Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
981a3fb3 356maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
981a3fb3 365maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
29480c32
JB
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
61012eef 1179 if (startswith (encoded, "_ada_"))
4c4b4cd2 1180 encoded += 5;
14f9c5c9 1181
29480c32
JB
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
4c4b4cd2 1185 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1186 goto Suppress;
1187
4c4b4cd2 1188 len0 = strlen (encoded);
4c4b4cd2 1189
29480c32
JB
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1192
4c4b4cd2
PH
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1199 {
1200 if (p[3] == 'X')
4c4b4cd2 1201 len0 = p - encoded;
14f9c5c9 1202 else
4c4b4cd2 1203 goto Suppress;
14f9c5c9 1204 }
4c4b4cd2 1205
29480c32
JB
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
61012eef 1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1211 len0 -= 3;
76a01679 1212
a10967fa
JB
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
61012eef 1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1218 len0 -= 2;
1219
29480c32
JB
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
61012eef 1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1224 len0 -= 1;
1225
4c4b4cd2 1226 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1227
4c4b4cd2
PH
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
14f9c5c9 1230
29480c32
JB
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
4c4b4cd2 1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1234 {
4c4b4cd2
PH
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
d2e4a39e 1243 }
14f9c5c9 1244
29480c32
JB
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
4c4b4cd2
PH
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
14f9c5c9
AS
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
29480c32 1254 /* Is this a symbol function? */
4c4b4cd2
PH
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
5b4ee69b 1258
4c4b4cd2
PH
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
14f9c5c9
AS
1276 at_start_name = 0;
1277
529cad9c
PH
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
61012eef 1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1282 i += 2;
529cad9c 1283
29480c32
JB
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
529cad9c
PH
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1306 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
4c4b4cd2
PH
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
29480c32
JB
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
4c4b4cd2
PH
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
cdc7bb92 1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1371 {
29480c32 1372 /* Replace '__' by '.'. */
4c4b4cd2
PH
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
14f9c5c9 1378 else
4c4b4cd2 1379 {
29480c32
JB
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
4c4b4cd2
PH
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
14f9c5c9 1386 }
4c4b4cd2 1387 decoded[j] = '\000';
14f9c5c9 1388
29480c32
JB
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
4c4b4cd2
PH
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1394 goto Suppress;
1395
4c4b4cd2
PH
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
14f9c5c9
AS
1400
1401Suppress:
4c4b4cd2
PH
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
14f9c5c9 1406 else
88c15c34 1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1424 GSYMBOL).
4c4b4cd2
PH
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1427 when a decoded name is cached in it. */
4c4b4cd2 1428
45e6c716 1429const char *
f85f34ed 1430ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1431{
f85f34ed
TT
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
615b3f62 1434 &gsymbol->language_specific.demangled_name;
5b4ee69b 1435
f85f34ed 1436 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1439 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1440
f85f34ed 1441 gsymbol->ada_mangled = 1;
5b4ee69b 1442
f85f34ed 1443 if (obstack != NULL)
224c3ddb
SM
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1446 else
76a01679 1447 {
f85f34ed
TT
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
76a01679
JB
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
5b4ee69b 1455
76a01679
JB
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
4c4b4cd2 1460 }
14f9c5c9 1461
4c4b4cd2
PH
1462 return *resultp;
1463}
76a01679 1464
2c0b251b 1465static char *
76a01679 1466ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1467{
1468 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1469}
1470
8b302db8
TT
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
14f9c5c9 1510\f
d2e4a39e 1511
4c4b4cd2 1512 /* Arrays */
14f9c5c9 1513
28c85d6c
JB
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
0d5cff50 1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
4c4b4cd2 1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1570
a121b7c1 1571static const char *bound_name[] = {
d2e4a39e 1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
4c4b4cd2 1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1579
14f9c5c9 1580
4c4b4cd2
PH
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
14f9c5c9
AS
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1585 level of indirection, if needed. */
1586
d2e4a39e
AS
1587static struct type *
1588desc_base_type (struct type *type)
14f9c5c9
AS
1589{
1590 if (type == NULL)
1591 return NULL;
61ee279c 1592 type = ada_check_typedef (type);
720d1a40
JB
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1265e4aa
JB
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1600 else
1601 return type;
1602}
1603
4c4b4cd2
PH
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
14f9c5c9 1606static int
d2e4a39e 1607is_thin_pntr (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 return
14f9c5c9
AS
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
4c4b4cd2
PH
1614/* The descriptor type for thin pointer type TYPE. */
1615
d2e4a39e
AS
1616static struct type *
1617thin_descriptor_type (struct type *type)
14f9c5c9 1618{
d2e4a39e 1619 struct type *base_type = desc_base_type (type);
5b4ee69b 1620
14f9c5c9
AS
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
d2e4a39e 1625 else
14f9c5c9 1626 {
d2e4a39e 1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1628
14f9c5c9 1629 if (alt_type == NULL)
4c4b4cd2 1630 return base_type;
14f9c5c9 1631 else
4c4b4cd2 1632 return alt_type;
14f9c5c9
AS
1633 }
1634}
1635
4c4b4cd2
PH
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
d2e4a39e
AS
1638static struct value *
1639thin_data_pntr (struct value *val)
14f9c5c9 1640{
828292f2 1641 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1643
556bdfd4
UW
1644 data_type = lookup_pointer_type (data_type);
1645
14f9c5c9 1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1647 return value_cast (data_type, value_copy (val));
d2e4a39e 1648 else
42ae5230 1649 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1650}
1651
4c4b4cd2
PH
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
14f9c5c9 1654static int
d2e4a39e 1655is_thick_pntr (struct type *type)
14f9c5c9
AS
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1660}
1661
4c4b4cd2
PH
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1664
d2e4a39e
AS
1665static struct type *
1666desc_bounds_type (struct type *type)
14f9c5c9 1667{
d2e4a39e 1668 struct type *r;
14f9c5c9
AS
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
4c4b4cd2 1678 return NULL;
14f9c5c9
AS
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
61ee279c 1681 return ada_check_typedef (r);
14f9c5c9
AS
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_bounds (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1699
d2e4a39e 1700 if (is_thin_pntr (type))
14f9c5c9 1701 {
d2e4a39e 1702 struct type *bounds_type =
4c4b4cd2 1703 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1704 LONGEST addr;
1705
4cdfadb1 1706 if (bounds_type == NULL)
323e0a4a 1707 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1708
1709 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1710 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1711 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1713 addr = value_as_long (arr);
d2e4a39e 1714 else
42ae5230 1715 addr = value_address (arr);
14f9c5c9 1716
d2e4a39e 1717 return
4c4b4cd2
PH
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1720 }
1721
1722 else if (is_thick_pntr (type))
05e522ef
JB
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
14f9c5c9
AS
1743 else
1744 return NULL;
1745}
1746
4c4b4cd2
PH
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
14f9c5c9 1750static int
d2e4a39e 1751fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1757 size of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1761{
1762 type = desc_base_type (type);
1763
d2e4a39e 1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
61ee279c 1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1768}
1769
4c4b4cd2 1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
4c4b4cd2 1774
d2e4a39e 1775static struct type *
556bdfd4 1776desc_data_target_type (struct type *type)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
4c4b4cd2 1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1781 if (is_thin_pntr (type))
556bdfd4 1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1783 else if (is_thick_pntr (type))
556bdfd4
UW
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1790 }
1791
1792 return NULL;
14f9c5c9
AS
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
4c4b4cd2 1797
d2e4a39e
AS
1798static struct value *
1799desc_data (struct value *arr)
14f9c5c9 1800{
df407dfe 1801 struct type *type = value_type (arr);
5b4ee69b 1802
14f9c5c9
AS
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
d2e4a39e 1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1807 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1814 position of the field containing the address of the data. */
1815
14f9c5c9 1816static int
d2e4a39e 1817fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 size of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1832 else
14f9c5c9
AS
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
4c4b4cd2 1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
d2e4a39e
AS
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1842{
d2e4a39e 1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1844 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1853{
d2e4a39e 1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
76a01679 1861static int
d2e4a39e 1862desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1863{
1864 type = desc_base_type (type);
1865
d2e4a39e
AS
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
d2e4a39e
AS
1875static struct type *
1876desc_index_type (struct type *type, int i)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
14f9c5c9
AS
1883 return NULL;
1884}
1885
4c4b4cd2
PH
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
14f9c5c9 1889static int
d2e4a39e 1890desc_arity (struct type *type)
14f9c5c9
AS
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
76a01679
JB
1903static int
1904ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1905{
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
4c4b4cd2 1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1910 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1911}
1912
52ce6436 1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1914 * to one. */
52ce6436 1915
2c0b251b 1916static int
52ce6436
PH
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
4c4b4cd2 1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1927
14f9c5c9 1928int
4c4b4cd2 1929ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1930{
1931 if (type == NULL)
1932 return 0;
61ee279c 1933 type = ada_check_typedef (type);
14f9c5c9 1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1938}
1939
4c4b4cd2
PH
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
14f9c5c9 1942int
4c4b4cd2 1943ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1944{
556bdfd4 1945 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1946
1947 if (type == NULL)
1948 return 0;
61ee279c 1949 type = ada_check_typedef (type);
556bdfd4
UW
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1956 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1957 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1958 is still needed. */
1959
14f9c5c9 1960int
ebf56fd3 1961ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1962{
d2e4a39e 1963 return
14f9c5c9
AS
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1969}
1970
1971
4c4b4cd2 1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1973 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1975 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1978 a descriptor. */
d2e4a39e
AS
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1984
df407dfe
AC
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
d2e4a39e
AS
1987
1988 if (!bounds)
ad82864c
JB
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
14f9c5c9
AS
1999 else
2000 {
d2e4a39e 2001 struct type *elt_type;
14f9c5c9 2002 int arity;
d2e4a39e 2003 struct value *descriptor;
14f9c5c9 2004
df407dfe
AC
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
14f9c5c9 2007
d2e4a39e 2008 if (elt_type == NULL || arity == 0)
df407dfe 2009 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2010
2011 descriptor = desc_bounds (arr);
d2e4a39e 2012 if (value_as_long (descriptor) == 0)
4c4b4cd2 2013 return NULL;
d2e4a39e 2014 while (arity > 0)
4c4b4cd2 2015 {
e9bb382b
UW
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2020
5b4ee69b 2021 arity -= 1;
0c9c3474
SA
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
4c4b4cd2 2025 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
4c4b4cd2 2047 }
14f9c5c9
AS
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
d2e4a39e
AS
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2060{
df407dfe 2061 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2062 {
d2e4a39e 2063 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2064
14f9c5c9 2065 if (arrType == NULL)
4c4b4cd2 2066 return NULL;
14f9c5c9
AS
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
ad82864c
JB
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2077 be ARR itself if it already is in the proper form). */
2078
720d1a40 2079struct value *
d2e4a39e 2080ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2081{
df407dfe 2082 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2083 {
d2e4a39e 2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2085
14f9c5c9 2086 if (arrVal == NULL)
323e0a4a 2087 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2089 return value_ind (arrVal);
2090 }
ad82864c
JB
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
d2e4a39e 2093 else
14f9c5c9
AS
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2099 packing). For other types, is the identity. */
2100
d2e4a39e
AS
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2103{
ad82864c
JB
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
17280b9f
UW
2106
2107 if (ada_is_array_descriptor_type (type))
556bdfd4 2108 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2109
2110 return type;
14f9c5c9
AS
2111}
2112
4c4b4cd2
PH
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
ad82864c
JB
2115static int
2116ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2117{
2118 if (type == NULL)
2119 return 0;
4c4b4cd2 2120 type = desc_base_type (type);
61ee279c 2121 type = ada_check_typedef (type);
d2e4a39e 2122 return
14f9c5c9
AS
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
ad82864c
JB
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
0d5cff50
DE
2153 const char *raw_name;
2154 const char *tail;
ad82864c
JB
2155 long bits;
2156
720d1a40
JB
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
720d1a40 2171 gdb_assert (tail != NULL);
ad82864c
JB
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
14f9c5c9
AS
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2202{
d2e4a39e
AS
2203 struct type *new_elt_type;
2204 struct type *new_type;
99b1c762
JB
2205 struct type *index_type_desc;
2206 struct type *index_type;
14f9c5c9
AS
2207 LONGEST low_bound, high_bound;
2208
61ee279c 2209 type = ada_check_typedef (type);
14f9c5c9
AS
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
99b1c762
JB
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
e9bb382b 2220 new_type = alloc_type_copy (type);
ad82864c
JB
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
99b1c762 2224 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
4a46959e
JB
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2234 else
14f9c5c9
AS
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2237 TYPE_LENGTH (new_type) =
4c4b4cd2 2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2239 }
2240
876cecd0 2241 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2242 return new_type;
2243}
2244
ad82864c
JB
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2247
d2e4a39e 2248static struct type *
ad82864c 2249decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2250{
0d5cff50 2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2252 char *name;
0d5cff50 2253 const char *tail;
d2e4a39e 2254 struct type *shadow_type;
14f9c5c9 2255 long bits;
14f9c5c9 2256
727e3d2e
JB
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2265 type = desc_base_type (type);
2266
14f9c5c9
AS
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
b4ba55a1
JB
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
14f9c5c9 2273 {
323e0a4a 2274 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2275 return NULL;
2276 }
f168693b 2277 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
0963b4bd
MS
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
d2e4a39e 2285
ad82864c
JB
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2288}
2289
ad82864c
JB
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
4c4b4cd2 2294 type length is set appropriately. */
14f9c5c9 2295
d2e4a39e 2296static struct value *
ad82864c 2297decode_constrained_packed_array (struct value *arr)
14f9c5c9 2298{
4c4b4cd2 2299 struct type *type;
14f9c5c9 2300
11aa919a
PMR
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
828292f2 2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2310 arr = value_ind (arr);
4c4b4cd2 2311
ad82864c 2312 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2313 if (type == NULL)
2314 {
323e0a4a 2315 error (_("can't unpack array"));
14f9c5c9
AS
2316 return NULL;
2317 }
61ee279c 2318
50810684 2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2320 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
df407dfe 2329 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
df407dfe 2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
4c4b4cd2 2344 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2349 given in IND. ARR must be a simple array. */
14f9c5c9 2350
d2e4a39e
AS
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
d2e4a39e
AS
2357 struct type *elt_type;
2358 struct value *v;
14f9c5c9
AS
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
df407dfe 2362 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2363 for (i = 0; i < arity; i += 1)
14f9c5c9 2364 {
d2e4a39e 2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
0963b4bd
MS
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
14f9c5c9 2370 else
4c4b4cd2
PH
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
323e0a4a 2378 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2379 lowerbound = upperbound = 0;
2380 }
2381
3cb382c9 2382 idx = pos_atr (ind[i]);
4c4b4cd2 2383 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
4c4b4cd2
PH
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2389 }
14f9c5c9
AS
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2395 bits, elt_type);
14f9c5c9
AS
2396 return v;
2397}
2398
4c4b4cd2 2399/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2400
2401static int
d2e4a39e 2402has_negatives (struct type *type)
14f9c5c9 2403{
d2e4a39e
AS
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
14f9c5c9 2413}
d2e4a39e 2414
f93fca70 2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2417 the unpacked buffer.
