* ada-lang.c (to_fixed_range_type): Add ORIG_TYPE argument.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
4c4b4cd2 129static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 130 struct type *);
14f9c5c9 131
d2e4a39e 132static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 133 struct symbol *, struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
4c4b4cd2
PH
137static char *ada_op_name (enum exp_opcode);
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
aeb5907d
JB
149static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
4c4b4cd2 157static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 158 int, int, int *);
4c4b4cd2 159
d2e4a39e 160static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
d2e4a39e 170static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 171 struct type *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
d2e4a39e 178static struct type *packed_array_type (struct type *, long *);
14f9c5c9 179
d2e4a39e 180static struct type *decode_packed_array_type (struct type *);
14f9c5c9 181
d2e4a39e 182static struct value *decode_packed_array (struct value *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
52ce6436
PH
187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
d2e4a39e 200static int wild_match (const char *, int, const char *);
14f9c5c9 201
d2e4a39e 202static struct value *ada_coerce_ref (struct value *);
14f9c5c9 203
4c4b4cd2
PH
204static LONGEST pos_atr (struct value *);
205
3cb382c9 206static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 207
d2e4a39e 208static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static struct symbol *standard_lookup (const char *, const struct block *,
211 domain_enum);
14f9c5c9 212
4c4b4cd2
PH
213static struct value *ada_search_struct_field (char *, struct value *, int,
214 struct type *);
215
216static struct value *ada_value_primitive_field (struct value *, int, int,
217 struct type *);
218
76a01679 219static int find_struct_field (char *, struct type *, int,
52ce6436 220 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
221
222static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 struct value *);
224
225static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231static struct value *ada_coerce_to_simple_array (struct value *);
232
233static int ada_is_direct_array_type (struct type *);
234
72d5681a
PH
235static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
714e53ab
PH
237
238static void check_size (const struct type *);
52ce6436
PH
239
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
4c4b4cd2
PH
270\f
271
76a01679 272
4c4b4cd2 273/* Maximum-sized dynamic type. */
14f9c5c9
AS
274static unsigned int varsize_limit;
275
4c4b4cd2
PH
276/* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278static char *ada_completer_word_break_characters =
279#ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281#else
14f9c5c9 282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 283#endif
14f9c5c9 284
4c4b4cd2 285/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 286static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 287 = "__gnat_ada_main_program_name";
14f9c5c9 288
4c4b4cd2
PH
289/* Limit on the number of warnings to raise per expression evaluation. */
290static int warning_limit = 2;
291
292/* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294static int warnings_issued = 0;
295
296static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298};
299
300static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302};
303
304/* Space for allocating results of ada_lookup_symbol_list. */
305static struct obstack symbol_list_obstack;
306
307 /* Utilities */
308
41d27058
JB
309/* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
312
313static const char *
314ada_unqualified_name (const char *decoded_name)
315{
316 const char *result = strrchr (decoded_name, '.');
317
318 if (result != NULL)
319 result++; /* Skip the dot... */
320 else
321 result = decoded_name;
322
323 return result;
324}
325
326/* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
328
329static char *
330add_angle_brackets (const char *str)
331{
332 static char *result = NULL;
333
334 xfree (result);
88c15c34 335 result = xstrprintf ("<%s>", str);
41d27058
JB
336 return result;
337}
96d887e8 338
4c4b4cd2
PH
339static char *
340ada_get_gdb_completer_word_break_characters (void)
341{
342 return ada_completer_word_break_characters;
343}
344
e79af960
JB
345/* Print an array element index using the Ada syntax. */
346
347static void
348ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 349 const struct value_print_options *options)
e79af960 350{
79a45b7d 351 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
352 fprintf_filtered (stream, " => ");
353}
354
4c4b4cd2
PH
355/* Read the string located at ADDR from the inferior and store the
356 result into BUF. */
357
358static void
14f9c5c9
AS
359extract_string (CORE_ADDR addr, char *buf)
360{
d2e4a39e 361 int char_index = 0;
14f9c5c9 362
4c4b4cd2
PH
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
d2e4a39e
AS
365 do
366 {
367 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 368 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
369 char_index++;
370 }
371 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
372}
373
f27cf670 374/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 376 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 377
f27cf670
AS
378void *
379grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 380{
d2e4a39e
AS
381 if (*size < min_size)
382 {
383 *size *= 2;
384 if (*size < min_size)
4c4b4cd2 385 *size = min_size;
f27cf670 386 vect = xrealloc (vect, *size * element_size);
d2e4a39e 387 }
f27cf670 388 return vect;
14f9c5c9
AS
389}
390
391/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 392 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
393
394static int
ebf56fd3 395field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
396{
397 int len = strlen (target);
d2e4a39e 398 return
4c4b4cd2
PH
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
402 && strcmp (field_name + strlen (field_name) - 6,
403 "___XVN") != 0)));
14f9c5c9
AS
404}
405
406
872c8b51
JB
407/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
414
415int
416ada_get_field_index (const struct type *type, const char *field_name,
417 int maybe_missing)
418{
419 int fieldno;
872c8b51
JB
420 struct type *struct_type = check_typedef ((struct type *) type);
421
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
424 return fieldno;
425
426 if (!maybe_missing)
323e0a4a 427 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 428 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
429
430 return -1;
431}
432
433/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
434
435int
d2e4a39e 436ada_name_prefix_len (const char *name)
14f9c5c9
AS
437{
438 if (name == NULL)
439 return 0;
d2e4a39e 440 else
14f9c5c9 441 {
d2e4a39e 442 const char *p = strstr (name, "___");
14f9c5c9 443 if (p == NULL)
4c4b4cd2 444 return strlen (name);
14f9c5c9 445 else
4c4b4cd2 446 return p - name;
14f9c5c9
AS
447 }
448}
449
4c4b4cd2
PH
450/* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
452
14f9c5c9 453static int
d2e4a39e 454is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
455{
456 int len1, len2;
457 if (str == NULL)
458 return 0;
459 len1 = strlen (str);
460 len2 = strlen (suffix);
4c4b4cd2 461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
462}
463
4c4b4cd2
PH
464/* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
14f9c5c9 466
d2e4a39e 467static struct value *
4c4b4cd2 468coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 469{
61ee279c 470 type = ada_check_typedef (type);
df407dfe 471 if (value_type (val) == type)
4c4b4cd2 472 return val;
d2e4a39e 473 else
14f9c5c9 474 {
4c4b4cd2
PH
475 struct value *result;
476
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
714e53ab 479 check_size (type);
4c4b4cd2
PH
480
481 result = allocate_value (type);
74bcbdf3 482 set_value_component_location (result, val);
9bbda503
AC
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
42ae5230 485 set_value_address (result, value_address (val));
d69fe07e 486 if (value_lazy (val)
df407dfe 487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 488 set_value_lazy (result, 1);
d2e4a39e 489 else
0fd88904 490 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 491 TYPE_LENGTH (type));
14f9c5c9
AS
492 return result;
493 }
494}
495
fc1a4b47
AC
496static const gdb_byte *
497cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
498{
499 if (valaddr == NULL)
500 return NULL;
501 else
502 return valaddr + offset;
503}
504
505static CORE_ADDR
ebf56fd3 506cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
507{
508 if (address == 0)
509 return 0;
d2e4a39e 510 else
14f9c5c9
AS
511 return address + offset;
512}
513
4c4b4cd2
PH
514/* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
517 expression. */
a2249542 518
77109804
AC
519/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522
14f9c5c9 523static void
a2249542 524lim_warning (const char *format, ...)
14f9c5c9 525{
a2249542
MK
526 va_list args;
527 va_start (args, format);
528
4c4b4cd2
PH
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
a2249542
MK
531 vwarning (format, args);
532
533 va_end (args);
4c4b4cd2
PH
534}
535
714e53ab
PH
536/* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
538 GDB. */
539
540static void
541check_size (const struct type *type)
542{
543 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 544 error (_("object size is larger than varsize-limit"));
714e53ab
PH
545}
546
547
c3e5cd34
PH
548/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
551
552/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 553static LONGEST
c3e5cd34 554max_of_size (int size)
4c4b4cd2 555{
76a01679
JB
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
4c4b4cd2
PH
558}
559
c3e5cd34 560/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 561static LONGEST
c3e5cd34 562min_of_size (int size)
4c4b4cd2 563{
c3e5cd34 564 return -max_of_size (size) - 1;
4c4b4cd2
PH
565}
566
c3e5cd34 567/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 568static ULONGEST
c3e5cd34 569umax_of_size (int size)
4c4b4cd2 570{
76a01679
JB
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
4c4b4cd2
PH
573}
574
c3e5cd34
PH
575/* Maximum value of integral type T, as a signed quantity. */
576static LONGEST
577max_of_type (struct type *t)
4c4b4cd2 578{
c3e5cd34
PH
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
581 else
582 return max_of_size (TYPE_LENGTH (t));
583}
584
585/* Minimum value of integral type T, as a signed quantity. */
586static LONGEST
587min_of_type (struct type *t)
588{
589 if (TYPE_UNSIGNED (t))
590 return 0;
591 else
592 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
593}
594
595/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 596static LONGEST
4c4b4cd2
PH
597discrete_type_high_bound (struct type *type)
598{
76a01679 599 switch (TYPE_CODE (type))
4c4b4cd2
PH
600 {
601 case TYPE_CODE_RANGE:
690cc4eb 602 return TYPE_HIGH_BOUND (type);
4c4b4cd2 603 case TYPE_CODE_ENUM:
690cc4eb
PH
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
605 case TYPE_CODE_BOOL:
606 return 1;
607 case TYPE_CODE_CHAR:
76a01679 608 case TYPE_CODE_INT:
690cc4eb 609 return max_of_type (type);
4c4b4cd2 610 default:
323e0a4a 611 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
612 }
613}
614
615/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 616static LONGEST
4c4b4cd2
PH
617discrete_type_low_bound (struct type *type)
618{
76a01679 619 switch (TYPE_CODE (type))
4c4b4cd2
PH
620 {
621 case TYPE_CODE_RANGE:
690cc4eb 622 return TYPE_LOW_BOUND (type);
4c4b4cd2 623 case TYPE_CODE_ENUM:
690cc4eb
PH
624 return TYPE_FIELD_BITPOS (type, 0);
625 case TYPE_CODE_BOOL:
626 return 0;
627 case TYPE_CODE_CHAR:
76a01679 628 case TYPE_CODE_INT:
690cc4eb 629 return min_of_type (type);
4c4b4cd2 630 default:
323e0a4a 631 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
632 }
633}
634
635/* The identity on non-range types. For range types, the underlying
76a01679 636 non-range scalar type. */
4c4b4cd2
PH
637
638static struct type *
639base_type (struct type *type)
640{
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
642 {
76a01679
JB
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
644 return type;
4c4b4cd2
PH
645 type = TYPE_TARGET_TYPE (type);
646 }
647 return type;
14f9c5c9 648}
4c4b4cd2 649\f
76a01679 650
4c4b4cd2 651 /* Language Selection */
14f9c5c9
AS
652
653/* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
655
4c4b4cd2 656 MAIN_PST is not used. */
d2e4a39e 657
14f9c5c9 658enum language
d2e4a39e 659ada_update_initial_language (enum language lang,
4c4b4cd2 660 struct partial_symtab *main_pst)
14f9c5c9 661{
d2e4a39e 662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
663 (struct objfile *) NULL) != NULL)
664 return language_ada;
14f9c5c9
AS
665
666 return lang;
667}
96d887e8
PH
668
669/* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
672
673char *
674ada_main_name (void)
675{
676 struct minimal_symbol *msym;
f9bc20b9 677 static char *main_program_name = NULL;
6c038f32 678
96d887e8
PH
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
683 in Ada. */
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685
686 if (msym != NULL)
687 {
f9bc20b9
JB
688 CORE_ADDR main_program_name_addr;
689 int err_code;
690
96d887e8
PH
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
323e0a4a 693 error (_("Invalid address for Ada main program name."));
96d887e8 694
f9bc20b9
JB
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
697 1024, &err_code);
698
699 if (err_code != 0)
700 return NULL;
96d887e8
PH
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706}
14f9c5c9 707\f
4c4b4cd2 708 /* Symbols */
d2e4a39e 709
4c4b4cd2
PH
710/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
14f9c5c9 712
d2e4a39e
AS
713const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
14f9c5c9
AS
736};
737
4c4b4cd2
PH
738/* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
740
14f9c5c9 741char *
4c4b4cd2 742ada_encode (const char *decoded)
14f9c5c9 743{
4c4b4cd2
PH
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
d2e4a39e 746 const char *p;
14f9c5c9 747 int k;
d2e4a39e 748
4c4b4cd2 749 if (decoded == NULL)
14f9c5c9
AS
750 return NULL;
751
4c4b4cd2
PH
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
14f9c5c9
AS
754
755 k = 0;
4c4b4cd2 756 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 757 {
cdc7bb92 758 if (*p == '.')
4c4b4cd2
PH
759 {
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
761 k += 2;
762 }
14f9c5c9 763 else if (*p == '"')
4c4b4cd2
PH
764 {
765 const struct ada_opname_map *mapping;
766
767 for (mapping = ada_opname_table;
1265e4aa
JB
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
771 ;
772 if (mapping->encoded == NULL)
323e0a4a 773 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
776 break;
777 }
d2e4a39e 778 else
4c4b4cd2
PH
779 {
780 encoding_buffer[k] = *p;
781 k += 1;
782 }
14f9c5c9
AS
783 }
784
4c4b4cd2
PH
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
14f9c5c9
AS
787}
788
789/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
790 quotes, unfolded, but with the quotes stripped away. Result good
791 to next call. */
792
d2e4a39e
AS
793char *
794ada_fold_name (const char *name)
14f9c5c9 795{
d2e4a39e 796 static char *fold_buffer = NULL;
14f9c5c9
AS
797 static size_t fold_buffer_size = 0;
798
799 int len = strlen (name);
d2e4a39e 800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
801
802 if (name[0] == '\'')
803 {
d2e4a39e
AS
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
806 }
807 else
808 {
809 int i;
810 for (i = 0; i <= len; i += 1)
4c4b4cd2 811 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
812 }
813
814 return fold_buffer;
815}
816
529cad9c
PH
817/* Return nonzero if C is either a digit or a lowercase alphabet character. */
818
819static int
820is_lower_alphanum (const char c)
821{
822 return (isdigit (c) || (isalpha (c) && islower (c)));
823}
824
29480c32
JB
825/* Remove either of these suffixes:
826 . .{DIGIT}+
827 . ${DIGIT}+
828 . ___{DIGIT}+
829 . __{DIGIT}+.
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
833
834static void
835ada_remove_trailing_digits (const char *encoded, int *len)
836{
837 if (*len > 1 && isdigit (encoded[*len - 1]))
838 {
839 int i = *len - 2;
840 while (i > 0 && isdigit (encoded[i]))
841 i--;
842 if (i >= 0 && encoded[i] == '.')
843 *len = i;
844 else if (i >= 0 && encoded[i] == '$')
845 *len = i;
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
847 *len = i - 2;
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
849 *len = i - 1;
850 }
851}
852
853/* Remove the suffix introduced by the compiler for protected object
854 subprograms. */
855
856static void
857ada_remove_po_subprogram_suffix (const char *encoded, int *len)
858{
859 /* Remove trailing N. */
860
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
868
869 if (*len > 1
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
872 *len = *len - 1;
873}
874
875/* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
14f9c5c9 878
4c4b4cd2 879 The resulting string is valid until the next call of ada_decode.
29480c32 880 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
881 is returned. */
882
883const char *
884ada_decode (const char *encoded)
14f9c5c9
AS
885{
886 int i, j;
887 int len0;
d2e4a39e 888 const char *p;
4c4b4cd2 889 char *decoded;
14f9c5c9 890 int at_start_name;
4c4b4cd2
PH
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
d2e4a39e 893
29480c32
JB
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
4c4b4cd2
PH
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
14f9c5c9 899
29480c32
JB
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
4c4b4cd2 903 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
904 goto Suppress;
905
4c4b4cd2 906 len0 = strlen (encoded);
4c4b4cd2 907
29480c32
JB
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 910
4c4b4cd2
PH
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
917 {
918 if (p[3] == 'X')
4c4b4cd2 919 len0 = p - encoded;
14f9c5c9 920 else
4c4b4cd2 921 goto Suppress;
14f9c5c9 922 }
4c4b4cd2 923
29480c32
JB
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
4c4b4cd2 928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 929 len0 -= 3;
76a01679 930
29480c32
JB
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
933
4c4b4cd2 934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
935 len0 -= 1;
936
4c4b4cd2 937 /* Make decoded big enough for possible expansion by operator name. */
29480c32 938
4c4b4cd2
PH
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
14f9c5c9 941
29480c32
JB
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
943
4c4b4cd2 944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 945 {
4c4b4cd2
PH
946 i = len0 - 2;
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 i -= 1;
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 len0 = i - 1;
952 else if (encoded[i] == '$')
953 len0 = i;
d2e4a39e 954 }
14f9c5c9 955
29480c32
JB
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
958
4c4b4cd2
PH
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
14f9c5c9
AS
961
962 at_start_name = 1;
963 while (i < len0)
964 {
29480c32 965 /* Is this a symbol function? */
4c4b4cd2
PH
966 if (at_start_name && encoded[i] == 'O')
967 {
968 int k;
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
970 {
971 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
973 op_len - 1) == 0)
974 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
975 {
976 strcpy (decoded + j, ada_opname_table[k].decoded);
977 at_start_name = 0;
978 i += op_len;
979 j += strlen (ada_opname_table[k].decoded);
980 break;
981 }
982 }
983 if (ada_opname_table[k].encoded != NULL)
984 continue;
985 }
14f9c5c9
AS
986 at_start_name = 0;
987
529cad9c
PH
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
990
4c4b4cd2
PH
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 i += 2;
529cad9c 993
29480c32
JB
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
997
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1001 {
1002 int k = i + 5;
1003
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1006
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1010 i = k;
1011 }
1012
529cad9c
PH
1013 /* Remove _E{DIGITS}+[sb] */
1014
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1020 by a 'B'.
1021
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1025
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1028 {
1029 int k = i + 3;
1030
1031 while (k < len0 && isdigit (encoded[k]))
1032 k++;
1033
1034 if (k < len0
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 {
1037 k++;
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1041 if (k == len0
1042 || (k < len0 && encoded[k] == '_'))
1043 i = k;
1044 }
1045 }
1046
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1049
1050 if (i < len0 + 3
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1052 {
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1057
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 ptr--;
1060 if (ptr < encoded
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1062 i++;
1063 }
1064
4c4b4cd2
PH
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1066 {
29480c32
JB
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1073 package names. */
4c4b4cd2
PH
1074 do
1075 i += 1;
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1077 if (i < len0)
1078 goto Suppress;
1079 }
cdc7bb92 1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1081 {
29480c32 1082 /* Replace '__' by '.'. */
4c4b4cd2
PH
1083 decoded[j] = '.';
1084 at_start_name = 1;
1085 i += 2;
1086 j += 1;
1087 }
14f9c5c9 1088 else
4c4b4cd2 1089 {
29480c32
JB
1090 /* It's a character part of the decoded name, so just copy it
1091 over. */
4c4b4cd2
PH
1092 decoded[j] = encoded[i];
1093 i += 1;
1094 j += 1;
1095 }
14f9c5c9 1096 }
4c4b4cd2 1097 decoded[j] = '\000';
14f9c5c9 1098
29480c32
JB
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1101
4c4b4cd2
PH
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1104 goto Suppress;
1105
4c4b4cd2
PH
1106 if (strcmp (decoded, encoded) == 0)
1107 return encoded;
1108 else
1109 return decoded;
14f9c5c9
AS
1110
1111Suppress:
4c4b4cd2
PH
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
14f9c5c9 1116 else
88c15c34 1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1118 return decoded;
1119
1120}
1121
1122/* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127static struct htab *decoded_names_store;
1128
1129/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1134 GSYMBOL).
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
76a01679 1138*/
4c4b4cd2 1139
76a01679
JB
1140char *
1141ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1142{
76a01679 1143 char **resultp =
4c4b4cd2
PH
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1146 {
1147 const char *decoded = ada_decode (gsymbol->name);
714835d5 1148 if (gsymbol->obj_section != NULL)
76a01679 1149 {
714835d5
UW
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
76a01679 1153 }
4c4b4cd2 1154 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
4c4b4cd2 1158 if (*resultp == NULL)
76a01679
JB
1159 {
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 decoded, INSERT);
1162 if (*slot == NULL)
1163 *slot = xstrdup (decoded);
1164 *resultp = *slot;
1165 }
4c4b4cd2 1166 }
14f9c5c9 1167
4c4b4cd2
PH
1168 return *resultp;
1169}
76a01679 1170
2c0b251b 1171static char *
76a01679 1172ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1173{
1174 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1175}
1176
1177/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
14f9c5c9 1183
2c0b251b 1184static int
d2e4a39e 1185ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1186{
1187 if (sym_name == NULL || name == NULL)
1188 return 0;
1189 else if (wild)
1190 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1191 else
1192 {
1193 int len_name = strlen (name);
4c4b4cd2
PH
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1199 }
14f9c5c9 1200}
14f9c5c9 1201\f
d2e4a39e 1202
4c4b4cd2 1203 /* Arrays */
14f9c5c9 1204
4c4b4cd2 1205/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1206
d2e4a39e
AS
1207static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210};
1211
1212/* Maximum number of array dimensions we are prepared to handle. */
1213
4c4b4cd2 1214#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1215
4c4b4cd2 1216/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1217
1218static void
ebf56fd3 1219modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1220{
4c4b4cd2 1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1222}
1223
1224
4c4b4cd2
PH
1225/* The desc_* routines return primitive portions of array descriptors
1226 (fat pointers). */
14f9c5c9
AS
1227
1228/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1229 level of indirection, if needed. */
1230
d2e4a39e
AS
1231static struct type *
1232desc_base_type (struct type *type)
14f9c5c9
AS
1233{
1234 if (type == NULL)
1235 return NULL;
61ee279c 1236 type = ada_check_typedef (type);
1265e4aa
JB
1237 if (type != NULL
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1241 else
1242 return type;
1243}
1244
4c4b4cd2
PH
1245/* True iff TYPE indicates a "thin" array pointer type. */
1246
14f9c5c9 1247static int
d2e4a39e 1248is_thin_pntr (struct type *type)
14f9c5c9 1249{
d2e4a39e 1250 return
14f9c5c9
AS
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1253}
1254
4c4b4cd2
PH
1255/* The descriptor type for thin pointer type TYPE. */
1256
d2e4a39e
AS
1257static struct type *
1258thin_descriptor_type (struct type *type)
14f9c5c9 1259{
d2e4a39e 1260 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1261 if (base_type == NULL)
1262 return NULL;
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1264 return base_type;
d2e4a39e 1265 else
14f9c5c9 1266 {
d2e4a39e 1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1268 if (alt_type == NULL)
4c4b4cd2 1269 return base_type;
14f9c5c9 1270 else
4c4b4cd2 1271 return alt_type;
14f9c5c9
AS
1272 }
1273}
1274
4c4b4cd2
PH
1275/* A pointer to the array data for thin-pointer value VAL. */
1276
d2e4a39e
AS
1277static struct value *
1278thin_data_pntr (struct value *val)
14f9c5c9 1279{
df407dfe 1280 struct type *type = value_type (val);
556bdfd4
UW
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1283
14f9c5c9 1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1285 return value_cast (data_type, value_copy (val));
d2e4a39e 1286 else
42ae5230 1287 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1288}
1289
4c4b4cd2
PH
1290/* True iff TYPE indicates a "thick" array pointer type. */
1291
14f9c5c9 1292static int
d2e4a39e 1293is_thick_pntr (struct type *type)
14f9c5c9
AS
1294{
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1298}
1299
4c4b4cd2
PH
1300/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1302
d2e4a39e
AS
1303static struct type *
1304desc_bounds_type (struct type *type)
14f9c5c9 1305{
d2e4a39e 1306 struct type *r;
14f9c5c9
AS
1307
1308 type = desc_base_type (type);
1309
1310 if (type == NULL)
1311 return NULL;
1312 else if (is_thin_pntr (type))
1313 {
1314 type = thin_descriptor_type (type);
1315 if (type == NULL)
4c4b4cd2 1316 return NULL;
14f9c5c9
AS
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 if (r != NULL)
61ee279c 1319 return ada_check_typedef (r);
14f9c5c9
AS
1320 }
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 {
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 if (r != NULL)
61ee279c 1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1326 }
1327 return NULL;
1328}
1329
1330/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1331 one, a pointer to its bounds data. Otherwise NULL. */
1332
d2e4a39e
AS
1333static struct value *
1334desc_bounds (struct value *arr)
14f9c5c9 1335{
df407dfe 1336 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1337 if (is_thin_pntr (type))
14f9c5c9 1338 {
d2e4a39e 1339 struct type *bounds_type =
4c4b4cd2 1340 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1341 LONGEST addr;
1342
4cdfadb1 1343 if (bounds_type == NULL)
323e0a4a 1344 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1345
1346 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1347 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1348 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1350 addr = value_as_long (arr);
d2e4a39e 1351 else
42ae5230 1352 addr = value_address (arr);
14f9c5c9 1353
d2e4a39e 1354 return
4c4b4cd2
PH
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1357 }
1358
1359 else if (is_thick_pntr (type))
d2e4a39e 1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1361 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1362 else
1363 return NULL;
1364}
1365
4c4b4cd2
PH
1366/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1368
14f9c5c9 1369static int
d2e4a39e 1370fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1371{
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373}
1374
1375/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1376 size of the field containing the address of the bounds data. */
1377
14f9c5c9 1378static int
d2e4a39e 1379fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1380{
1381 type = desc_base_type (type);
1382
d2e4a39e 1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1384 return TYPE_FIELD_BITSIZE (type, 1);
1385 else
61ee279c 1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1387}
1388
4c4b4cd2 1389/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 data. */
4c4b4cd2 1393
d2e4a39e 1394static struct type *
556bdfd4 1395desc_data_target_type (struct type *type)
14f9c5c9
AS
1396{
1397 type = desc_base_type (type);
1398
4c4b4cd2 1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1400 if (is_thin_pntr (type))
556bdfd4 1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1402 else if (is_thick_pntr (type))
556bdfd4
UW
1403 {
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1405
1406 if (data_type
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1409 }
1410
1411 return NULL;
14f9c5c9
AS
1412}
1413
1414/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 its array data. */
4c4b4cd2 1416
d2e4a39e
AS
1417static struct value *
1418desc_data (struct value *arr)
14f9c5c9 1419{
df407dfe 1420 struct type *type = value_type (arr);
14f9c5c9
AS
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
d2e4a39e 1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1425 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1426 else
1427 return NULL;
1428}
1429
1430
1431/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1432 position of the field containing the address of the data. */
1433
14f9c5c9 1434static int
d2e4a39e 1435fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1436{
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1438}
1439
1440/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1441 size of the field containing the address of the data. */
1442
14f9c5c9 1443static int
d2e4a39e 1444fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1445{
1446 type = desc_base_type (type);
1447
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1450 else
14f9c5c9
AS
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1452}
1453
4c4b4cd2 1454/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1456 bound, if WHICH is 1. The first bound is I=1. */
1457
d2e4a39e
AS
1458static struct value *
1459desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1460{
d2e4a39e 1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1462 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1463}
1464
1465/* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
14f9c5c9 1469static int
d2e4a39e 1470desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1471{
d2e4a39e 1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1473}
1474
1475/* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
76a01679 1479static int
d2e4a39e 1480desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1481{
1482 type = desc_base_type (type);
1483
d2e4a39e
AS
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 else
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1488}
1489
1490/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1492
d2e4a39e
AS
1493static struct type *
1494desc_index_type (struct type *type, int i)
14f9c5c9
AS
1495{
1496 type = desc_base_type (type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1500 else
14f9c5c9
AS
1501 return NULL;
1502}
1503
4c4b4cd2
PH
1504/* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1506
14f9c5c9 1507static int
d2e4a39e 1508desc_arity (struct type *type)
14f9c5c9
AS
1509{
1510 type = desc_base_type (type);
1511
1512 if (type != NULL)
1513 return TYPE_NFIELDS (type) / 2;
1514 return 0;
1515}
1516
4c4b4cd2
PH
1517/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1519 type). */
1520
76a01679
JB
1521static int
1522ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1523{
1524 if (type == NULL)
1525 return 0;
61ee279c 1526 type = ada_check_typedef (type);
4c4b4cd2 1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1528 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1529}
1530
52ce6436
PH
1531/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1532 * to one. */
1533
2c0b251b 1534static int
52ce6436
PH
1535ada_is_array_type (struct type *type)
1536{
1537 while (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1542}
1543
4c4b4cd2 1544/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1545
14f9c5c9 1546int
4c4b4cd2 1547ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1548{
1549 if (type == NULL)
1550 return 0;
61ee279c 1551 type = ada_check_typedef (type);
14f9c5c9 1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1555}
1556
4c4b4cd2
PH
1557/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558
14f9c5c9 1559int
4c4b4cd2 1560ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1561{
556bdfd4 1562 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1563
1564 if (type == NULL)
1565 return 0;
61ee279c 1566 type = ada_check_typedef (type);
556bdfd4
UW
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1570}
1571
1572/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1573 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1574 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1575 is still needed. */
1576
14f9c5c9 1577int
ebf56fd3 1578ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1579{
d2e4a39e 1580 return
14f9c5c9
AS
1581 type != NULL
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1586}
1587
1588
4c4b4cd2 1589/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1590 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1592 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1595 a descriptor. */
d2e4a39e
AS
1596struct type *
1597ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1598{
df407dfe
AC
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
14f9c5c9 1601
df407dfe
AC
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
d2e4a39e
AS
1604
1605 if (!bounds)
1606 return
556bdfd4 1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
14f9c5c9
AS
1608 else
1609 {
d2e4a39e 1610 struct type *elt_type;
14f9c5c9 1611 int arity;
d2e4a39e 1612 struct value *descriptor;
df407dfe 1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1614
df407dfe
AC
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
14f9c5c9 1617
d2e4a39e 1618 if (elt_type == NULL || arity == 0)
df407dfe 1619 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1620
1621 descriptor = desc_bounds (arr);
d2e4a39e 1622 if (value_as_long (descriptor) == 0)
4c4b4cd2 1623 return NULL;
d2e4a39e 1624 while (arity > 0)
4c4b4cd2
PH
1625 {
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 arity -= 1;
1631
df407dfe 1632 create_range_type (range_type, value_type (low),
529cad9c
PH
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1636 }
14f9c5c9
AS
1637
1638 return lookup_pointer_type (elt_type);
1639 }
1640}
1641
1642/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1646
d2e4a39e
AS
1647struct value *
1648ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1649{
df407dfe 1650 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1651 {
d2e4a39e 1652 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1653 if (arrType == NULL)
4c4b4cd2 1654 return NULL;
14f9c5c9
AS
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1656 }
df407dfe 1657 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661}
1662
1663/* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1665 be ARR itself if it already is in the proper form). */
1666
1667static struct value *
d2e4a39e 1668ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1669{
df407dfe 1670 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1671 {
d2e4a39e 1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1673 if (arrVal == NULL)
323e0a4a 1674 error (_("Bounds unavailable for null array pointer."));
529cad9c 1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1676 return value_ind (arrVal);
1677 }
df407dfe 1678 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1679 return decode_packed_array (arr);
d2e4a39e 1680 else
14f9c5c9
AS
1681 return arr;
1682}
1683
1684/* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1686 packing). For other types, is the identity. */
1687
d2e4a39e
AS
1688struct type *
1689ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1690{
17280b9f
UW
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1693
1694 if (ada_is_array_descriptor_type (type))
556bdfd4 1695 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1696
1697 return type;
14f9c5c9
AS
1698}
1699
4c4b4cd2
PH
1700/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701
14f9c5c9 1702int
d2e4a39e 1703ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1704{
1705 if (type == NULL)
1706 return 0;
4c4b4cd2 1707 type = desc_base_type (type);
61ee279c 1708 type = ada_check_typedef (type);
d2e4a39e 1709 return
14f9c5c9
AS
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1712}
1713
1714/* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 in bits. */
1722
d2e4a39e
AS
1723static struct type *
1724packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1725{
d2e4a39e
AS
1726 struct type *new_elt_type;
1727 struct type *new_type;
14f9c5c9
AS
1728 LONGEST low_bound, high_bound;
1729
61ee279c 1730 type = ada_check_typedef (type);
14f9c5c9
AS
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 return type;
1733
1734 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1736 elt_bits);
262452ec 1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1740
262452ec 1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1742 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1746 else
14f9c5c9
AS
1747 {
1748 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1749 TYPE_LENGTH (new_type) =
4c4b4cd2 1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1751 }
1752
876cecd0 1753 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1754 return new_type;
1755}
1756
4c4b4cd2
PH
1757/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1758
d2e4a39e
AS
1759static struct type *
1760decode_packed_array_type (struct type *type)
1761{
4c4b4cd2 1762 struct symbol *sym;
d2e4a39e 1763 struct block **blocks;
727e3d2e
JB
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 char *name;
1766 char *tail;
d2e4a39e 1767 struct type *shadow_type;
14f9c5c9
AS
1768 long bits;
1769 int i, n;
1770
727e3d2e
JB
1771 if (!raw_name)
1772 raw_name = ada_type_name (desc_base_type (type));
1773
1774 if (!raw_name)
1775 return NULL;
1776
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1779 type = desc_base_type (type);
1780
14f9c5c9
AS
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1783
4c4b4cd2
PH
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1786 {
323e0a4a 1787 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1788 return NULL;
1789 }
4c4b4cd2 1790 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1791 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1792
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1794 {
323e0a4a 1795 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1796 return NULL;
1797 }
d2e4a39e 1798
14f9c5c9
AS
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 {
4c4b4cd2 1801 lim_warning
323e0a4a 1802 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1803 return NULL;
1804 }
d2e4a39e 1805
14f9c5c9
AS
1806 return packed_array_type (shadow_type, &bits);
1807}
1808
4c4b4cd2 1809/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
4c4b4cd2 1813 type length is set appropriately. */
14f9c5c9 1814
d2e4a39e
AS
1815static struct value *
1816decode_packed_array (struct value *arr)
14f9c5c9 1817{
4c4b4cd2 1818 struct type *type;
14f9c5c9 1819
4c4b4cd2 1820 arr = ada_coerce_ref (arr);
284614f0
JB
1821
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
df407dfe 1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1829 arr = value_ind (arr);
4c4b4cd2 1830
df407dfe 1831 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1832 if (type == NULL)
1833 {
323e0a4a 1834 error (_("can't unpack array"));
14f9c5c9
AS
1835 return NULL;
1836 }
61ee279c 1837
32c9a795
MD
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1840 {
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1846 ULONGEST mod;
1847
df407dfe 1848 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1849 bit_size = 0;
1850 while (mod > 0)
1851 {
1852 bit_size += 1;
1853 mod >>= 1;
1854 }
df407dfe 1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1859 bit_size,
1860 type);
1861 }
1862
4c4b4cd2 1863 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1864}
1865
1866
1867/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1868 given in IND. ARR must be a simple array. */
14f9c5c9 1869
d2e4a39e
AS
1870static struct value *
1871value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1872{
1873 int i;
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
d2e4a39e
AS
1876 struct type *elt_type;
1877 struct value *v;
14f9c5c9
AS
1878
1879 bits = 0;
1880 elt_total_bit_offset = 0;
df407dfe 1881 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1882 for (i = 0; i < arity; i += 1)
14f9c5c9 1883 {
d2e4a39e 1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1886 error
323e0a4a 1887 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1888 else
4c4b4cd2
PH
1889 {
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1892 LONGEST idx;
1893
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1895 {
323e0a4a 1896 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1897 lowerbound = upperbound = 0;
1898 }
1899
3cb382c9 1900 idx = pos_atr (ind[i]);
4c4b4cd2 1901 if (idx < lowerbound || idx > upperbound)
323e0a4a 1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1906 }
14f9c5c9
AS
1907 }
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1910
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1912 bits, elt_type);
14f9c5c9
AS
1913 return v;
1914}
1915
4c4b4cd2 1916/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1917
1918static int
d2e4a39e 1919has_negatives (struct type *type)
14f9c5c9 1920{
d2e4a39e
AS
1921 switch (TYPE_CODE (type))
1922 {
1923 default:
1924 return 0;
1925 case TYPE_CODE_INT:
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1929 }
14f9c5c9 1930}
d2e4a39e 1931
14f9c5c9
AS
1932
1933/* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1941
d2e4a39e 1942struct value *
fc1a4b47 1943ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1944 long offset, int bit_offset, int bit_size,
4c4b4cd2 1945 struct type *type)
14f9c5c9 1946{
d2e4a39e 1947 struct value *v;
4c4b4cd2
PH
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1956 unsigned char *unpacked;
4c4b4cd2 1957 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1958 unsigned char sign;
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
32c9a795 1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1963
61ee279c 1964 type = ada_check_typedef (type);
14f9c5c9
AS
1965
1966 if (obj == NULL)
1967 {
1968 v = allocate_value (type);
d2e4a39e 1969 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1970 }
9214ee5f 1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1972 {
1973 v = value_at (type,
42ae5230 1974 value_address (obj) + offset);
d2e4a39e 1975 bytes = (unsigned char *) alloca (len);
42ae5230 1976 read_memory (value_address (v), bytes, len);
14f9c5c9 1977 }
d2e4a39e 1978 else
14f9c5c9
AS
1979 {
1980 v = allocate_value (type);
0fd88904 1981 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1982 }
d2e4a39e
AS
1983
1984 if (obj != NULL)
14f9c5c9 1985 {
42ae5230 1986 CORE_ADDR new_addr;
74bcbdf3 1987 set_value_component_location (v, obj);
42ae5230 1988 new_addr = value_address (obj) + offset;
9bbda503
AC
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
df407dfe 1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 1992 {
42ae5230 1993 ++new_addr;
9bbda503 1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1995 }
42ae5230 1996 set_value_address (v, new_addr);
14f9c5c9
AS
1997 }
1998 else
9bbda503 1999 set_value_bitsize (v, bit_size);
0fd88904 2000 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2001
2002 srcBitsLeft = bit_size;
2003 nsrc = len;
2004 ntarg = TYPE_LENGTH (type);
2005 sign = 0;
2006 if (bit_size == 0)
2007 {
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2009 return v;
2010 }
32c9a795 2011 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2012 {
d2e4a39e 2013 src = len - 1;
1265e4aa
JB
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2016 sign = ~0;
d2e4a39e
AS
2017
2018 unusedLS =
4c4b4cd2
PH
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 % HOST_CHAR_BIT;
14f9c5c9
AS
2021
2022 switch (TYPE_CODE (type))
4c4b4cd2
PH
2023 {
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2028 accumSize =
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2031 of the target. */
529cad9c 2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2033 ntarg = targ + 1;
4c4b4cd2
PH
2034 break;
2035 default:
2036 accumSize = 0;
2037 targ = TYPE_LENGTH (type) - 1;
2038 break;
2039 }
14f9c5c9 2040 }
d2e4a39e 2041 else
14f9c5c9
AS
2042 {
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044
2045 src = targ = 0;
2046 unusedLS = bit_offset;
2047 accumSize = 0;
2048
d2e4a39e 2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2050 sign = ~0;
14f9c5c9 2051 }
d2e4a39e 2052
14f9c5c9
AS
2053 accum = 0;
2054 while (nsrc > 0)
2055 {
2056 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2057 part of the value. */
d2e4a39e 2058 unsigned int unusedMSMask =
4c4b4cd2
PH
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2060 1;
2061 /* Sign-extend bits for this byte. */
14f9c5c9 2062 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2063 accum |=
4c4b4cd2 2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2065 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2066 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2067 {
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2071 ntarg -= 1;
2072 targ += delta;
2073 }
14f9c5c9
AS
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2075 unusedLS = 0;
2076 nsrc -= 1;
2077 src += delta;
2078 }
2079 while (ntarg > 0)
2080 {
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2085 ntarg -= 1;
2086 targ += delta;
2087 }
2088
2089 return v;
2090}
d2e4a39e 2091
14f9c5c9
AS
2092/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2094 not overlap. */
14f9c5c9 2095static void
fc1a4b47 2096move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2097 int src_offset, int n)
14f9c5c9
AS
2098{
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2101
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
32c9a795 2106 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2107 {
2108 accum = (unsigned char) *source;
2109 source += 1;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2111
d2e4a39e 2112 while (n > 0)
4c4b4cd2
PH
2113 {
2114 int unused_right;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2117 source += 1;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 if (chunk_size > n)
2120 chunk_size = n;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2123 *target =
2124 (*target & ~mask)
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 target += 1;
2129 targ_offset = 0;
2130 }
14f9c5c9
AS
2131 }
2132 else
2133 {
2134 accum = (unsigned char) *source >> src_offset;
2135 source += 1;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2137
d2e4a39e 2138 while (n > 0)
4c4b4cd2
PH
2139 {
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2148 n -= chunk_size;
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2151 target += 1;
2152 targ_offset = 0;
2153 }
14f9c5c9
AS
2154 }
2155}
2156
14f9c5c9
AS
2157/* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2160 floating-point or non-scalar types. */
14f9c5c9 2161
d2e4a39e
AS
2162static struct value *
2163ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2164{
df407dfe
AC
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
14f9c5c9 2167
52ce6436
PH
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2170
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2175
88e3b34b 2176 if (!deprecated_value_modifiable (toval))
323e0a4a 2177 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2178
d2e4a39e 2179 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2180 && bits > 0
d2e4a39e 2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2183 {
df407dfe
AC
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2186 int from_size;
d2e4a39e
AS
2187 char *buffer = (char *) alloca (len);
2188 struct value *val;
42ae5230 2189 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2192 fromval = value_cast (type, fromval);
14f9c5c9 2193
52ce6436 2194 read_memory (to_addr, buffer, len);
aced2898
PH
2195 from_size = value_bitsize (fromval);
2196 if (from_size == 0)
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2198 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2199 move_bits (buffer, value_bitpos (toval),
aced2898 2200 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2201 else
0fd88904 2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2203 0, bits);
52ce6436
PH
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2207
14f9c5c9 2208 val = value_copy (toval);
0fd88904 2209 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2210 TYPE_LENGTH (type));
04624583 2211 deprecated_set_value_type (val, type);
d2e4a39e 2212
14f9c5c9
AS
2213 return val;
2214 }
2215
2216 return value_assign (toval, fromval);
2217}
2218
2219
52ce6436
PH
2220/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2225static void
2226value_assign_to_component (struct value *container, struct value *component,
2227 struct value *val)
2228{
2229 LONGEST offset_in_container =
42ae5230 2230 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2233 int bits;
2234
2235 val = value_cast (value_type (component), val);
2236
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2239 else
2240 bits = value_bitsize (component);
2241
32c9a795 2242 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 bits);
2248 else
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2252}
2253
4c4b4cd2
PH
2254/* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2256 thereto. */
2257
d2e4a39e
AS
2258struct value *
2259ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2260{
2261 int k;
d2e4a39e
AS
2262 struct value *elt;
2263 struct type *elt_type;
14f9c5c9
AS
2264
2265 elt = ada_coerce_to_simple_array (arr);
2266
df407dfe 2267 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2271
2272 for (k = 0; k < arity; k += 1)
2273 {
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2275 error (_("too many subscripts (%d expected)"), k);
2497b498 2276 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2277 }
2278 return elt;
2279}
2280
2281/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2283 IND. Does not read the entire array into memory. */
14f9c5c9 2284
2c0b251b 2285static struct value *
d2e4a39e 2286ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2287 struct value **ind)
14f9c5c9
AS
2288{
2289 int k;
2290
2291 for (k = 0; k < arity; k += 1)
2292 {
2293 LONGEST lwb, upb;
14f9c5c9
AS
2294
2295 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2296 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2297 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2298 value_copy (arr));
14f9c5c9 2299 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2300 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2301 type = TYPE_TARGET_TYPE (type);
2302 }
2303
2304 return value_ind (arr);
2305}
2306
0b5d8877 2307/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2308 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2309 elements starting at index LOW. The lower bound of this array is LOW, as
2310 per Ada rules. */
0b5d8877 2311static struct value *
f5938064
JG
2312ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2313 int low, int high)
0b5d8877 2314{
6c038f32 2315 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2316 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2317 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2318 struct type *index_type =
2319 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2320 low, high);
6c038f32 2321 struct type *slice_type =
0b5d8877 2322 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2323 return value_at_lazy (slice_type, base);
0b5d8877
PH
2324}
2325
2326
2327static struct value *
2328ada_value_slice (struct value *array, int low, int high)
2329{
df407dfe 2330 struct type *type = value_type (array);
6c038f32 2331 struct type *index_type =
0b5d8877 2332 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2333 struct type *slice_type =
0b5d8877 2334 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2335 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2336}
2337
14f9c5c9
AS
2338/* If type is a record type in the form of a standard GNAT array
2339 descriptor, returns the number of dimensions for type. If arr is a
2340 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2341 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2342
2343int
d2e4a39e 2344ada_array_arity (struct type *type)
14f9c5c9
AS
2345{
2346 int arity;
2347
2348 if (type == NULL)
2349 return 0;
2350
2351 type = desc_base_type (type);
2352
2353 arity = 0;
d2e4a39e 2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2355 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2356 else
2357 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2358 {
4c4b4cd2 2359 arity += 1;
61ee279c 2360 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2361 }
d2e4a39e 2362
14f9c5c9
AS
2363 return arity;
2364}
2365
2366/* If TYPE is a record type in the form of a standard GNAT array
2367 descriptor or a simple array type, returns the element type for
2368 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2369 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2370
d2e4a39e
AS
2371struct type *
2372ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2373{
2374 type = desc_base_type (type);
2375
d2e4a39e 2376 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2377 {
2378 int k;
d2e4a39e 2379 struct type *p_array_type;
14f9c5c9 2380
556bdfd4 2381 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2382
2383 k = ada_array_arity (type);
2384 if (k == 0)
4c4b4cd2 2385 return NULL;
d2e4a39e 2386
4c4b4cd2 2387 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2388 if (nindices >= 0 && k > nindices)
4c4b4cd2 2389 k = nindices;
d2e4a39e 2390 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2391 {
61ee279c 2392 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2393 k -= 1;
2394 }
14f9c5c9
AS
2395 return p_array_type;
2396 }
2397 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2400 {
2401 type = TYPE_TARGET_TYPE (type);
2402 nindices -= 1;
2403 }
14f9c5c9
AS
2404 return type;
2405 }
2406
2407 return NULL;
2408}
2409
4c4b4cd2 2410/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2411 Does not examine memory. Throws an error if N is invalid or TYPE
2412 is not an array type. NAME is the name of the Ada attribute being
2413 evaluated ('range, 'first, 'last, or 'length); it is used in building
2414 the error message. */
14f9c5c9 2415
1eea4ebd
UW
2416static struct type *
2417ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2418{
4c4b4cd2
PH
2419 struct type *result_type;
2420
14f9c5c9
AS
2421 type = desc_base_type (type);
2422
1eea4ebd
UW
2423 if (n < 0 || n > ada_array_arity (type))
2424 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2425
4c4b4cd2 2426 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2427 {
2428 int i;
2429
2430 for (i = 1; i < n; i += 1)
4c4b4cd2 2431 type = TYPE_TARGET_TYPE (type);
262452ec 2432 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2433 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2434 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2435 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2436 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2437 result_type = NULL;
14f9c5c9 2438 }
d2e4a39e 2439 else
1eea4ebd
UW
2440 {
2441 result_type = desc_index_type (desc_bounds_type (type), n);
2442 if (result_type == NULL)
2443 error (_("attempt to take bound of something that is not an array"));
2444 }
2445
2446 return result_type;
14f9c5c9
AS
2447}
2448
2449/* Given that arr is an array type, returns the lower bound of the
2450 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2451 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2452 array-descriptor type. It works for other arrays with bounds supplied
2453 by run-time quantities other than discriminants. */
14f9c5c9 2454
abb68b3e 2455static LONGEST
1eea4ebd 2456ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2457{
1ce677a4 2458 struct type *type, *elt_type, *index_type_desc, *index_type;
262452ec 2459 LONGEST retval;
1ce677a4 2460 int i;
262452ec
JK
2461
2462 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2463
2464 if (ada_is_packed_array_type (arr_type))
2465 arr_type = decode_packed_array_type (arr_type);
2466
4c4b4cd2 2467 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2468 return (LONGEST) - which;
14f9c5c9
AS
2469
2470 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2471 type = TYPE_TARGET_TYPE (arr_type);
2472 else
2473 type = arr_type;
2474
1ce677a4
UW
2475 elt_type = type;
2476 for (i = n; i > 1; i--)
2477 elt_type = TYPE_TARGET_TYPE (type);
2478
14f9c5c9 2479 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2480 if (index_type_desc != NULL)
2481 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2482 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2483 else
1ce677a4 2484 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec
JK
2485
2486 switch (TYPE_CODE (index_type))
14f9c5c9 2487 {
262452ec
JK
2488 case TYPE_CODE_RANGE:
2489 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2490 : TYPE_HIGH_BOUND (index_type);
2491 break;
2492 case TYPE_CODE_ENUM:
2493 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2494 : TYPE_FIELD_BITPOS (index_type,
2495 TYPE_NFIELDS (index_type) - 1);
2496 break;
2497 default:
2498 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2499 }
abb68b3e 2500
262452ec 2501 return retval;
14f9c5c9
AS
2502}
2503
2504/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2505 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2506 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2507 supplied by run-time quantities other than discriminants. */
14f9c5c9 2508
1eea4ebd 2509static LONGEST
4dc81987 2510ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2511{
df407dfe 2512 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2513
2514 if (ada_is_packed_array_type (arr_type))
2515 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2516 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2517 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2518 else
1eea4ebd 2519 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2520}
2521
2522/* Given that arr is an array value, returns the length of the
2523 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2524 supplied by run-time quantities other than discriminants.
