void
12306create_excep_cond_exprs (struct ada_catchpoint *c)
12307{
12308 struct cleanup *old_chain;
12309 struct bp_location *bl;
12310 char *cond_string;
12311
12312 /* Nothing to do if there's no specific exception to catch. */
12313 if (c->excep_string == NULL)
12314 return;
12315
12316 /* Same if there are no locations... */
12317 if (c->base.loc == NULL)
12318 return;
12319
12320 /* Compute the condition expression in text form, from the specific
12321 expection we want to catch. */
12322 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12323 old_chain = make_cleanup (xfree, cond_string);
12324
12325 /* Iterate over all the catchpoint's locations, and parse an
12326 expression for each. */
12327 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12328 {
12329 struct ada_catchpoint_location *ada_loc
12330 = (struct ada_catchpoint_location *) bl;
4d01a485 12331 expression_up exp;
28010a5d
PA
12332
12333 if (!bl->shlib_disabled)
12334 {
bbc13ae3 12335 const char *s;
28010a5d
PA
12336
12337 s = cond_string;
492d29ea 12338 TRY
28010a5d 12339 {
036e657b
JB
12340 exp = parse_exp_1 (&s, bl->address,
12341 block_for_pc (bl->address),
12342 0);
28010a5d 12343 }
492d29ea 12344 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12345 {
12346 warning (_("failed to reevaluate internal exception condition "
12347 "for catchpoint %d: %s"),
12348 c->base.number, e.message);
849f2b52 12349 }
492d29ea 12350 END_CATCH
28010a5d
PA
12351 }
12352
b22e99fd 12353 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12354 }
12355
12356 do_cleanups (old_chain);
12357}
12358
12359/* Implement the DTOR method in the breakpoint_ops structure for all
12360 exception catchpoint kinds. */
12361
12362static void
761269c8 12363dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12364{
12365 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12366
12367 xfree (c->excep_string);
348d480f 12368
2060206e 12369 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12370}
12371
12372/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12373 structure for all exception catchpoint kinds. */
12374
12375static struct bp_location *
761269c8 12376allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12377 struct breakpoint *self)
12378{
12379 struct ada_catchpoint_location *loc;
12380
4d01a485 12381 loc = new ada_catchpoint_location ();
28010a5d
PA
12382 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12383 loc->excep_cond_expr = NULL;
12384 return &loc->base;
12385}
12386
12387/* Implement the RE_SET method in the breakpoint_ops structure for all
12388 exception catchpoint kinds. */
12389
12390static void
761269c8 12391re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12392{
12393 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12394
12395 /* Call the base class's method. This updates the catchpoint's
12396 locations. */
2060206e 12397 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12398
12399 /* Reparse the exception conditional expressions. One for each
12400 location. */
12401 create_excep_cond_exprs (c);
12402}
12403
12404/* Returns true if we should stop for this breakpoint hit. If the
12405 user specified a specific exception, we only want to cause a stop
12406 if the program thrown that exception. */
12407
12408static int
12409should_stop_exception (const struct bp_location *bl)
12410{
12411 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12412 const struct ada_catchpoint_location *ada_loc
12413 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12414 int stop;
12415
12416 /* With no specific exception, should always stop. */
12417 if (c->excep_string == NULL)
12418 return 1;
12419
12420 if (ada_loc->excep_cond_expr == NULL)
12421 {
12422 /* We will have a NULL expression if back when we were creating
12423 the expressions, this location's had failed to parse. */
12424 return 1;
12425 }
12426
12427 stop = 1;
492d29ea 12428 TRY
28010a5d
PA
12429 {
12430 struct value *mark;
12431
12432 mark = value_mark ();
4d01a485 12433 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12434 value_free_to_mark (mark);
12435 }
492d29ea
PA
12436 CATCH (ex, RETURN_MASK_ALL)
12437 {
12438 exception_fprintf (gdb_stderr, ex,
12439 _("Error in testing exception condition:\n"));
12440 }
12441 END_CATCH
12442
28010a5d
PA
12443 return stop;
12444}
12445
12446/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12447 for all exception catchpoint kinds. */
12448
12449static void
761269c8 12450check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12451{
12452 bs->stop = should_stop_exception (bs->bp_location_at);
12453}
12454
f7f9143b
JB
12455/* Implement the PRINT_IT method in the breakpoint_ops structure
12456 for all exception catchpoint kinds. */
12457
12458static enum print_stop_action
761269c8 12459print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12460{
79a45e25 12461 struct ui_out *uiout = current_uiout;
348d480f
PA
12462 struct breakpoint *b = bs->breakpoint_at;
12463
956a9fb9 12464 annotate_catchpoint (b->number);
f7f9143b 12465
112e8700 12466 if (uiout->is_mi_like_p ())
f7f9143b 12467 {
112e8700 12468 uiout->field_string ("reason",
956a9fb9 12469 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12470 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12471 }
12472
112e8700
SM
12473 uiout->text (b->disposition == disp_del
12474 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12475 uiout->field_int ("bkptno", b->number);
12476 uiout->text (", ");
f7f9143b 12477
45db7c09
PA
12478 /* ada_exception_name_addr relies on the selected frame being the
12479 current frame. Need to do this here because this function may be
12480 called more than once when printing a stop, and below, we'll
12481 select the first frame past the Ada run-time (see
12482 ada_find_printable_frame). */
12483 select_frame (get_current_frame ());
12484
f7f9143b
JB
12485 switch (ex)
12486 {
761269c8
JB
12487 case ada_catch_exception:
12488 case ada_catch_exception_unhandled:
956a9fb9
JB
12489 {
12490 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12491 char exception_name[256];
12492
12493 if (addr != 0)
12494 {
c714b426
PA
12495 read_memory (addr, (gdb_byte *) exception_name,
12496 sizeof (exception_name) - 1);
956a9fb9
JB
12497 exception_name [sizeof (exception_name) - 1] = '\0';
12498 }
12499 else
12500 {
12501 /* For some reason, we were unable to read the exception
12502 name. This could happen if the Runtime was compiled
12503 without debugging info, for instance. In that case,
12504 just replace the exception name by the generic string
12505 "exception" - it will read as "an exception" in the
12506 notification we are about to print. */
967cff16 12507 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12508 }
12509 /* In the case of unhandled exception breakpoints, we print
12510 the exception name as "unhandled EXCEPTION_NAME", to make
12511 it clearer to the user which kind of catchpoint just got
12512 hit. We used ui_out_text to make sure that this extra
12513 info does not pollute the exception name in the MI case. */
761269c8 12514 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12515 uiout->text ("unhandled ");
12516 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12517 }
12518 break;
761269c8 12519 case ada_catch_assert:
956a9fb9
JB
12520 /* In this case, the name of the exception is not really
12521 important. Just print "failed assertion" to make it clearer
12522 that his program just hit an assertion-failure catchpoint.