14f9c5c9 2418
5b639dea
JB
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
f93fca70
JB
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
14f9c5c9 2424
f93fca70 2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2426
f93fca70
JB
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
a1c95e6b
JB
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
a1c95e6b
JB
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
4c4b4cd2 2445 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2446 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2447 unsigned char sign;
a1c95e6b 2448
4c4b4cd2
PH
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
f93fca70 2451 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2452
5b639dea
JB
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
14f9c5c9 2459 srcBitsLeft = bit_size;
086ca51f 2460 src_bytes_left = src_len;
f93fca70 2461 unpacked_bytes_left = unpacked_len;
14f9c5c9 2462 sign = 0;
f93fca70
JB
2463
2464 if (is_big_endian)
14f9c5c9 2465 {
086ca51f 2466 src_idx = src_len - 1;
f93fca70
JB
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2469 sign = ~0;
d2e4a39e
AS
2470
2471 unusedLS =
4c4b4cd2
PH
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
14f9c5c9 2474
f93fca70
JB
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
4c4b4cd2
PH
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
086ca51f
JB
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2489 }
14f9c5c9 2490 }
d2e4a39e 2491 else
14f9c5c9
AS
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
086ca51f 2495 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
f93fca70 2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2500 sign = ~0;
14f9c5c9 2501 }
d2e4a39e 2502
14f9c5c9 2503 accum = 0;
086ca51f 2504 while (src_bytes_left > 0)
14f9c5c9
AS
2505 {
2506 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2507 part of the value. */
d2e4a39e 2508 unsigned int unusedMSMask =
4c4b4cd2
PH
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
14f9c5c9 2512 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2513
d2e4a39e 2514 accum |=
086ca51f 2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2516 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2517 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2518 {
db297a65 2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
4c4b4cd2 2524 }
14f9c5c9
AS
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
086ca51f
JB
2527 src_bytes_left -= 1;
2528 src_idx += delta;
14f9c5c9 2529 }
086ca51f 2530 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2531 {
2532 accum |= sign << accumSize;
db297a65 2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2534 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2535 if (accumSize < 0)
2536 accumSize = 0;
14f9c5c9 2537 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
14f9c5c9 2540 }
f93fca70
JB
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
bfb1c796 2558 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2559 gdb_byte *unpacked;
220475ed 2560 const int is_scalar = is_scalar_type (type);
d0a9e810 2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2562 gdb::byte_vector staging;
f93fca70
JB
2563
2564 type = ada_check_typedef (type);
2565
d0a9e810 2566 if (obj == NULL)
bfb1c796 2567 src = valaddr + offset;
d0a9e810 2568 else
bfb1c796 2569 src = value_contents (obj) + offset;
d0a9e810
JB
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
d0a9e810
JB
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2584 staging.data (), staging.size (),
d0a9e810
JB
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
d5722aa2 2587 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
d0a9e810
JB
2599 }
2600
f93fca70
JB
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
bfb1c796 2604 src = valaddr + offset;
f93fca70
JB
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
0cafa88c 2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2609 gdb_byte *buf;
0cafa88c 2610
f93fca70 2611 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
f93fca70
JB
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
bfb1c796 2619 src = value_contents (obj) + offset;
f93fca70
JB
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
bfb1c796 2642 unpacked = value_contents_writeable (v);
f93fca70
JB
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
d5722aa2 2650 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2651 {
d0a9e810
JB
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
d5722aa2 2655 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2656 }
d0a9e810
JB
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2661
14f9c5c9
AS
2662 return v;
2663}
d2e4a39e 2664
14f9c5c9
AS
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2667 not overlap. */
14f9c5c9 2668static void
fc1a4b47 2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2670 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
50810684 2679 if (bits_big_endian_p)
14f9c5c9
AS
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 int unused_right;
5b4ee69b 2688
4c4b4cd2
PH
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
14f9c5c9
AS
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
d2e4a39e 2712 while (n > 0)
4c4b4cd2
PH
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
14f9c5c9
AS
2728 }
2729}
2730
14f9c5c9
AS
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2734 floating-point or non-scalar types. */
14f9c5c9 2735
d2e4a39e
AS
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2738{
df407dfe
AC
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
14f9c5c9 2741
52ce6436
PH
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
88e3b34b 2750 if (!deprecated_value_modifiable (toval))
323e0a4a 2751 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2752
d2e4a39e 2753 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2754 && bits > 0
d2e4a39e 2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2757 {
df407dfe
AC
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2760 int from_size;
224c3ddb 2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2762 struct value *val;
42ae5230 2763 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2766 fromval = value_cast (type, fromval);
14f9c5c9 2767
52ce6436 2768 read_memory (to_addr, buffer, len);
aced2898
PH
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2773 move_bits (buffer, value_bitpos (toval),
50810684 2774 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2775 else
50810684
UW
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
972daa01 2778 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2779
14f9c5c9 2780 val = value_copy (toval);
0fd88904 2781 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2782 TYPE_LENGTH (type));
04624583 2783 deprecated_set_value_type (val, type);
d2e4a39e 2784
14f9c5c9
AS
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
7c512744
JB
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
52ce6436
PH
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
42ae5230 2808 (LONGEST) (value_address (component) - value_address (container));
7c512744 2809 int bit_offset_in_container =
52ce6436
PH
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
7c512744 2812
52ce6436
PH
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
50810684 2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2821 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2825 bits, 1);
52ce6436 2826 else
7c512744 2827 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2828 value_bitpos (container) + bit_offset_in_container,
50810684 2829 value_contents (val), 0, bits, 0);
7c512744
JB
2830}
2831
4c4b4cd2
PH
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2834 thereto. */
2835
d2e4a39e
AS
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2838{
2839 int k;
d2e4a39e
AS
2840 struct value *elt;
2841 struct type *elt_type;
14f9c5c9
AS
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
df407dfe 2845 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
2497b498 2854 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2855 }
2856 return elt;
2857}
2858
deede10c
JB
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
14f9c5c9 2870
2c0b251b 2871static struct value *
deede10c 2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2873{
2874 int k;
919e6dbe 2875 struct value *array_ind = ada_value_ind (arr);
deede10c 2876 struct type *type
919e6dbe
PMR
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
aa715135 2886 struct value *lwb_value;
14f9c5c9
AS
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2889 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2891 value_copy (arr));
14f9c5c9 2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
0b5d8877 2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
0b5d8877 2905static struct value *
f5938064
JG
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
0b5d8877 2908{
b0dd7688 2909 struct type *type0 = ada_check_typedef (type);
aa715135 2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2911 struct type *index_type
aa715135 2912 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2913 struct type *slice_type =
b0dd7688 2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
5b4ee69b 2926
aa715135
JG
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2930 return value_at_lazy (slice_type, base);
0b5d8877
PH
2931}
2932
2933
2934static struct value *
2935ada_value_slice (struct value *array, int low, int high)
2936{
b0dd7688 2937 struct type *type = ada_check_typedef (value_type (array));
aa715135 2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2941 struct type *slice_type =
0b5d8877 2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2943 LONGEST low_pos, high_pos;
5b4ee69b 2944
aa715135
JG
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2955}
2956
14f9c5c9
AS
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2960 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2961
2962int
d2e4a39e 2963ada_array_arity (struct type *type)
14f9c5c9
AS
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
d2e4a39e 2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2974 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2977 {
4c4b4cd2 2978 arity += 1;
61ee279c 2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2980 }
d2e4a39e 2981
14f9c5c9
AS
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2988 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2989
d2e4a39e
AS
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2992{
2993 type = desc_base_type (type);
2994
d2e4a39e 2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2996 {
2997 int k;
d2e4a39e 2998 struct type *p_array_type;
14f9c5c9 2999
556bdfd4 3000 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
4c4b4cd2 3004 return NULL;
d2e4a39e 3005
4c4b4cd2 3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3007 if (nindices >= 0 && k > nindices)
4c4b4cd2 3008 k = nindices;
d2e4a39e 3009 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3010 {
61ee279c 3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3012 k -= 1;
3013 }
14f9c5c9
AS
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
14f9c5c9
AS
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
4c4b4cd2 3029/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
14f9c5c9 3034
1eea4ebd
UW
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3037{
4c4b4cd2
PH
3038 struct type *result_type;
3039
14f9c5c9
AS
3040 type = desc_base_type (type);
3041
1eea4ebd
UW
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3044
4c4b4cd2 3045 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
4c4b4cd2 3050 type = TYPE_TARGET_TYPE (type);
262452ec 3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3054 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
14f9c5c9 3057 }
d2e4a39e 3058 else
1eea4ebd
UW
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
14f9c5c9 3073
abb68b3e 3074static LONGEST
fb5e3d5c 3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3076{
8a48ac95 3077 struct type *type, *index_type_desc, *index_type;
1ce677a4 3078 int i;
262452ec
JK
3079
3080 gdb_assert (which == 0 || which == 1);
14f9c5c9 3081
ad82864c
JB
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3084
4c4b4cd2 3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3086 return (LONGEST) - which;
14f9c5c9
AS
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
bafffb51
JB
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
262452ec 3106 if (index_type_desc != NULL)
28c85d6c
JB
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
262452ec 3109 else
8a48ac95
JB
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
262452ec 3118
43bbcdc2
PH
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3128 supplied by run-time quantities other than discriminants. */
14f9c5c9 3129
1eea4ebd 3130static LONGEST
4dc81987 3131ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3132{
eb479039
JB
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
14f9c5c9 3138
ad82864c
JB
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3141 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3142 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3143 else
1eea4ebd 3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
14f9c5c9 3152
1eea4ebd 3153static LONGEST
d2e4a39e 3154ada_array_length (struct value *arr, int n)
14f9c5c9 3155{
aa715135
JG
3156 struct type *arr_type, *index_type;
3157 int low, high;
eb479039
JB
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
14f9c5c9 3162
ad82864c
JB
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3165
4c4b4cd2 3166 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
14f9c5c9 3171 else
aa715135
JG
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
f168693b 3177 arr_type = check_typedef (arr_type);
aa715135
JG
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
4c4b4cd2
PH
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
b0dd7688 3199 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3204
0b5d8877 3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3206}
14f9c5c9 3207\f
d2e4a39e 3208
4c4b4cd2 3209 /* Name resolution */
14f9c5c9 3210
4c4b4cd2
PH
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
14f9c5c9 3213
d2e4a39e 3214static const char *
4c4b4cd2 3215ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3216{
3217 int i;
3218
4c4b4cd2 3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3220 {
3221 if (ada_opname_table[i].op == op)
4c4b4cd2 3222 return ada_opname_table[i].decoded;
14f9c5c9 3223 }
323e0a4a 3224 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3225}
3226
3227
4c4b4cd2
PH
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3235 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3236
4c4b4cd2
PH
3237static void
3238resolve (struct expression **expp, int void_context_p)
14f9c5c9 3239{
30b15541
UW
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3247}
3248
4c4b4cd2
PH
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
14f9c5c9 3257
d2e4a39e 3258static struct value *
4c4b4cd2 3259resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3260 struct type *context_type)
14f9c5c9
AS
3261{
3262 int pc = *pos;
3263 int i;
4c4b4cd2 3264 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
52ce6436 3268 int oplen;
ec6a20c2 3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = *expp;
3274
52ce6436
PH
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
14f9c5c9
AS
3277 switch (op)
3278 {
4c4b4cd2
PH
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
4c4b4cd2
PH
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3289 break;
3290
14f9c5c9 3291 case UNOP_ADDR:
4c4b4cd2
PH
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
52ce6436
PH
3296 case UNOP_QUAL:
3297 *pos += 3;
17466c1a 3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3299 break;
3300
52ce6436 3301 case OP_ATR_MODULUS:
4c4b4cd2
PH
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
4c4b4cd2
PH
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
4c4b4cd2
PH
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
52ce6436
PH
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
14f9c5c9
AS
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
4c4b4cd2
PH
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
df407dfe 3333 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3334 break;
14f9c5c9
AS
3335 }
3336
4c4b4cd2 3337 case UNOP_CAST:
4c4b4cd2
PH
3338 *pos += 3;
3339 nargs = 1;
3340 break;
14f9c5c9 3341
4c4b4cd2
PH
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
14f9c5c9 3355
4c4b4cd2
PH
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
14f9c5c9 3362
4c4b4cd2
PH
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
40c8aaa9
JB
3366 *pos += 1;
3367 nargs = 2;
3368 break;
14f9c5c9 3369
4c4b4cd2
PH
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
14f9c5c9 3378
4c4b4cd2 3379 case OP_LONG:
edd079d9 3380 case OP_FLOAT:
4c4b4cd2 3381 case OP_VAR_VALUE:
74ea4be4 3382 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3383 *pos += 4;
3384 break;
14f9c5c9 3385
4c4b4cd2
PH
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
4c4b4cd2
PH
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
14f9c5c9 3392
4c4b4cd2
PH
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
67f3407f
DJ
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
4c4b4cd2
PH
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
4c4b4cd2 3407 case TERNOP_SLICE:
4c4b4cd2
PH
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
52ce6436 3412 case OP_STRING:
14f9c5c9 3413 break;
4c4b4cd2
PH
3414
3415 default:
323e0a4a 3416 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3417 }
3418
8d749320 3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = *expp;
3424
3425 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
14f9c5c9 3431 case OP_VAR_VALUE:
4c4b4cd2 3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3433 {
d12307c1 3434 struct block_symbol *candidates;
76a01679
JB
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3441 &candidates);
ec6a20c2 3442 make_cleanup (xfree, candidates);
76a01679
JB
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
d12307c1 3451 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
76a01679
JB
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
76a01679 3458 case LOC_COMPUTED:
76a01679
JB
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
d12307c1 3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
323e0a4a 3481 error (_("No definition found for %s"),
76a01679
JB
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
06d5cf63
JB
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
76a01679 3492 if (i < 0)
323e0a4a 3493 error (_("Could not find a match for %s"),
76a01679
JB
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
323e0a4a 3498 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = *expp;
3519 }
14f9c5c9
AS
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
4c4b4cd2 3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3526 {
d12307c1 3527 struct block_symbol *candidates;
4c4b4cd2
PH
3528 int n_candidates;
3529
3530 n_candidates =
76a01679
JB
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3534 &candidates);
ec6a20c2
JB
3535 make_cleanup (xfree, candidates);
3536
4c4b4cd2
PH
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
06d5cf63
JB
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
4c4b4cd2 3546 if (i < 0)
323e0a4a 3547 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3555 innermost_block = candidates[i].block;
3556 }
14f9c5c9
AS
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3581 {
d12307c1 3582 struct block_symbol *candidates;
4c4b4cd2
PH
3583 int n_candidates;
3584
3585 n_candidates =
b5ec771e 3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3587 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3588 &candidates);
ec6a20c2
JB
3589 make_cleanup (xfree, candidates);
3590
4c4b4cd2 3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3592 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3593 if (i < 0)
3594 break;
3595
d12307c1
PMR
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
4c4b4cd2
PH
3599 exp = *expp;
3600 }
14f9c5c9 3601 break;
4c4b4cd2
PH
3602
3603 case OP_TYPE:
b3dbf008 3604 case OP_REGISTER:
ec6a20c2 3605 do_cleanups (old_chain);
4c4b4cd2 3606 return NULL;
14f9c5c9
AS
3607 }
3608
3609 *pos = pc;
ec6a20c2 3610 do_cleanups (old_chain);
ced9779b
JB
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3621 a non-pointer. */
14f9c5c9 3622/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3623 liberal. */
14f9c5c9
AS
3624
3625static int
4dc81987 3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3627{
61ee279c
PH
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
14f9c5c9
AS
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
d2e4a39e 3636 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3637 {
3638 default:
5b3d5b7d 3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3644 else
1265e4aa
JB
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
14f9c5c9
AS
3659
3660 case TYPE_CODE_ARRAY:
d2e4a39e 3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3662 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3663
3664 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
14f9c5c9 3668 else
4c4b4cd2
PH
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3681 argument function. */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3685{
3686 int i;
d2e4a39e 3687 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3688
1265e4aa
JB
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
4c4b4cd2 3700 if (actuals[i] == NULL)
76a01679
JB
3701 return 0;
3702 else
3703 {
5b4ee69b
MS
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
df407dfe 3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3707
76a01679
JB
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
14f9c5c9
AS
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
d2e4a39e 3721return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3722{
d2e4a39e 3723 struct type *return_type;
14f9c5c9
AS
3724
3725 if (func_type == NULL)
3726 return 1;
3727
4c4b4cd2 3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3730 else
18af8284 3731 return_type = get_base_type (func_type);
14f9c5c9
AS
3732 if (return_type == NULL)
3733 return 1;
3734
18af8284 3735 context_type = get_base_type (context_type);
14f9c5c9
AS
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
4c4b4cd2 3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3747 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
14f9c5c9
AS
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
14f9c5c9 3757
4c4b4cd2 3758static int
d12307c1 3759ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
14f9c5c9 3762{
30b15541 3763 int fallback;
14f9c5c9 3764 int k;
4c4b4cd2 3765 int m; /* Number of hits */
14f9c5c9 3766
d2e4a39e 3767 m = 0;
30b15541
UW
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3772 {
3773 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3774 {
d12307c1 3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3776
d12307c1 3777 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3778 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
14f9c5c9
AS
3784 }
3785
dc5c8746
PMR
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3790 if (m == 0)
3791 return -1;
dc5c8746 3792 else if (m > 1 && !parse_completion)
14f9c5c9 3793 {
323e0a4a 3794 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3795 user_select_syms (syms, m, 1);
14f9c5c9
AS
3796 return 0;
3797 }
3798 return 0;
3799}
3800
4c4b4cd2
PH
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
14f9c5c9 3807static int
0d5cff50 3808encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
5b4ee69b 3817
d2e4a39e 3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3819 ;
d2e4a39e 3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3821 ;
d2e4a39e 3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
5b4ee69b 3826
4c4b4cd2
PH
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
14f9c5c9
AS
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
d2e4a39e 3839
4c4b4cd2
PH
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
d2e4a39e 3843static void
d12307c1 3844sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3845{
4c4b4cd2 3846 int i;
5b4ee69b 3847
d2e4a39e 3848 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3849 {
d12307c1 3850 struct block_symbol sym = syms[i];
14f9c5c9
AS
3851 int j;
3852
d2e4a39e 3853 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3854 {
d12307c1
PMR
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
d2e4a39e 3860 syms[j + 1] = sym;
14f9c5c9
AS
3861 }
3862}
3863
d72413e6
PMR
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
4c4b4cd2
PH
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
14f9c5c9
AS
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3913 to be re-integrated one of these days. */
14f9c5c9
AS
3914
3915int
d12307c1 3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3917{
3918 int i;
8d749320 3919 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3922 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3923
3924 if (max_results < 1)
323e0a4a 3925 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3926 if (nsyms <= 1)
3927 return nsyms;
3928
717d2f5a
JB
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
323e0a4a 3940 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3941 if (max_results > 1)
323e0a4a 3942 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3943
4c4b4cd2 3944 sort_choices (syms, nsyms);
14f9c5c9
AS
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
d12307c1 3948 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3949 continue;
3950
d12307c1 3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3952 {
76a01679 3953 struct symtab_and_line sal =
d12307c1 3954 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3955
d72413e6
PMR
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
323e0a4a 3959 if (sal.symtab == NULL)
d72413e6 3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3961 sal.line);
3962 else
d72413e6 3963 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
4c4b4cd2
PH
3966 continue;
3967 }
d2e4a39e 3968 else
4c4b4cd2
PH
3969 {
3970 int is_enumeral =
d12307c1
PMR
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3974 struct symtab *symtab = NULL;
3975
d12307c1
PMR
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3978
d12307c1 3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
76a01679 3988 else if (is_enumeral
d12307c1 3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3990 {
a3f17187 3991 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3993 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3995 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3996 }
d72413e6
PMR
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4c4b4cd2 4013 }
14f9c5c9 4014 }
d2e4a39e 4015
14f9c5c9 4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4017 "overload-choice");
14f9c5c9
AS
4018
4019 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4020 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4026 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4c4b4cd2 4032 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4c4b4cd2 4036 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4039 prompts (for use with the -f switch). */
14f9c5c9
AS
4040
4041int
d2e4a39e 4042get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4043 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4044{
d2e4a39e 4045 char *args;
a121b7c1 4046 const char *prompt;
14f9c5c9
AS
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4049
14f9c5c9
AS
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
0bcd0149 4052 prompt = "> ";
14f9c5c9 4053
0bcd0149 4054 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4055
14f9c5c9 4056 if (args == NULL)
323e0a4a 4057 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4058
4059 n_chosen = 0;
76a01679 4060
4c4b4cd2
PH
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
14f9c5c9
AS
4063 while (1)
4064 {
d2e4a39e 4065 char *args2;
14f9c5c9
AS
4066 int choice, j;
4067
0fcd72ba 4068 args = skip_spaces (args);
14f9c5c9 4069 if (*args == '\0' && n_chosen == 0)
323e0a4a 4070 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4071 else if (*args == '\0')
4c4b4cd2 4072 break;
14f9c5c9
AS
4073
4074 choice = strtol (args, &args2, 10);
d2e4a39e 4075 if (args == args2 || choice < 0
4c4b4cd2 4076 || choice > n_choices + first_choice - 1)
323e0a4a 4077 error (_("Argument must be choice number"));
14f9c5c9
AS
4078 args = args2;
4079
d2e4a39e 4080 if (choice == 0)
323e0a4a 4081 error (_("cancelled"));
14f9c5c9
AS
4082
4083 if (choice < first_choice)
4c4b4cd2
PH
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
14f9c5c9
AS
4090 choice -= first_choice;
4091
d2e4a39e 4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4093 {
4094 }
14f9c5c9
AS
4095
4096 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4097 {
4098 int k;
5b4ee69b 4099
4c4b4cd2
PH
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
14f9c5c9
AS
4105 }
4106
4107 if (n_chosen > max_results)
323e0a4a 4108 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4109
14f9c5c9
AS
4110 return n_chosen;
4111}
4112
4c4b4cd2
PH
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4116
4117static void
d2e4a39e 4118replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4119 int oplen, struct symbol *sym,
270140bd 4120 const struct block *block)
14f9c5c9
AS
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4123 symbol, -oplen for operator being replaced). */
d2e4a39e 4124 struct expression *newexp = (struct expression *)
8c1a34e7 4125 xzalloc (sizeof (struct expression)
4c4b4cd2 4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4127 struct expression *exp = *expp;
14f9c5c9
AS
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
3489610d 4131 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
aacb1f0a 4144 xfree (exp);
d2e4a39e 4145}
14f9c5c9
AS
4146
4147/* Type-class predicates */
4148
4c4b4cd2
PH
4149/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
14f9c5c9
AS
4151
4152static int
d2e4a39e 4153numeric_type_p (struct type *type)
14f9c5c9
AS
4154{
4155 if (type == NULL)
4156 return 0;
d2e4a39e
AS
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4c4b4cd2
PH
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
d2e4a39e 4170 }
14f9c5c9
AS
4171}
4172
4c4b4cd2 4173/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4174
4175static int
d2e4a39e 4176integer_type_p (struct type *type)
14f9c5c9
AS
4177{
4178 if (type == NULL)
4179 return 0;
d2e4a39e