2525 Does not work for arrays indexed by enumeration types with representation
2526 clauses at the moment. */
14f9c5c9 2527
1eea4ebd 2528static LONGEST
d2e4a39e 2529ada_array_length (struct value *arr, int n)
14f9c5c9 2530{
df407dfe 2531 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2532
2533 if (ada_is_packed_array_type (arr_type))
2534 return ada_array_length (decode_packed_array (arr), n);
2535
4c4b4cd2 2536 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2537 return (ada_array_bound_from_type (arr_type, n, 1)
2538 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2539 else
1eea4ebd
UW
2540 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2541 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2542}
2543
2544/* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547static struct value *
2548empty_array (struct type *arr_type, int low)
2549{
6c038f32 2550 struct type *index_type =
0b5d8877
PH
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2555}
14f9c5c9 2556\f
d2e4a39e 2557
4c4b4cd2 2558 /* Name resolution */
14f9c5c9 2559
4c4b4cd2
PH
2560/* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
14f9c5c9 2562
d2e4a39e 2563static const char *
4c4b4cd2 2564ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2565{
2566 int i;
2567
4c4b4cd2 2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2569 {
2570 if (ada_opname_table[i].op == op)
4c4b4cd2 2571 return ada_opname_table[i].decoded;
14f9c5c9 2572 }
323e0a4a 2573 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2574}
2575
2576
4c4b4cd2
PH
2577/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2584 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2585
4c4b4cd2
PH
2586static void
2587resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2588{
2589 int pc;
2590 pc = 0;
4c4b4cd2 2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2592}
2593
4c4b4cd2
PH
2594/* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
14f9c5c9 2602
d2e4a39e 2603static struct value *
4c4b4cd2 2604resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2605 struct type *context_type)
14f9c5c9
AS
2606{
2607 int pc = *pos;
2608 int i;
4c4b4cd2 2609 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
52ce6436 2613 int oplen;
14f9c5c9
AS
2614
2615 argvec = NULL;
2616 nargs = 0;
2617 exp = *expp;
2618
52ce6436
PH
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2620 if needed. */
14f9c5c9
AS
2621 switch (op)
2622 {
4c4b4cd2
PH
2623 case OP_FUNCALL:
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2626 *pos += 7;
4c4b4cd2
PH
2627 else
2628 {
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 0, NULL);
2631 }
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2633 break;
2634
14f9c5c9 2635 case UNOP_ADDR:
4c4b4cd2
PH
2636 *pos += 1;
2637 resolve_subexp (expp, pos, 0, NULL);
2638 break;
2639
52ce6436
PH
2640 case UNOP_QUAL:
2641 *pos += 3;
17466c1a 2642 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2643 break;
2644
52ce6436 2645 case OP_ATR_MODULUS:
4c4b4cd2
PH
2646 case OP_ATR_SIZE:
2647 case OP_ATR_TAG:
4c4b4cd2
PH
2648 case OP_ATR_FIRST:
2649 case OP_ATR_LAST:
2650 case OP_ATR_LENGTH:
2651 case OP_ATR_POS:
2652 case OP_ATR_VAL:
4c4b4cd2
PH
2653 case OP_ATR_MIN:
2654 case OP_ATR_MAX:
52ce6436
PH
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2657 case UNOP_IN_RANGE:
2658 case OP_AGGREGATE:
2659 case OP_OTHERS:
2660 case OP_CHOICES:
2661 case OP_POSITIONAL:
2662 case OP_DISCRETE_RANGE:
2663 case OP_NAME:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2665 *pos += oplen;
14f9c5c9
AS
2666 break;
2667
2668 case BINOP_ASSIGN:
2669 {
4c4b4cd2
PH
2670 struct value *arg1;
2671
2672 *pos += 1;
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2674 if (arg1 == NULL)
2675 resolve_subexp (expp, pos, 1, NULL);
2676 else
df407dfe 2677 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2678 break;
14f9c5c9
AS
2679 }
2680
4c4b4cd2 2681 case UNOP_CAST:
4c4b4cd2
PH
2682 *pos += 3;
2683 nargs = 1;
2684 break;
14f9c5c9 2685
4c4b4cd2
PH
2686 case BINOP_ADD:
2687 case BINOP_SUB:
2688 case BINOP_MUL:
2689 case BINOP_DIV:
2690 case BINOP_REM:
2691 case BINOP_MOD:
2692 case BINOP_EXP:
2693 case BINOP_CONCAT:
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
14f9c5c9 2699
4c4b4cd2
PH
2700 case BINOP_EQUAL:
2701 case BINOP_NOTEQUAL:
2702 case BINOP_LESS:
2703 case BINOP_GTR:
2704 case BINOP_LEQ:
2705 case BINOP_GEQ:
14f9c5c9 2706
4c4b4cd2
PH
2707 case BINOP_REPEAT:
2708 case BINOP_SUBSCRIPT:
2709 case BINOP_COMMA:
40c8aaa9
JB
2710 *pos += 1;
2711 nargs = 2;
2712 break;
14f9c5c9 2713
4c4b4cd2
PH
2714 case UNOP_NEG:
2715 case UNOP_PLUS:
2716 case UNOP_LOGICAL_NOT:
2717 case UNOP_ABS:
2718 case UNOP_IND:
2719 *pos += 1;
2720 nargs = 1;
2721 break;
14f9c5c9 2722
4c4b4cd2
PH
2723 case OP_LONG:
2724 case OP_DOUBLE:
2725 case OP_VAR_VALUE:
2726 *pos += 4;
2727 break;
14f9c5c9 2728
4c4b4cd2
PH
2729 case OP_TYPE:
2730 case OP_BOOL:
2731 case OP_LAST:
4c4b4cd2
PH
2732 case OP_INTERNALVAR:
2733 *pos += 3;
2734 break;
14f9c5c9 2735
4c4b4cd2
PH
2736 case UNOP_MEMVAL:
2737 *pos += 3;
2738 nargs = 1;
2739 break;
2740
67f3407f
DJ
2741 case OP_REGISTER:
2742 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2743 break;
2744
4c4b4cd2
PH
2745 case STRUCTOP_STRUCT:
2746 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2747 nargs = 1;
2748 break;
2749
4c4b4cd2 2750 case TERNOP_SLICE:
4c4b4cd2
PH
2751 *pos += 1;
2752 nargs = 3;
2753 break;
2754
52ce6436 2755 case OP_STRING:
14f9c5c9 2756 break;
4c4b4cd2
PH
2757
2758 default:
323e0a4a 2759 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2760 }
2761
76a01679 2762 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2763 for (i = 0; i < nargs; i += 1)
2764 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2765 argvec[i] = NULL;
2766 exp = *expp;
2767
2768 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2769 switch (op)
2770 {
2771 default:
2772 break;
2773
14f9c5c9 2774 case OP_VAR_VALUE:
4c4b4cd2 2775 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2776 {
2777 struct ada_symbol_info *candidates;
2778 int n_candidates;
2779
2780 n_candidates =
2781 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2782 (exp->elts[pc + 2].symbol),
2783 exp->elts[pc + 1].block, VAR_DOMAIN,
2784 &candidates);
2785
2786 if (n_candidates > 1)
2787 {
2788 /* Types tend to get re-introduced locally, so if there
2789 are any local symbols that are not types, first filter
2790 out all types. */
2791 int j;
2792 for (j = 0; j < n_candidates; j += 1)
2793 switch (SYMBOL_CLASS (candidates[j].sym))
2794 {
2795 case LOC_REGISTER:
2796 case LOC_ARG:
2797 case LOC_REF_ARG:
76a01679
JB
2798 case LOC_REGPARM_ADDR:
2799 case LOC_LOCAL:
76a01679 2800 case LOC_COMPUTED:
76a01679
JB
2801 goto FoundNonType;
2802 default:
2803 break;
2804 }
2805 FoundNonType:
2806 if (j < n_candidates)
2807 {
2808 j = 0;
2809 while (j < n_candidates)
2810 {
2811 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2812 {
2813 candidates[j] = candidates[n_candidates - 1];
2814 n_candidates -= 1;
2815 }
2816 else
2817 j += 1;
2818 }
2819 }
2820 }
2821
2822 if (n_candidates == 0)
323e0a4a 2823 error (_("No definition found for %s"),
76a01679
JB
2824 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2825 else if (n_candidates == 1)
2826 i = 0;
2827 else if (deprocedure_p
2828 && !is_nonfunction (candidates, n_candidates))
2829 {
06d5cf63
JB
2830 i = ada_resolve_function
2831 (candidates, n_candidates, NULL, 0,
2832 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2833 context_type);
76a01679 2834 if (i < 0)
323e0a4a 2835 error (_("Could not find a match for %s"),
76a01679
JB
2836 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2837 }
2838 else
2839 {
323e0a4a 2840 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2841 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2842 user_select_syms (candidates, n_candidates, 1);
2843 i = 0;
2844 }
2845
2846 exp->elts[pc + 1].block = candidates[i].block;
2847 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2848 if (innermost_block == NULL
2849 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2850 innermost_block = candidates[i].block;
2851 }
2852
2853 if (deprocedure_p
2854 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2855 == TYPE_CODE_FUNC))
2856 {
2857 replace_operator_with_call (expp, pc, 0, 0,
2858 exp->elts[pc + 2].symbol,
2859 exp->elts[pc + 1].block);
2860 exp = *expp;
2861 }
14f9c5c9
AS
2862 break;
2863
2864 case OP_FUNCALL:
2865 {
4c4b4cd2 2866 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2868 {
2869 struct ada_symbol_info *candidates;
2870 int n_candidates;
2871
2872 n_candidates =
76a01679
JB
2873 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2874 (exp->elts[pc + 5].symbol),
2875 exp->elts[pc + 4].block, VAR_DOMAIN,
2876 &candidates);
4c4b4cd2
PH
2877 if (n_candidates == 1)
2878 i = 0;
2879 else
2880 {
06d5cf63
JB
2881 i = ada_resolve_function
2882 (candidates, n_candidates,
2883 argvec, nargs,
2884 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2885 context_type);
4c4b4cd2 2886 if (i < 0)
323e0a4a 2887 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2888 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2889 }
2890
2891 exp->elts[pc + 4].block = candidates[i].block;
2892 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2893 if (innermost_block == NULL
2894 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2895 innermost_block = candidates[i].block;
2896 }
14f9c5c9
AS
2897 }
2898 break;
2899 case BINOP_ADD:
2900 case BINOP_SUB:
2901 case BINOP_MUL:
2902 case BINOP_DIV:
2903 case BINOP_REM:
2904 case BINOP_MOD:
2905 case BINOP_CONCAT:
2906 case BINOP_BITWISE_AND:
2907 case BINOP_BITWISE_IOR:
2908 case BINOP_BITWISE_XOR:
2909 case BINOP_EQUAL:
2910 case BINOP_NOTEQUAL:
2911 case BINOP_LESS:
2912 case BINOP_GTR:
2913 case BINOP_LEQ:
2914 case BINOP_GEQ:
2915 case BINOP_EXP:
2916 case UNOP_NEG:
2917 case UNOP_PLUS:
2918 case UNOP_LOGICAL_NOT:
2919 case UNOP_ABS:
2920 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2921 {
2922 struct ada_symbol_info *candidates;
2923 int n_candidates;
2924
2925 n_candidates =
2926 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2927 (struct block *) NULL, VAR_DOMAIN,
2928 &candidates);
2929 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2930 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2931 if (i < 0)
2932 break;
2933
76a01679
JB
2934 replace_operator_with_call (expp, pc, nargs, 1,
2935 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2936 exp = *expp;
2937 }
14f9c5c9 2938 break;
4c4b4cd2
PH
2939
2940 case OP_TYPE:
b3dbf008 2941 case OP_REGISTER:
4c4b4cd2 2942 return NULL;
14f9c5c9
AS
2943 }
2944
2945 *pos = pc;
2946 return evaluate_subexp_type (exp, pos);
2947}
2948
2949/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2950 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2951 a non-pointer. A type of 'void' (which is never a valid expression type)
2952 by convention matches anything. */
14f9c5c9 2953/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2954 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2955
2956static int
4dc81987 2957ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2958{
61ee279c
PH
2959 ftype = ada_check_typedef (ftype);
2960 atype = ada_check_typedef (atype);
14f9c5c9
AS
2961
2962 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2963 ftype = TYPE_TARGET_TYPE (ftype);
2964 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2965 atype = TYPE_TARGET_TYPE (atype);
2966
d2e4a39e 2967 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2968 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2969 return 1;
2970
d2e4a39e 2971 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2972 {
2973 default:
2974 return 1;
2975 case TYPE_CODE_PTR:
2976 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2977 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2978 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2979 else
1265e4aa
JB
2980 return (may_deref
2981 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
2982 case TYPE_CODE_INT:
2983 case TYPE_CODE_ENUM:
2984 case TYPE_CODE_RANGE:
2985 switch (TYPE_CODE (atype))
4c4b4cd2
PH
2986 {
2987 case TYPE_CODE_INT:
2988 case TYPE_CODE_ENUM:
2989 case TYPE_CODE_RANGE:
2990 return 1;
2991 default:
2992 return 0;
2993 }
14f9c5c9
AS
2994
2995 case TYPE_CODE_ARRAY:
d2e4a39e 2996 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 2997 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
2998
2999 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3000 if (ada_is_array_descriptor_type (ftype))
3001 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3002 || ada_is_array_descriptor_type (atype));
14f9c5c9 3003 else
4c4b4cd2
PH
3004 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3005 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3006
3007 case TYPE_CODE_UNION:
3008 case TYPE_CODE_FLT:
3009 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3010 }
3011}
3012
3013/* Return non-zero if the formals of FUNC "sufficiently match" the
3014 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3015 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3016 argument function. */
14f9c5c9
AS
3017
3018static int
d2e4a39e 3019ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3020{
3021 int i;
d2e4a39e 3022 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3023
1265e4aa
JB
3024 if (SYMBOL_CLASS (func) == LOC_CONST
3025 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3026 return (n_actuals == 0);
3027 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3028 return 0;
3029
3030 if (TYPE_NFIELDS (func_type) != n_actuals)
3031 return 0;
3032
3033 for (i = 0; i < n_actuals; i += 1)
3034 {
4c4b4cd2 3035 if (actuals[i] == NULL)
76a01679
JB
3036 return 0;
3037 else
3038 {
61ee279c 3039 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3040 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3041
76a01679
JB
3042 if (!ada_type_match (ftype, atype, 1))
3043 return 0;
3044 }
14f9c5c9
AS
3045 }
3046 return 1;
3047}
3048
3049/* False iff function type FUNC_TYPE definitely does not produce a value
3050 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3051 FUNC_TYPE is not a valid function type with a non-null return type
3052 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3053
3054static int
d2e4a39e 3055return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3056{
d2e4a39e 3057 struct type *return_type;
14f9c5c9
AS
3058
3059 if (func_type == NULL)
3060 return 1;
3061
4c4b4cd2
PH
3062 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3063 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3064 else
3065 return_type = base_type (func_type);
14f9c5c9
AS
3066 if (return_type == NULL)
3067 return 1;
3068
4c4b4cd2 3069 context_type = base_type (context_type);
14f9c5c9
AS
3070
3071 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3072 return context_type == NULL || return_type == context_type;
3073 else if (context_type == NULL)
3074 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3075 else
3076 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3077}
3078
3079
4c4b4cd2 3080/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3081 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3082 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3083 that returns that type, then eliminate matches that don't. If
3084 CONTEXT_TYPE is void and there is at least one match that does not
3085 return void, eliminate all matches that do.
3086
14f9c5c9
AS
3087 Asks the user if there is more than one match remaining. Returns -1
3088 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3089 solely for messages. May re-arrange and modify SYMS in
3090 the process; the index returned is for the modified vector. */
14f9c5c9 3091
4c4b4cd2
PH
3092static int
3093ada_resolve_function (struct ada_symbol_info syms[],
3094 int nsyms, struct value **args, int nargs,
3095 const char *name, struct type *context_type)
14f9c5c9
AS
3096{
3097 int k;
4c4b4cd2 3098 int m; /* Number of hits */
d2e4a39e
AS
3099 struct type *fallback;
3100 struct type *return_type;
14f9c5c9
AS
3101
3102 return_type = context_type;
3103 if (context_type == NULL)
3104 fallback = builtin_type_void;
3105 else
3106 fallback = NULL;
3107
d2e4a39e 3108 m = 0;
14f9c5c9
AS
3109 while (1)
3110 {
3111 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3112 {
61ee279c 3113 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3114
3115 if (ada_args_match (syms[k].sym, args, nargs)
3116 && return_match (type, return_type))
3117 {
3118 syms[m] = syms[k];
3119 m += 1;
3120 }
3121 }
14f9c5c9 3122 if (m > 0 || return_type == fallback)
4c4b4cd2 3123 break;
14f9c5c9 3124 else
4c4b4cd2 3125 return_type = fallback;
14f9c5c9
AS
3126 }
3127
3128 if (m == 0)
3129 return -1;
3130 else if (m > 1)
3131 {
323e0a4a 3132 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3133 user_select_syms (syms, m, 1);
14f9c5c9
AS
3134 return 0;
3135 }
3136 return 0;
3137}
3138
4c4b4cd2
PH
3139/* Returns true (non-zero) iff decoded name N0 should appear before N1
3140 in a listing of choices during disambiguation (see sort_choices, below).
3141 The idea is that overloadings of a subprogram name from the
3142 same package should sort in their source order. We settle for ordering
3143 such symbols by their trailing number (__N or $N). */
3144
14f9c5c9 3145static int
4c4b4cd2 3146encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3147{
3148 if (N1 == NULL)
3149 return 0;
3150 else if (N0 == NULL)
3151 return 1;
3152 else
3153 {
3154 int k0, k1;
d2e4a39e 3155 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3156 ;
d2e4a39e 3157 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3158 ;
d2e4a39e 3159 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3160 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3161 {
3162 int n0, n1;
3163 n0 = k0;
3164 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3165 n0 -= 1;
3166 n1 = k1;
3167 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3168 n1 -= 1;
3169 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3170 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3171 }
14f9c5c9
AS
3172 return (strcmp (N0, N1) < 0);
3173 }
3174}
d2e4a39e 3175
4c4b4cd2
PH
3176/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3177 encoded names. */
3178
d2e4a39e 3179static void
4c4b4cd2 3180sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3181{
4c4b4cd2 3182 int i;
d2e4a39e 3183 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3184 {
4c4b4cd2 3185 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3186 int j;
3187
d2e4a39e 3188 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3189 {
3190 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3191 SYMBOL_LINKAGE_NAME (sym.sym)))
3192 break;
3193 syms[j + 1] = syms[j];
3194 }
d2e4a39e 3195 syms[j + 1] = sym;
14f9c5c9
AS
3196 }
3197}
3198
4c4b4cd2
PH
3199/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3200 by asking the user (if necessary), returning the number selected,
3201 and setting the first elements of SYMS items. Error if no symbols
3202 selected. */
14f9c5c9
AS
3203
3204/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3205 to be re-integrated one of these days. */
14f9c5c9
AS
3206
3207int
4c4b4cd2 3208user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3209{
3210 int i;
d2e4a39e 3211 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3212 int n_chosen;
3213 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3214 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3215
3216 if (max_results < 1)
323e0a4a 3217 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3218 if (nsyms <= 1)
3219 return nsyms;
3220
717d2f5a
JB
3221 if (select_mode == multiple_symbols_cancel)
3222 error (_("\
3223canceled because the command is ambiguous\n\
3224See set/show multiple-symbol."));
3225
3226 /* If select_mode is "all", then return all possible symbols.
3227 Only do that if more than one symbol can be selected, of course.
3228 Otherwise, display the menu as usual. */
3229 if (select_mode == multiple_symbols_all && max_results > 1)
3230 return nsyms;
3231
323e0a4a 3232 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3233 if (max_results > 1)
323e0a4a 3234 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3235
4c4b4cd2 3236 sort_choices (syms, nsyms);
14f9c5c9
AS
3237
3238 for (i = 0; i < nsyms; i += 1)
3239 {
4c4b4cd2
PH
3240 if (syms[i].sym == NULL)
3241 continue;
3242
3243 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3244 {
76a01679
JB
3245 struct symtab_and_line sal =
3246 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3247 if (sal.symtab == NULL)
3248 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3249 i + first_choice,
3250 SYMBOL_PRINT_NAME (syms[i].sym),
3251 sal.line);
3252 else
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3254 SYMBOL_PRINT_NAME (syms[i].sym),
3255 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3256 continue;
3257 }
d2e4a39e 3258 else
4c4b4cd2
PH
3259 {
3260 int is_enumeral =
3261 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3262 && SYMBOL_TYPE (syms[i].sym) != NULL
3263 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3264 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3265
3266 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3267 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3268 i + first_choice,
3269 SYMBOL_PRINT_NAME (syms[i].sym),
3270 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3271 else if (is_enumeral
3272 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3273 {
a3f17187 3274 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3275 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3276 gdb_stdout, -1, 0);
323e0a4a 3277 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3279 }
3280 else if (symtab != NULL)
3281 printf_unfiltered (is_enumeral
323e0a4a
AC
3282 ? _("[%d] %s in %s (enumeral)\n")
3283 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3284 i + first_choice,
3285 SYMBOL_PRINT_NAME (syms[i].sym),
3286 symtab->filename);
3287 else
3288 printf_unfiltered (is_enumeral
323e0a4a
AC
3289 ? _("[%d] %s (enumeral)\n")
3290 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym));
3293 }
14f9c5c9 3294 }
d2e4a39e 3295
14f9c5c9 3296 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3297 "overload-choice");
14f9c5c9
AS
3298
3299 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3300 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3301
3302 return n_chosen;
3303}
3304
3305/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3306 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3307 order in CHOICES[0 .. N-1], and return N.
3308
3309 The user types choices as a sequence of numbers on one line
3310 separated by blanks, encoding them as follows:
3311
4c4b4cd2 3312 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3313 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3314 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3315
4c4b4cd2 3316 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3317
3318 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3319 prompts (for use with the -f switch). */
14f9c5c9
AS
3320
3321int
d2e4a39e 3322get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3323 int is_all_choice, char *annotation_suffix)
14f9c5c9 3324{
d2e4a39e 3325 char *args;
0bcd0149 3326 char *prompt;
14f9c5c9
AS
3327 int n_chosen;
3328 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3329
14f9c5c9
AS
3330 prompt = getenv ("PS2");
3331 if (prompt == NULL)
0bcd0149 3332 prompt = "> ";
14f9c5c9 3333
0bcd0149 3334 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3335
14f9c5c9 3336 if (args == NULL)
323e0a4a 3337 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3338
3339 n_chosen = 0;
76a01679 3340
4c4b4cd2
PH
3341 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3342 order, as given in args. Choices are validated. */
14f9c5c9
AS
3343 while (1)
3344 {
d2e4a39e 3345 char *args2;
14f9c5c9
AS
3346 int choice, j;
3347
3348 while (isspace (*args))
4c4b4cd2 3349 args += 1;
14f9c5c9 3350 if (*args == '\0' && n_chosen == 0)
323e0a4a 3351 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3352 else if (*args == '\0')
4c4b4cd2 3353 break;
14f9c5c9
AS
3354
3355 choice = strtol (args, &args2, 10);
d2e4a39e 3356 if (args == args2 || choice < 0
4c4b4cd2 3357 || choice > n_choices + first_choice - 1)
323e0a4a 3358 error (_("Argument must be choice number"));
14f9c5c9
AS
3359 args = args2;
3360
d2e4a39e 3361 if (choice == 0)
323e0a4a 3362 error (_("cancelled"));
14f9c5c9
AS
3363
3364 if (choice < first_choice)
4c4b4cd2
PH
3365 {
3366 n_chosen = n_choices;
3367 for (j = 0; j < n_choices; j += 1)
3368 choices[j] = j;
3369 break;
3370 }
14f9c5c9
AS
3371 choice -= first_choice;
3372
d2e4a39e 3373 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3374 {
3375 }
14f9c5c9
AS
3376
3377 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3378 {
3379 int k;
3380 for (k = n_chosen - 1; k > j; k -= 1)
3381 choices[k + 1] = choices[k];
3382 choices[j + 1] = choice;
3383 n_chosen += 1;
3384 }
14f9c5c9
AS
3385 }
3386
3387 if (n_chosen > max_results)
323e0a4a 3388 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3389
14f9c5c9
AS
3390 return n_chosen;
3391}
3392
4c4b4cd2
PH
3393/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3394 on the function identified by SYM and BLOCK, and taking NARGS
3395 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3396
3397static void
d2e4a39e 3398replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3399 int oplen, struct symbol *sym,
3400 struct block *block)
14f9c5c9
AS
3401{
3402 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3403 symbol, -oplen for operator being replaced). */
d2e4a39e 3404 struct expression *newexp = (struct expression *)
14f9c5c9 3405 xmalloc (sizeof (struct expression)
4c4b4cd2 3406 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3407 struct expression *exp = *expp;
14f9c5c9
AS
3408
3409 newexp->nelts = exp->nelts + 7 - oplen;
3410 newexp->language_defn = exp->language_defn;
3411 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3412 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3413 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3414
3415 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3416 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3417
3418 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3419 newexp->elts[pc + 4].block = block;
3420 newexp->elts[pc + 5].symbol = sym;
3421
3422 *expp = newexp;
aacb1f0a 3423 xfree (exp);
d2e4a39e 3424}
14f9c5c9
AS
3425
3426/* Type-class predicates */
3427
4c4b4cd2
PH
3428/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3429 or FLOAT). */
14f9c5c9
AS
3430
3431static int
d2e4a39e 3432numeric_type_p (struct type *type)
14f9c5c9
AS
3433{
3434 if (type == NULL)
3435 return 0;
d2e4a39e
AS
3436 else
3437 {
3438 switch (TYPE_CODE (type))
4c4b4cd2
PH
3439 {
3440 case TYPE_CODE_INT:
3441 case TYPE_CODE_FLT:
3442 return 1;
3443 case TYPE_CODE_RANGE:
3444 return (type == TYPE_TARGET_TYPE (type)
3445 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3446 default:
3447 return 0;
3448 }
d2e4a39e 3449 }
14f9c5c9
AS
3450}
3451
4c4b4cd2 3452/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3453
3454static int
d2e4a39e 3455integer_type_p (struct type *type)
14f9c5c9
AS
3456{
3457 if (type == NULL)
3458 return 0;
d2e4a39e
AS
3459 else
3460 {
3461 switch (TYPE_CODE (type))
4c4b4cd2
PH
3462 {
3463 case TYPE_CODE_INT:
3464 return 1;
3465 case TYPE_CODE_RANGE:
3466 return (type == TYPE_TARGET_TYPE (type)
3467 || integer_type_p (TYPE_TARGET_TYPE (type)));
3468 default:
3469 return 0;
3470 }
d2e4a39e 3471 }
14f9c5c9
AS
3472}
3473
4c4b4cd2 3474/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3475
3476static int
d2e4a39e 3477scalar_type_p (struct type *type)
14f9c5c9
AS
3478{
3479 if (type == NULL)
3480 return 0;
d2e4a39e
AS
3481 else
3482 {
3483 switch (TYPE_CODE (type))
4c4b4cd2
PH
3484 {
3485 case TYPE_CODE_INT:
3486 case TYPE_CODE_RANGE:
3487 case TYPE_CODE_ENUM:
3488 case TYPE_CODE_FLT:
3489 return 1;
3490 default:
3491 return 0;
3492 }
d2e4a39e 3493 }
14f9c5c9
AS
3494}
3495
4c4b4cd2 3496/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3497
3498static int
d2e4a39e 3499discrete_type_p (struct type *type)
14f9c5c9
AS
3500{
3501 if (type == NULL)
3502 return 0;
d2e4a39e
AS
3503 else
3504 {
3505 switch (TYPE_CODE (type))
4c4b4cd2
PH
3506 {
3507 case TYPE_CODE_INT:
3508 case TYPE_CODE_RANGE:
3509 case TYPE_CODE_ENUM:
3510 return 1;
3511 default:
3512 return 0;
3513 }
d2e4a39e 3514 }
14f9c5c9
AS
3515}
3516
4c4b4cd2
PH
3517/* Returns non-zero if OP with operands in the vector ARGS could be
3518 a user-defined function. Errs on the side of pre-defined operators
3519 (i.e., result 0). */
14f9c5c9
AS
3520
3521static int
d2e4a39e 3522possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3523{
76a01679 3524 struct type *type0 =
df407dfe 3525 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3526 struct type *type1 =
df407dfe 3527 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3528
4c4b4cd2
PH
3529 if (type0 == NULL)
3530 return 0;
3531
14f9c5c9
AS
3532 switch (op)
3533 {
3534 default:
3535 return 0;
3536
3537 case BINOP_ADD:
3538 case BINOP_SUB:
3539 case BINOP_MUL:
3540 case BINOP_DIV:
d2e4a39e 3541 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3542
3543 case BINOP_REM:
3544 case BINOP_MOD:
3545 case BINOP_BITWISE_AND:
3546 case BINOP_BITWISE_IOR:
3547 case BINOP_BITWISE_XOR:
d2e4a39e 3548 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3549
3550 case BINOP_EQUAL:
3551 case BINOP_NOTEQUAL:
3552 case BINOP_LESS:
3553 case BINOP_GTR:
3554 case BINOP_LEQ:
3555 case BINOP_GEQ:
d2e4a39e 3556 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3557
3558 case BINOP_CONCAT:
ee90b9ab 3559 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3560
3561 case BINOP_EXP:
d2e4a39e 3562 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3563
3564 case UNOP_NEG:
3565 case UNOP_PLUS:
3566 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3567 case UNOP_ABS:
3568 return (!numeric_type_p (type0));
14f9c5c9
AS
3569
3570 }
3571}
3572\f
4c4b4cd2 3573 /* Renaming */
14f9c5c9 3574
aeb5907d
JB
3575/* NOTES:
3576
3577 1. In the following, we assume that a renaming type's name may
3578 have an ___XD suffix. It would be nice if this went away at some
3579 point.
