[Ada] Buffer overflow in ada_unpack_from_contents
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
1455/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
14f9c5c9 1461
2c0b251b 1462static int
40658b94 1463match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1464{
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
73589123 1468 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1469 else
1470 {
1471 int len_name = strlen (name);
5b4ee69b 1472
4c4b4cd2
PH
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
61012eef 1475 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1478 }
14f9c5c9 1479}
14f9c5c9 1480\f
d2e4a39e 1481
4c4b4cd2 1482 /* Arrays */
14f9c5c9 1483
28c85d6c
JB
1484/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507void
1508ada_fixup_array_indexes_type (struct type *index_desc_type)
1509{
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
0d5cff50 1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537}
1538
4c4b4cd2 1539/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1540
d2e4a39e
AS
1541static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544};
1545
1546/* Maximum number of array dimensions we are prepared to handle. */
1547
4c4b4cd2 1548#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1549
14f9c5c9 1550
4c4b4cd2
PH
1551/* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
14f9c5c9
AS
1553
1554/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1555 level of indirection, if needed. */
1556
d2e4a39e
AS
1557static struct type *
1558desc_base_type (struct type *type)
14f9c5c9
AS
1559{
1560 if (type == NULL)
1561 return NULL;
61ee279c 1562 type = ada_check_typedef (type);
720d1a40
JB
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1265e4aa
JB
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1570 else
1571 return type;
1572}
1573
4c4b4cd2
PH
1574/* True iff TYPE indicates a "thin" array pointer type. */
1575
14f9c5c9 1576static int
d2e4a39e 1577is_thin_pntr (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 return
14f9c5c9
AS
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582}
1583
4c4b4cd2
PH
1584/* The descriptor type for thin pointer type TYPE. */
1585
d2e4a39e
AS
1586static struct type *
1587thin_descriptor_type (struct type *type)
14f9c5c9 1588{
d2e4a39e 1589 struct type *base_type = desc_base_type (type);
5b4ee69b 1590
14f9c5c9
AS
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
d2e4a39e 1595 else
14f9c5c9 1596 {
d2e4a39e 1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1598
14f9c5c9 1599 if (alt_type == NULL)
4c4b4cd2 1600 return base_type;
14f9c5c9 1601 else
4c4b4cd2 1602 return alt_type;
14f9c5c9
AS
1603 }
1604}
1605
4c4b4cd2
PH
1606/* A pointer to the array data for thin-pointer value VAL. */
1607
d2e4a39e
AS
1608static struct value *
1609thin_data_pntr (struct value *val)
14f9c5c9 1610{
828292f2 1611 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1613
556bdfd4
UW
1614 data_type = lookup_pointer_type (data_type);
1615
14f9c5c9 1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1617 return value_cast (data_type, value_copy (val));
d2e4a39e 1618 else
42ae5230 1619 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1620}
1621
4c4b4cd2
PH
1622/* True iff TYPE indicates a "thick" array pointer type. */
1623
14f9c5c9 1624static int
d2e4a39e 1625is_thick_pntr (struct type *type)
14f9c5c9
AS
1626{
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1630}
1631
4c4b4cd2
PH
1632/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1634
d2e4a39e
AS
1635static struct type *
1636desc_bounds_type (struct type *type)
14f9c5c9 1637{
d2e4a39e 1638 struct type *r;
14f9c5c9
AS
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
4c4b4cd2 1648 return NULL;
14f9c5c9
AS
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (r);
14f9c5c9
AS
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
61ee279c 1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1658 }
1659 return NULL;
1660}
1661
1662/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
d2e4a39e
AS
1665static struct value *
1666desc_bounds (struct value *arr)
14f9c5c9 1667{
df407dfe 1668 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1669
d2e4a39e 1670 if (is_thin_pntr (type))
14f9c5c9 1671 {
d2e4a39e 1672 struct type *bounds_type =
4c4b4cd2 1673 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1674 LONGEST addr;
1675
4cdfadb1 1676 if (bounds_type == NULL)
323e0a4a 1677 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1678
1679 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1680 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1681 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1683 addr = value_as_long (arr);
d2e4a39e 1684 else
42ae5230 1685 addr = value_address (arr);
14f9c5c9 1686
d2e4a39e 1687 return
4c4b4cd2
PH
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1690 }
1691
1692 else if (is_thick_pntr (type))
05e522ef
JB
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
14f9c5c9
AS
1713 else
1714 return NULL;
1715}
1716
4c4b4cd2
PH
1717/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
14f9c5c9 1720static int
d2e4a39e 1721fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1722{
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724}
1725
1726/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1727 size of the field containing the address of the bounds data. */
1728
14f9c5c9 1729static int
d2e4a39e 1730fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
d2e4a39e 1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
61ee279c 1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1738}
1739
4c4b4cd2 1740/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
4c4b4cd2 1744
d2e4a39e 1745static struct type *
556bdfd4 1746desc_data_target_type (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
4c4b4cd2 1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1751 if (is_thin_pntr (type))
556bdfd4 1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1753 else if (is_thick_pntr (type))
556bdfd4
UW
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1760 }
1761
1762 return NULL;
14f9c5c9
AS
1763}
1764
1765/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
4c4b4cd2 1767
d2e4a39e
AS
1768static struct value *
1769desc_data (struct value *arr)
14f9c5c9 1770{
df407dfe 1771 struct type *type = value_type (arr);
5b4ee69b 1772
14f9c5c9
AS
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
d2e4a39e 1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1777 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1778 else
1779 return NULL;
1780}
1781
1782
1783/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1784 position of the field containing the address of the data. */
1785
14f9c5c9 1786static int
d2e4a39e 1787fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1788{
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790}
1791
1792/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1793 size of the field containing the address of the data. */
1794
14f9c5c9 1795static int
d2e4a39e 1796fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1797{
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1802 else
14f9c5c9
AS
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804}
1805
4c4b4cd2 1806/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
d2e4a39e
AS
1810static struct value *
1811desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1814 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
14f9c5c9 1821static int
d2e4a39e 1822desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1823{
d2e4a39e 1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1825}
1826
1827/* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
76a01679 1831static int
d2e4a39e 1832desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
d2e4a39e
AS
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1840}
1841
1842/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
d2e4a39e
AS
1845static struct type *
1846desc_index_type (struct type *type, int i)
14f9c5c9
AS
1847{
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
14f9c5c9
AS
1853 return NULL;
1854}
1855
4c4b4cd2
PH
1856/* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
14f9c5c9 1859static int
d2e4a39e 1860desc_arity (struct type *type)
14f9c5c9
AS
1861{
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867}
1868
4c4b4cd2
PH
1869/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
76a01679
JB
1873static int
1874ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1875{
1876 if (type == NULL)
1877 return 0;
61ee279c 1878 type = ada_check_typedef (type);
4c4b4cd2 1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1880 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1881}
1882
52ce6436 1883/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1884 * to one. */
52ce6436 1885
2c0b251b 1886static int
52ce6436
PH
1887ada_is_array_type (struct type *type)
1888{
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894}
1895
4c4b4cd2 1896/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1897
14f9c5c9 1898int
4c4b4cd2 1899ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1900{
1901 if (type == NULL)
1902 return 0;
61ee279c 1903 type = ada_check_typedef (type);
14f9c5c9 1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1908}
1909
4c4b4cd2
PH
1910/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
14f9c5c9 1912int
4c4b4cd2 1913ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1914{
556bdfd4 1915 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1916
1917 if (type == NULL)
1918 return 0;
61ee279c 1919 type = ada_check_typedef (type);
556bdfd4
UW
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1923}
1924
1925/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1926 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1927 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1928 is still needed. */
1929
14f9c5c9 1930int
ebf56fd3 1931ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1932{
d2e4a39e 1933 return
14f9c5c9
AS
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1939}
1940
1941
4c4b4cd2 1942/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1943 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1945 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1948 a descriptor. */
d2e4a39e
AS
1949struct type *
1950ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1951{
ad82864c
JB
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1954
df407dfe
AC
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
d2e4a39e
AS
1957
1958 if (!bounds)
ad82864c
JB
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
14f9c5c9
AS
1969 else
1970 {
d2e4a39e 1971 struct type *elt_type;
14f9c5c9 1972 int arity;
d2e4a39e 1973 struct value *descriptor;
14f9c5c9 1974
df407dfe
AC
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
14f9c5c9 1977
d2e4a39e 1978 if (elt_type == NULL || arity == 0)
df407dfe 1979 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1980
1981 descriptor = desc_bounds (arr);
d2e4a39e 1982 if (value_as_long (descriptor) == 0)
4c4b4cd2 1983 return NULL;
d2e4a39e 1984 while (arity > 0)
4c4b4cd2 1985 {
e9bb382b
UW
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1990
5b4ee69b 1991 arity -= 1;
0c9c3474
SA
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
4c4b4cd2 1995 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
4c4b4cd2 2017 }
14f9c5c9
AS
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021}
2022
2023/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
d2e4a39e
AS
2028struct value *
2029ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2030{
df407dfe 2031 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2032 {
d2e4a39e 2033 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2034
14f9c5c9 2035 if (arrType == NULL)
4c4b4cd2 2036 return NULL;
14f9c5c9
AS
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
ad82864c
JB
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2041 else
2042 return arr;
2043}
2044
2045/* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2047 be ARR itself if it already is in the proper form). */
2048
720d1a40 2049struct value *
d2e4a39e 2050ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2051{
df407dfe 2052 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2053 {
d2e4a39e 2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2055
14f9c5c9 2056 if (arrVal == NULL)
323e0a4a 2057 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2059 return value_ind (arrVal);
2060 }
ad82864c
JB
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
d2e4a39e 2063 else
14f9c5c9
AS
2064 return arr;
2065}
2066
2067/* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2069 packing). For other types, is the identity. */
2070
d2e4a39e
AS
2071struct type *
2072ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2073{
ad82864c
JB
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
17280b9f
UW
2076
2077 if (ada_is_array_descriptor_type (type))
556bdfd4 2078 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2079
2080 return type;
14f9c5c9
AS
2081}
2082
4c4b4cd2
PH
2083/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
ad82864c
JB
2085static int
2086ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2087{
2088 if (type == NULL)
2089 return 0;
4c4b4cd2 2090 type = desc_base_type (type);
61ee279c 2091 type = ada_check_typedef (type);
d2e4a39e 2092 return
14f9c5c9
AS
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095}
2096
ad82864c
JB
2097/* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100int
2101ada_is_constrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105}
2106
2107/* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110static int
2111ada_is_unconstrained_packed_array_type (struct type *type)
2112{
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115}
2116
2117/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120static long
2121decode_packed_array_bitsize (struct type *type)
2122{
0d5cff50
DE
2123 const char *raw_name;
2124 const char *tail;
ad82864c
JB
2125 long bits;
2126
720d1a40
JB
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
720d1a40 2141 gdb_assert (tail != NULL);
ad82864c
JB
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151}
2152
14f9c5c9
AS
2153/* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
4c4b4cd2 2169
d2e4a39e 2170static struct type *
ad82864c 2171constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2172{
d2e4a39e
AS
2173 struct type *new_elt_type;
2174 struct type *new_type;
99b1c762
JB
2175 struct type *index_type_desc;
2176 struct type *index_type;
14f9c5c9
AS
2177 LONGEST low_bound, high_bound;
2178
61ee279c 2179 type = ada_check_typedef (type);
14f9c5c9
AS
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
99b1c762
JB
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
e9bb382b 2190 new_type = alloc_type_copy (type);
ad82864c
JB
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
99b1c762 2194 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
4a46959e
JB
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2204 else
14f9c5c9
AS
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2207 TYPE_LENGTH (new_type) =
4c4b4cd2 2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2209 }
2210
876cecd0 2211 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2212 return new_type;
2213}
2214
ad82864c
JB
2215/* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2217
d2e4a39e 2218static struct type *
ad82864c 2219decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2220{
0d5cff50 2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2222 char *name;
0d5cff50 2223 const char *tail;
d2e4a39e 2224 struct type *shadow_type;
14f9c5c9 2225 long bits;
14f9c5c9 2226
727e3d2e
JB
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2235 type = desc_base_type (type);
2236
14f9c5c9
AS
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
b4ba55a1
JB
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
14f9c5c9 2243 {
323e0a4a 2244 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2245 return NULL;
2246 }
f168693b 2247 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
0963b4bd
MS
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
14f9c5c9
AS
2253 return NULL;
2254 }
d2e4a39e 2255
ad82864c
JB
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2258}
2259
ad82864c
JB
2260/* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
4c4b4cd2 2264 type length is set appropriately. */
14f9c5c9 2265
d2e4a39e 2266static struct value *
ad82864c 2267decode_constrained_packed_array (struct value *arr)
14f9c5c9 2268{
4c4b4cd2 2269 struct type *type;
14f9c5c9 2270
11aa919a
PMR
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
828292f2 2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2280 arr = value_ind (arr);
4c4b4cd2 2281
ad82864c 2282 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2283 if (type == NULL)
2284 {
323e0a4a 2285 error (_("can't unpack array"));
14f9c5c9
AS
2286 return NULL;
2287 }
61ee279c 2288
50810684 2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2290 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
df407dfe 2299 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
df407dfe 2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
4c4b4cd2 2314 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2315}
2316
2317
2318/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2319 given in IND. ARR must be a simple array. */
14f9c5c9 2320
d2e4a39e
AS
2321static struct value *
2322value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2323{
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
d2e4a39e
AS
2327 struct type *elt_type;
2328 struct value *v;
14f9c5c9
AS
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
df407dfe 2332 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2333 for (i = 0; i < arity; i += 1)
14f9c5c9 2334 {
d2e4a39e 2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
0963b4bd
MS
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
14f9c5c9 2340 else
4c4b4cd2
PH
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
323e0a4a 2348 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2349 lowerbound = upperbound = 0;
2350 }
2351
3cb382c9 2352 idx = pos_atr (ind[i]);
4c4b4cd2 2353 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
4c4b4cd2
PH
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2359 }
14f9c5c9
AS
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2365 bits, elt_type);
14f9c5c9
AS
2366 return v;
2367}
2368
4c4b4cd2 2369/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2370
2371static int
d2e4a39e 2372has_negatives (struct type *type)
14f9c5c9 2373{
d2e4a39e
AS
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
14f9c5c9 2383}
d2e4a39e 2384
f93fca70
JB
2385/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2387 the unpacked buffer.
14f9c5c9 2388
f93fca70
JB
2389 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2390 zero otherwise.
14f9c5c9 2391
f93fca70 2392 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2393
f93fca70
JB
2394 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2395
2396static void
2397ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2398 gdb_byte *unpacked, int unpacked_len,
2399 int is_big_endian, int is_signed_type,
2400 int is_scalar)
2401{
a1c95e6b
JB
2402 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2403 int src_idx; /* Index into the source area */
2404 int src_bytes_left; /* Number of source bytes left to process. */
2405 int srcBitsLeft; /* Number of source bits left to move */
2406 int unusedLS; /* Number of bits in next significant
2407 byte of source that are unused */
2408
a1c95e6b
JB
2409 int unpacked_idx; /* Index into the unpacked buffer */
2410 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2411
4c4b4cd2 2412 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2413 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2414 unsigned char sign;
a1c95e6b 2415
4c4b4cd2
PH
2416 /* Transmit bytes from least to most significant; delta is the direction
2417 the indices move. */
f93fca70 2418 int delta = is_big_endian ? -1 : 1;
14f9c5c9
AS
2419
2420 srcBitsLeft = bit_size;
086ca51f 2421 src_bytes_left = src_len;
f93fca70 2422 unpacked_bytes_left = unpacked_len;
14f9c5c9 2423 sign = 0;
f93fca70
JB
2424
2425 if (is_big_endian)
14f9c5c9 2426 {
086ca51f 2427 src_idx = src_len - 1;
f93fca70
JB
2428 if (is_signed_type
2429 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2430 sign = ~0;
d2e4a39e
AS
2431
2432 unusedLS =
4c4b4cd2
PH
2433 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2434 % HOST_CHAR_BIT;
14f9c5c9 2435
f93fca70
JB
2436 if (is_scalar)
2437 {
2438 accumSize = 0;
2439 unpacked_idx = unpacked_len - 1;
2440 }
2441 else
2442 {
4c4b4cd2
PH
2443 /* Non-scalar values must be aligned at a byte boundary... */
2444 accumSize =
2445 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2446 /* ... And are placed at the beginning (most-significant) bytes
2447 of the target. */
086ca51f
JB
2448 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2449 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2450 }
14f9c5c9 2451 }
d2e4a39e 2452 else
14f9c5c9
AS
2453 {
2454 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2455
086ca51f 2456 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2457 unusedLS = bit_offset;
2458 accumSize = 0;
2459
f93fca70 2460 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2461 sign = ~0;
14f9c5c9 2462 }
d2e4a39e 2463
14f9c5c9 2464 accum = 0;
086ca51f 2465 while (src_bytes_left > 0)
14f9c5c9
AS
2466 {
2467 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2468 part of the value. */
d2e4a39e 2469 unsigned int unusedMSMask =
4c4b4cd2
PH
2470 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2471 1;
2472 /* Sign-extend bits for this byte. */
14f9c5c9 2473 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2474
d2e4a39e 2475 accum |=
086ca51f 2476 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2477 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2478 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2479 {
086ca51f 2480 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
4c4b4cd2
PH
2481 accumSize -= HOST_CHAR_BIT;
2482 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2483 unpacked_bytes_left -= 1;
2484 unpacked_idx += delta;
4c4b4cd2 2485 }
14f9c5c9
AS
2486 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2487 unusedLS = 0;
086ca51f
JB
2488 src_bytes_left -= 1;
2489 src_idx += delta;
14f9c5c9 2490 }
086ca51f 2491 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2492 {
2493 accum |= sign << accumSize;
086ca51f 2494 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
14f9c5c9 2495 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2496 if (accumSize < 0)
2497 accumSize = 0;
14f9c5c9 2498 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2499 unpacked_bytes_left -= 1;
2500 unpacked_idx += delta;
14f9c5c9 2501 }
f93fca70
JB
2502}
2503
2504/* Create a new value of type TYPE from the contents of OBJ starting
2505 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2506 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2507 assigning through the result will set the field fetched from.
2508 VALADDR is ignored unless OBJ is NULL, in which case,
2509 VALADDR+OFFSET must address the start of storage containing the
2510 packed value. The value returned in this case is never an lval.
2511 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2512
2513struct value *
2514ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2515 long offset, int bit_offset, int bit_size,
2516 struct type *type)
2517{
2518 struct value *v;
2519 gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2520 gdb_byte *unpacked;
220475ed 2521 const int is_scalar = is_scalar_type (type);
d0a9e810
JB
2522 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2523 gdb_byte *staging = NULL;
2524 int staging_len = 0;
2525 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
f93fca70
JB
2526
2527 type = ada_check_typedef (type);
2528
d0a9e810
JB
2529 if (obj == NULL)
2530 src = (gdb_byte *) valaddr + offset;
2531 else
2532 src = (gdb_byte *) value_contents (obj) + offset;
2533
2534 if (is_dynamic_type (type))
2535 {
2536 /* The length of TYPE might by dynamic, so we need to resolve
2537 TYPE in order to know its actual size, which we then use
2538 to create the contents buffer of the value we return.
2539 The difficulty is that the data containing our object is
2540 packed, and therefore maybe not at a byte boundary. So, what
2541 we do, is unpack the data into a byte-aligned buffer, and then
2542 use that buffer as our object's value for resolving the type. */
2543 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2544 staging = malloc (staging_len);
2545 make_cleanup (xfree, staging);
2546
2547 ada_unpack_from_contents (src, bit_offset, bit_size,
2548 staging, staging_len,
2549 is_big_endian, has_negatives (type),
2550 is_scalar);
2551 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2552 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2553 {
2554 /* This happens when the length of the object is dynamic,
2555 and is actually smaller than the space reserved for it.
2556 For instance, in an array of variant records, the bit_size
2557 we're given is the array stride, which is constant and
2558 normally equal to the maximum size of its element.
2559 But, in reality, each element only actually spans a portion
2560 of that stride. */
2561 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2562 }
d0a9e810
JB
2563 }
2564
f93fca70
JB
2565 if (obj == NULL)
2566 {
2567 v = allocate_value (type);
2568 src = (gdb_byte *) valaddr + offset;
2569 }
2570 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2571 {
0cafa88c
JB
2572 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2573
f93fca70 2574 v = value_at (type, value_address (obj) + offset);
f93fca70
JB
2575 src = alloca (src_len);
2576 read_memory (value_address (v), src, src_len);
2577 }
2578 else
2579 {
2580 v = allocate_value (type);
2581 src = (gdb_byte *) value_contents (obj) + offset;
2582 }
2583
2584 if (obj != NULL)
2585 {
2586 long new_offset = offset;
2587
2588 set_value_component_location (v, obj);
2589 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2590 set_value_bitsize (v, bit_size);
2591 if (value_bitpos (v) >= HOST_CHAR_BIT)
2592 {
2593 ++new_offset;
2594 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2595 }
2596 set_value_offset (v, new_offset);
2597
2598 /* Also set the parent value. This is needed when trying to
2599 assign a new value (in inferior memory). */
2600 set_value_parent (v, obj);
2601 }
2602 else
2603 set_value_bitsize (v, bit_size);
2604 unpacked = (gdb_byte *) value_contents (v);
2605
2606 if (bit_size == 0)
2607 {
2608 memset (unpacked, 0, TYPE_LENGTH (type));
d0a9e810 2609 do_cleanups (old_chain);
f93fca70
JB
2610 return v;
2611 }
2612
d0a9e810 2613 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2614 {
d0a9e810
JB
2615 /* Small short-cut: If we've unpacked the data into a buffer
2616 of the same size as TYPE's length, then we can reuse that,
2617 instead of doing the unpacking again. */
2618 memcpy (unpacked, staging, staging_len);
f93fca70 2619 }
d0a9e810
JB
2620 else
2621 ada_unpack_from_contents (src, bit_offset, bit_size,
2622 unpacked, TYPE_LENGTH (type),
2623 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2624
d0a9e810 2625 do_cleanups (old_chain);
14f9c5c9
AS
2626 return v;
2627}
d2e4a39e 2628
14f9c5c9
AS
2629/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2630 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2631 not overlap. */
14f9c5c9 2632static void
fc1a4b47 2633move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2634 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2635{
2636 unsigned int accum, mask;
2637 int accum_bits, chunk_size;
2638
2639 target += targ_offset / HOST_CHAR_BIT;
2640 targ_offset %= HOST_CHAR_BIT;
2641 source += src_offset / HOST_CHAR_BIT;
2642 src_offset %= HOST_CHAR_BIT;
50810684 2643 if (bits_big_endian_p)
14f9c5c9
AS
2644 {
2645 accum = (unsigned char) *source;
2646 source += 1;
2647 accum_bits = HOST_CHAR_BIT - src_offset;
2648
d2e4a39e 2649 while (n > 0)
4c4b4cd2
PH
2650 {
2651 int unused_right;
5b4ee69b 2652
4c4b4cd2
PH
2653 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2654 accum_bits += HOST_CHAR_BIT;
2655 source += 1;
2656 chunk_size = HOST_CHAR_BIT - targ_offset;
2657 if (chunk_size > n)
2658 chunk_size = n;
2659 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2660 mask = ((1 << chunk_size) - 1) << unused_right;
2661 *target =
2662 (*target & ~mask)
2663 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2664 n -= chunk_size;
2665 accum_bits -= chunk_size;
2666 target += 1;
2667 targ_offset = 0;
2668 }
14f9c5c9
AS
2669 }
2670 else
2671 {
2672 accum = (unsigned char) *source >> src_offset;
2673 source += 1;
2674 accum_bits = HOST_CHAR_BIT - src_offset;
2675
d2e4a39e 2676 while (n > 0)
4c4b4cd2
PH
2677 {
2678 accum = accum + ((unsigned char) *source << accum_bits);
2679 accum_bits += HOST_CHAR_BIT;
2680 source += 1;
2681 chunk_size = HOST_CHAR_BIT - targ_offset;
2682 if (chunk_size > n)
2683 chunk_size = n;
2684 mask = ((1 << chunk_size) - 1) << targ_offset;
2685 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2686 n -= chunk_size;
2687 accum_bits -= chunk_size;
2688 accum >>= chunk_size;
2689 target += 1;
2690 targ_offset = 0;
2691 }
14f9c5c9
AS
2692 }
2693}
2694
14f9c5c9
AS
2695/* Store the contents of FROMVAL into the location of TOVAL.
2696 Return a new value with the location of TOVAL and contents of
2697 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2698 floating-point or non-scalar types. */
14f9c5c9 2699
d2e4a39e
AS
2700static struct value *
2701ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2702{
df407dfe
AC
2703 struct type *type = value_type (toval);
2704 int bits = value_bitsize (toval);
14f9c5c9 2705
52ce6436
PH
2706 toval = ada_coerce_ref (toval);
2707 fromval = ada_coerce_ref (fromval);
2708
2709 if (ada_is_direct_array_type (value_type (toval)))
2710 toval = ada_coerce_to_simple_array (toval);
2711 if (ada_is_direct_array_type (value_type (fromval)))
2712 fromval = ada_coerce_to_simple_array (fromval);
2713
88e3b34b 2714 if (!deprecated_value_modifiable (toval))
323e0a4a 2715 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2716
d2e4a39e 2717 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2718 && bits > 0
d2e4a39e 2719 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2720 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2721 {
df407dfe
AC
2722 int len = (value_bitpos (toval)
2723 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2724 int from_size;
224c3ddb 2725 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2726 struct value *val;
42ae5230 2727 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2728
2729 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2730 fromval = value_cast (type, fromval);
14f9c5c9 2731
52ce6436 2732 read_memory (to_addr, buffer, len);
aced2898
PH
2733 from_size = value_bitsize (fromval);
2734 if (from_size == 0)
2735 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2736 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2737 move_bits (buffer, value_bitpos (toval),
50810684 2738 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2739 else
50810684
UW
2740 move_bits (buffer, value_bitpos (toval),
2741 value_contents (fromval), 0, bits, 0);
972daa01 2742 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2743
14f9c5c9 2744 val = value_copy (toval);
0fd88904 2745 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2746 TYPE_LENGTH (type));
04624583 2747 deprecated_set_value_type (val, type);
d2e4a39e 2748
14f9c5c9
AS
2749 return val;
2750 }
2751
2752 return value_assign (toval, fromval);
2753}
2754
2755
7c512744
JB
2756/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2757 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2758 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2759 COMPONENT, and not the inferior's memory. The current contents
2760 of COMPONENT are ignored.
2761
2762 Although not part of the initial design, this function also works
2763 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2764 had a null address, and COMPONENT had an address which is equal to
2765 its offset inside CONTAINER. */
2766
52ce6436
PH
2767static void
2768value_assign_to_component (struct value *container, struct value *component,
2769 struct value *val)
2770{
2771 LONGEST offset_in_container =
42ae5230 2772 (LONGEST) (value_address (component) - value_address (container));
7c512744 2773 int bit_offset_in_container =
52ce6436
PH
2774 value_bitpos (component) - value_bitpos (container);
2775 int bits;
7c512744 2776
52ce6436
PH
2777 val = value_cast (value_type (component), val);
2778
2779 if (value_bitsize (component) == 0)
2780 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2781 else
2782 bits = value_bitsize (component);
2783
50810684 2784 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2785 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2786 value_bitpos (container) + bit_offset_in_container,
2787 value_contents (val),
2788 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2789 bits, 1);
52ce6436 2790 else
7c512744 2791 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2792 value_bitpos (container) + bit_offset_in_container,
50810684 2793 value_contents (val), 0, bits, 0);
7c512744
JB
2794}
2795
4c4b4cd2
PH
2796/* The value of the element of array ARR at the ARITY indices given in IND.
2797 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2798 thereto. */
2799
d2e4a39e
AS
2800struct value *
2801ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2802{
2803 int k;
d2e4a39e
AS
2804 struct value *elt;
2805 struct type *elt_type;
14f9c5c9
AS
2806
2807 elt = ada_coerce_to_simple_array (arr);
2808
df407dfe 2809 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2810 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2811 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2812 return value_subscript_packed (elt, arity, ind);
2813
2814 for (k = 0; k < arity; k += 1)
2815 {
2816 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2817 error (_("too many subscripts (%d expected)"), k);
2497b498 2818 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2819 }
2820 return elt;
2821}
2822
deede10c
JB
2823/* Assuming ARR is a pointer to a GDB array, the value of the element
2824 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2825 Does not read the entire array into memory.
2826
2827 Note: Unlike what one would expect, this function is used instead of
2828 ada_value_subscript for basically all non-packed array types. The reason
2829 for this is that a side effect of doing our own pointer arithmetics instead
2830 of relying on value_subscript is that there is no implicit typedef peeling.
2831 This is important for arrays of array accesses, where it allows us to
2832 preserve the fact that the array's element is an array access, where the
2833 access part os encoded in a typedef layer. */
14f9c5c9 2834
2c0b251b 2835static struct value *
deede10c 2836ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2837{
2838 int k;
919e6dbe 2839 struct value *array_ind = ada_value_ind (arr);
deede10c 2840 struct type *type
919e6dbe
PMR
2841 = check_typedef (value_enclosing_type (array_ind));
2842
2843 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2844 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2845 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2846
2847 for (k = 0; k < arity; k += 1)
2848 {
2849 LONGEST lwb, upb;
aa715135 2850 struct value *lwb_value;
14f9c5c9
AS
2851
2852 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2854 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2855 value_copy (arr));
14f9c5c9 2856 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2857 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2858 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2859 type = TYPE_TARGET_TYPE (type);
2860 }
2861
2862 return value_ind (arr);
2863}
2864
0b5d8877 2865/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2866 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2867 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2868 this array is LOW, as per Ada rules. */
0b5d8877 2869static struct value *
f5938064
JG
2870ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2871 int low, int high)
0b5d8877 2872{
b0dd7688 2873 struct type *type0 = ada_check_typedef (type);
aa715135 2874 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2875 struct type *index_type
aa715135 2876 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2877 struct type *slice_type =
b0dd7688 2878 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2879 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2880 LONGEST base_low_pos, low_pos;
2881 CORE_ADDR base;
2882
2883 if (!discrete_position (base_index_type, low, &low_pos)
2884 || !discrete_position (base_index_type, base_low, &base_low_pos))
2885 {
2886 warning (_("unable to get positions in slice, use bounds instead"));
2887 low_pos = low;
2888 base_low_pos = base_low;
2889 }
5b4ee69b 2890
aa715135
JG
2891 base = value_as_address (array_ptr)
2892 + ((low_pos - base_low_pos)
2893 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2894 return value_at_lazy (slice_type, base);
0b5d8877
PH
2895}
2896
2897
2898static struct value *
2899ada_value_slice (struct value *array, int low, int high)
2900{
b0dd7688 2901 struct type *type = ada_check_typedef (value_type (array));
aa715135 2902 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2903 struct type *index_type
2904 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2905 struct type *slice_type =
0b5d8877 2906 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2907 LONGEST low_pos, high_pos;
5b4ee69b 2908
aa715135
JG
2909 if (!discrete_position (base_index_type, low, &low_pos)
2910 || !discrete_position (base_index_type, high, &high_pos))
2911 {
2912 warning (_("unable to get positions in slice, use bounds instead"));
2913 low_pos = low;
2914 high_pos = high;
2915 }
2916
2917 return value_cast (slice_type,
2918 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2919}
2920
14f9c5c9
AS
2921/* If type is a record type in the form of a standard GNAT array
2922 descriptor, returns the number of dimensions for type. If arr is a
2923 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2924 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2925
2926int
d2e4a39e 2927ada_array_arity (struct type *type)
14f9c5c9
AS
2928{
2929 int arity;
2930
2931 if (type == NULL)
2932 return 0;
2933
2934 type = desc_base_type (type);
2935
2936 arity = 0;
d2e4a39e 2937 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2938 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2939 else
2940 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2941 {
4c4b4cd2 2942 arity += 1;
61ee279c 2943 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2944 }
d2e4a39e 2945
14f9c5c9
AS
2946 return arity;
2947}
2948
2949/* If TYPE is a record type in the form of a standard GNAT array
2950 descriptor or a simple array type, returns the element type for
2951 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2952 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2953
d2e4a39e
AS
2954struct type *
2955ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2956{
2957 type = desc_base_type (type);
2958
d2e4a39e 2959 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2960 {
2961 int k;
d2e4a39e 2962 struct type *p_array_type;
14f9c5c9 2963
556bdfd4 2964 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2965
2966 k = ada_array_arity (type);
2967 if (k == 0)
4c4b4cd2 2968 return NULL;
d2e4a39e 2969
4c4b4cd2 2970 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2971 if (nindices >= 0 && k > nindices)
4c4b4cd2 2972 k = nindices;
d2e4a39e 2973 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2974 {
61ee279c 2975 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2976 k -= 1;
2977 }
14f9c5c9
AS
2978 return p_array_type;
2979 }
2980 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2981 {
2982 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2983 {
2984 type = TYPE_TARGET_TYPE (type);
2985 nindices -= 1;
2986 }
14f9c5c9
AS
2987 return type;
2988 }
2989
2990 return NULL;
2991}
2992
4c4b4cd2 2993/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2994 Does not examine memory. Throws an error if N is invalid or TYPE
2995 is not an array type. NAME is the name of the Ada attribute being
2996 evaluated ('range, 'first, 'last, or 'length); it is used in building
2997 the error message. */
14f9c5c9 2998
1eea4ebd
UW
2999static struct type *
3000ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3001{
4c4b4cd2
PH
3002 struct type *result_type;
3003
14f9c5c9
AS
3004 type = desc_base_type (type);
3005
1eea4ebd
UW
3006 if (n < 0 || n > ada_array_arity (type))
3007 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3008
4c4b4cd2 3009 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3010 {
3011 int i;
3012
3013 for (i = 1; i < n; i += 1)
4c4b4cd2 3014 type = TYPE_TARGET_TYPE (type);
262452ec 3015 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3016 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3017 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3018 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3019 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3020 result_type = NULL;
14f9c5c9 3021 }
d2e4a39e 3022 else
1eea4ebd
UW
3023 {
3024 result_type = desc_index_type (desc_bounds_type (type), n);
3025 if (result_type == NULL)
3026 error (_("attempt to take bound of something that is not an array"));
3027 }
3028
3029 return result_type;
14f9c5c9
AS
3030}
3031
3032/* Given that arr is an array type, returns the lower bound of the
3033 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3034 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3035 array-descriptor type. It works for other arrays with bounds supplied
3036 by run-time quantities other than discriminants. */
14f9c5c9 3037
abb68b3e 3038static LONGEST
fb5e3d5c 3039ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3040{
8a48ac95 3041 struct type *type, *index_type_desc, *index_type;
1ce677a4 3042 int i;
262452ec
JK
3043
3044 gdb_assert (which == 0 || which == 1);
14f9c5c9 3045
ad82864c
JB
3046 if (ada_is_constrained_packed_array_type (arr_type))
3047 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3048
4c4b4cd2 3049 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3050 return (LONGEST) - which;
14f9c5c9
AS
3051
3052 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3053 type = TYPE_TARGET_TYPE (arr_type);
3054 else
3055 type = arr_type;
3056
bafffb51
JB
3057 if (TYPE_FIXED_INSTANCE (type))
3058 {
3059 /* The array has already been fixed, so we do not need to
3060 check the parallel ___XA type again. That encoding has
3061 already been applied, so ignore it now. */
3062 index_type_desc = NULL;
3063 }
3064 else
3065 {
3066 index_type_desc = ada_find_parallel_type (type, "___XA");
3067 ada_fixup_array_indexes_type (index_type_desc);
3068 }
3069
262452ec 3070 if (index_type_desc != NULL)
28c85d6c
JB
3071 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3072 NULL);
262452ec 3073 else
8a48ac95
JB
3074 {
3075 struct type *elt_type = check_typedef (type);
3076
3077 for (i = 1; i < n; i++)
3078 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3079
3080 index_type = TYPE_INDEX_TYPE (elt_type);
3081 }
262452ec 3082
43bbcdc2
PH
3083 return
3084 (LONGEST) (which == 0
3085 ? ada_discrete_type_low_bound (index_type)
3086 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3087}
3088
3089/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3090 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3091 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3092 supplied by run-time quantities other than discriminants. */
14f9c5c9 3093
1eea4ebd 3094static LONGEST
4dc81987 3095ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3096{
eb479039
JB
3097 struct type *arr_type;
3098
3099 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3100 arr = value_ind (arr);
3101 arr_type = value_enclosing_type (arr);
14f9c5c9 3102
ad82864c
JB
3103 if (ada_is_constrained_packed_array_type (arr_type))
3104 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3105 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3106 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3107 else
1eea4ebd 3108 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3109}
3110
3111/* Given that arr is an array value, returns the length of the
3112 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3113 supplied by run-time quantities other than discriminants.
3114 Does not work for arrays indexed by enumeration types with representation
3115 clauses at the moment. */
14f9c5c9 3116
1eea4ebd 3117static LONGEST
d2e4a39e 3118ada_array_length (struct value *arr, int n)
14f9c5c9 3119{
aa715135
JG
3120 struct type *arr_type, *index_type;
3121 int low, high;
eb479039
JB
3122
3123 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3124 arr = value_ind (arr);
3125 arr_type = value_enclosing_type (arr);
14f9c5c9 3126
ad82864c
JB
3127 if (ada_is_constrained_packed_array_type (arr_type))
3128 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3129
4c4b4cd2 3130 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3131 {
3132 low = ada_array_bound_from_type (arr_type, n, 0);
3133 high = ada_array_bound_from_type (arr_type, n, 1);
3134 }
14f9c5c9 3135 else
aa715135
JG
3136 {
3137 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3138 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3139 }
3140
f168693b 3141 arr_type = check_typedef (arr_type);
aa715135
JG
3142 index_type = TYPE_INDEX_TYPE (arr_type);
3143 if (index_type != NULL)
3144 {
3145 struct type *base_type;
3146 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3147 base_type = TYPE_TARGET_TYPE (index_type);
3148 else
3149 base_type = index_type;
3150
3151 low = pos_atr (value_from_longest (base_type, low));
3152 high = pos_atr (value_from_longest (base_type, high));
3153 }
3154 return high - low + 1;
4c4b4cd2
PH
3155}
3156
3157/* An empty array whose type is that of ARR_TYPE (an array type),
3158 with bounds LOW to LOW-1. */
3159
3160static struct value *
3161empty_array (struct type *arr_type, int low)
3162{
b0dd7688 3163 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3164 struct type *index_type
3165 = create_static_range_type
3166 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3167 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3168
0b5d8877 3169 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3170}
14f9c5c9 3171\f
d2e4a39e 3172
4c4b4cd2 3173 /* Name resolution */
14f9c5c9 3174
4c4b4cd2
PH
3175/* The "decoded" name for the user-definable Ada operator corresponding
3176 to OP. */
14f9c5c9 3177
d2e4a39e 3178static const char *
4c4b4cd2 3179ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3180{
3181 int i;
3182
4c4b4cd2 3183 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3184 {
3185 if (ada_opname_table[i].op == op)
4c4b4cd2 3186 return ada_opname_table[i].decoded;
14f9c5c9 3187 }
323e0a4a 3188 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3189}
3190
3191
4c4b4cd2
PH
3192/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3193 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3194 undefined namespace) and converts operators that are
3195 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3196 non-null, it provides a preferred result type [at the moment, only
3197 type void has any effect---causing procedures to be preferred over
3198 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3199 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3200
4c4b4cd2
PH
3201static void
3202resolve (struct expression **expp, int void_context_p)
14f9c5c9 3203{
30b15541
UW
3204 struct type *context_type = NULL;
3205 int pc = 0;
3206
3207 if (void_context_p)
3208 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3209
3210 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3211}
3212
4c4b4cd2
PH
3213/* Resolve the operator of the subexpression beginning at
3214 position *POS of *EXPP. "Resolving" consists of replacing
3215 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3216 with their resolutions, replacing built-in operators with
3217 function calls to user-defined operators, where appropriate, and,
3218 when DEPROCEDURE_P is non-zero, converting function-valued variables
3219 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3220 are as in ada_resolve, above. */
14f9c5c9 3221
d2e4a39e 3222static struct value *
4c4b4cd2 3223resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3224 struct type *context_type)
14f9c5c9
AS
3225{
3226 int pc = *pos;
3227 int i;
4c4b4cd2 3228 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3229 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3230 struct value **argvec; /* Vector of operand types (alloca'ed). */
3231 int nargs; /* Number of operands. */
52ce6436 3232 int oplen;
14f9c5c9
AS
3233
3234 argvec = NULL;
3235 nargs = 0;
3236 exp = *expp;
3237
52ce6436
PH
3238 /* Pass one: resolve operands, saving their types and updating *pos,
3239 if needed. */
14f9c5c9
AS
3240 switch (op)
3241 {
4c4b4cd2
PH
3242 case OP_FUNCALL:
3243 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3244 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3245 *pos += 7;
4c4b4cd2
PH
3246 else
3247 {
3248 *pos += 3;
3249 resolve_subexp (expp, pos, 0, NULL);
3250 }
3251 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3252 break;
3253
14f9c5c9 3254 case UNOP_ADDR:
4c4b4cd2
PH
3255 *pos += 1;
3256 resolve_subexp (expp, pos, 0, NULL);
3257 break;
3258
52ce6436
PH
3259 case UNOP_QUAL:
3260 *pos += 3;
17466c1a 3261 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3262 break;
3263
52ce6436 3264 case OP_ATR_MODULUS:
4c4b4cd2
PH
3265 case OP_ATR_SIZE:
3266 case OP_ATR_TAG:
4c4b4cd2
PH
3267 case OP_ATR_FIRST:
3268 case OP_ATR_LAST:
3269 case OP_ATR_LENGTH:
3270 case OP_ATR_POS:
3271 case OP_ATR_VAL:
4c4b4cd2
PH
3272 case OP_ATR_MIN:
3273 case OP_ATR_MAX:
52ce6436
PH
3274 case TERNOP_IN_RANGE:
3275 case BINOP_IN_BOUNDS:
3276 case UNOP_IN_RANGE:
3277 case OP_AGGREGATE:
3278 case OP_OTHERS:
3279 case OP_CHOICES:
3280 case OP_POSITIONAL:
3281 case OP_DISCRETE_RANGE:
3282 case OP_NAME:
3283 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3284 *pos += oplen;
14f9c5c9
AS
3285 break;
3286
3287 case BINOP_ASSIGN:
3288 {
4c4b4cd2
PH
3289 struct value *arg1;
3290
3291 *pos += 1;
3292 arg1 = resolve_subexp (expp, pos, 0, NULL);
3293 if (arg1 == NULL)
3294 resolve_subexp (expp, pos, 1, NULL);
3295 else
df407dfe 3296 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3297 break;
14f9c5c9
AS
3298 }
3299
4c4b4cd2 3300 case UNOP_CAST:
4c4b4cd2
PH
3301 *pos += 3;
3302 nargs = 1;
3303 break;
14f9c5c9 3304
4c4b4cd2
PH
3305 case BINOP_ADD:
3306 case BINOP_SUB:
3307 case BINOP_MUL:
3308 case BINOP_DIV:
3309 case BINOP_REM:
3310 case BINOP_MOD:
3311 case BINOP_EXP:
3312 case BINOP_CONCAT:
3313 case BINOP_LOGICAL_AND:
3314 case BINOP_LOGICAL_OR:
3315 case BINOP_BITWISE_AND:
3316 case BINOP_BITWISE_IOR:
3317 case BINOP_BITWISE_XOR:
14f9c5c9 3318
4c4b4cd2
PH
3319 case BINOP_EQUAL:
3320 case BINOP_NOTEQUAL:
3321 case BINOP_LESS:
3322 case BINOP_GTR:
3323 case BINOP_LEQ:
3324 case BINOP_GEQ:
14f9c5c9 3325
4c4b4cd2
PH
3326 case BINOP_REPEAT:
3327 case BINOP_SUBSCRIPT:
3328 case BINOP_COMMA:
40c8aaa9
JB
3329 *pos += 1;
3330 nargs = 2;
3331 break;
14f9c5c9 3332
4c4b4cd2
PH
3333 case UNOP_NEG:
3334 case UNOP_PLUS:
3335 case UNOP_LOGICAL_NOT:
3336 case UNOP_ABS:
3337 case UNOP_IND:
3338 *pos += 1;
3339 nargs = 1;
3340 break;
14f9c5c9 3341
4c4b4cd2
PH
3342 case OP_LONG:
3343 case OP_DOUBLE:
3344 case OP_VAR_VALUE:
3345 *pos += 4;
3346 break;
14f9c5c9 3347
4c4b4cd2
PH
3348 case OP_TYPE:
3349 case OP_BOOL:
3350 case OP_LAST:
4c4b4cd2
PH
3351 case OP_INTERNALVAR:
3352 *pos += 3;
3353 break;
14f9c5c9 3354
4c4b4cd2
PH
3355 case UNOP_MEMVAL:
3356 *pos += 3;
3357 nargs = 1;
3358 break;
3359
67f3407f
DJ
3360 case OP_REGISTER:
3361 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3362 break;
3363
4c4b4cd2
PH
3364 case STRUCTOP_STRUCT:
3365 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3366 nargs = 1;
3367 break;
3368
4c4b4cd2 3369 case TERNOP_SLICE:
4c4b4cd2
PH
3370 *pos += 1;
3371 nargs = 3;
3372 break;
3373
52ce6436 3374 case OP_STRING:
14f9c5c9 3375 break;
4c4b4cd2
PH
3376
3377 default:
323e0a4a 3378 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3379 }
3380
8d749320 3381 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3382 for (i = 0; i < nargs; i += 1)
3383 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3384 argvec[i] = NULL;
3385 exp = *expp;
3386
3387 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3388 switch (op)
3389 {
3390 default:
3391 break;
3392
14f9c5c9 3393 case OP_VAR_VALUE:
4c4b4cd2 3394 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3395 {
d12307c1 3396 struct block_symbol *candidates;
76a01679
JB
3397 int n_candidates;
3398
3399 n_candidates =
3400 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3401 (exp->elts[pc + 2].symbol),
3402 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3403 &candidates);
76a01679
JB
3404
3405 if (n_candidates > 1)
3406 {
3407 /* Types tend to get re-introduced locally, so if there
3408 are any local symbols that are not types, first filter
3409 out all types. */
3410 int j;
3411 for (j = 0; j < n_candidates; j += 1)
d12307c1 3412 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3413 {
3414 case LOC_REGISTER:
3415 case LOC_ARG:
3416 case LOC_REF_ARG:
76a01679
JB
3417 case LOC_REGPARM_ADDR:
3418 case LOC_LOCAL:
76a01679 3419 case LOC_COMPUTED:
76a01679
JB
3420 goto FoundNonType;
3421 default:
3422 break;
3423 }
3424 FoundNonType:
3425 if (j < n_candidates)
3426 {
3427 j = 0;
3428 while (j < n_candidates)
3429 {
d12307c1 3430 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3431 {
3432 candidates[j] = candidates[n_candidates - 1];
3433 n_candidates -= 1;
3434 }
3435 else
3436 j += 1;
3437 }
3438 }
3439 }
3440
3441 if (n_candidates == 0)
323e0a4a 3442 error (_("No definition found for %s"),
76a01679
JB
3443 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3444 else if (n_candidates == 1)
3445 i = 0;
3446 else if (deprocedure_p
3447 && !is_nonfunction (candidates, n_candidates))
3448 {
06d5cf63
JB
3449 i = ada_resolve_function
3450 (candidates, n_candidates, NULL, 0,
3451 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3452 context_type);
76a01679 3453 if (i < 0)
323e0a4a 3454 error (_("Could not find a match for %s"),
76a01679
JB
3455 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3456 }
3457 else
3458 {
323e0a4a 3459 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3460 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3461 user_select_syms (candidates, n_candidates, 1);
3462 i = 0;
3463 }
3464
3465 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3466 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3467 if (innermost_block == NULL
3468 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3469 innermost_block = candidates[i].block;
3470 }
3471
3472 if (deprocedure_p
3473 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3474 == TYPE_CODE_FUNC))
3475 {
3476 replace_operator_with_call (expp, pc, 0, 0,
3477 exp->elts[pc + 2].symbol,
3478 exp->elts[pc + 1].block);
3479 exp = *expp;
3480 }
14f9c5c9
AS
3481 break;
3482
3483 case OP_FUNCALL:
3484 {
4c4b4cd2 3485 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3486 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3487 {
d12307c1 3488 struct block_symbol *candidates;
4c4b4cd2
PH
3489 int n_candidates;
3490
3491 n_candidates =
76a01679
JB
3492 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3493 (exp->elts[pc + 5].symbol),
3494 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3495 &candidates);
4c4b4cd2
PH
3496 if (n_candidates == 1)
3497 i = 0;
3498 else
3499 {
06d5cf63
JB
3500 i = ada_resolve_function
3501 (candidates, n_candidates,
3502 argvec, nargs,
3503 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3504 context_type);
4c4b4cd2 3505 if (i < 0)
323e0a4a 3506 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3507 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3508 }
3509
3510 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3511 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3514 innermost_block = candidates[i].block;
3515 }
14f9c5c9
AS
3516 }
3517 break;
3518 case BINOP_ADD:
3519 case BINOP_SUB:
3520 case BINOP_MUL:
3521 case BINOP_DIV:
3522 case BINOP_REM:
3523 case BINOP_MOD:
3524 case BINOP_CONCAT:
3525 case BINOP_BITWISE_AND:
3526 case BINOP_BITWISE_IOR:
3527 case BINOP_BITWISE_XOR:
3528 case BINOP_EQUAL:
3529 case BINOP_NOTEQUAL:
3530 case BINOP_LESS:
3531 case BINOP_GTR:
3532 case BINOP_LEQ:
3533 case BINOP_GEQ:
3534 case BINOP_EXP:
3535 case UNOP_NEG:
3536 case UNOP_PLUS:
3537 case UNOP_LOGICAL_NOT:
3538 case UNOP_ABS:
3539 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3540 {
d12307c1 3541 struct block_symbol *candidates;
4c4b4cd2
PH
3542 int n_candidates;
3543
3544 n_candidates =
3545 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3546 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3547 &candidates);
4c4b4cd2 3548 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3549 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3550 if (i < 0)
3551 break;
3552
d12307c1
PMR
3553 replace_operator_with_call (expp, pc, nargs, 1,
3554 candidates[i].symbol,
3555 candidates[i].block);
4c4b4cd2
PH
3556 exp = *expp;
3557 }
14f9c5c9 3558 break;
4c4b4cd2
PH
3559
3560 case OP_TYPE:
b3dbf008 3561 case OP_REGISTER:
4c4b4cd2 3562 return NULL;
14f9c5c9
AS
3563 }
3564
3565 *pos = pc;
3566 return evaluate_subexp_type (exp, pos);
3567}
3568
3569/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3570 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3571 a non-pointer. */
14f9c5c9 3572/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3573 liberal. */
14f9c5c9
AS
3574
3575static int
4dc81987 3576ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3577{
61ee279c
PH
3578 ftype = ada_check_typedef (ftype);
3579 atype = ada_check_typedef (atype);
14f9c5c9
AS
3580
3581 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3582 ftype = TYPE_TARGET_TYPE (ftype);
3583 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3584 atype = TYPE_TARGET_TYPE (atype);
3585
d2e4a39e 3586 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3587 {
3588 default:
5b3d5b7d 3589 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3590 case TYPE_CODE_PTR:
3591 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3592 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3593 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3594 else
1265e4aa
JB
3595 return (may_deref
3596 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3597 case TYPE_CODE_INT:
3598 case TYPE_CODE_ENUM:
3599 case TYPE_CODE_RANGE:
3600 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3601 {
3602 case TYPE_CODE_INT:
3603 case TYPE_CODE_ENUM:
3604 case TYPE_CODE_RANGE:
3605 return 1;
3606 default:
3607 return 0;
3608 }
14f9c5c9
AS
3609
3610 case TYPE_CODE_ARRAY:
d2e4a39e 3611 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3612 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3613
3614 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3615 if (ada_is_array_descriptor_type (ftype))
3616 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3617 || ada_is_array_descriptor_type (atype));
14f9c5c9 3618 else
4c4b4cd2
PH
3619 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3620 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3621
3622 case TYPE_CODE_UNION:
3623 case TYPE_CODE_FLT:
3624 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3625 }
3626}
3627
3628/* Return non-zero if the formals of FUNC "sufficiently match" the
3629 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3630 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3631 argument function. */
14f9c5c9
AS
3632
3633static int
d2e4a39e 3634ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3635{
3636 int i;
d2e4a39e 3637 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3638
1265e4aa
JB
3639 if (SYMBOL_CLASS (func) == LOC_CONST
3640 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3641 return (n_actuals == 0);
3642 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3643 return 0;
3644
3645 if (TYPE_NFIELDS (func_type) != n_actuals)
3646 return 0;
3647
3648 for (i = 0; i < n_actuals; i += 1)
3649 {
4c4b4cd2 3650 if (actuals[i] == NULL)
76a01679
JB
3651 return 0;
3652 else
3653 {
5b4ee69b
MS
3654 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3655 i));
df407dfe 3656 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3657
76a01679
JB
3658 if (!ada_type_match (ftype, atype, 1))
3659 return 0;
3660 }
14f9c5c9
AS
3661 }
3662 return 1;
3663}
3664
3665/* False iff function type FUNC_TYPE definitely does not produce a value
3666 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3667 FUNC_TYPE is not a valid function type with a non-null return type
3668 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3669
3670static int
d2e4a39e 3671return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3672{
d2e4a39e 3673 struct type *return_type;
14f9c5c9
AS
3674
3675 if (func_type == NULL)
3676 return 1;
3677
4c4b4cd2 3678 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3679 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3680 else
18af8284 3681 return_type = get_base_type (func_type);
14f9c5c9
AS
3682 if (return_type == NULL)
3683 return 1;
3684
18af8284 3685 context_type = get_base_type (context_type);
14f9c5c9
AS
3686
3687 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3688 return context_type == NULL || return_type == context_type;
3689 else if (context_type == NULL)
3690 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3691 else
3692 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3693}
3694
3695
4c4b4cd2 3696/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3697 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3698 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3699 that returns that type, then eliminate matches that don't. If
3700 CONTEXT_TYPE is void and there is at least one match that does not
3701 return void, eliminate all matches that do.