AS
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4c4b4cd2
PH
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
d2e4a39e 4192 }
14f9c5c9
AS
4193}
4194
4c4b4cd2 4195/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4196
4197static int
d2e4a39e 4198scalar_type_p (struct type *type)
14f9c5c9
AS
4199{
4200 if (type == NULL)
4201 return 0;
d2e4a39e
AS
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4c4b4cd2
PH
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
d2e4a39e 4214 }
14f9c5c9
AS
4215}
4216
4c4b4cd2 4217/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4218
4219static int
d2e4a39e 4220discrete_type_p (struct type *type)
14f9c5c9
AS
4221{
4222 if (type == NULL)
4223 return 0;
d2e4a39e
AS
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4c4b4cd2
PH
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
872f0337 4231 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4232 return 1;
4233 default:
4234 return 0;
4235 }
d2e4a39e 4236 }
14f9c5c9
AS
4237}
4238
4c4b4cd2
PH
4239/* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
14f9c5c9
AS
4242
4243static int
d2e4a39e 4244possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4245{
76a01679 4246 struct type *type0 =
df407dfe 4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4248 struct type *type1 =
df407dfe 4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4250
4c4b4cd2
PH
4251 if (type0 == NULL)
4252 return 0;
4253
14f9c5c9
AS
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
d2e4a39e 4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
d2e4a39e 4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
d2e4a39e 4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4279
4280 case BINOP_CONCAT:
ee90b9ab 4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4282
4283 case BINOP_EXP:
d2e4a39e 4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
14f9c5c9
AS
4291
4292 }
4293}
4294\f
4c4b4cd2 4295 /* Renaming */
14f9c5c9 4296
aeb5907d
JB
4297/* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309/* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
0963b4bd 4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328enum ada_renaming_category
4329ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332{
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
14f9c5c9 4340 {
aeb5907d
JB
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
14f9c5c9 4374 }
4c4b4cd2 4375
aeb5907d
JB
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387}
4388
4389/* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393static enum ada_renaming_category
4394parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397{
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
14f9c5c9 4402
aeb5907d
JB
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
14f9c5c9 4406
aeb5907d
JB
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
14f9c5c9 4432
aeb5907d
JB
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
a5ee536b
JB
4446}
4447
4448/* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
52ce6436 4451
a5ee536b
JB
4452static struct value *
4453ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4454 const struct block *block)
a5ee536b 4455{
bbc13ae3 4456 const char *sym_name;
a5ee536b 4457
bbc13ae3 4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
a5ee536b 4461}
14f9c5c9 4462\f
d2e4a39e 4463
4c4b4cd2 4464 /* Evaluation: Function Calls */
14f9c5c9 4465
4c4b4cd2 4466/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4469
d2e4a39e 4470static struct value *
40bc484c 4471ensure_lval (struct value *val)
14f9c5c9 4472{
40bc484c
JB
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4475 {
df407dfe 4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4479
a84a8a0d 4480 VALUE_LVAL (val) = lval_memory;
1a088441 4481 set_value_address (val, addr);
40bc484c 4482 write_memory (addr, value_contents (val), len);
c3e5cd34 4483 }
14f9c5c9
AS
4484
4485 return val;
4486}
4487
4488/* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4491 values not residing in memory, updating it as needed. */
14f9c5c9 4492
a93c0eb6 4493struct value *
40bc484c 4494ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4495{
df407dfe 4496 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4497 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4504
4c4b4cd2 4505 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4507 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4510 {
a84a8a0d 4511 struct value *result;
5b4ee69b 4512
14f9c5c9 4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4514 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4515 result = desc_data (actual);
14f9c5c9 4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
5b4ee69b 4521
df407dfe 4522 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4523 val = allocate_value (actual_type);
990a07ab 4524 memcpy ((char *) value_contents_raw (val),
0fd88904 4525 (char *) value_contents (actual),
4c4b4cd2 4526 TYPE_LENGTH (actual_type));
40bc484c 4527 actual = ensure_lval (val);
4c4b4cd2 4528 }
a84a8a0d 4529 result = value_addr (actual);
4c4b4cd2 4530 }
a84a8a0d
JB
4531 else
4532 return actual;
b1af9e97 4533 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
8344af1e
JB
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
14f9c5c9
AS
4547
4548 return actual;
4549}
4550
438c98a1
JB
4551/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556static CORE_ADDR
4557value_pointer (struct value *value, struct type *type)
4558{
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
224c3ddb 4561 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568}
4569
14f9c5c9 4570
4c4b4cd2
PH
4571/* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
14f9c5c9 4576
d2e4a39e 4577static struct value *
40bc484c 4578make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4579{
d2e4a39e
AS
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4584 int i;
d2e4a39e 4585
0963b4bd
MS
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
14f9c5c9 4588 {
19f220c3
JK
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4597 }
d2e4a39e 4598
40bc484c 4599 bounds = ensure_lval (bounds);
d2e4a39e 4600
19f220c3
JK
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4614
40bc484c 4615 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621}
14f9c5c9 4622\f
3d9434b5
JB
4623 /* Symbol Cache Module */
4624
3d9434b5 4625/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4626 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
ee01b665 4635/* Initialize the contents of SYM_CACHE. */
3d9434b5 4636
ee01b665
JB
4637static void
4638ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639{
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642}
3d9434b5 4643
ee01b665
JB
4644/* Free the memory used by SYM_CACHE. */
4645
4646static void
4647ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4648{
ee01b665
JB
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651}
3d9434b5 4652
ee01b665
JB
4653/* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4655
ee01b665
JB
4656static struct ada_symbol_cache *
4657ada_get_symbol_cache (struct program_space *pspace)
4658{
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4660
66c168ae 4661 if (pspace_data->sym_cache == NULL)
ee01b665 4662 {
66c168ae
JB
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4665 }
4666
66c168ae 4667 return pspace_data->sym_cache;
ee01b665 4668}
3d9434b5
JB
4669
4670/* Clear all entries from the symbol cache. */
4671
4672static void
4673ada_clear_symbol_cache (void)
4674{
ee01b665
JB
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4680}
4681
fe978cb0 4682/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return it if found, or NULL otherwise. */
4684
4685static struct cache_entry **
fe978cb0 4686find_entry (const char *name, domain_enum domain)
3d9434b5 4687{
ee01b665
JB
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
ee01b665 4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4694 {
fe978cb0 4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4696 return e;
4697 }
4698 return NULL;
4699}
4700
fe978cb0 4701/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4706
96d887e8 4707static int
fe978cb0 4708lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4709 struct symbol **sym, const struct block **block)
96d887e8 4710{
fe978cb0 4711 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
96d887e8
PH
4720}
4721
3d9434b5 4722/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4723 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4724
96d887e8 4725static void
fe978cb0 4726cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4727 const struct block *block)
96d887e8 4728{
ee01b665
JB
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
1994afbf
DE
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
3d9434b5
JB
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
08be3fe3 4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4746 GLOBAL_BLOCK) != block
08be3fe3 4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4748 STATIC_BLOCK) != block)
3d9434b5
JB
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
224c3ddb
SM
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4758 strcpy (copy, name);
4759 e->sym = sym;
fe978cb0 4760 e->domain = domain;
3d9434b5 4761 e->block = block;
96d887e8 4762}
4c4b4cd2
PH
4763\f
4764 /* Symbol Lookup */
4765
b5ec771e
PA
4766/* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
b5ec771e
PA
4772static symbol_name_match_type
4773name_match_type_from_name (const char *lookup_name)
c0431670 4774{
b5ec771e
PA
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
c0431670
JB
4778}
4779
4c4b4cd2
PH
4780/* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4782
4783static struct symbol *
4784standard_lookup (const char *name, const struct block *block,
4785 domain_enum domain)
4786{
acbd605d 4787 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4788 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4789
d12307c1
PMR
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 return sym.symbol;
2570f2b7 4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4794 return sym.symbol;
4c4b4cd2
PH
4795}
4796
4797
4798/* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4801static int
d12307c1 4802is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4803{
4804 int i;
4805
4806 for (i = 0; i < n; i += 1)
d12307c1
PMR
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4810 return 1;
4811
4812 return 0;
4813}
4814
4815/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4816 struct types. Otherwise, they may not. */
14f9c5c9
AS
4817
4818static int
d2e4a39e 4819equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4820{
d2e4a39e 4821 if (type0 == type1)
14f9c5c9 4822 return 1;
d2e4a39e 4823 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 return 0;
d2e4a39e 4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4830 return 1;
d2e4a39e 4831
14f9c5c9
AS
4832 return 0;
4833}
4834
4835/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4836 no more defined than that of SYM1. */
14f9c5c9
AS
4837
4838static int
d2e4a39e 4839lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4840{
4841 if (sym0 == sym1)
4842 return 1;
176620f1 4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4845 return 0;
4846
d2e4a39e 4847 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4848 {
4849 case LOC_UNDEF:
4850 return 1;
4851 case LOC_TYPEDEF:
4852 {
4c4b4cd2
PH
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4857 int len0 = strlen (name0);
5b4ee69b 4858
4c4b4cd2
PH
4859 return
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4863 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4864 }
4865 case LOC_CONST:
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4868 default:
4869 return 0;
14f9c5c9
AS
4870 }
4871}
4872
d12307c1 4873/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4875
4876static void
76a01679
JB
4877add_defn_to_vec (struct obstack *obstackp,
4878 struct symbol *sym,
f0c5f9b2 4879 const struct block *block)
14f9c5c9
AS
4880{
4881 int i;
d12307c1 4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4883
529cad9c
PH
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4892
4c4b4cd2
PH
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 {
d12307c1 4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4896 return;
d12307c1 4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4898 {
d12307c1 4899 prevDefns[i].symbol = sym;
4c4b4cd2 4900 prevDefns[i].block = block;
4c4b4cd2 4901 return;
76a01679 4902 }
4c4b4cd2
PH
4903 }
4904
4905 {
d12307c1 4906 struct block_symbol info;
4c4b4cd2 4907
d12307c1 4908 info.symbol = sym;
4c4b4cd2 4909 info.block = block;
d12307c1 4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4911 }
4912}
4913
d12307c1
PMR
4914/* Number of block_symbol structures currently collected in current vector in
4915 OBSTACKP. */
4c4b4cd2 4916
76a01679
JB
4917static int
4918num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4919{
d12307c1 4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4921}
4922
d12307c1
PMR
4923/* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4925
d12307c1 4926static struct block_symbol *
4c4b4cd2
PH
4927defns_collected (struct obstack *obstackp, int finish)
4928{
4929 if (finish)
224c3ddb 4930 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4931 else
d12307c1 4932 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4933}
4934
7c7b6655
TT
4935/* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4c4b4cd2 4940
7c7b6655 4941struct bound_minimal_symbol
96d887e8 4942ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4943{
7c7b6655 4944 struct bound_minimal_symbol result;
4c4b4cd2 4945 struct objfile *objfile;
96d887e8 4946 struct minimal_symbol *msymbol;
4c4b4cd2 4947
7c7b6655
TT
4948 memset (&result, 0, sizeof (result));
4949
b5ec771e
PA
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4952
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4955
96d887e8
PH
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
b5ec771e 4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
96d887e8 4965 }
4c4b4cd2 4966
7c7b6655 4967 return result;
96d887e8 4968}
4c4b4cd2 4969
96d887e8
PH
4970/* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4c4b4cd2 4975
96d887e8
PH
4976static void
4977add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4978 const lookup_name_info &lookup_name,
4979 domain_enum domain)
96d887e8 4980{
96d887e8 4981}
14f9c5c9 4982
96d887e8
PH
4983/* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
14f9c5c9 4985
96d887e8
PH
4986static int
4987is_nondebugging_type (struct type *type)
4988{
0d5cff50 4989 const char *name = ada_type_name (type);
5b4ee69b 4990
96d887e8
PH
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992}
4c4b4cd2 4993
8f17729f
JB
4994/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001static int
5002ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003{
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
0d5cff50
DE
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035}
5036
5037/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057static int
d12307c1 5058symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5059{
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
d12307c1 5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
d12307c1 5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5091 return 0;
5092
5093 return 1;
5094}
5095
96d887e8
PH
5096/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
4c4b4cd2 5102
96d887e8 5103static int
d12307c1 5104remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5105{
5106 int i, j;
4c4b4cd2 5107
8f17729f
JB
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
96d887e8
PH
5114 i = 0;
5115 while (i < nsyms)
5116 {
a35ddb44 5117 int remove_p = 0;
339c13b6
JB
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
d12307c1
PMR
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
d12307c1
PMR
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5132 remove_p = 1;
339c13b6
JB
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
d12307c1
PMR
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
d12307c1
PMR
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5153 remove_p = 1;
4c4b4cd2 5154 }
4c4b4cd2 5155 }
339c13b6 5156
a35ddb44 5157 if (remove_p)
339c13b6
JB
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
96d887e8 5164 i += 1;
14f9c5c9 5165 }
8f17729f
JB
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
96d887e8 5182 return nsyms;
14f9c5c9
AS
5183}
5184
96d887e8
PH
5185/* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5189
96d887e8
PH
5190static char *
5191xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5192{
96d887e8 5193 /* The renaming types adhere to the following convention:
0963b4bd 5194 <scope>__<rename>___<XR extension>.
96d887e8
PH
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
76a01679 5197
96d887e8 5198 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
96d887e8
PH
5201 int scope_len;
5202 char *scope;
14f9c5c9 5203
96d887e8
PH
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5206
96d887e8
PH
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
76a01679 5210
96d887e8 5211 /* Make a copy of scope and return it. */
14f9c5c9 5212
96d887e8
PH
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5215
96d887e8
PH
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
4c4b4cd2 5218
96d887e8 5219 return scope;
4c4b4cd2
PH
5220}
5221
96d887e8 5222/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5223
96d887e8
PH
5224static int
5225is_package_name (const char *name)
4c4b4cd2 5226{
96d887e8
PH
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
4c4b4cd2 5232
96d887e8 5233 char *fun_name;
76a01679 5234
96d887e8
PH
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
14f9c5c9 5239
96d887e8
PH
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
14f9c5c9 5242
96d887e8 5243 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5244 functions names cannot contain "__" in them. */
96d887e8
PH
5245 if (strstr (name, "__") != NULL)
5246 return 0;
4c4b4cd2 5247
b435e160 5248 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5249
96d887e8
PH
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251}
14f9c5c9 5252
96d887e8 5253/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5254 not visible from FUNCTION_NAME. */
14f9c5c9 5255
96d887e8 5256static int
0d5cff50 5257old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5258{
aeb5907d 5259 char *scope;
1509e573 5260 struct cleanup *old_chain;
aeb5907d
JB
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5266 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5267
96d887e8
PH
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
1509e573
JB
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
14f9c5c9 5274
96d887e8
PH
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
76a01679 5277
96d887e8
PH
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
61012eef 5282 if (startswith (function_name, "_ada_"))
96d887e8 5283 function_name += 5;
f26caa11 5284
1509e573 5285 {
61012eef 5286 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
f26caa11
PH
5291}
5292
aeb5907d
JB
5293/* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
96d887e8
PH
5298
5299 Rationale:
aeb5907d
JB
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
f26caa11 5312
96d887e8
PH
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
4c4b4cd2 5329
14f9c5c9 5330static int
d12307c1 5331remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5332 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5333{
5334 struct symbol *current_function;
0d5cff50 5335 const char *current_function_name;
4c4b4cd2 5336 int i;
aeb5907d
JB
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
0963b4bd 5341 First, zero out such symbols, then compress. */
aeb5907d
JB
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
d12307c1 5345 struct symbol *sym = syms[i].symbol;
270140bd 5346 const struct block *block = syms[i].block;
aeb5907d
JB
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5b4ee69b 5359
aeb5907d
JB
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5364 name_len) == 0
5365 && block == syms[j].block)
d12307c1 5366 syms[j].symbol = NULL;
aeb5907d
JB
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5374 if (syms[j].symbol != NULL)
aeb5907d
JB
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
4c4b4cd2
PH
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
76a01679 5384
4c4b4cd2
PH
5385 if (current_block == NULL)
5386 return nsyms;
76a01679 5387
7f0df278 5388 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
d12307c1 5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5404 == ADA_OBJECT_RENAMING
d12307c1 5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5406 {
5407 int j;
5b4ee69b 5408
aeb5907d 5409 for (j = i + 1; j < nsyms; j += 1)
76a01679 5410 syms[j - 1] = syms[j];
4c4b4cd2
PH
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418}
5419
339c13b6
JB
5420/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430static void
b5ec771e
PA
5431ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
339c13b6
JB
5434{
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
b5ec771e 5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5454}
5455
ccefe4c4 5456/* An object of this type is used as the user_data argument when
40658b94 5457 calling the map_matching_symbols method. */
ccefe4c4 5458
40658b94 5459struct match_data
ccefe4c4 5460{
40658b94 5461 struct objfile *objfile;
ccefe4c4 5462 struct obstack *obstackp;
40658b94
PH
5463 struct symbol *arg_sym;
5464 int found_sym;
ccefe4c4
TT
5465};
5466
22cee43f 5467/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
ccefe4c4 5475
40658b94
PH
5476static int
5477aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5478{
40658b94
PH
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505}
5506
b5ec771e
PA
5507/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5510
5511static int
5512ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
b5ec771e
PA
5514 const lookup_name_info &lookup_name,
5515 domain_enum domain)
22cee43f
PMR
5516{
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5519
b5ec771e
PA
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5522
22cee43f
PMR
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
22cee43f
PMR
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
b5ec771e
PA
5552 if (name_match (r_name, lookup_name, NULL))
5553 {
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5557 1, NULL);
5558 }
22cee43f
PMR
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562}
5563
db230ce3
JB
5564/* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5b4ee69b 5566
40658b94 5567static int
db230ce3
JB
5568compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
40658b94
PH
5570{
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
db230ce3
JB
5573 char c1, c2;
5574
40658b94
PH
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
40658b94 5589 break;
db230ce3 5590
40658b94
PH
5591 string1 += 1;
5592 string2 += 1;
5593 }
db230ce3 5594
40658b94
PH
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
052874e8 5602 if (is_name_suffix (string1))
40658b94
PH
5603 return 0;
5604 else
1a1d5513 5605 return 1;
40658b94 5606 }
dbb8534f 5607 /* FALLTHROUGH */
40658b94
PH
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
db230ce3
JB
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
40658b94 5618 }
ccefe4c4
TT
5619}
5620
db230ce3
JB
5621/* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632static int
5633compare_names (const char *string1, const char *string2)
5634{
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647}
5648
b5ec771e
PA
5649/* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5651
5652static const char *
5653ada_lookup_name (const lookup_name_info &lookup_name)
5654{
5655 return lookup_name.ada ().lookup_name ().c_str ();
5656}
5657
339c13b6 5658/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
339c13b6
JB
5662
5663static void
b5ec771e
PA
5664add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
339c13b6
JB
5667{
5668 struct objfile *objfile;
22cee43f 5669 struct compunit_symtab *cu;
40658b94 5670 struct match_data data;
339c13b6 5671
6475f2fe 5672 memset (&data, 0, sizeof data);
ccefe4c4 5673 data.obstackp = obstackp;
339c13b6 5674
b5ec771e
PA
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676
ccefe4c4 5677 ALL_OBJFILES (objfile)
40658b94
PH
5678 {
5679 data.objfile = objfile;
5680
5681 if (is_wild_match)
b5ec771e
PA
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 domain, global,
4186eb54 5684 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5685 symbol_name_match_type::WILD,
5686 NULL);
40658b94 5687 else
b5ec771e
PA
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 domain, global,
4186eb54 5690 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5691 symbol_name_match_type::FULL,
5692 compare_names);
22cee43f
PMR
5693
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 {
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698
b5ec771e
PA
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5700 domain))
22cee43f
PMR
5701 data.found_sym = 1;
5702 }
40658b94
PH
5703 }
5704
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 {
b5ec771e
PA
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5709
40658b94
PH
5710 ALL_OBJFILES (objfile)
5711 {
40658b94 5712 data.objfile = objfile;
b5ec771e
PA
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 domain, global,
0963b4bd
MS
5715 aux_add_nonlocal_symbols,
5716 &data,
b5ec771e
PA
5717 symbol_name_match_type::FULL,
5718 compare_names);
40658b94
PH
5719 }
5720 }
339c13b6
JB
5721}
5722
b5ec771e
PA
5723/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5726
22cee43f
PMR
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5729 is the one match returned (no other matches in that or
d9680e73 5730 enclosing blocks is returned). If there are any matches in or
22cee43f 5731 surrounding BLOCK, then these alone are returned.
4eeaa230 5732
b5ec771e
PA
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
14f9c5c9 5736
22cee43f
PMR
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5739
5740static void
5741ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
b5ec771e 5743 const lookup_name_info &lookup_name,
22cee43f
PMR
5744 domain_enum domain,
5745 int full_search,
5746 int *made_global_lookup_p)
14f9c5c9
AS
5747{
5748 struct symbol *sym;
14f9c5c9 5749
22cee43f
PMR
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
339c13b6
JB
5752
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
b5ec771e
PA
5760 if (lookup_name.ada ().standard_p ())
5761 block = NULL;
4c4b4cd2 5762
339c13b6 5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5764
4eeaa230
DE
5765 if (block != NULL)
5766 {
5767 if (full_search)
b5ec771e 5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5769 else
5770 {
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5773 superblocks. */
b5ec771e 5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5775 }
22cee43f
PMR
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5777 return;
4eeaa230 5778 }
d2e4a39e 5779
339c13b6
JB
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5782 the same result. */
5783
b5ec771e
PA
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
4c4b4cd2
PH
5786 {
5787 if (sym != NULL)
b5ec771e 5788 add_defn_to_vec (obstackp, sym, block);
22cee43f 5789 return;
4c4b4cd2 5790 }
14f9c5c9 5791
22cee43f
PMR
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
b1eedac9 5794
339c13b6
JB
5795 /* Search symbols from all global blocks. */
5796
b5ec771e 5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5798
4c4b4cd2 5799 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5800 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5801
22cee43f 5802 if (num_defns_collected (obstackp) == 0)
b5ec771e 5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5804}
5805
b5ec771e
PA
5806/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5808 matches.
ec6a20c2 5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5810 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5811 any) in which they were found. This vector should be freed when
5812 no longer useful.
22cee43f
PMR
5813
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5819
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5822
5823static int
b5ec771e
PA
5824ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
22cee43f
PMR
5826 domain_enum domain,
5827 struct block_symbol **results,
5828 int full_search)
5829{
22cee43f
PMR
5830 int syms_from_global_search;
5831 int ndefns;
ec6a20c2
JB
5832 int results_size;
5833 auto_obstack obstack;
22cee43f 5834
ec6a20c2 5835 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5836 domain, full_search, &syms_from_global_search);
14f9c5c9 5837
ec6a20c2
JB
5838 ndefns = num_defns_collected (&obstack);
5839
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5843
5844 ndefns = remove_extra_symbols (*results, ndefns);
5845
b1eedac9 5846 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5848
b1eedac9 5849 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5852
22cee43f 5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5854
14f9c5c9
AS
5855 return ndefns;
5856}
5857
b5ec771e 5858/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5859 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5862
4eeaa230
DE
5863 See ada_lookup_symbol_list_worker for further details. */
5864
5865int
b5ec771e 5866ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5867 domain_enum domain, struct block_symbol **results)
4eeaa230 5868{
b5ec771e
PA
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5871
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5873}
5874
5875/* Implementation of the la_iterate_over_symbols method. */
5876
5877static void
14bc53a8 5878ada_iterate_over_symbols
b5ec771e
PA
5879 (const struct block *block, const lookup_name_info &name,
5880 domain_enum domain,
14bc53a8 5881 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5882{
5883 int ndefs, i;
d12307c1 5884 struct block_symbol *results;
ec6a20c2 5885 struct cleanup *old_chain;
4eeaa230
DE
5886
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5888 old_chain = make_cleanup (xfree, results);
5889
4eeaa230
DE
5890 for (i = 0; i < ndefs; ++i)
5891 {
14bc53a8 5892 if (!callback (results[i].symbol))
4eeaa230
DE
5893 break;
5894 }
ec6a20c2
JB
5895
5896 do_cleanups (old_chain);
4eeaa230
DE
5897}
5898
4e5c77fe
JB
5899/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5901 choices.