3580 2. We handle both the (old) purely type-based representation of
3581 renamings and the (new) variable-based encoding. At some point,
3582 it is devoutly to be hoped that the former goes away
3583 (FIXME: hilfinger-2007-07-09).
3584 3. Subprogram renamings are not implemented, although the XRS
3585 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3586
3587/* If SYM encodes a renaming,
3588
3589 <renaming> renames <renamed entity>,
3590
3591 sets *LEN to the length of the renamed entity's name,
3592 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3593 the string describing the subcomponent selected from the renamed
3594 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3595 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3596 are undefined). Otherwise, returns a value indicating the category
3597 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3598 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3599 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3600 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3601 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3602 may be NULL, in which case they are not assigned.
3603
3604 [Currently, however, GCC does not generate subprogram renamings.] */
3605
3606enum ada_renaming_category
3607ada_parse_renaming (struct symbol *sym,
3608 const char **renamed_entity, int *len,
3609 const char **renaming_expr)
3610{
3611 enum ada_renaming_category kind;
3612 const char *info;
3613 const char *suffix;
3614
3615 if (sym == NULL)
3616 return ADA_NOT_RENAMING;
3617 switch (SYMBOL_CLASS (sym))
14f9c5c9 3618 {
aeb5907d
JB
3619 default:
3620 return ADA_NOT_RENAMING;
3621 case LOC_TYPEDEF:
3622 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3623 renamed_entity, len, renaming_expr);
3624 case LOC_LOCAL:
3625 case LOC_STATIC:
3626 case LOC_COMPUTED:
3627 case LOC_OPTIMIZED_OUT:
3628 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3629 if (info == NULL)
3630 return ADA_NOT_RENAMING;
3631 switch (info[5])
3632 {
3633 case '_':
3634 kind = ADA_OBJECT_RENAMING;
3635 info += 6;
3636 break;
3637 case 'E':
3638 kind = ADA_EXCEPTION_RENAMING;
3639 info += 7;
3640 break;
3641 case 'P':
3642 kind = ADA_PACKAGE_RENAMING;
3643 info += 7;
3644 break;
3645 case 'S':
3646 kind = ADA_SUBPROGRAM_RENAMING;
3647 info += 7;
3648 break;
3649 default:
3650 return ADA_NOT_RENAMING;
3651 }
14f9c5c9 3652 }
4c4b4cd2 3653
aeb5907d
JB
3654 if (renamed_entity != NULL)
3655 *renamed_entity = info;
3656 suffix = strstr (info, "___XE");
3657 if (suffix == NULL || suffix == info)
3658 return ADA_NOT_RENAMING;
3659 if (len != NULL)
3660 *len = strlen (info) - strlen (suffix);
3661 suffix += 5;
3662 if (renaming_expr != NULL)
3663 *renaming_expr = suffix;
3664 return kind;
3665}
3666
3667/* Assuming TYPE encodes a renaming according to the old encoding in
3668 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3669 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3670 ADA_NOT_RENAMING otherwise. */
3671static enum ada_renaming_category
3672parse_old_style_renaming (struct type *type,
3673 const char **renamed_entity, int *len,
3674 const char **renaming_expr)
3675{
3676 enum ada_renaming_category kind;
3677 const char *name;
3678 const char *info;
3679 const char *suffix;
14f9c5c9 3680
aeb5907d
JB
3681 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3682 || TYPE_NFIELDS (type) != 1)
3683 return ADA_NOT_RENAMING;
14f9c5c9 3684
aeb5907d
JB
3685 name = type_name_no_tag (type);
3686 if (name == NULL)
3687 return ADA_NOT_RENAMING;
3688
3689 name = strstr (name, "___XR");
3690 if (name == NULL)
3691 return ADA_NOT_RENAMING;
3692 switch (name[5])
3693 {
3694 case '\0':
3695 case '_':
3696 kind = ADA_OBJECT_RENAMING;
3697 break;
3698 case 'E':
3699 kind = ADA_EXCEPTION_RENAMING;
3700 break;
3701 case 'P':
3702 kind = ADA_PACKAGE_RENAMING;
3703 break;
3704 case 'S':
3705 kind = ADA_SUBPROGRAM_RENAMING;
3706 break;
3707 default:
3708 return ADA_NOT_RENAMING;
3709 }
14f9c5c9 3710
aeb5907d
JB
3711 info = TYPE_FIELD_NAME (type, 0);
3712 if (info == NULL)
3713 return ADA_NOT_RENAMING;
3714 if (renamed_entity != NULL)
3715 *renamed_entity = info;
3716 suffix = strstr (info, "___XE");
3717 if (renaming_expr != NULL)
3718 *renaming_expr = suffix + 5;
3719 if (suffix == NULL || suffix == info)
3720 return ADA_NOT_RENAMING;
3721 if (len != NULL)
3722 *len = suffix - info;
3723 return kind;
3724}
52ce6436 3725
14f9c5c9 3726\f
d2e4a39e 3727
4c4b4cd2 3728 /* Evaluation: Function Calls */
14f9c5c9 3729
4c4b4cd2
PH
3730/* Return an lvalue containing the value VAL. This is the identity on
3731 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3732 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3733 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3734
d2e4a39e 3735static struct value *
4c4b4cd2 3736ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3737{
c3e5cd34
PH
3738 if (! VALUE_LVAL (val))
3739 {
df407dfe 3740 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3741
3742 /* The following is taken from the structure-return code in
3743 call_function_by_hand. FIXME: Therefore, some refactoring seems
3744 indicated. */
4d1e7dd1 3745 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34 3746 {
42ae5230 3747 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3748 reserving sufficient space. */
3749 *sp -= len;
3750 if (gdbarch_frame_align_p (current_gdbarch))
3751 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3752 set_value_address (val, *sp);
c3e5cd34
PH
3753 }
3754 else
3755 {
3756 /* Stack grows upward. Align the frame, allocate space, and
3757 then again, re-align the frame. */
3758 if (gdbarch_frame_align_p (current_gdbarch))
3759 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3760 set_value_address (val, *sp);
c3e5cd34
PH
3761 *sp += len;
3762 if (gdbarch_frame_align_p (current_gdbarch))
3763 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3764 }
a84a8a0d 3765 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3766
42ae5230 3767 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3768 }
14f9c5c9
AS
3769
3770 return val;
3771}
3772
3773/* Return the value ACTUAL, converted to be an appropriate value for a
3774 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3775 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3776 values not residing in memory, updating it as needed. */
14f9c5c9 3777
a93c0eb6
JB
3778struct value *
3779ada_convert_actual (struct value *actual, struct type *formal_type0,
3780 CORE_ADDR *sp)
14f9c5c9 3781{
df407dfe 3782 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3783 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3784 struct type *formal_target =
3785 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3786 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3787 struct type *actual_target =
3788 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3789 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3790
4c4b4cd2 3791 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3792 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3793 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3794 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3795 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3796 {
a84a8a0d 3797 struct value *result;
14f9c5c9 3798 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3799 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3800 result = desc_data (actual);
14f9c5c9 3801 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3802 {
3803 if (VALUE_LVAL (actual) != lval_memory)
3804 {
3805 struct value *val;
df407dfe 3806 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3807 val = allocate_value (actual_type);
990a07ab 3808 memcpy ((char *) value_contents_raw (val),
0fd88904 3809 (char *) value_contents (actual),
4c4b4cd2
PH
3810 TYPE_LENGTH (actual_type));
3811 actual = ensure_lval (val, sp);
3812 }
a84a8a0d 3813 result = value_addr (actual);
4c4b4cd2 3814 }
a84a8a0d
JB
3815 else
3816 return actual;
3817 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3818 }
3819 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3820 return ada_value_ind (actual);
3821
3822 return actual;
3823}
3824
3825
4c4b4cd2
PH
3826/* Push a descriptor of type TYPE for array value ARR on the stack at
3827 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3828 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3829 to-descriptor type rather than a descriptor type), a struct value *
3830 representing a pointer to this descriptor. */
14f9c5c9 3831
d2e4a39e
AS
3832static struct value *
3833make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3834{
d2e4a39e
AS
3835 struct type *bounds_type = desc_bounds_type (type);
3836 struct type *desc_type = desc_base_type (type);
3837 struct value *descriptor = allocate_value (desc_type);
3838 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3839 int i;
d2e4a39e 3840
df407dfe 3841 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3842 {
0fd88904 3843 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3844 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3845 desc_bound_bitpos (bounds_type, i, 0),
3846 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3847 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3848 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3849 desc_bound_bitpos (bounds_type, i, 1),
3850 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3851 }
d2e4a39e 3852
4c4b4cd2 3853 bounds = ensure_lval (bounds, sp);
d2e4a39e 3854
0fd88904 3855 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3856 value_address (ensure_lval (arr, sp)),
76a01679
JB
3857 fat_pntr_data_bitpos (desc_type),
3858 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3859
0fd88904 3860 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3861 value_address (bounds),
4c4b4cd2
PH
3862 fat_pntr_bounds_bitpos (desc_type),
3863 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3864
4c4b4cd2 3865 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3866
3867 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3868 return value_addr (descriptor);
3869 else
3870 return descriptor;
3871}
14f9c5c9 3872\f
963a6417
PH
3873/* Dummy definitions for an experimental caching module that is not
3874 * used in the public sources. */
96d887e8 3875
96d887e8
PH
3876static int
3877lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3878 struct symbol **sym, struct block **block)
96d887e8
PH
3879{
3880 return 0;
3881}
3882
3883static void
3884cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3885 struct block *block)
96d887e8
PH
3886{
3887}
4c4b4cd2
PH
3888\f
3889 /* Symbol Lookup */
3890
3891/* Return the result of a standard (literal, C-like) lookup of NAME in
3892 given DOMAIN, visible from lexical block BLOCK. */
3893
3894static struct symbol *
3895standard_lookup (const char *name, const struct block *block,
3896 domain_enum domain)
3897{
3898 struct symbol *sym;
4c4b4cd2 3899
2570f2b7 3900 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3901 return sym;
2570f2b7
UW
3902 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3903 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3904 return sym;
3905}
3906
3907
3908/* Non-zero iff there is at least one non-function/non-enumeral symbol
3909 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3910 since they contend in overloading in the same way. */
3911static int
3912is_nonfunction (struct ada_symbol_info syms[], int n)
3913{
3914 int i;
3915
3916 for (i = 0; i < n; i += 1)
3917 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3918 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3919 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3920 return 1;
3921
3922 return 0;
3923}
3924
3925/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3926 struct types. Otherwise, they may not. */
14f9c5c9
AS
3927
3928static int
d2e4a39e 3929equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3930{
d2e4a39e 3931 if (type0 == type1)
14f9c5c9 3932 return 1;
d2e4a39e 3933 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3934 || TYPE_CODE (type0) != TYPE_CODE (type1))
3935 return 0;
d2e4a39e 3936 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3937 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3938 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3939 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3940 return 1;
d2e4a39e 3941
14f9c5c9
AS
3942 return 0;
3943}
3944
3945/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3946 no more defined than that of SYM1. */
14f9c5c9
AS
3947
3948static int
d2e4a39e 3949lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3950{
3951 if (sym0 == sym1)
3952 return 1;
176620f1 3953 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3954 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3955 return 0;
3956
d2e4a39e 3957 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3958 {
3959 case LOC_UNDEF:
3960 return 1;
3961 case LOC_TYPEDEF:
3962 {
4c4b4cd2
PH
3963 struct type *type0 = SYMBOL_TYPE (sym0);
3964 struct type *type1 = SYMBOL_TYPE (sym1);
3965 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3966 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3967 int len0 = strlen (name0);
3968 return
3969 TYPE_CODE (type0) == TYPE_CODE (type1)
3970 && (equiv_types (type0, type1)
3971 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3972 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3973 }
3974 case LOC_CONST:
3975 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3976 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3977 default:
3978 return 0;
14f9c5c9
AS
3979 }
3980}
3981
4c4b4cd2
PH
3982/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3983 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
3984
3985static void
76a01679
JB
3986add_defn_to_vec (struct obstack *obstackp,
3987 struct symbol *sym,
2570f2b7 3988 struct block *block)
14f9c5c9
AS
3989{
3990 int i;
3991 size_t tmp;
4c4b4cd2 3992 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 3993
529cad9c
PH
3994 /* Do not try to complete stub types, as the debugger is probably
3995 already scanning all symbols matching a certain name at the
3996 time when this function is called. Trying to replace the stub
3997 type by its associated full type will cause us to restart a scan
3998 which may lead to an infinite recursion. Instead, the client
3999 collecting the matching symbols will end up collecting several
4000 matches, with at least one of them complete. It can then filter
4001 out the stub ones if needed. */
4002
4c4b4cd2
PH
4003 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4004 {
4005 if (lesseq_defined_than (sym, prevDefns[i].sym))
4006 return;
4007 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4008 {
4009 prevDefns[i].sym = sym;
4010 prevDefns[i].block = block;
4c4b4cd2 4011 return;
76a01679 4012 }
4c4b4cd2
PH
4013 }
4014
4015 {
4016 struct ada_symbol_info info;
4017
4018 info.sym = sym;
4019 info.block = block;
4c4b4cd2
PH
4020 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4021 }
4022}
4023
4024/* Number of ada_symbol_info structures currently collected in
4025 current vector in *OBSTACKP. */
4026
76a01679
JB
4027static int
4028num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4029{
4030 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4031}
4032
4033/* Vector of ada_symbol_info structures currently collected in current
4034 vector in *OBSTACKP. If FINISH, close off the vector and return
4035 its final address. */
4036
76a01679 4037static struct ada_symbol_info *
4c4b4cd2
PH
4038defns_collected (struct obstack *obstackp, int finish)
4039{
4040 if (finish)
4041 return obstack_finish (obstackp);
4042 else
4043 return (struct ada_symbol_info *) obstack_base (obstackp);
4044}
4045
96d887e8
PH
4046/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4047 Check the global symbols if GLOBAL, the static symbols if not.
4048 Do wild-card match if WILD. */
4c4b4cd2 4049
96d887e8
PH
4050static struct partial_symbol *
4051ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4052 int global, domain_enum namespace, int wild)
4c4b4cd2 4053{
96d887e8
PH
4054 struct partial_symbol **start;
4055 int name_len = strlen (name);
4056 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4057 int i;
4c4b4cd2 4058
96d887e8 4059 if (length == 0)
4c4b4cd2 4060 {
96d887e8 4061 return (NULL);
4c4b4cd2
PH
4062 }
4063
96d887e8
PH
4064 start = (global ?
4065 pst->objfile->global_psymbols.list + pst->globals_offset :
4066 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4067
96d887e8 4068 if (wild)
4c4b4cd2 4069 {
96d887e8
PH
4070 for (i = 0; i < length; i += 1)
4071 {
4072 struct partial_symbol *psym = start[i];
4c4b4cd2 4073
5eeb2539
AR
4074 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4075 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4076 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4077 return psym;
4078 }
4079 return NULL;
4c4b4cd2 4080 }
96d887e8
PH
4081 else
4082 {
4083 if (global)
4084 {
4085 int U;
4086 i = 0;
4087 U = length - 1;
4088 while (U - i > 4)
4089 {
4090 int M = (U + i) >> 1;
4091 struct partial_symbol *psym = start[M];
4092 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4093 i = M + 1;
4094 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4095 U = M - 1;
4096 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4097 i = M + 1;
4098 else
4099 U = M;
4100 }
4101 }
4102 else
4103 i = 0;
4c4b4cd2 4104
96d887e8
PH
4105 while (i < length)
4106 {
4107 struct partial_symbol *psym = start[i];
4c4b4cd2 4108
5eeb2539
AR
4109 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4110 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4111 {
4112 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4113
96d887e8
PH
4114 if (cmp < 0)
4115 {
4116 if (global)
4117 break;
4118 }
4119 else if (cmp == 0
4120 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4121 + name_len))
96d887e8
PH
4122 return psym;
4123 }
4124 i += 1;
4125 }
4c4b4cd2 4126
96d887e8
PH
4127 if (global)
4128 {
4129 int U;
4130 i = 0;
4131 U = length - 1;
4132 while (U - i > 4)
4133 {
4134 int M = (U + i) >> 1;
4135 struct partial_symbol *psym = start[M];
4136 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4137 i = M + 1;
4138 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4139 U = M - 1;
4140 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4141 i = M + 1;
4142 else
4143 U = M;
4144 }
4145 }
4146 else
4147 i = 0;
4c4b4cd2 4148
96d887e8
PH
4149 while (i < length)
4150 {
4151 struct partial_symbol *psym = start[i];
4c4b4cd2 4152
5eeb2539
AR
4153 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4154 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4155 {
4156 int cmp;
4c4b4cd2 4157
96d887e8
PH
4158 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4159 if (cmp == 0)
4160 {
4161 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4162 if (cmp == 0)
4163 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4164 name_len);
96d887e8 4165 }
4c4b4cd2 4166
96d887e8
PH
4167 if (cmp < 0)
4168 {
4169 if (global)
4170 break;
4171 }
4172 else if (cmp == 0
4173 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4174 + name_len + 5))
96d887e8
PH
4175 return psym;
4176 }
4177 i += 1;
4178 }
4179 }
4180 return NULL;
4c4b4cd2
PH
4181}
4182
96d887e8
PH
4183/* Return a minimal symbol matching NAME according to Ada decoding
4184 rules. Returns NULL if there is no such minimal symbol. Names
4185 prefixed with "standard__" are handled specially: "standard__" is
4186 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4187
96d887e8
PH
4188struct minimal_symbol *
4189ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4190{
4c4b4cd2 4191 struct objfile *objfile;
96d887e8
PH
4192 struct minimal_symbol *msymbol;
4193 int wild_match;
4c4b4cd2 4194
96d887e8 4195 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4196 {
96d887e8 4197 name += sizeof ("standard__") - 1;
4c4b4cd2 4198 wild_match = 0;
4c4b4cd2
PH
4199 }
4200 else
96d887e8 4201 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4202
96d887e8
PH
4203 ALL_MSYMBOLS (objfile, msymbol)
4204 {
4205 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4206 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4207 return msymbol;
4208 }
4c4b4cd2 4209
96d887e8
PH
4210 return NULL;
4211}
4c4b4cd2 4212
96d887e8
PH
4213/* For all subprograms that statically enclose the subprogram of the
4214 selected frame, add symbols matching identifier NAME in DOMAIN
4215 and their blocks to the list of data in OBSTACKP, as for
4216 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4217 wildcard prefix. */
4c4b4cd2 4218
96d887e8
PH
4219static void
4220add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4221 const char *name, domain_enum namespace,
96d887e8
PH
4222 int wild_match)
4223{
96d887e8 4224}
14f9c5c9 4225
96d887e8
PH
4226/* True if TYPE is definitely an artificial type supplied to a symbol
4227 for which no debugging information was given in the symbol file. */
14f9c5c9 4228
96d887e8
PH
4229static int
4230is_nondebugging_type (struct type *type)
4231{
4232 char *name = ada_type_name (type);
4233 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4234}
4c4b4cd2 4235
96d887e8
PH
4236/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4237 duplicate other symbols in the list (The only case I know of where
4238 this happens is when object files containing stabs-in-ecoff are
4239 linked with files containing ordinary ecoff debugging symbols (or no
4240 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4241 Returns the number of items in the modified list. */
4c4b4cd2 4242
96d887e8
PH
4243static int
4244remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4245{
4246 int i, j;
4c4b4cd2 4247
96d887e8
PH
4248 i = 0;
4249 while (i < nsyms)
4250 {
339c13b6
JB
4251 int remove = 0;
4252
4253 /* If two symbols have the same name and one of them is a stub type,
4254 the get rid of the stub. */
4255
4256 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4257 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4258 {
4259 for (j = 0; j < nsyms; j++)
4260 {
4261 if (j != i
4262 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4263 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4264 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4265 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4266 remove = 1;
4267 }
4268 }
4269
4270 /* Two symbols with the same name, same class and same address
4271 should be identical. */
4272
4273 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4274 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4275 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4276 {
4277 for (j = 0; j < nsyms; j += 1)
4278 {
4279 if (i != j
4280 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4281 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4282 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4283 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4284 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4285 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4286 remove = 1;
4c4b4cd2 4287 }
4c4b4cd2 4288 }
339c13b6
JB
4289
4290 if (remove)
4291 {
4292 for (j = i + 1; j < nsyms; j += 1)
4293 syms[j - 1] = syms[j];
4294 nsyms -= 1;
4295 }
4296
96d887e8 4297 i += 1;
14f9c5c9 4298 }
96d887e8 4299 return nsyms;
14f9c5c9
AS
4300}
4301
96d887e8
PH
4302/* Given a type that corresponds to a renaming entity, use the type name
4303 to extract the scope (package name or function name, fully qualified,
4304 and following the GNAT encoding convention) where this renaming has been
4305 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4306
96d887e8
PH
4307static char *
4308xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4309{
96d887e8
PH
4310 /* The renaming types adhere to the following convention:
4311 <scope>__<rename>___<XR extension>.
4312 So, to extract the scope, we search for the "___XR" extension,
4313 and then backtrack until we find the first "__". */
76a01679 4314
96d887e8
PH
4315 const char *name = type_name_no_tag (renaming_type);
4316 char *suffix = strstr (name, "___XR");
4317 char *last;
4318 int scope_len;
4319 char *scope;
14f9c5c9 4320
96d887e8
PH
4321 /* Now, backtrack a bit until we find the first "__". Start looking
4322 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4323
96d887e8
PH
4324 for (last = suffix - 3; last > name; last--)
4325 if (last[0] == '_' && last[1] == '_')
4326 break;
76a01679 4327
96d887e8 4328 /* Make a copy of scope and return it. */
14f9c5c9 4329
96d887e8
PH
4330 scope_len = last - name;
4331 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4332
96d887e8
PH
4333 strncpy (scope, name, scope_len);
4334 scope[scope_len] = '\0';
4c4b4cd2 4335
96d887e8 4336 return scope;
4c4b4cd2
PH
4337}
4338
96d887e8 4339/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4340
96d887e8
PH
4341static int
4342is_package_name (const char *name)
4c4b4cd2 4343{
96d887e8
PH
4344 /* Here, We take advantage of the fact that no symbols are generated
4345 for packages, while symbols are generated for each function.
4346 So the condition for NAME represent a package becomes equivalent
4347 to NAME not existing in our list of symbols. There is only one
4348 small complication with library-level functions (see below). */
4c4b4cd2 4349
96d887e8 4350 char *fun_name;
76a01679 4351
96d887e8
PH
4352 /* If it is a function that has not been defined at library level,
4353 then we should be able to look it up in the symbols. */
4354 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4355 return 0;
14f9c5c9 4356
96d887e8
PH
4357 /* Library-level function names start with "_ada_". See if function
4358 "_ada_" followed by NAME can be found. */
14f9c5c9 4359
96d887e8 4360 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4361 functions names cannot contain "__" in them. */
96d887e8
PH
4362 if (strstr (name, "__") != NULL)
4363 return 0;
4c4b4cd2 4364
b435e160 4365 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4366
96d887e8
PH
4367 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4368}
14f9c5c9 4369
96d887e8 4370/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4371 not visible from FUNCTION_NAME. */
14f9c5c9 4372
96d887e8 4373static int
aeb5907d 4374old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4375{
aeb5907d
JB
4376 char *scope;
4377
4378 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4379 return 0;
4380
4381 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4382
96d887e8 4383 make_cleanup (xfree, scope);
14f9c5c9 4384
96d887e8
PH
4385 /* If the rename has been defined in a package, then it is visible. */
4386 if (is_package_name (scope))
aeb5907d 4387 return 0;
14f9c5c9 4388
96d887e8
PH
4389 /* Check that the rename is in the current function scope by checking
4390 that its name starts with SCOPE. */
76a01679 4391
96d887e8
PH
4392 /* If the function name starts with "_ada_", it means that it is
4393 a library-level function. Strip this prefix before doing the
4394 comparison, as the encoding for the renaming does not contain
4395 this prefix. */
4396 if (strncmp (function_name, "_ada_", 5) == 0)
4397 function_name += 5;
f26caa11 4398
aeb5907d 4399 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4400}
4401
aeb5907d
JB
4402/* Remove entries from SYMS that corresponds to a renaming entity that
4403 is not visible from the function associated with CURRENT_BLOCK or
4404 that is superfluous due to the presence of more specific renaming
4405 information. Places surviving symbols in the initial entries of
4406 SYMS and returns the number of surviving symbols.
96d887e8
PH
4407
4408 Rationale:
aeb5907d
JB
4409 First, in cases where an object renaming is implemented as a
4410 reference variable, GNAT may produce both the actual reference
4411 variable and the renaming encoding. In this case, we discard the
4412 latter.
4413
4414 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4415 entity. Unfortunately, STABS currently does not support the definition
4416 of types that are local to a given lexical block, so all renamings types
4417 are emitted at library level. As a consequence, if an application
4418 contains two renaming entities using the same name, and a user tries to
4419 print the value of one of these entities, the result of the ada symbol
4420 lookup will also contain the wrong renaming type.
f26caa11 4421
96d887e8
PH
4422 This function partially covers for this limitation by attempting to
4423 remove from the SYMS list renaming symbols that should be visible
4424 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4425 method with the current information available. The implementation
4426 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4427
4428 - When the user tries to print a rename in a function while there
4429 is another rename entity defined in a package: Normally, the
4430 rename in the function has precedence over the rename in the
4431 package, so the latter should be removed from the list. This is
4432 currently not the case.
4433
4434 - This function will incorrectly remove valid renames if
4435 the CURRENT_BLOCK corresponds to a function which symbol name
4436 has been changed by an "Export" pragma. As a consequence,
4437 the user will be unable to print such rename entities. */
4c4b4cd2 4438
14f9c5c9 4439static int
aeb5907d
JB
4440remove_irrelevant_renamings (struct ada_symbol_info *syms,
4441 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4442{
4443 struct symbol *current_function;
4444 char *current_function_name;
4445 int i;
aeb5907d
JB
4446 int is_new_style_renaming;
4447
4448 /* If there is both a renaming foo___XR... encoded as a variable and
4449 a simple variable foo in the same block, discard the latter.
4450 First, zero out such symbols, then compress. */
4451 is_new_style_renaming = 0;
4452 for (i = 0; i < nsyms; i += 1)
4453 {
4454 struct symbol *sym = syms[i].sym;
4455 struct block *block = syms[i].block;
4456 const char *name;
4457 const char *suffix;
4458
4459 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4460 continue;
4461 name = SYMBOL_LINKAGE_NAME (sym);
4462 suffix = strstr (name, "___XR");
4463
4464 if (suffix != NULL)
4465 {
4466 int name_len = suffix - name;
4467 int j;
4468 is_new_style_renaming = 1;
4469 for (j = 0; j < nsyms; j += 1)
4470 if (i != j && syms[j].sym != NULL
4471 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4472 name_len) == 0
4473 && block == syms[j].block)
4474 syms[j].sym = NULL;
4475 }
4476 }
4477 if (is_new_style_renaming)
4478 {
4479 int j, k;
4480
4481 for (j = k = 0; j < nsyms; j += 1)
4482 if (syms[j].sym != NULL)
4483 {
4484 syms[k] = syms[j];
4485 k += 1;
4486 }
4487 return k;
4488 }
4c4b4cd2
PH
4489
4490 /* Extract the function name associated to CURRENT_BLOCK.
4491 Abort if unable to do so. */
76a01679 4492
4c4b4cd2
PH
4493 if (current_block == NULL)
4494 return nsyms;
76a01679 4495
7f0df278 4496 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4497 if (current_function == NULL)
4498 return nsyms;
4499
4500 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4501 if (current_function_name == NULL)
4502 return nsyms;
4503
4504 /* Check each of the symbols, and remove it from the list if it is
4505 a type corresponding to a renaming that is out of the scope of
4506 the current block. */
4507
4508 i = 0;
4509 while (i < nsyms)
4510 {
aeb5907d
JB
4511 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4512 == ADA_OBJECT_RENAMING
4513 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4514 {
4515 int j;
aeb5907d 4516 for (j = i + 1; j < nsyms; j += 1)
76a01679 4517 syms[j - 1] = syms[j];
4c4b4cd2
PH
4518 nsyms -= 1;
4519 }
4520 else
4521 i += 1;
4522 }
4523
4524 return nsyms;
4525}
4526
339c13b6
JB
4527/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4528 whose name and domain match NAME and DOMAIN respectively.
4529 If no match was found, then extend the search to "enclosing"
4530 routines (in other words, if we're inside a nested function,
4531 search the symbols defined inside the enclosing functions).
4532
4533 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4534
4535static void
4536ada_add_local_symbols (struct obstack *obstackp, const char *name,
4537 struct block *block, domain_enum domain,
4538 int wild_match)
4539{
4540 int block_depth = 0;
4541
4542 while (block != NULL)
4543 {
4544 block_depth += 1;
4545 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4546
4547 /* If we found a non-function match, assume that's the one. */
4548 if (is_nonfunction (defns_collected (obstackp, 0),
4549 num_defns_collected (obstackp)))
4550 return;
4551
4552 block = BLOCK_SUPERBLOCK (block);
4553 }
4554
4555 /* If no luck so far, try to find NAME as a local symbol in some lexically
4556 enclosing subprogram. */
4557 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4558 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4559}
4560
4561/* Add to OBSTACKP all non-local symbols whose name and domain match
4562 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4563 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4564
4565static void
4566ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4567 domain_enum domain, int global,
4568 int wild_match)
4569{
4570 struct objfile *objfile;
4571 struct partial_symtab *ps;
4572
4573 ALL_PSYMTABS (objfile, ps)
4574 {
4575 QUIT;
4576 if (ps->readin
4577 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4578 {
4579 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4580 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4581
4582 if (s == NULL || !s->primary)
4583 continue;
4584 ada_add_block_symbols (obstackp,
4585 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4586 name, domain, objfile, wild_match);
4587 }
4588 }
4589}
4590
4c4b4cd2
PH
4591/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4592 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4593 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4594 indicating the symbols found and the blocks and symbol tables (if
4595 any) in which they were found. This vector are transient---good only to
4596 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4597 symbol match within the nest of blocks whose innermost member is BLOCK0,
4598 is the one match returned (no other matches in that or
4599 enclosing blocks is returned). If there are any matches in or
4600 surrounding BLOCK0, then these alone are returned. Otherwise, the
4601 search extends to global and file-scope (static) symbol tables.
4602 Names prefixed with "standard__" are handled specially: "standard__"
4603 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4604
4605int
4c4b4cd2 4606ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4607 domain_enum namespace,
4608 struct ada_symbol_info **results)
14f9c5c9
AS
4609{
4610 struct symbol *sym;
14f9c5c9 4611 struct block *block;
4c4b4cd2 4612 const char *name;
4c4b4cd2 4613 int wild_match;
14f9c5c9 4614 int cacheIfUnique;
4c4b4cd2 4615 int ndefns;
14f9c5c9 4616
4c4b4cd2
PH
4617 obstack_free (&symbol_list_obstack, NULL);
4618 obstack_init (&symbol_list_obstack);
14f9c5c9 4619
14f9c5c9
AS
4620 cacheIfUnique = 0;
4621
4622 /* Search specified block and its superiors. */
4623
4c4b4cd2
PH
4624 wild_match = (strstr (name0, "__") == NULL);
4625 name = name0;
76a01679
JB
4626 block = (struct block *) block0; /* FIXME: No cast ought to be
4627 needed, but adding const will
4628 have a cascade effect. */
339c13b6
JB
4629
4630 /* Special case: If the user specifies a symbol name inside package
4631 Standard, do a non-wild matching of the symbol name without
4632 the "standard__" prefix. This was primarily introduced in order
4633 to allow the user to specifically access the standard exceptions
4634 using, for instance, Standard.Constraint_Error when Constraint_Error
4635 is ambiguous (due to the user defining its own Constraint_Error
4636 entity inside its program). */
4c4b4cd2
PH
4637 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4638 {
4639 wild_match = 0;
4640 block = NULL;
4641 name = name0 + sizeof ("standard__") - 1;
4642 }
4643
339c13b6 4644 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4645
339c13b6
JB
4646 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4647 wild_match);
4c4b4cd2 4648 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4649 goto done;
d2e4a39e 4650
339c13b6
JB
4651 /* No non-global symbols found. Check our cache to see if we have
4652 already performed this search before. If we have, then return
4653 the same result. */
4654
14f9c5c9 4655 cacheIfUnique = 1;
2570f2b7 4656 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4657 {
4658 if (sym != NULL)
2570f2b7 4659 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4660 goto done;
4661 }
14f9c5c9 4662
339c13b6
JB
4663 /* Search symbols from all global blocks. */
4664
4665 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4666 wild_match);
d2e4a39e 4667
4c4b4cd2 4668 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4669 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4670
4c4b4cd2 4671 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4672 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4673 wild_match);
14f9c5c9 4674
4c4b4cd2
PH
4675done:
4676 ndefns = num_defns_collected (&symbol_list_obstack);
4677 *results = defns_collected (&symbol_list_obstack, 1);
4678
4679 ndefns = remove_extra_symbols (*results, ndefns);
4680
d2e4a39e 4681 if (ndefns == 0)
2570f2b7 4682 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4683
4c4b4cd2 4684 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4685 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4686
aeb5907d 4687 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4688
14f9c5c9
AS
4689 return ndefns;
4690}
4691
d2e4a39e 4692struct symbol *
aeb5907d 4693ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4694 domain_enum namespace, struct block **block_found)
14f9c5c9 4695{
4c4b4cd2 4696 struct ada_symbol_info *candidates;
14f9c5c9
AS
4697 int n_candidates;
4698
aeb5907d 4699 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4700
4701 if (n_candidates == 0)
4702 return NULL;
4c4b4cd2 4703
aeb5907d
JB
4704 if (block_found != NULL)
4705 *block_found = candidates[0].block;
4c4b4cd2 4706
21b556f4 4707 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4708}
4709
4710/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4711 scope and in global scopes, or NULL if none. NAME is folded and
4712 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4713 choosing the first symbol if there are multiple choices.
4714 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4715 table in which the symbol was found (in both cases, these
4716 assignments occur only if the pointers are non-null). */
4717struct symbol *
4718ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4719 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4720{
4721 if (is_a_field_of_this != NULL)
4722 *is_a_field_of_this = 0;
4723
4724 return
4725 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4726 block0, namespace, NULL);
4c4b4cd2 4727}
14f9c5c9 4728
4c4b4cd2
PH
4729static struct symbol *
4730ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4731 const char *linkage_name,
4732 const struct block *block,
21b556f4 4733 const domain_enum domain)
4c4b4cd2
PH
4734{
4735 if (linkage_name == NULL)
4736 linkage_name = name;
76a01679 4737 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4738 NULL);
14f9c5c9
AS
4739}
4740
4741
4c4b4cd2
PH
4742/* True iff STR is a possible encoded suffix of a normal Ada name
4743 that is to be ignored for matching purposes. Suffixes of parallel
4744 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4745 are given by any of the regular expressions:
4c4b4cd2 4746
babe1480
JB
4747 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4748 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4749 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4750 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4751
4752 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4753 match is performed. This sequence is used to differentiate homonyms,
4754 is an optional part of a valid name suffix. */
4c4b4cd2 4755
14f9c5c9 4756static int
d2e4a39e 4757is_name_suffix (const char *str)
14f9c5c9
AS
4758{
4759 int k;
4c4b4cd2
PH
4760 const char *matching;
4761 const int len = strlen (str);
4762
babe1480
JB
4763 /* Skip optional leading __[0-9]+. */
4764
4c4b4cd2
PH
4765 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4766 {
babe1480
JB
4767 str += 3;
4768 while (isdigit (str[0]))
4769 str += 1;
4c4b4cd2 4770 }
babe1480
JB
4771
4772 /* [.$][0-9]+ */
4c4b4cd2 4773
babe1480 4774 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4775 {
babe1480 4776 matching = str + 1;
4c4b4cd2
PH
4777 while (isdigit (matching[0]))
4778 matching += 1;
4779 if (matching[0] == '\0')
4780 return 1;
4781 }
4782
4783 /* ___[0-9]+ */
babe1480 4784
4c4b4cd2
PH
4785 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4786 {
4787 matching = str + 3;
4788 while (isdigit (matching[0]))
4789 matching += 1;
4790 if (matching[0] == '\0')
4791 return 1;
4792 }
4793
529cad9c
PH
4794#if 0
4795 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4796 with a N at the end. Unfortunately, the compiler uses the same
4797 convention for other internal types it creates. So treating
4798 all entity names that end with an "N" as a name suffix causes
4799 some regressions. For instance, consider the case of an enumerated
4800 type. To support the 'Image attribute, it creates an array whose
4801 name ends with N.
4802 Having a single character like this as a suffix carrying some
4803 information is a bit risky. Perhaps we should change the encoding
4804 to be something like "_N" instead. In the meantime, do not do
4805 the following check. */
4806 /* Protected Object Subprograms */
4807 if (len == 1 && str [0] == 'N')
4808 return 1;
4809#endif
4810
4811 /* _E[0-9]+[bs]$ */
4812 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4813 {
4814 matching = str + 3;
4815 while (isdigit (matching[0]))
4816 matching += 1;
4817 if ((matching[0] == 'b' || matching[0] == 's')
4818 && matching [1] == '\0')
4819 return 1;
4820 }
4821
4c4b4cd2
PH
4822 /* ??? We should not modify STR directly, as we are doing below. This
4823 is fine in this case, but may become problematic later if we find
4824 that this alternative did not work, and want to try matching
4825 another one from the begining of STR. Since we modified it, we
4826 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4827 if (str[0] == 'X')
4828 {
4829 str += 1;
d2e4a39e 4830 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4831 {
4832 if (str[0] != 'n' && str[0] != 'b')
4833 return 0;
4834 str += 1;
4835 }
14f9c5c9 4836 }
babe1480 4837
14f9c5c9
AS
4838 if (str[0] == '\000')
4839 return 1;
babe1480 4840
d2e4a39e 4841 if (str[0] == '_')
14f9c5c9
AS
4842 {
4843 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4844 return 0;
d2e4a39e 4845 if (str[2] == '_')
4c4b4cd2 4846 {
61ee279c
PH
4847 if (strcmp (str + 3, "JM") == 0)
4848 return 1;
4849 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4850 the LJM suffix in favor of the JM one. But we will
4851 still accept LJM as a valid suffix for a reasonable
4852 amount of time, just to allow ourselves to debug programs
4853 compiled using an older version of GNAT. */
4c4b4cd2
PH
4854 if (strcmp (str + 3, "LJM") == 0)
4855 return 1;
4856 if (str[3] != 'X')
4857 return 0;
1265e4aa
JB
4858 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4859 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4860 return 1;
4861 if (str[4] == 'R' && str[5] != 'T')
4862 return 1;
4863 return 0;
4864 }
4865 if (!isdigit (str[2]))
4866 return 0;
4867 for (k = 3; str[k] != '\0'; k += 1)
4868 if (!isdigit (str[k]) && str[k] != '_')
4869 return 0;
14f9c5c9
AS
4870 return 1;
4871 }
4c4b4cd2 4872 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4873 {
4c4b4cd2
PH
4874 for (k = 2; str[k] != '\0'; k += 1)
4875 if (!isdigit (str[k]) && str[k] != '_')
4876 return 0;
14f9c5c9
AS
4877 return 1;
4878 }
4879 return 0;
4880}
d2e4a39e 4881
aeb5907d
JB
4882/* Return non-zero if the string starting at NAME and ending before
4883 NAME_END contains no capital letters. */
529cad9c
PH
4884
4885static int
4886is_valid_name_for_wild_match (const char *name0)
4887{
4888 const char *decoded_name = ada_decode (name0);
4889 int i;
4890
5823c3ef
JB
4891 /* If the decoded name starts with an angle bracket, it means that
4892 NAME0 does not follow the GNAT encoding format. It should then
4893 not be allowed as a possible wild match. */
4894 if (decoded_name[0] == '<')
4895 return 0;
4896
529cad9c
PH
4897 for (i=0; decoded_name[i] != '\0'; i++)
4898 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4899 return 0;
4900
4901 return 1;
4902}
4903
4c4b4cd2
PH
4904/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4905 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4906 informational suffixes of NAME (i.e., for which is_name_suffix is
4907 true). */
4908
14f9c5c9 4909static int
4c4b4cd2 4910wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4911{
5823c3ef
JB
4912 char* match;
4913 const char* start;
4914 start = name0;
4915 while (1)
14f9c5c9 4916 {
5823c3ef
JB
4917 match = strstr (start, patn0);
4918 if (match == NULL)
4919 return 0;
4920 if ((match == name0
4921 || match[-1] == '.'