3702
14f9c5c9
AS
3703 Asks the user if there is more than one match remaining. Returns -1
3704 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3705 solely for messages. May re-arrange and modify SYMS in
3706 the process; the index returned is for the modified vector. */
14f9c5c9 3707
4c4b4cd2 3708static int
d12307c1 3709ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3710 int nsyms, struct value **args, int nargs,
3711 const char *name, struct type *context_type)
14f9c5c9 3712{
30b15541 3713 int fallback;
14f9c5c9 3714 int k;
4c4b4cd2 3715 int m; /* Number of hits */
14f9c5c9 3716
d2e4a39e 3717 m = 0;
30b15541
UW
3718 /* In the first pass of the loop, we only accept functions matching
3719 context_type. If none are found, we add a second pass of the loop
3720 where every function is accepted. */
3721 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3722 {
3723 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3724 {
d12307c1 3725 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3726
d12307c1 3727 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3728 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3729 {
3730 syms[m] = syms[k];
3731 m += 1;
3732 }
3733 }
14f9c5c9
AS
3734 }
3735
dc5c8746
PMR
3736 /* If we got multiple matches, ask the user which one to use. Don't do this
3737 interactive thing during completion, though, as the purpose of the
3738 completion is providing a list of all possible matches. Prompting the
3739 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3740 if (m == 0)
3741 return -1;
dc5c8746 3742 else if (m > 1 && !parse_completion)
14f9c5c9 3743 {
323e0a4a 3744 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3745 user_select_syms (syms, m, 1);
14f9c5c9
AS
3746 return 0;
3747 }
3748 return 0;
3749}
3750
4c4b4cd2
PH
3751/* Returns true (non-zero) iff decoded name N0 should appear before N1
3752 in a listing of choices during disambiguation (see sort_choices, below).
3753 The idea is that overloadings of a subprogram name from the
3754 same package should sort in their source order. We settle for ordering
3755 such symbols by their trailing number (__N or $N). */
3756
14f9c5c9 3757static int
0d5cff50 3758encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3759{
3760 if (N1 == NULL)
3761 return 0;
3762 else if (N0 == NULL)
3763 return 1;
3764 else
3765 {
3766 int k0, k1;
5b4ee69b 3767
d2e4a39e 3768 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3769 ;
d2e4a39e 3770 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3771 ;
d2e4a39e 3772 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3773 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3774 {
3775 int n0, n1;
5b4ee69b 3776
4c4b4cd2
PH
3777 n0 = k0;
3778 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3779 n0 -= 1;
3780 n1 = k1;
3781 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3782 n1 -= 1;
3783 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3784 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3785 }
14f9c5c9
AS
3786 return (strcmp (N0, N1) < 0);
3787 }
3788}
d2e4a39e 3789
4c4b4cd2
PH
3790/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3791 encoded names. */
3792
d2e4a39e 3793static void
d12307c1 3794sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3795{
4c4b4cd2 3796 int i;
5b4ee69b 3797
d2e4a39e 3798 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3799 {
d12307c1 3800 struct block_symbol sym = syms[i];
14f9c5c9
AS
3801 int j;
3802
d2e4a39e 3803 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3804 {
d12307c1
PMR
3805 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3806 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3807 break;
3808 syms[j + 1] = syms[j];
3809 }
d2e4a39e 3810 syms[j + 1] = sym;
14f9c5c9
AS
3811 }
3812}
3813
4c4b4cd2
PH
3814/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3815 by asking the user (if necessary), returning the number selected,
3816 and setting the first elements of SYMS items. Error if no symbols
3817 selected. */
14f9c5c9
AS
3818
3819/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3820 to be re-integrated one of these days. */
14f9c5c9
AS
3821
3822int
d12307c1 3823user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3824{
3825 int i;
8d749320 3826 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3827 int n_chosen;
3828 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3829 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3830
3831 if (max_results < 1)
323e0a4a 3832 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3833 if (nsyms <= 1)
3834 return nsyms;
3835
717d2f5a
JB
3836 if (select_mode == multiple_symbols_cancel)
3837 error (_("\
3838canceled because the command is ambiguous\n\
3839See set/show multiple-symbol."));
3840
3841 /* If select_mode is "all", then return all possible symbols.
3842 Only do that if more than one symbol can be selected, of course.
3843 Otherwise, display the menu as usual. */
3844 if (select_mode == multiple_symbols_all && max_results > 1)
3845 return nsyms;
3846
323e0a4a 3847 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3848 if (max_results > 1)
323e0a4a 3849 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3850
4c4b4cd2 3851 sort_choices (syms, nsyms);
14f9c5c9
AS
3852
3853 for (i = 0; i < nsyms; i += 1)
3854 {
d12307c1 3855 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3856 continue;
3857
d12307c1 3858 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3859 {
76a01679 3860 struct symtab_and_line sal =
d12307c1 3861 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3862
323e0a4a
AC
3863 if (sal.symtab == NULL)
3864 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3865 i + first_choice,
d12307c1 3866 SYMBOL_PRINT_NAME (syms[i].symbol),
323e0a4a
AC
3867 sal.line);
3868 else
3869 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
d12307c1 3870 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821
JK
3871 symtab_to_filename_for_display (sal.symtab),
3872 sal.line);
4c4b4cd2
PH
3873 continue;
3874 }
d2e4a39e 3875 else
4c4b4cd2
PH
3876 {
3877 int is_enumeral =
d12307c1
PMR
3878 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3879 && SYMBOL_TYPE (syms[i].symbol) != NULL
3880 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3881 struct symtab *symtab = NULL;
3882
d12307c1
PMR
3883 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3884 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3885
d12307c1 3886 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
323e0a4a 3887 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2 3888 i + first_choice,
d12307c1 3889 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3890 symtab_to_filename_for_display (symtab),
d12307c1 3891 SYMBOL_LINE (syms[i].symbol));
76a01679 3892 else if (is_enumeral
d12307c1 3893 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3894 {
a3f17187 3895 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3896 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3897 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3898 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3899 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2
PH
3900 }
3901 else if (symtab != NULL)
3902 printf_unfiltered (is_enumeral
323e0a4a
AC
3903 ? _("[%d] %s in %s (enumeral)\n")
3904 : _("[%d] %s at %s:?\n"),
4c4b4cd2 3905 i + first_choice,
d12307c1 3906 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3907 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3908 else
3909 printf_unfiltered (is_enumeral
323e0a4a
AC
3910 ? _("[%d] %s (enumeral)\n")
3911 : _("[%d] %s at ?\n"),
4c4b4cd2 3912 i + first_choice,
d12307c1 3913 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3914 }
14f9c5c9 3915 }
d2e4a39e 3916
14f9c5c9 3917 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3918 "overload-choice");
14f9c5c9
AS
3919
3920 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3921 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3922
3923 return n_chosen;
3924}
3925
3926/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3927 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3928 order in CHOICES[0 .. N-1], and return N.
3929
3930 The user types choices as a sequence of numbers on one line
3931 separated by blanks, encoding them as follows:
3932
4c4b4cd2 3933 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3934 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3935 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3936
4c4b4cd2 3937 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3938
3939 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3940 prompts (for use with the -f switch). */
14f9c5c9
AS
3941
3942int
d2e4a39e 3943get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3944 int is_all_choice, char *annotation_suffix)
14f9c5c9 3945{
d2e4a39e 3946 char *args;
0bcd0149 3947 char *prompt;
14f9c5c9
AS
3948 int n_chosen;
3949 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3950
14f9c5c9
AS
3951 prompt = getenv ("PS2");
3952 if (prompt == NULL)
0bcd0149 3953 prompt = "> ";
14f9c5c9 3954
0bcd0149 3955 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3956
14f9c5c9 3957 if (args == NULL)
323e0a4a 3958 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3959
3960 n_chosen = 0;
76a01679 3961
4c4b4cd2
PH
3962 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3963 order, as given in args. Choices are validated. */
14f9c5c9
AS
3964 while (1)
3965 {
d2e4a39e 3966 char *args2;
14f9c5c9
AS
3967 int choice, j;
3968
0fcd72ba 3969 args = skip_spaces (args);
14f9c5c9 3970 if (*args == '\0' && n_chosen == 0)
323e0a4a 3971 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3972 else if (*args == '\0')
4c4b4cd2 3973 break;
14f9c5c9
AS
3974
3975 choice = strtol (args, &args2, 10);
d2e4a39e 3976 if (args == args2 || choice < 0
4c4b4cd2 3977 || choice > n_choices + first_choice - 1)
323e0a4a 3978 error (_("Argument must be choice number"));
14f9c5c9
AS
3979 args = args2;
3980
d2e4a39e 3981 if (choice == 0)
323e0a4a 3982 error (_("cancelled"));
14f9c5c9
AS
3983
3984 if (choice < first_choice)
4c4b4cd2
PH
3985 {
3986 n_chosen = n_choices;
3987 for (j = 0; j < n_choices; j += 1)
3988 choices[j] = j;
3989 break;
3990 }
14f9c5c9
AS
3991 choice -= first_choice;
3992
d2e4a39e 3993 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3994 {
3995 }
14f9c5c9
AS
3996
3997 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3998 {
3999 int k;
5b4ee69b 4000
4c4b4cd2
PH
4001 for (k = n_chosen - 1; k > j; k -= 1)
4002 choices[k + 1] = choices[k];
4003 choices[j + 1] = choice;
4004 n_chosen += 1;
4005 }
14f9c5c9
AS
4006 }
4007
4008 if (n_chosen > max_results)
323e0a4a 4009 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4010
14f9c5c9
AS
4011 return n_chosen;
4012}
4013
4c4b4cd2
PH
4014/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4015 on the function identified by SYM and BLOCK, and taking NARGS
4016 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4017
4018static void
d2e4a39e 4019replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4020 int oplen, struct symbol *sym,
270140bd 4021 const struct block *block)
14f9c5c9
AS
4022{
4023 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4024 symbol, -oplen for operator being replaced). */
d2e4a39e 4025 struct expression *newexp = (struct expression *)
8c1a34e7 4026 xzalloc (sizeof (struct expression)
4c4b4cd2 4027 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4028 struct expression *exp = *expp;
14f9c5c9
AS
4029
4030 newexp->nelts = exp->nelts + 7 - oplen;
4031 newexp->language_defn = exp->language_defn;
3489610d 4032 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4033 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4034 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4035 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4036
4037 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4038 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4039
4040 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4041 newexp->elts[pc + 4].block = block;
4042 newexp->elts[pc + 5].symbol = sym;
4043
4044 *expp = newexp;
aacb1f0a 4045 xfree (exp);
d2e4a39e 4046}
14f9c5c9
AS
4047
4048/* Type-class predicates */
4049
4c4b4cd2
PH
4050/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4051 or FLOAT). */
14f9c5c9
AS
4052
4053static int
d2e4a39e 4054numeric_type_p (struct type *type)
14f9c5c9
AS
4055{
4056 if (type == NULL)
4057 return 0;
d2e4a39e
AS
4058 else
4059 {
4060 switch (TYPE_CODE (type))
4c4b4cd2
PH
4061 {
4062 case TYPE_CODE_INT:
4063 case TYPE_CODE_FLT:
4064 return 1;
4065 case TYPE_CODE_RANGE:
4066 return (type == TYPE_TARGET_TYPE (type)
4067 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4068 default:
4069 return 0;
4070 }
d2e4a39e 4071 }
14f9c5c9
AS
4072}
4073
4c4b4cd2 4074/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4075
4076static int
d2e4a39e 4077integer_type_p (struct type *type)
14f9c5c9
AS
4078{
4079 if (type == NULL)
4080 return 0;
d2e4a39e
AS
4081 else
4082 {
4083 switch (TYPE_CODE (type))
4c4b4cd2
PH
4084 {
4085 case TYPE_CODE_INT:
4086 return 1;
4087 case TYPE_CODE_RANGE:
4088 return (type == TYPE_TARGET_TYPE (type)
4089 || integer_type_p (TYPE_TARGET_TYPE (type)));
4090 default:
4091 return 0;
4092 }
d2e4a39e 4093 }
14f9c5c9
AS
4094}
4095
4c4b4cd2 4096/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4097
4098static int
d2e4a39e 4099scalar_type_p (struct type *type)
14f9c5c9
AS
4100{
4101 if (type == NULL)
4102 return 0;
d2e4a39e
AS
4103 else
4104 {
4105 switch (TYPE_CODE (type))
4c4b4cd2
PH
4106 {
4107 case TYPE_CODE_INT:
4108 case TYPE_CODE_RANGE:
4109 case TYPE_CODE_ENUM:
4110 case TYPE_CODE_FLT:
4111 return 1;
4112 default:
4113 return 0;
4114 }
d2e4a39e 4115 }
14f9c5c9
AS
4116}
4117
4c4b4cd2 4118/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4119
4120static int
d2e4a39e 4121discrete_type_p (struct type *type)
14f9c5c9
AS
4122{
4123 if (type == NULL)
4124 return 0;
d2e4a39e
AS
4125 else
4126 {
4127 switch (TYPE_CODE (type))
4c4b4cd2
PH
4128 {
4129 case TYPE_CODE_INT:
4130 case TYPE_CODE_RANGE:
4131 case TYPE_CODE_ENUM:
872f0337 4132 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4133 return 1;
4134 default:
4135 return 0;
4136 }
d2e4a39e 4137 }
14f9c5c9
AS
4138}
4139
4c4b4cd2
PH
4140/* Returns non-zero if OP with operands in the vector ARGS could be
4141 a user-defined function. Errs on the side of pre-defined operators
4142 (i.e., result 0). */
14f9c5c9
AS
4143
4144static int
d2e4a39e 4145possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4146{
76a01679 4147 struct type *type0 =
df407dfe 4148 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4149 struct type *type1 =
df407dfe 4150 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4151
4c4b4cd2
PH
4152 if (type0 == NULL)
4153 return 0;
4154
14f9c5c9
AS
4155 switch (op)
4156 {
4157 default:
4158 return 0;
4159
4160 case BINOP_ADD:
4161 case BINOP_SUB:
4162 case BINOP_MUL:
4163 case BINOP_DIV:
d2e4a39e 4164 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4165
4166 case BINOP_REM:
4167 case BINOP_MOD:
4168 case BINOP_BITWISE_AND:
4169 case BINOP_BITWISE_IOR:
4170 case BINOP_BITWISE_XOR:
d2e4a39e 4171 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4172
4173 case BINOP_EQUAL:
4174 case BINOP_NOTEQUAL:
4175 case BINOP_LESS:
4176 case BINOP_GTR:
4177 case BINOP_LEQ:
4178 case BINOP_GEQ:
d2e4a39e 4179 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4180
4181 case BINOP_CONCAT:
ee90b9ab 4182 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4183
4184 case BINOP_EXP:
d2e4a39e 4185 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4186
4187 case UNOP_NEG:
4188 case UNOP_PLUS:
4189 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4190 case UNOP_ABS:
4191 return (!numeric_type_p (type0));
14f9c5c9
AS
4192
4193 }
4194}
4195\f
4c4b4cd2 4196 /* Renaming */
14f9c5c9 4197
aeb5907d
JB
4198/* NOTES:
4199
4200 1. In the following, we assume that a renaming type's name may
4201 have an ___XD suffix. It would be nice if this went away at some
4202 point.
4203 2. We handle both the (old) purely type-based representation of
4204 renamings and the (new) variable-based encoding. At some point,
4205 it is devoutly to be hoped that the former goes away
4206 (FIXME: hilfinger-2007-07-09).
4207 3. Subprogram renamings are not implemented, although the XRS
4208 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4209
4210/* If SYM encodes a renaming,
4211
4212 <renaming> renames <renamed entity>,
4213
4214 sets *LEN to the length of the renamed entity's name,
4215 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4216 the string describing the subcomponent selected from the renamed
0963b4bd 4217 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4218 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4219 are undefined). Otherwise, returns a value indicating the category
4220 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4221 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4222 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4223 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4224 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4225 may be NULL, in which case they are not assigned.
4226
4227 [Currently, however, GCC does not generate subprogram renamings.] */
4228
4229enum ada_renaming_category
4230ada_parse_renaming (struct symbol *sym,
4231 const char **renamed_entity, int *len,
4232 const char **renaming_expr)
4233{
4234 enum ada_renaming_category kind;
4235 const char *info;
4236 const char *suffix;
4237
4238 if (sym == NULL)
4239 return ADA_NOT_RENAMING;
4240 switch (SYMBOL_CLASS (sym))
14f9c5c9 4241 {
aeb5907d
JB
4242 default:
4243 return ADA_NOT_RENAMING;
4244 case LOC_TYPEDEF:
4245 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4246 renamed_entity, len, renaming_expr);
4247 case LOC_LOCAL:
4248 case LOC_STATIC:
4249 case LOC_COMPUTED:
4250 case LOC_OPTIMIZED_OUT:
4251 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4252 if (info == NULL)
4253 return ADA_NOT_RENAMING;
4254 switch (info[5])
4255 {
4256 case '_':
4257 kind = ADA_OBJECT_RENAMING;
4258 info += 6;
4259 break;
4260 case 'E':
4261 kind = ADA_EXCEPTION_RENAMING;
4262 info += 7;
4263 break;
4264 case 'P':
4265 kind = ADA_PACKAGE_RENAMING;
4266 info += 7;
4267 break;
4268 case 'S':
4269 kind = ADA_SUBPROGRAM_RENAMING;
4270 info += 7;
4271 break;
4272 default:
4273 return ADA_NOT_RENAMING;
4274 }
14f9c5c9 4275 }
4c4b4cd2 4276
aeb5907d
JB
4277 if (renamed_entity != NULL)
4278 *renamed_entity = info;
4279 suffix = strstr (info, "___XE");
4280 if (suffix == NULL || suffix == info)
4281 return ADA_NOT_RENAMING;
4282 if (len != NULL)
4283 *len = strlen (info) - strlen (suffix);
4284 suffix += 5;
4285 if (renaming_expr != NULL)
4286 *renaming_expr = suffix;
4287 return kind;
4288}
4289
4290/* Assuming TYPE encodes a renaming according to the old encoding in
4291 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4292 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4293 ADA_NOT_RENAMING otherwise. */
4294static enum ada_renaming_category
4295parse_old_style_renaming (struct type *type,
4296 const char **renamed_entity, int *len,
4297 const char **renaming_expr)
4298{
4299 enum ada_renaming_category kind;
4300 const char *name;
4301 const char *info;
4302 const char *suffix;
14f9c5c9 4303
aeb5907d
JB
4304 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4305 || TYPE_NFIELDS (type) != 1)
4306 return ADA_NOT_RENAMING;
14f9c5c9 4307
aeb5907d
JB
4308 name = type_name_no_tag (type);
4309 if (name == NULL)
4310 return ADA_NOT_RENAMING;
4311
4312 name = strstr (name, "___XR");
4313 if (name == NULL)
4314 return ADA_NOT_RENAMING;
4315 switch (name[5])
4316 {
4317 case '\0':
4318 case '_':
4319 kind = ADA_OBJECT_RENAMING;
4320 break;
4321 case 'E':
4322 kind = ADA_EXCEPTION_RENAMING;
4323 break;
4324 case 'P':
4325 kind = ADA_PACKAGE_RENAMING;
4326 break;
4327 case 'S':
4328 kind = ADA_SUBPROGRAM_RENAMING;
4329 break;
4330 default:
4331 return ADA_NOT_RENAMING;
4332 }
14f9c5c9 4333
aeb5907d
JB
4334 info = TYPE_FIELD_NAME (type, 0);
4335 if (info == NULL)
4336 return ADA_NOT_RENAMING;
4337 if (renamed_entity != NULL)
4338 *renamed_entity = info;
4339 suffix = strstr (info, "___XE");
4340 if (renaming_expr != NULL)
4341 *renaming_expr = suffix + 5;
4342 if (suffix == NULL || suffix == info)
4343 return ADA_NOT_RENAMING;
4344 if (len != NULL)
4345 *len = suffix - info;
4346 return kind;
a5ee536b
JB
4347}
4348
4349/* Compute the value of the given RENAMING_SYM, which is expected to
4350 be a symbol encoding a renaming expression. BLOCK is the block
4351 used to evaluate the renaming. */
52ce6436 4352
a5ee536b
JB
4353static struct value *
4354ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4355 const struct block *block)
a5ee536b 4356{
bbc13ae3 4357 const char *sym_name;
a5ee536b
JB
4358 struct expression *expr;
4359 struct value *value;
4360 struct cleanup *old_chain = NULL;
4361
bbc13ae3 4362 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4363 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4364 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4365 value = evaluate_expression (expr);
4366
4367 do_cleanups (old_chain);
4368 return value;
4369}
14f9c5c9 4370\f
d2e4a39e 4371
4c4b4cd2 4372 /* Evaluation: Function Calls */
14f9c5c9 4373
4c4b4cd2 4374/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4375 lvalues, and otherwise has the side-effect of allocating memory
4376 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4377
d2e4a39e 4378static struct value *
40bc484c 4379ensure_lval (struct value *val)
14f9c5c9 4380{
40bc484c
JB
4381 if (VALUE_LVAL (val) == not_lval
4382 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4383 {
df407dfe 4384 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4385 const CORE_ADDR addr =
4386 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4387
40bc484c 4388 set_value_address (val, addr);
a84a8a0d 4389 VALUE_LVAL (val) = lval_memory;
40bc484c 4390 write_memory (addr, value_contents (val), len);
c3e5cd34 4391 }
14f9c5c9
AS
4392
4393 return val;
4394}
4395
4396/* Return the value ACTUAL, converted to be an appropriate value for a
4397 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4398 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4399 values not residing in memory, updating it as needed. */
14f9c5c9 4400
a93c0eb6 4401struct value *
40bc484c 4402ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4403{
df407dfe 4404 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4405 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4406 struct type *formal_target =
4407 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4408 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4409 struct type *actual_target =
4410 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4411 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4412
4c4b4cd2 4413 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4414 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4415 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4416 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4417 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4418 {
a84a8a0d 4419 struct value *result;
5b4ee69b 4420
14f9c5c9 4421 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4422 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4423 result = desc_data (actual);
14f9c5c9 4424 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4425 {
4426 if (VALUE_LVAL (actual) != lval_memory)
4427 {
4428 struct value *val;
5b4ee69b 4429
df407dfe 4430 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4431 val = allocate_value (actual_type);
990a07ab 4432 memcpy ((char *) value_contents_raw (val),
0fd88904 4433 (char *) value_contents (actual),
4c4b4cd2 4434 TYPE_LENGTH (actual_type));
40bc484c 4435 actual = ensure_lval (val);
4c4b4cd2 4436 }
a84a8a0d 4437 result = value_addr (actual);
4c4b4cd2 4438 }
a84a8a0d
JB
4439 else
4440 return actual;
b1af9e97 4441 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4442 }
4443 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4444 return ada_value_ind (actual);
8344af1e
JB
4445 else if (ada_is_aligner_type (formal_type))
4446 {
4447 /* We need to turn this parameter into an aligner type
4448 as well. */
4449 struct value *aligner = allocate_value (formal_type);
4450 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4451
4452 value_assign_to_component (aligner, component, actual);
4453 return aligner;
4454 }
14f9c5c9
AS
4455
4456 return actual;
4457}
4458
438c98a1
JB
4459/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4460 type TYPE. This is usually an inefficient no-op except on some targets
4461 (such as AVR) where the representation of a pointer and an address
4462 differs. */
4463
4464static CORE_ADDR
4465value_pointer (struct value *value, struct type *type)
4466{
4467 struct gdbarch *gdbarch = get_type_arch (type);
4468 unsigned len = TYPE_LENGTH (type);
224c3ddb 4469 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4470 CORE_ADDR addr;
4471
4472 addr = value_address (value);
4473 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4474 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4475 return addr;
4476}
4477
14f9c5c9 4478
4c4b4cd2
PH
4479/* Push a descriptor of type TYPE for array value ARR on the stack at
4480 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4481 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4482 to-descriptor type rather than a descriptor type), a struct value *
4483 representing a pointer to this descriptor. */
14f9c5c9 4484
d2e4a39e 4485static struct value *
40bc484c 4486make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4487{
d2e4a39e
AS
4488 struct type *bounds_type = desc_bounds_type (type);
4489 struct type *desc_type = desc_base_type (type);
4490 struct value *descriptor = allocate_value (desc_type);
4491 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4492 int i;
d2e4a39e 4493
0963b4bd
MS
4494 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4495 i > 0; i -= 1)
14f9c5c9 4496 {
19f220c3
JK
4497 modify_field (value_type (bounds), value_contents_writeable (bounds),
4498 ada_array_bound (arr, i, 0),
4499 desc_bound_bitpos (bounds_type, i, 0),
4500 desc_bound_bitsize (bounds_type, i, 0));
4501 modify_field (value_type (bounds), value_contents_writeable (bounds),
4502 ada_array_bound (arr, i, 1),
4503 desc_bound_bitpos (bounds_type, i, 1),
4504 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4505 }
d2e4a39e 4506
40bc484c 4507 bounds = ensure_lval (bounds);
d2e4a39e 4508
19f220c3
JK
4509 modify_field (value_type (descriptor),
4510 value_contents_writeable (descriptor),
4511 value_pointer (ensure_lval (arr),
4512 TYPE_FIELD_TYPE (desc_type, 0)),
4513 fat_pntr_data_bitpos (desc_type),
4514 fat_pntr_data_bitsize (desc_type));
4515
4516 modify_field (value_type (descriptor),
4517 value_contents_writeable (descriptor),
4518 value_pointer (bounds,
4519 TYPE_FIELD_TYPE (desc_type, 1)),
4520 fat_pntr_bounds_bitpos (desc_type),
4521 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4522
40bc484c 4523 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4524
4525 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4526 return value_addr (descriptor);
4527 else
4528 return descriptor;
4529}
14f9c5c9 4530\f
3d9434b5
JB
4531 /* Symbol Cache Module */
4532
3d9434b5 4533/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4534 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4535 on the type of entity being printed, the cache can make it as much
4536 as an order of magnitude faster than without it.
4537
4538 The descriptive type DWARF extension has significantly reduced
4539 the need for this cache, at least when DWARF is being used. However,
4540 even in this case, some expensive name-based symbol searches are still
4541 sometimes necessary - to find an XVZ variable, mostly. */
4542
ee01b665 4543/* Initialize the contents of SYM_CACHE. */
3d9434b5 4544
ee01b665
JB
4545static void
4546ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4547{
4548 obstack_init (&sym_cache->cache_space);
4549 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4550}
3d9434b5 4551
ee01b665
JB
4552/* Free the memory used by SYM_CACHE. */
4553
4554static void
4555ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4556{
ee01b665
JB
4557 obstack_free (&sym_cache->cache_space, NULL);
4558 xfree (sym_cache);
4559}
3d9434b5 4560
ee01b665
JB
4561/* Return the symbol cache associated to the given program space PSPACE.
4562 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4563
ee01b665
JB
4564static struct ada_symbol_cache *
4565ada_get_symbol_cache (struct program_space *pspace)
4566{
4567 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4568
66c168ae 4569 if (pspace_data->sym_cache == NULL)
ee01b665 4570 {
66c168ae
JB
4571 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4572 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4573 }
4574
66c168ae 4575 return pspace_data->sym_cache;
ee01b665 4576}
3d9434b5
JB
4577
4578/* Clear all entries from the symbol cache. */
4579
4580static void
4581ada_clear_symbol_cache (void)
4582{
ee01b665
JB
4583 struct ada_symbol_cache *sym_cache
4584 = ada_get_symbol_cache (current_program_space);
4585
4586 obstack_free (&sym_cache->cache_space, NULL);
4587 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4588}
4589
fe978cb0 4590/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4591 Return it if found, or NULL otherwise. */
4592
4593static struct cache_entry **
fe978cb0 4594find_entry (const char *name, domain_enum domain)
3d9434b5 4595{
ee01b665
JB
4596 struct ada_symbol_cache *sym_cache
4597 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4598 int h = msymbol_hash (name) % HASH_SIZE;
4599 struct cache_entry **e;
4600
ee01b665 4601 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4602 {
fe978cb0 4603 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4604 return e;
4605 }
4606 return NULL;
4607}
4608
fe978cb0 4609/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4610 Return 1 if found, 0 otherwise.
4611
4612 If an entry was found and SYM is not NULL, set *SYM to the entry's
4613 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4614
96d887e8 4615static int
fe978cb0 4616lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4617 struct symbol **sym, const struct block **block)
96d887e8 4618{
fe978cb0 4619 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4620
4621 if (e == NULL)
4622 return 0;
4623 if (sym != NULL)
4624 *sym = (*e)->sym;
4625 if (block != NULL)
4626 *block = (*e)->block;
4627 return 1;
96d887e8
PH
4628}
4629
3d9434b5 4630/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4631 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4632
96d887e8 4633static void
fe978cb0 4634cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4635 const struct block *block)
96d887e8 4636{
ee01b665
JB
4637 struct ada_symbol_cache *sym_cache
4638 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4639 int h;
4640 char *copy;
4641 struct cache_entry *e;
4642
1994afbf
DE
4643 /* Symbols for builtin types don't have a block.
4644 For now don't cache such symbols. */
4645 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4646 return;
4647
3d9434b5
JB
4648 /* If the symbol is a local symbol, then do not cache it, as a search
4649 for that symbol depends on the context. To determine whether
4650 the symbol is local or not, we check the block where we found it
4651 against the global and static blocks of its associated symtab. */
4652 if (sym
08be3fe3 4653 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4654 GLOBAL_BLOCK) != block
08be3fe3 4655 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4656 STATIC_BLOCK) != block)
3d9434b5
JB
4657 return;
4658
4659 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4660 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4661 sizeof (*e));
4662 e->next = sym_cache->root[h];
4663 sym_cache->root[h] = e;
224c3ddb
SM
4664 e->name = copy
4665 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4666 strcpy (copy, name);
4667 e->sym = sym;
fe978cb0 4668 e->domain = domain;
3d9434b5 4669 e->block = block;
96d887e8 4670}
4c4b4cd2
PH
4671\f
4672 /* Symbol Lookup */
4673
c0431670
JB
4674/* Return nonzero if wild matching should be used when searching for
4675 all symbols matching LOOKUP_NAME.
4676
4677 LOOKUP_NAME is expected to be a symbol name after transformation
4678 for Ada lookups (see ada_name_for_lookup). */
4679
4680static int
4681should_use_wild_match (const char *lookup_name)
4682{
4683 return (strstr (lookup_name, "__") == NULL);
4684}
4685
4c4b4cd2
PH
4686/* Return the result of a standard (literal, C-like) lookup of NAME in
4687 given DOMAIN, visible from lexical block BLOCK. */
4688
4689static struct symbol *
4690standard_lookup (const char *name, const struct block *block,
4691 domain_enum domain)
4692{
acbd605d 4693 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4694 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4695
d12307c1
PMR
4696 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4697 return sym.symbol;
2570f2b7 4698 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4699 cache_symbol (name, domain, sym.symbol, sym.block);
4700 return sym.symbol;
4c4b4cd2
PH
4701}
4702
4703
4704/* Non-zero iff there is at least one non-function/non-enumeral symbol
4705 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4706 since they contend in overloading in the same way. */
4707static int
d12307c1 4708is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4709{
4710 int i;
4711
4712 for (i = 0; i < n; i += 1)
d12307c1
PMR
4713 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4714 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4715 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4716 return 1;
4717
4718 return 0;
4719}
4720
4721/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4722 struct types. Otherwise, they may not. */
14f9c5c9
AS
4723
4724static int
d2e4a39e 4725equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4726{
d2e4a39e 4727 if (type0 == type1)
14f9c5c9 4728 return 1;
d2e4a39e 4729 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4730 || TYPE_CODE (type0) != TYPE_CODE (type1))
4731 return 0;
d2e4a39e 4732 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4733 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4734 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4735 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4736 return 1;
d2e4a39e 4737
14f9c5c9
AS
4738 return 0;
4739}
4740
4741/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4742 no more defined than that of SYM1. */
14f9c5c9
AS
4743
4744static int
d2e4a39e 4745lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4746{
4747 if (sym0 == sym1)
4748 return 1;
176620f1 4749 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4750 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4751 return 0;
4752
d2e4a39e 4753 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4754 {
4755 case LOC_UNDEF:
4756 return 1;
4757 case LOC_TYPEDEF:
4758 {
4c4b4cd2
PH
4759 struct type *type0 = SYMBOL_TYPE (sym0);
4760 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4761 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4762 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4763 int len0 = strlen (name0);
5b4ee69b 4764
4c4b4cd2
PH
4765 return
4766 TYPE_CODE (type0) == TYPE_CODE (type1)
4767 && (equiv_types (type0, type1)
4768 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4769 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4770 }
4771 case LOC_CONST:
4772 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4773 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4774 default:
4775 return 0;
14f9c5c9
AS
4776 }
4777}
4778
d12307c1 4779/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4780 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4781
4782static void
76a01679
JB
4783add_defn_to_vec (struct obstack *obstackp,
4784 struct symbol *sym,
f0c5f9b2 4785 const struct block *block)
14f9c5c9
AS
4786{
4787 int i;
d12307c1 4788 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4789
529cad9c
PH
4790 /* Do not try to complete stub types, as the debugger is probably
4791 already scanning all symbols matching a certain name at the
4792 time when this function is called. Trying to replace the stub
4793 type by its associated full type will cause us to restart a scan
4794 which may lead to an infinite recursion. Instead, the client
4795 collecting the matching symbols will end up collecting several
4796 matches, with at least one of them complete. It can then filter
4797 out the stub ones if needed. */
4798
4c4b4cd2
PH
4799 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4800 {
d12307c1 4801 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4802 return;
d12307c1 4803 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4804 {
d12307c1 4805 prevDefns[i].symbol = sym;
4c4b4cd2 4806 prevDefns[i].block = block;
4c4b4cd2 4807 return;
76a01679 4808 }
4c4b4cd2
PH
4809 }
4810
4811 {
d12307c1 4812 struct block_symbol info;
4c4b4cd2 4813
d12307c1 4814 info.symbol = sym;
4c4b4cd2 4815 info.block = block;
d12307c1 4816 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4817 }
4818}
4819
d12307c1
PMR
4820/* Number of block_symbol structures currently collected in current vector in
4821 OBSTACKP. */
4c4b4cd2 4822
76a01679
JB
4823static int
4824num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4825{
d12307c1 4826 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4827}
4828
d12307c1
PMR
4829/* Vector of block_symbol structures currently collected in current vector in
4830 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4831
d12307c1 4832static struct block_symbol *
4c4b4cd2
PH
4833defns_collected (struct obstack *obstackp, int finish)
4834{
4835 if (finish)
224c3ddb 4836 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4837 else
d12307c1 4838 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4839}
4840
7c7b6655
TT
4841/* Return a bound minimal symbol matching NAME according to Ada
4842 decoding rules. Returns an invalid symbol if there is no such
4843 minimal symbol. Names prefixed with "standard__" are handled
4844 specially: "standard__" is first stripped off, and only static and
4845 global symbols are searched. */
4c4b4cd2 4846
7c7b6655 4847struct bound_minimal_symbol
96d887e8 4848ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4849{
7c7b6655 4850 struct bound_minimal_symbol result;
4c4b4cd2 4851 struct objfile *objfile;
96d887e8 4852 struct minimal_symbol *msymbol;
dc4024cd 4853 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4854
7c7b6655
TT
4855 memset (&result, 0, sizeof (result));
4856
c0431670
JB
4857 /* Special case: If the user specifies a symbol name inside package
4858 Standard, do a non-wild matching of the symbol name without
4859 the "standard__" prefix. This was primarily introduced in order
4860 to allow the user to specifically access the standard exceptions
4861 using, for instance, Standard.Constraint_Error when Constraint_Error
4862 is ambiguous (due to the user defining its own Constraint_Error
4863 entity inside its program). */
61012eef 4864 if (startswith (name, "standard__"))
c0431670 4865 name += sizeof ("standard__") - 1;
4c4b4cd2 4866
96d887e8
PH
4867 ALL_MSYMBOLS (objfile, msymbol)
4868 {
efd66ac6 4869 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4870 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4871 {
4872 result.minsym = msymbol;
4873 result.objfile = objfile;
4874 break;
4875 }
96d887e8 4876 }
4c4b4cd2 4877
7c7b6655 4878 return result;
96d887e8 4879}
4c4b4cd2 4880
96d887e8
PH
4881/* For all subprograms that statically enclose the subprogram of the
4882 selected frame, add symbols matching identifier NAME in DOMAIN
4883 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4884 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4885 with a wildcard prefix. */
4c4b4cd2 4886
96d887e8
PH
4887static void
4888add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4889 const char *name, domain_enum domain,
48b78332 4890 int wild_match_p)
96d887e8 4891{
96d887e8 4892}
14f9c5c9 4893
96d887e8
PH
4894/* True if TYPE is definitely an artificial type supplied to a symbol
4895 for which no debugging information was given in the symbol file. */
14f9c5c9 4896
96d887e8
PH
4897static int
4898is_nondebugging_type (struct type *type)
4899{
0d5cff50 4900 const char *name = ada_type_name (type);
5b4ee69b 4901
96d887e8
PH
4902 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4903}
4c4b4cd2 4904
8f17729f
JB
4905/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4906 that are deemed "identical" for practical purposes.
4907
4908 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4909 types and that their number of enumerals is identical (in other
4910 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4911
4912static int
4913ada_identical_enum_types_p (struct type *type1, struct type *type2)
4914{
4915 int i;
4916
4917 /* The heuristic we use here is fairly conservative. We consider
4918 that 2 enumerate types are identical if they have the same
4919 number of enumerals and that all enumerals have the same
4920 underlying value and name. */
4921
4922 /* All enums in the type should have an identical underlying value. */
4923 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4924 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4925 return 0;
4926
4927 /* All enumerals should also have the same name (modulo any numerical
4928 suffix). */
4929 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4930 {
0d5cff50
DE
4931 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4932 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4933 int len_1 = strlen (name_1);
4934 int len_2 = strlen (name_2);
4935
4936 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4937 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4938 if (len_1 != len_2
4939 || strncmp (TYPE_FIELD_NAME (type1, i),
4940 TYPE_FIELD_NAME (type2, i),
4941 len_1) != 0)
4942 return 0;
4943 }
4944
4945 return 1;
4946}
4947
4948/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4949 that are deemed "identical" for practical purposes. Sometimes,
4950 enumerals are not strictly identical, but their types are so similar
4951 that they can be considered identical.
4952
4953 For instance, consider the following code:
4954
4955 type Color is (Black, Red, Green, Blue, White);
4956 type RGB_Color is new Color range Red .. Blue;
4957
4958 Type RGB_Color is a subrange of an implicit type which is a copy
4959 of type Color. If we call that implicit type RGB_ColorB ("B" is
4960 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4961 As a result, when an expression references any of the enumeral
4962 by name (Eg. "print green"), the expression is technically
4963 ambiguous and the user should be asked to disambiguate. But
4964 doing so would only hinder the user, since it wouldn't matter
4965 what choice he makes, the outcome would always be the same.
4966 So, for practical purposes, we consider them as the same. */
4967
4968static int
d12307c1 4969symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
4970{
4971 int i;
4972
4973 /* Before performing a thorough comparison check of each type,
4974 we perform a series of inexpensive checks. We expect that these
4975 checks will quickly fail in the vast majority of cases, and thus
4976 help prevent the unnecessary use of a more expensive comparison.
4977 Said comparison also expects us to make some of these checks
4978 (see ada_identical_enum_types_p). */
4979
4980 /* Quick check: All symbols should have an enum type. */
4981 for (i = 0; i < nsyms; i++)
d12307c1 4982 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4983 return 0;
4984
4985 /* Quick check: They should all have the same value. */
4986 for (i = 1; i < nsyms; i++)
d12307c1 4987 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4988 return 0;
4989
4990 /* Quick check: They should all have the same number of enumerals. */
4991 for (i = 1; i < nsyms; i++)
d12307c1
PMR
4992 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4993 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4994 return 0;
4995
4996 /* All the sanity checks passed, so we might have a set of
4997 identical enumeration types. Perform a more complete
4998 comparison of the type of each symbol. */
4999 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5000 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5001 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5002 return 0;
5003
5004 return 1;
5005}
5006
96d887e8
PH
5007/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5008 duplicate other symbols in the list (The only case I know of where
5009 this happens is when object files containing stabs-in-ecoff are
5010 linked with files containing ordinary ecoff debugging symbols (or no
5011 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5012 Returns the number of items in the modified list. */
4c4b4cd2 5013
96d887e8 5014static int
d12307c1 5015remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5016{
5017 int i, j;
4c4b4cd2 5018
8f17729f
JB
5019 /* We should never be called with less than 2 symbols, as there
5020 cannot be any extra symbol in that case. But it's easy to
5021 handle, since we have nothing to do in that case. */
5022 if (nsyms < 2)
5023 return nsyms;
5024
96d887e8
PH
5025 i = 0;
5026 while (i < nsyms)
5027 {
a35ddb44 5028 int remove_p = 0;
339c13b6
JB
5029
5030 /* If two symbols have the same name and one of them is a stub type,
5031 the get rid of the stub. */
5032
d12307c1
PMR
5033 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5034 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5035 {
5036 for (j = 0; j < nsyms; j++)
5037 {
5038 if (j != i
d12307c1
PMR
5039 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5040 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5041 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5042 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5043 remove_p = 1;
339c13b6
JB
5044 }
5045 }
5046
5047 /* Two symbols with the same name, same class and same address
5048 should be identical. */
5049
d12307c1
PMR
5050 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5051 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5052 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5053 {
5054 for (j = 0; j < nsyms; j += 1)
5055 {
5056 if (i != j
d12307c1
PMR
5057 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5058 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5059 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5060 && SYMBOL_CLASS (syms[i].symbol)
5061 == SYMBOL_CLASS (syms[j].symbol)
5062 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5063 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5064 remove_p = 1;
4c4b4cd2 5065 }
4c4b4cd2 5066 }
339c13b6 5067
a35ddb44 5068 if (remove_p)
339c13b6
JB
5069 {
5070 for (j = i + 1; j < nsyms; j += 1)
5071 syms[j - 1] = syms[j];
5072 nsyms -= 1;
5073 }
5074
96d887e8 5075 i += 1;
14f9c5c9 5076 }
8f17729f
JB
5077
5078 /* If all the remaining symbols are identical enumerals, then
5079 just keep the first one and discard the rest.