12523 We used ui_out_text because this info does not belong in
12524 the MI output. */
112e8700 12525 uiout->text ("failed assertion");
956a9fb9 12526 break;
f7f9143b 12527 }
112e8700 12528 uiout->text (" at ");
956a9fb9 12529 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12530
12531 return PRINT_SRC_AND_LOC;
12532}
12533
12534/* Implement the PRINT_ONE method in the breakpoint_ops structure
12535 for all exception catchpoint kinds. */
12536
12537static void
761269c8 12538print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12539 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12540{
79a45e25 12541 struct ui_out *uiout = current_uiout;
28010a5d 12542 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12543 struct value_print_options opts;
12544
12545 get_user_print_options (&opts);
12546 if (opts.addressprint)
f7f9143b
JB
12547 {
12548 annotate_field (4);
112e8700 12549 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12550 }
12551
12552 annotate_field (5);
a6d9a66e 12553 *last_loc = b->loc;
f7f9143b
JB
12554 switch (ex)
12555 {
761269c8 12556 case ada_catch_exception:
28010a5d 12557 if (c->excep_string != NULL)
f7f9143b 12558 {
28010a5d
PA
12559 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12560
112e8700 12561 uiout->field_string ("what", msg);
f7f9143b
JB
12562 xfree (msg);
12563 }
12564 else
112e8700 12565 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12566
12567 break;
12568
761269c8 12569 case ada_catch_exception_unhandled:
112e8700 12570 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12571 break;
12572
761269c8 12573 case ada_catch_assert:
112e8700 12574 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12575 break;
12576
12577 default:
12578 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12579 break;
12580 }
12581}
12582
12583/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12584 for all exception catchpoint kinds. */
12585
12586static void
761269c8 12587print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12588 struct breakpoint *b)
12589{
28010a5d 12590 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12591 struct ui_out *uiout = current_uiout;
28010a5d 12592
112e8700 12593 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12594 : _("Catchpoint "));
112e8700
SM
12595 uiout->field_int ("bkptno", b->number);
12596 uiout->text (": ");
00eb2c4a 12597
f7f9143b
JB
12598 switch (ex)
12599 {
761269c8 12600 case ada_catch_exception:
28010a5d 12601 if (c->excep_string != NULL)
00eb2c4a
JB
12602 {
12603 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12604 struct cleanup *old_chain = make_cleanup (xfree, info);
12605
112e8700 12606 uiout->text (info);
00eb2c4a
JB
12607 do_cleanups (old_chain);
12608 }
f7f9143b 12609 else
112e8700 12610 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12611 break;
12612
761269c8 12613 case ada_catch_exception_unhandled:
112e8700 12614 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12615 break;
12616
761269c8 12617 case ada_catch_assert:
112e8700 12618 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12619 break;
12620
12621 default:
12622 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12623 break;
12624 }
12625}
12626
6149aea9
PA
12627/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12628 for all exception catchpoint kinds. */
12629
12630static void
761269c8 12631print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12632 struct breakpoint *b, struct ui_file *fp)
12633{
28010a5d
PA
12634 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12635
6149aea9
PA
12636 switch (ex)
12637 {
761269c8 12638 case ada_catch_exception:
6149aea9 12639 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12640 if (c->excep_string != NULL)
12641 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12642 break;
12643
761269c8 12644 case ada_catch_exception_unhandled:
78076abc 12645 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12646 break;
12647
761269c8 12648 case ada_catch_assert:
6149aea9
PA
12649 fprintf_filtered (fp, "catch assert");
12650 break;
12651
12652 default:
12653 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12654 }
d9b3f62e 12655 print_recreate_thread (b, fp);
6149aea9
PA
12656}
12657
f7f9143b
JB
12658/* Virtual table for "catch exception" breakpoints. */
12659
28010a5d
PA
12660static void
12661dtor_catch_exception (struct breakpoint *b)
12662{
761269c8 12663 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12664}
12665
12666static struct bp_location *
12667allocate_location_catch_exception (struct breakpoint *self)
12668{
761269c8 12669 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12670}
12671
12672static void
12673re_set_catch_exception (struct breakpoint *b)
12674{
761269c8 12675 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12676}
12677
12678static void
12679check_status_catch_exception (bpstat bs)
12680{
761269c8 12681 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12682}
12683
f7f9143b 12684static enum print_stop_action
348d480f 12685print_it_catch_exception (bpstat bs)
f7f9143b 12686{
761269c8 12687 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12688}
12689
12690static void
a6d9a66e 12691print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12692{
761269c8 12693 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12694}
12695
12696static void
12697print_mention_catch_exception (struct breakpoint *b)
12698{
761269c8 12699 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12700}
12701
6149aea9
PA
12702static void
12703print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12704{
761269c8 12705 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12706}
12707
2060206e 12708static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12709
12710/* Virtual table for "catch exception unhandled" breakpoints. */
12711
28010a5d
PA
12712static void
12713dtor_catch_exception_unhandled (struct breakpoint *b)
12714{
761269c8 12715 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12716}
12717
12718static struct bp_location *
12719allocate_location_catch_exception_unhandled (struct breakpoint *self)
12720{
761269c8 12721 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12722}
12723
12724static void
12725re_set_catch_exception_unhandled (struct breakpoint *b)
12726{
761269c8 12727 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12728}
12729
12730static void
12731check_status_catch_exception_unhandled (bpstat bs)
12732{
761269c8 12733 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12734}
12735
f7f9143b 12736static enum print_stop_action
348d480f 12737print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12738{
761269c8 12739 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12740}
12741
12742static void
a6d9a66e
UW
12743print_one_catch_exception_unhandled (struct breakpoint *b,
12744 struct bp_location **last_loc)
f7f9143b 12745{
761269c8 12746 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12747}
12748
12749static void
12750print_mention_catch_exception_unhandled (struct breakpoint *b)
12751{
761269c8 12752 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12753}
12754
6149aea9
PA
12755static void
12756print_recreate_catch_exception_unhandled (struct breakpoint *b,
12757 struct ui_file *fp)
12758{
761269c8 12759 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12760}
12761
2060206e 12762static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12763
12764/* Virtual table for "catch assert" breakpoints. */
12765
28010a5d
PA
12766static void
12767dtor_catch_assert (struct breakpoint *b)
12768{
761269c8 12769 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12770}
12771
12772static struct bp_location *
12773allocate_location_catch_assert (struct breakpoint *self)
12774{
761269c8 12775 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12776}
12777
12778static void
12779re_set_catch_assert (struct breakpoint *b)
12780{
761269c8 12781 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12782}
12783
12784static void
12785check_status_catch_assert (bpstat bs)
12786{
761269c8 12787 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12788}
12789
f7f9143b 12790static enum print_stop_action
348d480f 12791print_it_catch_assert (bpstat bs)
f7f9143b 12792{
761269c8 12793 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12794}
12795
12796static void
a6d9a66e 12797print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12798{
761269c8 12799 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12800}
12801
12802static void
12803print_mention_catch_assert (struct breakpoint *b)
12804{
761269c8 12805 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12806}
12807
6149aea9
PA
12808static void
12809print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12810{
761269c8 12811 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12812}
12813
2060206e 12814static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12815
f7f9143b
JB
12816/* Return a newly allocated copy of the first space-separated token
12817 in ARGSP, and then adjust ARGSP to point immediately after that
12818 token.
12819
12820 Return NULL if ARGPS does not contain any more tokens. */
12821
12822static char *
12823ada_get_next_arg (char **argsp)
12824{
12825 char *args = *argsp;
12826 char *end;
12827 char *result;
12828
0fcd72ba 12829 args = skip_spaces (args);
f7f9143b
JB
12830 if (args[0] == '\0')
12831 return NULL; /* No more arguments. */
12832
12833 /* Find the end of the current argument. */
12834
0fcd72ba 12835 end = skip_to_space (args);
f7f9143b
JB
12836
12837 /* Adjust ARGSP to point to the start of the next argument. */
12838
12839 *argsp = end;
12840
12841 /* Make a copy of the current argument and return it. */
12842
224c3ddb 12843 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12844 strncpy (result, args, end - args);
12845 result[end - args] = '\0';
12846
12847 return result;
12848}
12849
12850/* Split the arguments specified in a "catch exception" command.
12851 Set EX to the appropriate catchpoint type.
28010a5d 12852 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12853 specified by the user.