4922 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4923 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4924 && is_name_suffix (match + patn_len))
4925 return (match == name0 || is_valid_name_for_wild_match (name0));
4926 start = match + 1;
96d887e8 4927 }
96d887e8
PH
4928}
4929
96d887e8
PH
4930/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4931 vector *defn_symbols, updating the list of symbols in OBSTACKP
4932 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4933 OBJFILE is the section containing BLOCK.
4934 SYMTAB is recorded with each symbol added. */
4935
4936static void
4937ada_add_block_symbols (struct obstack *obstackp,
76a01679 4938 struct block *block, const char *name,
96d887e8 4939 domain_enum domain, struct objfile *objfile,
2570f2b7 4940 int wild)
96d887e8
PH
4941{
4942 struct dict_iterator iter;
4943 int name_len = strlen (name);
4944 /* A matching argument symbol, if any. */
4945 struct symbol *arg_sym;
4946 /* Set true when we find a matching non-argument symbol. */
4947 int found_sym;
4948 struct symbol *sym;
4949
4950 arg_sym = NULL;
4951 found_sym = 0;
4952 if (wild)
4953 {
4954 struct symbol *sym;
4955 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4956 {
5eeb2539
AR
4957 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4958 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4959 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4960 {
2a2d4dc3
AS
4961 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4962 continue;
4963 else if (SYMBOL_IS_ARGUMENT (sym))
4964 arg_sym = sym;
4965 else
4966 {
76a01679
JB
4967 found_sym = 1;
4968 add_defn_to_vec (obstackp,
4969 fixup_symbol_section (sym, objfile),
2570f2b7 4970 block);
76a01679
JB
4971 }
4972 }
4973 }
96d887e8
PH
4974 }
4975 else
4976 {
4977 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4978 {
5eeb2539
AR
4979 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4980 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4981 {
4982 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4983 if (cmp == 0
4984 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4985 {
2a2d4dc3
AS
4986 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4987 {
4988 if (SYMBOL_IS_ARGUMENT (sym))
4989 arg_sym = sym;
4990 else
4991 {
4992 found_sym = 1;
4993 add_defn_to_vec (obstackp,
4994 fixup_symbol_section (sym, objfile),
4995 block);
4996 }
4997 }
76a01679
JB
4998 }
4999 }
5000 }
96d887e8
PH
5001 }
5002
5003 if (!found_sym && arg_sym != NULL)
5004 {
76a01679
JB
5005 add_defn_to_vec (obstackp,
5006 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5007 block);
96d887e8
PH
5008 }
5009
5010 if (!wild)
5011 {
5012 arg_sym = NULL;
5013 found_sym = 0;
5014
5015 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5016 {
5eeb2539
AR
5017 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5018 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5019 {
5020 int cmp;
5021
5022 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5023 if (cmp == 0)
5024 {
5025 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5026 if (cmp == 0)
5027 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5028 name_len);
5029 }
5030
5031 if (cmp == 0
5032 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5033 {
2a2d4dc3
AS
5034 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5035 {
5036 if (SYMBOL_IS_ARGUMENT (sym))
5037 arg_sym = sym;
5038 else
5039 {
5040 found_sym = 1;
5041 add_defn_to_vec (obstackp,
5042 fixup_symbol_section (sym, objfile),
5043 block);
5044 }
5045 }
76a01679
JB
5046 }
5047 }
76a01679 5048 }
96d887e8
PH
5049
5050 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5051 They aren't parameters, right? */
5052 if (!found_sym && arg_sym != NULL)
5053 {
5054 add_defn_to_vec (obstackp,
76a01679 5055 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5056 block);
96d887e8
PH
5057 }
5058 }
5059}
5060\f
41d27058
JB
5061
5062 /* Symbol Completion */
5063
5064/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5065 name in a form that's appropriate for the completion. The result
5066 does not need to be deallocated, but is only good until the next call.
5067
5068 TEXT_LEN is equal to the length of TEXT.
5069 Perform a wild match if WILD_MATCH is set.
5070 ENCODED should be set if TEXT represents the start of a symbol name
5071 in its encoded form. */
5072
5073static const char *
5074symbol_completion_match (const char *sym_name,
5075 const char *text, int text_len,
5076 int wild_match, int encoded)
5077{
5078 char *result;
5079 const int verbatim_match = (text[0] == '<');
5080 int match = 0;
5081
5082 if (verbatim_match)
5083 {
5084 /* Strip the leading angle bracket. */
5085 text = text + 1;
5086 text_len--;
5087 }
5088
5089 /* First, test against the fully qualified name of the symbol. */
5090
5091 if (strncmp (sym_name, text, text_len) == 0)
5092 match = 1;
5093
5094 if (match && !encoded)
5095 {
5096 /* One needed check before declaring a positive match is to verify
5097 that iff we are doing a verbatim match, the decoded version
5098 of the symbol name starts with '<'. Otherwise, this symbol name
5099 is not a suitable completion. */
5100 const char *sym_name_copy = sym_name;
5101 int has_angle_bracket;
5102
5103 sym_name = ada_decode (sym_name);
5104 has_angle_bracket = (sym_name[0] == '<');
5105 match = (has_angle_bracket == verbatim_match);
5106 sym_name = sym_name_copy;
5107 }
5108
5109 if (match && !verbatim_match)
5110 {
5111 /* When doing non-verbatim match, another check that needs to
5112 be done is to verify that the potentially matching symbol name
5113 does not include capital letters, because the ada-mode would
5114 not be able to understand these symbol names without the
5115 angle bracket notation. */
5116 const char *tmp;
5117
5118 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5119 if (*tmp != '\0')
5120 match = 0;
5121 }
5122
5123 /* Second: Try wild matching... */
5124
5125 if (!match && wild_match)
5126 {
5127 /* Since we are doing wild matching, this means that TEXT
5128 may represent an unqualified symbol name. We therefore must
5129 also compare TEXT against the unqualified name of the symbol. */
5130 sym_name = ada_unqualified_name (ada_decode (sym_name));
5131
5132 if (strncmp (sym_name, text, text_len) == 0)
5133 match = 1;
5134 }
5135
5136 /* Finally: If we found a mach, prepare the result to return. */
5137
5138 if (!match)
5139 return NULL;
5140
5141 if (verbatim_match)
5142 sym_name = add_angle_brackets (sym_name);
5143
5144 if (!encoded)
5145 sym_name = ada_decode (sym_name);
5146
5147 return sym_name;
5148}
5149
2ba95b9b
JB
5150typedef char *char_ptr;
5151DEF_VEC_P (char_ptr);
5152
41d27058
JB
5153/* A companion function to ada_make_symbol_completion_list().
5154 Check if SYM_NAME represents a symbol which name would be suitable
5155 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5156 it is appended at the end of the given string vector SV.
5157
5158 ORIG_TEXT is the string original string from the user command
5159 that needs to be completed. WORD is the entire command on which
5160 completion should be performed. These two parameters are used to
5161 determine which part of the symbol name should be added to the
5162 completion vector.
5163 if WILD_MATCH is set, then wild matching is performed.
5164 ENCODED should be set if TEXT represents a symbol name in its
5165 encoded formed (in which case the completion should also be
5166 encoded). */
5167
5168static void
d6565258 5169symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5170 const char *sym_name,
5171 const char *text, int text_len,
5172 const char *orig_text, const char *word,
5173 int wild_match, int encoded)
5174{
5175 const char *match = symbol_completion_match (sym_name, text, text_len,
5176 wild_match, encoded);
5177 char *completion;
5178
5179 if (match == NULL)
5180 return;
5181
5182 /* We found a match, so add the appropriate completion to the given
5183 string vector. */
5184
5185 if (word == orig_text)
5186 {
5187 completion = xmalloc (strlen (match) + 5);
5188 strcpy (completion, match);
5189 }
5190 else if (word > orig_text)
5191 {
5192 /* Return some portion of sym_name. */
5193 completion = xmalloc (strlen (match) + 5);
5194 strcpy (completion, match + (word - orig_text));
5195 }
5196 else
5197 {
5198 /* Return some of ORIG_TEXT plus sym_name. */
5199 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5200 strncpy (completion, word, orig_text - word);
5201 completion[orig_text - word] = '\0';
5202 strcat (completion, match);
5203 }
5204
d6565258 5205 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5206}
5207
5208/* Return a list of possible symbol names completing TEXT0. The list
5209 is NULL terminated. WORD is the entire command on which completion
5210 is made. */
5211
5212static char **
5213ada_make_symbol_completion_list (char *text0, char *word)
5214{
5215 char *text;
5216 int text_len;
5217 int wild_match;
5218 int encoded;
2ba95b9b 5219 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5220 struct symbol *sym;
5221 struct symtab *s;
5222 struct partial_symtab *ps;
5223 struct minimal_symbol *msymbol;
5224 struct objfile *objfile;
5225 struct block *b, *surrounding_static_block = 0;
5226 int i;
5227 struct dict_iterator iter;
5228
5229 if (text0[0] == '<')
5230 {
5231 text = xstrdup (text0);
5232 make_cleanup (xfree, text);
5233 text_len = strlen (text);
5234 wild_match = 0;
5235 encoded = 1;
5236 }
5237 else
5238 {
5239 text = xstrdup (ada_encode (text0));
5240 make_cleanup (xfree, text);
5241 text_len = strlen (text);
5242 for (i = 0; i < text_len; i++)
5243 text[i] = tolower (text[i]);
5244
5245 encoded = (strstr (text0, "__") != NULL);
5246 /* If the name contains a ".", then the user is entering a fully
5247 qualified entity name, and the match must not be done in wild
5248 mode. Similarly, if the user wants to complete what looks like
5249 an encoded name, the match must not be done in wild mode. */
5250 wild_match = (strchr (text0, '.') == NULL && !encoded);
5251 }
5252
5253 /* First, look at the partial symtab symbols. */
5254 ALL_PSYMTABS (objfile, ps)
5255 {
5256 struct partial_symbol **psym;
5257
5258 /* If the psymtab's been read in we'll get it when we search
5259 through the blockvector. */
5260 if (ps->readin)
5261 continue;
5262
5263 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5264 psym < (objfile->global_psymbols.list + ps->globals_offset
5265 + ps->n_global_syms); psym++)
5266 {
5267 QUIT;
d6565258 5268 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5269 text, text_len, text0, word,
5270 wild_match, encoded);
5271 }
5272
5273 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5274 psym < (objfile->static_psymbols.list + ps->statics_offset
5275 + ps->n_static_syms); psym++)
5276 {
5277 QUIT;
d6565258 5278 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5279 text, text_len, text0, word,
5280 wild_match, encoded);
5281 }
5282 }
5283
5284 /* At this point scan through the misc symbol vectors and add each
5285 symbol you find to the list. Eventually we want to ignore
5286 anything that isn't a text symbol (everything else will be
5287 handled by the psymtab code above). */
5288
5289 ALL_MSYMBOLS (objfile, msymbol)
5290 {
5291 QUIT;
d6565258 5292 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5293 text, text_len, text0, word, wild_match, encoded);
5294 }
5295
5296 /* Search upwards from currently selected frame (so that we can
5297 complete on local vars. */
5298
5299 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5300 {
5301 if (!BLOCK_SUPERBLOCK (b))
5302 surrounding_static_block = b; /* For elmin of dups */
5303
5304 ALL_BLOCK_SYMBOLS (b, iter, sym)
5305 {
d6565258 5306 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5307 text, text_len, text0, word,
5308 wild_match, encoded);
5309 }
5310 }
5311
5312 /* Go through the symtabs and check the externs and statics for
5313 symbols which match. */
5314
5315 ALL_SYMTABS (objfile, s)
5316 {
5317 QUIT;
5318 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5319 ALL_BLOCK_SYMBOLS (b, iter, sym)
5320 {
d6565258 5321 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5322 text, text_len, text0, word,
5323 wild_match, encoded);
5324 }
5325 }
5326
5327 ALL_SYMTABS (objfile, s)
5328 {
5329 QUIT;
5330 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5331 /* Don't do this block twice. */
5332 if (b == surrounding_static_block)
5333 continue;
5334 ALL_BLOCK_SYMBOLS (b, iter, sym)
5335 {
d6565258 5336 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5337 text, text_len, text0, word,
5338 wild_match, encoded);
5339 }
5340 }
5341
5342 /* Append the closing NULL entry. */
2ba95b9b 5343 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5344
2ba95b9b
JB
5345 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5346 return the copy. It's unfortunate that we have to make a copy
5347 of an array that we're about to destroy, but there is nothing much
5348 we can do about it. Fortunately, it's typically not a very large
5349 array. */
5350 {
5351 const size_t completions_size =
5352 VEC_length (char_ptr, completions) * sizeof (char *);
5353 char **result = malloc (completions_size);
5354
5355 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5356
5357 VEC_free (char_ptr, completions);
5358 return result;
5359 }
41d27058
JB
5360}
5361
963a6417 5362 /* Field Access */
96d887e8 5363
73fb9985
JB
5364/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5365 for tagged types. */
5366
5367static int
5368ada_is_dispatch_table_ptr_type (struct type *type)
5369{
5370 char *name;
5371
5372 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5373 return 0;
5374
5375 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5376 if (name == NULL)
5377 return 0;
5378
5379 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5380}
5381
963a6417
PH
5382/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5383 to be invisible to users. */
96d887e8 5384
963a6417
PH
5385int
5386ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5387{
963a6417
PH
5388 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5389 return 1;
73fb9985
JB
5390
5391 /* Check the name of that field. */
5392 {
5393 const char *name = TYPE_FIELD_NAME (type, field_num);
5394
5395 /* Anonymous field names should not be printed.
5396 brobecker/2007-02-20: I don't think this can actually happen
5397 but we don't want to print the value of annonymous fields anyway. */
5398 if (name == NULL)
5399 return 1;
5400
5401 /* A field named "_parent" is internally generated by GNAT for
5402 tagged types, and should not be printed either. */
5403 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5404 return 1;
5405 }
5406
5407 /* If this is the dispatch table of a tagged type, then ignore. */
5408 if (ada_is_tagged_type (type, 1)
5409 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5410 return 1;
5411
5412 /* Not a special field, so it should not be ignored. */
5413 return 0;
963a6417 5414}
96d887e8 5415
963a6417
PH
5416/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5417 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5418
963a6417
PH
5419int
5420ada_is_tagged_type (struct type *type, int refok)
5421{
5422 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5423}
96d887e8 5424
963a6417 5425/* True iff TYPE represents the type of X'Tag */
96d887e8 5426
963a6417
PH
5427int
5428ada_is_tag_type (struct type *type)
5429{
5430 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5431 return 0;
5432 else
96d887e8 5433 {
963a6417
PH
5434 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5435 return (name != NULL
5436 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5437 }
96d887e8
PH
5438}
5439
963a6417 5440/* The type of the tag on VAL. */
76a01679 5441
963a6417
PH
5442struct type *
5443ada_tag_type (struct value *val)
96d887e8 5444{
df407dfe 5445 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5446}
96d887e8 5447
963a6417 5448/* The value of the tag on VAL. */
96d887e8 5449
963a6417
PH
5450struct value *
5451ada_value_tag (struct value *val)
5452{
03ee6b2e 5453 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5454}
5455
963a6417
PH
5456/* The value of the tag on the object of type TYPE whose contents are
5457 saved at VALADDR, if it is non-null, or is at memory address
5458 ADDRESS. */
96d887e8 5459
963a6417 5460static struct value *
10a2c479 5461value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5462 const gdb_byte *valaddr,
963a6417 5463 CORE_ADDR address)
96d887e8 5464{
963a6417
PH
5465 int tag_byte_offset, dummy1, dummy2;
5466 struct type *tag_type;
5467 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5468 NULL, NULL, NULL))
96d887e8 5469 {
fc1a4b47 5470 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5471 ? NULL
5472 : valaddr + tag_byte_offset);
963a6417 5473 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5474
963a6417 5475 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5476 }
963a6417
PH
5477 return NULL;
5478}
96d887e8 5479
963a6417
PH
5480static struct type *
5481type_from_tag (struct value *tag)
5482{
5483 const char *type_name = ada_tag_name (tag);
5484 if (type_name != NULL)
5485 return ada_find_any_type (ada_encode (type_name));
5486 return NULL;
5487}
96d887e8 5488
963a6417
PH
5489struct tag_args
5490{
5491 struct value *tag;
5492 char *name;
5493};
4c4b4cd2 5494
529cad9c
PH
5495
5496static int ada_tag_name_1 (void *);
5497static int ada_tag_name_2 (struct tag_args *);
5498
4c4b4cd2
PH
5499/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5500 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5501 The value stored in ARGS->name is valid until the next call to
5502 ada_tag_name_1. */
5503
5504static int
5505ada_tag_name_1 (void *args0)
5506{
5507 struct tag_args *args = (struct tag_args *) args0;
5508 static char name[1024];
76a01679 5509 char *p;
4c4b4cd2
PH
5510 struct value *val;
5511 args->name = NULL;
03ee6b2e 5512 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5513 if (val == NULL)
5514 return ada_tag_name_2 (args);
03ee6b2e 5515 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5516 if (val == NULL)
5517 return 0;
5518 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5519 for (p = name; *p != '\0'; p += 1)
5520 if (isalpha (*p))
5521 *p = tolower (*p);
5522 args->name = name;
5523 return 0;
5524}
5525
5526/* Utility function for ada_tag_name_1 that tries the second
5527 representation for the dispatch table (in which there is no
5528 explicit 'tsd' field in the referent of the tag pointer, and instead
5529 the tsd pointer is stored just before the dispatch table. */
5530
5531static int
5532ada_tag_name_2 (struct tag_args *args)
5533{
5534 struct type *info_type;
5535 static char name[1024];
5536 char *p;
5537 struct value *val, *valp;
5538
5539 args->name = NULL;
5540 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5541 if (info_type == NULL)
5542 return 0;
5543 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5544 valp = value_cast (info_type, args->tag);
5545 if (valp == NULL)
5546 return 0;
2497b498 5547 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5548 if (val == NULL)
5549 return 0;
03ee6b2e 5550 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5551 if (val == NULL)
5552 return 0;
5553 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5554 for (p = name; *p != '\0'; p += 1)
5555 if (isalpha (*p))
5556 *p = tolower (*p);
5557 args->name = name;
5558 return 0;
5559}
5560
5561/* The type name of the dynamic type denoted by the 'tag value TAG, as
5562 * a C string. */
5563
5564const char *
5565ada_tag_name (struct value *tag)
5566{
5567 struct tag_args args;
df407dfe 5568 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5569 return NULL;
76a01679 5570 args.tag = tag;
4c4b4cd2
PH
5571 args.name = NULL;
5572 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5573 return args.name;
5574}
5575
5576/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5577
d2e4a39e 5578struct type *
ebf56fd3 5579ada_parent_type (struct type *type)
14f9c5c9
AS
5580{
5581 int i;
5582
61ee279c 5583 type = ada_check_typedef (type);
14f9c5c9
AS
5584
5585 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5586 return NULL;
5587
5588 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5589 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5590 {
5591 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5592
5593 /* If the _parent field is a pointer, then dereference it. */
5594 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5595 parent_type = TYPE_TARGET_TYPE (parent_type);
5596 /* If there is a parallel XVS type, get the actual base type. */
5597 parent_type = ada_get_base_type (parent_type);
5598
5599 return ada_check_typedef (parent_type);
5600 }
14f9c5c9
AS
5601
5602 return NULL;
5603}
5604
4c4b4cd2
PH
5605/* True iff field number FIELD_NUM of structure type TYPE contains the
5606 parent-type (inherited) fields of a derived type. Assumes TYPE is
5607 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5608
5609int
ebf56fd3 5610ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5611{
61ee279c 5612 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5613 return (name != NULL
5614 && (strncmp (name, "PARENT", 6) == 0
5615 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5616}
5617
4c4b4cd2 5618/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5619 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5620 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5621 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5622 structures. */
14f9c5c9
AS
5623
5624int
ebf56fd3 5625ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5626{
d2e4a39e
AS
5627 const char *name = TYPE_FIELD_NAME (type, field_num);
5628 return (name != NULL
4c4b4cd2
PH
5629 && (strncmp (name, "PARENT", 6) == 0
5630 || strcmp (name, "REP") == 0
5631 || strncmp (name, "_parent", 7) == 0
5632 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5633}
5634
4c4b4cd2
PH
5635/* True iff field number FIELD_NUM of structure or union type TYPE
5636 is a variant wrapper. Assumes TYPE is a structure type with at least
5637 FIELD_NUM+1 fields. */
14f9c5c9
AS
5638
5639int
ebf56fd3 5640ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5641{
d2e4a39e 5642 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5643 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5644 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5645 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5646 == TYPE_CODE_UNION)));
14f9c5c9
AS
5647}
5648
5649/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5650 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5651 returns the type of the controlling discriminant for the variant. */
5652
d2e4a39e 5653struct type *
ebf56fd3 5654ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5655{
d2e4a39e 5656 char *name = ada_variant_discrim_name (var_type);
76a01679 5657 struct type *type =
4c4b4cd2 5658 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5659 if (type == NULL)
6d84d3d8 5660 return builtin_type_int32;
14f9c5c9
AS
5661 else
5662 return type;
5663}
5664
4c4b4cd2 5665/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5666 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5667 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5668
5669int
ebf56fd3 5670ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5671{
d2e4a39e 5672 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5673 return (name != NULL && name[0] == 'O');
5674}
5675
5676/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5677 returns the name of the discriminant controlling the variant.
5678 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5679
d2e4a39e 5680char *
ebf56fd3 5681ada_variant_discrim_name (struct type *type0)
14f9c5c9 5682{
d2e4a39e 5683 static char *result = NULL;
14f9c5c9 5684 static size_t result_len = 0;
d2e4a39e
AS
5685 struct type *type;
5686 const char *name;
5687 const char *discrim_end;
5688 const char *discrim_start;
14f9c5c9
AS
5689
5690 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5691 type = TYPE_TARGET_TYPE (type0);
5692 else
5693 type = type0;
5694
5695 name = ada_type_name (type);
5696
5697 if (name == NULL || name[0] == '\000')
5698 return "";
5699
5700 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5701 discrim_end -= 1)
5702 {
4c4b4cd2
PH
5703 if (strncmp (discrim_end, "___XVN", 6) == 0)
5704 break;
14f9c5c9
AS
5705 }
5706 if (discrim_end == name)
5707 return "";
5708
d2e4a39e 5709 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5710 discrim_start -= 1)
5711 {
d2e4a39e 5712 if (discrim_start == name + 1)
4c4b4cd2 5713 return "";
76a01679 5714 if ((discrim_start > name + 3
4c4b4cd2
PH
5715 && strncmp (discrim_start - 3, "___", 3) == 0)
5716 || discrim_start[-1] == '.')
5717 break;
14f9c5c9
AS
5718 }
5719
5720 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5721 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5722 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5723 return result;
5724}
5725
4c4b4cd2
PH
5726/* Scan STR for a subtype-encoded number, beginning at position K.
5727 Put the position of the character just past the number scanned in
5728 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5729 Return 1 if there was a valid number at the given position, and 0
5730 otherwise. A "subtype-encoded" number consists of the absolute value
5731 in decimal, followed by the letter 'm' to indicate a negative number.
5732 Assumes 0m does not occur. */
14f9c5c9
AS
5733
5734int
d2e4a39e 5735ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5736{
5737 ULONGEST RU;
5738
d2e4a39e 5739 if (!isdigit (str[k]))
14f9c5c9
AS
5740 return 0;
5741
4c4b4cd2 5742 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5743 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5744 LONGEST. */
14f9c5c9
AS
5745 RU = 0;
5746 while (isdigit (str[k]))
5747 {
d2e4a39e 5748 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5749 k += 1;
5750 }
5751
d2e4a39e 5752 if (str[k] == 'm')
14f9c5c9
AS
5753 {
5754 if (R != NULL)
4c4b4cd2 5755 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5756 k += 1;
5757 }
5758 else if (R != NULL)
5759 *R = (LONGEST) RU;
5760
4c4b4cd2 5761 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5762 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5763 number representable as a LONGEST (although either would probably work
5764 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5765 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5766
5767 if (new_k != NULL)
5768 *new_k = k;
5769 return 1;
5770}
5771
4c4b4cd2
PH
5772/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5773 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5774 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5775
d2e4a39e 5776int
ebf56fd3 5777ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5778{
d2e4a39e 5779 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5780 int p;
5781
5782 p = 0;
5783 while (1)
5784 {
d2e4a39e 5785 switch (name[p])
4c4b4cd2
PH
5786 {
5787 case '\0':
5788 return 0;
5789 case 'S':
5790 {
5791 LONGEST W;
5792 if (!ada_scan_number (name, p + 1, &W, &p))
5793 return 0;
5794 if (val == W)
5795 return 1;
5796 break;
5797 }
5798 case 'R':
5799 {
5800 LONGEST L, U;
5801 if (!ada_scan_number (name, p + 1, &L, &p)
5802 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5803 return 0;
5804 if (val >= L && val <= U)
5805 return 1;
5806 break;
5807 }
5808 case 'O':
5809 return 1;
5810 default:
5811 return 0;
5812 }
5813 }
5814}
5815
5816/* FIXME: Lots of redundancy below. Try to consolidate. */
5817
5818/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5819 ARG_TYPE, extract and return the value of one of its (non-static)
5820 fields. FIELDNO says which field. Differs from value_primitive_field
5821 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5822
4c4b4cd2 5823static struct value *
d2e4a39e 5824ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5825 struct type *arg_type)
14f9c5c9 5826{
14f9c5c9
AS
5827 struct type *type;
5828
61ee279c 5829 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5830 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5831
4c4b4cd2 5832 /* Handle packed fields. */
14f9c5c9
AS
5833
5834 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5835 {
5836 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5837 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5838
0fd88904 5839 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5840 offset + bit_pos / 8,
5841 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5842 }
5843 else
5844 return value_primitive_field (arg1, offset, fieldno, arg_type);
5845}
5846
52ce6436
PH
5847/* Find field with name NAME in object of type TYPE. If found,
5848 set the following for each argument that is non-null:
5849 - *FIELD_TYPE_P to the field's type;
5850 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5851 an object of that type;
5852 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5853 - *BIT_SIZE_P to its size in bits if the field is packed, and
5854 0 otherwise;
5855 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5856 fields up to but not including the desired field, or by the total
5857 number of fields if not found. A NULL value of NAME never
5858 matches; the function just counts visible fields in this case.
5859
5860 Returns 1 if found, 0 otherwise. */
5861
4c4b4cd2 5862static int
76a01679
JB
5863find_struct_field (char *name, struct type *type, int offset,
5864 struct type **field_type_p,
52ce6436
PH
5865 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5866 int *index_p)
4c4b4cd2
PH
5867{
5868 int i;
5869
61ee279c 5870 type = ada_check_typedef (type);
76a01679 5871
52ce6436
PH
5872 if (field_type_p != NULL)
5873 *field_type_p = NULL;
5874 if (byte_offset_p != NULL)
d5d6fca5 5875 *byte_offset_p = 0;
52ce6436
PH
5876 if (bit_offset_p != NULL)
5877 *bit_offset_p = 0;
5878 if (bit_size_p != NULL)
5879 *bit_size_p = 0;
5880
5881 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5882 {
5883 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5884 int fld_offset = offset + bit_pos / 8;
5885 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5886
4c4b4cd2
PH
5887 if (t_field_name == NULL)
5888 continue;
5889
52ce6436 5890 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5891 {
5892 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5893 if (field_type_p != NULL)
5894 *field_type_p = TYPE_FIELD_TYPE (type, i);
5895 if (byte_offset_p != NULL)
5896 *byte_offset_p = fld_offset;
5897 if (bit_offset_p != NULL)
5898 *bit_offset_p = bit_pos % 8;
5899 if (bit_size_p != NULL)
5900 *bit_size_p = bit_size;
76a01679
JB
5901 return 1;
5902 }
4c4b4cd2
PH
5903 else if (ada_is_wrapper_field (type, i))
5904 {
52ce6436
PH
5905 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5906 field_type_p, byte_offset_p, bit_offset_p,
5907 bit_size_p, index_p))
76a01679
JB
5908 return 1;
5909 }
4c4b4cd2
PH
5910 else if (ada_is_variant_part (type, i))
5911 {
52ce6436
PH
5912 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5913 fixed type?? */
4c4b4cd2 5914 int j;
52ce6436
PH
5915 struct type *field_type
5916 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5917
52ce6436 5918 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5919 {
76a01679
JB
5920 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5921 fld_offset
5922 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5923 field_type_p, byte_offset_p,
52ce6436 5924 bit_offset_p, bit_size_p, index_p))
76a01679 5925 return 1;
4c4b4cd2
PH
5926 }
5927 }
52ce6436
PH
5928 else if (index_p != NULL)
5929 *index_p += 1;
4c4b4cd2
PH
5930 }
5931 return 0;
5932}
5933
52ce6436 5934/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5935
52ce6436
PH
5936static int
5937num_visible_fields (struct type *type)
5938{
5939 int n;
5940 n = 0;
5941 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5942 return n;
5943}
14f9c5c9 5944
4c4b4cd2 5945/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5946 and search in it assuming it has (class) type TYPE.
5947 If found, return value, else return NULL.
5948
4c4b4cd2 5949 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5950
4c4b4cd2 5951static struct value *
d2e4a39e 5952ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5953 struct type *type)
14f9c5c9
AS
5954{
5955 int i;
61ee279c 5956 type = ada_check_typedef (type);
14f9c5c9 5957
52ce6436 5958 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5959 {
5960 char *t_field_name = TYPE_FIELD_NAME (type, i);
5961
5962 if (t_field_name == NULL)
4c4b4cd2 5963 continue;
14f9c5c9
AS
5964
5965 else if (field_name_match (t_field_name, name))
4c4b4cd2 5966 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5967
5968 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5969 {
06d5cf63
JB
5970 struct value *v = /* Do not let indent join lines here. */
5971 ada_search_struct_field (name, arg,
5972 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5973 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5974 if (v != NULL)
5975 return v;
5976 }
14f9c5c9
AS
5977
5978 else if (ada_is_variant_part (type, i))
4c4b4cd2 5979 {
52ce6436 5980 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5981 int j;
61ee279c 5982 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5983 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5984
52ce6436 5985 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5986 {
06d5cf63
JB
5987 struct value *v = ada_search_struct_field /* Force line break. */
5988 (name, arg,
5989 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5990 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5991 if (v != NULL)
5992 return v;
5993 }
5994 }
14f9c5c9
AS
5995 }
5996 return NULL;
5997}
d2e4a39e 5998
52ce6436
PH
5999static struct value *ada_index_struct_field_1 (int *, struct value *,
6000 int, struct type *);
6001
6002
6003/* Return field #INDEX in ARG, where the index is that returned by
6004 * find_struct_field through its INDEX_P argument. Adjust the address
6005 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6006 * If found, return value, else return NULL. */
6007
6008static struct value *
6009ada_index_struct_field (int index, struct value *arg, int offset,
6010 struct type *type)
6011{
6012 return ada_index_struct_field_1 (&index, arg, offset, type);
6013}
6014
6015
6016/* Auxiliary function for ada_index_struct_field. Like
6017 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6018 * *INDEX_P. */
6019
6020static struct value *
6021ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6022 struct type *type)
6023{
6024 int i;
6025 type = ada_check_typedef (type);
6026
6027 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6028 {
6029 if (TYPE_FIELD_NAME (type, i) == NULL)
6030 continue;
6031 else if (ada_is_wrapper_field (type, i))
6032 {
6033 struct value *v = /* Do not let indent join lines here. */
6034 ada_index_struct_field_1 (index_p, arg,
6035 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6036 TYPE_FIELD_TYPE (type, i));
6037 if (v != NULL)
6038 return v;
6039 }
6040
6041 else if (ada_is_variant_part (type, i))
6042 {
6043 /* PNH: Do we ever get here? See ada_search_struct_field,
6044 find_struct_field. */
6045 error (_("Cannot assign this kind of variant record"));
6046 }
6047 else if (*index_p == 0)
6048 return ada_value_primitive_field (arg, offset, i, type);
6049 else
6050 *index_p -= 1;
6051 }
6052 return NULL;
6053}
6054
4c4b4cd2
PH
6055/* Given ARG, a value of type (pointer or reference to a)*
6056 structure/union, extract the component named NAME from the ultimate
6057 target structure/union and return it as a value with its
f5938064 6058 appropriate type.
14f9c5c9 6059
4c4b4cd2
PH
6060 The routine searches for NAME among all members of the structure itself
6061 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6062 (e.g., '_parent').
6063
03ee6b2e
PH
6064 If NO_ERR, then simply return NULL in case of error, rather than
6065 calling error. */
14f9c5c9 6066
d2e4a39e 6067struct value *
03ee6b2e 6068ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6069{
4c4b4cd2 6070 struct type *t, *t1;
d2e4a39e 6071 struct value *v;
14f9c5c9 6072
4c4b4cd2 6073 v = NULL;
df407dfe 6074 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6075 if (TYPE_CODE (t) == TYPE_CODE_REF)
6076 {
6077 t1 = TYPE_TARGET_TYPE (t);
6078 if (t1 == NULL)
03ee6b2e 6079 goto BadValue;
61ee279c 6080 t1 = ada_check_typedef (t1);
4c4b4cd2 6081 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6082 {
994b9211 6083 arg = coerce_ref (arg);
76a01679
JB
6084 t = t1;
6085 }
4c4b4cd2 6086 }
14f9c5c9 6087
4c4b4cd2
PH
6088 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6089 {
6090 t1 = TYPE_TARGET_TYPE (t);
6091 if (t1 == NULL)
03ee6b2e 6092 goto BadValue;
61ee279c 6093 t1 = ada_check_typedef (t1);
4c4b4cd2 6094 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6095 {
6096 arg = value_ind (arg);
6097 t = t1;
6098 }
4c4b4cd2 6099 else
76a01679 6100 break;
4c4b4cd2 6101 }
14f9c5c9 6102
4c4b4cd2 6103 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6104 goto BadValue;
14f9c5c9 6105
4c4b4cd2
PH
6106 if (t1 == t)
6107 v = ada_search_struct_field (name, arg, 0, t);
6108 else
6109 {
6110 int bit_offset, bit_size, byte_offset;
6111 struct type *field_type;
6112 CORE_ADDR address;
6113
76a01679
JB
6114 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6115 address = value_as_address (arg);
4c4b4cd2 6116 else
0fd88904 6117 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6118
1ed6ede0 6119 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6120 if (find_struct_field (name, t1, 0,
6121 &field_type, &byte_offset, &bit_offset,
52ce6436 6122 &bit_size, NULL))
76a01679
JB
6123 {
6124 if (bit_size != 0)
6125 {
714e53ab
PH
6126 if (TYPE_CODE (t) == TYPE_CODE_REF)
6127 arg = ada_coerce_ref (arg);
6128 else
6129 arg = ada_value_ind (arg);
76a01679
JB
6130 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6131 bit_offset, bit_size,
6132 field_type);
6133 }
6134 else
f5938064 6135 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6136 }
6137 }
6138
03ee6b2e
PH
6139 if (v != NULL || no_err)
6140 return v;
6141 else
323e0a4a 6142 error (_("There is no member named %s."), name);
14f9c5c9 6143
03ee6b2e
PH
6144 BadValue:
6145 if (no_err)
6146 return NULL;
6147 else
6148 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6149}
6150
6151/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6152 If DISPP is non-null, add its byte displacement from the beginning of a
6153 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6154 work for packed fields).
6155
6156 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6157 followed by "___".
14f9c5c9 6158
4c4b4cd2
PH
6159 TYPE can be either a struct or union. If REFOK, TYPE may also
6160 be a (pointer or reference)+ to a struct or union, and the
6161 ultimate target type will be searched.