5080
5081 Unlike what we did previously, we do not discard any entry
5082 unless they are ALL identical. This is because the symbol
5083 comparison is not a strict comparison, but rather a practical
5084 comparison. If all symbols are considered identical, then
5085 we can just go ahead and use the first one and discard the rest.
5086 But if we cannot reduce the list to a single element, we have
5087 to ask the user to disambiguate anyways. And if we have to
5088 present a multiple-choice menu, it's less confusing if the list
5089 isn't missing some choices that were identical and yet distinct. */
5090 if (symbols_are_identical_enums (syms, nsyms))
5091 nsyms = 1;
5092
96d887e8 5093 return nsyms;
14f9c5c9
AS
5094}
5095
96d887e8
PH
5096/* Given a type that corresponds to a renaming entity, use the type name
5097 to extract the scope (package name or function name, fully qualified,
5098 and following the GNAT encoding convention) where this renaming has been
5099 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5100
96d887e8
PH
5101static char *
5102xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5103{
96d887e8 5104 /* The renaming types adhere to the following convention:
0963b4bd 5105 <scope>__<rename>___<XR extension>.
96d887e8
PH
5106 So, to extract the scope, we search for the "___XR" extension,
5107 and then backtrack until we find the first "__". */
76a01679 5108
96d887e8 5109 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5110 const char *suffix = strstr (name, "___XR");
5111 const char *last;
96d887e8
PH
5112 int scope_len;
5113 char *scope;
14f9c5c9 5114
96d887e8
PH
5115 /* Now, backtrack a bit until we find the first "__". Start looking
5116 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5117
96d887e8
PH
5118 for (last = suffix - 3; last > name; last--)
5119 if (last[0] == '_' && last[1] == '_')
5120 break;
76a01679 5121
96d887e8 5122 /* Make a copy of scope and return it. */
14f9c5c9 5123
96d887e8
PH
5124 scope_len = last - name;
5125 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5126
96d887e8
PH
5127 strncpy (scope, name, scope_len);
5128 scope[scope_len] = '\0';
4c4b4cd2 5129
96d887e8 5130 return scope;
4c4b4cd2
PH
5131}
5132
96d887e8 5133/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5134
96d887e8
PH
5135static int
5136is_package_name (const char *name)
4c4b4cd2 5137{
96d887e8
PH
5138 /* Here, We take advantage of the fact that no symbols are generated
5139 for packages, while symbols are generated for each function.
5140 So the condition for NAME represent a package becomes equivalent
5141 to NAME not existing in our list of symbols. There is only one
5142 small complication with library-level functions (see below). */
4c4b4cd2 5143
96d887e8 5144 char *fun_name;
76a01679 5145
96d887e8
PH
5146 /* If it is a function that has not been defined at library level,
5147 then we should be able to look it up in the symbols. */
5148 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5149 return 0;
14f9c5c9 5150
96d887e8
PH
5151 /* Library-level function names start with "_ada_". See if function
5152 "_ada_" followed by NAME can be found. */
14f9c5c9 5153
96d887e8 5154 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5155 functions names cannot contain "__" in them. */
96d887e8
PH
5156 if (strstr (name, "__") != NULL)
5157 return 0;
4c4b4cd2 5158
b435e160 5159 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5160
96d887e8
PH
5161 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5162}
14f9c5c9 5163
96d887e8 5164/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5165 not visible from FUNCTION_NAME. */
14f9c5c9 5166
96d887e8 5167static int
0d5cff50 5168old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5169{
aeb5907d 5170 char *scope;
1509e573 5171 struct cleanup *old_chain;
aeb5907d
JB
5172
5173 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5174 return 0;
5175
5176 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5177 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5178
96d887e8
PH
5179 /* If the rename has been defined in a package, then it is visible. */
5180 if (is_package_name (scope))
1509e573
JB
5181 {
5182 do_cleanups (old_chain);
5183 return 0;
5184 }
14f9c5c9 5185
96d887e8
PH
5186 /* Check that the rename is in the current function scope by checking
5187 that its name starts with SCOPE. */
76a01679 5188
96d887e8
PH
5189 /* If the function name starts with "_ada_", it means that it is
5190 a library-level function. Strip this prefix before doing the
5191 comparison, as the encoding for the renaming does not contain
5192 this prefix. */
61012eef 5193 if (startswith (function_name, "_ada_"))
96d887e8 5194 function_name += 5;
f26caa11 5195
1509e573 5196 {
61012eef 5197 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5198
5199 do_cleanups (old_chain);
5200 return is_invisible;
5201 }
f26caa11
PH
5202}
5203
aeb5907d
JB
5204/* Remove entries from SYMS that corresponds to a renaming entity that
5205 is not visible from the function associated with CURRENT_BLOCK or
5206 that is superfluous due to the presence of more specific renaming
5207 information. Places surviving symbols in the initial entries of
5208 SYMS and returns the number of surviving symbols.
96d887e8
PH
5209
5210 Rationale:
aeb5907d
JB
5211 First, in cases where an object renaming is implemented as a
5212 reference variable, GNAT may produce both the actual reference
5213 variable and the renaming encoding. In this case, we discard the
5214 latter.
5215
5216 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5217 entity. Unfortunately, STABS currently does not support the definition
5218 of types that are local to a given lexical block, so all renamings types
5219 are emitted at library level. As a consequence, if an application
5220 contains two renaming entities using the same name, and a user tries to
5221 print the value of one of these entities, the result of the ada symbol
5222 lookup will also contain the wrong renaming type.
f26caa11 5223
96d887e8
PH
5224 This function partially covers for this limitation by attempting to
5225 remove from the SYMS list renaming symbols that should be visible
5226 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5227 method with the current information available. The implementation
5228 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5229
5230 - When the user tries to print a rename in a function while there
5231 is another rename entity defined in a package: Normally, the
5232 rename in the function has precedence over the rename in the
5233 package, so the latter should be removed from the list. This is
5234 currently not the case.
5235
5236 - This function will incorrectly remove valid renames if
5237 the CURRENT_BLOCK corresponds to a function which symbol name
5238 has been changed by an "Export" pragma. As a consequence,
5239 the user will be unable to print such rename entities. */
4c4b4cd2 5240
14f9c5c9 5241static int
d12307c1 5242remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5243 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5244{
5245 struct symbol *current_function;
0d5cff50 5246 const char *current_function_name;
4c4b4cd2 5247 int i;
aeb5907d
JB
5248 int is_new_style_renaming;
5249
5250 /* If there is both a renaming foo___XR... encoded as a variable and
5251 a simple variable foo in the same block, discard the latter.
0963b4bd 5252 First, zero out such symbols, then compress. */
aeb5907d
JB
5253 is_new_style_renaming = 0;
5254 for (i = 0; i < nsyms; i += 1)
5255 {
d12307c1 5256 struct symbol *sym = syms[i].symbol;
270140bd 5257 const struct block *block = syms[i].block;
aeb5907d
JB
5258 const char *name;
5259 const char *suffix;
5260
5261 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5262 continue;
5263 name = SYMBOL_LINKAGE_NAME (sym);
5264 suffix = strstr (name, "___XR");
5265
5266 if (suffix != NULL)
5267 {
5268 int name_len = suffix - name;
5269 int j;
5b4ee69b 5270
aeb5907d
JB
5271 is_new_style_renaming = 1;
5272 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5273 if (i != j && syms[j].symbol != NULL
5274 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5275 name_len) == 0
5276 && block == syms[j].block)
d12307c1 5277 syms[j].symbol = NULL;
aeb5907d
JB
5278 }
5279 }
5280 if (is_new_style_renaming)
5281 {
5282 int j, k;
5283
5284 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5285 if (syms[j].symbol != NULL)
aeb5907d
JB
5286 {
5287 syms[k] = syms[j];
5288 k += 1;
5289 }
5290 return k;
5291 }
4c4b4cd2
PH
5292
5293 /* Extract the function name associated to CURRENT_BLOCK.
5294 Abort if unable to do so. */
76a01679 5295
4c4b4cd2
PH
5296 if (current_block == NULL)
5297 return nsyms;
76a01679 5298
7f0df278 5299 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5300 if (current_function == NULL)
5301 return nsyms;
5302
5303 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5304 if (current_function_name == NULL)
5305 return nsyms;
5306
5307 /* Check each of the symbols, and remove it from the list if it is
5308 a type corresponding to a renaming that is out of the scope of
5309 the current block. */
5310
5311 i = 0;
5312 while (i < nsyms)
5313 {
d12307c1 5314 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5315 == ADA_OBJECT_RENAMING
d12307c1 5316 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5317 {
5318 int j;
5b4ee69b 5319
aeb5907d 5320 for (j = i + 1; j < nsyms; j += 1)
76a01679 5321 syms[j - 1] = syms[j];
4c4b4cd2
PH
5322 nsyms -= 1;
5323 }
5324 else
5325 i += 1;
5326 }
5327
5328 return nsyms;
5329}
5330
339c13b6
JB
5331/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5332 whose name and domain match NAME and DOMAIN respectively.
5333 If no match was found, then extend the search to "enclosing"
5334 routines (in other words, if we're inside a nested function,
5335 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5336 If WILD_MATCH_P is nonzero, perform the naming matching in
5337 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5338
5339 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5340
5341static void
5342ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5343 const struct block *block, domain_enum domain,
d0a8ab18 5344 int wild_match_p)
339c13b6
JB
5345{
5346 int block_depth = 0;
5347
5348 while (block != NULL)
5349 {
5350 block_depth += 1;
d0a8ab18
JB
5351 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5352 wild_match_p);
339c13b6
JB
5353
5354 /* If we found a non-function match, assume that's the one. */
5355 if (is_nonfunction (defns_collected (obstackp, 0),
5356 num_defns_collected (obstackp)))
5357 return;
5358
5359 block = BLOCK_SUPERBLOCK (block);
5360 }
5361
5362 /* If no luck so far, try to find NAME as a local symbol in some lexically
5363 enclosing subprogram. */
5364 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5365 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5366}
5367
ccefe4c4 5368/* An object of this type is used as the user_data argument when
40658b94 5369 calling the map_matching_symbols method. */
ccefe4c4 5370
40658b94 5371struct match_data
ccefe4c4 5372{
40658b94 5373 struct objfile *objfile;
ccefe4c4 5374 struct obstack *obstackp;
40658b94
PH
5375 struct symbol *arg_sym;
5376 int found_sym;
ccefe4c4
TT
5377};
5378
22cee43f 5379/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5380 to a list of symbols. DATA0 is a pointer to a struct match_data *
5381 containing the obstack that collects the symbol list, the file that SYM
5382 must come from, a flag indicating whether a non-argument symbol has
5383 been found in the current block, and the last argument symbol
5384 passed in SYM within the current block (if any). When SYM is null,
5385 marking the end of a block, the argument symbol is added if no
5386 other has been found. */
ccefe4c4 5387
40658b94
PH
5388static int
5389aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5390{
40658b94
PH
5391 struct match_data *data = (struct match_data *) data0;
5392
5393 if (sym == NULL)
5394 {
5395 if (!data->found_sym && data->arg_sym != NULL)
5396 add_defn_to_vec (data->obstackp,
5397 fixup_symbol_section (data->arg_sym, data->objfile),
5398 block);
5399 data->found_sym = 0;
5400 data->arg_sym = NULL;
5401 }
5402 else
5403 {
5404 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5405 return 0;
5406 else if (SYMBOL_IS_ARGUMENT (sym))
5407 data->arg_sym = sym;
5408 else
5409 {
5410 data->found_sym = 1;
5411 add_defn_to_vec (data->obstackp,
5412 fixup_symbol_section (sym, data->objfile),
5413 block);
5414 }
5415 }
5416 return 0;
5417}
5418
22cee43f
PMR
5419/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5420 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5421 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5422 function "wild_match" for more information). Return whether we found such
5423 symbols. */
5424
5425static int
5426ada_add_block_renamings (struct obstack *obstackp,
5427 const struct block *block,
5428 const char *name,
5429 domain_enum domain,
5430 int wild_match_p)
5431{
5432 struct using_direct *renaming;
5433 int defns_mark = num_defns_collected (obstackp);
5434
5435 for (renaming = block_using (block);
5436 renaming != NULL;
5437 renaming = renaming->next)
5438 {
5439 const char *r_name;
5440 int name_match;
5441
5442 /* Avoid infinite recursions: skip this renaming if we are actually
5443 already traversing it.
5444
5445 Currently, symbol lookup in Ada don't use the namespace machinery from
5446 C++/Fortran support: skip namespace imports that use them. */
5447 if (renaming->searched
5448 || (renaming->import_src != NULL
5449 && renaming->import_src[0] != '\0')
5450 || (renaming->import_dest != NULL
5451 && renaming->import_dest[0] != '\0'))
5452 continue;
5453 renaming->searched = 1;
5454
5455 /* TODO: here, we perform another name-based symbol lookup, which can
5456 pull its own multiple overloads. In theory, we should be able to do
5457 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5458 not a simple name. But in order to do this, we would need to enhance
5459 the DWARF reader to associate a symbol to this renaming, instead of a
5460 name. So, for now, we do something simpler: re-use the C++/Fortran
5461 namespace machinery. */
5462 r_name = (renaming->alias != NULL
5463 ? renaming->alias
5464 : renaming->declaration);
5465 name_match
5466 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5467 if (name_match == 0)
5468 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5469 1, NULL);
5470 renaming->searched = 0;
5471 }
5472 return num_defns_collected (obstackp) != defns_mark;
5473}
5474
db230ce3
JB
5475/* Implements compare_names, but only applying the comparision using
5476 the given CASING. */
5b4ee69b 5477
40658b94 5478static int
db230ce3
JB
5479compare_names_with_case (const char *string1, const char *string2,
5480 enum case_sensitivity casing)
40658b94
PH
5481{
5482 while (*string1 != '\0' && *string2 != '\0')
5483 {
db230ce3
JB
5484 char c1, c2;
5485
40658b94
PH
5486 if (isspace (*string1) || isspace (*string2))
5487 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5488
5489 if (casing == case_sensitive_off)
5490 {
5491 c1 = tolower (*string1);
5492 c2 = tolower (*string2);
5493 }
5494 else
5495 {
5496 c1 = *string1;
5497 c2 = *string2;
5498 }
5499 if (c1 != c2)
40658b94 5500 break;
db230ce3 5501
40658b94
PH
5502 string1 += 1;
5503 string2 += 1;
5504 }
db230ce3 5505
40658b94
PH
5506 switch (*string1)
5507 {
5508 case '(':
5509 return strcmp_iw_ordered (string1, string2);
5510 case '_':
5511 if (*string2 == '\0')
5512 {
052874e8 5513 if (is_name_suffix (string1))
40658b94
PH
5514 return 0;
5515 else
1a1d5513 5516 return 1;
40658b94 5517 }
dbb8534f 5518 /* FALLTHROUGH */
40658b94
PH
5519 default:
5520 if (*string2 == '(')
5521 return strcmp_iw_ordered (string1, string2);
5522 else
db230ce3
JB
5523 {
5524 if (casing == case_sensitive_off)
5525 return tolower (*string1) - tolower (*string2);
5526 else
5527 return *string1 - *string2;
5528 }
40658b94 5529 }
ccefe4c4
TT
5530}
5531
db230ce3
JB
5532/* Compare STRING1 to STRING2, with results as for strcmp.
5533 Compatible with strcmp_iw_ordered in that...
5534
5535 strcmp_iw_ordered (STRING1, STRING2) <= 0
5536
5537 ... implies...
5538
5539 compare_names (STRING1, STRING2) <= 0
5540
5541 (they may differ as to what symbols compare equal). */
5542
5543static int
5544compare_names (const char *string1, const char *string2)
5545{
5546 int result;
5547
5548 /* Similar to what strcmp_iw_ordered does, we need to perform
5549 a case-insensitive comparison first, and only resort to
5550 a second, case-sensitive, comparison if the first one was
5551 not sufficient to differentiate the two strings. */
5552
5553 result = compare_names_with_case (string1, string2, case_sensitive_off);
5554 if (result == 0)
5555 result = compare_names_with_case (string1, string2, case_sensitive_on);
5556
5557 return result;
5558}
5559
339c13b6
JB
5560/* Add to OBSTACKP all non-local symbols whose name and domain match
5561 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5562 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5563
5564static void
40658b94
PH
5565add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5566 domain_enum domain, int global,
5567 int is_wild_match)
339c13b6
JB
5568{
5569 struct objfile *objfile;
22cee43f 5570 struct compunit_symtab *cu;
40658b94 5571 struct match_data data;
339c13b6 5572
6475f2fe 5573 memset (&data, 0, sizeof data);
ccefe4c4 5574 data.obstackp = obstackp;
339c13b6 5575
ccefe4c4 5576 ALL_OBJFILES (objfile)
40658b94
PH
5577 {
5578 data.objfile = objfile;
5579
5580 if (is_wild_match)
4186eb54
KS
5581 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5582 aux_add_nonlocal_symbols, &data,
5583 wild_match, NULL);
40658b94 5584 else
4186eb54
KS
5585 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5586 aux_add_nonlocal_symbols, &data,
5587 full_match, compare_names);
22cee43f
PMR
5588
5589 ALL_OBJFILE_COMPUNITS (objfile, cu)
5590 {
5591 const struct block *global_block
5592 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5593
5594 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5595 is_wild_match))
5596 data.found_sym = 1;
5597 }
40658b94
PH
5598 }
5599
5600 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5601 {
5602 ALL_OBJFILES (objfile)
5603 {
224c3ddb 5604 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5605 strcpy (name1, "_ada_");
5606 strcpy (name1 + sizeof ("_ada_") - 1, name);
5607 data.objfile = objfile;
ade7ed9e
DE
5608 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5609 global,
0963b4bd
MS
5610 aux_add_nonlocal_symbols,
5611 &data,
40658b94
PH
5612 full_match, compare_names);
5613 }
5614 }
339c13b6
JB
5615}
5616
22cee43f 5617/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5618 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5619 matches. Add these to OBSTACKP.
4eeaa230 5620
22cee43f
PMR
5621 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5622 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5623 is the one match returned (no other matches in that or
d9680e73 5624 enclosing blocks is returned). If there are any matches in or
22cee43f 5625 surrounding BLOCK, then these alone are returned.
4eeaa230 5626
9f88c959 5627 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5628 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5629
22cee43f
PMR
5630 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5631 to lookup global symbols. */
5632
5633static void
5634ada_add_all_symbols (struct obstack *obstackp,
5635 const struct block *block,
5636 const char *name,
5637 domain_enum domain,
5638 int full_search,
5639 int *made_global_lookup_p)
14f9c5c9
AS
5640{
5641 struct symbol *sym;
22cee43f 5642 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5643
22cee43f
PMR
5644 if (made_global_lookup_p)
5645 *made_global_lookup_p = 0;
339c13b6
JB
5646
5647 /* Special case: If the user specifies a symbol name inside package
5648 Standard, do a non-wild matching of the symbol name without
5649 the "standard__" prefix. This was primarily introduced in order
5650 to allow the user to specifically access the standard exceptions
5651 using, for instance, Standard.Constraint_Error when Constraint_Error
5652 is ambiguous (due to the user defining its own Constraint_Error
5653 entity inside its program). */
22cee43f 5654 if (startswith (name, "standard__"))
4c4b4cd2 5655 {
4c4b4cd2 5656 block = NULL;
22cee43f 5657 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5658 }
5659
339c13b6 5660 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5661
4eeaa230
DE
5662 if (block != NULL)
5663 {
5664 if (full_search)
22cee43f 5665 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5666 else
5667 {
5668 /* In the !full_search case we're are being called by
5669 ada_iterate_over_symbols, and we don't want to search
5670 superblocks. */
22cee43f
PMR
5671 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5672 wild_match_p);
4eeaa230 5673 }
22cee43f
PMR
5674 if (num_defns_collected (obstackp) > 0 || !full_search)
5675 return;
4eeaa230 5676 }
d2e4a39e 5677
339c13b6
JB
5678 /* No non-global symbols found. Check our cache to see if we have
5679 already performed this search before. If we have, then return
5680 the same result. */
5681
22cee43f 5682 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5683 {
5684 if (sym != NULL)
22cee43f
PMR
5685 add_defn_to_vec (obstackp, sym, block);
5686 return;
4c4b4cd2 5687 }
14f9c5c9 5688
22cee43f
PMR
5689 if (made_global_lookup_p)
5690 *made_global_lookup_p = 1;
b1eedac9 5691
339c13b6
JB
5692 /* Search symbols from all global blocks. */
5693
22cee43f 5694 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5695
4c4b4cd2 5696 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5697 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5698
22cee43f
PMR
5699 if (num_defns_collected (obstackp) == 0)
5700 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5701}
5702
5703/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5704 non-zero, enclosing scope and in global scopes, returning the number of
5705 matches.
5706 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5707 indicating the symbols found and the blocks and symbol tables (if
5708 any) in which they were found. This vector is transient---good only to
5709 the next call of ada_lookup_symbol_list.
5710
5711 When full_search is non-zero, any non-function/non-enumeral
5712 symbol match within the nest of blocks whose innermost member is BLOCK,
5713 is the one match returned (no other matches in that or
5714 enclosing blocks is returned). If there are any matches in or
5715 surrounding BLOCK, then these alone are returned.
5716
5717 Names prefixed with "standard__" are handled specially: "standard__"
5718 is first stripped off, and only static and global symbols are searched. */
5719
5720static int
5721ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5722 domain_enum domain,
5723 struct block_symbol **results,
5724 int full_search)
5725{
5726 const int wild_match_p = should_use_wild_match (name);
5727 int syms_from_global_search;
5728 int ndefns;
5729
5730 obstack_free (&symbol_list_obstack, NULL);
5731 obstack_init (&symbol_list_obstack);
5732 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5733 full_search, &syms_from_global_search);
14f9c5c9 5734
4c4b4cd2
PH
5735 ndefns = num_defns_collected (&symbol_list_obstack);
5736 *results = defns_collected (&symbol_list_obstack, 1);
5737
5738 ndefns = remove_extra_symbols (*results, ndefns);
5739
b1eedac9 5740 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5741 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5742
b1eedac9 5743 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5744 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5745
22cee43f 5746 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5747 return ndefns;
5748}
5749
4eeaa230
DE
5750/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5751 in global scopes, returning the number of matches, and setting *RESULTS
5752 to a vector of (SYM,BLOCK) tuples.
5753 See ada_lookup_symbol_list_worker for further details. */
5754
5755int
5756ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5757 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5758{
5759 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5760}
5761
5762/* Implementation of the la_iterate_over_symbols method. */
5763
5764static void
5765ada_iterate_over_symbols (const struct block *block,
5766 const char *name, domain_enum domain,
5767 symbol_found_callback_ftype *callback,
5768 void *data)
5769{
5770 int ndefs, i;
d12307c1 5771 struct block_symbol *results;
4eeaa230
DE
5772
5773 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5774 for (i = 0; i < ndefs; ++i)
5775 {
d12307c1 5776 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5777 break;
5778 }
5779}
5780
f8eba3c6
TT
5781/* If NAME is the name of an entity, return a string that should
5782 be used to look that entity up in Ada units. This string should
5783 be deallocated after use using xfree.
5784
5785 NAME can have any form that the "break" or "print" commands might
5786 recognize. In other words, it does not have to be the "natural"
5787 name, or the "encoded" name. */
5788
5789char *
5790ada_name_for_lookup (const char *name)
5791{
5792 char *canon;
5793 int nlen = strlen (name);
5794
5795 if (name[0] == '<' && name[nlen - 1] == '>')
5796 {
224c3ddb 5797 canon = (char *) xmalloc (nlen - 1);
f8eba3c6
TT
5798 memcpy (canon, name + 1, nlen - 2);
5799 canon[nlen - 2] = '\0';
5800 }
5801 else
5802 canon = xstrdup (ada_encode (ada_fold_name (name)));
5803 return canon;
5804}
5805
4e5c77fe
JB
5806/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5807 to 1, but choosing the first symbol found if there are multiple
5808 choices.
5809
5e2336be
JB
5810 The result is stored in *INFO, which must be non-NULL.
5811 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5812
5813void
5814ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5815 domain_enum domain,
d12307c1 5816 struct block_symbol *info)
14f9c5c9 5817{
d12307c1 5818 struct block_symbol *candidates;
14f9c5c9
AS
5819 int n_candidates;
5820
5e2336be 5821 gdb_assert (info != NULL);
d12307c1 5822 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5823
fe978cb0 5824 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5825 if (n_candidates == 0)
4e5c77fe 5826 return;
4c4b4cd2 5827
5e2336be 5828 *info = candidates[0];
d12307c1 5829 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5830}
aeb5907d
JB
5831
5832/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5833 scope and in global scopes, or NULL if none. NAME is folded and
5834 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5835 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5836 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5837
d12307c1 5838struct block_symbol
aeb5907d 5839ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5840 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5841{
d12307c1 5842 struct block_symbol info;
4e5c77fe 5843
aeb5907d
JB
5844 if (is_a_field_of_this != NULL)
5845 *is_a_field_of_this = 0;
5846
4e5c77fe 5847 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5848 block0, domain, &info);
d12307c1 5849 return info;
4c4b4cd2 5850}
14f9c5c9 5851
d12307c1 5852static struct block_symbol
f606139a
DE
5853ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5854 const char *name,
76a01679 5855 const struct block *block,
21b556f4 5856 const domain_enum domain)
4c4b4cd2 5857{
d12307c1 5858 struct block_symbol sym;
04dccad0
JB
5859
5860 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5861 if (sym.symbol != NULL)
04dccad0
JB
5862 return sym;
5863
5864 /* If we haven't found a match at this point, try the primitive
5865 types. In other languages, this search is performed before
5866 searching for global symbols in order to short-circuit that
5867 global-symbol search if it happens that the name corresponds
5868 to a primitive type. But we cannot do the same in Ada, because
5869 it is perfectly legitimate for a program to declare a type which
5870 has the same name as a standard type. If looking up a type in
5871 that situation, we have traditionally ignored the primitive type
5872 in favor of user-defined types. This is why, unlike most other
5873 languages, we search the primitive types this late and only after
5874 having searched the global symbols without success. */
5875
5876 if (domain == VAR_DOMAIN)
5877 {
5878 struct gdbarch *gdbarch;
5879
5880 if (block == NULL)
5881 gdbarch = target_gdbarch ();
5882 else
5883 gdbarch = block_gdbarch (block);
d12307c1
PMR
5884 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5885 if (sym.symbol != NULL)
04dccad0
JB
5886 return sym;
5887 }
5888
d12307c1 5889 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5890}
5891
5892
4c4b4cd2
PH
5893/* True iff STR is a possible encoded suffix of a normal Ada name
5894 that is to be ignored for matching purposes. Suffixes of parallel
5895 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5896 are given by any of the regular expressions:
4c4b4cd2 5897
babe1480
JB
5898 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5899 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5900 TKB [subprogram suffix for task bodies]
babe1480 5901 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5902 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5903
5904 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5905 match is performed. This sequence is used to differentiate homonyms,
5906 is an optional part of a valid name suffix. */
4c4b4cd2 5907
14f9c5c9 5908static int
d2e4a39e 5909is_name_suffix (const char *str)
14f9c5c9
AS
5910{
5911 int k;
4c4b4cd2
PH
5912 const char *matching;
5913 const int len = strlen (str);
5914
babe1480
JB
5915 /* Skip optional leading __[0-9]+. */
5916
4c4b4cd2
PH
5917 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5918 {
babe1480
JB
5919 str += 3;
5920 while (isdigit (str[0]))
5921 str += 1;
4c4b4cd2 5922 }
babe1480
JB
5923
5924 /* [.$][0-9]+ */
4c4b4cd2 5925
babe1480 5926 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5927 {
babe1480 5928 matching = str + 1;
4c4b4cd2
PH
5929 while (isdigit (matching[0]))
5930 matching += 1;
5931 if (matching[0] == '\0')
5932 return 1;
5933 }
5934
5935 /* ___[0-9]+ */
babe1480 5936
4c4b4cd2
PH
5937 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5938 {
5939 matching = str + 3;
5940 while (isdigit (matching[0]))
5941 matching += 1;
5942 if (matching[0] == '\0')
5943 return 1;
5944 }
5945
9ac7f98e
JB
5946 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5947
5948 if (strcmp (str, "TKB") == 0)
5949 return 1;
5950
529cad9c
PH
5951#if 0
5952 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5953 with a N at the end. Unfortunately, the compiler uses the same
5954 convention for other internal types it creates. So treating
529cad9c 5955 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5956 some regressions. For instance, consider the case of an enumerated
5957 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5958 name ends with N.
5959 Having a single character like this as a suffix carrying some
0963b4bd 5960 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5961 to be something like "_N" instead. In the meantime, do not do
5962 the following check. */
5963 /* Protected Object Subprograms */
5964 if (len == 1 && str [0] == 'N')
5965 return 1;
5966#endif
5967
5968 /* _E[0-9]+[bs]$ */
5969 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5970 {
5971 matching = str + 3;
5972 while (isdigit (matching[0]))
5973 matching += 1;
5974 if ((matching[0] == 'b' || matching[0] == 's')
5975 && matching [1] == '\0')
5976 return 1;
5977 }
5978
4c4b4cd2
PH
5979 /* ??? We should not modify STR directly, as we are doing below. This
5980 is fine in this case, but may become problematic later if we find
5981 that this alternative did not work, and want to try matching
5982 another one from the begining of STR. Since we modified it, we
5983 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5984 if (str[0] == 'X')
5985 {
5986 str += 1;
d2e4a39e 5987 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5988 {
5989 if (str[0] != 'n' && str[0] != 'b')
5990 return 0;
5991 str += 1;
5992 }
14f9c5c9 5993 }
babe1480 5994
14f9c5c9
AS
5995 if (str[0] == '\000')
5996 return 1;
babe1480 5997
d2e4a39e 5998 if (str[0] == '_')
14f9c5c9
AS
5999 {
6000 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6001 return 0;
d2e4a39e 6002 if (str[2] == '_')
4c4b4cd2 6003 {
61ee279c
PH
6004 if (strcmp (str + 3, "JM") == 0)
6005 return 1;
6006 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6007 the LJM suffix in favor of the JM one. But we will
6008 still accept LJM as a valid suffix for a reasonable
6009 amount of time, just to allow ourselves to debug programs
6010 compiled using an older version of GNAT. */
4c4b4cd2
PH
6011 if (strcmp (str + 3, "LJM") == 0)
6012 return 1;
6013 if (str[3] != 'X')
6014 return 0;
1265e4aa
JB
6015 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6016 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6017 return 1;
6018 if (str[4] == 'R' && str[5] != 'T')
6019 return 1;
6020 return 0;
6021 }
6022 if (!isdigit (str[2]))
6023 return 0;
6024 for (k = 3; str[k] != '\0'; k += 1)
6025 if (!isdigit (str[k]) && str[k] != '_')
6026 return 0;
14f9c5c9
AS
6027 return 1;
6028 }
4c4b4cd2 6029 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6030 {
4c4b4cd2
PH
6031 for (k = 2; str[k] != '\0'; k += 1)
6032 if (!isdigit (str[k]) && str[k] != '_')
6033 return 0;
14f9c5c9
AS
6034 return 1;
6035 }
6036 return 0;
6037}
d2e4a39e 6038
aeb5907d
JB
6039/* Return non-zero if the string starting at NAME and ending before
6040 NAME_END contains no capital letters. */
529cad9c
PH
6041
6042static int
6043is_valid_name_for_wild_match (const char *name0)
6044{
6045 const char *decoded_name = ada_decode (name0);
6046 int i;
6047
5823c3ef
JB
6048 /* If the decoded name starts with an angle bracket, it means that
6049 NAME0 does not follow the GNAT encoding format. It should then
6050 not be allowed as a possible wild match. */
6051 if (decoded_name[0] == '<')
6052 return 0;
6053
529cad9c
PH
6054 for (i=0; decoded_name[i] != '\0'; i++)
6055 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6056 return 0;
6057
6058 return 1;
6059}
6060
73589123
PH
6061/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6062 that could start a simple name. Assumes that *NAMEP points into
6063 the string beginning at NAME0. */
4c4b4cd2 6064
14f9c5c9 6065static int
73589123 6066advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6067{
73589123 6068 const char *name = *namep;
5b4ee69b 6069
5823c3ef 6070 while (1)
14f9c5c9 6071 {
aa27d0b3 6072 int t0, t1;
73589123
PH
6073
6074 t0 = *name;
6075 if (t0 == '_')
6076 {
6077 t1 = name[1];
6078 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6079 {
6080 name += 1;
61012eef 6081 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6082 break;
6083 else
6084 name += 1;
6085 }
aa27d0b3
JB
6086 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6087 || name[2] == target0))
73589123
PH
6088 {
6089 name += 2;
6090 break;
6091 }
6092 else
6093 return 0;
6094 }
6095 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6096 name += 1;
6097 else
5823c3ef 6098 return 0;
73589123
PH
6099 }
6100
6101 *namep = name;
6102 return 1;
6103}
6104
6105/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6106 informational suffixes of NAME (i.e., for which is_name_suffix is
6107 true). Assumes that PATN is a lower-cased Ada simple name. */
6108
6109static int
6110wild_match (const char *name, const char *patn)
6111{
22e048c9 6112 const char *p;
73589123
PH
6113 const char *name0 = name;
6114
6115 while (1)
6116 {
6117 const char *match = name;
6118
6119 if (*name == *patn)
6120 {
6121 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6122 if (*p != *name)
6123 break;
6124 if (*p == '\0' && is_name_suffix (name))
6125 return match != name0 && !is_valid_name_for_wild_match (name0);
6126
6127 if (name[-1] == '_')
6128 name -= 1;
6129 }
6130 if (!advance_wild_match (&name, name0, *patn))
6131 return 1;
96d887e8 6132 }
96d887e8
PH
6133}
6134
40658b94
PH
6135/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6136 informational suffix. */
6137
c4d840bd
PH
6138static int
6139full_match (const char *sym_name, const char *search_name)
6140{
40658b94 6141 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6142}
6143
6144
96d887e8
PH
6145/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6146 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6147 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6148 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6149
6150static void
6151ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6152 const struct block *block, const char *name,
96d887e8 6153 domain_enum domain, struct objfile *objfile,
2570f2b7 6154 int wild)
96d887e8 6155{
8157b174 6156 struct block_iterator iter;
96d887e8
PH
6157 int name_len = strlen (name);
6158 /* A matching argument symbol, if any. */
6159 struct symbol *arg_sym;
6160 /* Set true when we find a matching non-argument symbol. */
6161 int found_sym;
6162 struct symbol *sym;
6163
6164 arg_sym = NULL;
6165 found_sym = 0;
6166 if (wild)
6167 {
8157b174
TT
6168 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6169 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6170 {
4186eb54
KS
6171 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6172 SYMBOL_DOMAIN (sym), domain)
73589123 6173 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6174 {
2a2d4dc3
AS
6175 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6176 continue;
6177 else if (SYMBOL_IS_ARGUMENT (sym))
6178 arg_sym = sym;
6179 else
6180 {
76a01679
JB
6181 found_sym = 1;
6182 add_defn_to_vec (obstackp,
6183 fixup_symbol_section (sym, objfile),
2570f2b7 6184 block);
76a01679
JB
6185 }
6186 }
6187 }
96d887e8
PH
6188 }
6189 else
6190 {
8157b174
TT
6191 for (sym = block_iter_match_first (block, name, full_match, &iter);
6192 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6193 {
4186eb54
KS
6194 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6195 SYMBOL_DOMAIN (sym), domain))
76a01679 6196 {
c4d840bd
PH
6197 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6198 {
6199 if (SYMBOL_IS_ARGUMENT (sym))
6200 arg_sym = sym;
6201 else
2a2d4dc3 6202 {
c4d840bd
PH
6203 found_sym = 1;
6204 add_defn_to_vec (obstackp,
6205 fixup_symbol_section (sym, objfile),
6206 block);
2a2d4dc3 6207 }
c4d840bd 6208 }
76a01679
JB
6209 }
6210 }
96d887e8
PH
6211 }
6212
22cee43f
PMR
6213 /* Handle renamings. */
6214
6215 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6216 found_sym = 1;
6217
96d887e8
PH
6218 if (!found_sym && arg_sym != NULL)
6219 {
76a01679
JB
6220 add_defn_to_vec (obstackp,
6221 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6222 block);
96d887e8
PH
6223 }
6224
6225 if (!wild)
6226 {
6227 arg_sym = NULL;
6228 found_sym = 0;
6229
6230 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6231 {
4186eb54
KS
6232 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6233 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6234 {
6235 int cmp;
6236
6237 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6238 if (cmp == 0)
6239 {
61012eef 6240 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6241 if (cmp == 0)
6242 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6243 name_len);
6244 }
6245
6246 if (cmp == 0
6247 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6248 {
2a2d4dc3
AS
6249 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6250 {
6251 if (SYMBOL_IS_ARGUMENT (sym))
6252 arg_sym = sym;
6253 else
6254 {
6255 found_sym = 1;
6256 add_defn_to_vec (obstackp,
6257 fixup_symbol_section (sym, objfile),
6258 block);
6259 }
6260 }
76a01679
JB
6261 }
6262 }
76a01679 6263 }
96d887e8
PH
6264
6265 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6266 They aren't parameters, right? */
6267 if (!found_sym && arg_sym != NULL)
6268 {
6269 add_defn_to_vec (obstackp,
76a01679 6270 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6271 block);
96d887e8
PH
6272 }
6273 }
6274}
6275\f
41d27058
JB
6276
6277 /* Symbol Completion */
6278
6279/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6280 name in a form that's appropriate for the completion. The result
6281 does not need to be deallocated, but is only good until the next call.
6282
6283 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6284 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6285 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6286 in its encoded form. */
6287
6288static const char *
6289symbol_completion_match (const char *sym_name,
6290 const char *text, int text_len,
6ea35997 6291 int wild_match_p, int encoded_p)
41d27058 6292{
41d27058
JB
6293 const int verbatim_match = (text[0] == '<');
6294 int match = 0;
6295
6296 if (verbatim_match)
6297 {
6298 /* Strip the leading angle bracket. */
6299 text = text + 1;
6300 text_len--;
6301 }
6302
6303 /* First, test against the fully qualified name of the symbol. */
6304
6305 if (strncmp (sym_name, text, text_len) == 0)
6306 match = 1;
6307
6ea35997 6308 if (match && !encoded_p)
41d27058
JB
6309 {
6310 /* One needed check before declaring a positive match is to verify
6311 that iff we are doing a verbatim match, the decoded version
6312 of the symbol name starts with '<'. Otherwise, this symbol name
6313 is not a suitable completion. */
6314 const char *sym_name_copy = sym_name;
6315 int has_angle_bracket;
6316
6317 sym_name = ada_decode (sym_name);
6318 has_angle_bracket = (sym_name[0] == '<');
6319 match = (has_angle_bracket == verbatim_match);
6320 sym_name = sym_name_copy;
6321 }
6322
6323 if (match && !verbatim_match)
6324 {
6325 /* When doing non-verbatim match, another check that needs to
6326 be done is to verify that the potentially matching symbol name
6327 does not include capital letters, because the ada-mode would
6328 not be able to understand these symbol names without the
6329 angle bracket notation. */
6330 const char *tmp;
6331
6332 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6333 if (*tmp != '\0')
6334 match = 0;
6335 }
6336
6337 /* Second: Try wild matching... */
6338
e701b3c0 6339 if (!match && wild_match_p)
41d27058
JB
6340 {
6341 /* Since we are doing wild matching, this means that TEXT
6342 may represent an unqualified symbol name. We therefore must
6343 also compare TEXT against the unqualified name of the symbol. */
6344 sym_name = ada_unqualified_name (ada_decode (sym_name));
6345
6346 if (strncmp (sym_name, text, text_len) == 0)
6347 match = 1;
6348 }
6349
6350 /* Finally: If we found a mach, prepare the result to return. */
6351
6352 if (!match)
6353 return NULL;
6354
6355 if (verbatim_match)
6356 sym_name = add_angle_brackets (sym_name);
6357
6ea35997 6358 if (!encoded_p)
41d27058
JB
6359 sym_name = ada_decode (sym_name);
6360
6361 return sym_name;
6362}
6363
6364/* A companion function to ada_make_symbol_completion_list().
6365 Check if SYM_NAME represents a symbol which name would be suitable
6366 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6367 it is appended at the end of the given string vector SV.
6368
6369 ORIG_TEXT is the string original string from the user command
6370 that needs to be completed. WORD is the entire command on which
6371 completion should be performed. These two parameters are used to
6372 determine which part of the symbol name should be added to the
6373 completion vector.
c0af1706 6374 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6375 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6376 encoded formed (in which case the completion should also be
6377 encoded). */
6378
6379static void
d6565258 6380symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6381 const char *sym_name,
6382 const char *text, int text_len,
6383 const char *orig_text, const char *word,
cb8e9b97 6384 int wild_match_p, int encoded_p)
41d27058
JB
6385{
6386 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6387 wild_match_p, encoded_p);
41d27058
JB
6388 char *completion;
6389
6390 if (match == NULL)
6391 return;
6392
6393 /* We found a match, so add the appropriate completion to the given
6394 string vector. */
6395
6396 if (word == orig_text)
6397 {
224c3ddb 6398 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6399 strcpy (completion, match);
6400 }
6401 else if (word > orig_text)
6402 {
6403 /* Return some portion of sym_name. */
224c3ddb 6404 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6405 strcpy (completion, match + (word - orig_text));
6406 }
6407 else
6408 {
6409 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6410 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6411 strncpy (completion, word, orig_text - word);
6412 completion[orig_text - word] = '\0';
6413 strcat (completion, match);
6414 }
6415
d6565258 6416 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6417}
6418
ccefe4c4 6419/* An object of this type is passed as the user_data argument to the
bb4142cf 6420 expand_symtabs_matching method. */
ccefe4c4
TT
6421struct add_partial_datum
6422{
6423 VEC(char_ptr) **completions;
6f937416 6424 const char *text;
ccefe4c4 6425 int text_len;
6f937416
PA
6426 const char *text0;
6427 const char *word;
ccefe4c4
TT
6428 int wild_match;
6429 int encoded;
6430};
6431
bb4142cf
DE
6432/* A callback for expand_symtabs_matching. */
6433
7b08b9eb 6434static int
bb4142cf 6435ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6436{
9a3c8263 6437 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6438
6439 return symbol_completion_match (name, data->text, data->text_len,
6440 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6441}
6442
49c4e619
TT
6443/* Return a list of possible symbol names completing TEXT0. WORD is
6444 the entire command on which completion is made. */
41d27058 6445
49c4e619 6446static VEC (char_ptr) *
6f937416
PA
6447ada_make_symbol_completion_list (const char *text0, const char *word,
6448 enum type_code code)
41d27058
JB
6449{
6450 char *text;
6451 int text_len;
b1ed564a
JB
6452 int wild_match_p;
6453 int encoded_p;
2ba95b9b 6454 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6455 struct symbol *sym;
43f3e411 6456 struct compunit_symtab *s;
41d27058
JB
6457 struct minimal_symbol *msymbol;
6458 struct objfile *objfile;
3977b71f 6459 const struct block *b, *surrounding_static_block = 0;
41d27058 6460 int i;
8157b174 6461 struct block_iterator iter;
b8fea896 6462 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6463
2f68a895
TT
6464 gdb_assert (code == TYPE_CODE_UNDEF);
6465
41d27058
JB
6466 if (text0[0] == '<')
6467 {
6468 text = xstrdup (text0);
6469 make_cleanup (xfree, text);
6470 text_len = strlen (text);
b1ed564a
JB
6471 wild_match_p = 0;
6472 encoded_p = 1;
41d27058
JB
6473 }
6474 else
6475 {
6476 text = xstrdup (ada_encode (text0));
6477 make_cleanup (xfree, text);
6478 text_len = strlen (text);
6479 for (i = 0; i < text_len; i++)
6480 text[i] = tolower (text[i]);
6481
b1ed564a 6482 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6483 /* If the name contains a ".", then the user is entering a fully
6484 qualified entity name, and the match must not be done in wild
6485 mode. Similarly, if the user wants to complete what looks like
6486 an encoded name, the match must not be done in wild mode. */
b1ed564a 6487 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6488 }
6489
6490 /* First, look at the partial symtab symbols. */
41d27058 6491 {
ccefe4c4
TT
6492 struct add_partial_datum data;
6493
6494 data.completions = &completions;
6495 data.text = text;
6496 data.text_len = text_len;
6497 data.text0 = text0;
6498 data.word = word;
b1ed564a
JB
6499 data.wild_match = wild_match_p;
6500 data.encoded = encoded_p;
276d885b
GB
6501 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6502 ALL_DOMAIN, &data);
41d27058
JB
6503 }
6504
6505 /* At this point scan through the misc symbol vectors and add each
6506 symbol you find to the list. Eventually we want to ignore
6507 anything that isn't a text symbol (everything else will be
6508 handled by the psymtab code above). */
6509
6510 ALL_MSYMBOLS (objfile, msymbol)
6511 {
6512 QUIT;
efd66ac6 6513 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6514 text, text_len, text0, word, wild_match_p,
6515 encoded_p);
41d27058
JB
6516 }
6517
6518 /* Search upwards from currently selected frame (so that we can
6519 complete on local vars. */
6520
6521 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6522 {
6523 if (!BLOCK_SUPERBLOCK (b))
6524 surrounding_static_block = b; /* For elmin of dups */
6525
6526 ALL_BLOCK_SYMBOLS (b, iter, sym)
6527 {
d6565258 6528 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6529 text, text_len, text0, word,
b1ed564a 6530 wild_match_p, encoded_p);
41d27058
JB
6531 }
6532 }
6533
6534 /* Go through the symtabs and check the externs and statics for
43f3e411 6535 symbols which match. */
41d27058 6536
43f3e411 6537 ALL_COMPUNITS (objfile, s)
41d27058
JB
6538 {
6539 QUIT;
43f3e411 6540 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6541 ALL_BLOCK_SYMBOLS (b, iter, sym)
6542 {
d6565258 6543 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6544 text, text_len, text0, word,
b1ed564a 6545 wild_match_p, encoded_p);
41d27058
JB
6546 }
6547 }
6548
43f3e411 6549 ALL_COMPUNITS (objfile, s)
41d27058
JB
6550 {
6551 QUIT;
43f3e411 6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
d6565258 6558 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6559 text, text_len, text0, word,
b1ed564a 6560 wild_match_p, encoded_p);
41d27058
JB
6561 }
6562 }
6563
b8fea896 6564 do_cleanups (old_chain);
49c4e619 6565 return completions;
41d27058
JB
6566}
6567
963a6417 6568 /* Field Access */
96d887e8 6569
73fb9985
JB
6570/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6571 for tagged types. */
6572
6573static int
6574ada_is_dispatch_table_ptr_type (struct type *type)
6575{
0d5cff50 6576 const char *name;
73fb9985
JB
6577
6578 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6579 return 0;
6580
6581 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6582 if (name == NULL)
6583 return 0;
6584
6585 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6586}
6587
ac4a2da4
JG
6588/* Return non-zero if TYPE is an interface tag. */
6589
6590static int
6591ada_is_interface_tag (struct type *type)
6592{
6593 const char *name = TYPE_NAME (type);
6594
6595 if (name == NULL)
6596 return 0;
6597
6598 return (strcmp (name, "ada__tags__interface_tag") == 0);
6599}
6600
963a6417
PH
6601/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6602 to be invisible to users. */
96d887e8 6603
963a6417
PH
6604int
6605ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6606{
963a6417
PH
6607 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6608 return 1;
ffde82bf 6609
73fb9985
JB
6610 /* Check the name of that field. */
6611 {
6612 const char *name = TYPE_FIELD_NAME (type, field_num);
6613
6614 /* Anonymous field names should not be printed.