5902
5e2336be
JB
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5905
5906void
5907ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5908 domain_enum domain,
d12307c1 5909 struct block_symbol *info)
14f9c5c9 5910{
d12307c1 5911 struct block_symbol *candidates;
14f9c5c9 5912 int n_candidates;
ec6a20c2 5913 struct cleanup *old_chain;
14f9c5c9 5914
b5ec771e
PA
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5922
5e2336be 5923 gdb_assert (info != NULL);
d12307c1 5924 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5925
b5ec771e
PA
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
ec6a20c2
JB
5928 old_chain = make_cleanup (xfree, candidates);
5929
14f9c5c9 5930 if (n_candidates == 0)
ec6a20c2
JB
5931 {
5932 do_cleanups (old_chain);
5933 return;
5934 }
4c4b4cd2 5935
5e2336be 5936 *info = candidates[0];
d12307c1 5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
ec6a20c2
JB
5938
5939 do_cleanups (old_chain);
4e5c77fe 5940}
aeb5907d
JB
5941
5942/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5945 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5947
d12307c1 5948struct block_symbol
aeb5907d 5949ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5950 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5951{
d12307c1 5952 struct block_symbol info;
4e5c77fe 5953
aeb5907d
JB
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5956
4e5c77fe 5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5958 block0, domain, &info);
d12307c1 5959 return info;
4c4b4cd2 5960}
14f9c5c9 5961
d12307c1 5962static struct block_symbol
f606139a
DE
5963ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5964 const char *name,
76a01679 5965 const struct block *block,
21b556f4 5966 const domain_enum domain)
4c4b4cd2 5967{
d12307c1 5968 struct block_symbol sym;
04dccad0
JB
5969
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5971 if (sym.symbol != NULL)
04dccad0
JB
5972 return sym;
5973
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5985
5986 if (domain == VAR_DOMAIN)
5987 {
5988 struct gdbarch *gdbarch;
5989
5990 if (block == NULL)
5991 gdbarch = target_gdbarch ();
5992 else
5993 gdbarch = block_gdbarch (block);
d12307c1
PMR
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
04dccad0
JB
5996 return sym;
5997 }
5998
d12307c1 5999 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
6000}
6001
6002
4c4b4cd2
PH
6003/* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 6006 are given by any of the regular expressions:
4c4b4cd2 6007
babe1480
JB
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 6010 TKB [subprogram suffix for task bodies]
babe1480 6011 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
6013
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
4c4b4cd2 6017
14f9c5c9 6018static int
d2e4a39e 6019is_name_suffix (const char *str)
14f9c5c9
AS
6020{
6021 int k;
4c4b4cd2
PH
6022 const char *matching;
6023 const int len = strlen (str);
6024
babe1480
JB
6025 /* Skip optional leading __[0-9]+. */
6026
4c4b4cd2
PH
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6028 {
babe1480
JB
6029 str += 3;
6030 while (isdigit (str[0]))
6031 str += 1;
4c4b4cd2 6032 }
babe1480
JB
6033
6034 /* [.$][0-9]+ */
4c4b4cd2 6035
babe1480 6036 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6037 {
babe1480 6038 matching = str + 1;
4c4b4cd2
PH
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* ___[0-9]+ */
babe1480 6046
4c4b4cd2
PH
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if (matching[0] == '\0')
6053 return 1;
6054 }
6055
9ac7f98e
JB
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6057
6058 if (strcmp (str, "TKB") == 0)
6059 return 1;
6060
529cad9c
PH
6061#if 0
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
529cad9c 6065 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6068 name ends with N.
6069 Having a single character like this as a suffix carrying some
0963b4bd 6070 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6075 return 1;
6076#endif
6077
6078 /* _E[0-9]+[bs]$ */
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6080 {
6081 matching = str + 3;
6082 while (isdigit (matching[0]))
6083 matching += 1;
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6086 return 1;
6087 }
6088
4c4b4cd2
PH
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6094 if (str[0] == 'X')
6095 {
6096 str += 1;
d2e4a39e 6097 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6098 {
6099 if (str[0] != 'n' && str[0] != 'b')
6100 return 0;
6101 str += 1;
6102 }
14f9c5c9 6103 }
babe1480 6104
14f9c5c9
AS
6105 if (str[0] == '\000')
6106 return 1;
babe1480 6107
d2e4a39e 6108 if (str[0] == '_')
14f9c5c9
AS
6109 {
6110 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6111 return 0;
d2e4a39e 6112 if (str[2] == '_')
4c4b4cd2 6113 {
61ee279c
PH
6114 if (strcmp (str + 3, "JM") == 0)
6115 return 1;
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
4c4b4cd2
PH
6121 if (strcmp (str + 3, "LJM") == 0)
6122 return 1;
6123 if (str[3] != 'X')
6124 return 0;
1265e4aa
JB
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6127 return 1;
6128 if (str[4] == 'R' && str[5] != 'T')
6129 return 1;
6130 return 0;
6131 }
6132 if (!isdigit (str[2]))
6133 return 0;
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6136 return 0;
14f9c5c9
AS
6137 return 1;
6138 }
4c4b4cd2 6139 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6140 {
4c4b4cd2
PH
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6143 return 0;
14f9c5c9
AS
6144 return 1;
6145 }
6146 return 0;
6147}
d2e4a39e 6148
aeb5907d
JB
6149/* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
529cad9c
PH
6151
6152static int
6153is_valid_name_for_wild_match (const char *name0)
6154{
6155 const char *decoded_name = ada_decode (name0);
6156 int i;
6157
5823c3ef
JB
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6162 return 0;
6163
529cad9c
PH
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6166 return 0;
6167
6168 return 1;
6169}
6170
73589123
PH
6171/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
4c4b4cd2 6174
14f9c5c9 6175static int
73589123 6176advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6177{
73589123 6178 const char *name = *namep;
5b4ee69b 6179
5823c3ef 6180 while (1)
14f9c5c9 6181 {
aa27d0b3 6182 int t0, t1;
73589123
PH
6183
6184 t0 = *name;
6185 if (t0 == '_')
6186 {
6187 t1 = name[1];
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6189 {
6190 name += 1;
61012eef 6191 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6192 break;
6193 else
6194 name += 1;
6195 }
aa27d0b3
JB
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
73589123
PH
6198 {
6199 name += 2;
6200 break;
6201 }
6202 else
6203 return 0;
6204 }
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6206 name += 1;
6207 else
5823c3ef 6208 return 0;
73589123
PH
6209 }
6210
6211 *namep = name;
6212 return 1;
6213}
6214
b5ec771e
PA
6215/* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6218 simple name. */
73589123 6219
b5ec771e 6220static bool
73589123
PH
6221wild_match (const char *name, const char *patn)
6222{
22e048c9 6223 const char *p;
73589123
PH
6224 const char *name0 = name;
6225
6226 while (1)
6227 {
6228 const char *match = name;
6229
6230 if (*name == *patn)
6231 {
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6233 if (*p != *name)
6234 break;
6235 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6236 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6237
6238 if (name[-1] == '_')
6239 name -= 1;
6240 }
6241 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6242 return false;
96d887e8 6243 }
96d887e8
PH
6244}
6245
b5ec771e
PA
6246/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
40658b94 6250
b5ec771e 6251static bool
c4d840bd
PH
6252full_match (const char *sym_name, const char *search_name)
6253{
b5ec771e
PA
6254 size_t search_name_len = strlen (search_name);
6255
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6258 return true;
6259
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6263 return true;
c4d840bd 6264
b5ec771e
PA
6265 return false;
6266}
c4d840bd 6267
b5ec771e
PA
6268/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6271
6272static void
6273ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
96d887e8 6277{
8157b174 6278 struct block_iterator iter;
96d887e8
PH
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6282 int found_sym;
6283 struct symbol *sym;
6284
6285 arg_sym = NULL;
6286 found_sym = 0;
b5ec771e
PA
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6288 sym != NULL;
6289 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6290 {
b5ec771e
PA
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6293 {
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6295 {
6296 if (SYMBOL_IS_ARGUMENT (sym))
6297 arg_sym = sym;
6298 else
6299 {
6300 found_sym = 1;
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6303 block);
6304 }
6305 }
6306 }
96d887e8
PH
6307 }
6308
22cee43f
PMR
6309 /* Handle renamings. */
6310
b5ec771e 6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6312 found_sym = 1;
6313
96d887e8
PH
6314 if (!found_sym && arg_sym != NULL)
6315 {
76a01679
JB
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6318 block);
96d887e8
PH
6319 }
6320
b5ec771e 6321 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6322 {
6323 arg_sym = NULL;
6324 found_sym = 0;
b5ec771e
PA
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6330 {
4186eb54
KS
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
61012eef 6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
2a2d4dc3
AS
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
76a01679
JB
6360 }
6361 }
76a01679 6362 }
96d887e8
PH
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
76a01679 6369 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6370 block);
96d887e8
PH
6371 }
6372 }
6373}
6374\f
41d27058
JB
6375
6376 /* Symbol Completion */
6377
b5ec771e 6378/* See symtab.h. */
41d27058 6379
b5ec771e
PA
6380bool
6381ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
a207cff2 6384 completion_match_result *comp_match_res) const
41d27058 6385{
b5ec771e
PA
6386 bool match = false;
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
41d27058
JB
6389
6390 /* First, test against the fully qualified name of the symbol. */
6391
6392 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6393 match = true;
41d27058 6394
b5ec771e 6395 if (match && !m_encoded_p)
41d27058
JB
6396 {
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
b5ec771e 6402 bool has_angle_bracket;
41d27058
JB
6403
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6406 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6407 sym_name = sym_name_copy;
6408 }
6409
b5ec771e 6410 if (match && !m_verbatim_p)
41d27058
JB
6411 {
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6417 const char *tmp;
6418
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6420 if (*tmp != '\0')
b5ec771e 6421 match = false;
41d27058
JB
6422 }
6423
6424 /* Second: Try wild matching... */
6425
b5ec771e 6426 if (!match && m_wild_match_p)
41d27058
JB
6427 {
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6432
6433 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6434 match = true;
41d27058
JB
6435 }
6436
b5ec771e 6437 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6438
6439 if (!match)
b5ec771e 6440 return false;
41d27058 6441
a207cff2 6442 if (comp_match_res != NULL)
b5ec771e 6443 {
a207cff2 6444 std::string &match_str = comp_match_res->match.storage ();
41d27058 6445
b5ec771e 6446 if (!m_encoded_p)
a207cff2 6447 match_str = ada_decode (sym_name);
b5ec771e
PA
6448 else
6449 {
6450 if (m_verbatim_p)
6451 match_str = add_angle_brackets (sym_name);
6452 else
6453 match_str = sym_name;
41d27058 6454
b5ec771e 6455 }
a207cff2
PA
6456
6457 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6458 }
6459
b5ec771e 6460 return true;
41d27058
JB
6461}
6462
b5ec771e 6463/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6464 WORD is the entire command on which completion is made. */
41d27058 6465
eb3ff9a5
PA
6466static void
6467ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6468 complete_symbol_mode mode,
b5ec771e
PA
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
eb3ff9a5 6471 enum type_code code)
41d27058 6472{
41d27058 6473 struct symbol *sym;
43f3e411 6474 struct compunit_symtab *s;
41d27058
JB
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
3977b71f 6477 const struct block *b, *surrounding_static_block = 0;
8157b174 6478 struct block_iterator iter;
b8fea896 6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6480
2f68a895
TT
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6482
1b026119 6483 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6484
6485 /* First, look at the partial symtab symbols. */
14bc53a8 6486 expand_symtabs_matching (NULL,
b5ec771e
PA
6487 lookup_name,
6488 NULL,
14bc53a8
PA
6489 NULL,
6490 ALL_DOMAIN);
41d27058
JB
6491
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6496
6497 ALL_MSYMBOLS (objfile, msymbol)
6498 {
6499 QUIT;
b5ec771e 6500
f9d67a22
PA
6501 if (completion_skip_symbol (mode, msymbol))
6502 continue;
6503
b5ec771e
PA
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6507 lookup_name, text, word);
41d27058
JB
6508 }
6509
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6512
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6514 {
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6517
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
f9d67a22
PA
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
b5ec771e
PA
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
1b026119 6526 lookup_name, text, word);
41d27058
JB
6527 }
6528 }
6529
6530 /* Go through the symtabs and check the externs and statics for
43f3e411 6531 symbols which match. */
41d27058 6532
43f3e411 6533 ALL_COMPUNITS (objfile, s)
41d27058
JB
6534 {
6535 QUIT;
43f3e411 6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
f9d67a22
PA
6539 if (completion_skip_symbol (mode, sym))
6540 continue;
6541
b5ec771e
PA
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
1b026119 6545 lookup_name, text, word);
41d27058
JB
6546 }
6547 }
6548
43f3e411 6549 ALL_COMPUNITS (objfile, s)
41d27058
JB
6550 {
6551 QUIT;
43f3e411 6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
f9d67a22
PA
6558 if (completion_skip_symbol (mode, sym))
6559 continue;
6560
b5ec771e
PA
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
1b026119 6564 lookup_name, text, word);
41d27058
JB
6565 }
6566 }
6567
b8fea896 6568 do_cleanups (old_chain);
41d27058
JB
6569}
6570
963a6417 6571 /* Field Access */
96d887e8 6572
73fb9985
JB
6573/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6575
6576static int
6577ada_is_dispatch_table_ptr_type (struct type *type)
6578{
0d5cff50 6579 const char *name;
73fb9985
JB
6580
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6582 return 0;
6583
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6585 if (name == NULL)
6586 return 0;
6587
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6589}
6590
ac4a2da4
JG
6591/* Return non-zero if TYPE is an interface tag. */
6592
6593static int
6594ada_is_interface_tag (struct type *type)
6595{
6596 const char *name = TYPE_NAME (type);
6597
6598 if (name == NULL)
6599 return 0;
6600
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6602}
6603
963a6417
PH
6604/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
96d887e8 6606
963a6417
PH
6607int
6608ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6609{
963a6417
PH
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6611 return 1;
ffde82bf 6612
73fb9985
JB
6613 /* Check the name of that field. */
6614 {
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6616
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6620 if (name == NULL)
6621 return 1;
6622
ffde82bf
JB
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
61012eef 6630 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6631 return 1;
6632 }
6633
ac4a2da4
JG
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6635 then ignore. */
73fb9985 6636 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6639 return 1;
6640
6641 /* Not a special field, so it should not be ignored. */
6642 return 0;
963a6417 6643}
96d887e8 6644
963a6417 6645/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6646 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6647
963a6417
PH
6648int
6649ada_is_tagged_type (struct type *type, int refok)
6650{
988f6b3d 6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6652}
96d887e8 6653
963a6417 6654/* True iff TYPE represents the type of X'Tag */
96d887e8 6655
963a6417
PH
6656int
6657ada_is_tag_type (struct type *type)
6658{
460efde1
JB
6659 type = ada_check_typedef (type);
6660
963a6417
PH
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6662 return 0;
6663 else
96d887e8 6664 {
963a6417 6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6666
963a6417
PH
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6669 }
96d887e8
PH
6670}
6671
963a6417 6672/* The type of the tag on VAL. */
76a01679 6673
963a6417
PH
6674struct type *
6675ada_tag_type (struct value *val)
96d887e8 6676{
988f6b3d 6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6678}
96d887e8 6679
b50d69b5
JG
6680/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6682
6683static int
6684is_ada95_tag (struct value *tag)
6685{
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6687}
6688
963a6417 6689/* The value of the tag on VAL. */
96d887e8 6690
963a6417
PH
6691struct value *
6692ada_value_tag (struct value *val)
6693{
03ee6b2e 6694 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6695}
6696
963a6417
PH
6697/* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6699 ADDRESS. */
96d887e8 6700
963a6417 6701static struct value *
10a2c479 6702value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6703 const gdb_byte *valaddr,
963a6417 6704 CORE_ADDR address)
96d887e8 6705{
b5385fc0 6706 int tag_byte_offset;
963a6417 6707 struct type *tag_type;
5b4ee69b 6708
963a6417 6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6710 NULL, NULL, NULL))
96d887e8 6711 {
fc1a4b47 6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6713 ? NULL
6714 : valaddr + tag_byte_offset);
963a6417 6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6716
963a6417 6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6718 }
963a6417
PH
6719 return NULL;
6720}
96d887e8 6721
963a6417
PH
6722static struct type *
6723type_from_tag (struct value *tag)
6724{
6725 const char *type_name = ada_tag_name (tag);
5b4ee69b 6726
963a6417
PH
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6729 return NULL;
6730}
96d887e8 6731
b50d69b5
JG
6732/* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6737
6738struct value *
6739ada_tag_value_at_base_address (struct value *obj)
6740{
b50d69b5
JG
6741 struct value *val;
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6744 struct value *tag;
6745 CORE_ADDR base_address;
6746
6747 obj_type = value_type (obj);
6748
6749 /* It is the responsability of the caller to deref pointers. */
6750
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6753 return obj;
6754
6755 tag = ada_value_tag (obj);
6756 if (!tag)
6757 return obj;
6758
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6760
6761 if (is_ada95_tag (tag))
6762 return obj;
6763
08f49010
XR
6764 ptr_type = language_lookup_primitive_type
6765 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6766 ptr_type = lookup_pointer_type (ptr_type);
6767 val = value_cast (ptr_type, tag);
6768 if (!val)
6769 return obj;
6770
6771 /* It is perfectly possible that an exception be raised while
6772 trying to determine the base address, just like for the tag;
6773 see ada_tag_name for more details. We do not print the error
6774 message for the same reason. */
6775
492d29ea 6776 TRY
b50d69b5
JG
6777 {
6778 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6779 }
6780
492d29ea
PA
6781 CATCH (e, RETURN_MASK_ERROR)
6782 {
6783 return obj;
6784 }
6785 END_CATCH
b50d69b5
JG
6786
6787 /* If offset is null, nothing to do. */
6788
6789 if (offset_to_top == 0)
6790 return obj;
6791
6792 /* -1 is a special case in Ada.Tags; however, what should be done
6793 is not quite clear from the documentation. So do nothing for
6794 now. */
6795
6796 if (offset_to_top == -1)
6797 return obj;
6798
08f49010
XR
6799 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6800 from the base address. This was however incompatible with
6801 C++ dispatch table: C++ uses a *negative* value to *add*
6802 to the base address. Ada's convention has therefore been
6803 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6804 use the same convention. Here, we support both cases by
6805 checking the sign of OFFSET_TO_TOP. */
6806
6807 if (offset_to_top > 0)
6808 offset_to_top = -offset_to_top;
6809
6810 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6811 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6812
6813 /* Make sure that we have a proper tag at the new address.
6814 Otherwise, offset_to_top is bogus (which can happen when
6815 the object is not initialized yet). */
6816
6817 if (!tag)
6818 return obj;
6819
6820 obj_type = type_from_tag (tag);
6821
6822 if (!obj_type)
6823 return obj;
6824
6825 return value_from_contents_and_address (obj_type, NULL, base_address);
6826}
6827
1b611343
JB
6828/* Return the "ada__tags__type_specific_data" type. */
6829
6830static struct type *
6831ada_get_tsd_type (struct inferior *inf)
963a6417 6832{
1b611343 6833 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6834
1b611343
JB
6835 if (data->tsd_type == 0)
6836 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6837 return data->tsd_type;
6838}
529cad9c 6839
1b611343
JB
6840/* Return the TSD (type-specific data) associated to the given TAG.
6841 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6842
1b611343 6843 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6844
1b611343
JB
6845static struct value *
6846ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6847{
4c4b4cd2 6848 struct value *val;
1b611343 6849 struct type *type;
5b4ee69b 6850
1b611343
JB
6851 /* First option: The TSD is simply stored as a field of our TAG.
6852 Only older versions of GNAT would use this format, but we have
6853 to test it first, because there are no visible markers for
6854 the current approach except the absence of that field. */
529cad9c 6855
1b611343
JB
6856 val = ada_value_struct_elt (tag, "tsd", 1);
6857 if (val)
6858 return val;
e802dbe0 6859
1b611343
JB
6860 /* Try the second representation for the dispatch table (in which
6861 there is no explicit 'tsd' field in the referent of the tag pointer,
6862 and instead the tsd pointer is stored just before the dispatch
6863 table. */
e802dbe0 6864
1b611343
JB
6865 type = ada_get_tsd_type (current_inferior());
6866 if (type == NULL)
6867 return NULL;
6868 type = lookup_pointer_type (lookup_pointer_type (type));
6869 val = value_cast (type, tag);
6870 if (val == NULL)
6871 return NULL;
6872 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6873}
6874
1b611343
JB
6875/* Given the TSD of a tag (type-specific data), return a string
6876 containing the name of the associated type.