14f9c5c9
AS
6162
6163 Looks recursively into variant clauses and parent types.
6164
4c4b4cd2
PH
6165 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6166 TYPE is not a type of the right kind. */
14f9c5c9 6167
4c4b4cd2 6168static struct type *
76a01679
JB
6169ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6170 int noerr, int *dispp)
14f9c5c9
AS
6171{
6172 int i;
6173
6174 if (name == NULL)
6175 goto BadName;
6176
76a01679 6177 if (refok && type != NULL)
4c4b4cd2
PH
6178 while (1)
6179 {
61ee279c 6180 type = ada_check_typedef (type);
76a01679
JB
6181 if (TYPE_CODE (type) != TYPE_CODE_PTR
6182 && TYPE_CODE (type) != TYPE_CODE_REF)
6183 break;
6184 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6185 }
14f9c5c9 6186
76a01679 6187 if (type == NULL
1265e4aa
JB
6188 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6189 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6190 {
4c4b4cd2 6191 if (noerr)
76a01679 6192 return NULL;
4c4b4cd2 6193 else
76a01679
JB
6194 {
6195 target_terminal_ours ();
6196 gdb_flush (gdb_stdout);
323e0a4a
AC
6197 if (type == NULL)
6198 error (_("Type (null) is not a structure or union type"));
6199 else
6200 {
6201 /* XXX: type_sprint */
6202 fprintf_unfiltered (gdb_stderr, _("Type "));
6203 type_print (type, "", gdb_stderr, -1);
6204 error (_(" is not a structure or union type"));
6205 }
76a01679 6206 }
14f9c5c9
AS
6207 }
6208
6209 type = to_static_fixed_type (type);
6210
6211 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6212 {
6213 char *t_field_name = TYPE_FIELD_NAME (type, i);
6214 struct type *t;
6215 int disp;
d2e4a39e 6216
14f9c5c9 6217 if (t_field_name == NULL)
4c4b4cd2 6218 continue;
14f9c5c9
AS
6219
6220 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6221 {
6222 if (dispp != NULL)
6223 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6224 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6225 }
14f9c5c9
AS
6226
6227 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6228 {
6229 disp = 0;
6230 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6231 0, 1, &disp);
6232 if (t != NULL)
6233 {
6234 if (dispp != NULL)
6235 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6236 return t;
6237 }
6238 }
14f9c5c9
AS
6239
6240 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6241 {
6242 int j;
61ee279c 6243 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6244
6245 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6246 {
b1f33ddd
JB
6247 /* FIXME pnh 2008/01/26: We check for a field that is
6248 NOT wrapped in a struct, since the compiler sometimes
6249 generates these for unchecked variant types. Revisit
6250 if the compiler changes this practice. */
6251 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6252 disp = 0;
b1f33ddd
JB
6253 if (v_field_name != NULL
6254 && field_name_match (v_field_name, name))
6255 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6256 else
6257 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6258 name, 0, 1, &disp);
6259
4c4b4cd2
PH
6260 if (t != NULL)
6261 {
6262 if (dispp != NULL)
6263 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6264 return t;
6265 }
6266 }
6267 }
14f9c5c9
AS
6268
6269 }
6270
6271BadName:
d2e4a39e 6272 if (!noerr)
14f9c5c9
AS
6273 {
6274 target_terminal_ours ();
6275 gdb_flush (gdb_stdout);
323e0a4a
AC
6276 if (name == NULL)
6277 {
6278 /* XXX: type_sprint */
6279 fprintf_unfiltered (gdb_stderr, _("Type "));
6280 type_print (type, "", gdb_stderr, -1);
6281 error (_(" has no component named <null>"));
6282 }
6283 else
6284 {
6285 /* XXX: type_sprint */
6286 fprintf_unfiltered (gdb_stderr, _("Type "));
6287 type_print (type, "", gdb_stderr, -1);
6288 error (_(" has no component named %s"), name);
6289 }
14f9c5c9
AS
6290 }
6291
6292 return NULL;
6293}
6294
b1f33ddd
JB
6295/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6296 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6297 represents an unchecked union (that is, the variant part of a
6298 record that is named in an Unchecked_Union pragma). */
6299
6300static int
6301is_unchecked_variant (struct type *var_type, struct type *outer_type)
6302{
6303 char *discrim_name = ada_variant_discrim_name (var_type);
6304 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6305 == NULL);
6306}
6307
6308
14f9c5c9
AS
6309/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6310 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6311 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6312 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6313
d2e4a39e 6314int
ebf56fd3 6315ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6316 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6317{
6318 int others_clause;
6319 int i;
d2e4a39e 6320 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6321 struct value *outer;
6322 struct value *discrim;
14f9c5c9
AS
6323 LONGEST discrim_val;
6324
0c281816
JB
6325 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6326 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6327 if (discrim == NULL)
14f9c5c9 6328 return -1;
0c281816 6329 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6330
6331 others_clause = -1;
6332 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6333 {
6334 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6335 others_clause = i;
14f9c5c9 6336 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6337 return i;
14f9c5c9
AS
6338 }
6339
6340 return others_clause;
6341}
d2e4a39e 6342\f
14f9c5c9
AS
6343
6344
4c4b4cd2 6345 /* Dynamic-Sized Records */
14f9c5c9
AS
6346
6347/* Strategy: The type ostensibly attached to a value with dynamic size
6348 (i.e., a size that is not statically recorded in the debugging
6349 data) does not accurately reflect the size or layout of the value.
6350 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6351 conventional types that are constructed on the fly. */
14f9c5c9
AS
6352
6353/* There is a subtle and tricky problem here. In general, we cannot
6354 determine the size of dynamic records without its data. However,
6355 the 'struct value' data structure, which GDB uses to represent
6356 quantities in the inferior process (the target), requires the size
6357 of the type at the time of its allocation in order to reserve space
6358 for GDB's internal copy of the data. That's why the
6359 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6360 rather than struct value*s.
14f9c5c9
AS
6361
6362 However, GDB's internal history variables ($1, $2, etc.) are
6363 struct value*s containing internal copies of the data that are not, in
6364 general, the same as the data at their corresponding addresses in
6365 the target. Fortunately, the types we give to these values are all
6366 conventional, fixed-size types (as per the strategy described
6367 above), so that we don't usually have to perform the
6368 'to_fixed_xxx_type' conversions to look at their values.
6369 Unfortunately, there is one exception: if one of the internal
6370 history variables is an array whose elements are unconstrained
6371 records, then we will need to create distinct fixed types for each
6372 element selected. */
6373
6374/* The upshot of all of this is that many routines take a (type, host
6375 address, target address) triple as arguments to represent a value.
6376 The host address, if non-null, is supposed to contain an internal
6377 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6378 target at the target address. */
14f9c5c9
AS
6379
6380/* Assuming that VAL0 represents a pointer value, the result of
6381 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6382 dynamic-sized types. */
14f9c5c9 6383
d2e4a39e
AS
6384struct value *
6385ada_value_ind (struct value *val0)
14f9c5c9 6386{
d2e4a39e 6387 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6388 return ada_to_fixed_value (val);
14f9c5c9
AS
6389}
6390
6391/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6392 qualifiers on VAL0. */
6393
d2e4a39e
AS
6394static struct value *
6395ada_coerce_ref (struct value *val0)
6396{
df407dfe 6397 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6398 {
6399 struct value *val = val0;
994b9211 6400 val = coerce_ref (val);
d2e4a39e 6401 val = unwrap_value (val);
4c4b4cd2 6402 return ada_to_fixed_value (val);
d2e4a39e
AS
6403 }
6404 else
14f9c5c9
AS
6405 return val0;
6406}
6407
6408/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6409 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6410
6411static unsigned int
ebf56fd3 6412align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6413{
6414 return (off + alignment - 1) & ~(alignment - 1);
6415}
6416
4c4b4cd2 6417/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6418
6419static unsigned int
ebf56fd3 6420field_alignment (struct type *type, int f)
14f9c5c9 6421{
d2e4a39e 6422 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6423 int len;
14f9c5c9
AS
6424 int align_offset;
6425
64a1bf19
JB
6426 /* The field name should never be null, unless the debugging information
6427 is somehow malformed. In this case, we assume the field does not
6428 require any alignment. */
6429 if (name == NULL)
6430 return 1;
6431
6432 len = strlen (name);
6433
4c4b4cd2
PH
6434 if (!isdigit (name[len - 1]))
6435 return 1;
14f9c5c9 6436
d2e4a39e 6437 if (isdigit (name[len - 2]))
14f9c5c9
AS
6438 align_offset = len - 2;
6439 else
6440 align_offset = len - 1;
6441
4c4b4cd2 6442 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6443 return TARGET_CHAR_BIT;
6444
4c4b4cd2
PH
6445 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6446}
6447
6448/* Find a symbol named NAME. Ignores ambiguity. */
6449
6450struct symbol *
6451ada_find_any_symbol (const char *name)
6452{
6453 struct symbol *sym;
6454
6455 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6456 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6457 return sym;
6458
6459 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6460 return sym;
14f9c5c9
AS
6461}
6462
dddfab26
UW
6463/* Find a type named NAME. Ignores ambiguity. This routine will look
6464 solely for types defined by debug info, it will not search the GDB
6465 primitive types. */
4c4b4cd2 6466
d2e4a39e 6467struct type *
ebf56fd3 6468ada_find_any_type (const char *name)
14f9c5c9 6469{
4c4b4cd2 6470 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6471
14f9c5c9 6472 if (sym != NULL)
dddfab26 6473 return SYMBOL_TYPE (sym);
14f9c5c9 6474
dddfab26 6475 return NULL;
14f9c5c9
AS
6476}
6477
aeb5907d
JB
6478/* Given NAME and an associated BLOCK, search all symbols for
6479 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6480 associated to NAME. Return this symbol if found, return
6481 NULL otherwise. */
6482
6483struct symbol *
6484ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6485{
6486 struct symbol *sym;
6487
6488 sym = find_old_style_renaming_symbol (name, block);
6489
6490 if (sym != NULL)
6491 return sym;
6492
6493 /* Not right yet. FIXME pnh 7/20/2007. */
6494 sym = ada_find_any_symbol (name);
6495 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6496 return sym;
6497 else
6498 return NULL;
6499}
6500
6501static struct symbol *
6502find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6503{
7f0df278 6504 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6505 char *rename;
6506
6507 if (function_sym != NULL)
6508 {
6509 /* If the symbol is defined inside a function, NAME is not fully
6510 qualified. This means we need to prepend the function name
6511 as well as adding the ``___XR'' suffix to build the name of
6512 the associated renaming symbol. */
6513 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6514 /* Function names sometimes contain suffixes used
6515 for instance to qualify nested subprograms. When building
6516 the XR type name, we need to make sure that this suffix is
6517 not included. So do not include any suffix in the function
6518 name length below. */
6519 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6520 const int rename_len = function_name_len + 2 /* "__" */
6521 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6522
529cad9c
PH
6523 /* Strip the suffix if necessary. */
6524 function_name[function_name_len] = '\0';
6525
4c4b4cd2
PH
6526 /* Library-level functions are a special case, as GNAT adds
6527 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6528 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6529 have this prefix, so we need to skip this prefix if present. */
6530 if (function_name_len > 5 /* "_ada_" */
6531 && strstr (function_name, "_ada_") == function_name)
6532 function_name = function_name + 5;
6533
6534 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34
PM
6535 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6536 function_name, name);
4c4b4cd2
PH
6537 }
6538 else
6539 {
6540 const int rename_len = strlen (name) + 6;
6541 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6542 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6543 }
6544
6545 return ada_find_any_symbol (rename);
6546}
6547
14f9c5c9 6548/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6549 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6550 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6551 otherwise return 0. */
6552
14f9c5c9 6553int
d2e4a39e 6554ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6555{
6556 if (type1 == NULL)
6557 return 1;
6558 else if (type0 == NULL)
6559 return 0;
6560 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6561 return 1;
6562 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6563 return 0;
4c4b4cd2
PH
6564 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6565 return 1;
14f9c5c9
AS
6566 else if (ada_is_packed_array_type (type0))
6567 return 1;
4c4b4cd2
PH
6568 else if (ada_is_array_descriptor_type (type0)
6569 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6570 return 1;
aeb5907d
JB
6571 else
6572 {
6573 const char *type0_name = type_name_no_tag (type0);
6574 const char *type1_name = type_name_no_tag (type1);
6575
6576 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6577 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6578 return 1;
6579 }
14f9c5c9
AS
6580 return 0;
6581}
6582
6583/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6584 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6585
d2e4a39e
AS
6586char *
6587ada_type_name (struct type *type)
14f9c5c9 6588{
d2e4a39e 6589 if (type == NULL)
14f9c5c9
AS
6590 return NULL;
6591 else if (TYPE_NAME (type) != NULL)
6592 return TYPE_NAME (type);
6593 else
6594 return TYPE_TAG_NAME (type);
6595}
6596
6597/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6598 SUFFIX to the name of TYPE. */
14f9c5c9 6599
d2e4a39e 6600struct type *
ebf56fd3 6601ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6602{
d2e4a39e 6603 static char *name;
14f9c5c9 6604 static size_t name_len = 0;
14f9c5c9 6605 int len;
d2e4a39e
AS
6606 char *typename = ada_type_name (type);
6607
14f9c5c9
AS
6608 if (typename == NULL)
6609 return NULL;
6610
6611 len = strlen (typename);
6612
d2e4a39e 6613 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6614
6615 strcpy (name, typename);
6616 strcpy (name + len, suffix);
6617
6618 return ada_find_any_type (name);
6619}
6620
6621
6622/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6623 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6624
d2e4a39e
AS
6625static struct type *
6626dynamic_template_type (struct type *type)
14f9c5c9 6627{
61ee279c 6628 type = ada_check_typedef (type);
14f9c5c9
AS
6629
6630 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6631 || ada_type_name (type) == NULL)
14f9c5c9 6632 return NULL;
d2e4a39e 6633 else
14f9c5c9
AS
6634 {
6635 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6636 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6637 return type;
14f9c5c9 6638 else
4c4b4cd2 6639 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6640 }
6641}
6642
6643/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6644 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6645
d2e4a39e
AS
6646static int
6647is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6648{
6649 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6650 return name != NULL
14f9c5c9
AS
6651 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6652 && strstr (name, "___XVL") != NULL;
6653}
6654
4c4b4cd2
PH
6655/* The index of the variant field of TYPE, or -1 if TYPE does not
6656 represent a variant record type. */
14f9c5c9 6657
d2e4a39e 6658static int
4c4b4cd2 6659variant_field_index (struct type *type)
14f9c5c9
AS
6660{
6661 int f;
6662
4c4b4cd2
PH
6663 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6664 return -1;
6665
6666 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6667 {
6668 if (ada_is_variant_part (type, f))
6669 return f;
6670 }
6671 return -1;
14f9c5c9
AS
6672}
6673
4c4b4cd2
PH
6674/* A record type with no fields. */
6675
d2e4a39e
AS
6676static struct type *
6677empty_record (struct objfile *objfile)
14f9c5c9 6678{
d2e4a39e 6679 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6680 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6681 TYPE_NFIELDS (type) = 0;
6682 TYPE_FIELDS (type) = NULL;
b1f33ddd 6683 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6684 TYPE_NAME (type) = "<empty>";
6685 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6686 TYPE_LENGTH (type) = 0;
6687 return type;
6688}
6689
6690/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6691 the value of type TYPE at VALADDR or ADDRESS (see comments at
6692 the beginning of this section) VAL according to GNAT conventions.
6693 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6694 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6695 an outer-level type (i.e., as opposed to a branch of a variant.) A
6696 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6697 of the variant.
14f9c5c9 6698
4c4b4cd2
PH
6699 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6700 length are not statically known are discarded. As a consequence,
6701 VALADDR, ADDRESS and DVAL0 are ignored.
6702
6703 NOTE: Limitations: For now, we assume that dynamic fields and
6704 variants occupy whole numbers of bytes. However, they need not be
6705 byte-aligned. */
6706
6707struct type *
10a2c479 6708ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6709 const gdb_byte *valaddr,
4c4b4cd2
PH
6710 CORE_ADDR address, struct value *dval0,
6711 int keep_dynamic_fields)
14f9c5c9 6712{
d2e4a39e
AS
6713 struct value *mark = value_mark ();
6714 struct value *dval;
6715 struct type *rtype;
14f9c5c9 6716 int nfields, bit_len;
4c4b4cd2 6717 int variant_field;
14f9c5c9 6718 long off;
4c4b4cd2 6719 int fld_bit_len, bit_incr;
14f9c5c9
AS
6720 int f;
6721
4c4b4cd2
PH
6722 /* Compute the number of fields in this record type that are going
6723 to be processed: unless keep_dynamic_fields, this includes only
6724 fields whose position and length are static will be processed. */
6725 if (keep_dynamic_fields)
6726 nfields = TYPE_NFIELDS (type);
6727 else
6728 {
6729 nfields = 0;
76a01679 6730 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6731 && !ada_is_variant_part (type, nfields)
6732 && !is_dynamic_field (type, nfields))
6733 nfields++;
6734 }
6735
14f9c5c9
AS
6736 rtype = alloc_type (TYPE_OBJFILE (type));
6737 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6738 INIT_CPLUS_SPECIFIC (rtype);
6739 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6740 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6741 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6742 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6743 TYPE_NAME (rtype) = ada_type_name (type);
6744 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6745 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6746
d2e4a39e
AS
6747 off = 0;
6748 bit_len = 0;
4c4b4cd2
PH
6749 variant_field = -1;
6750
14f9c5c9
AS
6751 for (f = 0; f < nfields; f += 1)
6752 {
6c038f32
PH
6753 off = align_value (off, field_alignment (type, f))
6754 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6755 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6756 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6757
d2e4a39e 6758 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6759 {
6760 variant_field = f;
6761 fld_bit_len = bit_incr = 0;
6762 }
14f9c5c9 6763 else if (is_dynamic_field (type, f))
4c4b4cd2 6764 {
284614f0
JB
6765 const gdb_byte *field_valaddr = valaddr;
6766 CORE_ADDR field_address = address;
6767 struct type *field_type =
6768 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6769
4c4b4cd2 6770 if (dval0 == NULL)
b5304971
JG
6771 {
6772 /* rtype's length is computed based on the run-time
6773 value of discriminants. If the discriminants are not
6774 initialized, the type size may be completely bogus and
6775 GDB may fail to allocate a value for it. So check the
6776 size first before creating the value. */
6777 check_size (rtype);
6778 dval = value_from_contents_and_address (rtype, valaddr, address);
6779 }
4c4b4cd2
PH
6780 else
6781 dval = dval0;
6782
284614f0
JB
6783 /* If the type referenced by this field is an aligner type, we need
6784 to unwrap that aligner type, because its size might not be set.
6785 Keeping the aligner type would cause us to compute the wrong
6786 size for this field, impacting the offset of the all the fields
6787 that follow this one. */
6788 if (ada_is_aligner_type (field_type))
6789 {
6790 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6791
6792 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6793 field_address = cond_offset_target (field_address, field_offset);
6794 field_type = ada_aligned_type (field_type);
6795 }
6796
6797 field_valaddr = cond_offset_host (field_valaddr,
6798 off / TARGET_CHAR_BIT);
6799 field_address = cond_offset_target (field_address,
6800 off / TARGET_CHAR_BIT);
6801
6802 /* Get the fixed type of the field. Note that, in this case,
6803 we do not want to get the real type out of the tag: if
6804 the current field is the parent part of a tagged record,
6805 we will get the tag of the object. Clearly wrong: the real
6806 type of the parent is not the real type of the child. We
6807 would end up in an infinite loop. */
6808 field_type = ada_get_base_type (field_type);
6809 field_type = ada_to_fixed_type (field_type, field_valaddr,
6810 field_address, dval, 0);
6811
6812 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6813 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6814 bit_incr = fld_bit_len =
6815 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6816 }
14f9c5c9 6817 else
4c4b4cd2
PH
6818 {
6819 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6820 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6821 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6822 bit_incr = fld_bit_len =
6823 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6824 else
6825 bit_incr = fld_bit_len =
6826 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6827 }
14f9c5c9 6828 if (off + fld_bit_len > bit_len)
4c4b4cd2 6829 bit_len = off + fld_bit_len;
14f9c5c9 6830 off += bit_incr;
4c4b4cd2
PH
6831 TYPE_LENGTH (rtype) =
6832 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6833 }
4c4b4cd2
PH
6834
6835 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6836 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6837 the record. This can happen in the presence of representation
6838 clauses. */
6839 if (variant_field >= 0)
6840 {
6841 struct type *branch_type;
6842
6843 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6844
6845 if (dval0 == NULL)
6846 dval = value_from_contents_and_address (rtype, valaddr, address);
6847 else
6848 dval = dval0;
6849
6850 branch_type =
6851 to_fixed_variant_branch_type
6852 (TYPE_FIELD_TYPE (type, variant_field),
6853 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6854 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6855 if (branch_type == NULL)
6856 {
6857 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6858 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6859 TYPE_NFIELDS (rtype) -= 1;
6860 }
6861 else
6862 {
6863 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6864 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6865 fld_bit_len =
6866 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6867 TARGET_CHAR_BIT;
6868 if (off + fld_bit_len > bit_len)
6869 bit_len = off + fld_bit_len;
6870 TYPE_LENGTH (rtype) =
6871 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6872 }
6873 }
6874
714e53ab
PH
6875 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6876 should contain the alignment of that record, which should be a strictly
6877 positive value. If null or negative, then something is wrong, most
6878 probably in the debug info. In that case, we don't round up the size
6879 of the resulting type. If this record is not part of another structure,
6880 the current RTYPE length might be good enough for our purposes. */
6881 if (TYPE_LENGTH (type) <= 0)
6882 {
323e0a4a
AC
6883 if (TYPE_NAME (rtype))
6884 warning (_("Invalid type size for `%s' detected: %d."),
6885 TYPE_NAME (rtype), TYPE_LENGTH (type));
6886 else
6887 warning (_("Invalid type size for <unnamed> detected: %d."),
6888 TYPE_LENGTH (type));
714e53ab
PH
6889 }
6890 else
6891 {
6892 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6893 TYPE_LENGTH (type));
6894 }
14f9c5c9
AS
6895
6896 value_free_to_mark (mark);
d2e4a39e 6897 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6898 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6899 return rtype;
6900}
6901
4c4b4cd2
PH
6902/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6903 of 1. */
14f9c5c9 6904
d2e4a39e 6905static struct type *
fc1a4b47 6906template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6907 CORE_ADDR address, struct value *dval0)
6908{
6909 return ada_template_to_fixed_record_type_1 (type, valaddr,
6910 address, dval0, 1);
6911}
6912
6913/* An ordinary record type in which ___XVL-convention fields and
6914 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6915 static approximations, containing all possible fields. Uses
6916 no runtime values. Useless for use in values, but that's OK,
6917 since the results are used only for type determinations. Works on both
6918 structs and unions. Representation note: to save space, we memorize
6919 the result of this function in the TYPE_TARGET_TYPE of the
6920 template type. */
6921
6922static struct type *
6923template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6924{
6925 struct type *type;
6926 int nfields;
6927 int f;
6928
4c4b4cd2
PH
6929 if (TYPE_TARGET_TYPE (type0) != NULL)
6930 return TYPE_TARGET_TYPE (type0);
6931
6932 nfields = TYPE_NFIELDS (type0);
6933 type = type0;
14f9c5c9
AS
6934
6935 for (f = 0; f < nfields; f += 1)
6936 {
61ee279c 6937 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6938 struct type *new_type;
14f9c5c9 6939
4c4b4cd2
PH
6940 if (is_dynamic_field (type0, f))
6941 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6942 else
f192137b 6943 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6944 if (type == type0 && new_type != field_type)
6945 {
6946 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6947 TYPE_CODE (type) = TYPE_CODE (type0);
6948 INIT_CPLUS_SPECIFIC (type);
6949 TYPE_NFIELDS (type) = nfields;
6950 TYPE_FIELDS (type) = (struct field *)
6951 TYPE_ALLOC (type, nfields * sizeof (struct field));
6952 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6953 sizeof (struct field) * nfields);
6954 TYPE_NAME (type) = ada_type_name (type0);
6955 TYPE_TAG_NAME (type) = NULL;
876cecd0 6956 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6957 TYPE_LENGTH (type) = 0;
6958 }
6959 TYPE_FIELD_TYPE (type, f) = new_type;
6960 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6961 }
14f9c5c9
AS
6962 return type;
6963}
6964
4c4b4cd2 6965/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6966 whose address in memory is ADDRESS, returns a revision of TYPE,
6967 which should be a non-dynamic-sized record, in which the variant
6968 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6969 for discriminant values in DVAL0, which can be NULL if the record
6970 contains the necessary discriminant values. */
6971
d2e4a39e 6972static struct type *
fc1a4b47 6973to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6974 CORE_ADDR address, struct value *dval0)
14f9c5c9 6975{
d2e4a39e 6976 struct value *mark = value_mark ();
4c4b4cd2 6977 struct value *dval;
d2e4a39e 6978 struct type *rtype;
14f9c5c9
AS
6979 struct type *branch_type;
6980 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6981 int variant_field = variant_field_index (type);
14f9c5c9 6982
4c4b4cd2 6983 if (variant_field == -1)
14f9c5c9
AS
6984 return type;
6985
4c4b4cd2
PH
6986 if (dval0 == NULL)
6987 dval = value_from_contents_and_address (type, valaddr, address);
6988 else
6989 dval = dval0;
6990
14f9c5c9
AS
6991 rtype = alloc_type (TYPE_OBJFILE (type));
6992 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6993 INIT_CPLUS_SPECIFIC (rtype);
6994 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6995 TYPE_FIELDS (rtype) =
6996 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6997 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6998 sizeof (struct field) * nfields);
14f9c5c9
AS
6999 TYPE_NAME (rtype) = ada_type_name (type);
7000 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7001 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7002 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7003
4c4b4cd2
PH
7004 branch_type = to_fixed_variant_branch_type
7005 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7006 cond_offset_host (valaddr,
4c4b4cd2
PH
7007 TYPE_FIELD_BITPOS (type, variant_field)
7008 / TARGET_CHAR_BIT),
d2e4a39e 7009 cond_offset_target (address,
4c4b4cd2
PH
7010 TYPE_FIELD_BITPOS (type, variant_field)
7011 / TARGET_CHAR_BIT), dval);
d2e4a39e 7012 if (branch_type == NULL)
14f9c5c9 7013 {
4c4b4cd2
PH
7014 int f;
7015 for (f = variant_field + 1; f < nfields; f += 1)
7016 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7017 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7018 }
7019 else
7020 {
4c4b4cd2
PH
7021 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7022 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7023 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7024 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7025 }
4c4b4cd2 7026 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7027
4c4b4cd2 7028 value_free_to_mark (mark);
14f9c5c9
AS
7029 return rtype;
7030}
7031
7032/* An ordinary record type (with fixed-length fields) that describes
7033 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7034 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7035 should be in DVAL, a record value; it may be NULL if the object
7036 at ADDR itself contains any necessary discriminant values.
7037 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7038 values from the record are needed. Except in the case that DVAL,
7039 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7040 unchecked) is replaced by a particular branch of the variant.
7041
7042 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7043 is questionable and may be removed. It can arise during the
7044 processing of an unconstrained-array-of-record type where all the
7045 variant branches have exactly the same size. This is because in
7046 such cases, the compiler does not bother to use the XVS convention
7047 when encoding the record. I am currently dubious of this
7048 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7049
d2e4a39e 7050static struct type *
fc1a4b47 7051to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7052 CORE_ADDR address, struct value *dval)
14f9c5c9 7053{
d2e4a39e 7054 struct type *templ_type;
14f9c5c9 7055
876cecd0 7056 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7057 return type0;
7058
d2e4a39e 7059 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7060
7061 if (templ_type != NULL)
7062 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7063 else if (variant_field_index (type0) >= 0)
7064 {
7065 if (dval == NULL && valaddr == NULL && address == 0)
7066 return type0;
7067 return to_record_with_fixed_variant_part (type0, valaddr, address,
7068 dval);
7069 }
14f9c5c9
AS
7070 else
7071 {
876cecd0 7072 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7073 return type0;
7074 }
7075
7076}
7077
7078/* An ordinary record type (with fixed-length fields) that describes
7079 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7080 union type. Any necessary discriminants' values should be in DVAL,
7081 a record value. That is, this routine selects the appropriate
7082 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7083 indicated in the union's type name. Returns VAR_TYPE0 itself if
7084 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7085
d2e4a39e 7086static struct type *
fc1a4b47 7087to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7088 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7089{
7090 int which;
d2e4a39e
AS
7091 struct type *templ_type;
7092 struct type *var_type;
14f9c5c9
AS
7093
7094 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7095 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7096 else
14f9c5c9
AS
7097 var_type = var_type0;
7098
7099 templ_type = ada_find_parallel_type (var_type, "___XVU");
7100
7101 if (templ_type != NULL)
7102 var_type = templ_type;
7103
b1f33ddd
JB
7104 if (is_unchecked_variant (var_type, value_type (dval)))
7105 return var_type0;
d2e4a39e
AS
7106 which =
7107 ada_which_variant_applies (var_type,
0fd88904 7108 value_type (dval), value_contents (dval));
14f9c5c9
AS
7109
7110 if (which < 0)
7111 return empty_record (TYPE_OBJFILE (var_type));
7112 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7113 return to_fixed_record_type
d2e4a39e
AS
7114 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7115 valaddr, address, dval);
4c4b4cd2 7116 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7117 return
7118 to_fixed_record_type
7119 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7120 else
7121 return TYPE_FIELD_TYPE (var_type, which);
7122}
7123
7124/* Assuming that TYPE0 is an array type describing the type of a value
7125 at ADDR, and that DVAL describes a record containing any
7126 discriminants used in TYPE0, returns a type for the value that
7127 contains no dynamic components (that is, no components whose sizes
7128 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7129 true, gives an error message if the resulting type's size is over
4c4b4cd2 7130 varsize_limit. */
14f9c5c9 7131
d2e4a39e
AS
7132static struct type *
7133to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7134 int ignore_too_big)
14f9c5c9 7135{
d2e4a39e
AS
7136 struct type *index_type_desc;
7137 struct type *result;
284614f0 7138 int packed_array_p;
14f9c5c9 7139
284614f0 7140 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7141 return type0;
14f9c5c9 7142
284614f0
JB
7143 packed_array_p = ada_is_packed_array_type (type0);
7144 if (packed_array_p)
7145 type0 = decode_packed_array_type (type0);
7146
14f9c5c9
AS
7147 index_type_desc = ada_find_parallel_type (type0, "___XA");
7148 if (index_type_desc == NULL)
7149 {
61ee279c 7150 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7151 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7152 depend on the contents of the array in properly constructed
7153 debugging data. */
529cad9c
PH
7154 /* Create a fixed version of the array element type.
7155 We're not providing the address of an element here,
e1d5a0d2 7156 and thus the actual object value cannot be inspected to do
529cad9c
PH
7157 the conversion. This should not be a problem, since arrays of
7158 unconstrained objects are not allowed. In particular, all
7159 the elements of an array of a tagged type should all be of
7160 the same type specified in the debugging info. No need to
7161 consult the object tag. */
1ed6ede0 7162 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7163
284614f0
JB
7164 /* Make sure we always create a new array type when dealing with
7165 packed array types, since we're going to fix-up the array
7166 type length and element bitsize a little further down. */
7167 if (elt_type0 == elt_type && !packed_array_p)
4c4b4cd2 7168 result = type0;
14f9c5c9 7169 else
4c4b4cd2
PH
7170 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7171 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7172 }
7173 else
7174 {
7175 int i;
7176 struct type *elt_type0;
7177
7178 elt_type0 = type0;
7179 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7180 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7181
7182 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7183 depend on the contents of the array in properly constructed
7184 debugging data. */
529cad9c
PH
7185 /* Create a fixed version of the array element type.
7186 We're not providing the address of an element here,
e1d5a0d2 7187 and thus the actual object value cannot be inspected to do
529cad9c
PH
7188 the conversion. This should not be a problem, since arrays of
7189 unconstrained objects are not allowed. In particular, all
7190 the elements of an array of a tagged type should all be of
7191 the same type specified in the debugging info. No need to
7192 consult the object tag. */
1ed6ede0
JB
7193 result =
7194 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7195
7196 elt_type0 = type0;
14f9c5c9 7197 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7198 {
7199 struct type *range_type =
7200 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4
UW
7201 dval, TYPE_INDEX_TYPE (elt_type0));
7202 result = create_array_type (alloc_type (TYPE_OBJFILE (elt_type0)),
4c4b4cd2 7203 result, range_type);
1ce677a4 7204 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7205 }
d2e4a39e 7206 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7207 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7208 }
7209
284614f0
JB
7210 if (packed_array_p)
7211 {
7212 /* So far, the resulting type has been created as if the original
7213 type was a regular (non-packed) array type. As a result, the
7214 bitsize of the array elements needs to be set again, and the array
7215 length needs to be recomputed based on that bitsize. */
7216 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7217 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7218
7219 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7220 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7221 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7222 TYPE_LENGTH (result)++;
7223 }
7224
876cecd0 7225 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7226 return result;
d2e4a39e 7227}
14f9c5c9
AS
7228
7229
7230/* A standard type (containing no dynamically sized components)
7231 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7232 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7233 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7234 ADDRESS or in VALADDR contains these discriminants.
7235
1ed6ede0
JB
7236 If CHECK_TAG is not null, in the case of tagged types, this function
7237 attempts to locate the object's tag and use it to compute the actual
7238 type. However, when ADDRESS is null, we cannot use it to determine the
7239 location of the tag, and therefore compute the tagged type's actual type.
7240 So we return the tagged type without consulting the tag. */
529cad9c 7241
f192137b
JB
7242static struct type *
7243ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7244 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7245{
61ee279c 7246 type = ada_check_typedef (type);
d2e4a39e
AS
7247 switch (TYPE_CODE (type))
7248 {
7249 default:
14f9c5c9 7250 return type;
d2e4a39e 7251 case TYPE_CODE_STRUCT:
4c4b4cd2 7252 {
76a01679 7253 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7254 struct type *fixed_record_type =
7255 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7256 /* If STATIC_TYPE is a tagged type and we know the object's address,
7257 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7258 type from there. Note that we have to use the fixed record
7259 type (the parent part of the record may have dynamic fields
7260 and the way the location of _tag is expressed may depend on
7261 them). */
529cad9c 7262
1ed6ede0 7263 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7264 {
7265 struct type *real_type =
1ed6ede0
JB
7266 type_from_tag (value_tag_from_contents_and_address
7267 (fixed_record_type,
7268 valaddr,
7269 address));
76a01679 7270 if (real_type != NULL)
1ed6ede0 7271 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7272 }
4af88198
JB
7273
7274 /* Check to see if there is a parallel ___XVZ variable.
7275 If there is, then it provides the actual size of our type. */
7276 else if (ada_type_name (fixed_record_type) != NULL)
7277 {
7278 char *name = ada_type_name (fixed_record_type);
7279 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7280 int xvz_found = 0;
7281 LONGEST size;
7282
88c15c34 7283 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7284 size = get_int_var_value (xvz_name, &xvz_found);
7285 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7286 {
7287 fixed_record_type = copy_type (fixed_record_type);
7288 TYPE_LENGTH (fixed_record_type) = size;
7289
7290 /* The FIXED_RECORD_TYPE may have be a stub. We have
7291 observed this when the debugging info is STABS, and
7292 apparently it is something that is hard to fix.
7293
7294 In practice, we don't need the actual type definition
7295 at all, because the presence of the XVZ variable allows us
7296 to assume that there must be a XVS type as well, which we
7297 should be able to use later, when we need the actual type
7298 definition.
7299
7300 In the meantime, pretend that the "fixed" type we are
7301 returning is NOT a stub, because this can cause trouble
7302 when using this type to create new types targeting it.
7303 Indeed, the associated creation routines often check
7304 whether the target type is a stub and will try to replace
7305 it, thus using a type with the wrong size. This, in turn,
7306 might cause the new type to have the wrong size too.
7307 Consider the case of an array, for instance, where the size
7308 of the array is computed from the number of elements in
7309 our array multiplied by the size of its element. */
7310 TYPE_STUB (fixed_record_type) = 0;
7311 }
7312 }
1ed6ede0 7313 return fixed_record_type;
4c4b4cd2 7314 }
d2e4a39e 7315 case TYPE_CODE_ARRAY:
4c4b4cd2 7316 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7317 case TYPE_CODE_UNION:
7318 if (dval == NULL)
4c4b4cd2 7319 return type;
d2e4a39e 7320 else
4c4b4cd2 7321 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7322 }
14f9c5c9
AS
7323}
7324
f192137b
JB
7325/* The same as ada_to_fixed_type_1, except that it preserves the type
7326 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7327 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7328
7329struct type *
7330ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7331 CORE_ADDR address, struct value *dval, int check_tag)
7332
7333{
7334 struct type *fixed_type =
7335 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7336
7337 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7338 && TYPE_TARGET_TYPE (type) == fixed_type)
7339 return type;
7340
7341 return fixed_type;
7342}
7343
14f9c5c9 7344/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7345 TYPE0, but based on no runtime data. */
14f9c5c9 7346
d2e4a39e
AS
7347static struct type *
7348to_static_fixed_type (struct type *type0)
14f9c5c9 7349{
d2e4a39e 7350 struct type *type;
14f9c5c9
AS
7351
7352 if (type0 == NULL)
7353 return NULL;
7354
876cecd0 7355 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7356 return type0;
7357
61ee279c 7358 type0 = ada_check_typedef (type0);
d2e4a39e 7359
14f9c5c9
AS
7360 switch (TYPE_CODE (type0))
7361 {
7362 default:
7363 return type0;
7364 case TYPE_CODE_STRUCT:
7365 type = dynamic_template_type (type0);
d2e4a39e 7366 if (type != NULL)
4c4b4cd2
PH
7367 return template_to_static_fixed_type (type);
7368 else
7369 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7370 case TYPE_CODE_UNION:
7371 type = ada_find_parallel_type (type0, "___XVU");
7372 if (type != NULL)
4c4b4cd2
PH
7373 return template_to_static_fixed_type (type);
7374 else
7375 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7376 }
7377}
7378
4c4b4cd2
PH
7379/* A static approximation of TYPE with all type wrappers removed. */
7380
d2e4a39e
AS
7381static struct type *
7382static_unwrap_type (struct type *type)
14f9c5c9
AS
7383{
7384 if (ada_is_aligner_type (type))
7385 {
61ee279c 7386 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7387 if (ada_type_name (type1) == NULL)
4c4b4cd2 7388 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7389
7390 return static_unwrap_type (type1);
7391 }
d2e4a39e 7392 else
14f9c5c9 7393 {
d2e4a39e
AS
7394 struct type *raw_real_type = ada_get_base_type (type);
7395 if (raw_real_type == type)
4c4b4cd2 7396 return type;
14f9c5c9 7397 else
4c4b4cd2 7398 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7399 }
7400}
7401
7402/* In some cases, incomplete and private types require
4c4b4cd2 7403 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7404 type Foo;
7405 type FooP is access Foo;
7406 V: FooP;
7407 type Foo is array ...;
4c4b4cd2 7408 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7409 cross-references to such types, we instead substitute for FooP a
7410 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7411 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7412
7413/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7414 exists, otherwise TYPE. */
7415
d2e4a39e 7416struct type *
61ee279c 7417ada_check_typedef (struct type *type)
14f9c5c9 7418{
727e3d2e
JB
7419 if (type == NULL)
7420 return NULL;
7421
14f9c5c9
AS
7422 CHECK_TYPEDEF (type);
7423 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7424 || !TYPE_STUB (type)
14f9c5c9
AS
7425 || TYPE_TAG_NAME (type) == NULL)
7426 return type;
d2e4a39e 7427 else
14f9c5c9 7428 {
d2e4a39e
AS
7429 char *name = TYPE_TAG_NAME (type);
7430 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7431 return (type1 == NULL) ? type : type1;
7432 }
7433}
7434
7435/* A value representing the data at VALADDR/ADDRESS as described by
7436 type TYPE0, but with a standard (static-sized) type that correctly
7437 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7438 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7439 creation of struct values]. */
14f9c5c9 7440
4c4b4cd2
PH
7441static struct value *
7442ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7443 struct value *val0)
14f9c5c9 7444{
1ed6ede0 7445 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7446 if (type == type0 && val0 != NULL)
7447 return val0;
d2e4a39e 7448 else
4c4b4cd2
PH
7449 return value_from_contents_and_address (type, 0, address);
7450}
7451
7452/* A value representing VAL, but with a standard (static-sized) type
7453 that correctly describes it. Does not necessarily create a new
7454 value. */
7455
7456static struct value *
7457ada_to_fixed_value (struct value *val)
7458{
df407dfe 7459 return ada_to_fixed_value_create (value_type (val),
42ae5230 7460 value_address (val),
4c4b4cd2 7461 val);
14f9c5c9
AS
7462}
7463
4c4b4cd2 7464/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7465 chosen to approximate the real type of VAL as well as possible, but
7466 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7467 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7468
2c0b251b 7469static struct value *
d2e4a39e 7470ada_to_static_fixed_value (struct value *val)
14f9c5c9 7471{
d2e4a39e 7472 struct type *type =
df407dfe
AC
7473 to_static_fixed_type (static_unwrap_type (value_type (val)));
7474 if (type == value_type (val))
14f9c5c9
AS
7475 return val;
7476 else
4c4b4cd2 7477 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7478}
d2e4a39e 7479\f
14f9c5c9 7480
14f9c5c9
AS
7481/* Attributes */
7482
4c4b4cd2
PH
7483/* Table mapping attribute numbers to names.