12854 If a condition is found at the end of the arguments, the condition
12855 expression is stored in COND_STRING (memory must be deallocated
12856 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12857
12858static void
12859catch_ada_exception_command_split (char *args,
761269c8 12860 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12861 char **excep_string,
12862 char **cond_string)
f7f9143b
JB
12863{
12864 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12865 char *exception_name;
5845583d 12866 char *cond = NULL;
f7f9143b
JB
12867
12868 exception_name = ada_get_next_arg (&args);
5845583d
JB
12869 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12870 {
12871 /* This is not an exception name; this is the start of a condition
12872 expression for a catchpoint on all exceptions. So, "un-get"
12873 this token, and set exception_name to NULL. */
12874 xfree (exception_name);
12875 exception_name = NULL;
12876 args -= 2;
12877 }
f7f9143b
JB
12878 make_cleanup (xfree, exception_name);
12879
5845583d 12880 /* Check to see if we have a condition. */
f7f9143b 12881
0fcd72ba 12882 args = skip_spaces (args);
61012eef 12883 if (startswith (args, "if")
5845583d
JB
12884 && (isspace (args[2]) || args[2] == '\0'))
12885 {
12886 args += 2;
12887 args = skip_spaces (args);
12888
12889 if (args[0] == '\0')
12890 error (_("Condition missing after `if' keyword"));
12891 cond = xstrdup (args);
12892 make_cleanup (xfree, cond);
12893
12894 args += strlen (args);
12895 }
12896
12897 /* Check that we do not have any more arguments. Anything else
12898 is unexpected. */
f7f9143b
JB
12899
12900 if (args[0] != '\0')
12901 error (_("Junk at end of expression"));
12902
12903 discard_cleanups (old_chain);
12904
12905 if (exception_name == NULL)
12906 {
12907 /* Catch all exceptions. */
761269c8 12908 *ex = ada_catch_exception;
28010a5d 12909 *excep_string = NULL;
f7f9143b
JB
12910 }
12911 else if (strcmp (exception_name, "unhandled") == 0)
12912 {
12913 /* Catch unhandled exceptions. */
761269c8 12914 *ex = ada_catch_exception_unhandled;
28010a5d 12915 *excep_string = NULL;
f7f9143b
JB
12916 }
12917 else
12918 {
12919 /* Catch a specific exception. */
761269c8 12920 *ex = ada_catch_exception;
28010a5d 12921 *excep_string = exception_name;
f7f9143b 12922 }
5845583d 12923 *cond_string = cond;
f7f9143b
JB
12924}
12925
12926/* Return the name of the symbol on which we should break in order to
12927 implement a catchpoint of the EX kind. */
12928
12929static const char *
761269c8 12930ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12931{
3eecfa55
JB
12932 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12933
12934 gdb_assert (data->exception_info != NULL);
0259addd 12935
f7f9143b
JB
12936 switch (ex)
12937 {
761269c8 12938 case ada_catch_exception:
3eecfa55 12939 return (data->exception_info->catch_exception_sym);
f7f9143b 12940 break;
761269c8 12941 case ada_catch_exception_unhandled:
3eecfa55 12942 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12943 break;
761269c8 12944 case ada_catch_assert:
3eecfa55 12945 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12946 break;
12947 default:
12948 internal_error (__FILE__, __LINE__,
12949 _("unexpected catchpoint kind (%d)"), ex);
12950 }
12951}
12952
12953/* Return the breakpoint ops "virtual table" used for catchpoints
12954 of the EX kind. */
12955
c0a91b2b 12956static const struct breakpoint_ops *
761269c8 12957ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12958{
12959 switch (ex)
12960 {
761269c8 12961 case ada_catch_exception:
f7f9143b
JB
12962 return (&catch_exception_breakpoint_ops);
12963 break;
761269c8 12964 case ada_catch_exception_unhandled:
f7f9143b
JB
12965 return (&catch_exception_unhandled_breakpoint_ops);
12966 break;
761269c8 12967 case ada_catch_assert:
f7f9143b
JB
12968 return (&catch_assert_breakpoint_ops);
12969 break;
12970 default:
12971 internal_error (__FILE__, __LINE__,
12972 _("unexpected catchpoint kind (%d)"), ex);
12973 }
12974}
12975
12976/* Return the condition that will be used to match the current exception
12977 being raised with the exception that the user wants to catch. This
12978 assumes that this condition is used when the inferior just triggered
12979 an exception catchpoint.
12980
12981 The string returned is a newly allocated string that needs to be
12982 deallocated later. */
12983
12984static char *
28010a5d 12985ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12986{
3d0b0fa3
JB
12987 int i;
12988
0963b4bd 12989 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12990 runtime units that have been compiled without debugging info; if
28010a5d 12991 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12992 exception (e.g. "constraint_error") then, during the evaluation
12993 of the condition expression, the symbol lookup on this name would
0963b4bd 12994 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12995 may then be set only on user-defined exceptions which have the
12996 same not-fully-qualified name (e.g. my_package.constraint_error).
12997
12998 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12999 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13000 exception constraint_error" is rewritten into "catch exception
13001 standard.constraint_error".
13002
13003 If an exception named contraint_error is defined in another package of
13004 the inferior program, then the only way to specify this exception as a
13005 breakpoint condition is to use its fully-qualified named:
13006 e.g. my_package.constraint_error. */
13007
13008 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13009 {
28010a5d 13010 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
13011 {
13012 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13013 excep_string);
3d0b0fa3
JB
13014 }
13015 }
28010a5d 13016 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13017}
13018
13019/* Return the symtab_and_line that should be used to insert an exception
13020 catchpoint of the TYPE kind.
13021
28010a5d
PA
13022 EXCEP_STRING should contain the name of a specific exception that
13023 the catchpoint should catch, or NULL otherwise.
f7f9143b 13024
28010a5d
PA
13025 ADDR_STRING returns the name of the function where the real
13026 breakpoint that implements the catchpoints is set, depending on the
13027 type of catchpoint we need to create. */
f7f9143b
JB
13028
13029static struct symtab_and_line
761269c8 13030ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 13031 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13032{
13033 const char *sym_name;
13034 struct symbol *sym;
f7f9143b 13035
0259addd
JB
13036 /* First, find out which exception support info to use. */
13037 ada_exception_support_info_sniffer ();
13038
13039 /* Then lookup the function on which we will break in order to catch
f7f9143b 13040 the Ada exceptions requested by the user. */
f7f9143b
JB
13041 sym_name = ada_exception_sym_name (ex);
13042 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13043
f17011e0
JB
13044 /* We can assume that SYM is not NULL at this stage. If the symbol
13045 did not exist, ada_exception_support_info_sniffer would have
13046 raised an exception.
f7f9143b 13047
f17011e0
JB
13048 Also, ada_exception_support_info_sniffer should have already
13049 verified that SYM is a function symbol. */
13050 gdb_assert (sym != NULL);
13051 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13052
13053 /* Set ADDR_STRING. */
f7f9143b
JB
13054 *addr_string = xstrdup (sym_name);
13055
f7f9143b 13056 /* Set OPS. */
4b9eee8c 13057 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13058
f17011e0 13059 return find_function_start_sal (sym, 1);
f7f9143b
JB
13060}
13061
b4a5b78b 13062/* Create an Ada exception catchpoint.
f7f9143b 13063
b4a5b78b 13064 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13065
2df4d1d5
JB
13066 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13067 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13068 of the exception to which this catchpoint applies. When not NULL,
13069 the string must be allocated on the heap, and its deallocation
13070 is no longer the responsibility of the caller.
13071
13072 COND_STRING, if not NULL, is the catchpoint condition. This string
13073 must be allocated on the heap, and its deallocation is no longer
13074 the responsibility of the caller.
f7f9143b 13075
b4a5b78b
JB
13076 TEMPFLAG, if nonzero, means that the underlying breakpoint
13077 should be temporary.