6877
6878 The returned value is good until the next call. May return NULL
6879 if we are unable to determine the tag name. */
6880
6881static char *
6882ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6883{
529cad9c
PH
6884 static char name[1024];
6885 char *p;
1b611343 6886 struct value *val;
529cad9c 6887
1b611343 6888 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6889 if (val == NULL)
1b611343 6890 return NULL;
4c4b4cd2
PH
6891 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6892 for (p = name; *p != '\0'; p += 1)
6893 if (isalpha (*p))
6894 *p = tolower (*p);
1b611343 6895 return name;
4c4b4cd2
PH
6896}
6897
6898/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6899 a C string.
6900
6901 Return NULL if the TAG is not an Ada tag, or if we were unable to
6902 determine the name of that tag. The result is good until the next
6903 call. */
4c4b4cd2
PH
6904
6905const char *
6906ada_tag_name (struct value *tag)
6907{
1b611343 6908 char *name = NULL;
5b4ee69b 6909
df407dfe 6910 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6911 return NULL;
1b611343
JB
6912
6913 /* It is perfectly possible that an exception be raised while trying
6914 to determine the TAG's name, even under normal circumstances:
6915 The associated variable may be uninitialized or corrupted, for
6916 instance. We do not let any exception propagate past this point.
6917 instead we return NULL.
6918
6919 We also do not print the error message either (which often is very
6920 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6921 the caller print a more meaningful message if necessary. */
492d29ea 6922 TRY
1b611343
JB
6923 {
6924 struct value *tsd = ada_get_tsd_from_tag (tag);
6925
6926 if (tsd != NULL)
6927 name = ada_tag_name_from_tsd (tsd);
6928 }
492d29ea
PA
6929 CATCH (e, RETURN_MASK_ERROR)
6930 {
6931 }
6932 END_CATCH
1b611343
JB
6933
6934 return name;
4c4b4cd2
PH
6935}
6936
6937/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6938
d2e4a39e 6939struct type *
ebf56fd3 6940ada_parent_type (struct type *type)
14f9c5c9
AS
6941{
6942 int i;
6943
61ee279c 6944 type = ada_check_typedef (type);
14f9c5c9
AS
6945
6946 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6947 return NULL;
6948
6949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6950 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6951 {
6952 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6953
6954 /* If the _parent field is a pointer, then dereference it. */
6955 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6956 parent_type = TYPE_TARGET_TYPE (parent_type);
6957 /* If there is a parallel XVS type, get the actual base type. */
6958 parent_type = ada_get_base_type (parent_type);
6959
6960 return ada_check_typedef (parent_type);
6961 }
14f9c5c9
AS
6962
6963 return NULL;
6964}
6965
4c4b4cd2
PH
6966/* True iff field number FIELD_NUM of structure type TYPE contains the
6967 parent-type (inherited) fields of a derived type. Assumes TYPE is
6968 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6969
6970int
ebf56fd3 6971ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6972{
61ee279c 6973 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6974
4c4b4cd2 6975 return (name != NULL
61012eef
GB
6976 && (startswith (name, "PARENT")
6977 || startswith (name, "_parent")));
14f9c5c9
AS
6978}
6979
4c4b4cd2 6980/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6981 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6982 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6983 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6984 structures. */
14f9c5c9
AS
6985
6986int
ebf56fd3 6987ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6988{
d2e4a39e 6989 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6990
dddc0e16
JB
6991 if (name != NULL && strcmp (name, "RETVAL") == 0)
6992 {
6993 /* This happens in functions with "out" or "in out" parameters
6994 which are passed by copy. For such functions, GNAT describes
6995 the function's return type as being a struct where the return
6996 value is in a field called RETVAL, and where the other "out"
6997 or "in out" parameters are fields of that struct. This is not
6998 a wrapper. */
6999 return 0;
7000 }
7001
d2e4a39e 7002 return (name != NULL
61012eef 7003 && (startswith (name, "PARENT")
4c4b4cd2 7004 || strcmp (name, "REP") == 0
61012eef 7005 || startswith (name, "_parent")
4c4b4cd2 7006 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7007}
7008
4c4b4cd2
PH
7009/* True iff field number FIELD_NUM of structure or union type TYPE
7010 is a variant wrapper. Assumes TYPE is a structure type with at least
7011 FIELD_NUM+1 fields. */
14f9c5c9
AS
7012
7013int
ebf56fd3 7014ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7015{
d2e4a39e 7016 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7017
14f9c5c9 7018 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7019 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7020 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7021 == TYPE_CODE_UNION)));
14f9c5c9
AS
7022}
7023
7024/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7025 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7026 returns the type of the controlling discriminant for the variant.
7027 May return NULL if the type could not be found. */
14f9c5c9 7028
d2e4a39e 7029struct type *
ebf56fd3 7030ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7031{
a121b7c1 7032 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7033
988f6b3d 7034 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7035}
7036
4c4b4cd2 7037/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7038 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7039 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7040
7041int
ebf56fd3 7042ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7043{
d2e4a39e 7044 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7045
14f9c5c9
AS
7046 return (name != NULL && name[0] == 'O');
7047}
7048
7049/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7050 returns the name of the discriminant controlling the variant.
7051 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7052
a121b7c1 7053const char *
ebf56fd3 7054ada_variant_discrim_name (struct type *type0)
14f9c5c9 7055{
d2e4a39e 7056 static char *result = NULL;
14f9c5c9 7057 static size_t result_len = 0;
d2e4a39e
AS
7058 struct type *type;
7059 const char *name;
7060 const char *discrim_end;
7061 const char *discrim_start;
14f9c5c9
AS
7062
7063 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7064 type = TYPE_TARGET_TYPE (type0);
7065 else
7066 type = type0;
7067
7068 name = ada_type_name (type);
7069
7070 if (name == NULL || name[0] == '\000')
7071 return "";
7072
7073 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7074 discrim_end -= 1)
7075 {
61012eef 7076 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7077 break;
14f9c5c9
AS
7078 }
7079 if (discrim_end == name)
7080 return "";
7081
d2e4a39e 7082 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7083 discrim_start -= 1)
7084 {
d2e4a39e 7085 if (discrim_start == name + 1)
4c4b4cd2 7086 return "";
76a01679 7087 if ((discrim_start > name + 3
61012eef 7088 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7089 || discrim_start[-1] == '.')
7090 break;
14f9c5c9
AS
7091 }
7092
7093 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7094 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7095 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7096 return result;
7097}
7098
4c4b4cd2
PH
7099/* Scan STR for a subtype-encoded number, beginning at position K.
7100 Put the position of the character just past the number scanned in
7101 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7102 Return 1 if there was a valid number at the given position, and 0
7103 otherwise. A "subtype-encoded" number consists of the absolute value
7104 in decimal, followed by the letter 'm' to indicate a negative number.
7105 Assumes 0m does not occur. */
14f9c5c9
AS
7106
7107int
d2e4a39e 7108ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7109{
7110 ULONGEST RU;
7111
d2e4a39e 7112 if (!isdigit (str[k]))
14f9c5c9
AS
7113 return 0;
7114
4c4b4cd2 7115 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7116 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7117 LONGEST. */
14f9c5c9
AS
7118 RU = 0;
7119 while (isdigit (str[k]))
7120 {
d2e4a39e 7121 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7122 k += 1;
7123 }
7124
d2e4a39e 7125 if (str[k] == 'm')
14f9c5c9
AS
7126 {
7127 if (R != NULL)
4c4b4cd2 7128 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7129 k += 1;
7130 }
7131 else if (R != NULL)
7132 *R = (LONGEST) RU;
7133
4c4b4cd2 7134 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7135 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7136 number representable as a LONGEST (although either would probably work
7137 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7138 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7139
7140 if (new_k != NULL)
7141 *new_k = k;
7142 return 1;
7143}
7144
4c4b4cd2
PH
7145/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7146 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7147 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7148
d2e4a39e 7149int
ebf56fd3 7150ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7151{
d2e4a39e 7152 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7153 int p;
7154
7155 p = 0;
7156 while (1)
7157 {
d2e4a39e 7158 switch (name[p])
4c4b4cd2
PH
7159 {
7160 case '\0':
7161 return 0;
7162 case 'S':
7163 {
7164 LONGEST W;
5b4ee69b 7165
4c4b4cd2
PH
7166 if (!ada_scan_number (name, p + 1, &W, &p))
7167 return 0;
7168 if (val == W)
7169 return 1;
7170 break;
7171 }
7172 case 'R':
7173 {
7174 LONGEST L, U;
5b4ee69b 7175
4c4b4cd2
PH
7176 if (!ada_scan_number (name, p + 1, &L, &p)
7177 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7178 return 0;
7179 if (val >= L && val <= U)
7180 return 1;
7181 break;
7182 }
7183 case 'O':
7184 return 1;
7185 default:
7186 return 0;
7187 }
7188 }
7189}
7190
0963b4bd 7191/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7192
7193/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7194 ARG_TYPE, extract and return the value of one of its (non-static)
7195 fields. FIELDNO says which field. Differs from value_primitive_field
7196 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7197
4c4b4cd2 7198static struct value *
d2e4a39e 7199ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7200 struct type *arg_type)
14f9c5c9 7201{
14f9c5c9
AS
7202 struct type *type;
7203
61ee279c 7204 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7205 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7206
4c4b4cd2 7207 /* Handle packed fields. */
14f9c5c9
AS
7208
7209 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7210 {
7211 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7212 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7213
0fd88904 7214 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7215 offset + bit_pos / 8,
7216 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7217 }
7218 else
7219 return value_primitive_field (arg1, offset, fieldno, arg_type);
7220}
7221
52ce6436
PH
7222/* Find field with name NAME in object of type TYPE. If found,
7223 set the following for each argument that is non-null:
7224 - *FIELD_TYPE_P to the field's type;
7225 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7226 an object of that type;
7227 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7228 - *BIT_SIZE_P to its size in bits if the field is packed, and
7229 0 otherwise;
7230 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7231 fields up to but not including the desired field, or by the total
7232 number of fields if not found. A NULL value of NAME never
7233 matches; the function just counts visible fields in this case.
7234
0963b4bd 7235 Returns 1 if found, 0 otherwise. */
52ce6436 7236
4c4b4cd2 7237static int
0d5cff50 7238find_struct_field (const char *name, struct type *type, int offset,
76a01679 7239 struct type **field_type_p,
52ce6436
PH
7240 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7241 int *index_p)
4c4b4cd2
PH
7242{
7243 int i;
7244
61ee279c 7245 type = ada_check_typedef (type);
76a01679 7246
52ce6436
PH
7247 if (field_type_p != NULL)
7248 *field_type_p = NULL;
7249 if (byte_offset_p != NULL)
d5d6fca5 7250 *byte_offset_p = 0;
52ce6436
PH
7251 if (bit_offset_p != NULL)
7252 *bit_offset_p = 0;
7253 if (bit_size_p != NULL)
7254 *bit_size_p = 0;
7255
7256 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7257 {
7258 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7259 int fld_offset = offset + bit_pos / 8;
0d5cff50 7260 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7261
4c4b4cd2
PH
7262 if (t_field_name == NULL)
7263 continue;
7264
52ce6436 7265 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7266 {
7267 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7268
52ce6436
PH
7269 if (field_type_p != NULL)
7270 *field_type_p = TYPE_FIELD_TYPE (type, i);
7271 if (byte_offset_p != NULL)
7272 *byte_offset_p = fld_offset;
7273 if (bit_offset_p != NULL)
7274 *bit_offset_p = bit_pos % 8;
7275 if (bit_size_p != NULL)
7276 *bit_size_p = bit_size;
76a01679
JB
7277 return 1;
7278 }
4c4b4cd2
PH
7279 else if (ada_is_wrapper_field (type, i))
7280 {
52ce6436
PH
7281 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7282 field_type_p, byte_offset_p, bit_offset_p,
7283 bit_size_p, index_p))
76a01679
JB
7284 return 1;
7285 }
4c4b4cd2
PH
7286 else if (ada_is_variant_part (type, i))
7287 {
52ce6436
PH
7288 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7289 fixed type?? */
4c4b4cd2 7290 int j;
52ce6436
PH
7291 struct type *field_type
7292 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7293
52ce6436 7294 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7295 {
76a01679
JB
7296 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7297 fld_offset
7298 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7299 field_type_p, byte_offset_p,
52ce6436 7300 bit_offset_p, bit_size_p, index_p))
76a01679 7301 return 1;
4c4b4cd2
PH
7302 }
7303 }
52ce6436
PH
7304 else if (index_p != NULL)
7305 *index_p += 1;
4c4b4cd2
PH
7306 }
7307 return 0;
7308}
7309
0963b4bd 7310/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7311
52ce6436
PH
7312static int
7313num_visible_fields (struct type *type)
7314{
7315 int n;
5b4ee69b 7316
52ce6436
PH
7317 n = 0;
7318 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7319 return n;
7320}
14f9c5c9 7321
4c4b4cd2 7322/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7323 and search in it assuming it has (class) type TYPE.
7324 If found, return value, else return NULL.
7325
4c4b4cd2 7326 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7327
4c4b4cd2 7328static struct value *
108d56a4 7329ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7330 struct type *type)
14f9c5c9
AS
7331{
7332 int i;
14f9c5c9 7333
5b4ee69b 7334 type = ada_check_typedef (type);
52ce6436 7335 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7336 {
0d5cff50 7337 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7338
7339 if (t_field_name == NULL)
4c4b4cd2 7340 continue;
14f9c5c9
AS
7341
7342 else if (field_name_match (t_field_name, name))
4c4b4cd2 7343 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7344
7345 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7346 {
0963b4bd 7347 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7348 ada_search_struct_field (name, arg,
7349 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7350 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7351
4c4b4cd2
PH
7352 if (v != NULL)
7353 return v;
7354 }
14f9c5c9
AS
7355
7356 else if (ada_is_variant_part (type, i))
4c4b4cd2 7357 {
0963b4bd 7358 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7359 int j;
5b4ee69b
MS
7360 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7361 i));
4c4b4cd2
PH
7362 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7363
52ce6436 7364 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7365 {
0963b4bd
MS
7366 struct value *v = ada_search_struct_field /* Force line
7367 break. */
06d5cf63
JB
7368 (name, arg,
7369 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7370 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7371
4c4b4cd2
PH
7372 if (v != NULL)
7373 return v;
7374 }
7375 }
14f9c5c9
AS
7376 }
7377 return NULL;
7378}
d2e4a39e 7379
52ce6436
PH
7380static struct value *ada_index_struct_field_1 (int *, struct value *,
7381 int, struct type *);
7382
7383
7384/* Return field #INDEX in ARG, where the index is that returned by
7385 * find_struct_field through its INDEX_P argument. Adjust the address
7386 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7387 * If found, return value, else return NULL. */
52ce6436
PH
7388
7389static struct value *
7390ada_index_struct_field (int index, struct value *arg, int offset,
7391 struct type *type)
7392{
7393 return ada_index_struct_field_1 (&index, arg, offset, type);
7394}
7395
7396
7397/* Auxiliary function for ada_index_struct_field. Like
7398 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7399 * *INDEX_P. */
52ce6436
PH
7400
7401static struct value *
7402ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7403 struct type *type)
7404{
7405 int i;
7406 type = ada_check_typedef (type);
7407
7408 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7409 {
7410 if (TYPE_FIELD_NAME (type, i) == NULL)
7411 continue;
7412 else if (ada_is_wrapper_field (type, i))
7413 {
0963b4bd 7414 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7415 ada_index_struct_field_1 (index_p, arg,
7416 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7417 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7418
52ce6436
PH
7419 if (v != NULL)
7420 return v;
7421 }
7422
7423 else if (ada_is_variant_part (type, i))
7424 {
7425 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7426 find_struct_field. */
52ce6436
PH
7427 error (_("Cannot assign this kind of variant record"));
7428 }
7429 else if (*index_p == 0)
7430 return ada_value_primitive_field (arg, offset, i, type);
7431 else
7432 *index_p -= 1;
7433 }
7434 return NULL;
7435}
7436
4c4b4cd2
PH
7437/* Given ARG, a value of type (pointer or reference to a)*
7438 structure/union, extract the component named NAME from the ultimate
7439 target structure/union and return it as a value with its
f5938064 7440 appropriate type.
14f9c5c9 7441
4c4b4cd2
PH
7442 The routine searches for NAME among all members of the structure itself
7443 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7444 (e.g., '_parent').
7445
03ee6b2e
PH
7446 If NO_ERR, then simply return NULL in case of error, rather than
7447 calling error. */
14f9c5c9 7448
d2e4a39e 7449struct value *
a121b7c1 7450ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7451{
4c4b4cd2 7452 struct type *t, *t1;
d2e4a39e 7453 struct value *v;
14f9c5c9 7454
4c4b4cd2 7455 v = NULL;
df407dfe 7456 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7457 if (TYPE_CODE (t) == TYPE_CODE_REF)
7458 {
7459 t1 = TYPE_TARGET_TYPE (t);
7460 if (t1 == NULL)
03ee6b2e 7461 goto BadValue;
61ee279c 7462 t1 = ada_check_typedef (t1);
4c4b4cd2 7463 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7464 {
994b9211 7465 arg = coerce_ref (arg);
76a01679
JB
7466 t = t1;
7467 }
4c4b4cd2 7468 }
14f9c5c9 7469
4c4b4cd2
PH
7470 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7471 {
7472 t1 = TYPE_TARGET_TYPE (t);
7473 if (t1 == NULL)
03ee6b2e 7474 goto BadValue;
61ee279c 7475 t1 = ada_check_typedef (t1);
4c4b4cd2 7476 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7477 {
7478 arg = value_ind (arg);
7479 t = t1;
7480 }
4c4b4cd2 7481 else
76a01679 7482 break;
4c4b4cd2 7483 }
14f9c5c9 7484
4c4b4cd2 7485 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7486 goto BadValue;
14f9c5c9 7487
4c4b4cd2
PH
7488 if (t1 == t)
7489 v = ada_search_struct_field (name, arg, 0, t);
7490 else
7491 {
7492 int bit_offset, bit_size, byte_offset;
7493 struct type *field_type;
7494 CORE_ADDR address;
7495
76a01679 7496 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7497 address = value_address (ada_value_ind (arg));
4c4b4cd2 7498 else
b50d69b5 7499 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7500
1ed6ede0 7501 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7502 if (find_struct_field (name, t1, 0,
7503 &field_type, &byte_offset, &bit_offset,
52ce6436 7504 &bit_size, NULL))
76a01679
JB
7505 {
7506 if (bit_size != 0)
7507 {
714e53ab
PH
7508 if (TYPE_CODE (t) == TYPE_CODE_REF)
7509 arg = ada_coerce_ref (arg);
7510 else
7511 arg = ada_value_ind (arg);
76a01679
JB
7512 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7513 bit_offset, bit_size,
7514 field_type);
7515 }
7516 else
f5938064 7517 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7518 }
7519 }
7520
03ee6b2e
PH
7521 if (v != NULL || no_err)
7522 return v;
7523 else
323e0a4a 7524 error (_("There is no member named %s."), name);
14f9c5c9 7525
03ee6b2e
PH
7526 BadValue:
7527 if (no_err)
7528 return NULL;
7529 else
0963b4bd
MS
7530 error (_("Attempt to extract a component of "
7531 "a value that is not a record."));
14f9c5c9
AS
7532}
7533
3b4de39c 7534/* Return a string representation of type TYPE. */
99bbb428 7535
3b4de39c 7536static std::string
99bbb428
PA
7537type_as_string (struct type *type)
7538{
d7e74731 7539 string_file tmp_stream;
99bbb428 7540
d7e74731 7541 type_print (type, "", &tmp_stream, -1);
99bbb428 7542
d7e74731 7543 return std::move (tmp_stream.string ());
99bbb428
PA
7544}
7545
14f9c5c9 7546/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7547 If DISPP is non-null, add its byte displacement from the beginning of a
7548 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7549 work for packed fields).
7550
7551 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7552 followed by "___".
14f9c5c9 7553
0963b4bd 7554 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7555 be a (pointer or reference)+ to a struct or union, and the
7556 ultimate target type will be searched.