7484 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7485
d2e4a39e 7486static const char *attribute_names[] = {
14f9c5c9
AS
7487 "<?>",
7488
d2e4a39e 7489 "first",
14f9c5c9
AS
7490 "last",
7491 "length",
7492 "image",
14f9c5c9
AS
7493 "max",
7494 "min",
4c4b4cd2
PH
7495 "modulus",
7496 "pos",
7497 "size",
7498 "tag",
14f9c5c9 7499 "val",
14f9c5c9
AS
7500 0
7501};
7502
d2e4a39e 7503const char *
4c4b4cd2 7504ada_attribute_name (enum exp_opcode n)
14f9c5c9 7505{
4c4b4cd2
PH
7506 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7507 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7508 else
7509 return attribute_names[0];
7510}
7511
4c4b4cd2 7512/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7513
4c4b4cd2
PH
7514static LONGEST
7515pos_atr (struct value *arg)
14f9c5c9 7516{
24209737
PH
7517 struct value *val = coerce_ref (arg);
7518 struct type *type = value_type (val);
14f9c5c9 7519
d2e4a39e 7520 if (!discrete_type_p (type))
323e0a4a 7521 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7522
7523 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7524 {
7525 int i;
24209737 7526 LONGEST v = value_as_long (val);
14f9c5c9 7527
d2e4a39e 7528 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7529 {
7530 if (v == TYPE_FIELD_BITPOS (type, i))
7531 return i;
7532 }
323e0a4a 7533 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7534 }
7535 else
24209737 7536 return value_as_long (val);
4c4b4cd2
PH
7537}
7538
7539static struct value *
3cb382c9 7540value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7541{
3cb382c9 7542 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7543}
7544
4c4b4cd2 7545/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7546
d2e4a39e
AS
7547static struct value *
7548value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7549{
d2e4a39e 7550 if (!discrete_type_p (type))
323e0a4a 7551 error (_("'VAL only defined on discrete types"));
df407dfe 7552 if (!integer_type_p (value_type (arg)))
323e0a4a 7553 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7554
7555 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7556 {
7557 long pos = value_as_long (arg);
7558 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7559 error (_("argument to 'VAL out of range"));
d2e4a39e 7560 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7561 }
7562 else
7563 return value_from_longest (type, value_as_long (arg));
7564}
14f9c5c9 7565\f
d2e4a39e 7566
4c4b4cd2 7567 /* Evaluation */
14f9c5c9 7568
4c4b4cd2
PH
7569/* True if TYPE appears to be an Ada character type.
7570 [At the moment, this is true only for Character and Wide_Character;
7571 It is a heuristic test that could stand improvement]. */
14f9c5c9 7572
d2e4a39e
AS
7573int
7574ada_is_character_type (struct type *type)
14f9c5c9 7575{
7b9f71f2
JB
7576 const char *name;
7577
7578 /* If the type code says it's a character, then assume it really is,
7579 and don't check any further. */
7580 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7581 return 1;
7582
7583 /* Otherwise, assume it's a character type iff it is a discrete type
7584 with a known character type name. */
7585 name = ada_type_name (type);
7586 return (name != NULL
7587 && (TYPE_CODE (type) == TYPE_CODE_INT
7588 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7589 && (strcmp (name, "character") == 0
7590 || strcmp (name, "wide_character") == 0
5a517ebd 7591 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7592 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7593}
7594
4c4b4cd2 7595/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7596
7597int
ebf56fd3 7598ada_is_string_type (struct type *type)
14f9c5c9 7599{
61ee279c 7600 type = ada_check_typedef (type);
d2e4a39e 7601 if (type != NULL
14f9c5c9 7602 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7603 && (ada_is_simple_array_type (type)
7604 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7605 && ada_array_arity (type) == 1)
7606 {
7607 struct type *elttype = ada_array_element_type (type, 1);
7608
7609 return ada_is_character_type (elttype);
7610 }
d2e4a39e 7611 else
14f9c5c9
AS
7612 return 0;
7613}
7614
7615
7616/* True if TYPE is a struct type introduced by the compiler to force the
7617 alignment of a value. Such types have a single field with a
4c4b4cd2 7618 distinctive name. */
14f9c5c9
AS
7619
7620int
ebf56fd3 7621ada_is_aligner_type (struct type *type)
14f9c5c9 7622{
61ee279c 7623 type = ada_check_typedef (type);
714e53ab
PH
7624
7625 /* If we can find a parallel XVS type, then the XVS type should
7626 be used instead of this type. And hence, this is not an aligner
7627 type. */
7628 if (ada_find_parallel_type (type, "___XVS") != NULL)
7629 return 0;
7630
14f9c5c9 7631 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7632 && TYPE_NFIELDS (type) == 1
7633 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7634}
7635
7636/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7637 the parallel type. */
14f9c5c9 7638
d2e4a39e
AS
7639struct type *
7640ada_get_base_type (struct type *raw_type)
14f9c5c9 7641{
d2e4a39e
AS
7642 struct type *real_type_namer;
7643 struct type *raw_real_type;
14f9c5c9
AS
7644
7645 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7646 return raw_type;
7647
284614f0
JB
7648 if (ada_is_aligner_type (raw_type))
7649 /* The encoding specifies that we should always use the aligner type.
7650 So, even if this aligner type has an associated XVS type, we should
7651 simply ignore it.
7652
7653 According to the compiler gurus, an XVS type parallel to an aligner
7654 type may exist because of a stabs limitation. In stabs, aligner
7655 types are empty because the field has a variable-sized type, and
7656 thus cannot actually be used as an aligner type. As a result,
7657 we need the associated parallel XVS type to decode the type.
7658 Since the policy in the compiler is to not change the internal
7659 representation based on the debugging info format, we sometimes
7660 end up having a redundant XVS type parallel to the aligner type. */
7661 return raw_type;
7662
14f9c5c9 7663 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7664 if (real_type_namer == NULL
14f9c5c9
AS
7665 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7666 || TYPE_NFIELDS (real_type_namer) != 1)
7667 return raw_type;
7668
7669 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7670 if (raw_real_type == NULL)
14f9c5c9
AS
7671 return raw_type;
7672 else
7673 return raw_real_type;
d2e4a39e 7674}
14f9c5c9 7675
4c4b4cd2 7676/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7677
d2e4a39e
AS
7678struct type *
7679ada_aligned_type (struct type *type)
14f9c5c9
AS
7680{
7681 if (ada_is_aligner_type (type))
7682 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7683 else
7684 return ada_get_base_type (type);
7685}
7686
7687
7688/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7689 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7690
fc1a4b47
AC
7691const gdb_byte *
7692ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7693{
d2e4a39e 7694 if (ada_is_aligner_type (type))
14f9c5c9 7695 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7696 valaddr +
7697 TYPE_FIELD_BITPOS (type,
7698 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7699 else
7700 return valaddr;
7701}
7702
4c4b4cd2
PH
7703
7704
14f9c5c9 7705/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7706 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7707const char *
7708ada_enum_name (const char *name)
14f9c5c9 7709{
4c4b4cd2
PH
7710 static char *result;
7711 static size_t result_len = 0;
d2e4a39e 7712 char *tmp;
14f9c5c9 7713
4c4b4cd2
PH
7714 /* First, unqualify the enumeration name:
7715 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7716 all the preceeding characters, the unqualified name starts
7717 right after that dot.
4c4b4cd2 7718 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7719 translates dots into "__". Search forward for double underscores,
7720 but stop searching when we hit an overloading suffix, which is
7721 of the form "__" followed by digits. */
4c4b4cd2 7722
c3e5cd34
PH
7723 tmp = strrchr (name, '.');
7724 if (tmp != NULL)
4c4b4cd2
PH
7725 name = tmp + 1;
7726 else
14f9c5c9 7727 {
4c4b4cd2
PH
7728 while ((tmp = strstr (name, "__")) != NULL)
7729 {
7730 if (isdigit (tmp[2]))
7731 break;
7732 else
7733 name = tmp + 2;
7734 }
14f9c5c9
AS
7735 }
7736
7737 if (name[0] == 'Q')
7738 {
14f9c5c9
AS
7739 int v;
7740 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7741 {
7742 if (sscanf (name + 2, "%x", &v) != 1)
7743 return name;
7744 }
14f9c5c9 7745 else
4c4b4cd2 7746 return name;
14f9c5c9 7747
4c4b4cd2 7748 GROW_VECT (result, result_len, 16);
14f9c5c9 7749 if (isascii (v) && isprint (v))
88c15c34 7750 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7751 else if (name[1] == 'U')
88c15c34 7752 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7753 else
88c15c34 7754 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7755
7756 return result;
7757 }
d2e4a39e 7758 else
4c4b4cd2 7759 {
c3e5cd34
PH
7760 tmp = strstr (name, "__");
7761 if (tmp == NULL)
7762 tmp = strstr (name, "$");
7763 if (tmp != NULL)
4c4b4cd2
PH
7764 {
7765 GROW_VECT (result, result_len, tmp - name + 1);
7766 strncpy (result, name, tmp - name);
7767 result[tmp - name] = '\0';
7768 return result;
7769 }
7770
7771 return name;
7772 }
14f9c5c9
AS
7773}
7774
14f9c5c9
AS
7775/* Evaluate the subexpression of EXP starting at *POS as for
7776 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7777 expression. */
14f9c5c9 7778
d2e4a39e
AS
7779static struct value *
7780evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7781{
4b27a620 7782 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7783}
7784
7785/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7786 value it wraps. */
14f9c5c9 7787
d2e4a39e
AS
7788static struct value *
7789unwrap_value (struct value *val)
14f9c5c9 7790{
df407dfe 7791 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7792 if (ada_is_aligner_type (type))
7793 {
de4d072f 7794 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7795 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7796 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7797 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7798
7799 return unwrap_value (v);
7800 }
d2e4a39e 7801 else
14f9c5c9 7802 {
d2e4a39e 7803 struct type *raw_real_type =
61ee279c 7804 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7805
14f9c5c9 7806 if (type == raw_real_type)
4c4b4cd2 7807 return val;
14f9c5c9 7808
d2e4a39e 7809 return
4c4b4cd2
PH
7810 coerce_unspec_val_to_type
7811 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7812 value_address (val),
1ed6ede0 7813 NULL, 1));
14f9c5c9
AS
7814 }
7815}
d2e4a39e
AS
7816
7817static struct value *
7818cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7819{
7820 LONGEST val;
7821
df407dfe 7822 if (type == value_type (arg))
14f9c5c9 7823 return arg;
df407dfe 7824 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7825 val = ada_float_to_fixed (type,
df407dfe 7826 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7827 value_as_long (arg)));
d2e4a39e 7828 else
14f9c5c9 7829 {
a53b7a21 7830 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7831 val = ada_float_to_fixed (type, argd);
7832 }
7833
7834 return value_from_longest (type, val);
7835}
7836
d2e4a39e 7837static struct value *
a53b7a21 7838cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7839{
df407dfe 7840 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7841 value_as_long (arg));
a53b7a21 7842 return value_from_double (type, val);
14f9c5c9
AS
7843}
7844
4c4b4cd2
PH
7845/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7846 return the converted value. */
7847
d2e4a39e
AS
7848static struct value *
7849coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7850{
df407dfe 7851 struct type *type2 = value_type (val);
14f9c5c9
AS
7852 if (type == type2)
7853 return val;
7854
61ee279c
PH
7855 type2 = ada_check_typedef (type2);
7856 type = ada_check_typedef (type);
14f9c5c9 7857
d2e4a39e
AS
7858 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7859 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7860 {
7861 val = ada_value_ind (val);
df407dfe 7862 type2 = value_type (val);
14f9c5c9
AS
7863 }
7864
d2e4a39e 7865 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7866 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7867 {
7868 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7869 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7870 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7871 error (_("Incompatible types in assignment"));
04624583 7872 deprecated_set_value_type (val, type);
14f9c5c9 7873 }
d2e4a39e 7874 return val;
14f9c5c9
AS
7875}
7876
4c4b4cd2
PH
7877static struct value *
7878ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7879{
7880 struct value *val;
7881 struct type *type1, *type2;
7882 LONGEST v, v1, v2;
7883
994b9211
AC
7884 arg1 = coerce_ref (arg1);
7885 arg2 = coerce_ref (arg2);
df407dfe
AC
7886 type1 = base_type (ada_check_typedef (value_type (arg1)));
7887 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7888
76a01679
JB
7889 if (TYPE_CODE (type1) != TYPE_CODE_INT
7890 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7891 return value_binop (arg1, arg2, op);
7892
76a01679 7893 switch (op)
4c4b4cd2
PH
7894 {
7895 case BINOP_MOD:
7896 case BINOP_DIV:
7897 case BINOP_REM:
7898 break;
7899 default:
7900 return value_binop (arg1, arg2, op);
7901 }
7902
7903 v2 = value_as_long (arg2);
7904 if (v2 == 0)
323e0a4a 7905 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7906
7907 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7908 return value_binop (arg1, arg2, op);
7909
7910 v1 = value_as_long (arg1);
7911 switch (op)
7912 {
7913 case BINOP_DIV:
7914 v = v1 / v2;
76a01679
JB
7915 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7916 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7917 break;
7918 case BINOP_REM:
7919 v = v1 % v2;
76a01679
JB
7920 if (v * v1 < 0)
7921 v -= v2;
4c4b4cd2
PH
7922 break;
7923 default:
7924 /* Should not reach this point. */
7925 v = 0;
7926 }
7927
7928 val = allocate_value (type1);
990a07ab 7929 store_unsigned_integer (value_contents_raw (val),
df407dfe 7930 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7931 return val;
7932}
7933
7934static int
7935ada_value_equal (struct value *arg1, struct value *arg2)
7936{
df407dfe
AC
7937 if (ada_is_direct_array_type (value_type (arg1))
7938 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7939 {
f58b38bf
JB
7940 /* Automatically dereference any array reference before
7941 we attempt to perform the comparison. */
7942 arg1 = ada_coerce_ref (arg1);
7943 arg2 = ada_coerce_ref (arg2);
7944
4c4b4cd2
PH
7945 arg1 = ada_coerce_to_simple_array (arg1);
7946 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7947 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7948 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7949 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7950 /* FIXME: The following works only for types whose
76a01679
JB
7951 representations use all bits (no padding or undefined bits)
7952 and do not have user-defined equality. */
7953 return
df407dfe 7954 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7955 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7956 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7957 }
7958 return value_equal (arg1, arg2);
7959}
7960
52ce6436
PH
7961/* Total number of component associations in the aggregate starting at
7962 index PC in EXP. Assumes that index PC is the start of an
7963 OP_AGGREGATE. */
7964
7965static int
7966num_component_specs (struct expression *exp, int pc)
7967{
7968 int n, m, i;
7969 m = exp->elts[pc + 1].longconst;
7970 pc += 3;
7971 n = 0;
7972 for (i = 0; i < m; i += 1)
7973 {
7974 switch (exp->elts[pc].opcode)
7975 {
7976 default:
7977 n += 1;
7978 break;
7979 case OP_CHOICES:
7980 n += exp->elts[pc + 1].longconst;
7981 break;
7982 }
7983 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7984 }
7985 return n;
7986}
7987
7988/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7989 component of LHS (a simple array or a record), updating *POS past
7990 the expression, assuming that LHS is contained in CONTAINER. Does
7991 not modify the inferior's memory, nor does it modify LHS (unless
7992 LHS == CONTAINER). */
7993
7994static void
7995assign_component (struct value *container, struct value *lhs, LONGEST index,
7996 struct expression *exp, int *pos)
7997{
7998 struct value *mark = value_mark ();
7999 struct value *elt;
8000 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8001 {
6d84d3d8 8002 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
8003 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8004 }
8005 else
8006 {
8007 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8008 elt = ada_to_fixed_value (unwrap_value (elt));
8009 }
8010
8011 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8012 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8013 else
8014 value_assign_to_component (container, elt,
8015 ada_evaluate_subexp (NULL, exp, pos,
8016 EVAL_NORMAL));
8017
8018 value_free_to_mark (mark);
8019}
8020
8021/* Assuming that LHS represents an lvalue having a record or array
8022 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8023 of that aggregate's value to LHS, advancing *POS past the
8024 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8025 lvalue containing LHS (possibly LHS itself). Does not modify
8026 the inferior's memory, nor does it modify the contents of
8027 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8028
8029static struct value *
8030assign_aggregate (struct value *container,
8031 struct value *lhs, struct expression *exp,
8032 int *pos, enum noside noside)
8033{
8034 struct type *lhs_type;
8035 int n = exp->elts[*pos+1].longconst;
8036 LONGEST low_index, high_index;
8037 int num_specs;
8038 LONGEST *indices;
8039 int max_indices, num_indices;
8040 int is_array_aggregate;
8041 int i;
8042 struct value *mark = value_mark ();
8043
8044 *pos += 3;
8045 if (noside != EVAL_NORMAL)
8046 {
8047 int i;
8048 for (i = 0; i < n; i += 1)
8049 ada_evaluate_subexp (NULL, exp, pos, noside);
8050 return container;
8051 }
8052
8053 container = ada_coerce_ref (container);
8054 if (ada_is_direct_array_type (value_type (container)))
8055 container = ada_coerce_to_simple_array (container);
8056 lhs = ada_coerce_ref (lhs);
8057 if (!deprecated_value_modifiable (lhs))
8058 error (_("Left operand of assignment is not a modifiable lvalue."));
8059
8060 lhs_type = value_type (lhs);
8061 if (ada_is_direct_array_type (lhs_type))
8062 {
8063 lhs = ada_coerce_to_simple_array (lhs);
8064 lhs_type = value_type (lhs);
8065 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8066 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8067 is_array_aggregate = 1;
8068 }
8069 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8070 {
8071 low_index = 0;
8072 high_index = num_visible_fields (lhs_type) - 1;
8073 is_array_aggregate = 0;
8074 }
8075 else
8076 error (_("Left-hand side must be array or record."));
8077
8078 num_specs = num_component_specs (exp, *pos - 3);
8079 max_indices = 4 * num_specs + 4;
8080 indices = alloca (max_indices * sizeof (indices[0]));
8081 indices[0] = indices[1] = low_index - 1;
8082 indices[2] = indices[3] = high_index + 1;
8083 num_indices = 4;
8084
8085 for (i = 0; i < n; i += 1)
8086 {
8087 switch (exp->elts[*pos].opcode)
8088 {
8089 case OP_CHOICES:
8090 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8091 &num_indices, max_indices,
8092 low_index, high_index);
8093 break;
8094 case OP_POSITIONAL:
8095 aggregate_assign_positional (container, lhs, exp, pos, indices,
8096 &num_indices, max_indices,
8097 low_index, high_index);
8098 break;
8099 case OP_OTHERS:
8100 if (i != n-1)
8101 error (_("Misplaced 'others' clause"));
8102 aggregate_assign_others (container, lhs, exp, pos, indices,
8103 num_indices, low_index, high_index);
8104 break;
8105 default:
8106 error (_("Internal error: bad aggregate clause"));
8107 }
8108 }
8109
8110 return container;
8111}
8112
8113/* Assign into the component of LHS indexed by the OP_POSITIONAL
8114 construct at *POS, updating *POS past the construct, given that
8115 the positions are relative to lower bound LOW, where HIGH is the
8116 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8117 updating *NUM_INDICES as needed. CONTAINER is as for
8118 assign_aggregate. */
8119static void
8120aggregate_assign_positional (struct value *container,
8121 struct value *lhs, struct expression *exp,
8122 int *pos, LONGEST *indices, int *num_indices,
8123 int max_indices, LONGEST low, LONGEST high)
8124{
8125 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8126
8127 if (ind - 1 == high)
e1d5a0d2 8128 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8129 if (ind <= high)
8130 {
8131 add_component_interval (ind, ind, indices, num_indices, max_indices);
8132 *pos += 3;
8133 assign_component (container, lhs, ind, exp, pos);
8134 }
8135 else
8136 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8137}
8138
8139/* Assign into the components of LHS indexed by the OP_CHOICES
8140 construct at *POS, updating *POS past the construct, given that
8141 the allowable indices are LOW..HIGH. Record the indices assigned
8142 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8143 needed. CONTAINER is as for assign_aggregate. */
8144static void
8145aggregate_assign_from_choices (struct value *container,
8146 struct value *lhs, struct expression *exp,
8147 int *pos, LONGEST *indices, int *num_indices,
8148 int max_indices, LONGEST low, LONGEST high)
8149{
8150 int j;
8151 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8152 int choice_pos, expr_pc;
8153 int is_array = ada_is_direct_array_type (value_type (lhs));
8154
8155 choice_pos = *pos += 3;
8156
8157 for (j = 0; j < n_choices; j += 1)
8158 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8159 expr_pc = *pos;
8160 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8161
8162 for (j = 0; j < n_choices; j += 1)
8163 {
8164 LONGEST lower, upper;
8165 enum exp_opcode op = exp->elts[choice_pos].opcode;
8166 if (op == OP_DISCRETE_RANGE)
8167 {
8168 choice_pos += 1;
8169 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8170 EVAL_NORMAL));
8171 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8172 EVAL_NORMAL));
8173 }
8174 else if (is_array)
8175 {
8176 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8177 EVAL_NORMAL));
8178 upper = lower;
8179 }
8180 else
8181 {
8182 int ind;
8183 char *name;
8184 switch (op)
8185 {
8186 case OP_NAME:
8187 name = &exp->elts[choice_pos + 2].string;
8188 break;
8189 case OP_VAR_VALUE:
8190 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8191 break;
8192 default:
8193 error (_("Invalid record component association."));
8194 }
8195 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8196 ind = 0;
8197 if (! find_struct_field (name, value_type (lhs), 0,
8198 NULL, NULL, NULL, NULL, &ind))
8199 error (_("Unknown component name: %s."), name);
8200 lower = upper = ind;
8201 }
8202
8203 if (lower <= upper && (lower < low || upper > high))
8204 error (_("Index in component association out of bounds."));
8205
8206 add_component_interval (lower, upper, indices, num_indices,
8207 max_indices);
8208 while (lower <= upper)
8209 {
8210 int pos1;
8211 pos1 = expr_pc;
8212 assign_component (container, lhs, lower, exp, &pos1);
8213 lower += 1;
8214 }
8215 }
8216}
8217
8218/* Assign the value of the expression in the OP_OTHERS construct in
8219 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8220 have not been previously assigned. The index intervals already assigned
8221 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8222 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8223static void
8224aggregate_assign_others (struct value *container,
8225 struct value *lhs, struct expression *exp,
8226 int *pos, LONGEST *indices, int num_indices,
8227 LONGEST low, LONGEST high)
8228{
8229 int i;
8230 int expr_pc = *pos+1;
8231
8232 for (i = 0; i < num_indices - 2; i += 2)
8233 {
8234 LONGEST ind;
8235 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8236 {
8237 int pos;
8238 pos = expr_pc;
8239 assign_component (container, lhs, ind, exp, &pos);
8240 }
8241 }
8242 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8243}
8244
8245/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8246 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8247 modifying *SIZE as needed. It is an error if *SIZE exceeds
8248 MAX_SIZE. The resulting intervals do not overlap. */
8249static void
8250add_component_interval (LONGEST low, LONGEST high,
8251 LONGEST* indices, int *size, int max_size)
8252{
8253 int i, j;
8254 for (i = 0; i < *size; i += 2) {
8255 if (high >= indices[i] && low <= indices[i + 1])
8256 {
8257 int kh;
8258 for (kh = i + 2; kh < *size; kh += 2)
8259 if (high < indices[kh])
8260 break;
8261 if (low < indices[i])
8262 indices[i] = low;
8263 indices[i + 1] = indices[kh - 1];
8264 if (high > indices[i + 1])
8265 indices[i + 1] = high;
8266 memcpy (indices + i + 2, indices + kh, *size - kh);
8267 *size -= kh - i - 2;
8268 return;
8269 }
8270 else if (high < indices[i])
8271 break;
8272 }
8273
8274 if (*size == max_size)
8275 error (_("Internal error: miscounted aggregate components."));
8276 *size += 2;
8277 for (j = *size-1; j >= i+2; j -= 1)
8278 indices[j] = indices[j - 2];
8279 indices[i] = low;
8280 indices[i + 1] = high;
8281}
8282
6e48bd2c
JB
8283/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8284 is different. */
8285
8286static struct value *
8287ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8288{
8289 if (type == ada_check_typedef (value_type (arg2)))
8290 return arg2;
8291
8292 if (ada_is_fixed_point_type (type))
8293 return (cast_to_fixed (type, arg2));
8294
8295 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8296 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8297
8298 return value_cast (type, arg2);
8299}
8300
284614f0
JB
8301/* Evaluating Ada expressions, and printing their result.
8302 ------------------------------------------------------
8303
8304 We usually evaluate an Ada expression in order to print its value.
8305 We also evaluate an expression in order to print its type, which
8306 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8307 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8308 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8309 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8310 similar.
8311
8312 Evaluating expressions is a little more complicated for Ada entities
8313 than it is for entities in languages such as C. The main reason for
8314 this is that Ada provides types whose definition might be dynamic.
8315 One example of such types is variant records. Or another example
8316 would be an array whose bounds can only be known at run time.
8317
8318 The following description is a general guide as to what should be
8319 done (and what should NOT be done) in order to evaluate an expression
8320 involving such types, and when. This does not cover how the semantic
8321 information is encoded by GNAT as this is covered separatly. For the
8322 document used as the reference for the GNAT encoding, see exp_dbug.ads
8323 in the GNAT sources.
8324
8325 Ideally, we should embed each part of this description next to its
8326 associated code. Unfortunately, the amount of code is so vast right
8327 now that it's hard to see whether the code handling a particular
8328 situation might be duplicated or not. One day, when the code is
8329 cleaned up, this guide might become redundant with the comments
8330 inserted in the code, and we might want to remove it.
8331
8332 When evaluating Ada expressions, the tricky issue is that they may
8333 reference entities whose type contents and size are not statically
8334 known. Consider for instance a variant record:
8335
8336 type Rec (Empty : Boolean := True) is record
8337 case Empty is
8338 when True => null;
8339 when False => Value : Integer;
8340 end case;
8341 end record;
8342 Yes : Rec := (Empty => False, Value => 1);
8343 No : Rec := (empty => True);
8344
8345 The size and contents of that record depends on the value of the
8346 descriminant (Rec.Empty). At this point, neither the debugging
8347 information nor the associated type structure in GDB are able to
8348 express such dynamic types. So what the debugger does is to create
8349 "fixed" versions of the type that applies to the specific object.
8350 We also informally refer to this opperation as "fixing" an object,
8351 which means creating its associated fixed type.
8352
8353 Example: when printing the value of variable "Yes" above, its fixed
8354 type would look like this:
8355
8356 type Rec is record
8357 Empty : Boolean;
8358 Value : Integer;
8359 end record;
8360
8361 On the other hand, if we printed the value of "No", its fixed type
8362 would become:
8363
8364 type Rec is record
8365 Empty : Boolean;
8366 end record;
8367
8368 Things become a little more complicated when trying to fix an entity
8369 with a dynamic type that directly contains another dynamic type,
8370 such as an array of variant records, for instance. There are
8371 two possible cases: Arrays, and records.
8372
8373 Arrays are a little simpler to handle, because the same amount of
8374 memory is allocated for each element of the array, even if the amount
8375 of space used by each element changes from element to element.
8376 Consider for instance the following array of type Rec:
8377
8378 type Rec_Array is array (1 .. 2) of Rec;
8379
8380 The type structure in GDB describes an array in terms of its
8381 bounds, and the type of its elements. By design, all elements
8382 in the array have the same type. So we cannot use a fixed type
8383 for the array elements in this case, since the fixed type depends
8384 on the actual value of each element.
8385
8386 Fortunately, what happens in practice is that each element of
8387 the array has the same size, which is the maximum size that
8388 might be needed in order to hold an object of the element type.
8389 And the compiler shows it in the debugging information by wrapping
8390 the array element inside a private PAD type. This type should not
8391 be shown to the user, and must be "unwrap"'ed before printing. Note
8392 that we also use the adjective "aligner" in our code to designate
8393 these wrapper types.
8394
8395 These wrapper types should have a constant size, which is the size
8396 of each element of the array. In the case when the size is statically
8397 known, the PAD type will already have the right size, and the array
8398 element type should remain unfixed. But there are cases when
8399 this size is not statically known. For instance, assuming that
8400 "Five" is an integer variable:
8401
8402 type Dynamic is array (1 .. Five) of Integer;
8403 type Wrapper (Has_Length : Boolean := False) is record
8404 Data : Dynamic;
8405 case Has_Length is
8406 when True => Length : Integer;
8407 when False => null;
8408 end case;
8409 end record;
8410 type Wrapper_Array is array (1 .. 2) of Wrapper;
8411
8412 Hello : Wrapper_Array := (others => (Has_Length => True,
8413 Data => (others => 17),
8414 Length => 1));
8415
8416
8417 The debugging info would describe variable Hello as being an
8418 array of a PAD type. The size of that PAD type is not statically
8419 known, but can be determined using a parallel XVZ variable.
8420 In that case, a copy of the PAD type with the correct size should
8421 be used for the fixed array.
8422
8423 However, things are slightly different in the case of dynamic
8424 record types. In this case, in order to compute the associated
8425 fixed type, we need to determine the size and offset of each of
8426 its components. This, in turn, requires us to compute the fixed
8427 type of each of these components.
8428
8429 Consider for instance the example:
8430
8431 type Bounded_String (Max_Size : Natural) is record
8432 Str : String (1 .. Max_Size);
8433 Length : Natural;
8434 end record;
8435 My_String : Bounded_String (Max_Size => 10);
8436
8437 In that case, the position of field "Length" depends on the size
8438 of field Str, which itself depends on the value of the Max_Size
8439 discriminant. In order to fix the type of variable My_String,
8440 we need to fix the type of field Str. Therefore, fixing a variant
8441 record requires us to fix each of its components.
8442
8443 However, if a component does not have a dynamic size, the component
8444 should not be fixed. In particular, fields that use a PAD type
8445 should not fixed. Here is an example where this might happen
8446 (assuming type Rec above):
8447
8448 type Container (Big : Boolean) is record
8449 First : Rec;
8450 After : Integer;
8451 case Big is
8452 when True => Another : Integer;
8453 when False => null;
8454 end case;
8455 end record;
8456 My_Container : Container := (Big => False,
8457 First => (Empty => True),
8458 After => 42);
8459
8460 In that example, the compiler creates a PAD type for component First,
8461 whose size is constant, and then positions the component After just
8462 right after it. The offset of component After is therefore constant
8463 in this case.
8464
8465 The debugger computes the position of each field based on an algorithm
8466 that uses, among other things, the actual position and size of the field
8467 preceding it. Let's now imagine that the user is trying to print the
8468 value of My_Container. If the type fixing was recursive, we would
8469 end up computing the offset of field After based on the size of the
8470 fixed version of field First. And since in our example First has
8471 only one actual field, the size of the fixed type is actually smaller
8472 than the amount of space allocated to that field, and thus we would
8473 compute the wrong offset of field After.
8474
8475 Unfortunately, we need to watch out for dynamic components of variant
8476 records (identified by the ___XVL suffix in the component name).
8477 Even if the target type is a PAD type, the size of that type might
8478 not be statically known. So the PAD type needs to be unwrapped and
8479 the resulting type needs to be fixed. Otherwise, we might end up
8480 with the wrong size for our component. This can be observed with
8481 the following type declarations:
8482
8483 type Octal is new Integer range 0 .. 7;
8484 type Octal_Array is array (Positive range <>) of Octal;
8485 pragma Pack (Octal_Array);
8486
8487 type Octal_Buffer (Size : Positive) is record
8488 Buffer : Octal_Array (1 .. Size);
8489 Length : Integer;
8490 end record;
8491
8492 In that case, Buffer is a PAD type whose size is unset and needs
8493 to be computed by fixing the unwrapped type.
8494
8495 Lastly, when should the sub-elements of a type that remained unfixed
8496 thus far, be actually fixed?
8497
8498 The answer is: Only when referencing that element. For instance
8499 when selecting one component of a record, this specific component
8500 should be fixed at that point in time. Or when printing the value
8501 of a record, each component should be fixed before its value gets
8502 printed. Similarly for arrays, the element of the array should be
8503 fixed when printing each element of the array, or when extracting
8504 one element out of that array. On the other hand, fixing should
8505 not be performed on the elements when taking a slice of an array!
8506
8507 Note that one of the side-effects of miscomputing the offset and
8508 size of each field is that we end up also miscomputing the size
8509 of the containing type. This can have adverse results when computing
8510 the value of an entity. GDB fetches the value of an entity based
8511 on the size of its type, and thus a wrong size causes GDB to fetch
8512 the wrong amount of memory. In the case where the computed size is
8513 too small, GDB fetches too little data to print the value of our
8514 entiry. Results in this case as unpredicatble, as we usually read
8515 past the buffer containing the data =:-o. */
8516
8517/* Implement the evaluate_exp routine in the exp_descriptor structure
8518 for the Ada language. */
8519
52ce6436 8520static struct value *
ebf56fd3 8521ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8522 int *pos, enum noside noside)
14f9c5c9
AS
8523{
8524 enum exp_opcode op;
14f9c5c9
AS
8525 int tem, tem2, tem3;
8526 int pc;
8527 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8528 struct type *type;
52ce6436 8529 int nargs, oplen;
d2e4a39e 8530 struct value **argvec;
14f9c5c9 8531
d2e4a39e
AS
8532 pc = *pos;
8533 *pos += 1;
14f9c5c9
AS
8534 op = exp->elts[pc].opcode;
8535
d2e4a39e 8536 switch (op)
14f9c5c9
AS
8537 {
8538 default:
8539 *pos -= 1;
6e48bd2c
JB
8540 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8541 arg1 = unwrap_value (arg1);
8542
8543 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8544 then we need to perform the conversion manually, because
8545 evaluate_subexp_standard doesn't do it. This conversion is
8546 necessary in Ada because the different kinds of float/fixed
8547 types in Ada have different representations.
8548
8549 Similarly, we need to perform the conversion from OP_LONG
8550 ourselves. */
8551 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8552 arg1 = ada_value_cast (expect_type, arg1, noside);
8553
8554 return arg1;
4c4b4cd2
PH
8555
8556 case OP_STRING:
8557 {
76a01679
JB
8558 struct value *result;
8559 *pos -= 1;
8560 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8561 /* The result type will have code OP_STRING, bashed there from
8562 OP_ARRAY. Bash it back. */
df407dfe
AC
8563 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8564 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8565 return result;
4c4b4cd2 8566 }
14f9c5c9
AS
8567
8568 case UNOP_CAST:
8569 (*pos) += 2;
8570 type = exp->elts[pc + 1].type;
8571 arg1 = evaluate_subexp (type, exp, pos, noside);
8572 if (noside == EVAL_SKIP)
4c4b4cd2 8573 goto nosideret;
6e48bd2c 8574 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8575 return arg1;
8576
4c4b4cd2
PH
8577 case UNOP_QUAL:
8578 (*pos) += 2;
8579 type = exp->elts[pc + 1].type;
8580 return ada_evaluate_subexp (type, exp, pos, noside);
8581
14f9c5c9
AS
8582 case BINOP_ASSIGN:
8583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8584 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8585 {
8586 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8587 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8588 return arg1;
8589 return ada_value_assign (arg1, arg1);
8590 }
003f3813
JB
8591 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8592 except if the lhs of our assignment is a convenience variable.
8593 In the case of assigning to a convenience variable, the lhs
8594 should be exactly the result of the evaluation of the rhs. */
8595 type = value_type (arg1);
8596 if (VALUE_LVAL (arg1) == lval_internalvar)
8597 type = NULL;
8598 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8599 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8600 return arg1;
df407dfe
AC
8601 if (ada_is_fixed_point_type (value_type (arg1)))
8602 arg2 = cast_to_fixed (value_type (arg1), arg2);
8603 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8604 error
323e0a4a 8605 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8606 else
df407dfe 8607 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8608 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8609
8610 case BINOP_ADD:
8611 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8612 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8613 if (noside == EVAL_SKIP)
4c4b4cd2 8614 goto nosideret;
2ac8a782
JB
8615 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8616 return (value_from_longest
8617 (value_type (arg1),
8618 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8619 if ((ada_is_fixed_point_type (value_type (arg1))
8620 || ada_is_fixed_point_type (value_type (arg2)))
8621 && value_type (arg1) != value_type (arg2))
323e0a4a 8622 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8623 /* Do the addition, and cast the result to the type of the first
8624 argument. We cannot cast the result to a reference type, so if
8625 ARG1 is a reference type, find its underlying type. */
8626 type = value_type (arg1);
8627 while (TYPE_CODE (type) == TYPE_CODE_REF)
8628 type = TYPE_TARGET_TYPE (type);
f44316fa 8629 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8630 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8631
8632 case BINOP_SUB:
8633 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8634 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8635 if (noside == EVAL_SKIP)
4c4b4cd2 8636 goto nosideret;
2ac8a782
JB
8637 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8638 return (value_from_longest
8639 (value_type (arg1),
8640 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8641 if ((ada_is_fixed_point_type (value_type (arg1))
8642 || ada_is_fixed_point_type (value_type (arg2)))
8643 && value_type (arg1) != value_type (arg2))
323e0a4a 8644 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8645 /* Do the substraction, and cast the result to the type of the first
8646 argument. We cannot cast the result to a reference type, so if
8647 ARG1 is a reference type, find its underlying type. */
8648 type = value_type (arg1);
8649 while (TYPE_CODE (type) == TYPE_CODE_REF)
8650 type = TYPE_TARGET_TYPE (type);
f44316fa 8651 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8652 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8653
8654 case BINOP_MUL:
8655 case BINOP_DIV:
e1578042
JB
8656 case BINOP_REM:
8657 case BINOP_MOD:
14f9c5c9
AS
8658 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8659 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8660 if (noside == EVAL_SKIP)
4c4b4cd2 8661 goto nosideret;
e1578042 8662 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8663 {
8664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8665 return value_zero (value_type (arg1), not_lval);
8666 }
14f9c5c9 8667 else
4c4b4cd2 8668 {
a53b7a21 8669 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8670 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8671 arg1 = cast_from_fixed (type, arg1);
df407dfe 8672 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8673 arg2 = cast_from_fixed (type, arg2);
f44316fa 8674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8675 return ada_value_binop (arg1, arg2, op);
8676 }
8677
4c4b4cd2
PH
8678 case BINOP_EQUAL:
8679 case BINOP_NOTEQUAL:
14f9c5c9 8680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8681 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8682 if (noside == EVAL_SKIP)
76a01679 8683 goto nosideret;
4c4b4cd2 8684 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8685 tem = 0;
4c4b4cd2 8686 else
f44316fa
UW
8687 {
8688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8689 tem = ada_value_equal (arg1, arg2);
8690 }
4c4b4cd2 8691 if (op == BINOP_NOTEQUAL)
76a01679 8692 tem = !tem;
fbb06eb1
UW
8693 type = language_bool_type (exp->language_defn, exp->gdbarch);
8694 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8695
8696 case UNOP_NEG:
8697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8698 if (noside == EVAL_SKIP)
8699 goto nosideret;
df407dfe
AC
8700 else if (ada_is_fixed_point_type (value_type (arg1)))
8701 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8702 else
f44316fa
UW
8703 {
8704 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8705 return value_neg (arg1);
8706 }
4c4b4cd2 8707
2330c6c6
JB
8708 case BINOP_LOGICAL_AND:
8709 case BINOP_LOGICAL_OR:
8710 case UNOP_LOGICAL_NOT:
000d5124
JB
8711 {
8712 struct value *val;
8713
8714 *pos -= 1;
8715 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8716 type = language_bool_type (exp->language_defn, exp->gdbarch);
8717 return value_cast (type, val);
000d5124 8718 }
2330c6c6
JB
8719
8720 case BINOP_BITWISE_AND:
8721 case BINOP_BITWISE_IOR:
8722 case BINOP_BITWISE_XOR:
000d5124
JB
8723 {
8724 struct value *val;
8725
8726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8727 *pos = pc;
8728 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8729
8730 return value_cast (value_type (arg1), val);
8731 }
2330c6c6 8732
14f9c5c9
AS
8733 case OP_VAR_VALUE:
8734 *pos -= 1;
6799def4 8735
14f9c5c9 8736 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8737 {
8738 *pos += 4;
8739 goto nosideret;
8740 }
8741 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8742 /* Only encountered when an unresolved symbol occurs in a
8743 context other than a function call, in which case, it is
52ce6436 8744 invalid. */
323e0a4a 8745 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8746 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8747 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8748 {
0c1f74cf
JB
8749 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8750 if (ada_is_tagged_type (type, 0))
8751 {
8752 /* Tagged types are a little special in the fact that the real
8753 type is dynamic and can only be determined by inspecting the
8754 object's tag. This means that we need to get the object's
8755 value first (EVAL_NORMAL) and then extract the actual object
8756 type from its tag.