28010a5d 13078
b4a5b78b 13079 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13080
349774ef 13081void
28010a5d 13082create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13083 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13084 char *excep_string,
5845583d 13085 char *cond_string,
28010a5d 13086 int tempflag,
349774ef 13087 int disabled,
28010a5d
PA
13088 int from_tty)
13089{
13090 struct ada_catchpoint *c;
b4a5b78b
JB
13091 char *addr_string = NULL;
13092 const struct breakpoint_ops *ops = NULL;
13093 struct symtab_and_line sal
13094 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13095
4d01a485 13096 c = new ada_catchpoint ();
28010a5d 13097 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13098 ops, tempflag, disabled, from_tty);
28010a5d
PA
13099 c->excep_string = excep_string;
13100 create_excep_cond_exprs (c);
5845583d
JB
13101 if (cond_string != NULL)
13102 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13103 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13104}
13105
9ac4176b
PA
13106/* Implement the "catch exception" command. */
13107
13108static void
13109catch_ada_exception_command (char *arg, int from_tty,
13110 struct cmd_list_element *command)
13111{
13112 struct gdbarch *gdbarch = get_current_arch ();
13113 int tempflag;
761269c8 13114 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13115 char *excep_string = NULL;
5845583d 13116 char *cond_string = NULL;
9ac4176b
PA
13117
13118 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13119
13120 if (!arg)
13121 arg = "";
b4a5b78b
JB
13122 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13123 &cond_string);
13124 create_ada_exception_catchpoint (gdbarch, ex_kind,
13125 excep_string, cond_string,
349774ef
JB
13126 tempflag, 1 /* enabled */,
13127 from_tty);
9ac4176b
PA
13128}
13129
b4a5b78b 13130/* Split the arguments specified in a "catch assert" command.
5845583d 13131
b4a5b78b
JB
13132 ARGS contains the command's arguments (or the empty string if
13133 no arguments were passed).
5845583d
JB
13134
13135 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13136 (the memory needs to be deallocated after use). */
5845583d 13137
b4a5b78b
JB
13138static void
13139catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13140{
5845583d 13141 args = skip_spaces (args);
f7f9143b 13142
5845583d 13143 /* Check whether a condition was provided. */
61012eef 13144 if (startswith (args, "if")
5845583d 13145 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13146 {
5845583d 13147 args += 2;
0fcd72ba 13148 args = skip_spaces (args);
5845583d
JB
13149 if (args[0] == '\0')
13150 error (_("condition missing after `if' keyword"));
13151 *cond_string = xstrdup (args);
f7f9143b
JB
13152 }
13153
5845583d
JB
13154 /* Otherwise, there should be no other argument at the end of
13155 the command. */
13156 else if (args[0] != '\0')
13157 error (_("Junk at end of arguments."));
f7f9143b
JB
13158}
13159
9ac4176b
PA
13160/* Implement the "catch assert" command. */
13161
13162static void
13163catch_assert_command (char *arg, int from_tty,
13164 struct cmd_list_element *command)
13165{
13166 struct gdbarch *gdbarch = get_current_arch ();
13167 int tempflag;
5845583d 13168 char *cond_string = NULL;
9ac4176b
PA
13169
13170 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13171
13172 if (!arg)
13173 arg = "";
b4a5b78b 13174 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13175 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13176 NULL, cond_string,
349774ef
JB
13177 tempflag, 1 /* enabled */,
13178 from_tty);
9ac4176b 13179}
778865d3
JB
13180
13181/* Return non-zero if the symbol SYM is an Ada exception object. */
13182
13183static int
13184ada_is_exception_sym (struct symbol *sym)
13185{
13186 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13187
13188 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13189 && SYMBOL_CLASS (sym) != LOC_BLOCK
13190 && SYMBOL_CLASS (sym) != LOC_CONST
13191 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13192 && type_name != NULL && strcmp (type_name, "exception") == 0);
13193}
13194
13195/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13196 Ada exception object. This matches all exceptions except the ones
13197 defined by the Ada language. */
13198
13199static int
13200ada_is_non_standard_exception_sym (struct symbol *sym)
13201{
13202 int i;
13203
13204 if (!ada_is_exception_sym (sym))
13205 return 0;
13206
13207 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13208 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13209 return 0; /* A standard exception. */
13210
13211 /* Numeric_Error is also a standard exception, so exclude it.
13212 See the STANDARD_EXC description for more details as to why
13213 this exception is not listed in that array. */
13214 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13215 return 0;
13216
13217 return 1;
13218}
13219
13220/* A helper function for qsort, comparing two struct ada_exc_info
13221 objects.
13222
13223 The comparison is determined first by exception name, and then
13224 by exception address. */
13225
13226static int
13227compare_ada_exception_info (const void *a, const void *b)
13228{
13229 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13230 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13231 int result;
13232
13233 result = strcmp (exc_a->name, exc_b->name);
13234 if (result != 0)
13235 return result;
13236
13237 if (exc_a->addr < exc_b->addr)
13238 return -1;
13239 if (exc_a->addr > exc_b->addr)
13240 return 1;
13241
13242 return 0;
13243}
13244
13245/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13246 routine, but keeping the first SKIP elements untouched.
13247
13248 All duplicates are also removed. */
13249
13250static void
13251sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13252 int skip)
13253{
13254 struct ada_exc_info *to_sort
13255 = VEC_address (ada_exc_info, *exceptions) + skip;
13256 int to_sort_len
13257 = VEC_length (ada_exc_info, *exceptions) - skip;
13258 int i, j;
13259
13260 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13261 compare_ada_exception_info);
13262
13263 for (i = 1, j = 1; i < to_sort_len; i++)
13264 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13265 to_sort[j++] = to_sort[i];
13266 to_sort_len = j;
13267 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13268}
13269
13270/* A function intended as the "name_matcher" callback in the struct
13271 quick_symbol_functions' expand_symtabs_matching method.
13272
13273 SEARCH_NAME is the symbol's search name.
13274
13275 If USER_DATA is not NULL, it is a pointer to a regext_t object
13276 used to match the symbol (by natural name). Otherwise, when USER_DATA
13277 is null, no filtering is performed, and all symbols are a positive
13278 match. */
13279
13280static int
13281ada_exc_search_name_matches (const char *search_name, void *user_data)
13282{
9a3c8263 13283 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13284
13285 if (preg == NULL)
13286 return 1;
13287
13288 /* In Ada, the symbol "search name" is a linkage name, whereas
13289 the regular expression used to do the matching refers to
13290 the natural name. So match against the decoded name. */
13291 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13292}
13293
13294/* Add all exceptions defined by the Ada standard whose name match
13295 a regular expression.
13296
13297 If PREG is not NULL, then this regexp_t object is used to
13298 perform the symbol name matching. Otherwise, no name-based
13299 filtering is performed.
13300
13301 EXCEPTIONS is a vector of exceptions to which matching exceptions
13302 gets pushed. */
13303
13304static void
13305ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13306{
13307 int i;
13308
13309 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13310 {
13311 if (preg == NULL
13312 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13313 {
13314 struct bound_minimal_symbol msymbol
13315 = ada_lookup_simple_minsym (standard_exc[i]);
13316
13317 if (msymbol.minsym != NULL)
13318 {
13319 struct ada_exc_info info
77e371c0 13320 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13321
13322 VEC_safe_push (ada_exc_info, *exceptions, &info);
13323 }
13324 }
13325 }
13326}
13327
13328/* Add all Ada exceptions defined locally and accessible from the given
13329 FRAME.
13330
13331 If PREG is not NULL, then this regexp_t object is used to
13332 perform the symbol name matching. Otherwise, no name-based
13333 filtering is performed.