14f9c5c9
AS
7557
7558 Looks recursively into variant clauses and parent types.
7559
4c4b4cd2
PH
7560 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7561 TYPE is not a type of the right kind. */
14f9c5c9 7562
4c4b4cd2 7563static struct type *
a121b7c1 7564ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7565 int noerr)
14f9c5c9
AS
7566{
7567 int i;
7568
7569 if (name == NULL)
7570 goto BadName;
7571
76a01679 7572 if (refok && type != NULL)
4c4b4cd2
PH
7573 while (1)
7574 {
61ee279c 7575 type = ada_check_typedef (type);
76a01679
JB
7576 if (TYPE_CODE (type) != TYPE_CODE_PTR
7577 && TYPE_CODE (type) != TYPE_CODE_REF)
7578 break;
7579 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7580 }
14f9c5c9 7581
76a01679 7582 if (type == NULL
1265e4aa
JB
7583 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7584 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7585 {
4c4b4cd2 7586 if (noerr)
76a01679 7587 return NULL;
99bbb428 7588
3b4de39c
PA
7589 error (_("Type %s is not a structure or union type"),
7590 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7591 }
7592
7593 type = to_static_fixed_type (type);
7594
7595 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7596 {
0d5cff50 7597 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7598 struct type *t;
d2e4a39e 7599
14f9c5c9 7600 if (t_field_name == NULL)
4c4b4cd2 7601 continue;
14f9c5c9
AS
7602
7603 else if (field_name_match (t_field_name, name))
988f6b3d 7604 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7605
7606 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7607 {
4c4b4cd2 7608 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7609 0, 1);
4c4b4cd2 7610 if (t != NULL)
988f6b3d 7611 return t;
4c4b4cd2 7612 }
14f9c5c9
AS
7613
7614 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7615 {
7616 int j;
5b4ee69b
MS
7617 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7618 i));
4c4b4cd2
PH
7619
7620 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7621 {
b1f33ddd
JB
7622 /* FIXME pnh 2008/01/26: We check for a field that is
7623 NOT wrapped in a struct, since the compiler sometimes
7624 generates these for unchecked variant types. Revisit
0963b4bd 7625 if the compiler changes this practice. */
0d5cff50 7626 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7627
b1f33ddd
JB
7628 if (v_field_name != NULL
7629 && field_name_match (v_field_name, name))
460efde1 7630 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7631 else
0963b4bd
MS
7632 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7633 j),
988f6b3d 7634 name, 0, 1);
b1f33ddd 7635
4c4b4cd2 7636 if (t != NULL)
988f6b3d 7637 return t;
4c4b4cd2
PH
7638 }
7639 }
14f9c5c9
AS
7640
7641 }
7642
7643BadName:
d2e4a39e 7644 if (!noerr)
14f9c5c9 7645 {
2b2798cc 7646 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7647
7648 error (_("Type %s has no component named %s"),
3b4de39c 7649 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7650 }
7651
7652 return NULL;
7653}
7654
b1f33ddd
JB
7655/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7656 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7657 represents an unchecked union (that is, the variant part of a
0963b4bd 7658 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7659
7660static int
7661is_unchecked_variant (struct type *var_type, struct type *outer_type)
7662{
a121b7c1 7663 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7664
988f6b3d 7665 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7666}
7667
7668
14f9c5c9
AS
7669/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7670 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7671 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7672 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7673
d2e4a39e 7674int
ebf56fd3 7675ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7676 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7677{
7678 int others_clause;
7679 int i;
a121b7c1 7680 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7681 struct value *outer;
7682 struct value *discrim;
14f9c5c9
AS
7683 LONGEST discrim_val;
7684
012370f6
TT
7685 /* Using plain value_from_contents_and_address here causes problems
7686 because we will end up trying to resolve a type that is currently
7687 being constructed. */
7688 outer = value_from_contents_and_address_unresolved (outer_type,
7689 outer_valaddr, 0);
0c281816
JB
7690 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7691 if (discrim == NULL)
14f9c5c9 7692 return -1;
0c281816 7693 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7694
7695 others_clause = -1;
7696 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7697 {
7698 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7699 others_clause = i;
14f9c5c9 7700 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7701 return i;
14f9c5c9
AS
7702 }
7703
7704 return others_clause;
7705}
d2e4a39e 7706\f
14f9c5c9
AS
7707
7708
4c4b4cd2 7709 /* Dynamic-Sized Records */
14f9c5c9
AS
7710
7711/* Strategy: The type ostensibly attached to a value with dynamic size
7712 (i.e., a size that is not statically recorded in the debugging
7713 data) does not accurately reflect the size or layout of the value.
7714 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7715 conventional types that are constructed on the fly. */
14f9c5c9
AS
7716
7717/* There is a subtle and tricky problem here. In general, we cannot
7718 determine the size of dynamic records without its data. However,
7719 the 'struct value' data structure, which GDB uses to represent
7720 quantities in the inferior process (the target), requires the size
7721 of the type at the time of its allocation in order to reserve space
7722 for GDB's internal copy of the data. That's why the
7723 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7724 rather than struct value*s.
14f9c5c9
AS
7725
7726 However, GDB's internal history variables ($1, $2, etc.) are
7727 struct value*s containing internal copies of the data that are not, in
7728 general, the same as the data at their corresponding addresses in
7729 the target. Fortunately, the types we give to these values are all
7730 conventional, fixed-size types (as per the strategy described
7731 above), so that we don't usually have to perform the
7732 'to_fixed_xxx_type' conversions to look at their values.
7733 Unfortunately, there is one exception: if one of the internal
7734 history variables is an array whose elements are unconstrained
7735 records, then we will need to create distinct fixed types for each
7736 element selected. */
7737
7738/* The upshot of all of this is that many routines take a (type, host
7739 address, target address) triple as arguments to represent a value.
7740 The host address, if non-null, is supposed to contain an internal
7741 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7742 target at the target address. */
14f9c5c9
AS
7743
7744/* Assuming that VAL0 represents a pointer value, the result of
7745 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7746 dynamic-sized types. */
14f9c5c9 7747
d2e4a39e
AS
7748struct value *
7749ada_value_ind (struct value *val0)
14f9c5c9 7750{
c48db5ca 7751 struct value *val = value_ind (val0);
5b4ee69b 7752
b50d69b5
JG
7753 if (ada_is_tagged_type (value_type (val), 0))
7754 val = ada_tag_value_at_base_address (val);
7755
4c4b4cd2 7756 return ada_to_fixed_value (val);
14f9c5c9
AS
7757}
7758
7759/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7760 qualifiers on VAL0. */
7761
d2e4a39e
AS
7762static struct value *
7763ada_coerce_ref (struct value *val0)
7764{
df407dfe 7765 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7766 {
7767 struct value *val = val0;
5b4ee69b 7768
994b9211 7769 val = coerce_ref (val);
b50d69b5
JG
7770
7771 if (ada_is_tagged_type (value_type (val), 0))
7772 val = ada_tag_value_at_base_address (val);
7773
4c4b4cd2 7774 return ada_to_fixed_value (val);
d2e4a39e
AS
7775 }
7776 else
14f9c5c9
AS
7777 return val0;
7778}
7779
7780/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7781 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7782
7783static unsigned int
ebf56fd3 7784align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7785{
7786 return (off + alignment - 1) & ~(alignment - 1);
7787}
7788
4c4b4cd2 7789/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7790
7791static unsigned int
ebf56fd3 7792field_alignment (struct type *type, int f)
14f9c5c9 7793{
d2e4a39e 7794 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7795 int len;
14f9c5c9
AS
7796 int align_offset;
7797
64a1bf19
JB
7798 /* The field name should never be null, unless the debugging information
7799 is somehow malformed. In this case, we assume the field does not
7800 require any alignment. */
7801 if (name == NULL)
7802 return 1;
7803
7804 len = strlen (name);
7805
4c4b4cd2
PH
7806 if (!isdigit (name[len - 1]))
7807 return 1;
14f9c5c9 7808
d2e4a39e 7809 if (isdigit (name[len - 2]))
14f9c5c9
AS
7810 align_offset = len - 2;
7811 else
7812 align_offset = len - 1;
7813
61012eef 7814 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7815 return TARGET_CHAR_BIT;
7816
4c4b4cd2
PH
7817 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7818}
7819
852dff6c 7820/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7821
852dff6c
JB
7822static struct symbol *
7823ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7824{
7825 struct symbol *sym;
7826
7827 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7828 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7829 return sym;
7830
4186eb54
KS
7831 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7832 return sym;
14f9c5c9
AS
7833}
7834
dddfab26
UW
7835/* Find a type named NAME. Ignores ambiguity. This routine will look
7836 solely for types defined by debug info, it will not search the GDB
7837 primitive types. */
4c4b4cd2 7838
852dff6c 7839static struct type *
ebf56fd3 7840ada_find_any_type (const char *name)
14f9c5c9 7841{
852dff6c 7842 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7843
14f9c5c9 7844 if (sym != NULL)
dddfab26 7845 return SYMBOL_TYPE (sym);
14f9c5c9 7846
dddfab26 7847 return NULL;
14f9c5c9
AS
7848}
7849
739593e0
JB
7850/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7851 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7852 symbol, in which case it is returned. Otherwise, this looks for
7853 symbols whose name is that of NAME_SYM suffixed with "___XR".
7854 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7855
7856struct symbol *
270140bd 7857ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7858{
739593e0 7859 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7860 struct symbol *sym;
7861
739593e0
JB
7862 if (strstr (name, "___XR") != NULL)
7863 return name_sym;
7864
aeb5907d
JB
7865 sym = find_old_style_renaming_symbol (name, block);
7866
7867 if (sym != NULL)
7868 return sym;
7869
0963b4bd 7870 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7871 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7872 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7873 return sym;
7874 else
7875 return NULL;
7876}
7877
7878static struct symbol *
270140bd 7879find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7880{
7f0df278 7881 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7882 char *rename;
7883
7884 if (function_sym != NULL)
7885 {
7886 /* If the symbol is defined inside a function, NAME is not fully
7887 qualified. This means we need to prepend the function name
7888 as well as adding the ``___XR'' suffix to build the name of
7889 the associated renaming symbol. */
0d5cff50 7890 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7891 /* Function names sometimes contain suffixes used
7892 for instance to qualify nested subprograms. When building
7893 the XR type name, we need to make sure that this suffix is
7894 not included. So do not include any suffix in the function
7895 name length below. */
69fadcdf 7896 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7897 const int rename_len = function_name_len + 2 /* "__" */
7898 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7899
529cad9c 7900 /* Strip the suffix if necessary. */
69fadcdf
JB
7901 ada_remove_trailing_digits (function_name, &function_name_len);
7902 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7903 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7904
4c4b4cd2
PH
7905 /* Library-level functions are a special case, as GNAT adds
7906 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7907 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7908 have this prefix, so we need to skip this prefix if present. */
7909 if (function_name_len > 5 /* "_ada_" */
7910 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7911 {
7912 function_name += 5;
7913 function_name_len -= 5;
7914 }
4c4b4cd2
PH
7915
7916 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7917 strncpy (rename, function_name, function_name_len);
7918 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7919 "__%s___XR", name);
4c4b4cd2
PH
7920 }
7921 else
7922 {
7923 const int rename_len = strlen (name) + 6;
5b4ee69b 7924
4c4b4cd2 7925 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7926 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7927 }
7928
852dff6c 7929 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7930}
7931
14f9c5c9 7932/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7933 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7934 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7935 otherwise return 0. */
7936
14f9c5c9 7937int
d2e4a39e 7938ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7939{
7940 if (type1 == NULL)
7941 return 1;
7942 else if (type0 == NULL)
7943 return 0;
7944 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7945 return 1;
7946 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7947 return 0;
4c4b4cd2
PH
7948 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7949 return 1;
ad82864c 7950 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7951 return 1;
4c4b4cd2
PH
7952 else if (ada_is_array_descriptor_type (type0)
7953 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7954 return 1;
aeb5907d
JB
7955 else
7956 {
7957 const char *type0_name = type_name_no_tag (type0);
7958 const char *type1_name = type_name_no_tag (type1);
7959
7960 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7961 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7962 return 1;
7963 }
14f9c5c9
AS
7964 return 0;
7965}
7966
7967/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7968 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7969
0d5cff50 7970const char *
d2e4a39e 7971ada_type_name (struct type *type)
14f9c5c9 7972{
d2e4a39e 7973 if (type == NULL)
14f9c5c9
AS
7974 return NULL;
7975 else if (TYPE_NAME (type) != NULL)
7976 return TYPE_NAME (type);
7977 else
7978 return TYPE_TAG_NAME (type);
7979}
7980
b4ba55a1
JB
7981/* Search the list of "descriptive" types associated to TYPE for a type
7982 whose name is NAME. */
7983
7984static struct type *
7985find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7986{
931e5bc3 7987 struct type *result, *tmp;
b4ba55a1 7988
c6044dd1
JB
7989 if (ada_ignore_descriptive_types_p)
7990 return NULL;
7991
b4ba55a1
JB
7992 /* If there no descriptive-type info, then there is no parallel type
7993 to be found. */
7994 if (!HAVE_GNAT_AUX_INFO (type))
7995 return NULL;
7996
7997 result = TYPE_DESCRIPTIVE_TYPE (type);
7998 while (result != NULL)
7999 {
0d5cff50 8000 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8001
8002 if (result_name == NULL)
8003 {
8004 warning (_("unexpected null name on descriptive type"));
8005 return NULL;
8006 }
8007
8008 /* If the names match, stop. */
8009 if (strcmp (result_name, name) == 0)
8010 break;
8011
8012 /* Otherwise, look at the next item on the list, if any. */
8013 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8014 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8015 else
8016 tmp = NULL;
8017
8018 /* If not found either, try after having resolved the typedef. */
8019 if (tmp != NULL)
8020 result = tmp;
b4ba55a1 8021 else
931e5bc3 8022 {
f168693b 8023 result = check_typedef (result);
931e5bc3
JG
8024 if (HAVE_GNAT_AUX_INFO (result))
8025 result = TYPE_DESCRIPTIVE_TYPE (result);
8026 else
8027 result = NULL;
8028 }
b4ba55a1
JB
8029 }
8030
8031 /* If we didn't find a match, see whether this is a packed array. With
8032 older compilers, the descriptive type information is either absent or
8033 irrelevant when it comes to packed arrays so the above lookup fails.
8034 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8035 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8036 return ada_find_any_type (name);
8037
8038 return result;
8039}
8040
8041/* Find a parallel type to TYPE with the specified NAME, using the
8042 descriptive type taken from the debugging information, if available,
8043 and otherwise using the (slower) name-based method. */
8044
8045static struct type *
8046ada_find_parallel_type_with_name (struct type *type, const char *name)
8047{
8048 struct type *result = NULL;
8049
8050 if (HAVE_GNAT_AUX_INFO (type))
8051 result = find_parallel_type_by_descriptive_type (type, name);
8052 else
8053 result = ada_find_any_type (name);
8054
8055 return result;
8056}
8057
8058/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8059 SUFFIX to the name of TYPE. */
14f9c5c9 8060
d2e4a39e 8061struct type *
ebf56fd3 8062ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8063{
0d5cff50 8064 char *name;
fe978cb0 8065 const char *type_name = ada_type_name (type);
14f9c5c9 8066 int len;
d2e4a39e 8067
fe978cb0 8068 if (type_name == NULL)
14f9c5c9
AS
8069 return NULL;
8070
fe978cb0 8071 len = strlen (type_name);
14f9c5c9 8072
b4ba55a1 8073 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8074
fe978cb0 8075 strcpy (name, type_name);
14f9c5c9
AS
8076 strcpy (name + len, suffix);
8077
b4ba55a1 8078 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8079}
8080
14f9c5c9 8081/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8082 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8083
d2e4a39e
AS
8084static struct type *
8085dynamic_template_type (struct type *type)
14f9c5c9 8086{
61ee279c 8087 type = ada_check_typedef (type);
14f9c5c9
AS
8088
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8090 || ada_type_name (type) == NULL)
14f9c5c9 8091 return NULL;
d2e4a39e 8092 else
14f9c5c9
AS
8093 {
8094 int len = strlen (ada_type_name (type));
5b4ee69b 8095
4c4b4cd2
PH
8096 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8097 return type;
14f9c5c9 8098 else
4c4b4cd2 8099 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8100 }
8101}
8102
8103/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8104 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8105
d2e4a39e
AS
8106static int
8107is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8108{
8109 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8110
d2e4a39e 8111 return name != NULL
14f9c5c9
AS
8112 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8113 && strstr (name, "___XVL") != NULL;
8114}
8115
4c4b4cd2
PH
8116/* The index of the variant field of TYPE, or -1 if TYPE does not
8117 represent a variant record type. */
14f9c5c9 8118
d2e4a39e 8119static int
4c4b4cd2 8120variant_field_index (struct type *type)
14f9c5c9
AS
8121{
8122 int f;
8123
4c4b4cd2
PH
8124 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8125 return -1;
8126
8127 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8128 {
8129 if (ada_is_variant_part (type, f))
8130 return f;
8131 }
8132 return -1;
14f9c5c9
AS
8133}
8134
4c4b4cd2
PH
8135/* A record type with no fields. */
8136
d2e4a39e 8137static struct type *
fe978cb0 8138empty_record (struct type *templ)
14f9c5c9 8139{
fe978cb0 8140 struct type *type = alloc_type_copy (templ);
5b4ee69b 8141
14f9c5c9
AS
8142 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8143 TYPE_NFIELDS (type) = 0;
8144 TYPE_FIELDS (type) = NULL;
b1f33ddd 8145 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8146 TYPE_NAME (type) = "<empty>";
8147 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8148 TYPE_LENGTH (type) = 0;
8149 return type;
8150}
8151
8152/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8153 the value of type TYPE at VALADDR or ADDRESS (see comments at
8154 the beginning of this section) VAL according to GNAT conventions.
8155 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8156 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8157 an outer-level type (i.e., as opposed to a branch of a variant.) A
8158 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8159 of the variant.
14f9c5c9 8160
4c4b4cd2
PH
8161 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8162 length are not statically known are discarded. As a consequence,
8163 VALADDR, ADDRESS and DVAL0 are ignored.
8164
8165 NOTE: Limitations: For now, we assume that dynamic fields and
8166 variants occupy whole numbers of bytes. However, they need not be
8167 byte-aligned. */
8168
8169struct type *
10a2c479 8170ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8171 const gdb_byte *valaddr,
4c4b4cd2
PH
8172 CORE_ADDR address, struct value *dval0,
8173 int keep_dynamic_fields)
14f9c5c9 8174{
d2e4a39e
AS
8175 struct value *mark = value_mark ();
8176 struct value *dval;
8177 struct type *rtype;
14f9c5c9 8178 int nfields, bit_len;
4c4b4cd2 8179 int variant_field;
14f9c5c9 8180 long off;
d94e4f4f 8181 int fld_bit_len;
14f9c5c9
AS
8182 int f;
8183
4c4b4cd2
PH
8184 /* Compute the number of fields in this record type that are going
8185 to be processed: unless keep_dynamic_fields, this includes only
8186 fields whose position and length are static will be processed. */
8187 if (keep_dynamic_fields)
8188 nfields = TYPE_NFIELDS (type);
8189 else
8190 {
8191 nfields = 0;
76a01679 8192 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8193 && !ada_is_variant_part (type, nfields)
8194 && !is_dynamic_field (type, nfields))
8195 nfields++;
8196 }
8197
e9bb382b 8198 rtype = alloc_type_copy (type);
14f9c5c9
AS
8199 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8200 INIT_CPLUS_SPECIFIC (rtype);
8201 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8202 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8203 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8204 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8205 TYPE_NAME (rtype) = ada_type_name (type);
8206 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8207 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8208
d2e4a39e
AS
8209 off = 0;
8210 bit_len = 0;
4c4b4cd2
PH
8211 variant_field = -1;
8212
14f9c5c9
AS
8213 for (f = 0; f < nfields; f += 1)
8214 {
6c038f32
PH
8215 off = align_value (off, field_alignment (type, f))
8216 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8217 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8218 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8219
d2e4a39e 8220 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8221 {
8222 variant_field = f;
d94e4f4f 8223 fld_bit_len = 0;
4c4b4cd2 8224 }
14f9c5c9 8225 else if (is_dynamic_field (type, f))
4c4b4cd2 8226 {
284614f0
JB
8227 const gdb_byte *field_valaddr = valaddr;
8228 CORE_ADDR field_address = address;
8229 struct type *field_type =
8230 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8231
4c4b4cd2 8232 if (dval0 == NULL)
b5304971
JG
8233 {
8234 /* rtype's length is computed based on the run-time
8235 value of discriminants. If the discriminants are not
8236 initialized, the type size may be completely bogus and
0963b4bd 8237 GDB may fail to allocate a value for it. So check the
b5304971 8238 size first before creating the value. */
c1b5a1a6 8239 ada_ensure_varsize_limit (rtype);
012370f6
TT
8240 /* Using plain value_from_contents_and_address here
8241 causes problems because we will end up trying to
8242 resolve a type that is currently being
8243 constructed. */
8244 dval = value_from_contents_and_address_unresolved (rtype,
8245 valaddr,
8246 address);
9f1f738a 8247 rtype = value_type (dval);
b5304971 8248 }
4c4b4cd2
PH
8249 else
8250 dval = dval0;
8251
284614f0
JB
8252 /* If the type referenced by this field is an aligner type, we need
8253 to unwrap that aligner type, because its size might not be set.