6615 brobecker/2007-02-20: I don't think this can actually happen
6616 but we don't want to print the value of annonymous fields anyway. */
6617 if (name == NULL)
6618 return 1;
6619
ffde82bf
JB
6620 /* Normally, fields whose name start with an underscore ("_")
6621 are fields that have been internally generated by the compiler,
6622 and thus should not be printed. The "_parent" field is special,
6623 however: This is a field internally generated by the compiler
6624 for tagged types, and it contains the components inherited from
6625 the parent type. This field should not be printed as is, but
6626 should not be ignored either. */
61012eef 6627 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6628 return 1;
6629 }
6630
ac4a2da4
JG
6631 /* If this is the dispatch table of a tagged type or an interface tag,
6632 then ignore. */
73fb9985 6633 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6634 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6635 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6636 return 1;
6637
6638 /* Not a special field, so it should not be ignored. */
6639 return 0;
963a6417 6640}
96d887e8 6641
963a6417 6642/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6643 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6644
963a6417
PH
6645int
6646ada_is_tagged_type (struct type *type, int refok)
6647{
6648 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6649}
96d887e8 6650
963a6417 6651/* True iff TYPE represents the type of X'Tag */
96d887e8 6652
963a6417
PH
6653int
6654ada_is_tag_type (struct type *type)
6655{
460efde1
JB
6656 type = ada_check_typedef (type);
6657
963a6417
PH
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6659 return 0;
6660 else
96d887e8 6661 {
963a6417 6662 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6663
963a6417
PH
6664 return (name != NULL
6665 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6666 }
96d887e8
PH
6667}
6668
963a6417 6669/* The type of the tag on VAL. */
76a01679 6670
963a6417
PH
6671struct type *
6672ada_tag_type (struct value *val)
96d887e8 6673{
df407dfe 6674 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6675}
96d887e8 6676
b50d69b5
JG
6677/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6678 retired at Ada 05). */
6679
6680static int
6681is_ada95_tag (struct value *tag)
6682{
6683 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6684}
6685
963a6417 6686/* The value of the tag on VAL. */
96d887e8 6687
963a6417
PH
6688struct value *
6689ada_value_tag (struct value *val)
6690{
03ee6b2e 6691 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6692}
6693
963a6417
PH
6694/* The value of the tag on the object of type TYPE whose contents are
6695 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6696 ADDRESS. */
96d887e8 6697
963a6417 6698static struct value *
10a2c479 6699value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6700 const gdb_byte *valaddr,
963a6417 6701 CORE_ADDR address)
96d887e8 6702{
b5385fc0 6703 int tag_byte_offset;
963a6417 6704 struct type *tag_type;
5b4ee69b 6705
963a6417 6706 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6707 NULL, NULL, NULL))
96d887e8 6708 {
fc1a4b47 6709 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6710 ? NULL
6711 : valaddr + tag_byte_offset);
963a6417 6712 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6713
963a6417 6714 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6715 }
963a6417
PH
6716 return NULL;
6717}
96d887e8 6718
963a6417
PH
6719static struct type *
6720type_from_tag (struct value *tag)
6721{
6722 const char *type_name = ada_tag_name (tag);
5b4ee69b 6723
963a6417
PH
6724 if (type_name != NULL)
6725 return ada_find_any_type (ada_encode (type_name));
6726 return NULL;
6727}
96d887e8 6728
b50d69b5
JG
6729/* Given a value OBJ of a tagged type, return a value of this
6730 type at the base address of the object. The base address, as
6731 defined in Ada.Tags, it is the address of the primary tag of
6732 the object, and therefore where the field values of its full
6733 view can be fetched. */
6734
6735struct value *
6736ada_tag_value_at_base_address (struct value *obj)
6737{
b50d69b5
JG
6738 struct value *val;
6739 LONGEST offset_to_top = 0;
6740 struct type *ptr_type, *obj_type;
6741 struct value *tag;
6742 CORE_ADDR base_address;
6743
6744 obj_type = value_type (obj);
6745
6746 /* It is the responsability of the caller to deref pointers. */
6747
6748 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6749 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6750 return obj;
6751
6752 tag = ada_value_tag (obj);
6753 if (!tag)
6754 return obj;
6755
6756 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6757
6758 if (is_ada95_tag (tag))
6759 return obj;
6760
6761 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6762 ptr_type = lookup_pointer_type (ptr_type);
6763 val = value_cast (ptr_type, tag);
6764 if (!val)
6765 return obj;
6766
6767 /* It is perfectly possible that an exception be raised while
6768 trying to determine the base address, just like for the tag;
6769 see ada_tag_name for more details. We do not print the error
6770 message for the same reason. */
6771
492d29ea 6772 TRY
b50d69b5
JG
6773 {
6774 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6775 }
6776
492d29ea
PA
6777 CATCH (e, RETURN_MASK_ERROR)
6778 {
6779 return obj;
6780 }
6781 END_CATCH
b50d69b5
JG
6782
6783 /* If offset is null, nothing to do. */
6784
6785 if (offset_to_top == 0)
6786 return obj;
6787
6788 /* -1 is a special case in Ada.Tags; however, what should be done
6789 is not quite clear from the documentation. So do nothing for
6790 now. */
6791
6792 if (offset_to_top == -1)
6793 return obj;
6794
6795 base_address = value_address (obj) - offset_to_top;
6796 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6797
6798 /* Make sure that we have a proper tag at the new address.
6799 Otherwise, offset_to_top is bogus (which can happen when
6800 the object is not initialized yet). */
6801
6802 if (!tag)
6803 return obj;
6804
6805 obj_type = type_from_tag (tag);
6806
6807 if (!obj_type)
6808 return obj;
6809
6810 return value_from_contents_and_address (obj_type, NULL, base_address);
6811}
6812
1b611343
JB
6813/* Return the "ada__tags__type_specific_data" type. */
6814
6815static struct type *
6816ada_get_tsd_type (struct inferior *inf)
963a6417 6817{
1b611343 6818 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6819
1b611343
JB
6820 if (data->tsd_type == 0)
6821 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6822 return data->tsd_type;
6823}
529cad9c 6824
1b611343
JB
6825/* Return the TSD (type-specific data) associated to the given TAG.
6826 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6827
1b611343 6828 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6829
1b611343
JB
6830static struct value *
6831ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6832{
4c4b4cd2 6833 struct value *val;
1b611343 6834 struct type *type;
5b4ee69b 6835
1b611343
JB
6836 /* First option: The TSD is simply stored as a field of our TAG.
6837 Only older versions of GNAT would use this format, but we have
6838 to test it first, because there are no visible markers for
6839 the current approach except the absence of that field. */
529cad9c 6840
1b611343
JB
6841 val = ada_value_struct_elt (tag, "tsd", 1);
6842 if (val)
6843 return val;
e802dbe0 6844
1b611343
JB
6845 /* Try the second representation for the dispatch table (in which
6846 there is no explicit 'tsd' field in the referent of the tag pointer,
6847 and instead the tsd pointer is stored just before the dispatch
6848 table. */
e802dbe0 6849
1b611343
JB
6850 type = ada_get_tsd_type (current_inferior());
6851 if (type == NULL)
6852 return NULL;
6853 type = lookup_pointer_type (lookup_pointer_type (type));
6854 val = value_cast (type, tag);
6855 if (val == NULL)
6856 return NULL;
6857 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6858}
6859
1b611343
JB
6860/* Given the TSD of a tag (type-specific data), return a string
6861 containing the name of the associated type.
6862
6863 The returned value is good until the next call. May return NULL
6864 if we are unable to determine the tag name. */
6865
6866static char *
6867ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6868{
529cad9c
PH
6869 static char name[1024];
6870 char *p;
1b611343 6871 struct value *val;
529cad9c 6872
1b611343 6873 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6874 if (val == NULL)
1b611343 6875 return NULL;
4c4b4cd2
PH
6876 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6877 for (p = name; *p != '\0'; p += 1)
6878 if (isalpha (*p))
6879 *p = tolower (*p);
1b611343 6880 return name;
4c4b4cd2
PH
6881}
6882
6883/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6884 a C string.
6885
6886 Return NULL if the TAG is not an Ada tag, or if we were unable to
6887 determine the name of that tag. The result is good until the next
6888 call. */
4c4b4cd2
PH
6889
6890const char *
6891ada_tag_name (struct value *tag)
6892{
1b611343 6893 char *name = NULL;
5b4ee69b 6894
df407dfe 6895 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6896 return NULL;
1b611343
JB
6897
6898 /* It is perfectly possible that an exception be raised while trying
6899 to determine the TAG's name, even under normal circumstances:
6900 The associated variable may be uninitialized or corrupted, for
6901 instance. We do not let any exception propagate past this point.
6902 instead we return NULL.
6903
6904 We also do not print the error message either (which often is very
6905 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6906 the caller print a more meaningful message if necessary. */
492d29ea 6907 TRY
1b611343
JB
6908 {
6909 struct value *tsd = ada_get_tsd_from_tag (tag);
6910
6911 if (tsd != NULL)
6912 name = ada_tag_name_from_tsd (tsd);
6913 }
492d29ea
PA
6914 CATCH (e, RETURN_MASK_ERROR)
6915 {
6916 }
6917 END_CATCH
1b611343
JB
6918
6919 return name;
4c4b4cd2
PH
6920}
6921
6922/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6923
d2e4a39e 6924struct type *
ebf56fd3 6925ada_parent_type (struct type *type)
14f9c5c9
AS
6926{
6927 int i;
6928
61ee279c 6929 type = ada_check_typedef (type);
14f9c5c9
AS
6930
6931 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6932 return NULL;
6933
6934 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6935 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6936 {
6937 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6938
6939 /* If the _parent field is a pointer, then dereference it. */
6940 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6941 parent_type = TYPE_TARGET_TYPE (parent_type);
6942 /* If there is a parallel XVS type, get the actual base type. */
6943 parent_type = ada_get_base_type (parent_type);
6944
6945 return ada_check_typedef (parent_type);
6946 }
14f9c5c9
AS
6947
6948 return NULL;
6949}
6950
4c4b4cd2
PH
6951/* True iff field number FIELD_NUM of structure type TYPE contains the
6952 parent-type (inherited) fields of a derived type. Assumes TYPE is
6953 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6954
6955int
ebf56fd3 6956ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6957{
61ee279c 6958 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6959
4c4b4cd2 6960 return (name != NULL
61012eef
GB
6961 && (startswith (name, "PARENT")
6962 || startswith (name, "_parent")));
14f9c5c9
AS
6963}
6964
4c4b4cd2 6965/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6966 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6967 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6968 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6969 structures. */
14f9c5c9
AS
6970
6971int
ebf56fd3 6972ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6973{
d2e4a39e 6974 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6975
d2e4a39e 6976 return (name != NULL
61012eef 6977 && (startswith (name, "PARENT")
4c4b4cd2 6978 || strcmp (name, "REP") == 0
61012eef 6979 || startswith (name, "_parent")
4c4b4cd2 6980 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6981}
6982
4c4b4cd2
PH
6983/* True iff field number FIELD_NUM of structure or union type TYPE
6984 is a variant wrapper. Assumes TYPE is a structure type with at least
6985 FIELD_NUM+1 fields. */
14f9c5c9
AS
6986
6987int
ebf56fd3 6988ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6989{
d2e4a39e 6990 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6991
14f9c5c9 6992 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6993 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6994 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6995 == TYPE_CODE_UNION)));
14f9c5c9
AS
6996}
6997
6998/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6999 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7000 returns the type of the controlling discriminant for the variant.
7001 May return NULL if the type could not be found. */
14f9c5c9 7002
d2e4a39e 7003struct type *
ebf56fd3 7004ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7005{
d2e4a39e 7006 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7007
7c964f07 7008 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7009}
7010
4c4b4cd2 7011/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7012 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7013 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7014
7015int
ebf56fd3 7016ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7017{
d2e4a39e 7018 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7019
14f9c5c9
AS
7020 return (name != NULL && name[0] == 'O');
7021}
7022
7023/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7024 returns the name of the discriminant controlling the variant.
7025 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7026
d2e4a39e 7027char *
ebf56fd3 7028ada_variant_discrim_name (struct type *type0)
14f9c5c9 7029{
d2e4a39e 7030 static char *result = NULL;
14f9c5c9 7031 static size_t result_len = 0;
d2e4a39e
AS
7032 struct type *type;
7033 const char *name;
7034 const char *discrim_end;
7035 const char *discrim_start;
14f9c5c9
AS
7036
7037 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7038 type = TYPE_TARGET_TYPE (type0);
7039 else
7040 type = type0;
7041
7042 name = ada_type_name (type);
7043
7044 if (name == NULL || name[0] == '\000')
7045 return "";
7046
7047 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7048 discrim_end -= 1)
7049 {
61012eef 7050 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7051 break;
14f9c5c9
AS
7052 }
7053 if (discrim_end == name)
7054 return "";
7055
d2e4a39e 7056 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7057 discrim_start -= 1)
7058 {
d2e4a39e 7059 if (discrim_start == name + 1)
4c4b4cd2 7060 return "";
76a01679 7061 if ((discrim_start > name + 3
61012eef 7062 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7063 || discrim_start[-1] == '.')
7064 break;
14f9c5c9
AS
7065 }
7066
7067 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7068 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7069 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7070 return result;
7071}
7072
4c4b4cd2
PH
7073/* Scan STR for a subtype-encoded number, beginning at position K.
7074 Put the position of the character just past the number scanned in
7075 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7076 Return 1 if there was a valid number at the given position, and 0
7077 otherwise. A "subtype-encoded" number consists of the absolute value
7078 in decimal, followed by the letter 'm' to indicate a negative number.
7079 Assumes 0m does not occur. */
14f9c5c9
AS
7080
7081int
d2e4a39e 7082ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7083{
7084 ULONGEST RU;
7085
d2e4a39e 7086 if (!isdigit (str[k]))
14f9c5c9
AS
7087 return 0;
7088
4c4b4cd2 7089 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7090 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7091 LONGEST. */
14f9c5c9
AS
7092 RU = 0;
7093 while (isdigit (str[k]))
7094 {
d2e4a39e 7095 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7096 k += 1;
7097 }
7098
d2e4a39e 7099 if (str[k] == 'm')
14f9c5c9
AS
7100 {
7101 if (R != NULL)
4c4b4cd2 7102 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7103 k += 1;
7104 }
7105 else if (R != NULL)
7106 *R = (LONGEST) RU;
7107
4c4b4cd2 7108 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7109 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7110 number representable as a LONGEST (although either would probably work
7111 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7112 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7113
7114 if (new_k != NULL)
7115 *new_k = k;
7116 return 1;
7117}
7118
4c4b4cd2
PH
7119/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7120 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7121 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7122
d2e4a39e 7123int
ebf56fd3 7124ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7125{
d2e4a39e 7126 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7127 int p;
7128
7129 p = 0;
7130 while (1)
7131 {
d2e4a39e 7132 switch (name[p])
4c4b4cd2
PH
7133 {
7134 case '\0':
7135 return 0;
7136 case 'S':
7137 {
7138 LONGEST W;
5b4ee69b 7139
4c4b4cd2
PH
7140 if (!ada_scan_number (name, p + 1, &W, &p))
7141 return 0;
7142 if (val == W)
7143 return 1;
7144 break;
7145 }
7146 case 'R':
7147 {
7148 LONGEST L, U;
5b4ee69b 7149
4c4b4cd2
PH
7150 if (!ada_scan_number (name, p + 1, &L, &p)
7151 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7152 return 0;
7153 if (val >= L && val <= U)
7154 return 1;
7155 break;
7156 }
7157 case 'O':
7158 return 1;
7159 default:
7160 return 0;
7161 }
7162 }
7163}
7164
0963b4bd 7165/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7166
7167/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7168 ARG_TYPE, extract and return the value of one of its (non-static)
7169 fields. FIELDNO says which field. Differs from value_primitive_field
7170 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7171
4c4b4cd2 7172static struct value *
d2e4a39e 7173ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7174 struct type *arg_type)
14f9c5c9 7175{
14f9c5c9
AS
7176 struct type *type;
7177
61ee279c 7178 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7179 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7180
4c4b4cd2 7181 /* Handle packed fields. */
14f9c5c9
AS
7182
7183 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7184 {
7185 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7186 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7187
0fd88904 7188 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7189 offset + bit_pos / 8,
7190 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7191 }
7192 else
7193 return value_primitive_field (arg1, offset, fieldno, arg_type);
7194}
7195
52ce6436
PH
7196/* Find field with name NAME in object of type TYPE. If found,
7197 set the following for each argument that is non-null:
7198 - *FIELD_TYPE_P to the field's type;
7199 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7200 an object of that type;
7201 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7202 - *BIT_SIZE_P to its size in bits if the field is packed, and
7203 0 otherwise;
7204 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7205 fields up to but not including the desired field, or by the total
7206 number of fields if not found. A NULL value of NAME never
7207 matches; the function just counts visible fields in this case.
7208
0963b4bd 7209 Returns 1 if found, 0 otherwise. */
52ce6436 7210
4c4b4cd2 7211static int
0d5cff50 7212find_struct_field (const char *name, struct type *type, int offset,
76a01679 7213 struct type **field_type_p,
52ce6436
PH
7214 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7215 int *index_p)
4c4b4cd2
PH
7216{
7217 int i;
7218
61ee279c 7219 type = ada_check_typedef (type);
76a01679 7220
52ce6436
PH
7221 if (field_type_p != NULL)
7222 *field_type_p = NULL;
7223 if (byte_offset_p != NULL)
d5d6fca5 7224 *byte_offset_p = 0;
52ce6436
PH
7225 if (bit_offset_p != NULL)
7226 *bit_offset_p = 0;
7227 if (bit_size_p != NULL)
7228 *bit_size_p = 0;
7229
7230 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7231 {
7232 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7233 int fld_offset = offset + bit_pos / 8;
0d5cff50 7234 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7235
4c4b4cd2
PH
7236 if (t_field_name == NULL)
7237 continue;
7238
52ce6436 7239 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7240 {
7241 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7242
52ce6436
PH
7243 if (field_type_p != NULL)
7244 *field_type_p = TYPE_FIELD_TYPE (type, i);
7245 if (byte_offset_p != NULL)
7246 *byte_offset_p = fld_offset;
7247 if (bit_offset_p != NULL)
7248 *bit_offset_p = bit_pos % 8;
7249 if (bit_size_p != NULL)
7250 *bit_size_p = bit_size;
76a01679
JB
7251 return 1;
7252 }
4c4b4cd2
PH
7253 else if (ada_is_wrapper_field (type, i))
7254 {
52ce6436
PH
7255 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7256 field_type_p, byte_offset_p, bit_offset_p,
7257 bit_size_p, index_p))
76a01679
JB
7258 return 1;
7259 }
4c4b4cd2
PH
7260 else if (ada_is_variant_part (type, i))
7261 {
52ce6436
PH
7262 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7263 fixed type?? */
4c4b4cd2 7264 int j;
52ce6436
PH
7265 struct type *field_type
7266 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7267
52ce6436 7268 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7269 {
76a01679
JB
7270 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7271 fld_offset
7272 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7273 field_type_p, byte_offset_p,
52ce6436 7274 bit_offset_p, bit_size_p, index_p))
76a01679 7275 return 1;
4c4b4cd2
PH
7276 }
7277 }
52ce6436
PH
7278 else if (index_p != NULL)
7279 *index_p += 1;
4c4b4cd2
PH
7280 }
7281 return 0;
7282}
7283
0963b4bd 7284/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7285
52ce6436
PH
7286static int
7287num_visible_fields (struct type *type)
7288{
7289 int n;
5b4ee69b 7290
52ce6436
PH
7291 n = 0;
7292 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7293 return n;
7294}
14f9c5c9 7295
4c4b4cd2 7296/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7297 and search in it assuming it has (class) type TYPE.
7298 If found, return value, else return NULL.
7299
4c4b4cd2 7300 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7301
4c4b4cd2 7302static struct value *
108d56a4 7303ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7304 struct type *type)
14f9c5c9
AS
7305{
7306 int i;
14f9c5c9 7307
5b4ee69b 7308 type = ada_check_typedef (type);
52ce6436 7309 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7310 {
0d5cff50 7311 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7312
7313 if (t_field_name == NULL)
4c4b4cd2 7314 continue;
14f9c5c9
AS
7315
7316 else if (field_name_match (t_field_name, name))
4c4b4cd2 7317 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7318
7319 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7320 {
0963b4bd 7321 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7322 ada_search_struct_field (name, arg,
7323 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7324 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7325
4c4b4cd2
PH
7326 if (v != NULL)
7327 return v;
7328 }
14f9c5c9
AS
7329
7330 else if (ada_is_variant_part (type, i))
4c4b4cd2 7331 {
0963b4bd 7332 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7333 int j;
5b4ee69b
MS
7334 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7335 i));
4c4b4cd2
PH
7336 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7337
52ce6436 7338 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7339 {
0963b4bd
MS
7340 struct value *v = ada_search_struct_field /* Force line
7341 break. */
06d5cf63
JB
7342 (name, arg,
7343 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7344 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7345
4c4b4cd2
PH
7346 if (v != NULL)
7347 return v;
7348 }
7349 }
14f9c5c9
AS
7350 }
7351 return NULL;
7352}
d2e4a39e 7353
52ce6436
PH
7354static struct value *ada_index_struct_field_1 (int *, struct value *,
7355 int, struct type *);
7356
7357
7358/* Return field #INDEX in ARG, where the index is that returned by
7359 * find_struct_field through its INDEX_P argument. Adjust the address
7360 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7361 * If found, return value, else return NULL. */
52ce6436
PH
7362
7363static struct value *
7364ada_index_struct_field (int index, struct value *arg, int offset,
7365 struct type *type)
7366{
7367 return ada_index_struct_field_1 (&index, arg, offset, type);
7368}
7369
7370
7371/* Auxiliary function for ada_index_struct_field. Like
7372 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7373 * *INDEX_P. */
52ce6436
PH
7374
7375static struct value *
7376ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7377 struct type *type)
7378{
7379 int i;
7380 type = ada_check_typedef (type);
7381
7382 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7383 {
7384 if (TYPE_FIELD_NAME (type, i) == NULL)
7385 continue;
7386 else if (ada_is_wrapper_field (type, i))
7387 {
0963b4bd 7388 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7389 ada_index_struct_field_1 (index_p, arg,
7390 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7391 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7392
52ce6436
PH
7393 if (v != NULL)
7394 return v;
7395 }
7396
7397 else if (ada_is_variant_part (type, i))
7398 {
7399 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7400 find_struct_field. */
52ce6436
PH
7401 error (_("Cannot assign this kind of variant record"));
7402 }
7403 else if (*index_p == 0)
7404 return ada_value_primitive_field (arg, offset, i, type);
7405 else
7406 *index_p -= 1;
7407 }
7408 return NULL;
7409}
7410
4c4b4cd2
PH
7411/* Given ARG, a value of type (pointer or reference to a)*
7412 structure/union, extract the component named NAME from the ultimate
7413 target structure/union and return it as a value with its
f5938064 7414 appropriate type.
14f9c5c9 7415
4c4b4cd2
PH
7416 The routine searches for NAME among all members of the structure itself
7417 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7418 (e.g., '_parent').
7419
03ee6b2e
PH
7420 If NO_ERR, then simply return NULL in case of error, rather than
7421 calling error. */
14f9c5c9 7422
d2e4a39e 7423struct value *
03ee6b2e 7424ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7425{
4c4b4cd2 7426 struct type *t, *t1;
d2e4a39e 7427 struct value *v;
14f9c5c9 7428
4c4b4cd2 7429 v = NULL;
df407dfe 7430 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7431 if (TYPE_CODE (t) == TYPE_CODE_REF)
7432 {
7433 t1 = TYPE_TARGET_TYPE (t);
7434 if (t1 == NULL)
03ee6b2e 7435 goto BadValue;
61ee279c 7436 t1 = ada_check_typedef (t1);
4c4b4cd2 7437 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7438 {
994b9211 7439 arg = coerce_ref (arg);
76a01679
JB
7440 t = t1;
7441 }
4c4b4cd2 7442 }
14f9c5c9 7443
4c4b4cd2
PH
7444 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7445 {
7446 t1 = TYPE_TARGET_TYPE (t);
7447 if (t1 == NULL)
03ee6b2e 7448 goto BadValue;
61ee279c 7449 t1 = ada_check_typedef (t1);
4c4b4cd2 7450 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7451 {
7452 arg = value_ind (arg);
7453 t = t1;
7454 }
4c4b4cd2 7455 else
76a01679 7456 break;
4c4b4cd2 7457 }
14f9c5c9 7458
4c4b4cd2 7459 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7460 goto BadValue;
14f9c5c9 7461
4c4b4cd2
PH
7462 if (t1 == t)
7463 v = ada_search_struct_field (name, arg, 0, t);
7464 else
7465 {
7466 int bit_offset, bit_size, byte_offset;
7467 struct type *field_type;
7468 CORE_ADDR address;
7469
76a01679 7470 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7471 address = value_address (ada_value_ind (arg));
4c4b4cd2 7472 else
b50d69b5 7473 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7474
1ed6ede0 7475 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7476 if (find_struct_field (name, t1, 0,
7477 &field_type, &byte_offset, &bit_offset,
52ce6436 7478 &bit_size, NULL))
76a01679
JB
7479 {
7480 if (bit_size != 0)
7481 {
714e53ab
PH
7482 if (TYPE_CODE (t) == TYPE_CODE_REF)
7483 arg = ada_coerce_ref (arg);
7484 else
7485 arg = ada_value_ind (arg);
76a01679
JB
7486 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7487 bit_offset, bit_size,
7488 field_type);
7489 }
7490 else
f5938064 7491 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7492 }
7493 }
7494
03ee6b2e
PH
7495 if (v != NULL || no_err)
7496 return v;
7497 else
323e0a4a 7498 error (_("There is no member named %s."), name);
14f9c5c9 7499
03ee6b2e
PH
7500 BadValue:
7501 if (no_err)
7502 return NULL;
7503 else
0963b4bd
MS
7504 error (_("Attempt to extract a component of "
7505 "a value that is not a record."));
14f9c5c9
AS
7506}
7507
7508/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7509 If DISPP is non-null, add its byte displacement from the beginning of a
7510 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7511 work for packed fields).
7512
7513 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7514 followed by "___".
14f9c5c9 7515
0963b4bd 7516 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7517 be a (pointer or reference)+ to a struct or union, and the
7518 ultimate target type will be searched.
14f9c5c9
AS
7519
7520 Looks recursively into variant clauses and parent types.
7521
4c4b4cd2
PH
7522 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7523 TYPE is not a type of the right kind. */
14f9c5c9 7524
4c4b4cd2 7525static struct type *
76a01679
JB
7526ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7527 int noerr, int *dispp)
14f9c5c9
AS
7528{
7529 int i;
7530
7531 if (name == NULL)
7532 goto BadName;
7533
76a01679 7534 if (refok && type != NULL)
4c4b4cd2
PH
7535 while (1)
7536 {
61ee279c 7537 type = ada_check_typedef (type);
76a01679
JB
7538 if (TYPE_CODE (type) != TYPE_CODE_PTR
7539 && TYPE_CODE (type) != TYPE_CODE_REF)
7540 break;
7541 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7542 }
14f9c5c9 7543
76a01679 7544 if (type == NULL
1265e4aa
JB
7545 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7546 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7547 {
4c4b4cd2 7548 if (noerr)
76a01679 7549 return NULL;
4c4b4cd2 7550 else
76a01679
JB
7551 {
7552 target_terminal_ours ();
7553 gdb_flush (gdb_stdout);
323e0a4a
AC
7554 if (type == NULL)
7555 error (_("Type (null) is not a structure or union type"));
7556 else
7557 {
7558 /* XXX: type_sprint */
7559 fprintf_unfiltered (gdb_stderr, _("Type "));
7560 type_print (type, "", gdb_stderr, -1);
7561 error (_(" is not a structure or union type"));
7562 }
76a01679 7563 }
14f9c5c9
AS
7564 }
7565
7566 type = to_static_fixed_type (type);
7567
7568 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7569 {
0d5cff50 7570 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7571 struct type *t;
7572 int disp;
d2e4a39e 7573
14f9c5c9 7574 if (t_field_name == NULL)
4c4b4cd2 7575 continue;
14f9c5c9
AS
7576
7577 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7578 {
7579 if (dispp != NULL)
7580 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7581 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7582 }
14f9c5c9
AS
7583
7584 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7585 {
7586 disp = 0;
7587 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7588 0, 1, &disp);
7589 if (t != NULL)
7590 {
7591 if (dispp != NULL)
7592 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7593 return t;
7594 }
7595 }
14f9c5c9
AS
7596
7597 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7598 {
7599 int j;
5b4ee69b
MS
7600 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7601 i));
4c4b4cd2
PH
7602
7603 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7604 {
b1f33ddd
JB
7605 /* FIXME pnh 2008/01/26: We check for a field that is
7606 NOT wrapped in a struct, since the compiler sometimes
7607 generates these for unchecked variant types. Revisit
0963b4bd 7608 if the compiler changes this practice. */
0d5cff50 7609 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7610 disp = 0;
b1f33ddd
JB
7611 if (v_field_name != NULL
7612 && field_name_match (v_field_name, name))
460efde1 7613 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7614 else
0963b4bd
MS
7615 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7616 j),
b1f33ddd
JB
7617 name, 0, 1, &disp);
7618
4c4b4cd2
PH
7619 if (t != NULL)
7620 {
7621 if (dispp != NULL)
7622 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7623 return t;
7624 }
7625 }
7626 }
14f9c5c9
AS
7627
7628 }
7629
7630BadName:
d2e4a39e 7631 if (!noerr)
14f9c5c9
AS
7632 {
7633 target_terminal_ours ();
7634 gdb_flush (gdb_stdout);
323e0a4a
AC
7635 if (name == NULL)
7636 {
7637 /* XXX: type_sprint */
7638 fprintf_unfiltered (gdb_stderr, _("Type "));
7639 type_print (type, "", gdb_stderr, -1);
7640 error (_(" has no component named <null>"));
7641 }
7642 else
7643 {
7644 /* XXX: type_sprint */
7645 fprintf_unfiltered (gdb_stderr, _("Type "));
7646 type_print (type, "", gdb_stderr, -1);
7647 error (_(" has no component named %s"), name);
7648 }
14f9c5c9
AS
7649 }
7650
7651 return NULL;
7652}
7653
b1f33ddd
JB
7654/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7655 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7656 represents an unchecked union (that is, the variant part of a
0963b4bd 7657 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7658
7659static int
7660is_unchecked_variant (struct type *var_type, struct type *outer_type)
7661{
7662 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7663
b1f33ddd
JB
7664 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7665 == NULL);
7666}
7667
7668
14f9c5c9
AS
7669/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7670 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7671 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7672 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7673
d2e4a39e 7674int
ebf56fd3 7675ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7676 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7677{
7678 int others_clause;
7679 int i;
d2e4a39e 7680 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7681 struct value *outer;
7682 struct value *discrim;
14f9c5c9
AS
7683 LONGEST discrim_val;
7684
012370f6
TT
7685 /* Using plain value_from_contents_and_address here causes problems
7686 because we will end up trying to resolve a type that is currently
7687 being constructed. */
7688 outer = value_from_contents_and_address_unresolved (outer_type,
7689 outer_valaddr, 0);
0c281816
JB
7690 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7691 if (discrim == NULL)
14f9c5c9 7692 return -1;
0c281816 7693 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7694
7695 others_clause = -1;
7696 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7697 {
7698 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7699 others_clause = i;
14f9c5c9 7700 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7701 return i;
14f9c5c9
AS
7702 }
7703
7704 return others_clause;
7705}
d2e4a39e 7706\f
14f9c5c9
AS
7707
7708
4c4b4cd2 7709 /* Dynamic-Sized Records */
14f9c5c9
AS
7710
7711/* Strategy: The type ostensibly attached to a value with dynamic size
7712 (i.e., a size that is not statically recorded in the debugging
7713 data) does not accurately reflect the size or layout of the value.
7714 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7715 conventional types that are constructed on the fly. */
14f9c5c9
AS
7716
7717/* There is a subtle and tricky problem here. In general, we cannot
7718 determine the size of dynamic records without its data. However,
7719 the 'struct value' data structure, which GDB uses to represent
7720 quantities in the inferior process (the target), requires the size
7721 of the type at the time of its allocation in order to reserve space
7722 for GDB's internal copy of the data. That's why the
7723 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7724 rather than struct value*s.
14f9c5c9
AS
7725
7726 However, GDB's internal history variables ($1, $2, etc.) are
7727 struct value*s containing internal copies of the data that are not, in
7728 general, the same as the data at their corresponding addresses in
7729 the target. Fortunately, the types we give to these values are all
7730 conventional, fixed-size types (as per the strategy described
7731 above), so that we don't usually have to perform the
7732 'to_fixed_xxx_type' conversions to look at their values.
7733 Unfortunately, there is one exception: if one of the internal
7734 history variables is an array whose elements are unconstrained
7735 records, then we will need to create distinct fixed types for each
7736 element selected. */
7737
7738/* The upshot of all of this is that many routines take a (type, host
7739 address, target address) triple as arguments to represent a value.
7740 The host address, if non-null, is supposed to contain an internal
7741 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7742 target at the target address. */
14f9c5c9
AS
7743
7744/* Assuming that VAL0 represents a pointer value, the result of
7745 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7746 dynamic-sized types. */
14f9c5c9 7747
d2e4a39e
AS
7748struct value *
7749ada_value_ind (struct value *val0)
14f9c5c9 7750{
c48db5ca 7751 struct value *val = value_ind (val0);
5b4ee69b 7752
b50d69b5
JG
7753 if (ada_is_tagged_type (value_type (val), 0))
7754 val = ada_tag_value_at_base_address (val);
7755
4c4b4cd2 7756 return ada_to_fixed_value (val);
14f9c5c9
AS
7757}
7758
7759/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7760 qualifiers on VAL0. */
7761
d2e4a39e
AS
7762static struct value *
7763ada_coerce_ref (struct value *val0)
7764{
df407dfe 7765 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7766 {
7767 struct value *val = val0;
5b4ee69b 7768
994b9211 7769 val = coerce_ref (val);
b50d69b5
JG
7770
7771 if (ada_is_tagged_type (value_type (val), 0))
7772 val = ada_tag_value_at_base_address (val);
7773
4c4b4cd2 7774 return ada_to_fixed_value (val);
d2e4a39e
AS
7775 }
7776 else
14f9c5c9
AS
7777 return val0;
7778}
7779
7780/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7781 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7782
7783static unsigned int
ebf56fd3 7784align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7785{
7786 return (off + alignment - 1) & ~(alignment - 1);
7787}
7788
4c4b4cd2 7789/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7790
7791static unsigned int
ebf56fd3 7792field_alignment (struct type *type, int f)
14f9c5c9 7793{
d2e4a39e 7794 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7795 int len;
14f9c5c9
AS
7796 int align_offset;
7797
64a1bf19
JB
7798 /* The field name should never be null, unless the debugging information
7799 is somehow malformed. In this case, we assume the field does not
7800 require any alignment. */
7801 if (name == NULL)
7802 return 1;
7803
7804 len = strlen (name);
7805
4c4b4cd2
PH
7806 if (!isdigit (name[len - 1]))
7807 return 1;
14f9c5c9 7808
d2e4a39e 7809 if (isdigit (name[len - 2]))
14f9c5c9
AS
7810 align_offset = len - 2;
7811 else
7812 align_offset = len - 1;
7813
61012eef 7814 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7815 return TARGET_CHAR_BIT;
7816
4c4b4cd2
PH
7817 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7818}
7819
852dff6c 7820/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7821
852dff6c
JB
7822static struct symbol *
7823ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7824{
7825 struct symbol *sym;
7826
7827 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7828 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7829 return sym;
7830
4186eb54
KS
7831 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7832 return sym;
14f9c5c9
AS
7833}
7834
dddfab26
UW
7835/* Find a type named NAME. Ignores ambiguity. This routine will look
7836 solely for types defined by debug info, it will not search the GDB
7837 primitive types. */
4c4b4cd2 7838
852dff6c 7839static struct type *
ebf56fd3 7840ada_find_any_type (const char *name)
14f9c5c9 7841{
852dff6c 7842 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7843
14f9c5c9 7844 if (sym != NULL)
dddfab26 7845 return SYMBOL_TYPE (sym);
14f9c5c9 7846
dddfab26 7847 return NULL;
14f9c5c9
AS
7848}
7849
739593e0
JB
7850/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7851 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7852 symbol, in which case it is returned. Otherwise, this looks for
7853 symbols whose name is that of NAME_SYM suffixed with "___XR".
7854 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7855
7856struct symbol *
270140bd 7857ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7858{
739593e0 7859 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7860 struct symbol *sym;
7861
739593e0
JB
7862 if (strstr (name, "___XR") != NULL)
7863 return name_sym;
7864
aeb5907d
JB
7865 sym = find_old_style_renaming_symbol (name, block);
7866
7867 if (sym != NULL)
7868 return sym;
7869
0963b4bd 7870 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7871 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7872 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7873 return sym;
7874 else
7875 return NULL;
7876}
7877
7878static struct symbol *
270140bd 7879find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7880{
7f0df278 7881 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7882 char *rename;
7883
7884 if (function_sym != NULL)
7885 {
7886 /* If the symbol is defined inside a function, NAME is not fully
7887 qualified. This means we need to prepend the function name
7888 as well as adding the ``___XR'' suffix to build the name of
7889 the associated renaming symbol. */
0d5cff50 7890 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7891 /* Function names sometimes contain suffixes used
7892 for instance to qualify nested subprograms. When building
7893 the XR type name, we need to make sure that this suffix is
7894 not included. So do not include any suffix in the function
7895 name length below. */
69fadcdf 7896 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7897 const int rename_len = function_name_len + 2 /* "__" */
7898 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7899
529cad9c 7900 /* Strip the suffix if necessary. */
69fadcdf
JB
7901 ada_remove_trailing_digits (function_name, &function_name_len);
7902 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7903 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7904
4c4b4cd2
PH
7905 /* Library-level functions are a special case, as GNAT adds
7906 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7907 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7908 have this prefix, so we need to skip this prefix if present. */
7909 if (function_name_len > 5 /* "_ada_" */
7910 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7911 {
7912 function_name += 5;
7913 function_name_len -= 5;
7914 }
4c4b4cd2
PH
7915
7916 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7917 strncpy (rename, function_name, function_name_len);
7918 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7919 "__%s___XR", name);
4c4b4cd2
PH
7920 }
7921 else
7922 {
7923 const int rename_len = strlen (name) + 6;
5b4ee69b 7924
4c4b4cd2 7925 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7926 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7927 }
7928
852dff6c 7929 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7930}
7931
14f9c5c9 7932/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7933 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7934 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7935 otherwise return 0. */
7936
14f9c5c9 7937int
d2e4a39e 7938ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7939{
7940 if (type1 == NULL)
7941 return 1;
7942 else if (type0 == NULL)
7943 return 0;
7944 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7945 return 1;
7946 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7947 return 0;
4c4b4cd2
PH
7948 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7949 return 1;
ad82864c 7950 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7951 return 1;
4c4b4cd2
PH
7952 else if (ada_is_array_descriptor_type (type0)
7953 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7954 return 1;
aeb5907d
JB
7955 else
7956 {
7957 const char *type0_name = type_name_no_tag (type0);
7958 const char *type1_name = type_name_no_tag (type1);
7959
7960 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7961 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7962 return 1;
7963 }
14f9c5c9
AS
7964 return 0;
7965}
7966
7967/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7968 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7969
0d5cff50 7970const char *
d2e4a39e 7971ada_type_name (struct type *type)
14f9c5c9 7972{
d2e4a39e 7973 if (type == NULL)
14f9c5c9
AS
7974 return NULL;
7975 else if (TYPE_NAME (type) != NULL)
7976 return TYPE_NAME (type);
7977 else
7978 return TYPE_TAG_NAME (type);
7979}
7980
b4ba55a1
JB
7981/* Search the list of "descriptive" types associated to TYPE for a type
7982 whose name is NAME. */
7983
7984static struct type *
7985find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7986{
931e5bc3 7987 struct type *result, *tmp;
b4ba55a1 7988
c6044dd1
JB
7989 if (ada_ignore_descriptive_types_p)
7990 return NULL;
7991
b4ba55a1
JB
7992 /* If there no descriptive-type info, then there is no parallel type
7993 to be found. */
7994 if (!HAVE_GNAT_AUX_INFO (type))
7995 return NULL;
7996
7997 result = TYPE_DESCRIPTIVE_TYPE (type);
7998 while (result != NULL)
7999 {
0d5cff50 8000 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8001
8002 if (result_name == NULL)
8003 {
8004 warning (_("unexpected null name on descriptive type"));
8005 return NULL;
8006 }
8007
8008 /* If the names match, stop. */
8009 if (strcmp (result_name, name) == 0)
8010 break;
8011
8012 /* Otherwise, look at the next item on the list, if any. */
8013 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8014 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8015 else
8016 tmp = NULL;
8017
8018 /* If not found either, try after having resolved the typedef. */
8019 if (tmp != NULL)
8020 result = tmp;
b4ba55a1 8021 else
931e5bc3 8022 {
f168693b 8023 result = check_typedef (result);
931e5bc3
JG
8024 if (HAVE_GNAT_AUX_INFO (result))
8025 result = TYPE_DESCRIPTIVE_TYPE (result);
8026 else
8027 result = NULL;
8028 }
b4ba55a1
JB
8029 }
8030
8031 /* If we didn't find a match, see whether this is a packed array. With
8032 older compilers, the descriptive type information is either absent or
8033 irrelevant when it comes to packed arrays so the above lookup fails.
8034 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8035 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8036 return ada_find_any_type (name);
8037
8038 return result;
8039}
8040
8041/* Find a parallel type to TYPE with the specified NAME, using the
8042 descriptive type taken from the debugging information, if available,
8043 and otherwise using the (slower) name-based method. */
8044
8045static struct type *
8046ada_find_parallel_type_with_name (struct type *type, const char *name)
8047{
8048 struct type *result = NULL;
8049
8050 if (HAVE_GNAT_AUX_INFO (type))
8051 result = find_parallel_type_by_descriptive_type (type, name);
8052 else
8053 result = ada_find_any_type (name);
8054
8055 return result;
8056}
8057
8058/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8059 SUFFIX to the name of TYPE. */
14f9c5c9 8060
d2e4a39e 8061struct type *
ebf56fd3 8062ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8063{
0d5cff50 8064 char *name;
fe978cb0 8065 const char *type_name = ada_type_name (type);
14f9c5c9 8066 int len;
d2e4a39e 8067
fe978cb0 8068 if (type_name == NULL)
14f9c5c9
AS
8069 return NULL;
8070
fe978cb0 8071 len = strlen (type_name);
14f9c5c9 8072
b4ba55a1 8073 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8074
fe978cb0 8075 strcpy (name, type_name);
14f9c5c9
AS
8076 strcpy (name + len, suffix);
8077
b4ba55a1 8078 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8079}
8080
14f9c5c9 8081/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8082 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8083
d2e4a39e
AS
8084static struct type *
8085dynamic_template_type (struct type *type)
14f9c5c9 8086{
61ee279c 8087 type = ada_check_typedef (type);
14f9c5c9
AS
8088
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8090 || ada_type_name (type) == NULL)
14f9c5c9 8091 return NULL;
d2e4a39e 8092 else
14f9c5c9
AS
8093 {
8094 int len = strlen (ada_type_name (type));
5b4ee69b 8095
4c4b4cd2
PH
8096 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8097 return type;
14f9c5c9 8098 else
4c4b4cd2 8099 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8100 }
8101}
8102
8103/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8104 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8105
d2e4a39e
AS
8106static int
8107is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8108{
8109 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8110
d2e4a39e 8111 return name != NULL
14f9c5c9
AS
8112 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8113 && strstr (name, "___XVL") != NULL;
8114}
8115
4c4b4cd2
PH
8116/* The index of the variant field of TYPE, or -1 if TYPE does not
8117 represent a variant record type. */
14f9c5c9 8118
d2e4a39e 8119static int
4c4b4cd2 8120variant_field_index (struct type *type)
14f9c5c9
AS
8121{
8122 int f;
8123
4c4b4cd2
PH
8124 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8125 return -1;
8126
8127 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8128 {
8129 if (ada_is_variant_part (type, f))
8130 return f;
8131 }
8132 return -1;
14f9c5c9
AS
8133}
8134
4c4b4cd2
PH
8135/* A record type with no fields. */
8136
d2e4a39e 8137static struct type *
fe978cb0 8138empty_record (struct type *templ)
14f9c5c9 8139{
fe978cb0 8140 struct type *type = alloc_type_copy (templ);
5b4ee69b 8141
14f9c5c9
AS
8142 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8143 TYPE_NFIELDS (type) = 0;
8144 TYPE_FIELDS (type) = NULL;
b1f33ddd 8145 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8146 TYPE_NAME (type) = "<empty>";
8147 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8148 TYPE_LENGTH (type) = 0;
8149 return type;
8150}
8151
8152/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8153 the value of type TYPE at VALADDR or ADDRESS (see comments at
8154 the beginning of this section) VAL according to GNAT conventions.
8155 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8156 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8157 an outer-level type (i.e., as opposed to a branch of a variant.) A
8158 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8159 of the variant.