13334
13335 EXCEPTIONS is a vector of exceptions to which matching exceptions
13336 gets pushed. */
13337
13338static void
13339ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13340 VEC(ada_exc_info) **exceptions)
13341{
3977b71f 13342 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13343
13344 while (block != 0)
13345 {
13346 struct block_iterator iter;
13347 struct symbol *sym;
13348
13349 ALL_BLOCK_SYMBOLS (block, iter, sym)
13350 {
13351 switch (SYMBOL_CLASS (sym))
13352 {
13353 case LOC_TYPEDEF:
13354 case LOC_BLOCK:
13355 case LOC_CONST:
13356 break;
13357 default:
13358 if (ada_is_exception_sym (sym))
13359 {
13360 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13361 SYMBOL_VALUE_ADDRESS (sym)};
13362
13363 VEC_safe_push (ada_exc_info, *exceptions, &info);
13364 }
13365 }
13366 }
13367 if (BLOCK_FUNCTION (block) != NULL)
13368 break;
13369 block = BLOCK_SUPERBLOCK (block);
13370 }
13371}
13372
13373/* Add all exceptions defined globally whose name name match
13374 a regular expression, excluding standard exceptions.
13375
13376 The reason we exclude standard exceptions is that they need
13377 to be handled separately: Standard exceptions are defined inside
13378 a runtime unit which is normally not compiled with debugging info,
13379 and thus usually do not show up in our symbol search. However,
13380 if the unit was in fact built with debugging info, we need to
13381 exclude them because they would duplicate the entry we found
13382 during the special loop that specifically searches for those
13383 standard exceptions.
13384
13385 If PREG is not NULL, then this regexp_t object is used to
13386 perform the symbol name matching. Otherwise, no name-based
13387 filtering is performed.
13388
13389 EXCEPTIONS is a vector of exceptions to which matching exceptions
13390 gets pushed. */
13391
13392static void
13393ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13394{
13395 struct objfile *objfile;
43f3e411 13396 struct compunit_symtab *s;
778865d3 13397
276d885b 13398 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13399 VARIABLES_DOMAIN, preg);
778865d3 13400
43f3e411 13401 ALL_COMPUNITS (objfile, s)
778865d3 13402 {
43f3e411 13403 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13404 int i;
13405
13406 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13407 {
13408 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13409 struct block_iterator iter;
13410 struct symbol *sym;
13411
13412 ALL_BLOCK_SYMBOLS (b, iter, sym)
13413 if (ada_is_non_standard_exception_sym (sym)
13414 && (preg == NULL
13415 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13416 0, NULL, 0) == 0))
13417 {
13418 struct ada_exc_info info
13419 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13420
13421 VEC_safe_push (ada_exc_info, *exceptions, &info);
13422 }
13423 }
13424 }
13425}
13426
13427/* Implements ada_exceptions_list with the regular expression passed
13428 as a regex_t, rather than a string.
13429
13430 If not NULL, PREG is used to filter out exceptions whose names
13431 do not match. Otherwise, all exceptions are listed. */
13432
13433static VEC(ada_exc_info) *
13434ada_exceptions_list_1 (regex_t *preg)
13435{
13436 VEC(ada_exc_info) *result = NULL;
13437 struct cleanup *old_chain
13438 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13439 int prev_len;
13440
13441 /* First, list the known standard exceptions. These exceptions
13442 need to be handled separately, as they are usually defined in
13443 runtime units that have been compiled without debugging info. */
13444
13445 ada_add_standard_exceptions (preg, &result);
13446
13447 /* Next, find all exceptions whose scope is local and accessible
13448 from the currently selected frame. */
13449
13450 if (has_stack_frames ())
13451 {
13452 prev_len = VEC_length (ada_exc_info, result);
13453 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13454 &result);
13455 if (VEC_length (ada_exc_info, result) > prev_len)
13456 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13457 }
13458
13459 /* Add all exceptions whose scope is global. */
13460
13461 prev_len = VEC_length (ada_exc_info, result);
13462 ada_add_global_exceptions (preg, &result);
13463 if (VEC_length (ada_exc_info, result) > prev_len)
13464 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13465
13466 discard_cleanups (old_chain);
13467 return result;
13468}
13469
13470/* Return a vector of ada_exc_info.
13471
13472 If REGEXP is NULL, all exceptions are included in the result.
13473 Otherwise, it should contain a valid regular expression,
13474 and only the exceptions whose names match that regular expression
13475 are included in the result.
13476
13477 The exceptions are sorted in the following order:
13478 - Standard exceptions (defined by the Ada language), in
13479 alphabetical order;
13480 - Exceptions only visible from the current frame, in
13481 alphabetical order;
13482 - Exceptions whose scope is global, in alphabetical order. */
13483
13484VEC(ada_exc_info) *
13485ada_exceptions_list (const char *regexp)
13486{
13487 VEC(ada_exc_info) *result = NULL;
13488 struct cleanup *old_chain = NULL;
13489 regex_t reg;
13490
13491 if (regexp != NULL)
13492 old_chain = compile_rx_or_error (&reg, regexp,
13493 _("invalid regular expression"));
13494
13495 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13496
13497 if (old_chain != NULL)
13498 do_cleanups (old_chain);
13499 return result;
13500}
13501
13502/* Implement the "info exceptions" command. */
13503
13504static void
13505info_exceptions_command (char *regexp, int from_tty)
13506{
13507 VEC(ada_exc_info) *exceptions;
13508 struct cleanup *cleanup;
13509 struct gdbarch *gdbarch = get_current_arch ();
13510 int ix;
13511 struct ada_exc_info *info;
13512
13513 exceptions = ada_exceptions_list (regexp);
13514 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13515
13516 if (regexp != NULL)
13517 printf_filtered
13518 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13519 else
13520 printf_filtered (_("All defined Ada exceptions:\n"));
13521
13522 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13523 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13524
13525 do_cleanups (cleanup);
13526}
13527
4c4b4cd2
PH
13528 /* Operators */
13529/* Information about operators given special treatment in functions
13530 below. */
13531/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13532
13533#define ADA_OPERATORS \
13534 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13535 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13536 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13537 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13538 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13539 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13540 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13541 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13542 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13543 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13544 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13545 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13546 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13547 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13548 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13549 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13550 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13551 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13552 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13553
13554static void
554794dc
SDJ
13555ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13556 int *argsp)
4c4b4cd2
PH
13557{
13558 switch (exp->elts[pc - 1].opcode)
13559 {
76a01679 13560 default:
4c4b4cd2
PH
13561 operator_length_standard (exp, pc, oplenp, argsp);
13562 break;
13563
13564#define OP_DEFN(op, len, args, binop) \
13565 case op: *oplenp = len; *argsp = args; break;
13566 ADA_OPERATORS;
13567#undef OP_DEFN
52ce6436
PH
13568
13569 case OP_AGGREGATE:
13570 *oplenp = 3;
13571 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13572 break;
13573
13574 case OP_CHOICES:
13575 *oplenp = 3;
13576 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13577 break;
4c4b4cd2