8757
8758 Note that we cannot skip the final step where we extract
8759 the object type from its tag, because the EVAL_NORMAL phase
8760 results in dynamic components being resolved into fixed ones.
8761 This can cause problems when trying to print the type
8762 description of tagged types whose parent has a dynamic size:
8763 We use the type name of the "_parent" component in order
8764 to print the name of the ancestor type in the type description.
8765 If that component had a dynamic size, the resolution into
8766 a fixed type would result in the loss of that type name,
8767 thus preventing us from printing the name of the ancestor
8768 type in the type description. */
b79819ba
JB
8769 struct type *actual_type;
8770
0c1f74cf 8771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8772 actual_type = type_from_tag (ada_value_tag (arg1));
8773 if (actual_type == NULL)
8774 /* If, for some reason, we were unable to determine
8775 the actual type from the tag, then use the static
8776 approximation that we just computed as a fallback.
8777 This can happen if the debugging information is
8778 incomplete, for instance. */
8779 actual_type = type;
8780
8781 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8782 }
8783
4c4b4cd2
PH
8784 *pos += 4;
8785 return value_zero
8786 (to_static_fixed_type
8787 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8788 not_lval);
8789 }
d2e4a39e 8790 else
4c4b4cd2 8791 {
284614f0
JB
8792 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8793 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8794 return ada_to_fixed_value (arg1);
8795 }
8796
8797 case OP_FUNCALL:
8798 (*pos) += 2;
8799
8800 /* Allocate arg vector, including space for the function to be
8801 called in argvec[0] and a terminating NULL. */
8802 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8803 argvec =
8804 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8805
8806 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8807 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8808 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8809 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8810 else
8811 {
8812 for (tem = 0; tem <= nargs; tem += 1)
8813 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8814 argvec[tem] = 0;
8815
8816 if (noside == EVAL_SKIP)
8817 goto nosideret;
8818 }
8819
df407dfe 8820 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8821 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8822 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8823 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8824 /* This is a packed array that has already been fixed, and
8825 therefore already coerced to a simple array. Nothing further
8826 to do. */
8827 ;
df407dfe
AC
8828 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8829 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8830 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8831 argvec[0] = value_addr (argvec[0]);
8832
df407dfe 8833 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8834 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8835 {
61ee279c 8836 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8837 {
8838 case TYPE_CODE_FUNC:
61ee279c 8839 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8840 break;
8841 case TYPE_CODE_ARRAY:
8842 break;
8843 case TYPE_CODE_STRUCT:
8844 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8845 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8846 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8847 break;
8848 default:
323e0a4a 8849 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8850 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8851 break;
8852 }
8853 }
8854
8855 switch (TYPE_CODE (type))
8856 {
8857 case TYPE_CODE_FUNC:
8858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8859 return allocate_value (TYPE_TARGET_TYPE (type));
8860 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8861 case TYPE_CODE_STRUCT:
8862 {
8863 int arity;
8864
4c4b4cd2
PH
8865 arity = ada_array_arity (type);
8866 type = ada_array_element_type (type, nargs);
8867 if (type == NULL)
323e0a4a 8868 error (_("cannot subscript or call a record"));
4c4b4cd2 8869 if (arity != nargs)
323e0a4a 8870 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8871 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8872 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8873 return
8874 unwrap_value (ada_value_subscript
8875 (argvec[0], nargs, argvec + 1));
8876 }
8877 case TYPE_CODE_ARRAY:
8878 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8879 {
8880 type = ada_array_element_type (type, nargs);
8881 if (type == NULL)
323e0a4a 8882 error (_("element type of array unknown"));
4c4b4cd2 8883 else
0a07e705 8884 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8885 }
8886 return
8887 unwrap_value (ada_value_subscript
8888 (ada_coerce_to_simple_array (argvec[0]),
8889 nargs, argvec + 1));
8890 case TYPE_CODE_PTR: /* Pointer to array */
8891 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8892 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8893 {
8894 type = ada_array_element_type (type, nargs);
8895 if (type == NULL)
323e0a4a 8896 error (_("element type of array unknown"));
4c4b4cd2 8897 else
0a07e705 8898 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8899 }
8900 return
8901 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8902 nargs, argvec + 1));
8903
8904 default:
e1d5a0d2
PH
8905 error (_("Attempt to index or call something other than an "
8906 "array or function"));
4c4b4cd2
PH
8907 }
8908
8909 case TERNOP_SLICE:
8910 {
8911 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8912 struct value *low_bound_val =
8913 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8914 struct value *high_bound_val =
8915 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8916 LONGEST low_bound;
8917 LONGEST high_bound;
994b9211
AC
8918 low_bound_val = coerce_ref (low_bound_val);
8919 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8920 low_bound = pos_atr (low_bound_val);
8921 high_bound = pos_atr (high_bound_val);
963a6417 8922
4c4b4cd2
PH
8923 if (noside == EVAL_SKIP)
8924 goto nosideret;
8925
4c4b4cd2
PH
8926 /* If this is a reference to an aligner type, then remove all
8927 the aligners. */
df407dfe
AC
8928 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8929 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8930 TYPE_TARGET_TYPE (value_type (array)) =
8931 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8932
df407dfe 8933 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8934 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8935
8936 /* If this is a reference to an array or an array lvalue,
8937 convert to a pointer. */
df407dfe
AC
8938 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8939 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8940 && VALUE_LVAL (array) == lval_memory))
8941 array = value_addr (array);
8942
1265e4aa 8943 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8944 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8945 (value_type (array))))
0b5d8877 8946 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8947
8948 array = ada_coerce_to_simple_array_ptr (array);
8949
714e53ab
PH
8950 /* If we have more than one level of pointer indirection,
8951 dereference the value until we get only one level. */
df407dfe
AC
8952 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8953 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8954 == TYPE_CODE_PTR))
8955 array = value_ind (array);
8956
8957 /* Make sure we really do have an array type before going further,
8958 to avoid a SEGV when trying to get the index type or the target
8959 type later down the road if the debug info generated by
8960 the compiler is incorrect or incomplete. */
df407dfe 8961 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8962 error (_("cannot take slice of non-array"));
714e53ab 8963
df407dfe 8964 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8965 {
0b5d8877 8966 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8967 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8968 low_bound);
8969 else
8970 {
8971 struct type *arr_type0 =
df407dfe 8972 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8973 NULL, 1);
f5938064
JG
8974 return ada_value_slice_from_ptr (array, arr_type0,
8975 longest_to_int (low_bound),
8976 longest_to_int (high_bound));
4c4b4cd2
PH
8977 }
8978 }
8979 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8980 return array;
8981 else if (high_bound < low_bound)
df407dfe 8982 return empty_array (value_type (array), low_bound);
4c4b4cd2 8983 else
529cad9c
PH
8984 return ada_value_slice (array, longest_to_int (low_bound),
8985 longest_to_int (high_bound));
4c4b4cd2 8986 }
14f9c5c9 8987
4c4b4cd2
PH
8988 case UNOP_IN_RANGE:
8989 (*pos) += 2;
8990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 8991 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 8992
14f9c5c9 8993 if (noside == EVAL_SKIP)
4c4b4cd2 8994 goto nosideret;
14f9c5c9 8995
4c4b4cd2
PH
8996 switch (TYPE_CODE (type))
8997 {
8998 default:
e1d5a0d2
PH
8999 lim_warning (_("Membership test incompletely implemented; "
9000 "always returns true"));
fbb06eb1
UW
9001 type = language_bool_type (exp->language_defn, exp->gdbarch);
9002 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9003
9004 case TYPE_CODE_RANGE:
030b4912
UW
9005 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9006 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9009 type = language_bool_type (exp->language_defn, exp->gdbarch);
9010 return
9011 value_from_longest (type,
4c4b4cd2
PH
9012 (value_less (arg1, arg3)
9013 || value_equal (arg1, arg3))
9014 && (value_less (arg2, arg1)
9015 || value_equal (arg2, arg1)));
9016 }
9017
9018 case BINOP_IN_BOUNDS:
14f9c5c9 9019 (*pos) += 2;
4c4b4cd2
PH
9020 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9021 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9022
4c4b4cd2
PH
9023 if (noside == EVAL_SKIP)
9024 goto nosideret;
14f9c5c9 9025
4c4b4cd2 9026 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9027 {
9028 type = language_bool_type (exp->language_defn, exp->gdbarch);
9029 return value_zero (type, not_lval);
9030 }
14f9c5c9 9031
4c4b4cd2 9032 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9033
1eea4ebd
UW
9034 type = ada_index_type (value_type (arg2), tem, "range");
9035 if (!type)
9036 type = value_type (arg1);
14f9c5c9 9037
1eea4ebd
UW
9038 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9039 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9040
f44316fa
UW
9041 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9042 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9043 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9044 return
fbb06eb1 9045 value_from_longest (type,
4c4b4cd2
PH
9046 (value_less (arg1, arg3)
9047 || value_equal (arg1, arg3))
9048 && (value_less (arg2, arg1)
9049 || value_equal (arg2, arg1)));
9050
9051 case TERNOP_IN_RANGE:
9052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9053 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9054 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9055
9056 if (noside == EVAL_SKIP)
9057 goto nosideret;
9058
f44316fa
UW
9059 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9060 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9061 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9062 return
fbb06eb1 9063 value_from_longest (type,
4c4b4cd2
PH
9064 (value_less (arg1, arg3)
9065 || value_equal (arg1, arg3))
9066 && (value_less (arg2, arg1)
9067 || value_equal (arg2, arg1)));
9068
9069 case OP_ATR_FIRST:
9070 case OP_ATR_LAST:
9071 case OP_ATR_LENGTH:
9072 {
76a01679
JB
9073 struct type *type_arg;
9074 if (exp->elts[*pos].opcode == OP_TYPE)
9075 {
9076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9077 arg1 = NULL;
5bc23cb3 9078 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9079 }
9080 else
9081 {
9082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9083 type_arg = NULL;
9084 }
9085
9086 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9087 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9088 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9089 *pos += 4;
9090
9091 if (noside == EVAL_SKIP)
9092 goto nosideret;
9093
9094 if (type_arg == NULL)
9095 {
9096 arg1 = ada_coerce_ref (arg1);
9097
df407dfe 9098 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
9099 arg1 = ada_coerce_to_simple_array (arg1);
9100
1eea4ebd
UW
9101 type = ada_index_type (value_type (arg1), tem,
9102 ada_attribute_name (op));
9103 if (type == NULL)
9104 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9105
9106 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9107 return allocate_value (type);
76a01679
JB
9108
9109 switch (op)
9110 {
9111 default: /* Should never happen. */
323e0a4a 9112 error (_("unexpected attribute encountered"));
76a01679 9113 case OP_ATR_FIRST:
1eea4ebd
UW
9114 return value_from_longest
9115 (type, ada_array_bound (arg1, tem, 0));
76a01679 9116 case OP_ATR_LAST:
1eea4ebd
UW
9117 return value_from_longest
9118 (type, ada_array_bound (arg1, tem, 1));
76a01679 9119 case OP_ATR_LENGTH:
1eea4ebd
UW
9120 return value_from_longest
9121 (type, ada_array_length (arg1, tem));
76a01679
JB
9122 }
9123 }
9124 else if (discrete_type_p (type_arg))
9125 {
9126 struct type *range_type;
9127 char *name = ada_type_name (type_arg);
9128 range_type = NULL;
9129 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9130 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9131 if (range_type == NULL)
9132 range_type = type_arg;
9133 switch (op)
9134 {
9135 default:
323e0a4a 9136 error (_("unexpected attribute encountered"));
76a01679 9137 case OP_ATR_FIRST:
690cc4eb
PH
9138 return value_from_longest
9139 (range_type, discrete_type_low_bound (range_type));
76a01679 9140 case OP_ATR_LAST:
690cc4eb
PH
9141 return value_from_longest
9142 (range_type, discrete_type_high_bound (range_type));
76a01679 9143 case OP_ATR_LENGTH:
323e0a4a 9144 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9145 }
9146 }
9147 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9148 error (_("unimplemented type attribute"));
76a01679
JB
9149 else
9150 {
9151 LONGEST low, high;
9152
9153 if (ada_is_packed_array_type (type_arg))
9154 type_arg = decode_packed_array_type (type_arg);
9155
1eea4ebd 9156 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9157 if (type == NULL)
1eea4ebd
UW
9158 type = builtin_type (exp->gdbarch)->builtin_int;
9159
76a01679
JB
9160 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9161 return allocate_value (type);
9162
9163 switch (op)
9164 {
9165 default:
323e0a4a 9166 error (_("unexpected attribute encountered"));
76a01679 9167 case OP_ATR_FIRST:
1eea4ebd 9168 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9169 return value_from_longest (type, low);
9170 case OP_ATR_LAST:
1eea4ebd 9171 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9172 return value_from_longest (type, high);
9173 case OP_ATR_LENGTH:
1eea4ebd
UW
9174 low = ada_array_bound_from_type (type_arg, tem, 0);
9175 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9176 return value_from_longest (type, high - low + 1);
9177 }
9178 }
14f9c5c9
AS
9179 }
9180
4c4b4cd2
PH
9181 case OP_ATR_TAG:
9182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9183 if (noside == EVAL_SKIP)
76a01679 9184 goto nosideret;
4c4b4cd2
PH
9185
9186 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9187 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9188
9189 return ada_value_tag (arg1);
9190
9191 case OP_ATR_MIN:
9192 case OP_ATR_MAX:
9193 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9196 if (noside == EVAL_SKIP)
76a01679 9197 goto nosideret;
d2e4a39e 9198 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9199 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9200 else
f44316fa
UW
9201 {
9202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9203 return value_binop (arg1, arg2,
9204 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9205 }
14f9c5c9 9206
4c4b4cd2
PH
9207 case OP_ATR_MODULUS:
9208 {
31dedfee 9209 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9210 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9211
76a01679
JB
9212 if (noside == EVAL_SKIP)
9213 goto nosideret;
4c4b4cd2 9214
76a01679 9215 if (!ada_is_modular_type (type_arg))
323e0a4a 9216 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9217
76a01679
JB
9218 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9219 ada_modulus (type_arg));
4c4b4cd2
PH
9220 }
9221
9222
9223 case OP_ATR_POS:
9224 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9226 if (noside == EVAL_SKIP)
76a01679 9227 goto nosideret;
3cb382c9
UW
9228 type = builtin_type (exp->gdbarch)->builtin_int;
9229 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9230 return value_zero (type, not_lval);
14f9c5c9 9231 else
3cb382c9 9232 return value_pos_atr (type, arg1);
14f9c5c9 9233
4c4b4cd2
PH
9234 case OP_ATR_SIZE:
9235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9236 type = value_type (arg1);
9237
9238 /* If the argument is a reference, then dereference its type, since
9239 the user is really asking for the size of the actual object,
9240 not the size of the pointer. */
9241 if (TYPE_CODE (type) == TYPE_CODE_REF)
9242 type = TYPE_TARGET_TYPE (type);
9243
4c4b4cd2 9244 if (noside == EVAL_SKIP)
76a01679 9245 goto nosideret;
4c4b4cd2 9246 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9247 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9248 else
6d2e05aa 9249 return value_from_longest (builtin_type_int32,
8c1c099f 9250 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9251
9252 case OP_ATR_VAL:
9253 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9255 type = exp->elts[pc + 2].type;
14f9c5c9 9256 if (noside == EVAL_SKIP)
76a01679 9257 goto nosideret;
4c4b4cd2 9258 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9259 return value_zero (type, not_lval);
4c4b4cd2 9260 else
76a01679 9261 return value_val_atr (type, arg1);
4c4b4cd2
PH
9262
9263 case BINOP_EXP:
9264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9265 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9266 if (noside == EVAL_SKIP)
9267 goto nosideret;
9268 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9269 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9270 else
f44316fa
UW
9271 {
9272 /* For integer exponentiation operations,
9273 only promote the first argument. */
9274 if (is_integral_type (value_type (arg2)))
9275 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9276 else
9277 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9278
9279 return value_binop (arg1, arg2, op);
9280 }
4c4b4cd2
PH
9281
9282 case UNOP_PLUS:
9283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9284 if (noside == EVAL_SKIP)
9285 goto nosideret;
9286 else
9287 return arg1;
9288
9289 case UNOP_ABS:
9290 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9291 if (noside == EVAL_SKIP)
9292 goto nosideret;
f44316fa 9293 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9294 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9295 return value_neg (arg1);
14f9c5c9 9296 else
4c4b4cd2 9297 return arg1;
14f9c5c9
AS
9298
9299 case UNOP_IND:
6b0d7253 9300 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9301 if (noside == EVAL_SKIP)
4c4b4cd2 9302 goto nosideret;
df407dfe 9303 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9304 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9305 {
9306 if (ada_is_array_descriptor_type (type))
9307 /* GDB allows dereferencing GNAT array descriptors. */
9308 {
9309 struct type *arrType = ada_type_of_array (arg1, 0);
9310 if (arrType == NULL)
323e0a4a 9311 error (_("Attempt to dereference null array pointer."));
00a4c844 9312 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9313 }
9314 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9315 || TYPE_CODE (type) == TYPE_CODE_REF
9316 /* In C you can dereference an array to get the 1st elt. */
9317 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9318 {
9319 type = to_static_fixed_type
9320 (ada_aligned_type
9321 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9322 check_size (type);
9323 return value_zero (type, lval_memory);
9324 }
4c4b4cd2 9325 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9326 {
9327 /* GDB allows dereferencing an int. */
9328 if (expect_type == NULL)
9329 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9330 lval_memory);
9331 else
9332 {
9333 expect_type =
9334 to_static_fixed_type (ada_aligned_type (expect_type));
9335 return value_zero (expect_type, lval_memory);
9336 }
9337 }
4c4b4cd2 9338 else
323e0a4a 9339 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9340 }
76a01679 9341 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9342 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9343
96967637
JB
9344 if (TYPE_CODE (type) == TYPE_CODE_INT)
9345 /* GDB allows dereferencing an int. If we were given
9346 the expect_type, then use that as the target type.
9347 Otherwise, assume that the target type is an int. */
9348 {
9349 if (expect_type != NULL)
9350 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9351 arg1));
9352 else
9353 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9354 (CORE_ADDR) value_as_address (arg1));
9355 }
6b0d7253 9356
4c4b4cd2
PH
9357 if (ada_is_array_descriptor_type (type))
9358 /* GDB allows dereferencing GNAT array descriptors. */
9359 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9360 else
4c4b4cd2 9361 return ada_value_ind (arg1);
14f9c5c9
AS
9362
9363 case STRUCTOP_STRUCT:
9364 tem = longest_to_int (exp->elts[pc + 1].longconst);
9365 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9367 if (noside == EVAL_SKIP)
4c4b4cd2 9368 goto nosideret;
14f9c5c9 9369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9370 {
df407dfe 9371 struct type *type1 = value_type (arg1);
76a01679
JB
9372 if (ada_is_tagged_type (type1, 1))
9373 {
9374 type = ada_lookup_struct_elt_type (type1,
9375 &exp->elts[pc + 2].string,
9376 1, 1, NULL);
9377 if (type == NULL)
9378 /* In this case, we assume that the field COULD exist
9379 in some extension of the type. Return an object of
9380 "type" void, which will match any formal
9381 (see ada_type_match). */
9382 return value_zero (builtin_type_void, lval_memory);
9383 }
9384 else
9385 type =
9386 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9387 0, NULL);
9388
9389 return value_zero (ada_aligned_type (type), lval_memory);
9390 }
14f9c5c9 9391 else
284614f0
JB
9392 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9393 arg1 = unwrap_value (arg1);
9394 return ada_to_fixed_value (arg1);
9395
14f9c5c9 9396 case OP_TYPE:
4c4b4cd2
PH
9397 /* The value is not supposed to be used. This is here to make it
9398 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9399 (*pos) += 2;
9400 if (noside == EVAL_SKIP)
4c4b4cd2 9401 goto nosideret;
14f9c5c9 9402 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9403 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9404 else
323e0a4a 9405 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9406
9407 case OP_AGGREGATE:
9408 case OP_CHOICES:
9409 case OP_OTHERS:
9410 case OP_DISCRETE_RANGE:
9411 case OP_POSITIONAL:
9412 case OP_NAME:
9413 if (noside == EVAL_NORMAL)
9414 switch (op)
9415 {
9416 case OP_NAME:
9417 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9418 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9419 case OP_AGGREGATE:
9420 error (_("Aggregates only allowed on the right of an assignment"));
9421 default:
e1d5a0d2 9422 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9423 }
9424
9425 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9426 *pos += oplen - 1;
9427 for (tem = 0; tem < nargs; tem += 1)
9428 ada_evaluate_subexp (NULL, exp, pos, noside);
9429 goto nosideret;
14f9c5c9
AS
9430 }
9431
9432nosideret:
cb18ec49 9433 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9434}
14f9c5c9 9435\f
d2e4a39e 9436
4c4b4cd2 9437 /* Fixed point */
14f9c5c9
AS
9438
9439/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9440 type name that encodes the 'small and 'delta information.
4c4b4cd2 9441 Otherwise, return NULL. */
14f9c5c9 9442
d2e4a39e 9443static const char *
ebf56fd3 9444fixed_type_info (struct type *type)
14f9c5c9 9445{
d2e4a39e 9446 const char *name = ada_type_name (type);
14f9c5c9
AS
9447 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9448
d2e4a39e
AS
9449 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9450 {
14f9c5c9
AS
9451 const char *tail = strstr (name, "___XF_");
9452 if (tail == NULL)
4c4b4cd2 9453 return NULL;
d2e4a39e 9454 else
4c4b4cd2 9455 return tail + 5;
14f9c5c9
AS
9456 }
9457 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9458 return fixed_type_info (TYPE_TARGET_TYPE (type));
9459 else
9460 return NULL;
9461}
9462
4c4b4cd2 9463/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9464
9465int
ebf56fd3 9466ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9467{
9468 return fixed_type_info (type) != NULL;
9469}
9470
4c4b4cd2
PH
9471/* Return non-zero iff TYPE represents a System.Address type. */
9472
9473int
9474ada_is_system_address_type (struct type *type)
9475{
9476 return (TYPE_NAME (type)
9477 && strcmp (TYPE_NAME (type), "system__address") == 0);
9478}
9479
14f9c5c9
AS
9480/* Assuming that TYPE is the representation of an Ada fixed-point
9481 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9482 delta cannot be determined. */
14f9c5c9
AS
9483
9484DOUBLEST
ebf56fd3 9485ada_delta (struct type *type)
14f9c5c9
AS
9486{
9487 const char *encoding = fixed_type_info (type);
facc390f 9488 DOUBLEST num, den;
14f9c5c9 9489
facc390f
JB
9490 /* Strictly speaking, num and den are encoded as integer. However,
9491 they may not fit into a long, and they will have to be converted
9492 to DOUBLEST anyway. So scan them as DOUBLEST. */
9493 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9494 &num, &den) < 2)
14f9c5c9 9495 return -1.0;
d2e4a39e 9496 else
facc390f 9497 return num / den;
14f9c5c9
AS
9498}
9499
9500/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9501 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9502
9503static DOUBLEST
ebf56fd3 9504scaling_factor (struct type *type)
14f9c5c9
AS
9505{
9506 const char *encoding = fixed_type_info (type);
facc390f 9507 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9508 int n;
d2e4a39e 9509
facc390f
JB
9510 /* Strictly speaking, num's and den's are encoded as integer. However,
9511 they may not fit into a long, and they will have to be converted
9512 to DOUBLEST anyway. So scan them as DOUBLEST. */
9513 n = sscanf (encoding,
9514 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9515 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9516 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9517
9518 if (n < 2)
9519 return 1.0;
9520 else if (n == 4)
facc390f 9521 return num1 / den1;
d2e4a39e 9522 else
facc390f 9523 return num0 / den0;
14f9c5c9
AS
9524}
9525
9526
9527/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9528 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9529
9530DOUBLEST
ebf56fd3 9531ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9532{
d2e4a39e 9533 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9534}
9535
4c4b4cd2
PH
9536/* The representation of a fixed-point value of type TYPE
9537 corresponding to the value X. */
14f9c5c9
AS
9538
9539LONGEST
ebf56fd3 9540ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9541{
9542 return (LONGEST) (x / scaling_factor (type) + 0.5);
9543}
9544
9545
4c4b4cd2 9546 /* VAX floating formats */
14f9c5c9
AS
9547
9548/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9549 types. */
9550
14f9c5c9 9551int
d2e4a39e 9552ada_is_vax_floating_type (struct type *type)
14f9c5c9 9553{
d2e4a39e 9554 int name_len =
14f9c5c9 9555 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9556 return
14f9c5c9 9557 name_len > 6
d2e4a39e 9558 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9559 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9560 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9561}
9562
9563/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9564 ada_is_vax_floating_point. */
9565
14f9c5c9 9566int
d2e4a39e 9567ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9568{
d2e4a39e 9569 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9570}
9571
4c4b4cd2 9572/* A value representing the special debugging function that outputs
14f9c5c9 9573 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9574 ada_is_vax_floating_type (TYPE). */
9575
d2e4a39e
AS
9576struct value *
9577ada_vax_float_print_function (struct type *type)
9578{
9579 switch (ada_vax_float_type_suffix (type))
9580 {
9581 case 'F':
9582 return get_var_value ("DEBUG_STRING_F", 0);
9583 case 'D':
9584 return get_var_value ("DEBUG_STRING_D", 0);
9585 case 'G':
9586 return get_var_value ("DEBUG_STRING_G", 0);
9587 default:
323e0a4a 9588 error (_("invalid VAX floating-point type"));
d2e4a39e 9589 }
14f9c5c9 9590}
14f9c5c9 9591\f
d2e4a39e 9592
4c4b4cd2 9593 /* Range types */
14f9c5c9
AS
9594
9595/* Scan STR beginning at position K for a discriminant name, and
9596 return the value of that discriminant field of DVAL in *PX. If
9597 PNEW_K is not null, put the position of the character beyond the
9598 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9599 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9600
9601static int
07d8f827 9602scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9603 int *pnew_k)
14f9c5c9
AS
9604{
9605 static char *bound_buffer = NULL;
9606 static size_t bound_buffer_len = 0;
9607 char *bound;
9608 char *pend;
d2e4a39e 9609 struct value *bound_val;
14f9c5c9
AS
9610
9611 if (dval == NULL || str == NULL || str[k] == '\0')
9612 return 0;
9613
d2e4a39e 9614 pend = strstr (str + k, "__");
14f9c5c9
AS
9615 if (pend == NULL)
9616 {
d2e4a39e 9617 bound = str + k;
14f9c5c9
AS
9618 k += strlen (bound);
9619 }
d2e4a39e 9620 else
14f9c5c9 9621 {
d2e4a39e 9622 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9623 bound = bound_buffer;
d2e4a39e
AS
9624 strncpy (bound_buffer, str + k, pend - (str + k));
9625 bound[pend - (str + k)] = '\0';
9626 k = pend - str;
14f9c5c9 9627 }
d2e4a39e 9628
df407dfe 9629 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9630 if (bound_val == NULL)
9631 return 0;
9632
9633 *px = value_as_long (bound_val);
9634 if (pnew_k != NULL)
9635 *pnew_k = k;
9636 return 1;
9637}
9638
9639/* Value of variable named NAME in the current environment. If
9640 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9641 otherwise causes an error with message ERR_MSG. */
9642
d2e4a39e
AS
9643static struct value *
9644get_var_value (char *name, char *err_msg)
14f9c5c9 9645{
4c4b4cd2 9646 struct ada_symbol_info *syms;
14f9c5c9
AS
9647 int nsyms;
9648
4c4b4cd2
PH
9649 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9650 &syms);
14f9c5c9
AS
9651
9652 if (nsyms != 1)
9653 {
9654 if (err_msg == NULL)
4c4b4cd2 9655 return 0;
14f9c5c9 9656 else
8a3fe4f8 9657 error (("%s"), err_msg);
14f9c5c9
AS
9658 }
9659
4c4b4cd2 9660 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9661}
d2e4a39e 9662
14f9c5c9 9663/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9664 no such variable found, returns 0, and sets *FLAG to 0. If
9665 successful, sets *FLAG to 1. */
9666
14f9c5c9 9667LONGEST
4c4b4cd2 9668get_int_var_value (char *name, int *flag)
14f9c5c9 9669{
4c4b4cd2 9670 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9671
14f9c5c9
AS
9672 if (var_val == 0)
9673 {
9674 if (flag != NULL)
4c4b4cd2 9675 *flag = 0;
14f9c5c9
AS
9676 return 0;
9677 }
9678 else
9679 {
9680 if (flag != NULL)
4c4b4cd2 9681 *flag = 1;
14f9c5c9
AS
9682 return value_as_long (var_val);
9683 }
9684}
d2e4a39e 9685
14f9c5c9
AS
9686
9687/* Return a range type whose base type is that of the range type named
9688 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9689 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9690 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9691 corresponding range type from debug information; fall back to using it
9692 if symbol lookup fails. If a new type must be created, allocate it
9693 like ORIG_TYPE was. The bounds information, in general, is encoded
9694 in NAME, the base type given in the named range type. */
14f9c5c9 9695
d2e4a39e 9696static struct type *
1ce677a4 9697to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9698{
9699 struct type *raw_type = ada_find_any_type (name);
9700 struct type *base_type;
d2e4a39e 9701 char *subtype_info;
14f9c5c9 9702
1ce677a4 9703 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9704 if (raw_type == NULL)
1ce677a4 9705 raw_type = orig_type;
dddfab26 9706
1ce677a4 9707 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9708 base_type = TYPE_TARGET_TYPE (raw_type);
9709 else
9710 base_type = raw_type;
9711
9712 subtype_info = strstr (name, "___XD");
9713 if (subtype_info == NULL)
690cc4eb
PH
9714 {
9715 LONGEST L = discrete_type_low_bound (raw_type);
9716 LONGEST U = discrete_type_high_bound (raw_type);
9717 if (L < INT_MIN || U > INT_MAX)
9718 return raw_type;
9719 else
1ce677a4
UW
9720 return create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9721 raw_type,
690cc4eb
PH
9722 discrete_type_low_bound (raw_type),
9723 discrete_type_high_bound (raw_type));
9724 }
14f9c5c9
AS
9725 else
9726 {
9727 static char *name_buf = NULL;
9728 static size_t name_len = 0;
9729 int prefix_len = subtype_info - name;
9730 LONGEST L, U;
9731 struct type *type;
9732 char *bounds_str;
9733 int n;
9734
9735 GROW_VECT (name_buf, name_len, prefix_len + 5);
9736 strncpy (name_buf, name, prefix_len);
9737 name_buf[prefix_len] = '\0';
9738
9739 subtype_info += 5;
9740 bounds_str = strchr (subtype_info, '_');
9741 n = 1;
9742
d2e4a39e 9743 if (*subtype_info == 'L')
4c4b4cd2
PH
9744 {
9745 if (!ada_scan_number (bounds_str, n, &L, &n)
9746 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9747 return raw_type;
9748 if (bounds_str[n] == '_')
9749 n += 2;
9750 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9751 n += 1;
9752 subtype_info += 1;
9753 }
d2e4a39e 9754 else
4c4b4cd2
PH
9755 {
9756 int ok;
9757 strcpy (name_buf + prefix_len, "___L");
9758 L = get_int_var_value (name_buf, &ok);
9759 if (!ok)
9760 {
323e0a4a 9761 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9762 L = 1;
9763 }
9764 }
14f9c5c9 9765
d2e4a39e 9766 if (*subtype_info == 'U')
4c4b4cd2
PH
9767 {
9768 if (!ada_scan_number (bounds_str, n, &U, &n)
9769 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9770 return raw_type;
9771 }
d2e4a39e 9772 else
4c4b4cd2
PH
9773 {
9774 int ok;
9775 strcpy (name_buf + prefix_len, "___U");
9776 U = get_int_var_value (name_buf, &ok);
9777 if (!ok)
9778 {
323e0a4a 9779 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9780 U = L;
9781 }
9782 }
14f9c5c9 9783
1ce677a4
UW
9784 type = create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9785 base_type, L, U);
d2e4a39e 9786 TYPE_NAME (type) = name;
14f9c5c9
AS
9787 return type;
9788 }
9789}
9790
4c4b4cd2
PH
9791/* True iff NAME is the name of a range type. */
9792
14f9c5c9 9793int
d2e4a39e 9794ada_is_range_type_name (const char *name)
14f9c5c9
AS
9795{
9796 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9797}
14f9c5c9 9798\f
d2e4a39e 9799
4c4b4cd2
PH
9800 /* Modular types */
9801
9802/* True iff TYPE is an Ada modular type. */
14f9c5c9 9803
14f9c5c9 9804int
d2e4a39e 9805ada_is_modular_type (struct type *type)
14f9c5c9 9806{
4c4b4cd2 9807 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9808
9809 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9810 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9811 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9812}
9813
0056e4d5
JB
9814/* Try to determine the lower and upper bounds of the given modular type
9815 using the type name only. Return non-zero and set L and U as the lower
9816 and upper bounds (respectively) if successful. */
9817
9818int
9819ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9820{
9821 char *name = ada_type_name (type);
9822 char *suffix;
9823 int k;
9824 LONGEST U;
9825
9826 if (name == NULL)
9827 return 0;
9828
9829 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9830 we are looking for static bounds, which means an __XDLU suffix.
9831 Moreover, we know that the lower bound of modular types is always
9832 zero, so the actual suffix should start with "__XDLU_0__", and
9833 then be followed by the upper bound value. */
9834 suffix = strstr (name, "__XDLU_0__");
9835 if (suffix == NULL)
9836 return 0;
9837 k = 10;
9838 if (!ada_scan_number (suffix, k, &U, NULL))
9839 return 0;
9840
9841 *modulus = (ULONGEST) U + 1;
9842 return 1;
9843}
9844
4c4b4cd2
PH
9845/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9846
61ee279c 9847ULONGEST
0056e4d5 9848ada_modulus (struct type *type)
14f9c5c9 9849{
0056e4d5
JB
9850 ULONGEST modulus;
9851
9852 /* Normally, the modulus of a modular type is equal to the value of
9853 its upper bound + 1. However, the upper bound is currently stored
9854 as an int, which is not always big enough to hold the actual bound
9855 value. To workaround this, try to take advantage of the encoding
9856 that GNAT uses with with discrete types. To avoid some unnecessary
9857 parsing, we do this only when the size of TYPE is greater than
9858 the size of the field holding the bound. */
9859 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9860 && ada_modulus_from_name (type, &modulus))
9861 return modulus;
9862
d37209fd 9863 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9864}
d2e4a39e 9865\f
f7f9143b
JB
9866
9867/* Ada exception catchpoint support:
9868 ---------------------------------
9869
9870 We support 3 kinds of exception catchpoints:
9871 . catchpoints on Ada exceptions
9872 . catchpoints on unhandled Ada exceptions
9873 . catchpoints on failed assertions
9874
9875 Exceptions raised during failed assertions, or unhandled exceptions
9876 could perfectly be caught with the general catchpoint on Ada exceptions.
9877 However, we can easily differentiate these two special cases, and having
9878 the option to distinguish these two cases from the rest can be useful
9879 to zero-in on certain situations.
9880
9881 Exception catchpoints are a specialized form of breakpoint,
9882 since they rely on inserting breakpoints inside known routines
9883 of the GNAT runtime. The implementation therefore uses a standard
9884 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9885 of breakpoint_ops.
9886
0259addd
JB
9887 Support in the runtime for exception catchpoints have been changed
9888 a few times already, and these changes affect the implementation
9889 of these catchpoints. In order to be able to support several
9890 variants of the runtime, we use a sniffer that will determine
9891 the runtime variant used by the program being debugged.
9892
f7f9143b
JB
9893 At this time, we do not support the use of conditions on Ada exception
9894 catchpoints. The COND and COND_STRING fields are therefore set
9895 to NULL (most of the time, see below).
9896
9897 Conditions where EXP_STRING, COND, and COND_STRING are used:
9898
9899 When a user specifies the name of a specific exception in the case
9900 of catchpoints on Ada exceptions, we store the name of that exception
9901 in the EXP_STRING. We then translate this request into an actual
9902 condition stored in COND_STRING, and then parse it into an expression
9903 stored in COND. */
9904
9905/* The different types of catchpoints that we introduced for catching
9906 Ada exceptions. */
9907
9908enum exception_catchpoint_kind
9909{
9910 ex_catch_exception,
9911 ex_catch_exception_unhandled,
9912 ex_catch_assert
9913};
9914
3d0b0fa3
JB
9915/* Ada's standard exceptions. */
9916
9917static char *standard_exc[] = {
9918 "constraint_error",
9919 "program_error",
9920 "storage_error",
9921 "tasking_error"
9922};
9923
0259addd
JB
9924typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9925
9926/* A structure that describes how to support exception catchpoints
9927 for a given executable. */
9928
9929struct exception_support_info
9930{
9931 /* The name of the symbol to break on in order to insert
9932 a catchpoint on exceptions. */
9933 const char *catch_exception_sym;
9934
9935 /* The name of the symbol to break on in order to insert
9936 a catchpoint on unhandled exceptions. */
9937 const char *catch_exception_unhandled_sym;
9938
9939 /* The name of the symbol to break on in order to insert
9940 a catchpoint on failed assertions. */
9941 const char *catch_assert_sym;
9942
9943 /* Assuming that the inferior just triggered an unhandled exception
9944 catchpoint, this function is responsible for returning the address
9945 in inferior memory where the name of that exception is stored.
9946 Return zero if the address could not be computed. */
9947 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9948};
9949
9950static CORE_ADDR ada_unhandled_exception_name_addr (void);
9951static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9952
9953/* The following exception support info structure describes how to
9954 implement exception catchpoints with the latest version of the
9955 Ada runtime (as of 2007-03-06). */
9956
9957static const struct exception_support_info default_exception_support_info =
9958{
9959 "__gnat_debug_raise_exception", /* catch_exception_sym */
9960 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9961 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9962 ada_unhandled_exception_name_addr
9963};
9964
9965/* The following exception support info structure describes how to
9966 implement exception catchpoints with a slightly older version
9967 of the Ada runtime. */
9968
9969static const struct exception_support_info exception_support_info_fallback =
9970{
9971 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9972 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9973 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9974 ada_unhandled_exception_name_addr_from_raise
9975};
9976
9977/* For each executable, we sniff which exception info structure to use
9978 and cache it in the following global variable. */
9979
9980static const struct exception_support_info *exception_info = NULL;
9981
9982/* Inspect the Ada runtime and determine which exception info structure
9983 should be used to provide support for exception catchpoints.