14f9c5c9 8160
4c4b4cd2
PH
8161 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8162 length are not statically known are discarded. As a consequence,
8163 VALADDR, ADDRESS and DVAL0 are ignored.
8164
8165 NOTE: Limitations: For now, we assume that dynamic fields and
8166 variants occupy whole numbers of bytes. However, they need not be
8167 byte-aligned. */
8168
8169struct type *
10a2c479 8170ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8171 const gdb_byte *valaddr,
4c4b4cd2
PH
8172 CORE_ADDR address, struct value *dval0,
8173 int keep_dynamic_fields)
14f9c5c9 8174{
d2e4a39e
AS
8175 struct value *mark = value_mark ();
8176 struct value *dval;
8177 struct type *rtype;
14f9c5c9 8178 int nfields, bit_len;
4c4b4cd2 8179 int variant_field;
14f9c5c9 8180 long off;
d94e4f4f 8181 int fld_bit_len;
14f9c5c9
AS
8182 int f;
8183
4c4b4cd2
PH
8184 /* Compute the number of fields in this record type that are going
8185 to be processed: unless keep_dynamic_fields, this includes only
8186 fields whose position and length are static will be processed. */
8187 if (keep_dynamic_fields)
8188 nfields = TYPE_NFIELDS (type);
8189 else
8190 {
8191 nfields = 0;
76a01679 8192 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8193 && !ada_is_variant_part (type, nfields)
8194 && !is_dynamic_field (type, nfields))
8195 nfields++;
8196 }
8197
e9bb382b 8198 rtype = alloc_type_copy (type);
14f9c5c9
AS
8199 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8200 INIT_CPLUS_SPECIFIC (rtype);
8201 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8202 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8203 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8204 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8205 TYPE_NAME (rtype) = ada_type_name (type);
8206 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8207 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8208
d2e4a39e
AS
8209 off = 0;
8210 bit_len = 0;
4c4b4cd2
PH
8211 variant_field = -1;
8212
14f9c5c9
AS
8213 for (f = 0; f < nfields; f += 1)
8214 {
6c038f32
PH
8215 off = align_value (off, field_alignment (type, f))
8216 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8217 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8218 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8219
d2e4a39e 8220 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8221 {
8222 variant_field = f;
d94e4f4f 8223 fld_bit_len = 0;
4c4b4cd2 8224 }
14f9c5c9 8225 else if (is_dynamic_field (type, f))
4c4b4cd2 8226 {
284614f0
JB
8227 const gdb_byte *field_valaddr = valaddr;
8228 CORE_ADDR field_address = address;
8229 struct type *field_type =
8230 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8231
4c4b4cd2 8232 if (dval0 == NULL)
b5304971
JG
8233 {
8234 /* rtype's length is computed based on the run-time
8235 value of discriminants. If the discriminants are not
8236 initialized, the type size may be completely bogus and
0963b4bd 8237 GDB may fail to allocate a value for it. So check the
b5304971 8238 size first before creating the value. */
c1b5a1a6 8239 ada_ensure_varsize_limit (rtype);
012370f6
TT
8240 /* Using plain value_from_contents_and_address here
8241 causes problems because we will end up trying to
8242 resolve a type that is currently being
8243 constructed. */
8244 dval = value_from_contents_and_address_unresolved (rtype,
8245 valaddr,
8246 address);
9f1f738a 8247 rtype = value_type (dval);
b5304971 8248 }
4c4b4cd2
PH
8249 else
8250 dval = dval0;
8251
284614f0
JB
8252 /* If the type referenced by this field is an aligner type, we need
8253 to unwrap that aligner type, because its size might not be set.
8254 Keeping the aligner type would cause us to compute the wrong
8255 size for this field, impacting the offset of the all the fields
8256 that follow this one. */
8257 if (ada_is_aligner_type (field_type))
8258 {
8259 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8260
8261 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8262 field_address = cond_offset_target (field_address, field_offset);
8263 field_type = ada_aligned_type (field_type);
8264 }
8265
8266 field_valaddr = cond_offset_host (field_valaddr,
8267 off / TARGET_CHAR_BIT);
8268 field_address = cond_offset_target (field_address,
8269 off / TARGET_CHAR_BIT);
8270
8271 /* Get the fixed type of the field. Note that, in this case,
8272 we do not want to get the real type out of the tag: if
8273 the current field is the parent part of a tagged record,
8274 we will get the tag of the object. Clearly wrong: the real
8275 type of the parent is not the real type of the child. We
8276 would end up in an infinite loop. */
8277 field_type = ada_get_base_type (field_type);
8278 field_type = ada_to_fixed_type (field_type, field_valaddr,
8279 field_address, dval, 0);
27f2a97b
JB
8280 /* If the field size is already larger than the maximum
8281 object size, then the record itself will necessarily
8282 be larger than the maximum object size. We need to make
8283 this check now, because the size might be so ridiculously
8284 large (due to an uninitialized variable in the inferior)
8285 that it would cause an overflow when adding it to the
8286 record size. */
c1b5a1a6 8287 ada_ensure_varsize_limit (field_type);
284614f0
JB
8288
8289 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8290 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8291 /* The multiplication can potentially overflow. But because
8292 the field length has been size-checked just above, and
8293 assuming that the maximum size is a reasonable value,
8294 an overflow should not happen in practice. So rather than
8295 adding overflow recovery code to this already complex code,
8296 we just assume that it's not going to happen. */
d94e4f4f 8297 fld_bit_len =
4c4b4cd2
PH
8298 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8299 }
14f9c5c9 8300 else
4c4b4cd2 8301 {
5ded5331
JB
8302 /* Note: If this field's type is a typedef, it is important
8303 to preserve the typedef layer.
8304
8305 Otherwise, we might be transforming a typedef to a fat
8306 pointer (encoding a pointer to an unconstrained array),
8307 into a basic fat pointer (encoding an unconstrained
8308 array). As both types are implemented using the same
8309 structure, the typedef is the only clue which allows us
8310 to distinguish between the two options. Stripping it
8311 would prevent us from printing this field appropriately. */
8312 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8313 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8314 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8315 fld_bit_len =
4c4b4cd2
PH
8316 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8317 else
5ded5331
JB
8318 {
8319 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8320
8321 /* We need to be careful of typedefs when computing
8322 the length of our field. If this is a typedef,
8323 get the length of the target type, not the length
8324 of the typedef. */
8325 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8326 field_type = ada_typedef_target_type (field_type);
8327
8328 fld_bit_len =
8329 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8330 }
4c4b4cd2 8331 }
14f9c5c9 8332 if (off + fld_bit_len > bit_len)
4c4b4cd2 8333 bit_len = off + fld_bit_len;
d94e4f4f 8334 off += fld_bit_len;
4c4b4cd2
PH
8335 TYPE_LENGTH (rtype) =
8336 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8337 }
4c4b4cd2
PH
8338
8339 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8340 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8341 the record. This can happen in the presence of representation
8342 clauses. */
8343 if (variant_field >= 0)
8344 {
8345 struct type *branch_type;
8346
8347 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8348
8349 if (dval0 == NULL)
9f1f738a 8350 {
012370f6
TT
8351 /* Using plain value_from_contents_and_address here causes
8352 problems because we will end up trying to resolve a type
8353 that is currently being constructed. */
8354 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8355 address);
9f1f738a
SA
8356 rtype = value_type (dval);
8357 }
4c4b4cd2
PH
8358 else
8359 dval = dval0;
8360
8361 branch_type =
8362 to_fixed_variant_branch_type
8363 (TYPE_FIELD_TYPE (type, variant_field),
8364 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8365 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8366 if (branch_type == NULL)
8367 {
8368 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8369 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8370 TYPE_NFIELDS (rtype) -= 1;
8371 }
8372 else
8373 {
8374 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8375 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8376 fld_bit_len =
8377 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8378 TARGET_CHAR_BIT;
8379 if (off + fld_bit_len > bit_len)
8380 bit_len = off + fld_bit_len;
8381 TYPE_LENGTH (rtype) =
8382 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8383 }
8384 }
8385
714e53ab
PH
8386 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8387 should contain the alignment of that record, which should be a strictly
8388 positive value. If null or negative, then something is wrong, most
8389 probably in the debug info. In that case, we don't round up the size
0963b4bd 8390 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8391 the current RTYPE length might be good enough for our purposes. */
8392 if (TYPE_LENGTH (type) <= 0)
8393 {
323e0a4a
AC
8394 if (TYPE_NAME (rtype))
8395 warning (_("Invalid type size for `%s' detected: %d."),
8396 TYPE_NAME (rtype), TYPE_LENGTH (type));
8397 else
8398 warning (_("Invalid type size for <unnamed> detected: %d."),
8399 TYPE_LENGTH (type));
714e53ab
PH
8400 }
8401 else
8402 {
8403 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8404 TYPE_LENGTH (type));
8405 }
14f9c5c9
AS
8406
8407 value_free_to_mark (mark);
d2e4a39e 8408 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8409 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8410 return rtype;
8411}
8412
4c4b4cd2
PH
8413/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8414 of 1. */
14f9c5c9 8415
d2e4a39e 8416static struct type *
fc1a4b47 8417template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8418 CORE_ADDR address, struct value *dval0)
8419{
8420 return ada_template_to_fixed_record_type_1 (type, valaddr,
8421 address, dval0, 1);
8422}
8423
8424/* An ordinary record type in which ___XVL-convention fields and
8425 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8426 static approximations, containing all possible fields. Uses
8427 no runtime values. Useless for use in values, but that's OK,
8428 since the results are used only for type determinations. Works on both
8429 structs and unions. Representation note: to save space, we memorize
8430 the result of this function in the TYPE_TARGET_TYPE of the
8431 template type. */
8432
8433static struct type *
8434template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8435{
8436 struct type *type;
8437 int nfields;
8438 int f;
8439
9e195661
PMR
8440 /* No need no do anything if the input type is already fixed. */
8441 if (TYPE_FIXED_INSTANCE (type0))
8442 return type0;
8443
8444 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8445 if (TYPE_TARGET_TYPE (type0) != NULL)
8446 return TYPE_TARGET_TYPE (type0);
8447
9e195661 8448 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8449 type = type0;
9e195661
PMR
8450 nfields = TYPE_NFIELDS (type0);
8451
8452 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8453 recompute all over next time. */
8454 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8455
8456 for (f = 0; f < nfields; f += 1)
8457 {
460efde1 8458 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8459 struct type *new_type;
14f9c5c9 8460
4c4b4cd2 8461 if (is_dynamic_field (type0, f))
460efde1
JB
8462 {
8463 field_type = ada_check_typedef (field_type);
8464 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8465 }
14f9c5c9 8466 else
f192137b 8467 new_type = static_unwrap_type (field_type);
9e195661
PMR
8468
8469 if (new_type != field_type)
8470 {
8471 /* Clone TYPE0 only the first time we get a new field type. */
8472 if (type == type0)
8473 {
8474 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8475 TYPE_CODE (type) = TYPE_CODE (type0);
8476 INIT_CPLUS_SPECIFIC (type);
8477 TYPE_NFIELDS (type) = nfields;
8478 TYPE_FIELDS (type) = (struct field *)
8479 TYPE_ALLOC (type, nfields * sizeof (struct field));
8480 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8481 sizeof (struct field) * nfields);
8482 TYPE_NAME (type) = ada_type_name (type0);
8483 TYPE_TAG_NAME (type) = NULL;
8484 TYPE_FIXED_INSTANCE (type) = 1;
8485 TYPE_LENGTH (type) = 0;
8486 }
8487 TYPE_FIELD_TYPE (type, f) = new_type;
8488 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8489 }
14f9c5c9 8490 }
9e195661 8491
14f9c5c9
AS
8492 return type;
8493}
8494
4c4b4cd2 8495/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8496 whose address in memory is ADDRESS, returns a revision of TYPE,
8497 which should be a non-dynamic-sized record, in which the variant
8498 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8499 for discriminant values in DVAL0, which can be NULL if the record
8500 contains the necessary discriminant values. */
8501
d2e4a39e 8502static struct type *
fc1a4b47 8503to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8504 CORE_ADDR address, struct value *dval0)
14f9c5c9 8505{
d2e4a39e 8506 struct value *mark = value_mark ();
4c4b4cd2 8507 struct value *dval;
d2e4a39e 8508 struct type *rtype;
14f9c5c9
AS
8509 struct type *branch_type;
8510 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8511 int variant_field = variant_field_index (type);
14f9c5c9 8512
4c4b4cd2 8513 if (variant_field == -1)
14f9c5c9
AS
8514 return type;
8515
4c4b4cd2 8516 if (dval0 == NULL)
9f1f738a
SA
8517 {
8518 dval = value_from_contents_and_address (type, valaddr, address);
8519 type = value_type (dval);
8520 }
4c4b4cd2
PH
8521 else
8522 dval = dval0;
8523
e9bb382b 8524 rtype = alloc_type_copy (type);
14f9c5c9 8525 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8526 INIT_CPLUS_SPECIFIC (rtype);
8527 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8528 TYPE_FIELDS (rtype) =
8529 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8530 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8531 sizeof (struct field) * nfields);
14f9c5c9
AS
8532 TYPE_NAME (rtype) = ada_type_name (type);
8533 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8534 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8535 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8536
4c4b4cd2
PH
8537 branch_type = to_fixed_variant_branch_type
8538 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8539 cond_offset_host (valaddr,
4c4b4cd2
PH
8540 TYPE_FIELD_BITPOS (type, variant_field)
8541 / TARGET_CHAR_BIT),
d2e4a39e 8542 cond_offset_target (address,
4c4b4cd2
PH
8543 TYPE_FIELD_BITPOS (type, variant_field)
8544 / TARGET_CHAR_BIT), dval);
d2e4a39e 8545 if (branch_type == NULL)
14f9c5c9 8546 {
4c4b4cd2 8547 int f;
5b4ee69b 8548
4c4b4cd2
PH
8549 for (f = variant_field + 1; f < nfields; f += 1)
8550 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8551 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8552 }
8553 else
8554 {
4c4b4cd2
PH
8555 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8556 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8557 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8558 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8559 }
4c4b4cd2 8560 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8561
4c4b4cd2 8562 value_free_to_mark (mark);
14f9c5c9
AS
8563 return rtype;
8564}
8565
8566/* An ordinary record type (with fixed-length fields) that describes
8567 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8568 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8569 should be in DVAL, a record value; it may be NULL if the object
8570 at ADDR itself contains any necessary discriminant values.
8571 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8572 values from the record are needed. Except in the case that DVAL,
8573 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8574 unchecked) is replaced by a particular branch of the variant.
8575
8576 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8577 is questionable and may be removed. It can arise during the
8578 processing of an unconstrained-array-of-record type where all the
8579 variant branches have exactly the same size. This is because in
8580 such cases, the compiler does not bother to use the XVS convention
8581 when encoding the record. I am currently dubious of this
8582 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8583
d2e4a39e 8584static struct type *
fc1a4b47 8585to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8586 CORE_ADDR address, struct value *dval)
14f9c5c9 8587{
d2e4a39e 8588 struct type *templ_type;
14f9c5c9 8589
876cecd0 8590 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8591 return type0;
8592
d2e4a39e 8593 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8594
8595 if (templ_type != NULL)
8596 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8597 else if (variant_field_index (type0) >= 0)
8598 {
8599 if (dval == NULL && valaddr == NULL && address == 0)
8600 return type0;
8601 return to_record_with_fixed_variant_part (type0, valaddr, address,
8602 dval);
8603 }
14f9c5c9
AS
8604 else
8605 {
876cecd0 8606 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8607 return type0;
8608 }
8609
8610}
8611
8612/* An ordinary record type (with fixed-length fields) that describes
8613 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8614 union type. Any necessary discriminants' values should be in DVAL,
8615 a record value. That is, this routine selects the appropriate
8616 branch of the union at ADDR according to the discriminant value
b1f33ddd 8617 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8618 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8619
d2e4a39e 8620static struct type *
fc1a4b47 8621to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8622 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8623{
8624 int which;
d2e4a39e
AS
8625 struct type *templ_type;
8626 struct type *var_type;
14f9c5c9
AS
8627
8628 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8629 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8630 else
14f9c5c9
AS
8631 var_type = var_type0;
8632
8633 templ_type = ada_find_parallel_type (var_type, "___XVU");
8634
8635 if (templ_type != NULL)
8636 var_type = templ_type;
8637
b1f33ddd
JB
8638 if (is_unchecked_variant (var_type, value_type (dval)))
8639 return var_type0;
d2e4a39e
AS
8640 which =
8641 ada_which_variant_applies (var_type,
0fd88904 8642 value_type (dval), value_contents (dval));
14f9c5c9
AS
8643
8644 if (which < 0)
e9bb382b 8645 return empty_record (var_type);
14f9c5c9 8646 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8647 return to_fixed_record_type
d2e4a39e
AS
8648 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8649 valaddr, address, dval);
4c4b4cd2 8650 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8651 return
8652 to_fixed_record_type
8653 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8654 else
8655 return TYPE_FIELD_TYPE (var_type, which);
8656}
8657
8908fca5
JB
8658/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8659 ENCODING_TYPE, a type following the GNAT conventions for discrete
8660 type encodings, only carries redundant information. */
8661
8662static int
8663ada_is_redundant_range_encoding (struct type *range_type,
8664 struct type *encoding_type)
8665{
8666 struct type *fixed_range_type;
108d56a4 8667 const char *bounds_str;
8908fca5
JB
8668 int n;
8669 LONGEST lo, hi;
8670
8671 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8672
005e2509
JB
8673 if (TYPE_CODE (get_base_type (range_type))
8674 != TYPE_CODE (get_base_type (encoding_type)))
8675 {
8676 /* The compiler probably used a simple base type to describe
8677 the range type instead of the range's actual base type,
8678 expecting us to get the real base type from the encoding
8679 anyway. In this situation, the encoding cannot be ignored
8680 as redundant. */
8681 return 0;
8682 }
8683
8908fca5
JB
8684 if (is_dynamic_type (range_type))
8685 return 0;
8686
8687 if (TYPE_NAME (encoding_type) == NULL)
8688 return 0;
8689
8690 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8691 if (bounds_str == NULL)
8692 return 0;
8693
8694 n = 8; /* Skip "___XDLU_". */
8695 if (!ada_scan_number (bounds_str, n, &lo, &n))
8696 return 0;
8697 if (TYPE_LOW_BOUND (range_type) != lo)
8698 return 0;
8699
8700 n += 2; /* Skip the "__" separator between the two bounds. */
8701 if (!ada_scan_number (bounds_str, n, &hi, &n))
8702 return 0;
8703 if (TYPE_HIGH_BOUND (range_type) != hi)
8704 return 0;
8705
8706 return 1;
8707}
8708
8709/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8710 a type following the GNAT encoding for describing array type
8711 indices, only carries redundant information. */
8712
8713static int
8714ada_is_redundant_index_type_desc (struct type *array_type,
8715 struct type *desc_type)
8716{
8717 struct type *this_layer = check_typedef (array_type);
8718 int i;
8719
8720 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8721 {
8722 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8723 TYPE_FIELD_TYPE (desc_type, i)))
8724 return 0;
8725 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8726 }
8727
8728 return 1;
8729}
8730
14f9c5c9
AS
8731/* Assuming that TYPE0 is an array type describing the type of a value
8732 at ADDR, and that DVAL describes a record containing any
8733 discriminants used in TYPE0, returns a type for the value that
8734 contains no dynamic components (that is, no components whose sizes
8735 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8736 true, gives an error message if the resulting type's size is over
4c4b4cd2 8737 varsize_limit. */
14f9c5c9 8738
d2e4a39e
AS
8739static struct type *
8740to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8741 int ignore_too_big)
14f9c5c9 8742{
d2e4a39e
AS
8743 struct type *index_type_desc;
8744 struct type *result;
ad82864c 8745 int constrained_packed_array_p;
931e5bc3 8746 static const char *xa_suffix = "___XA";
14f9c5c9 8747
b0dd7688 8748 type0 = ada_check_typedef (type0);
284614f0 8749 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8750 return type0;
14f9c5c9 8751
ad82864c
JB
8752 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8753 if (constrained_packed_array_p)
8754 type0 = decode_constrained_packed_array_type (type0);
284614f0 8755
931e5bc3
JG
8756 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8757
8758 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8759 encoding suffixed with 'P' may still be generated. If so,
8760 it should be used to find the XA type. */
8761
8762 if (index_type_desc == NULL)
8763 {
1da0522e 8764 const char *type_name = ada_type_name (type0);
931e5bc3 8765
1da0522e 8766 if (type_name != NULL)
931e5bc3 8767 {
1da0522e 8768 const int len = strlen (type_name);
931e5bc3
JG
8769 char *name = (char *) alloca (len + strlen (xa_suffix));
8770
1da0522e 8771 if (type_name[len - 1] == 'P')
931e5bc3 8772 {
1da0522e 8773 strcpy (name, type_name);
931e5bc3
JG
8774 strcpy (name + len - 1, xa_suffix);
8775 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8776 }
8777 }
8778 }
8779
28c85d6c 8780 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8781 if (index_type_desc != NULL
8782 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8783 {
8784 /* Ignore this ___XA parallel type, as it does not bring any
8785 useful information. This allows us to avoid creating fixed
8786 versions of the array's index types, which would be identical
8787 to the original ones. This, in turn, can also help avoid
8788 the creation of fixed versions of the array itself. */
8789 index_type_desc = NULL;
8790 }
8791
14f9c5c9
AS
8792 if (index_type_desc == NULL)
8793 {
61ee279c 8794 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8795
14f9c5c9 8796 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8797 depend on the contents of the array in properly constructed
8798 debugging data. */
529cad9c
PH
8799 /* Create a fixed version of the array element type.
8800 We're not providing the address of an element here,
e1d5a0d2 8801 and thus the actual object value cannot be inspected to do
529cad9c
PH
8802 the conversion. This should not be a problem, since arrays of
8803 unconstrained objects are not allowed. In particular, all
8804 the elements of an array of a tagged type should all be of
8805 the same type specified in the debugging info. No need to
8806 consult the object tag. */
1ed6ede0 8807 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8808
284614f0
JB
8809 /* Make sure we always create a new array type when dealing with
8810 packed array types, since we're going to fix-up the array
8811 type length and element bitsize a little further down. */
ad82864c 8812 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8813 result = type0;
14f9c5c9 8814 else
e9bb382b 8815 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8816 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8817 }
8818 else
8819 {
8820 int i;
8821 struct type *elt_type0;
8822
8823 elt_type0 = type0;
8824 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8825 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8826
8827 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8828 depend on the contents of the array in properly constructed
8829 debugging data. */
529cad9c
PH
8830 /* Create a fixed version of the array element type.
8831 We're not providing the address of an element here,
e1d5a0d2 8832 and thus the actual object value cannot be inspected to do
529cad9c
PH
8833 the conversion. This should not be a problem, since arrays of
8834 unconstrained objects are not allowed. In particular, all
8835 the elements of an array of a tagged type should all be of
8836 the same type specified in the debugging info. No need to
8837 consult the object tag. */
1ed6ede0
JB
8838 result =
8839 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8840
8841 elt_type0 = type0;
14f9c5c9 8842 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8843 {
8844 struct type *range_type =
28c85d6c 8845 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8846
e9bb382b 8847 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8848 result, range_type);
1ce677a4 8849 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8850 }
d2e4a39e 8851 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8852 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8853 }
8854
2e6fda7d
JB
8855 /* We want to preserve the type name. This can be useful when
8856 trying to get the type name of a value that has already been
8857 printed (for instance, if the user did "print VAR; whatis $". */
8858 TYPE_NAME (result) = TYPE_NAME (type0);
8859
ad82864c 8860 if (constrained_packed_array_p)
284614f0
JB
8861 {
8862 /* So far, the resulting type has been created as if the original
8863 type was a regular (non-packed) array type. As a result, the
8864 bitsize of the array elements needs to be set again, and the array
8865 length needs to be recomputed based on that bitsize. */
8866 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8867 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8868
8869 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8870 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8871 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8872 TYPE_LENGTH (result)++;
8873 }
8874
876cecd0 8875 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8876 return result;
d2e4a39e 8877}
14f9c5c9
AS
8878
8879
8880/* A standard type (containing no dynamically sized components)
8881 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8882 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8883 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8884 ADDRESS or in VALADDR contains these discriminants.
8885
1ed6ede0
JB
8886 If CHECK_TAG is not null, in the case of tagged types, this function
8887 attempts to locate the object's tag and use it to compute the actual
8888 type. However, when ADDRESS is null, we cannot use it to determine the
8889 location of the tag, and therefore compute the tagged type's actual type.
8890 So we return the tagged type without consulting the tag. */
529cad9c 8891
f192137b
JB
8892static struct type *
8893ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8894 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8895{
61ee279c 8896 type = ada_check_typedef (type);
d2e4a39e
AS
8897 switch (TYPE_CODE (type))
8898 {
8899 default:
14f9c5c9 8900 return type;
d2e4a39e 8901 case TYPE_CODE_STRUCT:
4c4b4cd2 8902 {
76a01679 8903 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8904 struct type *fixed_record_type =
8905 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8906
529cad9c
PH
8907 /* If STATIC_TYPE is a tagged type and we know the object's address,
8908 then we can determine its tag, and compute the object's actual
0963b4bd 8909 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8910 type (the parent part of the record may have dynamic fields
8911 and the way the location of _tag is expressed may depend on
8912 them). */
529cad9c 8913
1ed6ede0 8914 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8915 {
b50d69b5
JG
8916 struct value *tag =
8917 value_tag_from_contents_and_address
8918 (fixed_record_type,
8919 valaddr,
8920 address);
8921 struct type *real_type = type_from_tag (tag);
8922 struct value *obj =
8923 value_from_contents_and_address (fixed_record_type,
8924 valaddr,
8925 address);
9f1f738a 8926 fixed_record_type = value_type (obj);
76a01679 8927 if (real_type != NULL)
b50d69b5
JG
8928 return to_fixed_record_type
8929 (real_type, NULL,
8930 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8931 }
4af88198
JB
8932
8933 /* Check to see if there is a parallel ___XVZ variable.
8934 If there is, then it provides the actual size of our type. */
8935 else if (ada_type_name (fixed_record_type) != NULL)
8936 {
0d5cff50 8937 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8938 char *xvz_name
8939 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8940 int xvz_found = 0;
8941 LONGEST size;
8942
88c15c34 8943 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8944 size = get_int_var_value (xvz_name, &xvz_found);
8945 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8946 {
8947 fixed_record_type = copy_type (fixed_record_type);
8948 TYPE_LENGTH (fixed_record_type) = size;
8949
8950 /* The FIXED_RECORD_TYPE may have be a stub. We have
8951 observed this when the debugging info is STABS, and
8952 apparently it is something that is hard to fix.
8953
8954 In practice, we don't need the actual type definition
8955 at all, because the presence of the XVZ variable allows us
8956 to assume that there must be a XVS type as well, which we
8957 should be able to use later, when we need the actual type
8958 definition.
8959
8960 In the meantime, pretend that the "fixed" type we are
8961 returning is NOT a stub, because this can cause trouble
8962 when using this type to create new types targeting it.
8963 Indeed, the associated creation routines often check
8964 whether the target type is a stub and will try to replace
0963b4bd 8965 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8966 might cause the new type to have the wrong size too.
8967 Consider the case of an array, for instance, where the size
8968 of the array is computed from the number of elements in
8969 our array multiplied by the size of its element. */
8970 TYPE_STUB (fixed_record_type) = 0;
8971 }
8972 }
1ed6ede0 8973 return fixed_record_type;
4c4b4cd2 8974 }
d2e4a39e 8975 case TYPE_CODE_ARRAY:
4c4b4cd2 8976 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8977 case TYPE_CODE_UNION:
8978 if (dval == NULL)
4c4b4cd2 8979 return type;
d2e4a39e 8980 else
4c4b4cd2 8981 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8982 }
14f9c5c9
AS
8983}
8984
f192137b
JB
8985/* The same as ada_to_fixed_type_1, except that it preserves the type
8986 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8987
8988 The typedef layer needs be preserved in order to differentiate between
8989 arrays and array pointers when both types are implemented using the same
8990 fat pointer. In the array pointer case, the pointer is encoded as
8991 a typedef of the pointer type. For instance, considering:
8992
8993 type String_Access is access String;
8994 S1 : String_Access := null;
8995
8996 To the debugger, S1 is defined as a typedef of type String. But
8997 to the user, it is a pointer. So if the user tries to print S1,
8998 we should not dereference the array, but print the array address
8999 instead.
9000
9001 If we didn't preserve the typedef layer, we would lose the fact that
9002 the type is to be presented as a pointer (needs de-reference before
9003 being printed). And we would also use the source-level type name. */
f192137b
JB
9004
9005struct type *
9006ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9007 CORE_ADDR address, struct value *dval, int check_tag)
9008
9009{
9010 struct type *fixed_type =
9011 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9012
96dbd2c1
JB
9013 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9014 then preserve the typedef layer.
9015
9016 Implementation note: We can only check the main-type portion of
9017 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9018 from TYPE now returns a type that has the same instance flags
9019 as TYPE. For instance, if TYPE is a "typedef const", and its
9020 target type is a "struct", then the typedef elimination will return
9021 a "const" version of the target type. See check_typedef for more
9022 details about how the typedef layer elimination is done.
9023
9024 brobecker/2010-11-19: It seems to me that the only case where it is
9025 useful to preserve the typedef layer is when dealing with fat pointers.
9026 Perhaps, we could add a check for that and preserve the typedef layer
9027 only in that situation. But this seems unecessary so far, probably
9028 because we call check_typedef/ada_check_typedef pretty much everywhere.
9029 */
f192137b 9030 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9031 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9032 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9033 return type;
9034
9035 return fixed_type;
9036}
9037
14f9c5c9 9038/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9039 TYPE0, but based on no runtime data. */
14f9c5c9 9040
d2e4a39e
AS
9041static struct type *
9042to_static_fixed_type (struct type *type0)
14f9c5c9 9043{
d2e4a39e 9044 struct type *type;
14f9c5c9
AS
9045
9046 if (type0 == NULL)
9047 return NULL;
9048
876cecd0 9049 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9050 return type0;
9051
61ee279c 9052 type0 = ada_check_typedef (type0);
d2e4a39e 9053
14f9c5c9
AS
9054 switch (TYPE_CODE (type0))
9055 {
9056 default:
9057 return type0;
9058 case TYPE_CODE_STRUCT:
9059 type = dynamic_template_type (type0);
d2e4a39e 9060 if (type != NULL)
4c4b4cd2
PH
9061 return template_to_static_fixed_type (type);
9062 else
9063 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9064 case TYPE_CODE_UNION:
9065 type = ada_find_parallel_type (type0, "___XVU");
9066 if (type != NULL)
4c4b4cd2
PH
9067 return template_to_static_fixed_type (type);
9068 else
9069 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9070 }
9071}
9072
4c4b4cd2
PH
9073/* A static approximation of TYPE with all type wrappers removed. */
9074
d2e4a39e
AS
9075static struct type *
9076static_unwrap_type (struct type *type)
14f9c5c9
AS
9077{
9078 if (ada_is_aligner_type (type))
9079 {
61ee279c 9080 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9081 if (ada_type_name (type1) == NULL)
4c4b4cd2 9082 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9083
9084 return static_unwrap_type (type1);
9085 }
d2e4a39e 9086 else
14f9c5c9 9087 {
d2e4a39e 9088 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9089
d2e4a39e 9090 if (raw_real_type == type)
4c4b4cd2 9091 return type;
14f9c5c9 9092 else
4c4b4cd2 9093 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9094 }
9095}
9096
9097/* In some cases, incomplete and private types require
4c4b4cd2 9098 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9099 type Foo;
9100 type FooP is access Foo;
9101 V: FooP;
9102 type Foo is array ...;
4c4b4cd2 9103 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9104 cross-references to such types, we instead substitute for FooP a
9105 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9106 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9107
9108/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9109 exists, otherwise TYPE. */
9110
d2e4a39e 9111struct type *
61ee279c 9112ada_check_typedef (struct type *type)
14f9c5c9 9113{
727e3d2e
JB
9114 if (type == NULL)
9115 return NULL;
9116
720d1a40
JB
9117 /* If our type is a typedef type of a fat pointer, then we're done.
9118 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9119 what allows us to distinguish between fat pointers that represent
9120 array types, and fat pointers that represent array access types
9121 (in both cases, the compiler implements them as fat pointers). */
9122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9123 && is_thick_pntr (ada_typedef_target_type (type)))
9124 return type;
9125
f168693b 9126 type = check_typedef (type);
14f9c5c9 9127 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9128 || !TYPE_STUB (type)
14f9c5c9
AS
9129 || TYPE_TAG_NAME (type) == NULL)
9130 return type;
d2e4a39e 9131 else
14f9c5c9 9132 {
0d5cff50 9133 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9134 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9135
05e522ef
JB
9136 if (type1 == NULL)
9137 return type;
9138
9139 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9140 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9141 types, only for the typedef-to-array types). If that's the case,
9142 strip the typedef layer. */
9143 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9144 type1 = ada_check_typedef (type1);
9145
9146 return type1;
14f9c5c9
AS
9147 }
9148}
9149
9150/* A value representing the data at VALADDR/ADDRESS as described by
9151 type TYPE0, but with a standard (static-sized) type that correctly
9152 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9153 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9154 creation of struct values]. */
14f9c5c9 9155
4c4b4cd2
PH
9156static struct value *
9157ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9158 struct value *val0)
14f9c5c9 9159{
1ed6ede0 9160 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9161
14f9c5c9
AS
9162 if (type == type0 && val0 != NULL)
9163 return val0;
d2e4a39e 9164 else
4c4b4cd2
PH
9165 return value_from_contents_and_address (type, 0, address);
9166}
9167
9168/* A value representing VAL, but with a standard (static-sized) type
9169 that correctly describes it. Does not necessarily create a new
9170 value. */
9171
0c3acc09 9172struct value *
4c4b4cd2
PH
9173ada_to_fixed_value (struct value *val)
9174{
c48db5ca
JB
9175 val = unwrap_value (val);
9176 val = ada_to_fixed_value_create (value_type (val),
9177 value_address (val),
9178 val);
9179 return val;
14f9c5c9 9180}
d2e4a39e 9181\f
14f9c5c9 9182
14f9c5c9
AS
9183/* Attributes */
9184
4c4b4cd2
PH
9185/* Table mapping attribute numbers to names.
9186 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9187
d2e4a39e 9188static const char *attribute_names[] = {
14f9c5c9
AS
9189 "<?>",
9190
d2e4a39e 9191 "first",
14f9c5c9
AS
9192 "last",
9193 "length",
9194 "image",
14f9c5c9
AS
9195 "max",
9196 "min",
4c4b4cd2
PH
9197 "modulus",
9198 "pos",
9199 "size",
9200 "tag",
14f9c5c9 9201 "val",
14f9c5c9
AS
9202 0
9203};
9204
d2e4a39e 9205const char *
4c4b4cd2 9206ada_attribute_name (enum exp_opcode n)
14f9c5c9 9207{
4c4b4cd2
PH
9208 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9209 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9210 else
9211 return attribute_names[0];
9212}
9213
4c4b4cd2 9214/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9215
4c4b4cd2
PH
9216static LONGEST
9217pos_atr (struct value *arg)
14f9c5c9 9218{
24209737
PH
9219 struct value *val = coerce_ref (arg);
9220 struct type *type = value_type (val);
aa715135 9221 LONGEST result;
14f9c5c9 9222
d2e4a39e 9223 if (!discrete_type_p (type))
323e0a4a 9224 error (_("'POS only defined on discrete types"));
14f9c5c9 9225
aa715135
JG
9226 if (!discrete_position (type, value_as_long (val), &result))
9227 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9228
aa715135 9229 return result;
4c4b4cd2
PH
9230}
9231
9232static struct value *
3cb382c9 9233value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9234{
3cb382c9 9235 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9236}
9237
4c4b4cd2 9238/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9239
d2e4a39e
AS
9240static struct value *
9241value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9242{
d2e4a39e 9243 if (!discrete_type_p (type))
323e0a4a 9244 error (_("'VAL only defined on discrete types"));
df407dfe 9245 if (!integer_type_p (value_type (arg)))
323e0a4a 9246 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9247
9248 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9249 {
9250 long pos = value_as_long (arg);
5b4ee69b 9251
14f9c5c9 9252 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9253 error (_("argument to 'VAL out of range"));
14e75d8e 9254 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9255 }
9256 else
9257 return value_from_longest (type, value_as_long (arg));
9258}
14f9c5c9 9259\f
d2e4a39e 9260
4c4b4cd2 9261 /* Evaluation */
14f9c5c9 9262
4c4b4cd2
PH
9263/* True if TYPE appears to be an Ada character type.
9264 [At the moment, this is true only for Character and Wide_Character;
9265 It is a heuristic test that could stand improvement]. */
14f9c5c9 9266
d2e4a39e
AS
9267int
9268ada_is_character_type (struct type *type)
14f9c5c9 9269{
7b9f71f2
JB
9270 const char *name;
9271
9272 /* If the type code says it's a character, then assume it really is,
9273 and don't check any further. */
9274 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9275 return 1;
9276
9277 /* Otherwise, assume it's a character type iff it is a discrete type
9278 with a known character type name. */
9279 name = ada_type_name (type);
9280 return (name != NULL
9281 && (TYPE_CODE (type) == TYPE_CODE_INT
9282 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9283 && (strcmp (name, "character") == 0
9284 || strcmp (name, "wide_character") == 0
5a517ebd 9285 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9286 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9287}
9288
4c4b4cd2 9289/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9290
9291int
ebf56fd3 9292ada_is_string_type (struct type *type)
14f9c5c9 9293{
61ee279c 9294 type = ada_check_typedef (type);
d2e4a39e 9295 if (type != NULL
14f9c5c9 9296 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9297 && (ada_is_simple_array_type (type)
9298 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9299 && ada_array_arity (type) == 1)
9300 {
9301 struct type *elttype = ada_array_element_type (type, 1);
9302
9303 return ada_is_character_type (elttype);
9304 }
d2e4a39e 9305 else
14f9c5c9
AS
9306 return 0;
9307}
9308
5bf03f13
JB
9309/* The compiler sometimes provides a parallel XVS type for a given
9310 PAD type. Normally, it is safe to follow the PAD type directly,
9311 but older versions of the compiler have a bug that causes the offset
9312 of its "F" field to be wrong. Following that field in that case
9313 would lead to incorrect results, but this can be worked around
9314 by ignoring the PAD type and using the associated XVS type instead.
9315
9316 Set to True if the debugger should trust the contents of PAD types.
9317 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9318static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9319
9320/* True if TYPE is a struct type introduced by the compiler to force the
9321 alignment of a value. Such types have a single field with a
4c4b4cd2 9322 distinctive name. */
14f9c5c9
AS
9323
9324int
ebf56fd3 9325ada_is_aligner_type (struct type *type)
14f9c5c9 9326{
61ee279c 9327 type = ada_check_typedef (type);
714e53ab 9328
5bf03f13 9329 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9330 return 0;
9331
14f9c5c9 9332 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9333 && TYPE_NFIELDS (type) == 1
9334 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9335}
9336
9337/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9338 the parallel type. */
14f9c5c9 9339
d2e4a39e
AS
9340struct type *
9341ada_get_base_type (struct type *raw_type)
14f9c5c9 9342{
d2e4a39e
AS
9343 struct type *real_type_namer;
9344 struct type *raw_real_type;
14f9c5c9
AS
9345
9346 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9347 return raw_type;
9348
284614f0
JB
9349 if (ada_is_aligner_type (raw_type))
9350 /* The encoding specifies that we should always use the aligner type.
9351 So, even if this aligner type has an associated XVS type, we should
9352 simply ignore it.
9353
9354 According to the compiler gurus, an XVS type parallel to an aligner
9355 type may exist because of a stabs limitation. In stabs, aligner
9356 types are empty because the field has a variable-sized type, and
9357 thus cannot actually be used as an aligner type. As a result,
9358 we need the associated parallel XVS type to decode the type.
9359 Since the policy in the compiler is to not change the internal
9360 representation based on the debugging info format, we sometimes
9361 end up having a redundant XVS type parallel to the aligner type. */
9362 return raw_type;
9363
14f9c5c9 9364 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9365 if (real_type_namer == NULL
14f9c5c9
AS
9366 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9367 || TYPE_NFIELDS (real_type_namer) != 1)
9368 return raw_type;
9369
f80d3ff2
JB
9370 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9371 {
9372 /* This is an older encoding form where the base type needs to be
9373 looked up by name. We prefer the newer enconding because it is
9374 more efficient. */
9375 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9376 if (raw_real_type == NULL)
9377 return raw_type;
9378 else
9379 return raw_real_type;
9380 }
9381
9382 /* The field in our XVS type is a reference to the base type. */
9383 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9384}
14f9c5c9 9385
4c4b4cd2 9386/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9387
d2e4a39e
AS
9388struct type *
9389ada_aligned_type (struct type *type)
14f9c5c9
AS
9390{
9391 if (ada_is_aligner_type (type))
9392 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9393 else
9394 return ada_get_base_type (type);
9395}
9396
9397
9398/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9399 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9400
fc1a4b47
AC
9401const gdb_byte *
9402ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9403{
d2e4a39e 9404 if (ada_is_aligner_type (type))
14f9c5c9 9405 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9406 valaddr +
9407 TYPE_FIELD_BITPOS (type,
9408 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9409 else
9410 return valaddr;
9411}
9412
4c4b4cd2
PH
9413
9414
14f9c5c9 9415/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9416 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9417const char *
9418ada_enum_name (const char *name)
14f9c5c9 9419{
4c4b4cd2
PH
9420 static char *result;
9421 static size_t result_len = 0;
d2e4a39e 9422 char *tmp;
14f9c5c9 9423
4c4b4cd2
PH
9424 /* First, unqualify the enumeration name:
9425 1. Search for the last '.' character. If we find one, then skip
177b42fe 9426 all the preceding characters, the unqualified name starts
76a01679 9427 right after that dot.