PH
13578 }
13579}
13580
c0201579
JK
13581/* Implementation of the exp_descriptor method operator_check. */
13582
13583static int
13584ada_operator_check (struct expression *exp, int pos,
13585 int (*objfile_func) (struct objfile *objfile, void *data),
13586 void *data)
13587{
13588 const union exp_element *const elts = exp->elts;
13589 struct type *type = NULL;
13590
13591 switch (elts[pos].opcode)
13592 {
13593 case UNOP_IN_RANGE:
13594 case UNOP_QUAL:
13595 type = elts[pos + 1].type;
13596 break;
13597
13598 default:
13599 return operator_check_standard (exp, pos, objfile_func, data);
13600 }
13601
13602 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13603
13604 if (type && TYPE_OBJFILE (type)
13605 && (*objfile_func) (TYPE_OBJFILE (type), data))
13606 return 1;
13607
13608 return 0;
13609}
13610
4c4b4cd2
PH
13611static char *
13612ada_op_name (enum exp_opcode opcode)
13613{
13614 switch (opcode)
13615 {
76a01679 13616 default:
4c4b4cd2 13617 return op_name_standard (opcode);
52ce6436 13618
4c4b4cd2
PH
13619#define OP_DEFN(op, len, args, binop) case op: return #op;
13620 ADA_OPERATORS;
13621#undef OP_DEFN
52ce6436
PH
13622
13623 case OP_AGGREGATE:
13624 return "OP_AGGREGATE";
13625 case OP_CHOICES:
13626 return "OP_CHOICES";
13627 case OP_NAME:
13628 return "OP_NAME";
4c4b4cd2
PH
13629 }
13630}
13631
13632/* As for operator_length, but assumes PC is pointing at the first
13633 element of the operator, and gives meaningful results only for the
52ce6436 13634 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13635
13636static void
76a01679
JB
13637ada_forward_operator_length (struct expression *exp, int pc,
13638 int *oplenp, int *argsp)
4c4b4cd2 13639{
76a01679 13640 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13641 {
13642 default:
13643 *oplenp = *argsp = 0;
13644 break;
52ce6436 13645
4c4b4cd2
PH
13646#define OP_DEFN(op, len, args, binop) \
13647 case op: *oplenp = len; *argsp = args; break;
13648 ADA_OPERATORS;
13649#undef OP_DEFN
52ce6436
PH
13650
13651 case OP_AGGREGATE:
13652 *oplenp = 3;
13653 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13654 break;
13655
13656 case OP_CHOICES:
13657 *oplenp = 3;
13658 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13659 break;
13660
13661 case OP_STRING:
13662 case OP_NAME:
13663 {
13664 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13665
52ce6436
PH
13666 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13667 *argsp = 0;
13668 break;
13669 }
4c4b4cd2
PH
13670 }
13671}
13672
13673static int
13674ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13675{
13676 enum exp_opcode op = exp->elts[elt].opcode;
13677 int oplen, nargs;
13678 int pc = elt;
13679 int i;
76a01679 13680
4c4b4cd2
PH
13681 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13682
76a01679 13683 switch (op)
4c4b4cd2 13684 {
76a01679 13685 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13686 case OP_ATR_FIRST:
13687 case OP_ATR_LAST:
13688 case OP_ATR_LENGTH:
13689 case OP_ATR_IMAGE:
13690 case OP_ATR_MAX:
13691 case OP_ATR_MIN:
13692 case OP_ATR_MODULUS:
13693 case OP_ATR_POS:
13694 case OP_ATR_SIZE:
13695 case OP_ATR_TAG:
13696 case OP_ATR_VAL:
13697 break;
13698
13699 case UNOP_IN_RANGE:
13700 case UNOP_QUAL:
323e0a4a
AC
13701 /* XXX: gdb_sprint_host_address, type_sprint */
13702 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13703 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13704 fprintf_filtered (stream, " (");
13705 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13706 fprintf_filtered (stream, ")");
13707 break;
13708 case BINOP_IN_BOUNDS:
52ce6436
PH
13709 fprintf_filtered (stream, " (%d)",
13710 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13711 break;
13712 case TERNOP_IN_RANGE:
13713 break;
13714
52ce6436
PH
13715 case OP_AGGREGATE:
13716 case OP_OTHERS:
13717 case OP_DISCRETE_RANGE:
13718 case OP_POSITIONAL:
13719 case OP_CHOICES:
13720 break;
13721
13722 case OP_NAME:
13723 case OP_STRING:
13724 {
13725 char *name = &exp->elts[elt + 2].string;
13726 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13727
52ce6436
PH
13728 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13729 break;
13730 }
13731
4c4b4cd2
PH
13732 default:
13733 return dump_subexp_body_standard (exp, stream, elt);
13734 }
13735
13736 elt += oplen;
13737 for (i = 0; i < nargs; i += 1)
13738 elt = dump_subexp (exp, stream, elt);
13739
13740 return elt;
13741}
13742
13743/* The Ada extension of print_subexp (q.v.). */
13744
76a01679
JB
13745static void
13746ada_print_subexp (struct expression *exp, int *pos,
13747 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13748{
52ce6436 13749 int oplen, nargs, i;
4c4b4cd2
PH
13750 int pc = *pos;
13751 enum exp_opcode op = exp->elts[pc].opcode;
13752
13753 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13754
52ce6436 13755 *pos += oplen;
4c4b4cd2
PH
13756 switch (op)
13757 {
13758 default:
52ce6436 13759 *pos -= oplen;
4c4b4cd2
PH
13760 print_subexp_standard (exp, pos, stream, prec);
13761 return;
13762
13763 case OP_VAR_VALUE:
4c4b4cd2
PH
13764 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13765 return;
13766
13767 case BINOP_IN_BOUNDS:
323e0a4a 13768 /* XXX: sprint_subexp */
4c4b4cd2 13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13770 fputs_filtered (" in ", stream);
4c4b4cd2 13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13772 fputs_filtered ("'range", stream);
4c4b4cd2 13773 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13774 fprintf_filtered (stream, "(%ld)",
13775 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13776 return;
13777
13778 case TERNOP_IN_RANGE:
4c4b4cd2 13779 if (prec >= PREC_EQUAL)
76a01679 13780 fputs_filtered ("(", stream);
323e0a4a 13781 /* XXX: sprint_subexp */
4c4b4cd2 13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13783 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13784 print_subexp (exp, pos, stream, PREC_EQUAL);
13785 fputs_filtered (" .. ", stream);
13786 print_subexp (exp, pos, stream, PREC_EQUAL);
13787 if (prec >= PREC_EQUAL)
76a01679
JB
13788 fputs_filtered (")", stream);
13789 return;
4c4b4cd2
PH
13790
13791 case OP_ATR_FIRST:
13792 case OP_ATR_LAST:
13793 case OP_ATR_LENGTH:
13794 case OP_ATR_IMAGE:
13795 case OP_ATR_MAX:
13796 case OP_ATR_MIN:
13797 case OP_ATR_MODULUS:
13798 case OP_ATR_POS:
13799 case OP_ATR_SIZE:
13800 case OP_ATR_TAG:
13801 case OP_ATR_VAL:
4c4b4cd2 13802 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13803 {
13804 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13805 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13806 &type_print_raw_options);
76a01679
JB
13807 *pos += 3;
13808 }
4c4b4cd2 13809 else
76a01679 13810 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13811 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13812 if (nargs > 1)
76a01679
JB
13813 {
13814 int tem;
5b4ee69b 13815
76a01679
JB
13816 for (tem = 1; tem < nargs; tem += 1)
13817 {
13818 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13819 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13820 }
13821 fputs_filtered (")", stream);
13822 }
4c4b4cd2 13823 return;
14f9c5c9 13824
4c4b4cd2 13825 case UNOP_QUAL:
4c4b4cd2
PH
13826 type_print (exp->elts[pc + 1].type, "", stream, 0);
13827 fputs_filtered ("'(", stream);
13828 print_subexp (exp, pos, stream, PREC_PREFIX);
13829 fputs_filtered (")", stream);
13830 return;
14f9c5c9 13831
4c4b4cd2 13832 case UNOP_IN_RANGE:
323e0a4a 13833 /* XXX: sprint_subexp */
4c4b4cd2 13834 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13835 fputs_filtered (" in ", stream);
79d43c61
TT
13836 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13837 &type_print_raw_options);
4c4b4cd2 13838 return;
52ce6436
PH
13839
13840 case OP_DISCRETE_RANGE:
13841 print_subexp (exp, pos, stream, PREC_SUFFIX);
13842 fputs_filtered ("..", stream);
13843 print_subexp (exp, pos, stream, PREC_SUFFIX);
13844 return;
13845
13846 case OP_OTHERS:
13847 fputs_filtered ("others => ", stream);
13848 print_subexp (exp, pos, stream, PREC_SUFFIX);
13849 return;
13850
13851 case OP_CHOICES:
13852 for (i = 0; i < nargs-1; i += 1)
13853 {
13854 if (i > 0)
13855 fputs_filtered ("|", stream);
13856 print_subexp (exp, pos, stream, PREC_SUFFIX);
13857 }