8254 Keeping the aligner type would cause us to compute the wrong
8255 size for this field, impacting the offset of the all the fields
8256 that follow this one. */
8257 if (ada_is_aligner_type (field_type))
8258 {
8259 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8260
8261 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8262 field_address = cond_offset_target (field_address, field_offset);
8263 field_type = ada_aligned_type (field_type);
8264 }
8265
8266 field_valaddr = cond_offset_host (field_valaddr,
8267 off / TARGET_CHAR_BIT);
8268 field_address = cond_offset_target (field_address,
8269 off / TARGET_CHAR_BIT);
8270
8271 /* Get the fixed type of the field. Note that, in this case,
8272 we do not want to get the real type out of the tag: if
8273 the current field is the parent part of a tagged record,
8274 we will get the tag of the object. Clearly wrong: the real
8275 type of the parent is not the real type of the child. We
8276 would end up in an infinite loop. */
8277 field_type = ada_get_base_type (field_type);
8278 field_type = ada_to_fixed_type (field_type, field_valaddr,
8279 field_address, dval, 0);
27f2a97b
JB
8280 /* If the field size is already larger than the maximum
8281 object size, then the record itself will necessarily
8282 be larger than the maximum object size. We need to make
8283 this check now, because the size might be so ridiculously
8284 large (due to an uninitialized variable in the inferior)
8285 that it would cause an overflow when adding it to the
8286 record size. */
c1b5a1a6 8287 ada_ensure_varsize_limit (field_type);
284614f0
JB
8288
8289 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8290 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8291 /* The multiplication can potentially overflow. But because
8292 the field length has been size-checked just above, and
8293 assuming that the maximum size is a reasonable value,
8294 an overflow should not happen in practice. So rather than
8295 adding overflow recovery code to this already complex code,
8296 we just assume that it's not going to happen. */
d94e4f4f 8297 fld_bit_len =
4c4b4cd2
PH
8298 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8299 }
14f9c5c9 8300 else
4c4b4cd2 8301 {
5ded5331
JB
8302 /* Note: If this field's type is a typedef, it is important
8303 to preserve the typedef layer.
8304
8305 Otherwise, we might be transforming a typedef to a fat
8306 pointer (encoding a pointer to an unconstrained array),
8307 into a basic fat pointer (encoding an unconstrained
8308 array). As both types are implemented using the same
8309 structure, the typedef is the only clue which allows us
8310 to distinguish between the two options. Stripping it
8311 would prevent us from printing this field appropriately. */
8312 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8313 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8314 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8315 fld_bit_len =
4c4b4cd2
PH
8316 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8317 else
5ded5331
JB
8318 {
8319 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8320
8321 /* We need to be careful of typedefs when computing
8322 the length of our field. If this is a typedef,
8323 get the length of the target type, not the length
8324 of the typedef. */
8325 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8326 field_type = ada_typedef_target_type (field_type);
8327
8328 fld_bit_len =
8329 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8330 }
4c4b4cd2 8331 }
14f9c5c9 8332 if (off + fld_bit_len > bit_len)
4c4b4cd2 8333 bit_len = off + fld_bit_len;
d94e4f4f 8334 off += fld_bit_len;
4c4b4cd2
PH
8335 TYPE_LENGTH (rtype) =
8336 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8337 }
4c4b4cd2
PH
8338
8339 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8340 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8341 the record. This can happen in the presence of representation
8342 clauses. */
8343 if (variant_field >= 0)
8344 {
8345 struct type *branch_type;
8346
8347 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8348
8349 if (dval0 == NULL)
9f1f738a 8350 {
012370f6
TT
8351 /* Using plain value_from_contents_and_address here causes
8352 problems because we will end up trying to resolve a type
8353 that is currently being constructed. */
8354 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8355 address);
9f1f738a
SA
8356 rtype = value_type (dval);
8357 }
4c4b4cd2
PH
8358 else
8359 dval = dval0;
8360
8361 branch_type =
8362 to_fixed_variant_branch_type
8363 (TYPE_FIELD_TYPE (type, variant_field),
8364 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8365 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8366 if (branch_type == NULL)
8367 {
8368 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8369 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8370 TYPE_NFIELDS (rtype) -= 1;
8371 }
8372 else
8373 {
8374 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8375 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8376 fld_bit_len =
8377 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8378 TARGET_CHAR_BIT;
8379 if (off + fld_bit_len > bit_len)
8380 bit_len = off + fld_bit_len;
8381 TYPE_LENGTH (rtype) =
8382 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8383 }
8384 }
8385
714e53ab
PH
8386 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8387 should contain the alignment of that record, which should be a strictly
8388 positive value. If null or negative, then something is wrong, most
8389 probably in the debug info. In that case, we don't round up the size
0963b4bd 8390 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8391 the current RTYPE length might be good enough for our purposes. */
8392 if (TYPE_LENGTH (type) <= 0)
8393 {
323e0a4a
AC
8394 if (TYPE_NAME (rtype))
8395 warning (_("Invalid type size for `%s' detected: %d."),
8396 TYPE_NAME (rtype), TYPE_LENGTH (type));
8397 else
8398 warning (_("Invalid type size for <unnamed> detected: %d."),
8399 TYPE_LENGTH (type));
714e53ab
PH
8400 }
8401 else
8402 {
8403 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8404 TYPE_LENGTH (type));
8405 }
14f9c5c9
AS
8406
8407 value_free_to_mark (mark);
d2e4a39e 8408 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8409 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8410 return rtype;
8411}
8412
4c4b4cd2
PH
8413/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8414 of 1. */
14f9c5c9 8415
d2e4a39e 8416static struct type *
fc1a4b47 8417template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8418 CORE_ADDR address, struct value *dval0)
8419{
8420 return ada_template_to_fixed_record_type_1 (type, valaddr,
8421 address, dval0, 1);
8422}
8423
8424/* An ordinary record type in which ___XVL-convention fields and
8425 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8426 static approximations, containing all possible fields. Uses
8427 no runtime values. Useless for use in values, but that's OK,
8428 since the results are used only for type determinations. Works on both
8429 structs and unions. Representation note: to save space, we memorize
8430 the result of this function in the TYPE_TARGET_TYPE of the
8431 template type. */
8432
8433static struct type *
8434template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8435{
8436 struct type *type;
8437 int nfields;
8438 int f;
8439
9e195661
PMR
8440 /* No need no do anything if the input type is already fixed. */
8441 if (TYPE_FIXED_INSTANCE (type0))
8442 return type0;
8443
8444 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8445 if (TYPE_TARGET_TYPE (type0) != NULL)
8446 return TYPE_TARGET_TYPE (type0);
8447
9e195661 8448 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8449 type = type0;
9e195661
PMR
8450 nfields = TYPE_NFIELDS (type0);
8451
8452 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8453 recompute all over next time. */
8454 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8455
8456 for (f = 0; f < nfields; f += 1)
8457 {
460efde1 8458 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8459 struct type *new_type;
14f9c5c9 8460
4c4b4cd2 8461 if (is_dynamic_field (type0, f))
460efde1
JB
8462 {
8463 field_type = ada_check_typedef (field_type);
8464 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8465 }
14f9c5c9 8466 else
f192137b 8467 new_type = static_unwrap_type (field_type);
9e195661
PMR
8468
8469 if (new_type != field_type)
8470 {
8471 /* Clone TYPE0 only the first time we get a new field type. */
8472 if (type == type0)
8473 {
8474 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8475 TYPE_CODE (type) = TYPE_CODE (type0);
8476 INIT_CPLUS_SPECIFIC (type);
8477 TYPE_NFIELDS (type) = nfields;
8478 TYPE_FIELDS (type) = (struct field *)
8479 TYPE_ALLOC (type, nfields * sizeof (struct field));
8480 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8481 sizeof (struct field) * nfields);
8482 TYPE_NAME (type) = ada_type_name (type0);
8483 TYPE_TAG_NAME (type) = NULL;
8484 TYPE_FIXED_INSTANCE (type) = 1;
8485 TYPE_LENGTH (type) = 0;
8486 }
8487 TYPE_FIELD_TYPE (type, f) = new_type;
8488 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8489 }
14f9c5c9 8490 }
9e195661 8491
14f9c5c9
AS
8492 return type;
8493}
8494
4c4b4cd2 8495/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8496 whose address in memory is ADDRESS, returns a revision of TYPE,
8497 which should be a non-dynamic-sized record, in which the variant
8498 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8499 for discriminant values in DVAL0, which can be NULL if the record
8500 contains the necessary discriminant values. */
8501
d2e4a39e 8502static struct type *
fc1a4b47 8503to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8504 CORE_ADDR address, struct value *dval0)
14f9c5c9 8505{
d2e4a39e 8506 struct value *mark = value_mark ();
4c4b4cd2 8507 struct value *dval;
d2e4a39e 8508 struct type *rtype;
14f9c5c9
AS
8509 struct type *branch_type;
8510 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8511 int variant_field = variant_field_index (type);
14f9c5c9 8512
4c4b4cd2 8513 if (variant_field == -1)
14f9c5c9
AS
8514 return type;
8515
4c4b4cd2 8516 if (dval0 == NULL)
9f1f738a
SA
8517 {
8518 dval = value_from_contents_and_address (type, valaddr, address);
8519 type = value_type (dval);
8520 }
4c4b4cd2
PH
8521 else
8522 dval = dval0;
8523
e9bb382b 8524 rtype = alloc_type_copy (type);
14f9c5c9 8525 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8526 INIT_CPLUS_SPECIFIC (rtype);
8527 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8528 TYPE_FIELDS (rtype) =
8529 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8530 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8531 sizeof (struct field) * nfields);
14f9c5c9
AS
8532 TYPE_NAME (rtype) = ada_type_name (type);
8533 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8534 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8535 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8536
4c4b4cd2
PH
8537 branch_type = to_fixed_variant_branch_type
8538 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8539 cond_offset_host (valaddr,
4c4b4cd2
PH
8540 TYPE_FIELD_BITPOS (type, variant_field)
8541 / TARGET_CHAR_BIT),
d2e4a39e 8542 cond_offset_target (address,
4c4b4cd2
PH
8543 TYPE_FIELD_BITPOS (type, variant_field)
8544 / TARGET_CHAR_BIT), dval);
d2e4a39e 8545 if (branch_type == NULL)
14f9c5c9 8546 {
4c4b4cd2 8547 int f;
5b4ee69b 8548
4c4b4cd2
PH
8549 for (f = variant_field + 1; f < nfields; f += 1)
8550 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8551 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8552 }
8553 else
8554 {
4c4b4cd2
PH
8555 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8556 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8557 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8558 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8559 }
4c4b4cd2 8560 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8561
4c4b4cd2 8562 value_free_to_mark (mark);
14f9c5c9
AS
8563 return rtype;
8564}
8565
8566/* An ordinary record type (with fixed-length fields) that describes
8567 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8568 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8569 should be in DVAL, a record value; it may be NULL if the object
8570 at ADDR itself contains any necessary discriminant values.
8571 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8572 values from the record are needed. Except in the case that DVAL,
8573 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8574 unchecked) is replaced by a particular branch of the variant.
8575
8576 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8577 is questionable and may be removed. It can arise during the
8578 processing of an unconstrained-array-of-record type where all the
8579 variant branches have exactly the same size. This is because in
8580 such cases, the compiler does not bother to use the XVS convention
8581 when encoding the record. I am currently dubious of this
8582 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8583
d2e4a39e 8584static struct type *
fc1a4b47 8585to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8586 CORE_ADDR address, struct value *dval)
14f9c5c9 8587{
d2e4a39e 8588 struct type *templ_type;
14f9c5c9 8589
876cecd0 8590 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8591 return type0;
8592
d2e4a39e 8593 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8594
8595 if (templ_type != NULL)
8596 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8597 else if (variant_field_index (type0) >= 0)
8598 {
8599 if (dval == NULL && valaddr == NULL && address == 0)
8600 return type0;
8601 return to_record_with_fixed_variant_part (type0, valaddr, address,
8602 dval);
8603 }
14f9c5c9
AS
8604 else
8605 {
876cecd0 8606 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8607 return type0;
8608 }
8609
8610}
8611
8612/* An ordinary record type (with fixed-length fields) that describes
8613 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8614 union type. Any necessary discriminants' values should be in DVAL,
8615 a record value. That is, this routine selects the appropriate
8616 branch of the union at ADDR according to the discriminant value
b1f33ddd 8617 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8618 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8619
d2e4a39e 8620static struct type *
fc1a4b47 8621to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8622 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8623{
8624 int which;
d2e4a39e
AS
8625 struct type *templ_type;
8626 struct type *var_type;
14f9c5c9
AS
8627
8628 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8629 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8630 else
14f9c5c9
AS
8631 var_type = var_type0;
8632
8633 templ_type = ada_find_parallel_type (var_type, "___XVU");
8634
8635 if (templ_type != NULL)
8636 var_type = templ_type;
8637
b1f33ddd
JB
8638 if (is_unchecked_variant (var_type, value_type (dval)))
8639 return var_type0;
d2e4a39e
AS
8640 which =
8641 ada_which_variant_applies (var_type,
0fd88904 8642 value_type (dval), value_contents (dval));
14f9c5c9
AS
8643
8644 if (which < 0)
e9bb382b 8645 return empty_record (var_type);
14f9c5c9 8646 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8647 return to_fixed_record_type
d2e4a39e
AS
8648 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8649 valaddr, address, dval);
4c4b4cd2 8650 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8651 return
8652 to_fixed_record_type
8653 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8654 else
8655 return TYPE_FIELD_TYPE (var_type, which);
8656}
8657
8908fca5
JB
8658/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8659 ENCODING_TYPE, a type following the GNAT conventions for discrete
8660 type encodings, only carries redundant information. */
8661
8662static int
8663ada_is_redundant_range_encoding (struct type *range_type,
8664 struct type *encoding_type)
8665{
108d56a4 8666 const char *bounds_str;
8908fca5
JB
8667 int n;
8668 LONGEST lo, hi;
8669
8670 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8671
005e2509
JB
8672 if (TYPE_CODE (get_base_type (range_type))
8673 != TYPE_CODE (get_base_type (encoding_type)))
8674 {
8675 /* The compiler probably used a simple base type to describe
8676 the range type instead of the range's actual base type,
8677 expecting us to get the real base type from the encoding
8678 anyway. In this situation, the encoding cannot be ignored
8679 as redundant. */
8680 return 0;
8681 }
8682
8908fca5
JB
8683 if (is_dynamic_type (range_type))
8684 return 0;
8685
8686 if (TYPE_NAME (encoding_type) == NULL)
8687 return 0;
8688
8689 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8690 if (bounds_str == NULL)
8691 return 0;
8692
8693 n = 8; /* Skip "___XDLU_". */
8694 if (!ada_scan_number (bounds_str, n, &lo, &n))
8695 return 0;
8696 if (TYPE_LOW_BOUND (range_type) != lo)
8697 return 0;
8698
8699 n += 2; /* Skip the "__" separator between the two bounds. */
8700 if (!ada_scan_number (bounds_str, n, &hi, &n))
8701 return 0;
8702 if (TYPE_HIGH_BOUND (range_type) != hi)
8703 return 0;
8704
8705 return 1;
8706}
8707
8708/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8709 a type following the GNAT encoding for describing array type
8710 indices, only carries redundant information. */
8711
8712static int
8713ada_is_redundant_index_type_desc (struct type *array_type,
8714 struct type *desc_type)
8715{
8716 struct type *this_layer = check_typedef (array_type);
8717 int i;
8718
8719 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8720 {
8721 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8722 TYPE_FIELD_TYPE (desc_type, i)))
8723 return 0;
8724 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8725 }
8726
8727 return 1;
8728}
8729
14f9c5c9
AS
8730/* Assuming that TYPE0 is an array type describing the type of a value
8731 at ADDR, and that DVAL describes a record containing any
8732 discriminants used in TYPE0, returns a type for the value that
8733 contains no dynamic components (that is, no components whose sizes
8734 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8735 true, gives an error message if the resulting type's size is over
4c4b4cd2 8736 varsize_limit. */
14f9c5c9 8737
d2e4a39e
AS
8738static struct type *
8739to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8740 int ignore_too_big)
14f9c5c9 8741{
d2e4a39e
AS
8742 struct type *index_type_desc;
8743 struct type *result;
ad82864c 8744 int constrained_packed_array_p;
931e5bc3 8745 static const char *xa_suffix = "___XA";
14f9c5c9 8746
b0dd7688 8747 type0 = ada_check_typedef (type0);
284614f0 8748 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8749 return type0;
14f9c5c9 8750
ad82864c
JB
8751 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8752 if (constrained_packed_array_p)
8753 type0 = decode_constrained_packed_array_type (type0);
284614f0 8754
931e5bc3
JG
8755 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8756
8757 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8758 encoding suffixed with 'P' may still be generated. If so,
8759 it should be used to find the XA type. */
8760
8761 if (index_type_desc == NULL)
8762 {
1da0522e 8763 const char *type_name = ada_type_name (type0);
931e5bc3 8764
1da0522e 8765 if (type_name != NULL)
931e5bc3 8766 {
1da0522e 8767 const int len = strlen (type_name);
931e5bc3
JG
8768 char *name = (char *) alloca (len + strlen (xa_suffix));
8769
1da0522e 8770 if (type_name[len - 1] == 'P')
931e5bc3 8771 {
1da0522e 8772 strcpy (name, type_name);
931e5bc3
JG
8773 strcpy (name + len - 1, xa_suffix);
8774 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8775 }
8776 }
8777 }
8778
28c85d6c 8779 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8780 if (index_type_desc != NULL
8781 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8782 {
8783 /* Ignore this ___XA parallel type, as it does not bring any
8784 useful information. This allows us to avoid creating fixed
8785 versions of the array's index types, which would be identical
8786 to the original ones. This, in turn, can also help avoid
8787 the creation of fixed versions of the array itself. */
8788 index_type_desc = NULL;
8789 }
8790
14f9c5c9
AS
8791 if (index_type_desc == NULL)
8792 {
61ee279c 8793 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8794
14f9c5c9 8795 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8796 depend on the contents of the array in properly constructed
8797 debugging data. */
529cad9c
PH
8798 /* Create a fixed version of the array element type.
8799 We're not providing the address of an element here,
e1d5a0d2 8800 and thus the actual object value cannot be inspected to do
529cad9c
PH
8801 the conversion. This should not be a problem, since arrays of
8802 unconstrained objects are not allowed. In particular, all
8803 the elements of an array of a tagged type should all be of
8804 the same type specified in the debugging info. No need to
8805 consult the object tag. */
1ed6ede0 8806 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8807
284614f0
JB
8808 /* Make sure we always create a new array type when dealing with
8809 packed array types, since we're going to fix-up the array
8810 type length and element bitsize a little further down. */
ad82864c 8811 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8812 result = type0;
14f9c5c9 8813 else
e9bb382b 8814 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8815 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8816 }
8817 else
8818 {
8819 int i;
8820 struct type *elt_type0;
8821
8822 elt_type0 = type0;
8823 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8824 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8825
8826 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8827 depend on the contents of the array in properly constructed
8828 debugging data. */
529cad9c
PH
8829 /* Create a fixed version of the array element type.
8830 We're not providing the address of an element here,
e1d5a0d2 8831 and thus the actual object value cannot be inspected to do
529cad9c
PH
8832 the conversion. This should not be a problem, since arrays of
8833 unconstrained objects are not allowed. In particular, all
8834 the elements of an array of a tagged type should all be of
8835 the same type specified in the debugging info. No need to
8836 consult the object tag. */
1ed6ede0
JB
8837 result =
8838 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8839
8840 elt_type0 = type0;
14f9c5c9 8841 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8842 {
8843 struct type *range_type =
28c85d6c 8844 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8845
e9bb382b 8846 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8847 result, range_type);
1ce677a4 8848 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8849 }
d2e4a39e 8850 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8851 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8852 }
8853
2e6fda7d
JB
8854 /* We want to preserve the type name. This can be useful when
8855 trying to get the type name of a value that has already been
8856 printed (for instance, if the user did "print VAR; whatis $". */
8857 TYPE_NAME (result) = TYPE_NAME (type0);
8858
ad82864c 8859 if (constrained_packed_array_p)
284614f0
JB
8860 {
8861 /* So far, the resulting type has been created as if the original
8862 type was a regular (non-packed) array type. As a result, the
8863 bitsize of the array elements needs to be set again, and the array
8864 length needs to be recomputed based on that bitsize. */
8865 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8866 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8867
8868 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8869 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8870 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8871 TYPE_LENGTH (result)++;
8872 }
8873
876cecd0 8874 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8875 return result;
d2e4a39e 8876}
14f9c5c9
AS
8877
8878
8879/* A standard type (containing no dynamically sized components)
8880 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8881 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8882 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8883 ADDRESS or in VALADDR contains these discriminants.