4c4b4cd2 9428 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9429 translates dots into "__". Search forward for double underscores,
9430 but stop searching when we hit an overloading suffix, which is
9431 of the form "__" followed by digits. */
4c4b4cd2 9432
c3e5cd34
PH
9433 tmp = strrchr (name, '.');
9434 if (tmp != NULL)
4c4b4cd2
PH
9435 name = tmp + 1;
9436 else
14f9c5c9 9437 {
4c4b4cd2
PH
9438 while ((tmp = strstr (name, "__")) != NULL)
9439 {
9440 if (isdigit (tmp[2]))
9441 break;
9442 else
9443 name = tmp + 2;
9444 }
14f9c5c9
AS
9445 }
9446
9447 if (name[0] == 'Q')
9448 {
14f9c5c9 9449 int v;
5b4ee69b 9450
14f9c5c9 9451 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9452 {
9453 if (sscanf (name + 2, "%x", &v) != 1)
9454 return name;
9455 }
14f9c5c9 9456 else
4c4b4cd2 9457 return name;
14f9c5c9 9458
4c4b4cd2 9459 GROW_VECT (result, result_len, 16);
14f9c5c9 9460 if (isascii (v) && isprint (v))
88c15c34 9461 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9462 else if (name[1] == 'U')
88c15c34 9463 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9464 else
88c15c34 9465 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9466
9467 return result;
9468 }
d2e4a39e 9469 else
4c4b4cd2 9470 {
c3e5cd34
PH
9471 tmp = strstr (name, "__");
9472 if (tmp == NULL)
9473 tmp = strstr (name, "$");
9474 if (tmp != NULL)
4c4b4cd2
PH
9475 {
9476 GROW_VECT (result, result_len, tmp - name + 1);
9477 strncpy (result, name, tmp - name);
9478 result[tmp - name] = '\0';
9479 return result;
9480 }
9481
9482 return name;
9483 }
14f9c5c9
AS
9484}
9485
14f9c5c9
AS
9486/* Evaluate the subexpression of EXP starting at *POS as for
9487 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9488 expression. */
14f9c5c9 9489
d2e4a39e
AS
9490static struct value *
9491evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9492{
4b27a620 9493 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9494}
9495
9496/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9497 value it wraps. */
14f9c5c9 9498
d2e4a39e
AS
9499static struct value *
9500unwrap_value (struct value *val)
14f9c5c9 9501{
df407dfe 9502 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9503
14f9c5c9
AS
9504 if (ada_is_aligner_type (type))
9505 {
de4d072f 9506 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9507 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9508
14f9c5c9 9509 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9510 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9511
9512 return unwrap_value (v);
9513 }
d2e4a39e 9514 else
14f9c5c9 9515 {
d2e4a39e 9516 struct type *raw_real_type =
61ee279c 9517 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9518
5bf03f13
JB
9519 /* If there is no parallel XVS or XVE type, then the value is
9520 already unwrapped. Return it without further modification. */
9521 if ((type == raw_real_type)
9522 && ada_find_parallel_type (type, "___XVE") == NULL)
9523 return val;
14f9c5c9 9524
d2e4a39e 9525 return
4c4b4cd2
PH
9526 coerce_unspec_val_to_type
9527 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9528 value_address (val),
1ed6ede0 9529 NULL, 1));
14f9c5c9
AS
9530 }
9531}
d2e4a39e
AS
9532
9533static struct value *
9534cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9535{
9536 LONGEST val;
9537
df407dfe 9538 if (type == value_type (arg))
14f9c5c9 9539 return arg;
df407dfe 9540 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9541 val = ada_float_to_fixed (type,
df407dfe 9542 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9543 value_as_long (arg)));
d2e4a39e 9544 else
14f9c5c9 9545 {
a53b7a21 9546 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9547
14f9c5c9
AS
9548 val = ada_float_to_fixed (type, argd);
9549 }
9550
9551 return value_from_longest (type, val);
9552}
9553
d2e4a39e 9554static struct value *
a53b7a21 9555cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9556{
df407dfe 9557 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9558 value_as_long (arg));
5b4ee69b 9559
a53b7a21 9560 return value_from_double (type, val);
14f9c5c9
AS
9561}
9562
d99dcf51
JB
9563/* Given two array types T1 and T2, return nonzero iff both arrays
9564 contain the same number of elements. */
9565
9566static int
9567ada_same_array_size_p (struct type *t1, struct type *t2)
9568{
9569 LONGEST lo1, hi1, lo2, hi2;
9570
9571 /* Get the array bounds in order to verify that the size of
9572 the two arrays match. */
9573 if (!get_array_bounds (t1, &lo1, &hi1)
9574 || !get_array_bounds (t2, &lo2, &hi2))
9575 error (_("unable to determine array bounds"));
9576
9577 /* To make things easier for size comparison, normalize a bit
9578 the case of empty arrays by making sure that the difference
9579 between upper bound and lower bound is always -1. */
9580 if (lo1 > hi1)
9581 hi1 = lo1 - 1;
9582 if (lo2 > hi2)
9583 hi2 = lo2 - 1;
9584
9585 return (hi1 - lo1 == hi2 - lo2);
9586}
9587
9588/* Assuming that VAL is an array of integrals, and TYPE represents
9589 an array with the same number of elements, but with wider integral
9590 elements, return an array "casted" to TYPE. In practice, this
9591 means that the returned array is built by casting each element
9592 of the original array into TYPE's (wider) element type. */
9593
9594static struct value *
9595ada_promote_array_of_integrals (struct type *type, struct value *val)
9596{
9597 struct type *elt_type = TYPE_TARGET_TYPE (type);
9598 LONGEST lo, hi;
9599 struct value *res;
9600 LONGEST i;
9601
9602 /* Verify that both val and type are arrays of scalars, and
9603 that the size of val's elements is smaller than the size
9604 of type's element. */
9605 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9606 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9607 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9608 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9609 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9610 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9611
9612 if (!get_array_bounds (type, &lo, &hi))
9613 error (_("unable to determine array bounds"));
9614
9615 res = allocate_value (type);
9616
9617 /* Promote each array element. */
9618 for (i = 0; i < hi - lo + 1; i++)
9619 {
9620 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9621
9622 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9623 value_contents_all (elt), TYPE_LENGTH (elt_type));
9624 }
9625
9626 return res;
9627}
9628
4c4b4cd2
PH
9629/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9630 return the converted value. */
9631
d2e4a39e
AS
9632static struct value *
9633coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9634{
df407dfe 9635 struct type *type2 = value_type (val);
5b4ee69b 9636
14f9c5c9
AS
9637 if (type == type2)
9638 return val;
9639
61ee279c
PH
9640 type2 = ada_check_typedef (type2);
9641 type = ada_check_typedef (type);
14f9c5c9 9642
d2e4a39e
AS
9643 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9644 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9645 {
9646 val = ada_value_ind (val);
df407dfe 9647 type2 = value_type (val);
14f9c5c9
AS
9648 }
9649
d2e4a39e 9650 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9651 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9652 {
d99dcf51
JB
9653 if (!ada_same_array_size_p (type, type2))
9654 error (_("cannot assign arrays of different length"));
9655
9656 if (is_integral_type (TYPE_TARGET_TYPE (type))
9657 && is_integral_type (TYPE_TARGET_TYPE (type2))
9658 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9659 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9660 {
9661 /* Allow implicit promotion of the array elements to
9662 a wider type. */
9663 return ada_promote_array_of_integrals (type, val);
9664 }
9665
9666 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9667 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9668 error (_("Incompatible types in assignment"));
04624583 9669 deprecated_set_value_type (val, type);
14f9c5c9 9670 }
d2e4a39e 9671 return val;
14f9c5c9
AS
9672}
9673
4c4b4cd2
PH
9674static struct value *
9675ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9676{
9677 struct value *val;
9678 struct type *type1, *type2;
9679 LONGEST v, v1, v2;
9680
994b9211
AC
9681 arg1 = coerce_ref (arg1);
9682 arg2 = coerce_ref (arg2);
18af8284
JB
9683 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9684 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9685
76a01679
JB
9686 if (TYPE_CODE (type1) != TYPE_CODE_INT
9687 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9688 return value_binop (arg1, arg2, op);
9689
76a01679 9690 switch (op)
4c4b4cd2
PH
9691 {
9692 case BINOP_MOD:
9693 case BINOP_DIV:
9694 case BINOP_REM:
9695 break;
9696 default:
9697 return value_binop (arg1, arg2, op);
9698 }
9699
9700 v2 = value_as_long (arg2);
9701 if (v2 == 0)
323e0a4a 9702 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9703
9704 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9705 return value_binop (arg1, arg2, op);
9706
9707 v1 = value_as_long (arg1);
9708 switch (op)
9709 {
9710 case BINOP_DIV:
9711 v = v1 / v2;
76a01679
JB
9712 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9713 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9714 break;
9715 case BINOP_REM:
9716 v = v1 % v2;
76a01679
JB
9717 if (v * v1 < 0)
9718 v -= v2;
4c4b4cd2
PH
9719 break;
9720 default:
9721 /* Should not reach this point. */
9722 v = 0;
9723 }
9724
9725 val = allocate_value (type1);
990a07ab 9726 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9727 TYPE_LENGTH (value_type (val)),
9728 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9729 return val;
9730}
9731
9732static int
9733ada_value_equal (struct value *arg1, struct value *arg2)
9734{
df407dfe
AC
9735 if (ada_is_direct_array_type (value_type (arg1))
9736 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9737 {
f58b38bf
JB
9738 /* Automatically dereference any array reference before
9739 we attempt to perform the comparison. */
9740 arg1 = ada_coerce_ref (arg1);
9741 arg2 = ada_coerce_ref (arg2);
9742
4c4b4cd2
PH
9743 arg1 = ada_coerce_to_simple_array (arg1);
9744 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9745 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9746 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9747 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9748 /* FIXME: The following works only for types whose
76a01679
JB
9749 representations use all bits (no padding or undefined bits)
9750 and do not have user-defined equality. */
9751 return
df407dfe 9752 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9753 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9754 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9755 }
9756 return value_equal (arg1, arg2);
9757}
9758
52ce6436
PH
9759/* Total number of component associations in the aggregate starting at
9760 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9761 OP_AGGREGATE. */
52ce6436
PH
9762
9763static int
9764num_component_specs (struct expression *exp, int pc)
9765{
9766 int n, m, i;
5b4ee69b 9767
52ce6436
PH
9768 m = exp->elts[pc + 1].longconst;
9769 pc += 3;
9770 n = 0;
9771 for (i = 0; i < m; i += 1)
9772 {
9773 switch (exp->elts[pc].opcode)
9774 {
9775 default:
9776 n += 1;
9777 break;
9778 case OP_CHOICES:
9779 n += exp->elts[pc + 1].longconst;
9780 break;
9781 }
9782 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9783 }
9784 return n;
9785}
9786
9787/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9788 component of LHS (a simple array or a record), updating *POS past
9789 the expression, assuming that LHS is contained in CONTAINER. Does
9790 not modify the inferior's memory, nor does it modify LHS (unless
9791 LHS == CONTAINER). */
9792
9793static void
9794assign_component (struct value *container, struct value *lhs, LONGEST index,
9795 struct expression *exp, int *pos)
9796{
9797 struct value *mark = value_mark ();
9798 struct value *elt;
5b4ee69b 9799
52ce6436
PH
9800 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9801 {
22601c15
UW
9802 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9803 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9804
52ce6436
PH
9805 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9806 }
9807 else
9808 {
9809 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9810 elt = ada_to_fixed_value (elt);
52ce6436
PH
9811 }
9812
9813 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9814 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9815 else
9816 value_assign_to_component (container, elt,
9817 ada_evaluate_subexp (NULL, exp, pos,
9818 EVAL_NORMAL));
9819
9820 value_free_to_mark (mark);
9821}
9822
9823/* Assuming that LHS represents an lvalue having a record or array
9824 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9825 of that aggregate's value to LHS, advancing *POS past the
9826 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9827 lvalue containing LHS (possibly LHS itself). Does not modify
9828 the inferior's memory, nor does it modify the contents of
0963b4bd 9829 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9830
9831static struct value *
9832assign_aggregate (struct value *container,
9833 struct value *lhs, struct expression *exp,
9834 int *pos, enum noside noside)
9835{
9836 struct type *lhs_type;
9837 int n = exp->elts[*pos+1].longconst;
9838 LONGEST low_index, high_index;
9839 int num_specs;
9840 LONGEST *indices;
9841 int max_indices, num_indices;
52ce6436 9842 int i;
52ce6436
PH
9843
9844 *pos += 3;
9845 if (noside != EVAL_NORMAL)
9846 {
52ce6436
PH
9847 for (i = 0; i < n; i += 1)
9848 ada_evaluate_subexp (NULL, exp, pos, noside);
9849 return container;
9850 }
9851
9852 container = ada_coerce_ref (container);
9853 if (ada_is_direct_array_type (value_type (container)))
9854 container = ada_coerce_to_simple_array (container);
9855 lhs = ada_coerce_ref (lhs);
9856 if (!deprecated_value_modifiable (lhs))
9857 error (_("Left operand of assignment is not a modifiable lvalue."));
9858
9859 lhs_type = value_type (lhs);
9860 if (ada_is_direct_array_type (lhs_type))
9861 {
9862 lhs = ada_coerce_to_simple_array (lhs);
9863 lhs_type = value_type (lhs);
9864 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9865 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9866 }
9867 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9868 {
9869 low_index = 0;
9870 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9871 }
9872 else
9873 error (_("Left-hand side must be array or record."));
9874
9875 num_specs = num_component_specs (exp, *pos - 3);
9876 max_indices = 4 * num_specs + 4;
8d749320 9877 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9878 indices[0] = indices[1] = low_index - 1;
9879 indices[2] = indices[3] = high_index + 1;
9880 num_indices = 4;
9881
9882 for (i = 0; i < n; i += 1)
9883 {
9884 switch (exp->elts[*pos].opcode)
9885 {
1fbf5ada
JB
9886 case OP_CHOICES:
9887 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9888 &num_indices, max_indices,
9889 low_index, high_index);
9890 break;
9891 case OP_POSITIONAL:
9892 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9893 &num_indices, max_indices,
9894 low_index, high_index);
1fbf5ada
JB
9895 break;
9896 case OP_OTHERS:
9897 if (i != n-1)
9898 error (_("Misplaced 'others' clause"));
9899 aggregate_assign_others (container, lhs, exp, pos, indices,
9900 num_indices, low_index, high_index);
9901 break;
9902 default:
9903 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9904 }
9905 }
9906
9907 return container;
9908}
9909
9910/* Assign into the component of LHS indexed by the OP_POSITIONAL
9911 construct at *POS, updating *POS past the construct, given that
9912 the positions are relative to lower bound LOW, where HIGH is the
9913 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9914 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9915 assign_aggregate. */
52ce6436
PH
9916static void
9917aggregate_assign_positional (struct value *container,
9918 struct value *lhs, struct expression *exp,
9919 int *pos, LONGEST *indices, int *num_indices,
9920 int max_indices, LONGEST low, LONGEST high)
9921{
9922 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9923
9924 if (ind - 1 == high)
e1d5a0d2 9925 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9926 if (ind <= high)
9927 {
9928 add_component_interval (ind, ind, indices, num_indices, max_indices);
9929 *pos += 3;
9930 assign_component (container, lhs, ind, exp, pos);
9931 }
9932 else
9933 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9934}
9935
9936/* Assign into the components of LHS indexed by the OP_CHOICES
9937 construct at *POS, updating *POS past the construct, given that
9938 the allowable indices are LOW..HIGH. Record the indices assigned
9939 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9940 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9941static void
9942aggregate_assign_from_choices (struct value *container,
9943 struct value *lhs, struct expression *exp,
9944 int *pos, LONGEST *indices, int *num_indices,
9945 int max_indices, LONGEST low, LONGEST high)
9946{
9947 int j;
9948 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9949 int choice_pos, expr_pc;
9950 int is_array = ada_is_direct_array_type (value_type (lhs));
9951
9952 choice_pos = *pos += 3;
9953
9954 for (j = 0; j < n_choices; j += 1)
9955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956 expr_pc = *pos;
9957 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9958
9959 for (j = 0; j < n_choices; j += 1)
9960 {
9961 LONGEST lower, upper;
9962 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9963
52ce6436
PH
9964 if (op == OP_DISCRETE_RANGE)
9965 {
9966 choice_pos += 1;
9967 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9968 EVAL_NORMAL));
9969 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9970 EVAL_NORMAL));
9971 }
9972 else if (is_array)
9973 {
9974 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9975 EVAL_NORMAL));
9976 upper = lower;
9977 }
9978 else
9979 {
9980 int ind;
0d5cff50 9981 const char *name;
5b4ee69b 9982
52ce6436
PH
9983 switch (op)
9984 {
9985 case OP_NAME:
9986 name = &exp->elts[choice_pos + 2].string;
9987 break;
9988 case OP_VAR_VALUE:
9989 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9990 break;
9991 default:
9992 error (_("Invalid record component association."));
9993 }
9994 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9995 ind = 0;
9996 if (! find_struct_field (name, value_type (lhs), 0,
9997 NULL, NULL, NULL, NULL, &ind))
9998 error (_("Unknown component name: %s."), name);
9999 lower = upper = ind;
10000 }
10001
10002 if (lower <= upper && (lower < low || upper > high))
10003 error (_("Index in component association out of bounds."));
10004
10005 add_component_interval (lower, upper, indices, num_indices,
10006 max_indices);
10007 while (lower <= upper)
10008 {
10009 int pos1;
5b4ee69b 10010
52ce6436
PH
10011 pos1 = expr_pc;
10012 assign_component (container, lhs, lower, exp, &pos1);
10013 lower += 1;
10014 }
10015 }
10016}
10017
10018/* Assign the value of the expression in the OP_OTHERS construct in
10019 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10020 have not been previously assigned. The index intervals already assigned
10021 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10022 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10023static void
10024aggregate_assign_others (struct value *container,
10025 struct value *lhs, struct expression *exp,
10026 int *pos, LONGEST *indices, int num_indices,
10027 LONGEST low, LONGEST high)
10028{
10029 int i;
5ce64950 10030 int expr_pc = *pos + 1;
52ce6436
PH
10031
10032 for (i = 0; i < num_indices - 2; i += 2)
10033 {
10034 LONGEST ind;
5b4ee69b 10035
52ce6436
PH
10036 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10037 {
5ce64950 10038 int localpos;
5b4ee69b 10039
5ce64950
MS
10040 localpos = expr_pc;
10041 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10042 }
10043 }
10044 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10045}
10046
10047/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10048 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10049 modifying *SIZE as needed. It is an error if *SIZE exceeds
10050 MAX_SIZE. The resulting intervals do not overlap. */
10051static void
10052add_component_interval (LONGEST low, LONGEST high,
10053 LONGEST* indices, int *size, int max_size)
10054{
10055 int i, j;
5b4ee69b 10056
52ce6436
PH
10057 for (i = 0; i < *size; i += 2) {
10058 if (high >= indices[i] && low <= indices[i + 1])
10059 {
10060 int kh;
5b4ee69b 10061
52ce6436
PH
10062 for (kh = i + 2; kh < *size; kh += 2)
10063 if (high < indices[kh])
10064 break;
10065 if (low < indices[i])
10066 indices[i] = low;
10067 indices[i + 1] = indices[kh - 1];
10068 if (high > indices[i + 1])
10069 indices[i + 1] = high;
10070 memcpy (indices + i + 2, indices + kh, *size - kh);
10071 *size -= kh - i - 2;
10072 return;
10073 }
10074 else if (high < indices[i])
10075 break;
10076 }
10077
10078 if (*size == max_size)
10079 error (_("Internal error: miscounted aggregate components."));
10080 *size += 2;
10081 for (j = *size-1; j >= i+2; j -= 1)
10082 indices[j] = indices[j - 2];
10083 indices[i] = low;
10084 indices[i + 1] = high;
10085}
10086
6e48bd2c
JB
10087/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10088 is different. */
10089
10090static struct value *
10091ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10092{
10093 if (type == ada_check_typedef (value_type (arg2)))
10094 return arg2;
10095
10096 if (ada_is_fixed_point_type (type))
10097 return (cast_to_fixed (type, arg2));
10098
10099 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10100 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10101
10102 return value_cast (type, arg2);
10103}
10104
284614f0
JB
10105/* Evaluating Ada expressions, and printing their result.
10106 ------------------------------------------------------
10107
21649b50
JB
10108 1. Introduction:
10109 ----------------
10110
284614f0
JB
10111 We usually evaluate an Ada expression in order to print its value.
10112 We also evaluate an expression in order to print its type, which
10113 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10114 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10115 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10116 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10117 similar.
10118
10119 Evaluating expressions is a little more complicated for Ada entities
10120 than it is for entities in languages such as C. The main reason for
10121 this is that Ada provides types whose definition might be dynamic.
10122 One example of such types is variant records. Or another example
10123 would be an array whose bounds can only be known at run time.
10124
10125 The following description is a general guide as to what should be
10126 done (and what should NOT be done) in order to evaluate an expression
10127 involving such types, and when. This does not cover how the semantic
10128 information is encoded by GNAT as this is covered separatly. For the
10129 document used as the reference for the GNAT encoding, see exp_dbug.ads
10130 in the GNAT sources.
10131
10132 Ideally, we should embed each part of this description next to its
10133 associated code. Unfortunately, the amount of code is so vast right
10134 now that it's hard to see whether the code handling a particular
10135 situation might be duplicated or not. One day, when the code is
10136 cleaned up, this guide might become redundant with the comments
10137 inserted in the code, and we might want to remove it.
10138
21649b50
JB
10139 2. ``Fixing'' an Entity, the Simple Case:
10140 -----------------------------------------
10141
284614f0
JB
10142 When evaluating Ada expressions, the tricky issue is that they may
10143 reference entities whose type contents and size are not statically
10144 known. Consider for instance a variant record:
10145
10146 type Rec (Empty : Boolean := True) is record
10147 case Empty is
10148 when True => null;
10149 when False => Value : Integer;
10150 end case;
10151 end record;
10152 Yes : Rec := (Empty => False, Value => 1);
10153 No : Rec := (empty => True);
10154
10155 The size and contents of that record depends on the value of the
10156 descriminant (Rec.Empty). At this point, neither the debugging
10157 information nor the associated type structure in GDB are able to
10158 express such dynamic types. So what the debugger does is to create
10159 "fixed" versions of the type that applies to the specific object.
10160 We also informally refer to this opperation as "fixing" an object,
10161 which means creating its associated fixed type.
10162
10163 Example: when printing the value of variable "Yes" above, its fixed
10164 type would look like this:
10165
10166 type Rec is record
10167 Empty : Boolean;
10168 Value : Integer;
10169 end record;
10170
10171 On the other hand, if we printed the value of "No", its fixed type
10172 would become:
10173
10174 type Rec is record
10175 Empty : Boolean;
10176 end record;
10177
10178 Things become a little more complicated when trying to fix an entity
10179 with a dynamic type that directly contains another dynamic type,
10180 such as an array of variant records, for instance. There are
10181 two possible cases: Arrays, and records.
10182
21649b50
JB
10183 3. ``Fixing'' Arrays:
10184 ---------------------
10185
10186 The type structure in GDB describes an array in terms of its bounds,
10187 and the type of its elements. By design, all elements in the array
10188 have the same type and we cannot represent an array of variant elements
10189 using the current type structure in GDB. When fixing an array,
10190 we cannot fix the array element, as we would potentially need one
10191 fixed type per element of the array. As a result, the best we can do
10192 when fixing an array is to produce an array whose bounds and size
10193 are correct (allowing us to read it from memory), but without having
10194 touched its element type. Fixing each element will be done later,
10195 when (if) necessary.
10196
10197 Arrays are a little simpler to handle than records, because the same
10198 amount of memory is allocated for each element of the array, even if
1b536f04 10199 the amount of space actually used by each element differs from element
21649b50 10200 to element. Consider for instance the following array of type Rec:
284614f0
JB
10201
10202 type Rec_Array is array (1 .. 2) of Rec;
10203
1b536f04
JB
10204 The actual amount of memory occupied by each element might be different
10205 from element to element, depending on the value of their discriminant.
21649b50 10206 But the amount of space reserved for each element in the array remains
1b536f04 10207 fixed regardless. So we simply need to compute that size using
21649b50
JB
10208 the debugging information available, from which we can then determine
10209 the array size (we multiply the number of elements of the array by
10210 the size of each element).
10211
10212 The simplest case is when we have an array of a constrained element
10213 type. For instance, consider the following type declarations:
10214
10215 type Bounded_String (Max_Size : Integer) is
10216 Length : Integer;
10217 Buffer : String (1 .. Max_Size);
10218 end record;
10219 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10220
10221 In this case, the compiler describes the array as an array of
10222 variable-size elements (identified by its XVS suffix) for which
10223 the size can be read in the parallel XVZ variable.
10224
10225 In the case of an array of an unconstrained element type, the compiler
10226 wraps the array element inside a private PAD type. This type should not
10227 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10228 that we also use the adjective "aligner" in our code to designate
10229 these wrapper types.
10230
1b536f04 10231 In some cases, the size allocated for each element is statically
21649b50
JB
10232 known. In that case, the PAD type already has the correct size,
10233 and the array element should remain unfixed.
10234
10235 But there are cases when this size is not statically known.
10236 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10237
10238 type Dynamic is array (1 .. Five) of Integer;
10239 type Wrapper (Has_Length : Boolean := False) is record
10240 Data : Dynamic;
10241 case Has_Length is
10242 when True => Length : Integer;
10243 when False => null;
10244 end case;
10245 end record;
10246 type Wrapper_Array is array (1 .. 2) of Wrapper;
10247
10248 Hello : Wrapper_Array := (others => (Has_Length => True,
10249 Data => (others => 17),
10250 Length => 1));
10251
10252
10253 The debugging info would describe variable Hello as being an
10254 array of a PAD type. The size of that PAD type is not statically
10255 known, but can be determined using a parallel XVZ variable.
10256 In that case, a copy of the PAD type with the correct size should
10257 be used for the fixed array.
10258
21649b50
JB
10259 3. ``Fixing'' record type objects:
10260 ----------------------------------
10261
10262 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10263 record types. In this case, in order to compute the associated
10264 fixed type, we need to determine the size and offset of each of
10265 its components. This, in turn, requires us to compute the fixed
10266 type of each of these components.
10267
10268 Consider for instance the example:
10269
10270 type Bounded_String (Max_Size : Natural) is record
10271 Str : String (1 .. Max_Size);
10272 Length : Natural;
10273 end record;
10274 My_String : Bounded_String (Max_Size => 10);
10275
10276 In that case, the position of field "Length" depends on the size
10277 of field Str, which itself depends on the value of the Max_Size
21649b50 10278 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10279 we need to fix the type of field Str. Therefore, fixing a variant
10280 record requires us to fix each of its components.
10281
10282 However, if a component does not have a dynamic size, the component
10283 should not be fixed. In particular, fields that use a PAD type
10284 should not fixed. Here is an example where this might happen
10285 (assuming type Rec above):
10286
10287 type Container (Big : Boolean) is record
10288 First : Rec;
10289 After : Integer;
10290 case Big is
10291 when True => Another : Integer;
10292 when False => null;
10293 end case;
10294 end record;
10295 My_Container : Container := (Big => False,
10296 First => (Empty => True),
10297 After => 42);
10298
10299 In that example, the compiler creates a PAD type for component First,
10300 whose size is constant, and then positions the component After just
10301 right after it. The offset of component After is therefore constant
10302 in this case.
10303
10304 The debugger computes the position of each field based on an algorithm
10305 that uses, among other things, the actual position and size of the field
21649b50
JB
10306 preceding it. Let's now imagine that the user is trying to print
10307 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10308 end up computing the offset of field After based on the size of the
10309 fixed version of field First. And since in our example First has
10310 only one actual field, the size of the fixed type is actually smaller
10311 than the amount of space allocated to that field, and thus we would
10312 compute the wrong offset of field After.
10313
21649b50
JB
10314 To make things more complicated, we need to watch out for dynamic
10315 components of variant records (identified by the ___XVL suffix in
10316 the component name). Even if the target type is a PAD type, the size
10317 of that type might not be statically known. So the PAD type needs
10318 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10319 we might end up with the wrong size for our component. This can be
10320 observed with the following type declarations:
284614f0
JB
10321
10322 type Octal is new Integer range 0 .. 7;
10323 type Octal_Array is array (Positive range <>) of Octal;
10324 pragma Pack (Octal_Array);
10325
10326 type Octal_Buffer (Size : Positive) is record
10327 Buffer : Octal_Array (1 .. Size);
10328 Length : Integer;
10329 end record;
10330
10331 In that case, Buffer is a PAD type whose size is unset and needs
10332 to be computed by fixing the unwrapped type.
10333
21649b50
JB
10334 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10335 ----------------------------------------------------------
10336
10337 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10338 thus far, be actually fixed?
10339
10340 The answer is: Only when referencing that element. For instance
10341 when selecting one component of a record, this specific component
10342 should be fixed at that point in time. Or when printing the value
10343 of a record, each component should be fixed before its value gets
10344 printed. Similarly for arrays, the element of the array should be
10345 fixed when printing each element of the array, or when extracting
10346 one element out of that array. On the other hand, fixing should
10347 not be performed on the elements when taking a slice of an array!
10348
10349 Note that one of the side-effects of miscomputing the offset and
10350 size of each field is that we end up also miscomputing the size
10351 of the containing type. This can have adverse results when computing
10352 the value of an entity. GDB fetches the value of an entity based
10353 on the size of its type, and thus a wrong size causes GDB to fetch
10354 the wrong amount of memory. In the case where the computed size is
10355 too small, GDB fetches too little data to print the value of our
10356 entiry. Results in this case as unpredicatble, as we usually read
10357 past the buffer containing the data =:-o. */
10358
10359/* Implement the evaluate_exp routine in the exp_descriptor structure
10360 for the Ada language. */
10361
52ce6436 10362static struct value *
ebf56fd3 10363ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10364 int *pos, enum noside noside)
14f9c5c9
AS
10365{
10366 enum exp_opcode op;
b5385fc0 10367 int tem;
14f9c5c9 10368 int pc;
5ec18f2b 10369 int preeval_pos;
14f9c5c9
AS
10370 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10371 struct type *type;
52ce6436 10372 int nargs, oplen;
d2e4a39e 10373 struct value **argvec;
14f9c5c9 10374
d2e4a39e
AS
10375 pc = *pos;
10376 *pos += 1;
14f9c5c9
AS
10377 op = exp->elts[pc].opcode;
10378
d2e4a39e 10379 switch (op)
14f9c5c9
AS
10380 {
10381 default:
10382 *pos -= 1;
6e48bd2c 10383 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10384
10385 if (noside == EVAL_NORMAL)
10386 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10387
10388 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10389 then we need to perform the conversion manually, because
10390 evaluate_subexp_standard doesn't do it. This conversion is
10391 necessary in Ada because the different kinds of float/fixed
10392 types in Ada have different representations.
10393
10394 Similarly, we need to perform the conversion from OP_LONG
10395 ourselves. */
10396 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10397 arg1 = ada_value_cast (expect_type, arg1, noside);
10398
10399 return arg1;
4c4b4cd2
PH
10400
10401 case OP_STRING:
10402 {
76a01679 10403 struct value *result;
5b4ee69b 10404
76a01679
JB
10405 *pos -= 1;
10406 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10407 /* The result type will have code OP_STRING, bashed there from
10408 OP_ARRAY. Bash it back. */
df407dfe
AC
10409 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10410 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10411 return result;
4c4b4cd2 10412 }
14f9c5c9
AS
10413
10414 case UNOP_CAST:
10415 (*pos) += 2;
10416 type = exp->elts[pc + 1].type;
10417 arg1 = evaluate_subexp (type, exp, pos, noside);
10418 if (noside == EVAL_SKIP)
4c4b4cd2 10419 goto nosideret;
6e48bd2c 10420 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10421 return arg1;
10422
4c4b4cd2
PH
10423 case UNOP_QUAL:
10424 (*pos) += 2;
10425 type = exp->elts[pc + 1].type;
10426 return ada_evaluate_subexp (type, exp, pos, noside);
10427
14f9c5c9
AS
10428 case BINOP_ASSIGN:
10429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10430 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10431 {
10432 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10433 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10434 return arg1;
10435 return ada_value_assign (arg1, arg1);
10436 }
003f3813
JB
10437 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10438 except if the lhs of our assignment is a convenience variable.
10439 In the case of assigning to a convenience variable, the lhs
10440 should be exactly the result of the evaluation of the rhs. */
10441 type = value_type (arg1);
10442 if (VALUE_LVAL (arg1) == lval_internalvar)
10443 type = NULL;
10444 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10445 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10446 return arg1;
df407dfe
AC
10447 if (ada_is_fixed_point_type (value_type (arg1)))
10448 arg2 = cast_to_fixed (value_type (arg1), arg2);
10449 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10450 error
323e0a4a 10451 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10452 else
df407dfe 10453 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10454 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10455
10456 case BINOP_ADD:
10457 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10458 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10459 if (noside == EVAL_SKIP)
4c4b4cd2 10460 goto nosideret;
2ac8a782
JB
10461 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10462 return (value_from_longest
10463 (value_type (arg1),
10464 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10465 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10466 return (value_from_longest
10467 (value_type (arg2),
10468 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10469 if ((ada_is_fixed_point_type (value_type (arg1))
10470 || ada_is_fixed_point_type (value_type (arg2)))
10471 && value_type (arg1) != value_type (arg2))
323e0a4a 10472 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10473 /* Do the addition, and cast the result to the type of the first
10474 argument. We cannot cast the result to a reference type, so if
10475 ARG1 is a reference type, find its underlying type. */
10476 type = value_type (arg1);
10477 while (TYPE_CODE (type) == TYPE_CODE_REF)
10478 type = TYPE_TARGET_TYPE (type);
f44316fa 10479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10480 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10481
10482 case BINOP_SUB:
10483 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10484 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10485 if (noside == EVAL_SKIP)
4c4b4cd2 10486 goto nosideret;
2ac8a782
JB
10487 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10488 return (value_from_longest
10489 (value_type (arg1),
10490 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10491 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10492 return (value_from_longest
10493 (value_type (arg2),
10494 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10495 if ((ada_is_fixed_point_type (value_type (arg1))
10496 || ada_is_fixed_point_type (value_type (arg2)))
10497 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10498 error (_("Operands of fixed-point subtraction "
10499 "must have the same type"));
b7789565
JB
10500 /* Do the substraction, and cast the result to the type of the first
10501 argument. We cannot cast the result to a reference type, so if
10502 ARG1 is a reference type, find its underlying type. */
10503 type = value_type (arg1);
10504 while (TYPE_CODE (type) == TYPE_CODE_REF)
10505 type = TYPE_TARGET_TYPE (type);
f44316fa 10506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10507 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10508
10509 case BINOP_MUL:
10510 case BINOP_DIV:
e1578042
JB
10511 case BINOP_REM:
10512 case BINOP_MOD:
14f9c5c9
AS
10513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10514 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10515 if (noside == EVAL_SKIP)
4c4b4cd2 10516 goto nosideret;
e1578042 10517 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10518 {
10519 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10520 return value_zero (value_type (arg1), not_lval);
10521 }
14f9c5c9 10522 else
4c4b4cd2 10523 {
a53b7a21 10524 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10525 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10526 arg1 = cast_from_fixed (type, arg1);
df407dfe 10527 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10528 arg2 = cast_from_fixed (type, arg2);
f44316fa 10529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10530 return ada_value_binop (arg1, arg2, op);
10531 }
10532
4c4b4cd2
PH
10533 case BINOP_EQUAL:
10534 case BINOP_NOTEQUAL:
14f9c5c9 10535 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10536 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10537 if (noside == EVAL_SKIP)
76a01679 10538 goto nosideret;
4c4b4cd2 10539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10540 tem = 0;
4c4b4cd2 10541 else
f44316fa
UW
10542 {
10543 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10544 tem = ada_value_equal (arg1, arg2);
10545 }
4c4b4cd2 10546 if (op == BINOP_NOTEQUAL)
76a01679 10547 tem = !tem;
fbb06eb1
UW
10548 type = language_bool_type (exp->language_defn, exp->gdbarch);
10549 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10550
10551 case UNOP_NEG:
10552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10553 if (noside == EVAL_SKIP)
10554 goto nosideret;
df407dfe
AC
10555 else if (ada_is_fixed_point_type (value_type (arg1)))
10556 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10557 else
f44316fa
UW
10558 {
10559 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10560 return value_neg (arg1);
10561 }
4c4b4cd2 10562
2330c6c6
JB
10563 case BINOP_LOGICAL_AND:
10564 case BINOP_LOGICAL_OR:
10565 case UNOP_LOGICAL_NOT:
000d5124
JB
10566 {
10567 struct value *val;
10568
10569 *pos -= 1;
10570 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10571 type = language_bool_type (exp->language_defn, exp->gdbarch);
10572 return value_cast (type, val);
000d5124 10573 }
2330c6c6
JB
10574
10575 case BINOP_BITWISE_AND:
10576 case BINOP_BITWISE_IOR:
10577 case BINOP_BITWISE_XOR:
000d5124
JB
10578 {
10579 struct value *val;
10580
10581 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10582 *pos = pc;
10583 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10584
10585 return value_cast (value_type (arg1), val);
10586 }
2330c6c6 10587
14f9c5c9
AS
10588 case OP_VAR_VALUE:
10589 *pos -= 1;
6799def4 10590
14f9c5c9 10591 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10592 {
10593 *pos += 4;
10594 goto nosideret;
10595 }
da5c522f
JB
10596
10597 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10598 /* Only encountered when an unresolved symbol occurs in a
10599 context other than a function call, in which case, it is
52ce6436 10600 invalid. */
323e0a4a 10601 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10602 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10603
10604 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10605 {
0c1f74cf 10606 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10607 /* Check to see if this is a tagged type. We also need to handle
10608 the case where the type is a reference to a tagged type, but
10609 we have to be careful to exclude pointers to tagged types.
10610 The latter should be shown as usual (as a pointer), whereas
10611 a reference should mostly be transparent to the user. */
10612 if (ada_is_tagged_type (type, 0)
023db19c 10613 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10614 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10615 {
10616 /* Tagged types are a little special in the fact that the real
10617 type is dynamic and can only be determined by inspecting the
10618 object's tag. This means that we need to get the object's
10619 value first (EVAL_NORMAL) and then extract the actual object
10620 type from its tag.
10621
10622 Note that we cannot skip the final step where we extract
10623 the object type from its tag, because the EVAL_NORMAL phase
10624 results in dynamic components being resolved into fixed ones.
10625 This can cause problems when trying to print the type
10626 description of tagged types whose parent has a dynamic size:
10627 We use the type name of the "_parent" component in order
10628 to print the name of the ancestor type in the type description.
10629 If that component had a dynamic size, the resolution into
10630 a fixed type would result in the loss of that type name,
10631 thus preventing us from printing the name of the ancestor
10632 type in the type description. */
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10634
10635 if (TYPE_CODE (type) != TYPE_CODE_REF)
10636 {
10637 struct type *actual_type;
10638
10639 actual_type = type_from_tag (ada_value_tag (arg1));
10640 if (actual_type == NULL)
10641 /* If, for some reason, we were unable to determine
10642 the actual type from the tag, then use the static
10643 approximation that we just computed as a fallback.
10644 This can happen if the debugging information is
10645 incomplete, for instance. */
10646 actual_type = type;
10647 return value_zero (actual_type, not_lval);
10648 }
10649 else
10650 {
10651 /* In the case of a ref, ada_coerce_ref takes care
10652 of determining the actual type. But the evaluation
10653 should return a ref as it should be valid to ask
10654 for its address; so rebuild a ref after coerce. */
10655 arg1 = ada_coerce_ref (arg1);
10656 return value_ref (arg1);
10657 }
10658 }
0c1f74cf 10659
84754697
JB
10660 /* Records and unions for which GNAT encodings have been
10661 generated need to be statically fixed as well.
10662 Otherwise, non-static fixing produces a type where
10663 all dynamic properties are removed, which prevents "ptype"
10664 from being able to completely describe the type.
10665 For instance, a case statement in a variant record would be
10666 replaced by the relevant components based on the actual
10667 value of the discriminants. */
10668 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10669 && dynamic_template_type (type) != NULL)
10670 || (TYPE_CODE (type) == TYPE_CODE_UNION
10671 && ada_find_parallel_type (type, "___XVU") != NULL))
10672 {
10673 *pos += 4;
10674 return value_zero (to_static_fixed_type (type), not_lval);
10675 }
4c4b4cd2 10676 }
da5c522f
JB
10677
10678 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10679 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10680
10681 case OP_FUNCALL:
10682 (*pos) += 2;
10683
10684 /* Allocate arg vector, including space for the function to be
10685 called in argvec[0] and a terminating NULL. */
10686 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10687 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10688
10689 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10690 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10691 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10692 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10693 else
10694 {
10695 for (tem = 0; tem <= nargs; tem += 1)
10696 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697 argvec[tem] = 0;
10698
10699 if (noside == EVAL_SKIP)
10700 goto nosideret;
10701 }
10702
ad82864c
JB
10703 if (ada_is_constrained_packed_array_type
10704 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10705 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10706 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10707 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10708 /* This is a packed array that has already been fixed, and
10709 therefore already coerced to a simple array. Nothing further
10710 to do. */
10711 ;
e6c2c623
PMR
10712 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10713 {
10714 /* Make sure we dereference references so that all the code below
10715 feels like it's really handling the referenced value. Wrapping
10716 types (for alignment) may be there, so make sure we strip them as
10717 well. */
10718 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10719 }
10720 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10721 && VALUE_LVAL (argvec[0]) == lval_memory)
10722 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10723
df407dfe 10724 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10725
10726 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10727 them. So, if this is an array typedef (encoding use for array
10728 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10729 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10730 type = ada_typedef_target_type (type);
10731
4c4b4cd2
PH
10732 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10733 {
61ee279c 10734 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10735 {
10736 case TYPE_CODE_FUNC:
61ee279c 10737 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10738 break;
10739 case TYPE_CODE_ARRAY:
10740 break;
10741 case TYPE_CODE_STRUCT:
10742 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10743 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10744 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10745 break;
10746 default:
323e0a4a 10747 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10748 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10749 break;
10750 }
10751 }
10752
10753 switch (TYPE_CODE (type))
10754 {
10755 case TYPE_CODE_FUNC:
10756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10757 {
10758 struct type *rtype = TYPE_TARGET_TYPE (type);
10759
10760 if (TYPE_GNU_IFUNC (type))
10761 return allocate_value (TYPE_TARGET_TYPE (rtype));
10762 return allocate_value (rtype);
10763 }
4c4b4cd2 10764 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10765 case TYPE_CODE_INTERNAL_FUNCTION:
10766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10767 /* We don't know anything about what the internal
10768 function might return, but we have to return
10769 something. */
10770 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10771 not_lval);
10772 else
10773 return call_internal_function (exp->gdbarch, exp->language_defn,
10774 argvec[0], nargs, argvec + 1);
10775
4c4b4cd2
PH
10776 case TYPE_CODE_STRUCT:
10777 {
10778 int arity;
10779
4c4b4cd2
PH
10780 arity = ada_array_arity (type);
10781 type = ada_array_element_type (type, nargs);
10782 if (type == NULL)
323e0a4a 10783 error (_("cannot subscript or call a record"));
4c4b4cd2 10784 if (arity != nargs)
323e0a4a 10785 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10787 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10788 return
10789 unwrap_value (ada_value_subscript
10790 (argvec[0], nargs, argvec + 1));
10791 }
10792 case TYPE_CODE_ARRAY:
10793 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10794 {
10795 type = ada_array_element_type (type, nargs);
10796 if (type == NULL)
323e0a4a 10797 error (_("element type of array unknown"));
4c4b4cd2 10798 else
0a07e705 10799 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10800 }
10801 return
10802 unwrap_value (ada_value_subscript
10803 (ada_coerce_to_simple_array (argvec[0]),
10804 nargs, argvec + 1));
10805 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 {
deede10c 10808 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10809 type = ada_array_element_type (type, nargs);
10810 if (type == NULL)
323e0a4a 10811 error (_("element type of array unknown"));
4c4b4cd2 10812 else
0a07e705 10813 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10814 }
10815 return
deede10c
JB
10816 unwrap_value (ada_value_ptr_subscript (argvec[0],
10817 nargs, argvec + 1));
4c4b4cd2
PH
10818
10819 default:
e1d5a0d2
PH
10820 error (_("Attempt to index or call something other than an "
10821 "array or function"));
4c4b4cd2
PH
10822 }
10823
10824 case TERNOP_SLICE:
10825 {
10826 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10827 struct value *low_bound_val =
10828 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10829 struct value *high_bound_val =
10830 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10831 LONGEST low_bound;
10832 LONGEST high_bound;
5b4ee69b 10833
994b9211
AC
10834 low_bound_val = coerce_ref (low_bound_val);
10835 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10836 low_bound = value_as_long (low_bound_val);
10837 high_bound = value_as_long (high_bound_val);
963a6417 10838
4c4b4cd2
PH
10839 if (noside == EVAL_SKIP)
10840 goto nosideret;
10841
4c4b4cd2
PH
10842 /* If this is a reference to an aligner type, then remove all
10843 the aligners. */
df407dfe
AC
10844 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10845 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10846 TYPE_TARGET_TYPE (value_type (array)) =
10847 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10848
ad82864c 10849 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10850 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10851
10852 /* If this is a reference to an array or an array lvalue,
10853 convert to a pointer. */
df407dfe
AC
10854 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10855 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10856 && VALUE_LVAL (array) == lval_memory))
10857 array = value_addr (array);
10858
1265e4aa 10859 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10860 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10861 (value_type (array))))
0b5d8877 10862 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10863
10864 array = ada_coerce_to_simple_array_ptr (array);
10865
714e53ab
PH
10866 /* If we have more than one level of pointer indirection,
10867 dereference the value until we get only one level. */
df407dfe
AC
10868 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10869 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10870 == TYPE_CODE_PTR))
10871 array = value_ind (array);
10872
10873 /* Make sure we really do have an array type before going further,
10874 to avoid a SEGV when trying to get the index type or the target
10875 type later down the road if the debug info generated by
10876 the compiler is incorrect or incomplete. */
df407dfe 10877 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10878 error (_("cannot take slice of non-array"));
714e53ab 10879
828292f2
JB
10880 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10881 == TYPE_CODE_PTR)
4c4b4cd2 10882 {
828292f2
JB
10883 struct type *type0 = ada_check_typedef (value_type (array));
10884
0b5d8877 10885 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10886 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10887 else
10888 {
10889 struct type *arr_type0 =
828292f2 10890 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10891
f5938064
JG
10892 return ada_value_slice_from_ptr (array, arr_type0,
10893 longest_to_int (low_bound),
10894 longest_to_int (high_bound));
4c4b4cd2
PH
10895 }
10896 }
10897 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10898 return array;
10899 else if (high_bound < low_bound)
df407dfe 10900 return empty_array (value_type (array), low_bound);
4c4b4cd2 10901 else
529cad9c
PH
10902 return ada_value_slice (array, longest_to_int (low_bound),
10903 longest_to_int (high_bound));
4c4b4cd2 10904 }
14f9c5c9 10905
4c4b4cd2
PH
10906 case UNOP_IN_RANGE:
10907 (*pos) += 2;
10908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10909 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10910
14f9c5c9 10911 if (noside == EVAL_SKIP)
4c4b4cd2 10912 goto nosideret;
14f9c5c9 10913
4c4b4cd2
PH
10914 switch (TYPE_CODE (type))
10915 {
10916 default:
e1d5a0d2
PH
10917 lim_warning (_("Membership test incompletely implemented; "
10918 "always returns true"));
fbb06eb1
UW
10919 type = language_bool_type (exp->language_defn, exp->gdbarch);
10920 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10921
10922 case TYPE_CODE_RANGE:
030b4912
UW
10923 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10924 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10925 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10926 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10927 type = language_bool_type (exp->language_defn, exp->gdbarch);
10928 return
10929 value_from_longest (type,
4c4b4cd2
PH
10930 (value_less (arg1, arg3)
10931 || value_equal (arg1, arg3))
10932 && (value_less (arg2, arg1)
10933 || value_equal (arg2, arg1)));
10934 }
10935
10936 case BINOP_IN_BOUNDS:
14f9c5c9 10937 (*pos) += 2;
4c4b4cd2
PH
10938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10939 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10940
4c4b4cd2
PH
10941 if (noside == EVAL_SKIP)
10942 goto nosideret;
14f9c5c9 10943
4c4b4cd2 10944 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10945 {
10946 type = language_bool_type (exp->language_defn, exp->gdbarch);
10947 return value_zero (type, not_lval);
10948 }
14f9c5c9 10949
4c4b4cd2 10950 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10951
1eea4ebd
UW
10952 type = ada_index_type (value_type (arg2), tem, "range");
10953 if (!type)
10954 type = value_type (arg1);
14f9c5c9 10955
1eea4ebd
UW
10956 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10957 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10958
f44316fa
UW
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10961 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10962 return
fbb06eb1 10963 value_from_longest (type,
4c4b4cd2
PH
10964 (value_less (arg1, arg3)
10965 || value_equal (arg1, arg3))
10966 && (value_less (arg2, arg1)
10967 || value_equal (arg2, arg1)));
10968
10969 case TERNOP_IN_RANGE:
10970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10971 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973
10974 if (noside == EVAL_SKIP)
10975 goto nosideret;
10976
f44316fa
UW
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10978 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10979 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10980 return
fbb06eb1 10981 value_from_longest (type,
4c4b4cd2
PH
10982 (value_less (arg1, arg3)
10983 || value_equal (arg1, arg3))
10984 && (value_less (arg2, arg1)
10985 || value_equal (arg2, arg1)));
10986
10987 case OP_ATR_FIRST:
10988 case OP_ATR_LAST:
10989 case OP_ATR_LENGTH:
10990 {
76a01679 10991 struct type *type_arg;
5b4ee69b 10992
76a01679
JB
10993 if (exp->elts[*pos].opcode == OP_TYPE)
10994 {
10995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10996 arg1 = NULL;
5bc23cb3 10997 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10998 }
10999 else
11000 {
11001 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11002 type_arg = NULL;
11003 }
11004
11005 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11006 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11007 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11008 *pos += 4;
11009
11010 if (noside == EVAL_SKIP)
11011 goto nosideret;
11012
11013 if (type_arg == NULL)
11014 {
11015 arg1 = ada_coerce_ref (arg1);
11016
ad82864c 11017 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11018 arg1 = ada_coerce_to_simple_array (arg1);
11019
aa4fb036 11020 if (op == OP_ATR_LENGTH)
1eea4ebd 11021 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11022 else
11023 {
11024 type = ada_index_type (value_type (arg1), tem,
11025 ada_attribute_name (op));
11026 if (type == NULL)
11027 type = builtin_type (exp->gdbarch)->builtin_int;
11028 }
76a01679
JB
11029
11030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11031 return allocate_value (type);
76a01679
JB
11032
11033 switch (op)
11034 {
11035 default: /* Should never happen. */
323e0a4a 11036 error (_("unexpected attribute encountered"));
76a01679 11037 case OP_ATR_FIRST:
1eea4ebd
UW
11038 return value_from_longest
11039 (type, ada_array_bound (arg1, tem, 0));
76a01679 11040 case OP_ATR_LAST:
1eea4ebd
UW
11041 return value_from_longest
11042 (type, ada_array_bound (arg1, tem, 1));
76a01679 11043 case OP_ATR_LENGTH:
1eea4ebd
UW
11044 return value_from_longest
11045 (type, ada_array_length (arg1, tem));
76a01679
JB
11046 }
11047 }
11048 else if (discrete_type_p (type_arg))
11049 {
11050 struct type *range_type;
0d5cff50 11051 const char *name = ada_type_name (type_arg);
5b4ee69b 11052
76a01679
JB
11053 range_type = NULL;
11054 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11055 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11056 if (range_type == NULL)
11057 range_type = type_arg;
11058 switch (op)
11059 {
11060 default:
323e0a4a 11061 error (_("unexpected attribute encountered"));
76a01679 11062 case OP_ATR_FIRST:
690cc4eb 11063 return value_from_longest
43bbcdc2 11064 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11065 case OP_ATR_LAST:
690cc4eb 11066 return value_from_longest
43bbcdc2 11067 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11068 case OP_ATR_LENGTH:
323e0a4a 11069 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11070 }
11071 }
11072 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11073 error (_("unimplemented type attribute"));
76a01679
JB
11074 else
11075 {
11076 LONGEST low, high;
11077
ad82864c
JB
11078 if (ada_is_constrained_packed_array_type (type_arg))
11079 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11080
aa4fb036 11081 if (op == OP_ATR_LENGTH)
1eea4ebd 11082 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11083 else
11084 {
11085 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11086 if (type == NULL)
11087 type = builtin_type (exp->gdbarch)->builtin_int;
11088 }
1eea4ebd 11089
76a01679
JB
11090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11091 return allocate_value (type);
11092
11093 switch (op)
11094 {
11095 default:
323e0a4a 11096 error (_("unexpected attribute encountered"));
76a01679 11097 case OP_ATR_FIRST:
1eea4ebd 11098 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11099 return value_from_longest (type, low);
11100 case OP_ATR_LAST:
1eea4ebd 11101 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11102 return value_from_longest (type, high);
11103 case OP_ATR_LENGTH:
1eea4ebd
UW
11104 low = ada_array_bound_from_type (type_arg, tem, 0);
11105 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11106 return value_from_longest (type, high - low + 1);
11107 }
11108 }
14f9c5c9
AS
11109 }
11110
4c4b4cd2
PH
11111 case OP_ATR_TAG:
11112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11113 if (noside == EVAL_SKIP)
76a01679 11114 goto nosideret;
4c4b4cd2
PH
11115
11116 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11117 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11118
11119 return ada_value_tag (arg1);
11120
11121 case OP_ATR_MIN:
11122 case OP_ATR_MAX:
11123 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11124 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11125 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126 if (noside == EVAL_SKIP)
76a01679 11127 goto nosideret;
d2e4a39e 11128 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11129 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11130 else
f44316fa
UW
11131 {
11132 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11133 return value_binop (arg1, arg2,
11134 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11135 }
14f9c5c9 11136
4c4b4cd2
PH
11137 case OP_ATR_MODULUS:
11138 {
31dedfee 11139 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11140
5b4ee69b 11141 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11142 if (noside == EVAL_SKIP)
11143 goto nosideret;
4c4b4cd2 11144
76a01679 11145 if (!ada_is_modular_type (type_arg))
323e0a4a 11146 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11147
76a01679
JB
11148 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11149 ada_modulus (type_arg));
4c4b4cd2
PH
11150 }
11151
11152
11153 case OP_ATR_POS:
11154 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 if (noside == EVAL_SKIP)
76a01679 11157 goto nosideret;
3cb382c9
UW
11158 type = builtin_type (exp->gdbarch)->builtin_int;
11159 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11160 return value_zero (type, not_lval);
14f9c5c9 11161 else
3cb382c9 11162 return value_pos_atr (type, arg1);
14f9c5c9 11163
4c4b4cd2
PH
11164 case OP_ATR_SIZE:
11165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11166 type = value_type (arg1);
11167
11168 /* If the argument is a reference, then dereference its type, since
11169 the user is really asking for the size of the actual object,
11170 not the size of the pointer. */
11171 if (TYPE_CODE (type) == TYPE_CODE_REF)
11172 type = TYPE_TARGET_TYPE (type);
11173
4c4b4cd2 11174 if (noside == EVAL_SKIP)
76a01679 11175 goto nosideret;
4c4b4cd2 11176 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11177 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11178 else
22601c15 11179 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11180 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11181
11182 case OP_ATR_VAL:
11183 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11185 type = exp->elts[pc + 2].type;
14f9c5c9 11186 if (noside == EVAL_SKIP)
76a01679 11187 goto nosideret;
4c4b4cd2 11188 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11189 return value_zero (type, not_lval);
4c4b4cd2 11190 else
76a01679 11191 return value_val_atr (type, arg1);
4c4b4cd2
PH
11192
11193 case BINOP_EXP:
11194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 if (noside == EVAL_SKIP)
11197 goto nosideret;
11198 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11199 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11200 else
f44316fa
UW
11201 {
11202 /* For integer exponentiation operations,
11203 only promote the first argument. */
11204 if (is_integral_type (value_type (arg2)))
11205 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11206 else
11207 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11208
11209 return value_binop (arg1, arg2, op);
11210 }
4c4b4cd2
PH
11211
11212 case UNOP_PLUS:
11213 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11214 if (noside == EVAL_SKIP)
11215 goto nosideret;
11216 else
11217 return arg1;
11218
11219 case UNOP_ABS:
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
f44316fa 11223 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11224 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11225 return value_neg (arg1);
14f9c5c9 11226 else
4c4b4cd2 11227 return arg1;
14f9c5c9
AS
11228
11229 case UNOP_IND:
5ec18f2b 11230 preeval_pos = *pos;
6b0d7253 11231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11232 if (noside == EVAL_SKIP)
4c4b4cd2 11233 goto nosideret;
df407dfe 11234 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11235 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11236 {
11237 if (ada_is_array_descriptor_type (type))
11238 /* GDB allows dereferencing GNAT array descriptors. */
11239 {
11240 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11241
4c4b4cd2 11242 if (arrType == NULL)
323e0a4a 11243 error (_("Attempt to dereference null array pointer."));
00a4c844 11244 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11245 }
11246 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11247 || TYPE_CODE (type) == TYPE_CODE_REF
11248 /* In C you can dereference an array to get the 1st elt. */
11249 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11250 {
5ec18f2b
JG
11251 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11252 only be determined by inspecting the object's tag.