13858 fputs_filtered (" => ", stream);
13859 print_subexp (exp, pos, stream, PREC_SUFFIX);
13860 return;
13861
13862 case OP_POSITIONAL:
13863 print_subexp (exp, pos, stream, PREC_SUFFIX);
13864 return;
13865
13866 case OP_AGGREGATE:
13867 fputs_filtered ("(", stream);
13868 for (i = 0; i < nargs; i += 1)
13869 {
13870 if (i > 0)
13871 fputs_filtered (", ", stream);
13872 print_subexp (exp, pos, stream, PREC_SUFFIX);
13873 }
13874 fputs_filtered (")", stream);
13875 return;
4c4b4cd2
PH
13876 }
13877}
14f9c5c9
AS
13878
13879/* Table mapping opcodes into strings for printing operators
13880 and precedences of the operators. */
13881
d2e4a39e
AS
13882static const struct op_print ada_op_print_tab[] = {
13883 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13884 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13885 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13886 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13887 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13888 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13889 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13890 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13891 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13892 {">=", BINOP_GEQ, PREC_ORDER, 0},
13893 {">", BINOP_GTR, PREC_ORDER, 0},
13894 {"<", BINOP_LESS, PREC_ORDER, 0},
13895 {">>", BINOP_RSH, PREC_SHIFT, 0},
13896 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13897 {"+", BINOP_ADD, PREC_ADD, 0},
13898 {"-", BINOP_SUB, PREC_ADD, 0},
13899 {"&", BINOP_CONCAT, PREC_ADD, 0},
13900 {"*", BINOP_MUL, PREC_MUL, 0},
13901 {"/", BINOP_DIV, PREC_MUL, 0},
13902 {"rem", BINOP_REM, PREC_MUL, 0},
13903 {"mod", BINOP_MOD, PREC_MUL, 0},
13904 {"**", BINOP_EXP, PREC_REPEAT, 0},
13905 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13906 {"-", UNOP_NEG, PREC_PREFIX, 0},
13907 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13908 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13909 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13910 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13911 {".all", UNOP_IND, PREC_SUFFIX, 1},
13912 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13913 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13914 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13915};
13916\f
72d5681a
PH
13917enum ada_primitive_types {
13918 ada_primitive_type_int,
13919 ada_primitive_type_long,
13920 ada_primitive_type_short,
13921 ada_primitive_type_char,
13922 ada_primitive_type_float,
13923 ada_primitive_type_double,
13924 ada_primitive_type_void,
13925 ada_primitive_type_long_long,
13926 ada_primitive_type_long_double,
13927 ada_primitive_type_natural,
13928 ada_primitive_type_positive,
13929 ada_primitive_type_system_address,
13930 nr_ada_primitive_types
13931};
6c038f32
PH
13932
13933static void
d4a9a881 13934ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13935 struct language_arch_info *lai)
13936{
d4a9a881 13937 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13938
72d5681a 13939 lai->primitive_type_vector
d4a9a881 13940 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13941 struct type *);
e9bb382b
UW
13942
13943 lai->primitive_type_vector [ada_primitive_type_int]
13944 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13945 0, "integer");
13946 lai->primitive_type_vector [ada_primitive_type_long]
13947 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13948 0, "long_integer");
13949 lai->primitive_type_vector [ada_primitive_type_short]
13950 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13951 0, "short_integer");
13952 lai->string_char_type
13953 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13954 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13955 lai->primitive_type_vector [ada_primitive_type_float]
13956 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13957 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13958 lai->primitive_type_vector [ada_primitive_type_double]
13959 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13960 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13961 lai->primitive_type_vector [ada_primitive_type_long_long]
13962 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13963 0, "long_long_integer");
13964 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13965 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13966 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13967 lai->primitive_type_vector [ada_primitive_type_natural]
13968 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13969 0, "natural");
13970 lai->primitive_type_vector [ada_primitive_type_positive]
13971 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13972 0, "positive");
13973 lai->primitive_type_vector [ada_primitive_type_void]
13974 = builtin->builtin_void;
13975
13976 lai->primitive_type_vector [ada_primitive_type_system_address]
13977 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13978 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13979 = "system__address";
fbb06eb1 13980
47e729a8 13981 lai->bool_type_symbol = NULL;
fbb06eb1 13982 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13983}
6c038f32
PH
13984\f
13985 /* Language vector */
13986
13987/* Not really used, but needed in the ada_language_defn. */
13988
13989static void
6c7a06a3 13990emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13991{
6c7a06a3 13992 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13993}
13994
13995static int
410a0ff2 13996parse (struct parser_state *ps)
6c038f32
PH
13997{
13998 warnings_issued = 0;
410a0ff2 13999 return ada_parse (ps);
6c038f32
PH
14000}
14001
14002static const struct exp_descriptor ada_exp_descriptor = {
14003 ada_print_subexp,
14004 ada_operator_length,
c0201579 14005 ada_operator_check,
6c038f32
PH
14006 ada_op_name,
14007 ada_dump_subexp_body,
14008 ada_evaluate_subexp
14009};
14010
1a119f36 14011/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
14012 for Ada. */
14013
1a119f36
JB
14014static symbol_name_cmp_ftype
14015ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
14016{
14017 if (should_use_wild_match (lookup_name))
14018 return wild_match;
14019 else
14020 return compare_names;
14021}
14022
a5ee536b
JB
14023/* Implement the "la_read_var_value" language_defn method for Ada. */
14024
14025static struct value *
63e43d3a
PMR
14026ada_read_var_value (struct symbol *var, const struct block *var_block,
14027 struct frame_info *frame)
a5ee536b 14028{
3977b71f 14029 const struct block *frame_block = NULL;
a5ee536b
JB
14030 struct symbol *renaming_sym = NULL;
14031
14032 /* The only case where default_read_var_value is not sufficient
14033 is when VAR is a renaming... */
14034 if (frame)
14035 frame_block = get_frame_block (frame, NULL);
14036 if (frame_block)
14037 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14038 if (renaming_sym != NULL)
14039 return ada_read_renaming_var_value (renaming_sym, frame_block);
14040
14041 /* This is a typical case where we expect the default_read_var_value
14042 function to work. */
63e43d3a 14043 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14044}
14045
56618e20
TT
14046static const char *ada_extensions[] =
14047{
14048 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14049};
14050
6c038f32
PH
14051const struct language_defn ada_language_defn = {
14052 "ada", /* Language name */
6abde28f 14053 "Ada",
6c038f32 14054 language_ada,
6c038f32 14055 range_check_off,
6c038f32
PH
14056 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14057 that's not quite what this means. */
6c038f32 14058 array_row_major,
9a044a89 14059 macro_expansion_no,
56618e20 14060 ada_extensions,
6c038f32
PH
14061 &ada_exp_descriptor,
14062 parse,
b3f11165 14063 ada_yyerror,
6c038f32
PH
14064 resolve,
14065 ada_printchar, /* Print a character constant */
14066 ada_printstr, /* Function to print string constant */
14067 emit_char, /* Function to print single char (not used) */
6c038f32 14068 ada_print_type, /* Print a type using appropriate syntax */
be942545 14069 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14070 ada_val_print, /* Print a value using appropriate syntax */
14071 ada_value_print, /* Print a top-level value */
a5ee536b 14072 ada_read_var_value, /* la_read_var_value */