9984
9985 This function will always set exception_info, or raise an error. */
9986
9987static void
9988ada_exception_support_info_sniffer (void)
9989{
9990 struct symbol *sym;
9991
9992 /* If the exception info is already known, then no need to recompute it. */
9993 if (exception_info != NULL)
9994 return;
9995
9996 /* Check the latest (default) exception support info. */
9997 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9998 NULL, VAR_DOMAIN);
9999 if (sym != NULL)
10000 {
10001 exception_info = &default_exception_support_info;
10002 return;
10003 }
10004
10005 /* Try our fallback exception suport info. */
10006 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10007 NULL, VAR_DOMAIN);
10008 if (sym != NULL)
10009 {
10010 exception_info = &exception_support_info_fallback;
10011 return;
10012 }
10013
10014 /* Sometimes, it is normal for us to not be able to find the routine
10015 we are looking for. This happens when the program is linked with
10016 the shared version of the GNAT runtime, and the program has not been
10017 started yet. Inform the user of these two possible causes if
10018 applicable. */
10019
10020 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10021 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10022
10023 /* If the symbol does not exist, then check that the program is
10024 already started, to make sure that shared libraries have been
10025 loaded. If it is not started, this may mean that the symbol is
10026 in a shared library. */
10027
10028 if (ptid_get_pid (inferior_ptid) == 0)
10029 error (_("Unable to insert catchpoint. Try to start the program first."));
10030
10031 /* At this point, we know that we are debugging an Ada program and
10032 that the inferior has been started, but we still are not able to
10033 find the run-time symbols. That can mean that we are in
10034 configurable run time mode, or that a-except as been optimized
10035 out by the linker... In any case, at this point it is not worth
10036 supporting this feature. */
10037
10038 error (_("Cannot insert catchpoints in this configuration."));
10039}
10040
10041/* An observer of "executable_changed" events.
10042 Its role is to clear certain cached values that need to be recomputed
10043 each time a new executable is loaded by GDB. */
10044
10045static void
781b42b0 10046ada_executable_changed_observer (void)
0259addd
JB
10047{
10048 /* If the executable changed, then it is possible that the Ada runtime
10049 is different. So we need to invalidate the exception support info
10050 cache. */
10051 exception_info = NULL;
10052}
10053
f7f9143b
JB
10054/* Return the name of the function at PC, NULL if could not find it.
10055 This function only checks the debugging information, not the symbol
10056 table. */
10057
10058static char *
10059function_name_from_pc (CORE_ADDR pc)
10060{
10061 char *func_name;
10062
10063 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10064 return NULL;
10065
10066 return func_name;
10067}
10068
10069/* True iff FRAME is very likely to be that of a function that is
10070 part of the runtime system. This is all very heuristic, but is
10071 intended to be used as advice as to what frames are uninteresting
10072 to most users. */
10073
10074static int
10075is_known_support_routine (struct frame_info *frame)
10076{
4ed6b5be 10077 struct symtab_and_line sal;
f7f9143b
JB
10078 char *func_name;
10079 int i;
f7f9143b 10080
4ed6b5be
JB
10081 /* If this code does not have any debugging information (no symtab),
10082 This cannot be any user code. */
f7f9143b 10083
4ed6b5be 10084 find_frame_sal (frame, &sal);
f7f9143b
JB
10085 if (sal.symtab == NULL)
10086 return 1;
10087
4ed6b5be
JB
10088 /* If there is a symtab, but the associated source file cannot be
10089 located, then assume this is not user code: Selecting a frame
10090 for which we cannot display the code would not be very helpful
10091 for the user. This should also take care of case such as VxWorks
10092 where the kernel has some debugging info provided for a few units. */
f7f9143b 10093
9bbc9174 10094 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10095 return 1;
10096
4ed6b5be
JB
10097 /* Check the unit filename againt the Ada runtime file naming.
10098 We also check the name of the objfile against the name of some
10099 known system libraries that sometimes come with debugging info
10100 too. */
10101
f7f9143b
JB
10102 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10103 {
10104 re_comp (known_runtime_file_name_patterns[i]);
10105 if (re_exec (sal.symtab->filename))
10106 return 1;
4ed6b5be
JB
10107 if (sal.symtab->objfile != NULL
10108 && re_exec (sal.symtab->objfile->name))
10109 return 1;
f7f9143b
JB
10110 }
10111
4ed6b5be 10112 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10113
4ed6b5be 10114 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10115 if (func_name == NULL)
10116 return 1;
10117
10118 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10119 {
10120 re_comp (known_auxiliary_function_name_patterns[i]);
10121 if (re_exec (func_name))
10122 return 1;
10123 }
10124
10125 return 0;
10126}
10127
10128/* Find the first frame that contains debugging information and that is not
10129 part of the Ada run-time, starting from FI and moving upward. */
10130
0ef643c8 10131void
f7f9143b
JB
10132ada_find_printable_frame (struct frame_info *fi)
10133{
10134 for (; fi != NULL; fi = get_prev_frame (fi))
10135 {
10136 if (!is_known_support_routine (fi))
10137 {
10138 select_frame (fi);
10139 break;
10140 }
10141 }
10142
10143}
10144
10145/* Assuming that the inferior just triggered an unhandled exception
10146 catchpoint, return the address in inferior memory where the name
10147 of the exception is stored.
10148
10149 Return zero if the address could not be computed. */
10150
10151static CORE_ADDR
10152ada_unhandled_exception_name_addr (void)
0259addd
JB
10153{
10154 return parse_and_eval_address ("e.full_name");
10155}
10156
10157/* Same as ada_unhandled_exception_name_addr, except that this function
10158 should be used when the inferior uses an older version of the runtime,
10159 where the exception name needs to be extracted from a specific frame
10160 several frames up in the callstack. */
10161
10162static CORE_ADDR
10163ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10164{
10165 int frame_level;
10166 struct frame_info *fi;
10167
10168 /* To determine the name of this exception, we need to select
10169 the frame corresponding to RAISE_SYM_NAME. This frame is
10170 at least 3 levels up, so we simply skip the first 3 frames
10171 without checking the name of their associated function. */
10172 fi = get_current_frame ();
10173 for (frame_level = 0; frame_level < 3; frame_level += 1)
10174 if (fi != NULL)
10175 fi = get_prev_frame (fi);
10176
10177 while (fi != NULL)
10178 {
10179 const char *func_name =
10180 function_name_from_pc (get_frame_address_in_block (fi));
10181 if (func_name != NULL
0259addd 10182 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10183 break; /* We found the frame we were looking for... */
10184 fi = get_prev_frame (fi);
10185 }
10186
10187 if (fi == NULL)
10188 return 0;
10189
10190 select_frame (fi);
10191 return parse_and_eval_address ("id.full_name");
10192}
10193
10194/* Assuming the inferior just triggered an Ada exception catchpoint
10195 (of any type), return the address in inferior memory where the name
10196 of the exception is stored, if applicable.
10197
10198 Return zero if the address could not be computed, or if not relevant. */
10199
10200static CORE_ADDR
10201ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10202 struct breakpoint *b)
10203{
10204 switch (ex)
10205 {
10206 case ex_catch_exception:
10207 return (parse_and_eval_address ("e.full_name"));
10208 break;
10209
10210 case ex_catch_exception_unhandled:
0259addd 10211 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10212 break;
10213
10214 case ex_catch_assert:
10215 return 0; /* Exception name is not relevant in this case. */
10216 break;
10217
10218 default:
10219 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10220 break;
10221 }
10222
10223 return 0; /* Should never be reached. */
10224}
10225
10226/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10227 any error that ada_exception_name_addr_1 might cause to be thrown.
10228 When an error is intercepted, a warning with the error message is printed,
10229 and zero is returned. */
10230
10231static CORE_ADDR
10232ada_exception_name_addr (enum exception_catchpoint_kind ex,
10233 struct breakpoint *b)
10234{
10235 struct gdb_exception e;
10236 CORE_ADDR result = 0;
10237
10238 TRY_CATCH (e, RETURN_MASK_ERROR)
10239 {
10240 result = ada_exception_name_addr_1 (ex, b);
10241 }
10242
10243 if (e.reason < 0)
10244 {
10245 warning (_("failed to get exception name: %s"), e.message);
10246 return 0;
10247 }
10248
10249 return result;
10250}
10251
10252/* Implement the PRINT_IT method in the breakpoint_ops structure
10253 for all exception catchpoint kinds. */
10254
10255static enum print_stop_action
10256print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10257{
10258 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10259 char exception_name[256];
10260
10261 if (addr != 0)
10262 {
10263 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10264 exception_name [sizeof (exception_name) - 1] = '\0';
10265 }
10266
10267 ada_find_printable_frame (get_current_frame ());
10268
10269 annotate_catchpoint (b->number);
10270 switch (ex)
10271 {
10272 case ex_catch_exception:
10273 if (addr != 0)
10274 printf_filtered (_("\nCatchpoint %d, %s at "),
10275 b->number, exception_name);
10276 else
10277 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10278 break;
10279 case ex_catch_exception_unhandled:
10280 if (addr != 0)
10281 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10282 b->number, exception_name);
10283 else
10284 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10285 b->number);
10286 break;
10287 case ex_catch_assert:
10288 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10289 b->number);
10290 break;
10291 }
10292
10293 return PRINT_SRC_AND_LOC;
10294}
10295
10296/* Implement the PRINT_ONE method in the breakpoint_ops structure
10297 for all exception catchpoint kinds. */
10298
10299static void
10300print_one_exception (enum exception_catchpoint_kind ex,
10301 struct breakpoint *b, CORE_ADDR *last_addr)
10302{
79a45b7d
TT
10303 struct value_print_options opts;
10304
10305 get_user_print_options (&opts);
10306 if (opts.addressprint)
f7f9143b
JB
10307 {
10308 annotate_field (4);
10309 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10310 }
10311
10312 annotate_field (5);
10313 *last_addr = b->loc->address;
10314 switch (ex)
10315 {
10316 case ex_catch_exception:
10317 if (b->exp_string != NULL)
10318 {
10319 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10320
10321 ui_out_field_string (uiout, "what", msg);
10322 xfree (msg);
10323 }
10324 else
10325 ui_out_field_string (uiout, "what", "all Ada exceptions");
10326
10327 break;
10328
10329 case ex_catch_exception_unhandled:
10330 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10331 break;
10332
10333 case ex_catch_assert:
10334 ui_out_field_string (uiout, "what", "failed Ada assertions");
10335 break;
10336
10337 default:
10338 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10339 break;
10340 }
10341}
10342
10343/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10344 for all exception catchpoint kinds. */
10345
10346static void
10347print_mention_exception (enum exception_catchpoint_kind ex,
10348 struct breakpoint *b)
10349{
10350 switch (ex)
10351 {
10352 case ex_catch_exception:
10353 if (b->exp_string != NULL)
10354 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10355 b->number, b->exp_string);
10356 else
10357 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10358
10359 break;
10360
10361 case ex_catch_exception_unhandled:
10362 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10363 b->number);
10364 break;
10365
10366 case ex_catch_assert:
10367 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10368 break;
10369
10370 default:
10371 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10372 break;
10373 }
10374}
10375
10376/* Virtual table for "catch exception" breakpoints. */
10377
10378static enum print_stop_action
10379print_it_catch_exception (struct breakpoint *b)
10380{
10381 return print_it_exception (ex_catch_exception, b);
10382}
10383
10384static void
10385print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10386{
10387 print_one_exception (ex_catch_exception, b, last_addr);
10388}
10389
10390static void
10391print_mention_catch_exception (struct breakpoint *b)
10392{
10393 print_mention_exception (ex_catch_exception, b);
10394}
10395
10396static struct breakpoint_ops catch_exception_breakpoint_ops =
10397{
ce78b96d
JB
10398 NULL, /* insert */
10399 NULL, /* remove */
10400 NULL, /* breakpoint_hit */
f7f9143b
JB
10401 print_it_catch_exception,
10402 print_one_catch_exception,
10403 print_mention_catch_exception
10404};
10405
10406/* Virtual table for "catch exception unhandled" breakpoints. */
10407
10408static enum print_stop_action
10409print_it_catch_exception_unhandled (struct breakpoint *b)
10410{
10411 return print_it_exception (ex_catch_exception_unhandled, b);
10412}
10413
10414static void
10415print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10416{
10417 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10418}
10419
10420static void
10421print_mention_catch_exception_unhandled (struct breakpoint *b)
10422{
10423 print_mention_exception (ex_catch_exception_unhandled, b);
10424}
10425
10426static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10427 NULL, /* insert */
10428 NULL, /* remove */
10429 NULL, /* breakpoint_hit */
f7f9143b
JB
10430 print_it_catch_exception_unhandled,
10431 print_one_catch_exception_unhandled,
10432 print_mention_catch_exception_unhandled
10433};
10434
10435/* Virtual table for "catch assert" breakpoints. */
10436
10437static enum print_stop_action
10438print_it_catch_assert (struct breakpoint *b)
10439{
10440 return print_it_exception (ex_catch_assert, b);
10441}
10442
10443static void
10444print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10445{
10446 print_one_exception (ex_catch_assert, b, last_addr);
10447}
10448
10449static void
10450print_mention_catch_assert (struct breakpoint *b)
10451{
10452 print_mention_exception (ex_catch_assert, b);
10453}
10454
10455static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10456 NULL, /* insert */
10457 NULL, /* remove */
10458 NULL, /* breakpoint_hit */
f7f9143b
JB
10459 print_it_catch_assert,
10460 print_one_catch_assert,
10461 print_mention_catch_assert
10462};
10463
10464/* Return non-zero if B is an Ada exception catchpoint. */
10465
10466int
10467ada_exception_catchpoint_p (struct breakpoint *b)
10468{
10469 return (b->ops == &catch_exception_breakpoint_ops
10470 || b->ops == &catch_exception_unhandled_breakpoint_ops
10471 || b->ops == &catch_assert_breakpoint_ops);
10472}
10473
f7f9143b
JB
10474/* Return a newly allocated copy of the first space-separated token
10475 in ARGSP, and then adjust ARGSP to point immediately after that
10476 token.
10477
10478 Return NULL if ARGPS does not contain any more tokens. */
10479
10480static char *
10481ada_get_next_arg (char **argsp)
10482{
10483 char *args = *argsp;
10484 char *end;
10485 char *result;
10486
10487 /* Skip any leading white space. */
10488
10489 while (isspace (*args))
10490 args++;
10491
10492 if (args[0] == '\0')
10493 return NULL; /* No more arguments. */
10494
10495 /* Find the end of the current argument. */
10496
10497 end = args;
10498 while (*end != '\0' && !isspace (*end))
10499 end++;
10500
10501 /* Adjust ARGSP to point to the start of the next argument. */
10502
10503 *argsp = end;
10504
10505 /* Make a copy of the current argument and return it. */
10506
10507 result = xmalloc (end - args + 1);
10508 strncpy (result, args, end - args);
10509 result[end - args] = '\0';
10510
10511 return result;
10512}
10513
10514/* Split the arguments specified in a "catch exception" command.
10515 Set EX to the appropriate catchpoint type.
10516 Set EXP_STRING to the name of the specific exception if
10517 specified by the user. */
10518
10519static void
10520catch_ada_exception_command_split (char *args,
10521 enum exception_catchpoint_kind *ex,
10522 char **exp_string)
10523{
10524 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10525 char *exception_name;
10526
10527 exception_name = ada_get_next_arg (&args);
10528 make_cleanup (xfree, exception_name);
10529
10530 /* Check that we do not have any more arguments. Anything else
10531 is unexpected. */
10532
10533 while (isspace (*args))
10534 args++;
10535
10536 if (args[0] != '\0')
10537 error (_("Junk at end of expression"));
10538
10539 discard_cleanups (old_chain);
10540
10541 if (exception_name == NULL)
10542 {
10543 /* Catch all exceptions. */
10544 *ex = ex_catch_exception;
10545 *exp_string = NULL;
10546 }
10547 else if (strcmp (exception_name, "unhandled") == 0)
10548 {
10549 /* Catch unhandled exceptions. */
10550 *ex = ex_catch_exception_unhandled;
10551 *exp_string = NULL;
10552 }
10553 else
10554 {
10555 /* Catch a specific exception. */
10556 *ex = ex_catch_exception;
10557 *exp_string = exception_name;
10558 }
10559}
10560
10561/* Return the name of the symbol on which we should break in order to
10562 implement a catchpoint of the EX kind. */
10563
10564static const char *
10565ada_exception_sym_name (enum exception_catchpoint_kind ex)
10566{
0259addd
JB
10567 gdb_assert (exception_info != NULL);
10568
f7f9143b
JB
10569 switch (ex)
10570 {
10571 case ex_catch_exception:
0259addd 10572 return (exception_info->catch_exception_sym);
f7f9143b
JB
10573 break;
10574 case ex_catch_exception_unhandled:
0259addd 10575 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10576 break;
10577 case ex_catch_assert:
0259addd 10578 return (exception_info->catch_assert_sym);
f7f9143b
JB
10579 break;
10580 default:
10581 internal_error (__FILE__, __LINE__,
10582 _("unexpected catchpoint kind (%d)"), ex);
10583 }
10584}
10585
10586/* Return the breakpoint ops "virtual table" used for catchpoints
10587 of the EX kind. */
10588
10589static struct breakpoint_ops *
4b9eee8c 10590ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10591{
10592 switch (ex)
10593 {
10594 case ex_catch_exception:
10595 return (&catch_exception_breakpoint_ops);
10596 break;
10597 case ex_catch_exception_unhandled:
10598 return (&catch_exception_unhandled_breakpoint_ops);
10599 break;
10600 case ex_catch_assert:
10601 return (&catch_assert_breakpoint_ops);
10602 break;
10603 default:
10604 internal_error (__FILE__, __LINE__,
10605 _("unexpected catchpoint kind (%d)"), ex);
10606 }
10607}
10608
10609/* Return the condition that will be used to match the current exception
10610 being raised with the exception that the user wants to catch. This
10611 assumes that this condition is used when the inferior just triggered
10612 an exception catchpoint.
10613
10614 The string returned is a newly allocated string that needs to be
10615 deallocated later. */
10616
10617static char *
10618ada_exception_catchpoint_cond_string (const char *exp_string)
10619{
3d0b0fa3
JB
10620 int i;
10621
10622 /* The standard exceptions are a special case. They are defined in
10623 runtime units that have been compiled without debugging info; if
10624 EXP_STRING is the not-fully-qualified name of a standard
10625 exception (e.g. "constraint_error") then, during the evaluation
10626 of the condition expression, the symbol lookup on this name would
10627 *not* return this standard exception. The catchpoint condition
10628 may then be set only on user-defined exceptions which have the
10629 same not-fully-qualified name (e.g. my_package.constraint_error).
10630
10631 To avoid this unexcepted behavior, these standard exceptions are
10632 systematically prefixed by "standard". This means that "catch
10633 exception constraint_error" is rewritten into "catch exception
10634 standard.constraint_error".
10635
10636 If an exception named contraint_error is defined in another package of
10637 the inferior program, then the only way to specify this exception as a
10638 breakpoint condition is to use its fully-qualified named:
10639 e.g. my_package.constraint_error. */
10640
10641 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10642 {
10643 if (strcmp (standard_exc [i], exp_string) == 0)
10644 {
10645 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10646 exp_string);
10647 }
10648 }
f7f9143b
JB
10649 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10650}
10651
10652/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10653
10654static struct expression *
10655ada_parse_catchpoint_condition (char *cond_string,
10656 struct symtab_and_line sal)
10657{
10658 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10659}
10660
10661/* Return the symtab_and_line that should be used to insert an exception
10662 catchpoint of the TYPE kind.
10663
10664 EX_STRING should contain the name of a specific exception
10665 that the catchpoint should catch, or NULL otherwise.
10666
10667 The idea behind all the remaining parameters is that their names match
10668 the name of certain fields in the breakpoint structure that are used to
10669 handle exception catchpoints. This function returns the value to which
10670 these fields should be set, depending on the type of catchpoint we need
10671 to create.
10672
10673 If COND and COND_STRING are both non-NULL, any value they might
10674 hold will be free'ed, and then replaced by newly allocated ones.
10675 These parameters are left untouched otherwise. */
10676
10677static struct symtab_and_line
10678ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10679 char **addr_string, char **cond_string,
10680 struct expression **cond, struct breakpoint_ops **ops)
10681{
10682 const char *sym_name;
10683 struct symbol *sym;
10684 struct symtab_and_line sal;
10685
0259addd
JB
10686 /* First, find out which exception support info to use. */
10687 ada_exception_support_info_sniffer ();
10688
10689 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10690 the Ada exceptions requested by the user. */
10691
10692 sym_name = ada_exception_sym_name (ex);
10693 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10694
10695 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10696 that should be compiled with debugging information. As a result, we
10697 expect to find that symbol in the symtabs. If we don't find it, then
10698 the target most likely does not support Ada exceptions, or we cannot
10699 insert exception breakpoints yet, because the GNAT runtime hasn't been
10700 loaded yet. */
10701
10702 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10703 in such a way that no debugging information is produced for the symbol
10704 we are looking for. In this case, we could search the minimal symbols
10705 as a fall-back mechanism. This would still be operating in degraded
10706 mode, however, as we would still be missing the debugging information
10707 that is needed in order to extract the name of the exception being
10708 raised (this name is printed in the catchpoint message, and is also
10709 used when trying to catch a specific exception). We do not handle
10710 this case for now. */
10711
10712 if (sym == NULL)
0259addd 10713 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10714
10715 /* Make sure that the symbol we found corresponds to a function. */
10716 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10717 error (_("Symbol \"%s\" is not a function (class = %d)"),
10718 sym_name, SYMBOL_CLASS (sym));
10719
10720 sal = find_function_start_sal (sym, 1);
10721
10722 /* Set ADDR_STRING. */
10723
10724 *addr_string = xstrdup (sym_name);
10725
10726 /* Set the COND and COND_STRING (if not NULL). */
10727
10728 if (cond_string != NULL && cond != NULL)
10729 {
10730 if (*cond_string != NULL)
10731 {
10732 xfree (*cond_string);
10733 *cond_string = NULL;
10734 }
10735 if (*cond != NULL)
10736 {
10737 xfree (*cond);
10738 *cond = NULL;
10739 }
10740 if (exp_string != NULL)
10741 {
10742 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10743 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10744 }
10745 }
10746
10747 /* Set OPS. */
4b9eee8c 10748 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10749
10750 return sal;
10751}
10752
10753/* Parse the arguments (ARGS) of the "catch exception" command.
10754
10755 Set TYPE to the appropriate exception catchpoint type.
10756 If the user asked the catchpoint to catch only a specific
10757 exception, then save the exception name in ADDR_STRING.
10758
10759 See ada_exception_sal for a description of all the remaining
10760 function arguments of this function. */
10761
10762struct symtab_and_line
10763ada_decode_exception_location (char *args, char **addr_string,
10764 char **exp_string, char **cond_string,
10765 struct expression **cond,
10766 struct breakpoint_ops **ops)
10767{
10768 enum exception_catchpoint_kind ex;
10769
10770 catch_ada_exception_command_split (args, &ex, exp_string);
10771 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10772 cond, ops);
10773}
10774
10775struct symtab_and_line
10776ada_decode_assert_location (char *args, char **addr_string,
10777 struct breakpoint_ops **ops)
10778{
10779 /* Check that no argument where provided at the end of the command. */
10780
10781 if (args != NULL)
10782 {
10783 while (isspace (*args))
10784 args++;
10785 if (*args != '\0')
10786 error (_("Junk at end of arguments."));
10787 }
10788
10789 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10790 ops);
10791}
10792
4c4b4cd2
PH
10793 /* Operators */
10794/* Information about operators given special treatment in functions
10795 below. */
10796/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10797
10798#define ADA_OPERATORS \
10799 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10800 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10801 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10802 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10803 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10804 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10805 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10806 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10807 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10808 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10809 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10810 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10811 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10812 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10813 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10814 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10815 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10816 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10817 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10818
10819static void
10820ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10821{
10822 switch (exp->elts[pc - 1].opcode)
10823 {
76a01679 10824 default:
4c4b4cd2
PH
10825 operator_length_standard (exp, pc, oplenp, argsp);
10826 break;
10827
10828#define OP_DEFN(op, len, args, binop) \
10829 case op: *oplenp = len; *argsp = args; break;
10830 ADA_OPERATORS;
10831#undef OP_DEFN
52ce6436
PH
10832
10833 case OP_AGGREGATE:
10834 *oplenp = 3;
10835 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10836 break;
10837
10838 case OP_CHOICES:
10839 *oplenp = 3;
10840 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10841 break;
4c4b4cd2
PH
10842 }
10843}
10844
10845static char *
10846ada_op_name (enum exp_opcode opcode)
10847{
10848 switch (opcode)
10849 {
76a01679 10850 default:
4c4b4cd2 10851 return op_name_standard (opcode);
52ce6436 10852
4c4b4cd2
PH
10853#define OP_DEFN(op, len, args, binop) case op: return #op;
10854 ADA_OPERATORS;
10855#undef OP_DEFN
52ce6436
PH
10856
10857 case OP_AGGREGATE:
10858 return "OP_AGGREGATE";
10859 case OP_CHOICES:
10860 return "OP_CHOICES";
10861 case OP_NAME:
10862 return "OP_NAME";
4c4b4cd2
PH
10863 }
10864}
10865
10866/* As for operator_length, but assumes PC is pointing at the first
10867 element of the operator, and gives meaningful results only for the
52ce6436 10868 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10869
10870static void
76a01679
JB
10871ada_forward_operator_length (struct expression *exp, int pc,
10872 int *oplenp, int *argsp)
4c4b4cd2 10873{
76a01679 10874 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10875 {
10876 default:
10877 *oplenp = *argsp = 0;
10878 break;
52ce6436 10879
4c4b4cd2
PH
10880#define OP_DEFN(op, len, args, binop) \
10881 case op: *oplenp = len; *argsp = args; break;
10882 ADA_OPERATORS;
10883#undef OP_DEFN
52ce6436
PH
10884
10885 case OP_AGGREGATE:
10886 *oplenp = 3;
10887 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10888 break;
10889
10890 case OP_CHOICES:
10891 *oplenp = 3;
10892 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10893 break;
10894
10895 case OP_STRING:
10896 case OP_NAME:
10897 {
10898 int len = longest_to_int (exp->elts[pc + 1].longconst);
10899 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10900 *argsp = 0;
10901 break;
10902 }
4c4b4cd2
PH
10903 }
10904}
10905
10906static int
10907ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10908{
10909 enum exp_opcode op = exp->elts[elt].opcode;
10910 int oplen, nargs;
10911 int pc = elt;
10912 int i;
76a01679 10913
4c4b4cd2
PH
10914 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10915
76a01679 10916 switch (op)
4c4b4cd2 10917 {
76a01679 10918 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10919 case OP_ATR_FIRST:
10920 case OP_ATR_LAST:
10921 case OP_ATR_LENGTH:
10922 case OP_ATR_IMAGE:
10923 case OP_ATR_MAX:
10924 case OP_ATR_MIN:
10925 case OP_ATR_MODULUS:
10926 case OP_ATR_POS:
10927 case OP_ATR_SIZE:
10928 case OP_ATR_TAG:
10929 case OP_ATR_VAL:
10930 break;
10931
10932 case UNOP_IN_RANGE:
10933 case UNOP_QUAL:
323e0a4a
AC
10934 /* XXX: gdb_sprint_host_address, type_sprint */
10935 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10936 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10937 fprintf_filtered (stream, " (");
10938 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10939 fprintf_filtered (stream, ")");
10940 break;
10941 case BINOP_IN_BOUNDS:
52ce6436
PH
10942 fprintf_filtered (stream, " (%d)",
10943 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10944 break;
10945 case TERNOP_IN_RANGE:
10946 break;
10947
52ce6436
PH
10948 case OP_AGGREGATE:
10949 case OP_OTHERS:
10950 case OP_DISCRETE_RANGE:
10951 case OP_POSITIONAL:
10952 case OP_CHOICES:
10953 break;
10954
10955 case OP_NAME:
10956 case OP_STRING:
10957 {
10958 char *name = &exp->elts[elt + 2].string;
10959 int len = longest_to_int (exp->elts[elt + 1].longconst);
10960 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10961 break;
10962 }
10963
4c4b4cd2
PH
10964 default:
10965 return dump_subexp_body_standard (exp, stream, elt);
10966 }
10967
10968 elt += oplen;
10969 for (i = 0; i < nargs; i += 1)
10970 elt = dump_subexp (exp, stream, elt);
10971
10972 return elt;
10973}
10974
10975/* The Ada extension of print_subexp (q.v.). */
10976
76a01679
JB
10977static void
10978ada_print_subexp (struct expression *exp, int *pos,
10979 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10980{
52ce6436 10981 int oplen, nargs, i;
4c4b4cd2
PH
10982 int pc = *pos;
10983 enum exp_opcode op = exp->elts[pc].opcode;
10984
10985 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10986
52ce6436 10987 *pos += oplen;
4c4b4cd2
PH
10988 switch (op)
10989 {
10990 default:
52ce6436 10991 *pos -= oplen;
4c4b4cd2
PH
10992 print_subexp_standard (exp, pos, stream, prec);
10993 return;
10994
10995 case OP_VAR_VALUE:
4c4b4cd2
PH
10996 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10997 return;
10998
10999 case BINOP_IN_BOUNDS:
323e0a4a 11000 /* XXX: sprint_subexp */
4c4b4cd2 11001 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11002 fputs_filtered (" in ", stream);
4c4b4cd2 11003 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11004 fputs_filtered ("'range", stream);
4c4b4cd2 11005 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11006 fprintf_filtered (stream, "(%ld)",
11007 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11008 return;
11009
11010 case TERNOP_IN_RANGE:
4c4b4cd2 11011 if (prec >= PREC_EQUAL)
76a01679 11012 fputs_filtered ("(", stream);
323e0a4a 11013 /* XXX: sprint_subexp */
4c4b4cd2 11014 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11015 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11016 print_subexp (exp, pos, stream, PREC_EQUAL);
11017 fputs_filtered (" .. ", stream);
11018 print_subexp (exp, pos, stream, PREC_EQUAL);
11019 if (prec >= PREC_EQUAL)
76a01679
JB
11020 fputs_filtered (")", stream);
11021 return;
4c4b4cd2
PH
11022
11023 case OP_ATR_FIRST:
11024 case OP_ATR_LAST:
11025 case OP_ATR_LENGTH:
11026 case OP_ATR_IMAGE:
11027 case OP_ATR_MAX:
11028 case OP_ATR_MIN:
11029 case OP_ATR_MODULUS:
11030 case OP_ATR_POS:
11031 case OP_ATR_SIZE:
11032 case OP_ATR_TAG:
11033 case OP_ATR_VAL:
4c4b4cd2 11034 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11035 {
11036 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11037 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11038 *pos += 3;
11039 }
4c4b4cd2 11040 else
76a01679 11041 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11042 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11043 if (nargs > 1)
76a01679
JB
11044 {
11045 int tem;
11046 for (tem = 1; tem < nargs; tem += 1)
11047 {
11048 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11049 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11050 }
11051 fputs_filtered (")", stream);
11052 }
4c4b4cd2 11053 return;
14f9c5c9 11054
4c4b4cd2 11055 case UNOP_QUAL:
4c4b4cd2
PH
11056 type_print (exp->elts[pc + 1].type, "", stream, 0);
11057 fputs_filtered ("'(", stream);
11058 print_subexp (exp, pos, stream, PREC_PREFIX);
11059 fputs_filtered (")", stream);
11060 return;
14f9c5c9 11061
4c4b4cd2 11062 case UNOP_IN_RANGE:
323e0a4a 11063 /* XXX: sprint_subexp */
4c4b4cd2 11064 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11065 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11066 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11067 return;
52ce6436
PH
11068
11069 case OP_DISCRETE_RANGE:
11070 print_subexp (exp, pos, stream, PREC_SUFFIX);
11071 fputs_filtered ("..", stream);
11072 print_subexp (exp, pos, stream, PREC_SUFFIX);
11073 return;
11074
11075 case OP_OTHERS:
11076 fputs_filtered ("others => ", stream);
11077 print_subexp (exp, pos, stream, PREC_SUFFIX);
11078 return;
11079
11080 case OP_CHOICES:
11081 for (i = 0; i < nargs-1; i += 1)
11082 {
11083 if (i > 0)
11084 fputs_filtered ("|", stream);
11085 print_subexp (exp, pos, stream, PREC_SUFFIX);
11086 }
11087 fputs_filtered (" => ", stream);
11088 print_subexp (exp, pos, stream, PREC_SUFFIX);
11089 return;
11090
11091 case OP_POSITIONAL:
11092 print_subexp (exp, pos, stream, PREC_SUFFIX);
11093 return;
11094
11095 case OP_AGGREGATE:
11096 fputs_filtered ("(", stream);
11097 for (i = 0; i < nargs; i += 1)
11098 {
11099 if (i > 0)
11100 fputs_filtered (", ", stream);
11101 print_subexp (exp, pos, stream, PREC_SUFFIX);
11102 }
11103 fputs_filtered (")", stream);
11104 return;
4c4b4cd2
PH
11105 }
11106}
14f9c5c9
AS
11107
11108/* Table mapping opcodes into strings for printing operators
11109 and precedences of the operators. */
11110
d2e4a39e
AS
11111static const struct op_print ada_op_print_tab[] = {
11112 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11113 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11114 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11115 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11116 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11117 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11118 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11119 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11120 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11121 {">=", BINOP_GEQ, PREC_ORDER, 0},
11122 {">", BINOP_GTR, PREC_ORDER, 0},
11123 {"<", BINOP_LESS, PREC_ORDER, 0},
11124 {">>", BINOP_RSH, PREC_SHIFT, 0},
11125 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11126 {"+", BINOP_ADD, PREC_ADD, 0},
11127 {"-", BINOP_SUB, PREC_ADD, 0},
11128 {"&", BINOP_CONCAT, PREC_ADD, 0},
11129 {"*", BINOP_MUL, PREC_MUL, 0},
11130 {"/", BINOP_DIV, PREC_MUL, 0},
11131 {"rem", BINOP_REM, PREC_MUL, 0},
11132 {"mod", BINOP_MOD, PREC_MUL, 0},
11133 {"**", BINOP_EXP, PREC_REPEAT, 0},
11134 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11135 {"-", UNOP_NEG, PREC_PREFIX, 0},
11136 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11137 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11138 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11139 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11140 {".all", UNOP_IND, PREC_SUFFIX, 1},
11141 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11142 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11143 {NULL, 0, 0, 0}
14f9c5c9
AS
11144};
11145\f
72d5681a
PH
11146enum ada_primitive_types {
11147 ada_primitive_type_int,
11148 ada_primitive_type_long,
11149 ada_primitive_type_short,
11150 ada_primitive_type_char,
11151 ada_primitive_type_float,
11152 ada_primitive_type_double,
11153 ada_primitive_type_void,
11154 ada_primitive_type_long_long,
11155 ada_primitive_type_long_double,
11156 ada_primitive_type_natural,
11157 ada_primitive_type_positive,
11158 ada_primitive_type_system_address,
11159 nr_ada_primitive_types
11160};
6c038f32
PH
11161
11162static void
d4a9a881 11163ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11164 struct language_arch_info *lai)
11165{
d4a9a881 11166 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11167 lai->primitive_type_vector
d4a9a881 11168 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
11169 struct type *);
11170 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 11171 init_type (TYPE_CODE_INT,
d4a9a881 11172 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11173 0, "integer", (struct objfile *) NULL);
72d5681a 11174 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 11175 init_type (TYPE_CODE_INT,
d4a9a881 11176 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11177 0, "long_integer", (struct objfile *) NULL);
72d5681a 11178 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 11179 init_type (TYPE_CODE_INT,
d4a9a881 11180 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11181 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
11182 lai->string_char_type =
11183 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
11184 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11185 0, "character", (struct objfile *) NULL);
72d5681a 11186 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 11187 init_type (TYPE_CODE_FLT,
d4a9a881 11188 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 11189 0, "float", (struct objfile *) NULL);
72d5681a 11190 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 11191 init_type (TYPE_CODE_FLT,
d4a9a881 11192 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11193 0, "long_float", (struct objfile *) NULL);
72d5681a 11194 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 11195 init_type (TYPE_CODE_INT,
d4a9a881 11196 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11197 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 11198 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 11199 init_type (TYPE_CODE_FLT,
d4a9a881 11200 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11201 0, "long_long_float", (struct objfile *) NULL);
72d5681a 11202 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 11203 init_type (TYPE_CODE_INT,
d4a9a881 11204 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11205 0, "natural", (struct objfile *) NULL);
72d5681a 11206 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 11207 init_type (TYPE_CODE_INT,
d4a9a881 11208 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11209 0, "positive", (struct objfile *) NULL);
72d5681a 11210 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 11211
72d5681a 11212 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
11213 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11214 (struct objfile *) NULL));
72d5681a
PH
11215 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11216 = "system__address";
fbb06eb1 11217
47e729a8 11218 lai->bool_type_symbol = NULL;
fbb06eb1 11219 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11220}
6c038f32
PH
11221\f
11222 /* Language vector */
11223
11224/* Not really used, but needed in the ada_language_defn. */
11225
11226static void
6c7a06a3 11227emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11228{
6c7a06a3 11229 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11230}
11231
11232static int
11233parse (void)
11234{
11235 warnings_issued = 0;
11236 return ada_parse ();
11237}
11238
11239static const struct exp_descriptor ada_exp_descriptor = {
11240 ada_print_subexp,
11241 ada_operator_length,
11242 ada_op_name,
11243 ada_dump_subexp_body,
11244 ada_evaluate_subexp
11245};
11246
11247const struct language_defn ada_language_defn = {
11248 "ada", /* Language name */
11249 language_ada,
6c038f32
PH
11250 range_check_off,
11251 type_check_off,
11252 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11253 that's not quite what this means. */
6c038f32 11254 array_row_major,
9a044a89 11255 macro_expansion_no,
6c038f32
PH
11256 &ada_exp_descriptor,
11257 parse,
11258 ada_error,
11259 resolve,
11260 ada_printchar, /* Print a character constant */
11261 ada_printstr, /* Function to print string constant */
11262 emit_char, /* Function to print single char (not used) */
6c038f32 11263 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11264 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11265 ada_val_print, /* Print a value using appropriate syntax */
11266 ada_value_print, /* Print a top-level value */
11267 NULL, /* Language specific skip_trampoline */
2b2d9e11 11268 NULL, /* name_of_this */
6c038f32
PH
11269 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11270 basic_lookup_transparent_type, /* lookup_transparent_type */
11271 ada_la_decode, /* Language specific symbol demangler */
11272 NULL, /* Language specific class_name_from_physname */
11273 ada_op_print_tab, /* expression operators for printing */
11274 0, /* c-style arrays */
11275 1, /* String lower bound */
6c038f32 11276 ada_get_gdb_completer_word_break_characters,
41d27058 11277 ada_make_symbol_completion_list,
72d5681a 11278 ada_language_arch_info,
e79af960 11279 ada_print_array_index,
41f1b697 11280 default_pass_by_reference,
ae6a3a4c 11281 c_get_string,
6c038f32
PH
11282 LANG_MAGIC
11283};
11284
2c0b251b
PA
11285/* Provide a prototype to silence -Wmissing-prototypes. */
11286extern initialize_file_ftype _initialize_ada_language;
11287
d2e4a39e 11288void
6c038f32 11289_initialize_ada_language (void)
14f9c5c9 11290{
6c038f32
PH
11291 add_language (&ada_language_defn);
11292
11293 varsize_limit = 65536;
6c038f32
PH
11294
11295 obstack_init (&symbol_list_obstack);
11296
11297 decoded_names_store = htab_create_alloc
11298 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11299 NULL, xcalloc, xfree);
6b69afc4
JB
11300
11301 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11302}
This page took 1.166672 seconds and 4 git commands to generate.