11253 This means that we need to evaluate completely the
11254 expression in order to get its type. */
11255
023db19c
JB
11256 if ((TYPE_CODE (type) == TYPE_CODE_REF
11257 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11258 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11259 {
11260 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11261 EVAL_NORMAL);
11262 type = value_type (ada_value_ind (arg1));
11263 }
11264 else
11265 {
11266 type = to_static_fixed_type
11267 (ada_aligned_type
11268 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11269 }
c1b5a1a6 11270 ada_ensure_varsize_limit (type);
714e53ab
PH
11271 return value_zero (type, lval_memory);
11272 }
4c4b4cd2 11273 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11274 {
11275 /* GDB allows dereferencing an int. */
11276 if (expect_type == NULL)
11277 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11278 lval_memory);
11279 else
11280 {
11281 expect_type =
11282 to_static_fixed_type (ada_aligned_type (expect_type));
11283 return value_zero (expect_type, lval_memory);
11284 }
11285 }
4c4b4cd2 11286 else
323e0a4a 11287 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11288 }
0963b4bd 11289 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11290 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11291
96967637
JB
11292 if (TYPE_CODE (type) == TYPE_CODE_INT)
11293 /* GDB allows dereferencing an int. If we were given
11294 the expect_type, then use that as the target type.
11295 Otherwise, assume that the target type is an int. */
11296 {
11297 if (expect_type != NULL)
11298 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11299 arg1));
11300 else
11301 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11302 (CORE_ADDR) value_as_address (arg1));
11303 }
6b0d7253 11304
4c4b4cd2
PH
11305 if (ada_is_array_descriptor_type (type))
11306 /* GDB allows dereferencing GNAT array descriptors. */
11307 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11308 else
4c4b4cd2 11309 return ada_value_ind (arg1);
14f9c5c9
AS
11310
11311 case STRUCTOP_STRUCT:
11312 tem = longest_to_int (exp->elts[pc + 1].longconst);
11313 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11314 preeval_pos = *pos;
14f9c5c9
AS
11315 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11316 if (noside == EVAL_SKIP)
4c4b4cd2 11317 goto nosideret;
14f9c5c9 11318 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11319 {
df407dfe 11320 struct type *type1 = value_type (arg1);
5b4ee69b 11321
76a01679
JB
11322 if (ada_is_tagged_type (type1, 1))
11323 {
11324 type = ada_lookup_struct_elt_type (type1,
11325 &exp->elts[pc + 2].string,
11326 1, 1, NULL);
5ec18f2b
JG
11327
11328 /* If the field is not found, check if it exists in the
11329 extension of this object's type. This means that we
11330 need to evaluate completely the expression. */
11331
76a01679 11332 if (type == NULL)
5ec18f2b
JG
11333 {
11334 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11335 EVAL_NORMAL);
11336 arg1 = ada_value_struct_elt (arg1,
11337 &exp->elts[pc + 2].string,
11338 0);
11339 arg1 = unwrap_value (arg1);
11340 type = value_type (ada_to_fixed_value (arg1));
11341 }
76a01679
JB
11342 }
11343 else
11344 type =
11345 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11346 0, NULL);
11347
11348 return value_zero (ada_aligned_type (type), lval_memory);
11349 }
14f9c5c9 11350 else
284614f0
JB
11351 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11352 arg1 = unwrap_value (arg1);
11353 return ada_to_fixed_value (arg1);
11354
14f9c5c9 11355 case OP_TYPE:
4c4b4cd2
PH
11356 /* The value is not supposed to be used. This is here to make it
11357 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11358 (*pos) += 2;
11359 if (noside == EVAL_SKIP)
4c4b4cd2 11360 goto nosideret;
14f9c5c9 11361 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11362 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11363 else
323e0a4a 11364 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11365
11366 case OP_AGGREGATE:
11367 case OP_CHOICES:
11368 case OP_OTHERS:
11369 case OP_DISCRETE_RANGE:
11370 case OP_POSITIONAL:
11371 case OP_NAME:
11372 if (noside == EVAL_NORMAL)
11373 switch (op)
11374 {
11375 case OP_NAME:
11376 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11377 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11378 case OP_AGGREGATE:
11379 error (_("Aggregates only allowed on the right of an assignment"));
11380 default:
0963b4bd
MS
11381 internal_error (__FILE__, __LINE__,
11382 _("aggregate apparently mangled"));
52ce6436
PH
11383 }
11384
11385 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11386 *pos += oplen - 1;
11387 for (tem = 0; tem < nargs; tem += 1)
11388 ada_evaluate_subexp (NULL, exp, pos, noside);
11389 goto nosideret;
14f9c5c9
AS
11390 }
11391
11392nosideret:
22601c15 11393 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11394}
14f9c5c9 11395\f
d2e4a39e 11396
4c4b4cd2 11397 /* Fixed point */
14f9c5c9
AS
11398
11399/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11400 type name that encodes the 'small and 'delta information.
4c4b4cd2 11401 Otherwise, return NULL. */
14f9c5c9 11402
d2e4a39e 11403static const char *
ebf56fd3 11404fixed_type_info (struct type *type)
14f9c5c9 11405{
d2e4a39e 11406 const char *name = ada_type_name (type);
14f9c5c9
AS
11407 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11408
d2e4a39e
AS
11409 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11410 {
14f9c5c9 11411 const char *tail = strstr (name, "___XF_");
5b4ee69b 11412
14f9c5c9 11413 if (tail == NULL)
4c4b4cd2 11414 return NULL;
d2e4a39e 11415 else
4c4b4cd2 11416 return tail + 5;
14f9c5c9
AS
11417 }
11418 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11419 return fixed_type_info (TYPE_TARGET_TYPE (type));
11420 else
11421 return NULL;
11422}
11423
4c4b4cd2 11424/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11425
11426int
ebf56fd3 11427ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11428{
11429 return fixed_type_info (type) != NULL;
11430}
11431
4c4b4cd2
PH
11432/* Return non-zero iff TYPE represents a System.Address type. */
11433
11434int
11435ada_is_system_address_type (struct type *type)
11436{
11437 return (TYPE_NAME (type)
11438 && strcmp (TYPE_NAME (type), "system__address") == 0);
11439}
11440
14f9c5c9
AS
11441/* Assuming that TYPE is the representation of an Ada fixed-point
11442 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11443 delta cannot be determined. */
14f9c5c9
AS
11444
11445DOUBLEST
ebf56fd3 11446ada_delta (struct type *type)
14f9c5c9
AS
11447{
11448 const char *encoding = fixed_type_info (type);
facc390f 11449 DOUBLEST num, den;
14f9c5c9 11450
facc390f
JB
11451 /* Strictly speaking, num and den are encoded as integer. However,
11452 they may not fit into a long, and they will have to be converted
11453 to DOUBLEST anyway. So scan them as DOUBLEST. */
11454 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11455 &num, &den) < 2)
14f9c5c9 11456 return -1.0;
d2e4a39e 11457 else
facc390f 11458 return num / den;
14f9c5c9
AS
11459}
11460
11461/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11462 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11463
11464static DOUBLEST
ebf56fd3 11465scaling_factor (struct type *type)
14f9c5c9
AS
11466{
11467 const char *encoding = fixed_type_info (type);
facc390f 11468 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11469 int n;
d2e4a39e 11470
facc390f
JB
11471 /* Strictly speaking, num's and den's are encoded as integer. However,
11472 they may not fit into a long, and they will have to be converted
11473 to DOUBLEST anyway. So scan them as DOUBLEST. */
11474 n = sscanf (encoding,
11475 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11476 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11477 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11478
11479 if (n < 2)
11480 return 1.0;
11481 else if (n == 4)
facc390f 11482 return num1 / den1;
d2e4a39e 11483 else
facc390f 11484 return num0 / den0;
14f9c5c9
AS
11485}
11486
11487
11488/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11489 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11490
11491DOUBLEST
ebf56fd3 11492ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11493{
d2e4a39e 11494 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11495}
11496
4c4b4cd2
PH
11497/* The representation of a fixed-point value of type TYPE
11498 corresponding to the value X. */
14f9c5c9
AS
11499
11500LONGEST
ebf56fd3 11501ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11502{
11503 return (LONGEST) (x / scaling_factor (type) + 0.5);
11504}
11505
14f9c5c9 11506\f
d2e4a39e 11507
4c4b4cd2 11508 /* Range types */
14f9c5c9
AS
11509
11510/* Scan STR beginning at position K for a discriminant name, and
11511 return the value of that discriminant field of DVAL in *PX. If
11512 PNEW_K is not null, put the position of the character beyond the
11513 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11514 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11515
11516static int
108d56a4 11517scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11518 int *pnew_k)
14f9c5c9
AS
11519{
11520 static char *bound_buffer = NULL;
11521 static size_t bound_buffer_len = 0;
5da1a4d3 11522 const char *pstart, *pend, *bound;
d2e4a39e 11523 struct value *bound_val;
14f9c5c9
AS
11524
11525 if (dval == NULL || str == NULL || str[k] == '\0')
11526 return 0;
11527
5da1a4d3
SM
11528 pstart = str + k;
11529 pend = strstr (pstart, "__");
14f9c5c9
AS
11530 if (pend == NULL)
11531 {
5da1a4d3 11532 bound = pstart;
14f9c5c9
AS
11533 k += strlen (bound);
11534 }
d2e4a39e 11535 else
14f9c5c9 11536 {
5da1a4d3
SM
11537 int len = pend - pstart;
11538
11539 /* Strip __ and beyond. */
11540 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11541 strncpy (bound_buffer, pstart, len);
11542 bound_buffer[len] = '\0';
11543
14f9c5c9 11544 bound = bound_buffer;
d2e4a39e 11545 k = pend - str;
14f9c5c9 11546 }
d2e4a39e 11547
df407dfe 11548 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11549 if (bound_val == NULL)
11550 return 0;
11551
11552 *px = value_as_long (bound_val);
11553 if (pnew_k != NULL)
11554 *pnew_k = k;
11555 return 1;
11556}
11557
11558/* Value of variable named NAME in the current environment. If
11559 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11560 otherwise causes an error with message ERR_MSG. */
11561
d2e4a39e
AS
11562static struct value *
11563get_var_value (char *name, char *err_msg)
14f9c5c9 11564{
d12307c1 11565 struct block_symbol *syms;
14f9c5c9
AS
11566 int nsyms;
11567
4c4b4cd2 11568 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11569 &syms);
14f9c5c9
AS
11570
11571 if (nsyms != 1)
11572 {
11573 if (err_msg == NULL)
4c4b4cd2 11574 return 0;
14f9c5c9 11575 else
8a3fe4f8 11576 error (("%s"), err_msg);
14f9c5c9
AS
11577 }
11578
d12307c1 11579 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11580}
d2e4a39e 11581
14f9c5c9 11582/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11583 no such variable found, returns 0, and sets *FLAG to 0. If
11584 successful, sets *FLAG to 1. */
11585
14f9c5c9 11586LONGEST
4c4b4cd2 11587get_int_var_value (char *name, int *flag)
14f9c5c9 11588{
4c4b4cd2 11589 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11590
14f9c5c9
AS
11591 if (var_val == 0)
11592 {
11593 if (flag != NULL)
4c4b4cd2 11594 *flag = 0;
14f9c5c9
AS
11595 return 0;
11596 }
11597 else
11598 {
11599 if (flag != NULL)
4c4b4cd2 11600 *flag = 1;
14f9c5c9
AS
11601 return value_as_long (var_val);
11602 }
11603}
d2e4a39e 11604
14f9c5c9
AS
11605
11606/* Return a range type whose base type is that of the range type named
11607 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11608 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11609 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11610 corresponding range type from debug information; fall back to using it
11611 if symbol lookup fails. If a new type must be created, allocate it
11612 like ORIG_TYPE was. The bounds information, in general, is encoded
11613 in NAME, the base type given in the named range type. */
14f9c5c9 11614
d2e4a39e 11615static struct type *
28c85d6c 11616to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11617{
0d5cff50 11618 const char *name;
14f9c5c9 11619 struct type *base_type;
108d56a4 11620 const char *subtype_info;
14f9c5c9 11621
28c85d6c
JB
11622 gdb_assert (raw_type != NULL);
11623 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11624
1ce677a4 11625 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11626 base_type = TYPE_TARGET_TYPE (raw_type);
11627 else
11628 base_type = raw_type;
11629
28c85d6c 11630 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11631 subtype_info = strstr (name, "___XD");
11632 if (subtype_info == NULL)
690cc4eb 11633 {
43bbcdc2
PH
11634 LONGEST L = ada_discrete_type_low_bound (raw_type);
11635 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11636
690cc4eb
PH
11637 if (L < INT_MIN || U > INT_MAX)
11638 return raw_type;
11639 else
0c9c3474
SA
11640 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11641 L, U);
690cc4eb 11642 }
14f9c5c9
AS
11643 else
11644 {
11645 static char *name_buf = NULL;
11646 static size_t name_len = 0;
11647 int prefix_len = subtype_info - name;
11648 LONGEST L, U;
11649 struct type *type;
108d56a4 11650 const char *bounds_str;
14f9c5c9
AS
11651 int n;
11652
11653 GROW_VECT (name_buf, name_len, prefix_len + 5);
11654 strncpy (name_buf, name, prefix_len);
11655 name_buf[prefix_len] = '\0';
11656
11657 subtype_info += 5;
11658 bounds_str = strchr (subtype_info, '_');
11659 n = 1;
11660
d2e4a39e 11661 if (*subtype_info == 'L')
4c4b4cd2
PH
11662 {
11663 if (!ada_scan_number (bounds_str, n, &L, &n)
11664 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11665 return raw_type;
11666 if (bounds_str[n] == '_')
11667 n += 2;
0963b4bd 11668 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11669 n += 1;
11670 subtype_info += 1;
11671 }
d2e4a39e 11672 else
4c4b4cd2
PH
11673 {
11674 int ok;
5b4ee69b 11675
4c4b4cd2
PH
11676 strcpy (name_buf + prefix_len, "___L");
11677 L = get_int_var_value (name_buf, &ok);
11678 if (!ok)
11679 {
323e0a4a 11680 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11681 L = 1;
11682 }
11683 }
14f9c5c9 11684
d2e4a39e 11685 if (*subtype_info == 'U')
4c4b4cd2
PH
11686 {
11687 if (!ada_scan_number (bounds_str, n, &U, &n)
11688 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11689 return raw_type;
11690 }
d2e4a39e 11691 else
4c4b4cd2
PH
11692 {
11693 int ok;
5b4ee69b 11694
4c4b4cd2
PH
11695 strcpy (name_buf + prefix_len, "___U");
11696 U = get_int_var_value (name_buf, &ok);
11697 if (!ok)
11698 {
323e0a4a 11699 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11700 U = L;
11701 }
11702 }
14f9c5c9 11703
0c9c3474
SA
11704 type = create_static_range_type (alloc_type_copy (raw_type),
11705 base_type, L, U);
d2e4a39e 11706 TYPE_NAME (type) = name;
14f9c5c9
AS
11707 return type;
11708 }
11709}
11710
4c4b4cd2
PH
11711/* True iff NAME is the name of a range type. */
11712
14f9c5c9 11713int
d2e4a39e 11714ada_is_range_type_name (const char *name)
14f9c5c9
AS
11715{
11716 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11717}
14f9c5c9 11718\f
d2e4a39e 11719
4c4b4cd2
PH
11720 /* Modular types */
11721
11722/* True iff TYPE is an Ada modular type. */
14f9c5c9 11723
14f9c5c9 11724int
d2e4a39e 11725ada_is_modular_type (struct type *type)
14f9c5c9 11726{
18af8284 11727 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11728
11729 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11730 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11731 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11732}
11733
4c4b4cd2
PH
11734/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11735
61ee279c 11736ULONGEST
0056e4d5 11737ada_modulus (struct type *type)
14f9c5c9 11738{
43bbcdc2 11739 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11740}
d2e4a39e 11741\f
f7f9143b
JB
11742
11743/* Ada exception catchpoint support:
11744 ---------------------------------
11745
11746 We support 3 kinds of exception catchpoints:
11747 . catchpoints on Ada exceptions
11748 . catchpoints on unhandled Ada exceptions
11749 . catchpoints on failed assertions
11750
11751 Exceptions raised during failed assertions, or unhandled exceptions
11752 could perfectly be caught with the general catchpoint on Ada exceptions.
11753 However, we can easily differentiate these two special cases, and having
11754 the option to distinguish these two cases from the rest can be useful
11755 to zero-in on certain situations.
11756
11757 Exception catchpoints are a specialized form of breakpoint,
11758 since they rely on inserting breakpoints inside known routines
11759 of the GNAT runtime. The implementation therefore uses a standard
11760 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11761 of breakpoint_ops.
11762
0259addd
JB
11763 Support in the runtime for exception catchpoints have been changed
11764 a few times already, and these changes affect the implementation
11765 of these catchpoints. In order to be able to support several
11766 variants of the runtime, we use a sniffer that will determine
28010a5d 11767 the runtime variant used by the program being debugged. */
f7f9143b 11768
82eacd52
JB
11769/* Ada's standard exceptions.
11770
11771 The Ada 83 standard also defined Numeric_Error. But there so many
11772 situations where it was unclear from the Ada 83 Reference Manual
11773 (RM) whether Constraint_Error or Numeric_Error should be raised,
11774 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11775 Interpretation saying that anytime the RM says that Numeric_Error
11776 should be raised, the implementation may raise Constraint_Error.
11777 Ada 95 went one step further and pretty much removed Numeric_Error
11778 from the list of standard exceptions (it made it a renaming of
11779 Constraint_Error, to help preserve compatibility when compiling
11780 an Ada83 compiler). As such, we do not include Numeric_Error from
11781 this list of standard exceptions. */
3d0b0fa3
JB
11782
11783static char *standard_exc[] = {
11784 "constraint_error",
11785 "program_error",
11786 "storage_error",
11787 "tasking_error"
11788};
11789
0259addd
JB
11790typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11791
11792/* A structure that describes how to support exception catchpoints
11793 for a given executable. */
11794
11795struct exception_support_info
11796{
11797 /* The name of the symbol to break on in order to insert
11798 a catchpoint on exceptions. */
11799 const char *catch_exception_sym;
11800
11801 /* The name of the symbol to break on in order to insert
11802 a catchpoint on unhandled exceptions. */
11803 const char *catch_exception_unhandled_sym;
11804
11805 /* The name of the symbol to break on in order to insert
11806 a catchpoint on failed assertions. */
11807 const char *catch_assert_sym;
11808
11809 /* Assuming that the inferior just triggered an unhandled exception
11810 catchpoint, this function is responsible for returning the address
11811 in inferior memory where the name of that exception is stored.
11812 Return zero if the address could not be computed. */
11813 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11814};
11815
11816static CORE_ADDR ada_unhandled_exception_name_addr (void);
11817static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11818
11819/* The following exception support info structure describes how to
11820 implement exception catchpoints with the latest version of the
11821 Ada runtime (as of 2007-03-06). */
11822
11823static const struct exception_support_info default_exception_support_info =
11824{
11825 "__gnat_debug_raise_exception", /* catch_exception_sym */
11826 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11827 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11828 ada_unhandled_exception_name_addr
11829};
11830
11831/* The following exception support info structure describes how to
11832 implement exception catchpoints with a slightly older version
11833 of the Ada runtime. */
11834
11835static const struct exception_support_info exception_support_info_fallback =
11836{
11837 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11838 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11839 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11840 ada_unhandled_exception_name_addr_from_raise
11841};
11842
f17011e0
JB
11843/* Return nonzero if we can detect the exception support routines
11844 described in EINFO.
11845
11846 This function errors out if an abnormal situation is detected
11847 (for instance, if we find the exception support routines, but
11848 that support is found to be incomplete). */
11849
11850static int
11851ada_has_this_exception_support (const struct exception_support_info *einfo)
11852{
11853 struct symbol *sym;
11854
11855 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11856 that should be compiled with debugging information. As a result, we
11857 expect to find that symbol in the symtabs. */
11858
11859 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11860 if (sym == NULL)
a6af7abe
JB
11861 {
11862 /* Perhaps we did not find our symbol because the Ada runtime was
11863 compiled without debugging info, or simply stripped of it.
11864 It happens on some GNU/Linux distributions for instance, where
11865 users have to install a separate debug package in order to get
11866 the runtime's debugging info. In that situation, let the user
11867 know why we cannot insert an Ada exception catchpoint.
11868
11869 Note: Just for the purpose of inserting our Ada exception
11870 catchpoint, we could rely purely on the associated minimal symbol.
11871 But we would be operating in degraded mode anyway, since we are
11872 still lacking the debugging info needed later on to extract
11873 the name of the exception being raised (this name is printed in
11874 the catchpoint message, and is also used when trying to catch
11875 a specific exception). We do not handle this case for now. */
3b7344d5 11876 struct bound_minimal_symbol msym
1c8e84b0
JB
11877 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11878
3b7344d5 11879 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11880 error (_("Your Ada runtime appears to be missing some debugging "
11881 "information.\nCannot insert Ada exception catchpoint "
11882 "in this configuration."));
11883
11884 return 0;
11885 }
f17011e0
JB
11886
11887 /* Make sure that the symbol we found corresponds to a function. */
11888
11889 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11890 error (_("Symbol \"%s\" is not a function (class = %d)"),
11891 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11892
11893 return 1;
11894}
11895
0259addd
JB
11896/* Inspect the Ada runtime and determine which exception info structure
11897 should be used to provide support for exception catchpoints.
11898
3eecfa55
JB
11899 This function will always set the per-inferior exception_info,
11900 or raise an error. */
0259addd
JB
11901
11902static void
11903ada_exception_support_info_sniffer (void)
11904{
3eecfa55 11905 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11906
11907 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11908 if (data->exception_info != NULL)
0259addd
JB
11909 return;
11910
11911 /* Check the latest (default) exception support info. */
f17011e0 11912 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11913 {
3eecfa55 11914 data->exception_info = &default_exception_support_info;
0259addd
JB
11915 return;
11916 }
11917
11918 /* Try our fallback exception suport info. */
f17011e0 11919 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11920 {
3eecfa55 11921 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11922 return;
11923 }
11924
11925 /* Sometimes, it is normal for us to not be able to find the routine
11926 we are looking for. This happens when the program is linked with
11927 the shared version of the GNAT runtime, and the program has not been
11928 started yet. Inform the user of these two possible causes if
11929 applicable. */
11930
ccefe4c4 11931 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11932 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11933
11934 /* If the symbol does not exist, then check that the program is
11935 already started, to make sure that shared libraries have been
11936 loaded. If it is not started, this may mean that the symbol is
11937 in a shared library. */
11938
11939 if (ptid_get_pid (inferior_ptid) == 0)
11940 error (_("Unable to insert catchpoint. Try to start the program first."));
11941
11942 /* At this point, we know that we are debugging an Ada program and
11943 that the inferior has been started, but we still are not able to
0963b4bd 11944 find the run-time symbols. That can mean that we are in
0259addd
JB
11945 configurable run time mode, or that a-except as been optimized
11946 out by the linker... In any case, at this point it is not worth
11947 supporting this feature. */
11948
7dda8cff 11949 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11950}
11951
f7f9143b
JB
11952/* True iff FRAME is very likely to be that of a function that is
11953 part of the runtime system. This is all very heuristic, but is
11954 intended to be used as advice as to what frames are uninteresting
11955 to most users. */
11956
11957static int
11958is_known_support_routine (struct frame_info *frame)
11959{
4ed6b5be 11960 struct symtab_and_line sal;
55b87a52 11961 char *func_name;
692465f1 11962 enum language func_lang;
f7f9143b 11963 int i;
f35a17b5 11964 const char *fullname;
f7f9143b 11965
4ed6b5be
JB
11966 /* If this code does not have any debugging information (no symtab),
11967 This cannot be any user code. */
f7f9143b 11968
4ed6b5be 11969 find_frame_sal (frame, &sal);
f7f9143b
JB
11970 if (sal.symtab == NULL)
11971 return 1;
11972
4ed6b5be
JB
11973 /* If there is a symtab, but the associated source file cannot be
11974 located, then assume this is not user code: Selecting a frame
11975 for which we cannot display the code would not be very helpful
11976 for the user. This should also take care of case such as VxWorks
11977 where the kernel has some debugging info provided for a few units. */
f7f9143b 11978
f35a17b5
JK
11979 fullname = symtab_to_fullname (sal.symtab);
11980 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11981 return 1;
11982
4ed6b5be
JB
11983 /* Check the unit filename againt the Ada runtime file naming.
11984 We also check the name of the objfile against the name of some
11985 known system libraries that sometimes come with debugging info
11986 too. */
11987
f7f9143b
JB
11988 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11989 {
11990 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11991 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11992 return 1;
eb822aa6
DE
11993 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11994 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11995 return 1;
f7f9143b
JB
11996 }
11997
4ed6b5be 11998 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11999
e9e07ba6 12000 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12001 if (func_name == NULL)
12002 return 1;
12003
12004 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12005 {
12006 re_comp (known_auxiliary_function_name_patterns[i]);
12007 if (re_exec (func_name))
55b87a52
KS
12008 {
12009 xfree (func_name);
12010 return 1;
12011 }
f7f9143b
JB
12012 }
12013
55b87a52 12014 xfree (func_name);
f7f9143b
JB
12015 return 0;
12016}
12017
12018/* Find the first frame that contains debugging information and that is not
12019 part of the Ada run-time, starting from FI and moving upward. */
12020
0ef643c8 12021void
f7f9143b
JB
12022ada_find_printable_frame (struct frame_info *fi)
12023{
12024 for (; fi != NULL; fi = get_prev_frame (fi))
12025 {
12026 if (!is_known_support_routine (fi))
12027 {
12028 select_frame (fi);
12029 break;
12030 }
12031 }
12032
12033}
12034
12035/* Assuming that the inferior just triggered an unhandled exception
12036 catchpoint, return the address in inferior memory where the name
12037 of the exception is stored.
12038
12039 Return zero if the address could not be computed. */
12040
12041static CORE_ADDR
12042ada_unhandled_exception_name_addr (void)
0259addd
JB
12043{
12044 return parse_and_eval_address ("e.full_name");
12045}
12046
12047/* Same as ada_unhandled_exception_name_addr, except that this function
12048 should be used when the inferior uses an older version of the runtime,
12049 where the exception name needs to be extracted from a specific frame
12050 several frames up in the callstack. */
12051
12052static CORE_ADDR
12053ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12054{
12055 int frame_level;
12056 struct frame_info *fi;
3eecfa55 12057 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12058 struct cleanup *old_chain;
f7f9143b
JB
12059
12060 /* To determine the name of this exception, we need to select
12061 the frame corresponding to RAISE_SYM_NAME. This frame is
12062 at least 3 levels up, so we simply skip the first 3 frames
12063 without checking the name of their associated function. */
12064 fi = get_current_frame ();
12065 for (frame_level = 0; frame_level < 3; frame_level += 1)
12066 if (fi != NULL)
12067 fi = get_prev_frame (fi);
12068
55b87a52 12069 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12070 while (fi != NULL)
12071 {
55b87a52 12072 char *func_name;
692465f1
JB
12073 enum language func_lang;
12074
e9e07ba6 12075 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12076 if (func_name != NULL)
12077 {
12078 make_cleanup (xfree, func_name);
12079
12080 if (strcmp (func_name,
12081 data->exception_info->catch_exception_sym) == 0)
12082 break; /* We found the frame we were looking for... */
12083 fi = get_prev_frame (fi);
12084 }
f7f9143b 12085 }
55b87a52 12086 do_cleanups (old_chain);
f7f9143b
JB
12087
12088 if (fi == NULL)
12089 return 0;
12090
12091 select_frame (fi);
12092 return parse_and_eval_address ("id.full_name");
12093}
12094
12095/* Assuming the inferior just triggered an Ada exception catchpoint
12096 (of any type), return the address in inferior memory where the name
12097 of the exception is stored, if applicable.
12098
12099 Return zero if the address could not be computed, or if not relevant. */
12100
12101static CORE_ADDR
761269c8 12102ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12103 struct breakpoint *b)
12104{
3eecfa55
JB
12105 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12106
f7f9143b
JB
12107 switch (ex)
12108 {
761269c8 12109 case ada_catch_exception:
f7f9143b
JB
12110 return (parse_and_eval_address ("e.full_name"));
12111 break;
12112
761269c8 12113 case ada_catch_exception_unhandled:
3eecfa55 12114 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12115 break;
12116
761269c8 12117 case ada_catch_assert:
f7f9143b
JB
12118 return 0; /* Exception name is not relevant in this case. */
12119 break;
12120
12121 default:
12122 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12123 break;
12124 }
12125
12126 return 0; /* Should never be reached. */
12127}
12128
12129/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12130 any error that ada_exception_name_addr_1 might cause to be thrown.
12131 When an error is intercepted, a warning with the error message is printed,
12132 and zero is returned. */
12133
12134static CORE_ADDR
761269c8 12135ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12136 struct breakpoint *b)
12137{
f7f9143b
JB
12138 CORE_ADDR result = 0;
12139
492d29ea 12140 TRY
f7f9143b
JB
12141 {
12142 result = ada_exception_name_addr_1 (ex, b);
12143 }
12144
492d29ea 12145 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12146 {
12147 warning (_("failed to get exception name: %s"), e.message);
12148 return 0;
12149 }
492d29ea 12150 END_CATCH
f7f9143b
JB
12151
12152 return result;
12153}
12154
28010a5d
PA
12155static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12156
12157/* Ada catchpoints.
12158
12159 In the case of catchpoints on Ada exceptions, the catchpoint will
12160 stop the target on every exception the program throws. When a user
12161 specifies the name of a specific exception, we translate this
12162 request into a condition expression (in text form), and then parse
12163 it into an expression stored in each of the catchpoint's locations.
12164 We then use this condition to check whether the exception that was
12165 raised is the one the user is interested in. If not, then the
12166 target is resumed again. We store the name of the requested
12167 exception, in order to be able to re-set the condition expression
12168 when symbols change. */
12169
12170/* An instance of this type is used to represent an Ada catchpoint
12171 breakpoint location. It includes a "struct bp_location" as a kind
12172 of base class; users downcast to "struct bp_location *" when
12173 needed. */
12174
12175struct ada_catchpoint_location
12176{
12177 /* The base class. */
12178 struct bp_location base;
12179
12180 /* The condition that checks whether the exception that was raised
12181 is the specific exception the user specified on catchpoint
12182 creation. */
12183 struct expression *excep_cond_expr;
12184};
12185
12186/* Implement the DTOR method in the bp_location_ops structure for all
12187 Ada exception catchpoint kinds. */
12188
12189static void
12190ada_catchpoint_location_dtor (struct bp_location *bl)
12191{
12192 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12193
12194 xfree (al->excep_cond_expr);
12195}
12196
12197/* The vtable to be used in Ada catchpoint locations. */
12198
12199static const struct bp_location_ops ada_catchpoint_location_ops =
12200{
12201 ada_catchpoint_location_dtor
12202};
12203
12204/* An instance of this type is used to represent an Ada catchpoint.
12205 It includes a "struct breakpoint" as a kind of base class; users
12206 downcast to "struct breakpoint *" when needed. */
12207
12208struct ada_catchpoint
12209{
12210 /* The base class. */
12211 struct breakpoint base;
12212
12213 /* The name of the specific exception the user specified. */
12214 char *excep_string;
12215};
12216
12217/* Parse the exception condition string in the context of each of the
12218 catchpoint's locations, and store them for later evaluation. */
12219
12220static void
12221create_excep_cond_exprs (struct ada_catchpoint *c)
12222{
12223 struct cleanup *old_chain;
12224 struct bp_location *bl;
12225 char *cond_string;
12226
12227 /* Nothing to do if there's no specific exception to catch. */
12228 if (c->excep_string == NULL)
12229 return;
12230
12231 /* Same if there are no locations... */
12232 if (c->base.loc == NULL)
12233 return;
12234
12235 /* Compute the condition expression in text form, from the specific
12236 expection we want to catch. */
12237 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12238 old_chain = make_cleanup (xfree, cond_string);
12239
12240 /* Iterate over all the catchpoint's locations, and parse an
12241 expression for each. */
12242 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12243 {
12244 struct ada_catchpoint_location *ada_loc
12245 = (struct ada_catchpoint_location *) bl;
12246 struct expression *exp = NULL;
12247
12248 if (!bl->shlib_disabled)
12249 {
bbc13ae3 12250 const char *s;
28010a5d
PA
12251
12252 s = cond_string;
492d29ea 12253 TRY
28010a5d 12254 {
1bb9788d
TT
12255 exp = parse_exp_1 (&s, bl->address,
12256 block_for_pc (bl->address), 0);
28010a5d 12257 }
492d29ea 12258 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12259 {
12260 warning (_("failed to reevaluate internal exception condition "
12261 "for catchpoint %d: %s"),
12262 c->base.number, e.message);
12263 /* There is a bug in GCC on sparc-solaris when building with
12264 optimization which causes EXP to change unexpectedly
12265 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12266 The problem should be fixed starting with GCC 4.9.
12267 In the meantime, work around it by forcing EXP back
12268 to NULL. */
12269 exp = NULL;
12270 }
492d29ea 12271 END_CATCH
28010a5d
PA
12272 }
12273
12274 ada_loc->excep_cond_expr = exp;
12275 }
12276
12277 do_cleanups (old_chain);
12278}
12279
12280/* Implement the DTOR method in the breakpoint_ops structure for all
12281 exception catchpoint kinds. */
12282
12283static void
761269c8 12284dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12285{
12286 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12287
12288 xfree (c->excep_string);
348d480f 12289
2060206e 12290 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12291}
12292
12293/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12294 structure for all exception catchpoint kinds. */
12295
12296static struct bp_location *
761269c8 12297allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12298 struct breakpoint *self)
12299{
12300 struct ada_catchpoint_location *loc;
12301
12302 loc = XNEW (struct ada_catchpoint_location);
12303 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12304 loc->excep_cond_expr = NULL;
12305 return &loc->base;
12306}
12307
12308/* Implement the RE_SET method in the breakpoint_ops structure for all
12309 exception catchpoint kinds. */
12310
12311static void
761269c8 12312re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12313{
12314 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12315
12316 /* Call the base class's method. This updates the catchpoint's
12317 locations. */
2060206e 12318 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12319
12320 /* Reparse the exception conditional expressions. One for each
12321 location. */
12322 create_excep_cond_exprs (c);
12323}
12324
12325/* Returns true if we should stop for this breakpoint hit. If the
12326 user specified a specific exception, we only want to cause a stop
12327 if the program thrown that exception. */
12328
12329static int
12330should_stop_exception (const struct bp_location *bl)
12331{
12332 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12333 const struct ada_catchpoint_location *ada_loc
12334 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12335 int stop;
12336
12337 /* With no specific exception, should always stop. */
12338 if (c->excep_string == NULL)
12339 return 1;
12340
12341 if (ada_loc->excep_cond_expr == NULL)
12342 {
12343 /* We will have a NULL expression if back when we were creating
12344 the expressions, this location's had failed to parse. */
12345 return 1;
12346 }
12347
12348 stop = 1;
492d29ea 12349 TRY
28010a5d
PA
12350 {
12351 struct value *mark;
12352
12353 mark = value_mark ();
12354 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12355 value_free_to_mark (mark);
12356 }
492d29ea
PA
12357 CATCH (ex, RETURN_MASK_ALL)
12358 {
12359 exception_fprintf (gdb_stderr, ex,
12360 _("Error in testing exception condition:\n"));
12361 }
12362 END_CATCH
12363
28010a5d
PA
12364 return stop;
12365}
12366
12367/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12368 for all exception catchpoint kinds. */
12369
12370static void
761269c8 12371check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12372{
12373 bs->stop = should_stop_exception (bs->bp_location_at);
12374}
12375
f7f9143b
JB
12376/* Implement the PRINT_IT method in the breakpoint_ops structure
12377 for all exception catchpoint kinds. */
12378
12379static enum print_stop_action
761269c8 12380print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12381{
79a45e25 12382 struct ui_out *uiout = current_uiout;
348d480f
PA
12383 struct breakpoint *b = bs->breakpoint_at;
12384
956a9fb9 12385 annotate_catchpoint (b->number);
f7f9143b 12386
956a9fb9 12387 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12388 {
956a9fb9
JB
12389 ui_out_field_string (uiout, "reason",
12390 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12391 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12392 }
12393
00eb2c4a
JB
12394 ui_out_text (uiout,
12395 b->disposition == disp_del ? "\nTemporary catchpoint "
12396 : "\nCatchpoint ");
956a9fb9
JB
12397 ui_out_field_int (uiout, "bkptno", b->number);
12398 ui_out_text (uiout, ", ");
f7f9143b 12399
f7f9143b
JB
12400 switch (ex)
12401 {
761269c8
JB
12402 case ada_catch_exception:
12403 case ada_catch_exception_unhandled:
956a9fb9
JB
12404 {
12405 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12406 char exception_name[256];
12407
12408 if (addr != 0)
12409 {
c714b426
PA
12410 read_memory (addr, (gdb_byte *) exception_name,
12411 sizeof (exception_name) - 1);
956a9fb9
JB
12412 exception_name [sizeof (exception_name) - 1] = '\0';
12413 }
12414 else
12415 {
12416 /* For some reason, we were unable to read the exception
12417 name. This could happen if the Runtime was compiled
12418 without debugging info, for instance. In that case,
12419 just replace the exception name by the generic string
12420 "exception" - it will read as "an exception" in the
12421 notification we are about to print. */
967cff16 12422 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12423 }
12424 /* In the case of unhandled exception breakpoints, we print
12425 the exception name as "unhandled EXCEPTION_NAME", to make
12426 it clearer to the user which kind of catchpoint just got
12427 hit. We used ui_out_text to make sure that this extra
12428 info does not pollute the exception name in the MI case. */
761269c8 12429 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12430 ui_out_text (uiout, "unhandled ");
12431 ui_out_field_string (uiout, "exception-name", exception_name);
12432 }
12433 break;
761269c8 12434 case ada_catch_assert:
956a9fb9
JB
12435 /* In this case, the name of the exception is not really
12436 important. Just print "failed assertion" to make it clearer
12437 that his program just hit an assertion-failure catchpoint.
12438 We used ui_out_text because this info does not belong in
12439 the MI output. */
12440 ui_out_text (uiout, "failed assertion");
12441 break;
f7f9143b 12442 }
956a9fb9
JB
12443 ui_out_text (uiout, " at ");
12444 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12445
12446 return PRINT_SRC_AND_LOC;
12447}
12448
12449/* Implement the PRINT_ONE method in the breakpoint_ops structure
12450 for all exception catchpoint kinds. */
12451
12452static void
761269c8 12453print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12454 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12455{
79a45e25 12456 struct ui_out *uiout = current_uiout;
28010a5d 12457 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12458 struct value_print_options opts;
12459
12460 get_user_print_options (&opts);
12461 if (opts.addressprint)
f7f9143b
JB
12462 {
12463 annotate_field (4);
5af949e3 12464 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12465 }
12466
12467 annotate_field (5);
a6d9a66e 12468 *last_loc = b->loc;
f7f9143b
JB
12469 switch (ex)
12470 {
761269c8 12471 case ada_catch_exception:
28010a5d 12472 if (c->excep_string != NULL)
f7f9143b 12473 {
28010a5d
PA
12474 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12475
f7f9143b
JB
12476 ui_out_field_string (uiout, "what", msg);
12477 xfree (msg);
12478 }
12479 else
12480 ui_out_field_string (uiout, "what", "all Ada exceptions");
12481
12482 break;
12483
761269c8 12484 case ada_catch_exception_unhandled:
f7f9143b
JB
12485 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12486 break;
12487
761269c8 12488 case ada_catch_assert:
f7f9143b
JB
12489 ui_out_field_string (uiout, "what", "failed Ada assertions");
12490 break;
12491
12492 default:
12493 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12494 break;
12495 }
12496}
12497
12498/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12499 for all exception catchpoint kinds. */
12500
12501static void
761269c8 12502print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12503 struct breakpoint *b)
12504{
28010a5d 12505 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12506 struct ui_out *uiout = current_uiout;
28010a5d 12507
00eb2c4a
JB
12508 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12509 : _("Catchpoint "));
12510 ui_out_field_int (uiout, "bkptno", b->number);
12511 ui_out_text (uiout, ": ");
12512
f7f9143b
JB
12513 switch (ex)
12514 {
761269c8 12515 case ada_catch_exception:
28010a5d 12516 if (c->excep_string != NULL)
00eb2c4a
JB
12517 {
12518 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12519 struct cleanup *old_chain = make_cleanup (xfree, info);
12520
12521 ui_out_text (uiout, info);
12522 do_cleanups (old_chain);
12523 }
f7f9143b 12524 else
00eb2c4a 12525 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12526 break;
12527
761269c8 12528 case ada_catch_exception_unhandled:
00eb2c4a 12529 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12530 break;
12531
761269c8 12532 case ada_catch_assert:
00eb2c4a 12533 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12534 break;
12535
12536 default:
12537 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12538 break;
12539 }
12540}
12541
6149aea9
PA
12542/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12543 for all exception catchpoint kinds. */
12544
12545static void
761269c8 12546print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12547 struct breakpoint *b, struct ui_file *fp)
12548{
28010a5d
PA
12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12550
6149aea9
PA
12551 switch (ex)
12552 {
761269c8 12553 case ada_catch_exception:
6149aea9 12554 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12555 if (c->excep_string != NULL)
12556 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12557 break;
12558
761269c8 12559 case ada_catch_exception_unhandled:
78076abc 12560 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12561 break;
12562
761269c8 12563 case ada_catch_assert:
6149aea9
PA
12564 fprintf_filtered (fp, "catch assert");
12565 break;
12566
12567 default:
12568 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12569 }
d9b3f62e 12570 print_recreate_thread (b, fp);
6149aea9
PA
12571}
12572
f7f9143b
JB
12573/* Virtual table for "catch exception" breakpoints. */
12574
28010a5d
PA
12575static void
12576dtor_catch_exception (struct breakpoint *b)
12577{
761269c8 12578 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12579}
12580
12581static struct bp_location *
12582allocate_location_catch_exception (struct breakpoint *self)
12583{
761269c8 12584 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12585}
12586
12587static void
12588re_set_catch_exception (struct breakpoint *b)
12589{
761269c8 12590 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12591}
12592
12593static void
12594check_status_catch_exception (bpstat bs)
12595{
761269c8 12596 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12597}
12598
f7f9143b 12599static enum print_stop_action
348d480f 12600print_it_catch_exception (bpstat bs)
f7f9143b 12601{
761269c8 12602 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12603}
12604
12605static void
a6d9a66e 12606print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12607{
761269c8 12608 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12609}
12610
12611static void
12612print_mention_catch_exception (struct breakpoint *b)
12613{
761269c8 12614 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12615}
12616
6149aea9
PA
12617static void
12618print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12619{
761269c8 12620 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12621}
12622
2060206e 12623static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12624
12625/* Virtual table for "catch exception unhandled" breakpoints. */
12626
28010a5d
PA
12627static void
12628dtor_catch_exception_unhandled (struct breakpoint *b)
12629{
761269c8 12630 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12631}
12632
12633static struct bp_location *
12634allocate_location_catch_exception_unhandled (struct breakpoint *self)
12635{
761269c8 12636 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12637}
12638
12639static void
12640re_set_catch_exception_unhandled (struct breakpoint *b)
12641{
761269c8 12642 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12643}
12644
12645static void
12646check_status_catch_exception_unhandled (bpstat bs)
12647{
761269c8 12648 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12649}
12650
f7f9143b 12651static enum print_stop_action
348d480f 12652print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12653{
761269c8 12654 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12655}
12656
12657static void
a6d9a66e
UW
12658print_one_catch_exception_unhandled (struct breakpoint *b,
12659 struct bp_location **last_loc)
f7f9143b 12660{
761269c8 12661 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12662}
12663
12664static void
12665print_mention_catch_exception_unhandled (struct breakpoint *b)
12666{
761269c8 12667 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12668}
12669
6149aea9
PA
12670static void
12671print_recreate_catch_exception_unhandled (struct breakpoint *b,
12672 struct ui_file *fp)
12673{
761269c8 12674 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12675}
12676
2060206e 12677static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12678
12679/* Virtual table for "catch assert" breakpoints. */
12680
28010a5d
PA
12681static void
12682dtor_catch_assert (struct breakpoint *b)
12683{
761269c8 12684 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12685}
12686
12687static struct bp_location *
12688allocate_location_catch_assert (struct breakpoint *self)
12689{
761269c8 12690 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12691}
12692
12693static void
12694re_set_catch_assert (struct breakpoint *b)
12695{
761269c8 12696 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12697}
12698
12699static void
12700check_status_catch_assert (bpstat bs)
12701{
761269c8 12702 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12703}
12704
f7f9143b 12705static enum print_stop_action
348d480f 12706print_it_catch_assert (bpstat bs)
f7f9143b 12707{
761269c8 12708 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12709}
12710
12711static void
a6d9a66e 12712print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12713{
761269c8 12714 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12715}
12716
12717static void
12718print_mention_catch_assert (struct breakpoint *b)
12719{
761269c8 12720 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12721}
12722
6149aea9
PA
12723static void
12724print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12725{
761269c8 12726 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12727}
12728
2060206e 12729static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12730
f7f9143b
JB
12731/* Return a newly allocated copy of the first space-separated token
12732 in ARGSP, and then adjust ARGSP to point immediately after that
12733 token.