6c038f32 14073 NULL, /* Language specific skip_trampoline */
2b2d9e11 14074 NULL, /* name_of_this */
6c038f32
PH
14075 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14076 basic_lookup_transparent_type, /* lookup_transparent_type */
14077 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14078 ada_sniff_from_mangled_name,
0963b4bd
MS
14079 NULL, /* Language specific
14080 class_name_from_physname */
6c038f32
PH
14081 ada_op_print_tab, /* expression operators for printing */
14082 0, /* c-style arrays */
14083 1, /* String lower bound */
6c038f32 14084 ada_get_gdb_completer_word_break_characters,
41d27058 14085 ada_make_symbol_completion_list,
72d5681a 14086 ada_language_arch_info,
e79af960 14087 ada_print_array_index,
41f1b697 14088 default_pass_by_reference,
ae6a3a4c 14089 c_get_string,
1a119f36 14090 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14091 ada_iterate_over_symbols,
a53b64ea 14092 &ada_varobj_ops,
bb2ec1b3
TT
14093 NULL,
14094 NULL,
6c038f32
PH
14095 LANG_MAGIC
14096};
14097
2c0b251b
PA
14098/* Provide a prototype to silence -Wmissing-prototypes. */
14099extern initialize_file_ftype _initialize_ada_language;
14100
5bf03f13
JB
14101/* Command-list for the "set/show ada" prefix command. */
14102static struct cmd_list_element *set_ada_list;
14103static struct cmd_list_element *show_ada_list;
14104
14105/* Implement the "set ada" prefix command. */
14106
14107static void
14108set_ada_command (char *arg, int from_tty)
14109{
14110 printf_unfiltered (_(\
14111"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14112 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14113}
14114
14115/* Implement the "show ada" prefix command. */
14116
14117static void
14118show_ada_command (char *args, int from_tty)
14119{
14120 cmd_show_list (show_ada_list, from_tty, "");
14121}
14122
2060206e
PA
14123static void
14124initialize_ada_catchpoint_ops (void)
14125{
14126 struct breakpoint_ops *ops;
14127
14128 initialize_breakpoint_ops ();
14129
14130 ops = &catch_exception_breakpoint_ops;
14131 *ops = bkpt_breakpoint_ops;
14132 ops->dtor = dtor_catch_exception;
14133 ops->allocate_location = allocate_location_catch_exception;
14134 ops->re_set = re_set_catch_exception;
14135 ops->check_status = check_status_catch_exception;
14136 ops->print_it = print_it_catch_exception;
14137 ops->print_one = print_one_catch_exception;
14138 ops->print_mention = print_mention_catch_exception;
14139 ops->print_recreate = print_recreate_catch_exception;
14140
14141 ops = &catch_exception_unhandled_breakpoint_ops;
14142 *ops = bkpt_breakpoint_ops;
14143 ops->dtor = dtor_catch_exception_unhandled;
14144 ops->allocate_location = allocate_location_catch_exception_unhandled;
14145 ops->re_set = re_set_catch_exception_unhandled;
14146 ops->check_status = check_status_catch_exception_unhandled;
14147 ops->print_it = print_it_catch_exception_unhandled;
14148 ops->print_one = print_one_catch_exception_unhandled;
14149 ops->print_mention = print_mention_catch_exception_unhandled;
14150 ops->print_recreate = print_recreate_catch_exception_unhandled;
14151
14152 ops = &catch_assert_breakpoint_ops;
14153 *ops = bkpt_breakpoint_ops;
14154 ops->dtor = dtor_catch_assert;
14155 ops->allocate_location = allocate_location_catch_assert;
14156 ops->re_set = re_set_catch_assert;
14157 ops->check_status = check_status_catch_assert;
14158 ops->print_it = print_it_catch_assert;
14159 ops->print_one = print_one_catch_assert;
14160 ops->print_mention = print_mention_catch_assert;
14161 ops->print_recreate = print_recreate_catch_assert;
14162}
14163
3d9434b5
JB
14164/* This module's 'new_objfile' observer. */
14165
14166static void
14167ada_new_objfile_observer (struct objfile *objfile)
14168{
14169 ada_clear_symbol_cache ();
14170}
14171
14172/* This module's 'free_objfile' observer. */
14173
14174static void
14175ada_free_objfile_observer (struct objfile *objfile)
14176{
14177 ada_clear_symbol_cache ();
14178}
14179
d2e4a39e 14180void
6c038f32 14181_initialize_ada_language (void)
14f9c5c9 14182{
6c038f32
PH
14183 add_language (&ada_language_defn);
14184
2060206e
PA
14185 initialize_ada_catchpoint_ops ();
14186
5bf03f13
JB
14187 add_prefix_cmd ("ada", no_class, set_ada_command,
14188 _("Prefix command for changing Ada-specfic settings"),
14189 &set_ada_list, "set ada ", 0, &setlist);
14190
14191 add_prefix_cmd ("ada", no_class, show_ada_command,
14192 _("Generic command for showing Ada-specific settings."),
14193 &show_ada_list, "show ada ", 0, &showlist);
14194
14195 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14196 &trust_pad_over_xvs, _("\
14197Enable or disable an optimization trusting PAD types over XVS types"), _("\
14198Show whether an optimization trusting PAD types over XVS types is activated"),
14199 _("\
14200This is related to the encoding used by the GNAT compiler. The debugger\n\
14201should normally trust the contents of PAD types, but certain older versions\n\
14202of GNAT have a bug that sometimes causes the information in the PAD type\n\
14203to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14204work around this bug. It is always safe to turn this option \"off\", but\n\
14205this incurs a slight performance penalty, so it is recommended to NOT change\n\
14206this option to \"off\" unless necessary."),
14207 NULL, NULL, &set_ada_list, &show_ada_list);
14208
d72413e6
PMR
14209 add_setshow_boolean_cmd ("print-signatures", class_vars,
14210 &print_signatures, _("\
14211Enable or disable the output of formal and return types for functions in the \
14212overloads selection menu"), _("\
14213Show whether the output of formal and return types for functions in the \
14214overloads selection menu is activated"),
14215 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14216
9ac4176b
PA
14217 add_catch_command ("exception", _("\
14218Catch Ada exceptions, when raised.\n\
14219With an argument, catch only exceptions with the given name."),
14220 catch_ada_exception_command,
14221 NULL,
14222 CATCH_PERMANENT,
14223 CATCH_TEMPORARY);
14224 add_catch_command ("assert", _("\
14225Catch failed Ada assertions, when raised.\n\
14226With an argument, catch only exceptions with the given name."),
14227 catch_assert_command,
14228 NULL,
14229 CATCH_PERMANENT,
14230 CATCH_TEMPORARY);
14231
6c038f32 14232 varsize_limit = 65536;
6c038f32 14233
778865d3
JB
14234 add_info ("exceptions", info_exceptions_command,
14235 _("\
14236List all Ada exception names.\n\
14237If a regular expression is passed as an argument, only those matching\n\
14238the regular expression are listed."));
14239
c6044dd1
JB
14240 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14241 _("Set Ada maintenance-related variables."),
14242 &maint_set_ada_cmdlist, "maintenance set ada ",
14243 0/*allow-unknown*/, &maintenance_set_cmdlist);
14244
14245 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14246 _("Show Ada maintenance-related variables"),
14247 &maint_show_ada_cmdlist, "maintenance show ada ",
14248 0/*allow-unknown*/, &maintenance_show_cmdlist);
14249
14250 add_setshow_boolean_cmd
14251 ("ignore-descriptive-types", class_maintenance,
14252 &ada_ignore_descriptive_types_p,
14253 _("Set whether descriptive types generated by GNAT should be ignored."),
14254 _("Show whether descriptive types generated by GNAT should be ignored."),
14255 _("\
14256When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14257DWARF attribute."),
14258 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14259
6c038f32
PH
14260 obstack_init (&symbol_list_obstack);
14261
14262 decoded_names_store = htab_create_alloc
14263 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14264 NULL, xcalloc, xfree);
6b69afc4 14265
3d9434b5
JB
14266 /* The ada-lang observers. */
14267 observer_attach_new_objfile (ada_new_objfile_observer);
14268 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14269 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14270
14271 /* Setup various context-specific data. */
e802dbe0 14272 ada_inferior_data
8e260fc0 14273 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14274 ada_pspace_data_handle
14275 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14276}
This page took 2.899556 seconds and 4 git commands to generate.