12734
12735 Return NULL if ARGPS does not contain any more tokens. */
12736
12737static char *
12738ada_get_next_arg (char **argsp)
12739{
12740 char *args = *argsp;
12741 char *end;
12742 char *result;
12743
0fcd72ba 12744 args = skip_spaces (args);
f7f9143b
JB
12745 if (args[0] == '\0')
12746 return NULL; /* No more arguments. */
12747
12748 /* Find the end of the current argument. */
12749
0fcd72ba 12750 end = skip_to_space (args);
f7f9143b
JB
12751
12752 /* Adjust ARGSP to point to the start of the next argument. */
12753
12754 *argsp = end;
12755
12756 /* Make a copy of the current argument and return it. */
12757
224c3ddb 12758 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12759 strncpy (result, args, end - args);
12760 result[end - args] = '\0';
12761
12762 return result;
12763}
12764
12765/* Split the arguments specified in a "catch exception" command.
12766 Set EX to the appropriate catchpoint type.
28010a5d 12767 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12768 specified by the user.
12769 If a condition is found at the end of the arguments, the condition
12770 expression is stored in COND_STRING (memory must be deallocated
12771 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12772
12773static void
12774catch_ada_exception_command_split (char *args,
761269c8 12775 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12776 char **excep_string,
12777 char **cond_string)
f7f9143b
JB
12778{
12779 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12780 char *exception_name;
5845583d 12781 char *cond = NULL;
f7f9143b
JB
12782
12783 exception_name = ada_get_next_arg (&args);
5845583d
JB
12784 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12785 {
12786 /* This is not an exception name; this is the start of a condition
12787 expression for a catchpoint on all exceptions. So, "un-get"
12788 this token, and set exception_name to NULL. */
12789 xfree (exception_name);
12790 exception_name = NULL;
12791 args -= 2;
12792 }
f7f9143b
JB
12793 make_cleanup (xfree, exception_name);
12794
5845583d 12795 /* Check to see if we have a condition. */
f7f9143b 12796
0fcd72ba 12797 args = skip_spaces (args);
61012eef 12798 if (startswith (args, "if")
5845583d
JB
12799 && (isspace (args[2]) || args[2] == '\0'))
12800 {
12801 args += 2;
12802 args = skip_spaces (args);
12803
12804 if (args[0] == '\0')
12805 error (_("Condition missing after `if' keyword"));
12806 cond = xstrdup (args);
12807 make_cleanup (xfree, cond);
12808
12809 args += strlen (args);
12810 }
12811
12812 /* Check that we do not have any more arguments. Anything else
12813 is unexpected. */
f7f9143b
JB
12814
12815 if (args[0] != '\0')
12816 error (_("Junk at end of expression"));
12817
12818 discard_cleanups (old_chain);
12819
12820 if (exception_name == NULL)
12821 {
12822 /* Catch all exceptions. */
761269c8 12823 *ex = ada_catch_exception;
28010a5d 12824 *excep_string = NULL;
f7f9143b
JB
12825 }
12826 else if (strcmp (exception_name, "unhandled") == 0)
12827 {
12828 /* Catch unhandled exceptions. */
761269c8 12829 *ex = ada_catch_exception_unhandled;
28010a5d 12830 *excep_string = NULL;
f7f9143b
JB
12831 }
12832 else
12833 {
12834 /* Catch a specific exception. */
761269c8 12835 *ex = ada_catch_exception;
28010a5d 12836 *excep_string = exception_name;
f7f9143b 12837 }
5845583d 12838 *cond_string = cond;
f7f9143b
JB
12839}
12840
12841/* Return the name of the symbol on which we should break in order to
12842 implement a catchpoint of the EX kind. */
12843
12844static const char *
761269c8 12845ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12846{
3eecfa55
JB
12847 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12848
12849 gdb_assert (data->exception_info != NULL);
0259addd 12850
f7f9143b
JB
12851 switch (ex)
12852 {
761269c8 12853 case ada_catch_exception:
3eecfa55 12854 return (data->exception_info->catch_exception_sym);
f7f9143b 12855 break;
761269c8 12856 case ada_catch_exception_unhandled:
3eecfa55 12857 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12858 break;
761269c8 12859 case ada_catch_assert:
3eecfa55 12860 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12861 break;
12862 default:
12863 internal_error (__FILE__, __LINE__,
12864 _("unexpected catchpoint kind (%d)"), ex);
12865 }
12866}
12867
12868/* Return the breakpoint ops "virtual table" used for catchpoints
12869 of the EX kind. */
12870
c0a91b2b 12871static const struct breakpoint_ops *
761269c8 12872ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12873{
12874 switch (ex)
12875 {
761269c8 12876 case ada_catch_exception:
f7f9143b
JB
12877 return (&catch_exception_breakpoint_ops);
12878 break;
761269c8 12879 case ada_catch_exception_unhandled:
f7f9143b
JB
12880 return (&catch_exception_unhandled_breakpoint_ops);
12881 break;
761269c8 12882 case ada_catch_assert:
f7f9143b
JB
12883 return (&catch_assert_breakpoint_ops);
12884 break;
12885 default:
12886 internal_error (__FILE__, __LINE__,
12887 _("unexpected catchpoint kind (%d)"), ex);
12888 }
12889}
12890
12891/* Return the condition that will be used to match the current exception
12892 being raised with the exception that the user wants to catch. This
12893 assumes that this condition is used when the inferior just triggered
12894 an exception catchpoint.
12895
12896 The string returned is a newly allocated string that needs to be
12897 deallocated later. */
12898
12899static char *
28010a5d 12900ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12901{
3d0b0fa3
JB
12902 int i;
12903
0963b4bd 12904 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12905 runtime units that have been compiled without debugging info; if
28010a5d 12906 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12907 exception (e.g. "constraint_error") then, during the evaluation
12908 of the condition expression, the symbol lookup on this name would
0963b4bd 12909 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12910 may then be set only on user-defined exceptions which have the
12911 same not-fully-qualified name (e.g. my_package.constraint_error).
12912
12913 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12914 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12915 exception constraint_error" is rewritten into "catch exception
12916 standard.constraint_error".
12917
12918 If an exception named contraint_error is defined in another package of
12919 the inferior program, then the only way to specify this exception as a
12920 breakpoint condition is to use its fully-qualified named:
12921 e.g. my_package.constraint_error. */
12922
12923 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12924 {
28010a5d 12925 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12926 {
12927 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12928 excep_string);
3d0b0fa3
JB
12929 }
12930 }
28010a5d 12931 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12932}
12933
12934/* Return the symtab_and_line that should be used to insert an exception
12935 catchpoint of the TYPE kind.
12936
28010a5d
PA
12937 EXCEP_STRING should contain the name of a specific exception that
12938 the catchpoint should catch, or NULL otherwise.
f7f9143b 12939
28010a5d
PA
12940 ADDR_STRING returns the name of the function where the real
12941 breakpoint that implements the catchpoints is set, depending on the
12942 type of catchpoint we need to create. */
f7f9143b
JB
12943
12944static struct symtab_and_line
761269c8 12945ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12946 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12947{
12948 const char *sym_name;
12949 struct symbol *sym;
f7f9143b 12950
0259addd
JB
12951 /* First, find out which exception support info to use. */
12952 ada_exception_support_info_sniffer ();
12953
12954 /* Then lookup the function on which we will break in order to catch
f7f9143b 12955 the Ada exceptions requested by the user. */
f7f9143b
JB
12956 sym_name = ada_exception_sym_name (ex);
12957 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12958
f17011e0
JB
12959 /* We can assume that SYM is not NULL at this stage. If the symbol
12960 did not exist, ada_exception_support_info_sniffer would have
12961 raised an exception.
f7f9143b 12962
f17011e0
JB
12963 Also, ada_exception_support_info_sniffer should have already
12964 verified that SYM is a function symbol. */
12965 gdb_assert (sym != NULL);
12966 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12967
12968 /* Set ADDR_STRING. */
f7f9143b
JB
12969 *addr_string = xstrdup (sym_name);
12970
f7f9143b 12971 /* Set OPS. */
4b9eee8c 12972 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12973
f17011e0 12974 return find_function_start_sal (sym, 1);
f7f9143b
JB
12975}
12976
b4a5b78b 12977/* Create an Ada exception catchpoint.
f7f9143b 12978
b4a5b78b 12979 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12980
2df4d1d5
JB
12981 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12982 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12983 of the exception to which this catchpoint applies. When not NULL,
12984 the string must be allocated on the heap, and its deallocation
12985 is no longer the responsibility of the caller.
12986
12987 COND_STRING, if not NULL, is the catchpoint condition. This string
12988 must be allocated on the heap, and its deallocation is no longer
12989 the responsibility of the caller.
f7f9143b 12990
b4a5b78b
JB
12991 TEMPFLAG, if nonzero, means that the underlying breakpoint
12992 should be temporary.
28010a5d 12993
b4a5b78b 12994 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12995
349774ef 12996void
28010a5d 12997create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12998 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12999 char *excep_string,
5845583d 13000 char *cond_string,
28010a5d 13001 int tempflag,
349774ef 13002 int disabled,
28010a5d
PA
13003 int from_tty)
13004{
13005 struct ada_catchpoint *c;
b4a5b78b
JB
13006 char *addr_string = NULL;
13007 const struct breakpoint_ops *ops = NULL;
13008 struct symtab_and_line sal
13009 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
13010
13011 c = XNEW (struct ada_catchpoint);
13012 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13013 ops, tempflag, disabled, from_tty);
28010a5d
PA
13014 c->excep_string = excep_string;
13015 create_excep_cond_exprs (c);
5845583d
JB
13016 if (cond_string != NULL)
13017 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13018 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13019}
13020
9ac4176b
PA
13021/* Implement the "catch exception" command. */
13022
13023static void
13024catch_ada_exception_command (char *arg, int from_tty,
13025 struct cmd_list_element *command)
13026{
13027 struct gdbarch *gdbarch = get_current_arch ();
13028 int tempflag;
761269c8 13029 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13030 char *excep_string = NULL;
5845583d 13031 char *cond_string = NULL;
9ac4176b
PA
13032
13033 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13034
13035 if (!arg)
13036 arg = "";
b4a5b78b
JB
13037 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13038 &cond_string);
13039 create_ada_exception_catchpoint (gdbarch, ex_kind,
13040 excep_string, cond_string,
349774ef
JB
13041 tempflag, 1 /* enabled */,
13042 from_tty);
9ac4176b
PA
13043}
13044
b4a5b78b 13045/* Split the arguments specified in a "catch assert" command.
5845583d 13046
b4a5b78b
JB
13047 ARGS contains the command's arguments (or the empty string if
13048 no arguments were passed).
5845583d
JB
13049
13050 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13051 (the memory needs to be deallocated after use). */
5845583d 13052
b4a5b78b
JB
13053static void
13054catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13055{
5845583d 13056 args = skip_spaces (args);
f7f9143b 13057
5845583d 13058 /* Check whether a condition was provided. */
61012eef 13059 if (startswith (args, "if")
5845583d 13060 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13061 {
5845583d 13062 args += 2;
0fcd72ba 13063 args = skip_spaces (args);
5845583d
JB
13064 if (args[0] == '\0')
13065 error (_("condition missing after `if' keyword"));
13066 *cond_string = xstrdup (args);
f7f9143b
JB
13067 }
13068
5845583d
JB
13069 /* Otherwise, there should be no other argument at the end of
13070 the command. */
13071 else if (args[0] != '\0')
13072 error (_("Junk at end of arguments."));
f7f9143b
JB
13073}
13074
9ac4176b
PA
13075/* Implement the "catch assert" command. */
13076
13077static void
13078catch_assert_command (char *arg, int from_tty,
13079 struct cmd_list_element *command)
13080{
13081 struct gdbarch *gdbarch = get_current_arch ();
13082 int tempflag;
5845583d 13083 char *cond_string = NULL;
9ac4176b
PA
13084
13085 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13086
13087 if (!arg)
13088 arg = "";
b4a5b78b 13089 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13090 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13091 NULL, cond_string,
349774ef
JB
13092 tempflag, 1 /* enabled */,
13093 from_tty);
9ac4176b 13094}
778865d3
JB
13095
13096/* Return non-zero if the symbol SYM is an Ada exception object. */
13097
13098static int
13099ada_is_exception_sym (struct symbol *sym)
13100{
13101 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13102
13103 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13104 && SYMBOL_CLASS (sym) != LOC_BLOCK
13105 && SYMBOL_CLASS (sym) != LOC_CONST
13106 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13107 && type_name != NULL && strcmp (type_name, "exception") == 0);
13108}
13109
13110/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13111 Ada exception object. This matches all exceptions except the ones
13112 defined by the Ada language. */
13113
13114static int
13115ada_is_non_standard_exception_sym (struct symbol *sym)
13116{
13117 int i;
13118
13119 if (!ada_is_exception_sym (sym))
13120 return 0;
13121
13122 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13123 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13124 return 0; /* A standard exception. */
13125
13126 /* Numeric_Error is also a standard exception, so exclude it.
13127 See the STANDARD_EXC description for more details as to why
13128 this exception is not listed in that array. */
13129 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13130 return 0;
13131
13132 return 1;
13133}
13134
13135/* A helper function for qsort, comparing two struct ada_exc_info
13136 objects.
13137
13138 The comparison is determined first by exception name, and then
13139 by exception address. */
13140
13141static int
13142compare_ada_exception_info (const void *a, const void *b)
13143{
13144 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13145 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13146 int result;
13147
13148 result = strcmp (exc_a->name, exc_b->name);
13149 if (result != 0)
13150 return result;
13151
13152 if (exc_a->addr < exc_b->addr)
13153 return -1;
13154 if (exc_a->addr > exc_b->addr)
13155 return 1;
13156
13157 return 0;
13158}
13159
13160/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13161 routine, but keeping the first SKIP elements untouched.
13162
13163 All duplicates are also removed. */
13164
13165static void
13166sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13167 int skip)
13168{
13169 struct ada_exc_info *to_sort
13170 = VEC_address (ada_exc_info, *exceptions) + skip;
13171 int to_sort_len
13172 = VEC_length (ada_exc_info, *exceptions) - skip;
13173 int i, j;
13174
13175 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13176 compare_ada_exception_info);
13177
13178 for (i = 1, j = 1; i < to_sort_len; i++)
13179 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13180 to_sort[j++] = to_sort[i];
13181 to_sort_len = j;
13182 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13183}
13184
13185/* A function intended as the "name_matcher" callback in the struct
13186 quick_symbol_functions' expand_symtabs_matching method.
13187
13188 SEARCH_NAME is the symbol's search name.
13189
13190 If USER_DATA is not NULL, it is a pointer to a regext_t object
13191 used to match the symbol (by natural name). Otherwise, when USER_DATA
13192 is null, no filtering is performed, and all symbols are a positive
13193 match. */
13194
13195static int
13196ada_exc_search_name_matches (const char *search_name, void *user_data)
13197{
9a3c8263 13198 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13199
13200 if (preg == NULL)
13201 return 1;
13202
13203 /* In Ada, the symbol "search name" is a linkage name, whereas
13204 the regular expression used to do the matching refers to
13205 the natural name. So match against the decoded name. */
13206 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13207}
13208
13209/* Add all exceptions defined by the Ada standard whose name match
13210 a regular expression.
13211
13212 If PREG is not NULL, then this regexp_t object is used to
13213 perform the symbol name matching. Otherwise, no name-based
13214 filtering is performed.
13215
13216 EXCEPTIONS is a vector of exceptions to which matching exceptions
13217 gets pushed. */
13218
13219static void
13220ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13221{
13222 int i;
13223
13224 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13225 {
13226 if (preg == NULL
13227 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13228 {
13229 struct bound_minimal_symbol msymbol
13230 = ada_lookup_simple_minsym (standard_exc[i]);
13231
13232 if (msymbol.minsym != NULL)
13233 {
13234 struct ada_exc_info info
77e371c0 13235 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13236
13237 VEC_safe_push (ada_exc_info, *exceptions, &info);
13238 }
13239 }
13240 }
13241}
13242
13243/* Add all Ada exceptions defined locally and accessible from the given
13244 FRAME.
13245
13246 If PREG is not NULL, then this regexp_t object is used to
13247 perform the symbol name matching. Otherwise, no name-based
13248 filtering is performed.
13249
13250 EXCEPTIONS is a vector of exceptions to which matching exceptions
13251 gets pushed. */
13252
13253static void
13254ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13255 VEC(ada_exc_info) **exceptions)
13256{
3977b71f 13257 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13258
13259 while (block != 0)
13260 {
13261 struct block_iterator iter;
13262 struct symbol *sym;
13263
13264 ALL_BLOCK_SYMBOLS (block, iter, sym)
13265 {
13266 switch (SYMBOL_CLASS (sym))
13267 {
13268 case LOC_TYPEDEF:
13269 case LOC_BLOCK:
13270 case LOC_CONST:
13271 break;
13272 default:
13273 if (ada_is_exception_sym (sym))
13274 {
13275 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13276 SYMBOL_VALUE_ADDRESS (sym)};
13277
13278 VEC_safe_push (ada_exc_info, *exceptions, &info);
13279 }
13280 }
13281 }
13282 if (BLOCK_FUNCTION (block) != NULL)
13283 break;
13284 block = BLOCK_SUPERBLOCK (block);
13285 }
13286}
13287
13288/* Add all exceptions defined globally whose name name match
13289 a regular expression, excluding standard exceptions.
13290
13291 The reason we exclude standard exceptions is that they need
13292 to be handled separately: Standard exceptions are defined inside
13293 a runtime unit which is normally not compiled with debugging info,
13294 and thus usually do not show up in our symbol search. However,
13295 if the unit was in fact built with debugging info, we need to
13296 exclude them because they would duplicate the entry we found
13297 during the special loop that specifically searches for those
13298 standard exceptions.
13299
13300 If PREG is not NULL, then this regexp_t object is used to
13301 perform the symbol name matching. Otherwise, no name-based
13302 filtering is performed.
13303
13304 EXCEPTIONS is a vector of exceptions to which matching exceptions
13305 gets pushed. */
13306
13307static void
13308ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13309{
13310 struct objfile *objfile;
43f3e411 13311 struct compunit_symtab *s;
778865d3 13312
276d885b 13313 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13314 VARIABLES_DOMAIN, preg);
778865d3 13315
43f3e411 13316 ALL_COMPUNITS (objfile, s)
778865d3 13317 {
43f3e411 13318 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13319 int i;
13320
13321 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13322 {
13323 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13324 struct block_iterator iter;
13325 struct symbol *sym;
13326
13327 ALL_BLOCK_SYMBOLS (b, iter, sym)
13328 if (ada_is_non_standard_exception_sym (sym)
13329 && (preg == NULL
13330 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13331 0, NULL, 0) == 0))
13332 {
13333 struct ada_exc_info info
13334 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13335
13336 VEC_safe_push (ada_exc_info, *exceptions, &info);
13337 }
13338 }
13339 }
13340}
13341
13342/* Implements ada_exceptions_list with the regular expression passed
13343 as a regex_t, rather than a string.
13344
13345 If not NULL, PREG is used to filter out exceptions whose names
13346 do not match. Otherwise, all exceptions are listed. */
13347
13348static VEC(ada_exc_info) *
13349ada_exceptions_list_1 (regex_t *preg)
13350{
13351 VEC(ada_exc_info) *result = NULL;
13352 struct cleanup *old_chain
13353 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13354 int prev_len;
13355
13356 /* First, list the known standard exceptions. These exceptions
13357 need to be handled separately, as they are usually defined in
13358 runtime units that have been compiled without debugging info. */
13359
13360 ada_add_standard_exceptions (preg, &result);
13361
13362 /* Next, find all exceptions whose scope is local and accessible
13363 from the currently selected frame. */
13364
13365 if (has_stack_frames ())
13366 {
13367 prev_len = VEC_length (ada_exc_info, result);
13368 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13369 &result);
13370 if (VEC_length (ada_exc_info, result) > prev_len)
13371 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13372 }
13373
13374 /* Add all exceptions whose scope is global. */
13375
13376 prev_len = VEC_length (ada_exc_info, result);
13377 ada_add_global_exceptions (preg, &result);
13378 if (VEC_length (ada_exc_info, result) > prev_len)
13379 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13380
13381 discard_cleanups (old_chain);
13382 return result;
13383}
13384
13385/* Return a vector of ada_exc_info.
13386
13387 If REGEXP is NULL, all exceptions are included in the result.
13388 Otherwise, it should contain a valid regular expression,
13389 and only the exceptions whose names match that regular expression
13390 are included in the result.
13391
13392 The exceptions are sorted in the following order:
13393 - Standard exceptions (defined by the Ada language), in
13394 alphabetical order;
13395 - Exceptions only visible from the current frame, in
13396 alphabetical order;
13397 - Exceptions whose scope is global, in alphabetical order. */
13398
13399VEC(ada_exc_info) *
13400ada_exceptions_list (const char *regexp)
13401{
13402 VEC(ada_exc_info) *result = NULL;
13403 struct cleanup *old_chain = NULL;
13404 regex_t reg;
13405
13406 if (regexp != NULL)
13407 old_chain = compile_rx_or_error (&reg, regexp,
13408 _("invalid regular expression"));
13409
13410 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13411
13412 if (old_chain != NULL)
13413 do_cleanups (old_chain);
13414 return result;
13415}
13416
13417/* Implement the "info exceptions" command. */
13418
13419static void
13420info_exceptions_command (char *regexp, int from_tty)
13421{
13422 VEC(ada_exc_info) *exceptions;
13423 struct cleanup *cleanup;
13424 struct gdbarch *gdbarch = get_current_arch ();
13425 int ix;
13426 struct ada_exc_info *info;
13427
13428 exceptions = ada_exceptions_list (regexp);
13429 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13430
13431 if (regexp != NULL)
13432 printf_filtered
13433 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13434 else
13435 printf_filtered (_("All defined Ada exceptions:\n"));
13436
13437 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13438 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13439
13440 do_cleanups (cleanup);
13441}
13442
4c4b4cd2
PH
13443 /* Operators */
13444/* Information about operators given special treatment in functions
13445 below. */
13446/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13447
13448#define ADA_OPERATORS \
13449 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13450 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13451 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13452 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13453 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13454 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13455 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13456 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13457 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13458 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13459 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13460 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13461 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13462 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13463 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13464 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13465 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13466 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13467 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13468
13469static void
554794dc
SDJ
13470ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13471 int *argsp)
4c4b4cd2
PH
13472{
13473 switch (exp->elts[pc - 1].opcode)
13474 {
76a01679 13475 default:
4c4b4cd2
PH
13476 operator_length_standard (exp, pc, oplenp, argsp);
13477 break;
13478
13479#define OP_DEFN(op, len, args, binop) \
13480 case op: *oplenp = len; *argsp = args; break;
13481 ADA_OPERATORS;
13482#undef OP_DEFN
52ce6436
PH
13483
13484 case OP_AGGREGATE:
13485 *oplenp = 3;
13486 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13487 break;
13488
13489 case OP_CHOICES:
13490 *oplenp = 3;
13491 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13492 break;
4c4b4cd2
PH
13493 }
13494}
13495
c0201579
JK
13496/* Implementation of the exp_descriptor method operator_check. */
13497
13498static int
13499ada_operator_check (struct expression *exp, int pos,
13500 int (*objfile_func) (struct objfile *objfile, void *data),
13501 void *data)
13502{
13503 const union exp_element *const elts = exp->elts;
13504 struct type *type = NULL;
13505
13506 switch (elts[pos].opcode)
13507 {
13508 case UNOP_IN_RANGE:
13509 case UNOP_QUAL:
13510 type = elts[pos + 1].type;
13511 break;
13512
13513 default:
13514 return operator_check_standard (exp, pos, objfile_func, data);
13515 }
13516
13517 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13518
13519 if (type && TYPE_OBJFILE (type)
13520 && (*objfile_func) (TYPE_OBJFILE (type), data))
13521 return 1;
13522
13523 return 0;
13524}
13525
4c4b4cd2
PH
13526static char *
13527ada_op_name (enum exp_opcode opcode)
13528{
13529 switch (opcode)
13530 {
76a01679 13531 default:
4c4b4cd2 13532 return op_name_standard (opcode);
52ce6436 13533
4c4b4cd2
PH
13534#define OP_DEFN(op, len, args, binop) case op: return #op;
13535 ADA_OPERATORS;
13536#undef OP_DEFN
52ce6436
PH
13537
13538 case OP_AGGREGATE:
13539 return "OP_AGGREGATE";
13540 case OP_CHOICES:
13541 return "OP_CHOICES";
13542 case OP_NAME:
13543 return "OP_NAME";
4c4b4cd2
PH
13544 }
13545}
13546
13547/* As for operator_length, but assumes PC is pointing at the first
13548 element of the operator, and gives meaningful results only for the
52ce6436 13549 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13550
13551static void
76a01679
JB
13552ada_forward_operator_length (struct expression *exp, int pc,
13553 int *oplenp, int *argsp)
4c4b4cd2 13554{
76a01679 13555 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13556 {
13557 default:
13558 *oplenp = *argsp = 0;
13559 break;
52ce6436 13560
4c4b4cd2
PH
13561#define OP_DEFN(op, len, args, binop) \
13562 case op: *oplenp = len; *argsp = args; break;
13563 ADA_OPERATORS;
13564#undef OP_DEFN
52ce6436
PH
13565
13566 case OP_AGGREGATE:
13567 *oplenp = 3;
13568 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13569 break;
13570
13571 case OP_CHOICES:
13572 *oplenp = 3;
13573 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13574 break;
13575
13576 case OP_STRING:
13577 case OP_NAME:
13578 {
13579 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13580
52ce6436
PH
13581 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13582 *argsp = 0;
13583 break;
13584 }
4c4b4cd2
PH
13585 }
13586}
13587
13588static int
13589ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13590{
13591 enum exp_opcode op = exp->elts[elt].opcode;
13592 int oplen, nargs;
13593 int pc = elt;
13594 int i;
76a01679 13595
4c4b4cd2
PH
13596 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13597
76a01679 13598 switch (op)
4c4b4cd2 13599 {
76a01679 13600 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13601 case OP_ATR_FIRST:
13602 case OP_ATR_LAST:
13603 case OP_ATR_LENGTH:
13604 case OP_ATR_IMAGE:
13605 case OP_ATR_MAX:
13606 case OP_ATR_MIN:
13607 case OP_ATR_MODULUS:
13608 case OP_ATR_POS:
13609 case OP_ATR_SIZE:
13610 case OP_ATR_TAG:
13611 case OP_ATR_VAL:
13612 break;
13613
13614 case UNOP_IN_RANGE:
13615 case UNOP_QUAL:
323e0a4a
AC
13616 /* XXX: gdb_sprint_host_address, type_sprint */
13617 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13618 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13619 fprintf_filtered (stream, " (");
13620 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13621 fprintf_filtered (stream, ")");
13622 break;
13623 case BINOP_IN_BOUNDS:
52ce6436
PH
13624 fprintf_filtered (stream, " (%d)",
13625 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13626 break;
13627 case TERNOP_IN_RANGE:
13628 break;
13629
52ce6436
PH
13630 case OP_AGGREGATE:
13631 case OP_OTHERS:
13632 case OP_DISCRETE_RANGE:
13633 case OP_POSITIONAL:
13634 case OP_CHOICES:
13635 break;
13636
13637 case OP_NAME:
13638 case OP_STRING:
13639 {
13640 char *name = &exp->elts[elt + 2].string;
13641 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13642
52ce6436
PH
13643 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13644 break;
13645 }
13646
4c4b4cd2
PH
13647 default:
13648 return dump_subexp_body_standard (exp, stream, elt);
13649 }
13650
13651 elt += oplen;
13652 for (i = 0; i < nargs; i += 1)
13653 elt = dump_subexp (exp, stream, elt);
13654
13655 return elt;
13656}
13657
13658/* The Ada extension of print_subexp (q.v.). */
13659
76a01679
JB
13660static void
13661ada_print_subexp (struct expression *exp, int *pos,
13662 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13663{
52ce6436 13664 int oplen, nargs, i;
4c4b4cd2
PH
13665 int pc = *pos;
13666 enum exp_opcode op = exp->elts[pc].opcode;
13667
13668 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13669
52ce6436 13670 *pos += oplen;
4c4b4cd2
PH
13671 switch (op)
13672 {
13673 default:
52ce6436 13674 *pos -= oplen;
4c4b4cd2
PH
13675 print_subexp_standard (exp, pos, stream, prec);
13676 return;
13677
13678 case OP_VAR_VALUE:
4c4b4cd2
PH
13679 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13680 return;
13681
13682 case BINOP_IN_BOUNDS:
323e0a4a 13683 /* XXX: sprint_subexp */
4c4b4cd2 13684 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13685 fputs_filtered (" in ", stream);
4c4b4cd2 13686 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13687 fputs_filtered ("'range", stream);
4c4b4cd2 13688 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13689 fprintf_filtered (stream, "(%ld)",
13690 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13691 return;
13692
13693 case TERNOP_IN_RANGE:
4c4b4cd2 13694 if (prec >= PREC_EQUAL)
76a01679 13695 fputs_filtered ("(", stream);
323e0a4a 13696 /* XXX: sprint_subexp */
4c4b4cd2 13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13698 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13699 print_subexp (exp, pos, stream, PREC_EQUAL);
13700 fputs_filtered (" .. ", stream);
13701 print_subexp (exp, pos, stream, PREC_EQUAL);
13702 if (prec >= PREC_EQUAL)
76a01679
JB
13703 fputs_filtered (")", stream);
13704 return;
4c4b4cd2
PH
13705
13706 case OP_ATR_FIRST:
13707 case OP_ATR_LAST:
13708 case OP_ATR_LENGTH:
13709 case OP_ATR_IMAGE:
13710 case OP_ATR_MAX:
13711 case OP_ATR_MIN:
13712 case OP_ATR_MODULUS:
13713 case OP_ATR_POS:
13714 case OP_ATR_SIZE:
13715 case OP_ATR_TAG:
13716 case OP_ATR_VAL:
4c4b4cd2 13717 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13718 {
13719 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13720 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13721 &type_print_raw_options);
76a01679
JB
13722 *pos += 3;
13723 }
4c4b4cd2 13724 else
76a01679 13725 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13726 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13727 if (nargs > 1)
76a01679
JB
13728 {
13729 int tem;
5b4ee69b 13730
76a01679
JB
13731 for (tem = 1; tem < nargs; tem += 1)
13732 {
13733 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13734 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13735 }
13736 fputs_filtered (")", stream);
13737 }
4c4b4cd2 13738 return;
14f9c5c9 13739
4c4b4cd2 13740 case UNOP_QUAL:
4c4b4cd2
PH
13741 type_print (exp->elts[pc + 1].type, "", stream, 0);
13742 fputs_filtered ("'(", stream);
13743 print_subexp (exp, pos, stream, PREC_PREFIX);
13744 fputs_filtered (")", stream);
13745 return;
14f9c5c9 13746
4c4b4cd2 13747 case UNOP_IN_RANGE:
323e0a4a 13748 /* XXX: sprint_subexp */
4c4b4cd2 13749 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13750 fputs_filtered (" in ", stream);
79d43c61
TT
13751 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13752 &type_print_raw_options);
4c4b4cd2 13753 return;
52ce6436
PH
13754
13755 case OP_DISCRETE_RANGE:
13756 print_subexp (exp, pos, stream, PREC_SUFFIX);
13757 fputs_filtered ("..", stream);
13758 print_subexp (exp, pos, stream, PREC_SUFFIX);
13759 return;
13760
13761 case OP_OTHERS:
13762 fputs_filtered ("others => ", stream);
13763 print_subexp (exp, pos, stream, PREC_SUFFIX);
13764 return;
13765
13766 case OP_CHOICES:
13767 for (i = 0; i < nargs-1; i += 1)
13768 {
13769 if (i > 0)
13770 fputs_filtered ("|", stream);
13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
13772 }
13773 fputs_filtered (" => ", stream);
13774 print_subexp (exp, pos, stream, PREC_SUFFIX);
13775 return;
13776
13777 case OP_POSITIONAL:
13778 print_subexp (exp, pos, stream, PREC_SUFFIX);
13779 return;
13780
13781 case OP_AGGREGATE:
13782 fputs_filtered ("(", stream);
13783 for (i = 0; i < nargs; i += 1)
13784 {
13785 if (i > 0)
13786 fputs_filtered (", ", stream);
13787 print_subexp (exp, pos, stream, PREC_SUFFIX);
13788 }
13789 fputs_filtered (")", stream);
13790 return;
4c4b4cd2
PH
13791 }
13792}
14f9c5c9
AS
13793
13794/* Table mapping opcodes into strings for printing operators
13795 and precedences of the operators. */
13796
d2e4a39e
AS
13797static const struct op_print ada_op_print_tab[] = {
13798 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13799 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13800 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13801 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13802 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13803 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13804 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13805 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13806 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13807 {">=", BINOP_GEQ, PREC_ORDER, 0},
13808 {">", BINOP_GTR, PREC_ORDER, 0},
13809 {"<", BINOP_LESS, PREC_ORDER, 0},
13810 {">>", BINOP_RSH, PREC_SHIFT, 0},
13811 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13812 {"+", BINOP_ADD, PREC_ADD, 0},
13813 {"-", BINOP_SUB, PREC_ADD, 0},
13814 {"&", BINOP_CONCAT, PREC_ADD, 0},
13815 {"*", BINOP_MUL, PREC_MUL, 0},
13816 {"/", BINOP_DIV, PREC_MUL, 0},
13817 {"rem", BINOP_REM, PREC_MUL, 0},
13818 {"mod", BINOP_MOD, PREC_MUL, 0},
13819 {"**", BINOP_EXP, PREC_REPEAT, 0},
13820 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13821 {"-", UNOP_NEG, PREC_PREFIX, 0},
13822 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13823 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13824 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13825 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13826 {".all", UNOP_IND, PREC_SUFFIX, 1},
13827 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13828 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13829 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13830};
13831\f
72d5681a
PH
13832enum ada_primitive_types {
13833 ada_primitive_type_int,
13834 ada_primitive_type_long,
13835 ada_primitive_type_short,
13836 ada_primitive_type_char,
13837 ada_primitive_type_float,
13838 ada_primitive_type_double,
13839 ada_primitive_type_void,
13840 ada_primitive_type_long_long,
13841 ada_primitive_type_long_double,
13842 ada_primitive_type_natural,
13843 ada_primitive_type_positive,
13844 ada_primitive_type_system_address,
13845 nr_ada_primitive_types
13846};
6c038f32
PH
13847
13848static void
d4a9a881 13849ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13850 struct language_arch_info *lai)
13851{
d4a9a881 13852 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13853
72d5681a 13854 lai->primitive_type_vector
d4a9a881 13855 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13856 struct type *);
e9bb382b
UW
13857
13858 lai->primitive_type_vector [ada_primitive_type_int]
13859 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13860 0, "integer");
13861 lai->primitive_type_vector [ada_primitive_type_long]
13862 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13863 0, "long_integer");
13864 lai->primitive_type_vector [ada_primitive_type_short]
13865 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13866 0, "short_integer");
13867 lai->string_char_type
13868 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13869 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13870 lai->primitive_type_vector [ada_primitive_type_float]
13871 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13872 "float", NULL);
13873 lai->primitive_type_vector [ada_primitive_type_double]
13874 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13875 "long_float", NULL);
13876 lai->primitive_type_vector [ada_primitive_type_long_long]
13877 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13878 0, "long_long_integer");
13879 lai->primitive_type_vector [ada_primitive_type_long_double]
13880 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13881 "long_long_float", NULL);
13882 lai->primitive_type_vector [ada_primitive_type_natural]
13883 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13884 0, "natural");
13885 lai->primitive_type_vector [ada_primitive_type_positive]
13886 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13887 0, "positive");
13888 lai->primitive_type_vector [ada_primitive_type_void]
13889 = builtin->builtin_void;
13890
13891 lai->primitive_type_vector [ada_primitive_type_system_address]
13892 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13893 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13894 = "system__address";
fbb06eb1 13895
47e729a8 13896 lai->bool_type_symbol = NULL;
fbb06eb1 13897 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13898}
6c038f32
PH
13899\f
13900 /* Language vector */
13901
13902/* Not really used, but needed in the ada_language_defn. */
13903
13904static void
6c7a06a3 13905emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13906{
6c7a06a3 13907 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13908}
13909
13910static int
410a0ff2 13911parse (struct parser_state *ps)
6c038f32
PH
13912{
13913 warnings_issued = 0;
410a0ff2 13914 return ada_parse (ps);
6c038f32
PH
13915}
13916
13917static const struct exp_descriptor ada_exp_descriptor = {
13918 ada_print_subexp,
13919 ada_operator_length,
c0201579 13920 ada_operator_check,
6c038f32
PH
13921 ada_op_name,
13922 ada_dump_subexp_body,
13923 ada_evaluate_subexp
13924};
13925
1a119f36 13926/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13927 for Ada. */
13928
1a119f36
JB
13929static symbol_name_cmp_ftype
13930ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13931{
13932 if (should_use_wild_match (lookup_name))
13933 return wild_match;
13934 else
13935 return compare_names;
13936}
13937
a5ee536b
JB
13938/* Implement the "la_read_var_value" language_defn method for Ada. */
13939
13940static struct value *
63e43d3a
PMR
13941ada_read_var_value (struct symbol *var, const struct block *var_block,
13942 struct frame_info *frame)
a5ee536b 13943{
3977b71f 13944 const struct block *frame_block = NULL;
a5ee536b
JB
13945 struct symbol *renaming_sym = NULL;
13946
13947 /* The only case where default_read_var_value is not sufficient
13948 is when VAR is a renaming... */
13949 if (frame)
13950 frame_block = get_frame_block (frame, NULL);
13951 if (frame_block)
13952 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13953 if (renaming_sym != NULL)
13954 return ada_read_renaming_var_value (renaming_sym, frame_block);
13955
13956 /* This is a typical case where we expect the default_read_var_value
13957 function to work. */
63e43d3a 13958 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13959}
13960
6c038f32
PH
13961const struct language_defn ada_language_defn = {
13962 "ada", /* Language name */
6abde28f 13963 "Ada",
6c038f32 13964 language_ada,
6c038f32 13965 range_check_off,
6c038f32
PH
13966 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13967 that's not quite what this means. */
6c038f32 13968 array_row_major,
9a044a89 13969 macro_expansion_no,
6c038f32
PH
13970 &ada_exp_descriptor,
13971 parse,
13972 ada_error,
13973 resolve,
13974 ada_printchar, /* Print a character constant */
13975 ada_printstr, /* Function to print string constant */
13976 emit_char, /* Function to print single char (not used) */
6c038f32 13977 ada_print_type, /* Print a type using appropriate syntax */
be942545 13978 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13979 ada_val_print, /* Print a value using appropriate syntax */
13980 ada_value_print, /* Print a top-level value */
a5ee536b 13981 ada_read_var_value, /* la_read_var_value */
6c038f32 13982 NULL, /* Language specific skip_trampoline */
2b2d9e11 13983 NULL, /* name_of_this */
6c038f32
PH
13984 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13985 basic_lookup_transparent_type, /* lookup_transparent_type */
13986 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13987 NULL, /* Language specific
13988 class_name_from_physname */
6c038f32
PH
13989 ada_op_print_tab, /* expression operators for printing */
13990 0, /* c-style arrays */
13991 1, /* String lower bound */
6c038f32 13992 ada_get_gdb_completer_word_break_characters,
41d27058 13993 ada_make_symbol_completion_list,
72d5681a 13994 ada_language_arch_info,
e79af960 13995 ada_print_array_index,
41f1b697 13996 default_pass_by_reference,
ae6a3a4c 13997 c_get_string,
1a119f36 13998 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13999 ada_iterate_over_symbols,
a53b64ea 14000 &ada_varobj_ops,
bb2ec1b3
TT
14001 NULL,
14002 NULL,
6c038f32
PH
14003 LANG_MAGIC
14004};
14005
2c0b251b
PA
14006/* Provide a prototype to silence -Wmissing-prototypes. */
14007extern initialize_file_ftype _initialize_ada_language;
14008
5bf03f13
JB
14009/* Command-list for the "set/show ada" prefix command. */
14010static struct cmd_list_element *set_ada_list;
14011static struct cmd_list_element *show_ada_list;
14012
14013/* Implement the "set ada" prefix command. */
14014
14015static void
14016set_ada_command (char *arg, int from_tty)
14017{
14018 printf_unfiltered (_(\
14019"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14020 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14021}
14022
14023/* Implement the "show ada" prefix command. */
14024
14025static void
14026show_ada_command (char *args, int from_tty)
14027{
14028 cmd_show_list (show_ada_list, from_tty, "");
14029}
14030
2060206e
PA
14031static void
14032initialize_ada_catchpoint_ops (void)
14033{
14034 struct breakpoint_ops *ops;
14035
14036 initialize_breakpoint_ops ();
14037
14038 ops = &catch_exception_breakpoint_ops;
14039 *ops = bkpt_breakpoint_ops;
14040 ops->dtor = dtor_catch_exception;
14041 ops->allocate_location = allocate_location_catch_exception;
14042 ops->re_set = re_set_catch_exception;
14043 ops->check_status = check_status_catch_exception;
14044 ops->print_it = print_it_catch_exception;
14045 ops->print_one = print_one_catch_exception;
14046 ops->print_mention = print_mention_catch_exception;
14047 ops->print_recreate = print_recreate_catch_exception;
14048
14049 ops = &catch_exception_unhandled_breakpoint_ops;
14050 *ops = bkpt_breakpoint_ops;
14051 ops->dtor = dtor_catch_exception_unhandled;
14052 ops->allocate_location = allocate_location_catch_exception_unhandled;
14053 ops->re_set = re_set_catch_exception_unhandled;
14054 ops->check_status = check_status_catch_exception_unhandled;
14055 ops->print_it = print_it_catch_exception_unhandled;
14056 ops->print_one = print_one_catch_exception_unhandled;
14057 ops->print_mention = print_mention_catch_exception_unhandled;
14058 ops->print_recreate = print_recreate_catch_exception_unhandled;
14059
14060 ops = &catch_assert_breakpoint_ops;
14061 *ops = bkpt_breakpoint_ops;
14062 ops->dtor = dtor_catch_assert;
14063 ops->allocate_location = allocate_location_catch_assert;
14064 ops->re_set = re_set_catch_assert;
14065 ops->check_status = check_status_catch_assert;
14066 ops->print_it = print_it_catch_assert;
14067 ops->print_one = print_one_catch_assert;
14068 ops->print_mention = print_mention_catch_assert;
14069 ops->print_recreate = print_recreate_catch_assert;
14070}
14071
3d9434b5
JB
14072/* This module's 'new_objfile' observer. */
14073
14074static void
14075ada_new_objfile_observer (struct objfile *objfile)
14076{
14077 ada_clear_symbol_cache ();
14078}
14079
14080/* This module's 'free_objfile' observer. */
14081
14082static void
14083ada_free_objfile_observer (struct objfile *objfile)
14084{
14085 ada_clear_symbol_cache ();
14086}
14087
d2e4a39e 14088void
6c038f32 14089_initialize_ada_language (void)
14f9c5c9 14090{
6c038f32
PH
14091 add_language (&ada_language_defn);
14092
2060206e
PA
14093 initialize_ada_catchpoint_ops ();
14094
5bf03f13
JB
14095 add_prefix_cmd ("ada", no_class, set_ada_command,
14096 _("Prefix command for changing Ada-specfic settings"),
14097 &set_ada_list, "set ada ", 0, &setlist);
14098
14099 add_prefix_cmd ("ada", no_class, show_ada_command,
14100 _("Generic command for showing Ada-specific settings."),
14101 &show_ada_list, "show ada ", 0, &showlist);
14102
14103 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14104 &trust_pad_over_xvs, _("\
14105Enable or disable an optimization trusting PAD types over XVS types"), _("\
14106Show whether an optimization trusting PAD types over XVS types is activated"),
14107 _("\
14108This is related to the encoding used by the GNAT compiler. The debugger\n\
14109should normally trust the contents of PAD types, but certain older versions\n\
14110of GNAT have a bug that sometimes causes the information in the PAD type\n\
14111to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14112work around this bug. It is always safe to turn this option \"off\", but\n\
14113this incurs a slight performance penalty, so it is recommended to NOT change\n\
14114this option to \"off\" unless necessary."),
14115 NULL, NULL, &set_ada_list, &show_ada_list);
14116
9ac4176b
PA
14117 add_catch_command ("exception", _("\
14118Catch Ada exceptions, when raised.\n\
14119With an argument, catch only exceptions with the given name."),
14120 catch_ada_exception_command,
14121 NULL,
14122 CATCH_PERMANENT,
14123 CATCH_TEMPORARY);
14124 add_catch_command ("assert", _("\
14125Catch failed Ada assertions, when raised.\n\
14126With an argument, catch only exceptions with the given name."),
14127 catch_assert_command,
14128 NULL,
14129 CATCH_PERMANENT,
14130 CATCH_TEMPORARY);
14131
6c038f32 14132 varsize_limit = 65536;
6c038f32 14133
778865d3
JB
14134 add_info ("exceptions", info_exceptions_command,
14135 _("\
14136List all Ada exception names.\n\
14137If a regular expression is passed as an argument, only those matching\n\
14138the regular expression are listed."));
14139
c6044dd1
JB
14140 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14141 _("Set Ada maintenance-related variables."),
14142 &maint_set_ada_cmdlist, "maintenance set ada ",
14143 0/*allow-unknown*/, &maintenance_set_cmdlist);
14144
14145 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14146 _("Show Ada maintenance-related variables"),
14147 &maint_show_ada_cmdlist, "maintenance show ada ",
14148 0/*allow-unknown*/, &maintenance_show_cmdlist);
14149
14150 add_setshow_boolean_cmd
14151 ("ignore-descriptive-types", class_maintenance,
14152 &ada_ignore_descriptive_types_p,
14153 _("Set whether descriptive types generated by GNAT should be ignored."),
14154 _("Show whether descriptive types generated by GNAT should be ignored."),
14155 _("\
14156When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14157DWARF attribute."),
14158 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14159
6c038f32
PH
14160 obstack_init (&symbol_list_obstack);
14161
14162 decoded_names_store = htab_create_alloc
14163 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14164 NULL, xcalloc, xfree);
6b69afc4 14165
3d9434b5
JB
14166 /* The ada-lang observers. */
14167 observer_attach_new_objfile (ada_new_objfile_observer);
14168 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14169 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14170
14171 /* Setup various context-specific data. */
e802dbe0 14172 ada_inferior_data
8e260fc0 14173 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14174 ada_pspace_data_handle
14175 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14176}
This page took 2.075365 seconds and 4 git commands to generate.