8884
1ed6ede0
JB
8885 If CHECK_TAG is not null, in the case of tagged types, this function
8886 attempts to locate the object's tag and use it to compute the actual
8887 type. However, when ADDRESS is null, we cannot use it to determine the
8888 location of the tag, and therefore compute the tagged type's actual type.
8889 So we return the tagged type without consulting the tag. */
529cad9c 8890
f192137b
JB
8891static struct type *
8892ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8893 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8894{
61ee279c 8895 type = ada_check_typedef (type);
d2e4a39e
AS
8896 switch (TYPE_CODE (type))
8897 {
8898 default:
14f9c5c9 8899 return type;
d2e4a39e 8900 case TYPE_CODE_STRUCT:
4c4b4cd2 8901 {
76a01679 8902 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8903 struct type *fixed_record_type =
8904 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8905
529cad9c
PH
8906 /* If STATIC_TYPE is a tagged type and we know the object's address,
8907 then we can determine its tag, and compute the object's actual
0963b4bd 8908 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8909 type (the parent part of the record may have dynamic fields
8910 and the way the location of _tag is expressed may depend on
8911 them). */
529cad9c 8912
1ed6ede0 8913 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8914 {
b50d69b5
JG
8915 struct value *tag =
8916 value_tag_from_contents_and_address
8917 (fixed_record_type,
8918 valaddr,
8919 address);
8920 struct type *real_type = type_from_tag (tag);
8921 struct value *obj =
8922 value_from_contents_and_address (fixed_record_type,
8923 valaddr,
8924 address);
9f1f738a 8925 fixed_record_type = value_type (obj);
76a01679 8926 if (real_type != NULL)
b50d69b5
JG
8927 return to_fixed_record_type
8928 (real_type, NULL,
8929 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8930 }
4af88198
JB
8931
8932 /* Check to see if there is a parallel ___XVZ variable.
8933 If there is, then it provides the actual size of our type. */
8934 else if (ada_type_name (fixed_record_type) != NULL)
8935 {
0d5cff50 8936 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8937 char *xvz_name
8938 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8939 LONGEST size;
8940
88c15c34 8941 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
edb0c9cb
PA
8942 if (get_int_var_value (xvz_name, size)
8943 && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8944 {
8945 fixed_record_type = copy_type (fixed_record_type);
8946 TYPE_LENGTH (fixed_record_type) = size;
8947
8948 /* The FIXED_RECORD_TYPE may have be a stub. We have
8949 observed this when the debugging info is STABS, and
8950 apparently it is something that is hard to fix.
8951
8952 In practice, we don't need the actual type definition
8953 at all, because the presence of the XVZ variable allows us
8954 to assume that there must be a XVS type as well, which we
8955 should be able to use later, when we need the actual type
8956 definition.
8957
8958 In the meantime, pretend that the "fixed" type we are
8959 returning is NOT a stub, because this can cause trouble
8960 when using this type to create new types targeting it.
8961 Indeed, the associated creation routines often check
8962 whether the target type is a stub and will try to replace
0963b4bd 8963 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8964 might cause the new type to have the wrong size too.
8965 Consider the case of an array, for instance, where the size
8966 of the array is computed from the number of elements in
8967 our array multiplied by the size of its element. */
8968 TYPE_STUB (fixed_record_type) = 0;
8969 }
8970 }
1ed6ede0 8971 return fixed_record_type;
4c4b4cd2 8972 }
d2e4a39e 8973 case TYPE_CODE_ARRAY:
4c4b4cd2 8974 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8975 case TYPE_CODE_UNION:
8976 if (dval == NULL)
4c4b4cd2 8977 return type;
d2e4a39e 8978 else
4c4b4cd2 8979 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8980 }
14f9c5c9
AS
8981}
8982
f192137b
JB
8983/* The same as ada_to_fixed_type_1, except that it preserves the type
8984 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8985
8986 The typedef layer needs be preserved in order to differentiate between
8987 arrays and array pointers when both types are implemented using the same
8988 fat pointer. In the array pointer case, the pointer is encoded as
8989 a typedef of the pointer type. For instance, considering:
8990
8991 type String_Access is access String;
8992 S1 : String_Access := null;
8993
8994 To the debugger, S1 is defined as a typedef of type String. But
8995 to the user, it is a pointer. So if the user tries to print S1,
8996 we should not dereference the array, but print the array address
8997 instead.
8998
8999 If we didn't preserve the typedef layer, we would lose the fact that
9000 the type is to be presented as a pointer (needs de-reference before
9001 being printed). And we would also use the source-level type name. */
f192137b
JB
9002
9003struct type *
9004ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9005 CORE_ADDR address, struct value *dval, int check_tag)
9006
9007{
9008 struct type *fixed_type =
9009 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9010
96dbd2c1
JB
9011 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9012 then preserve the typedef layer.
9013
9014 Implementation note: We can only check the main-type portion of
9015 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9016 from TYPE now returns a type that has the same instance flags
9017 as TYPE. For instance, if TYPE is a "typedef const", and its
9018 target type is a "struct", then the typedef elimination will return
9019 a "const" version of the target type. See check_typedef for more
9020 details about how the typedef layer elimination is done.
9021
9022 brobecker/2010-11-19: It seems to me that the only case where it is
9023 useful to preserve the typedef layer is when dealing with fat pointers.
9024 Perhaps, we could add a check for that and preserve the typedef layer
9025 only in that situation. But this seems unecessary so far, probably
9026 because we call check_typedef/ada_check_typedef pretty much everywhere.
9027 */
f192137b 9028 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9029 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9030 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9031 return type;
9032
9033 return fixed_type;
9034}
9035
14f9c5c9 9036/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9037 TYPE0, but based on no runtime data. */
14f9c5c9 9038
d2e4a39e
AS
9039static struct type *
9040to_static_fixed_type (struct type *type0)
14f9c5c9 9041{
d2e4a39e 9042 struct type *type;
14f9c5c9
AS
9043
9044 if (type0 == NULL)
9045 return NULL;
9046
876cecd0 9047 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9048 return type0;
9049
61ee279c 9050 type0 = ada_check_typedef (type0);
d2e4a39e 9051
14f9c5c9
AS
9052 switch (TYPE_CODE (type0))
9053 {
9054 default:
9055 return type0;
9056 case TYPE_CODE_STRUCT:
9057 type = dynamic_template_type (type0);
d2e4a39e 9058 if (type != NULL)
4c4b4cd2
PH
9059 return template_to_static_fixed_type (type);
9060 else
9061 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9062 case TYPE_CODE_UNION:
9063 type = ada_find_parallel_type (type0, "___XVU");
9064 if (type != NULL)
4c4b4cd2
PH
9065 return template_to_static_fixed_type (type);
9066 else
9067 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9068 }
9069}
9070
4c4b4cd2
PH
9071/* A static approximation of TYPE with all type wrappers removed. */
9072
d2e4a39e
AS
9073static struct type *
9074static_unwrap_type (struct type *type)
14f9c5c9
AS
9075{
9076 if (ada_is_aligner_type (type))
9077 {
61ee279c 9078 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9079 if (ada_type_name (type1) == NULL)
4c4b4cd2 9080 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9081
9082 return static_unwrap_type (type1);
9083 }
d2e4a39e 9084 else
14f9c5c9 9085 {
d2e4a39e 9086 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9087
d2e4a39e 9088 if (raw_real_type == type)
4c4b4cd2 9089 return type;
14f9c5c9 9090 else
4c4b4cd2 9091 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9092 }
9093}
9094
9095/* In some cases, incomplete and private types require
4c4b4cd2 9096 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9097 type Foo;
9098 type FooP is access Foo;
9099 V: FooP;
9100 type Foo is array ...;
4c4b4cd2 9101 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9102 cross-references to such types, we instead substitute for FooP a
9103 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9104 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9105
9106/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9107 exists, otherwise TYPE. */
9108
d2e4a39e 9109struct type *
61ee279c 9110ada_check_typedef (struct type *type)
14f9c5c9 9111{
727e3d2e
JB
9112 if (type == NULL)
9113 return NULL;
9114
720d1a40
JB
9115 /* If our type is a typedef type of a fat pointer, then we're done.
9116 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9117 what allows us to distinguish between fat pointers that represent
9118 array types, and fat pointers that represent array access types
9119 (in both cases, the compiler implements them as fat pointers). */
9120 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9121 && is_thick_pntr (ada_typedef_target_type (type)))
9122 return type;
9123
f168693b 9124 type = check_typedef (type);
14f9c5c9 9125 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9126 || !TYPE_STUB (type)
14f9c5c9
AS
9127 || TYPE_TAG_NAME (type) == NULL)
9128 return type;
d2e4a39e 9129 else
14f9c5c9 9130 {
0d5cff50 9131 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9132 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9133
05e522ef
JB
9134 if (type1 == NULL)
9135 return type;
9136
9137 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9138 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9139 types, only for the typedef-to-array types). If that's the case,
9140 strip the typedef layer. */
9141 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9142 type1 = ada_check_typedef (type1);
9143
9144 return type1;
14f9c5c9
AS
9145 }
9146}
9147
9148/* A value representing the data at VALADDR/ADDRESS as described by
9149 type TYPE0, but with a standard (static-sized) type that correctly
9150 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9151 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9152 creation of struct values]. */
14f9c5c9 9153
4c4b4cd2
PH
9154static struct value *
9155ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9156 struct value *val0)
14f9c5c9 9157{
1ed6ede0 9158 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9159
14f9c5c9
AS
9160 if (type == type0 && val0 != NULL)
9161 return val0;
d2e4a39e 9162 else
4c4b4cd2
PH
9163 return value_from_contents_and_address (type, 0, address);
9164}
9165
9166/* A value representing VAL, but with a standard (static-sized) type
9167 that correctly describes it. Does not necessarily create a new
9168 value. */
9169
0c3acc09 9170struct value *
4c4b4cd2
PH
9171ada_to_fixed_value (struct value *val)
9172{
c48db5ca
JB
9173 val = unwrap_value (val);
9174 val = ada_to_fixed_value_create (value_type (val),
9175 value_address (val),
9176 val);
9177 return val;
14f9c5c9 9178}
d2e4a39e 9179\f
14f9c5c9 9180
14f9c5c9
AS
9181/* Attributes */
9182
4c4b4cd2
PH
9183/* Table mapping attribute numbers to names.
9184 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9185
d2e4a39e 9186static const char *attribute_names[] = {
14f9c5c9
AS
9187 "<?>",
9188
d2e4a39e 9189 "first",
14f9c5c9
AS
9190 "last",
9191 "length",
9192 "image",
14f9c5c9
AS
9193 "max",
9194 "min",
4c4b4cd2
PH
9195 "modulus",
9196 "pos",
9197 "size",
9198 "tag",
14f9c5c9 9199 "val",
14f9c5c9
AS
9200 0
9201};
9202
d2e4a39e 9203const char *
4c4b4cd2 9204ada_attribute_name (enum exp_opcode n)
14f9c5c9 9205{
4c4b4cd2
PH
9206 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9207 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9208 else
9209 return attribute_names[0];
9210}
9211
4c4b4cd2 9212/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9213
4c4b4cd2
PH
9214static LONGEST
9215pos_atr (struct value *arg)
14f9c5c9 9216{
24209737
PH
9217 struct value *val = coerce_ref (arg);
9218 struct type *type = value_type (val);
aa715135 9219 LONGEST result;
14f9c5c9 9220
d2e4a39e 9221 if (!discrete_type_p (type))
323e0a4a 9222 error (_("'POS only defined on discrete types"));
14f9c5c9 9223
aa715135
JG
9224 if (!discrete_position (type, value_as_long (val), &result))
9225 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9226
aa715135 9227 return result;
4c4b4cd2
PH
9228}
9229
9230static struct value *
3cb382c9 9231value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9232{
3cb382c9 9233 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9234}
9235
4c4b4cd2 9236/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9237
d2e4a39e
AS
9238static struct value *
9239value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9240{
d2e4a39e 9241 if (!discrete_type_p (type))
323e0a4a 9242 error (_("'VAL only defined on discrete types"));
df407dfe 9243 if (!integer_type_p (value_type (arg)))
323e0a4a 9244 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9245
9246 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9247 {
9248 long pos = value_as_long (arg);
5b4ee69b 9249
14f9c5c9 9250 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9251 error (_("argument to 'VAL out of range"));
14e75d8e 9252 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9253 }
9254 else
9255 return value_from_longest (type, value_as_long (arg));
9256}
14f9c5c9 9257\f
d2e4a39e 9258
4c4b4cd2 9259 /* Evaluation */
14f9c5c9 9260
4c4b4cd2
PH
9261/* True if TYPE appears to be an Ada character type.
9262 [At the moment, this is true only for Character and Wide_Character;
9263 It is a heuristic test that could stand improvement]. */
14f9c5c9 9264
d2e4a39e
AS
9265int
9266ada_is_character_type (struct type *type)
14f9c5c9 9267{
7b9f71f2
JB
9268 const char *name;
9269
9270 /* If the type code says it's a character, then assume it really is,
9271 and don't check any further. */
9272 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9273 return 1;
9274
9275 /* Otherwise, assume it's a character type iff it is a discrete type
9276 with a known character type name. */
9277 name = ada_type_name (type);
9278 return (name != NULL
9279 && (TYPE_CODE (type) == TYPE_CODE_INT
9280 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9281 && (strcmp (name, "character") == 0
9282 || strcmp (name, "wide_character") == 0
5a517ebd 9283 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9284 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9285}
9286
4c4b4cd2 9287/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9288
9289int
ebf56fd3 9290ada_is_string_type (struct type *type)
14f9c5c9 9291{
61ee279c 9292 type = ada_check_typedef (type);
d2e4a39e 9293 if (type != NULL
14f9c5c9 9294 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9295 && (ada_is_simple_array_type (type)
9296 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9297 && ada_array_arity (type) == 1)
9298 {
9299 struct type *elttype = ada_array_element_type (type, 1);
9300
9301 return ada_is_character_type (elttype);
9302 }
d2e4a39e 9303 else
14f9c5c9
AS
9304 return 0;
9305}
9306
5bf03f13
JB
9307/* The compiler sometimes provides a parallel XVS type for a given
9308 PAD type. Normally, it is safe to follow the PAD type directly,
9309 but older versions of the compiler have a bug that causes the offset
9310 of its "F" field to be wrong. Following that field in that case
9311 would lead to incorrect results, but this can be worked around
9312 by ignoring the PAD type and using the associated XVS type instead.
9313
9314 Set to True if the debugger should trust the contents of PAD types.
9315 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9316static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9317
9318/* True if TYPE is a struct type introduced by the compiler to force the
9319 alignment of a value. Such types have a single field with a
4c4b4cd2 9320 distinctive name. */
14f9c5c9
AS
9321
9322int
ebf56fd3 9323ada_is_aligner_type (struct type *type)
14f9c5c9 9324{
61ee279c 9325 type = ada_check_typedef (type);
714e53ab 9326
5bf03f13 9327 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9328 return 0;
9329
14f9c5c9 9330 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9331 && TYPE_NFIELDS (type) == 1
9332 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9333}
9334
9335/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9336 the parallel type. */
14f9c5c9 9337
d2e4a39e
AS
9338struct type *
9339ada_get_base_type (struct type *raw_type)
14f9c5c9 9340{
d2e4a39e
AS
9341 struct type *real_type_namer;
9342 struct type *raw_real_type;
14f9c5c9
AS
9343
9344 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9345 return raw_type;
9346
284614f0
JB
9347 if (ada_is_aligner_type (raw_type))
9348 /* The encoding specifies that we should always use the aligner type.
9349 So, even if this aligner type has an associated XVS type, we should
9350 simply ignore it.
9351
9352 According to the compiler gurus, an XVS type parallel to an aligner
9353 type may exist because of a stabs limitation. In stabs, aligner
9354 types are empty because the field has a variable-sized type, and
9355 thus cannot actually be used as an aligner type. As a result,
9356 we need the associated parallel XVS type to decode the type.
9357 Since the policy in the compiler is to not change the internal
9358 representation based on the debugging info format, we sometimes
9359 end up having a redundant XVS type parallel to the aligner type. */
9360 return raw_type;
9361
14f9c5c9 9362 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9363 if (real_type_namer == NULL
14f9c5c9
AS
9364 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9365 || TYPE_NFIELDS (real_type_namer) != 1)
9366 return raw_type;
9367
f80d3ff2
JB
9368 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9369 {
9370 /* This is an older encoding form where the base type needs to be
9371 looked up by name. We prefer the newer enconding because it is
9372 more efficient. */
9373 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9374 if (raw_real_type == NULL)
9375 return raw_type;
9376 else
9377 return raw_real_type;
9378 }
9379
9380 /* The field in our XVS type is a reference to the base type. */
9381 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9382}
14f9c5c9 9383
4c4b4cd2 9384/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9385
d2e4a39e
AS
9386struct type *
9387ada_aligned_type (struct type *type)
14f9c5c9
AS
9388{
9389 if (ada_is_aligner_type (type))
9390 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9391 else
9392 return ada_get_base_type (type);
9393}
9394
9395
9396/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9397 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9398
fc1a4b47
AC
9399const gdb_byte *
9400ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9401{
d2e4a39e 9402 if (ada_is_aligner_type (type))
14f9c5c9 9403 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9404 valaddr +
9405 TYPE_FIELD_BITPOS (type,
9406 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9407 else
9408 return valaddr;
9409}
9410
4c4b4cd2
PH
9411
9412
14f9c5c9 9413/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9414 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9415const char *
9416ada_enum_name (const char *name)
14f9c5c9 9417{
4c4b4cd2
PH
9418 static char *result;
9419 static size_t result_len = 0;
e6a959d6 9420 const char *tmp;
14f9c5c9 9421
4c4b4cd2
PH
9422 /* First, unqualify the enumeration name:
9423 1. Search for the last '.' character. If we find one, then skip
177b42fe 9424 all the preceding characters, the unqualified name starts
76a01679 9425 right after that dot.
4c4b4cd2 9426 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9427 translates dots into "__". Search forward for double underscores,
9428 but stop searching when we hit an overloading suffix, which is
9429 of the form "__" followed by digits. */
4c4b4cd2 9430
c3e5cd34
PH
9431 tmp = strrchr (name, '.');
9432 if (tmp != NULL)
4c4b4cd2
PH
9433 name = tmp + 1;
9434 else
14f9c5c9 9435 {
4c4b4cd2
PH
9436 while ((tmp = strstr (name, "__")) != NULL)
9437 {
9438 if (isdigit (tmp[2]))
9439 break;
9440 else
9441 name = tmp + 2;
9442 }
14f9c5c9
AS
9443 }
9444
9445 if (name[0] == 'Q')
9446 {
14f9c5c9 9447 int v;
5b4ee69b 9448
14f9c5c9 9449 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9450 {
9451 if (sscanf (name + 2, "%x", &v) != 1)
9452 return name;
9453 }
14f9c5c9 9454 else
4c4b4cd2 9455 return name;
14f9c5c9 9456
4c4b4cd2 9457 GROW_VECT (result, result_len, 16);
14f9c5c9 9458 if (isascii (v) && isprint (v))
88c15c34 9459 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9460 else if (name[1] == 'U')
88c15c34 9461 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9462 else
88c15c34 9463 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9464
9465 return result;
9466 }
d2e4a39e 9467 else
4c4b4cd2 9468 {
c3e5cd34
PH
9469 tmp = strstr (name, "__");
9470 if (tmp == NULL)
9471 tmp = strstr (name, "$");
9472 if (tmp != NULL)
4c4b4cd2
PH
9473 {
9474 GROW_VECT (result, result_len, tmp - name + 1);
9475 strncpy (result, name, tmp - name);
9476 result[tmp - name] = '\0';
9477 return result;
9478 }
9479
9480 return name;
9481 }
14f9c5c9
AS
9482}
9483
14f9c5c9
AS
9484/* Evaluate the subexpression of EXP starting at *POS as for
9485 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9486 expression. */
14f9c5c9 9487
d2e4a39e
AS
9488static struct value *
9489evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9490{
4b27a620 9491 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9492}
9493
9494/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9495 value it wraps. */
14f9c5c9 9496
d2e4a39e
AS
9497static struct value *
9498unwrap_value (struct value *val)
14f9c5c9 9499{
df407dfe 9500 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9501
14f9c5c9
AS
9502 if (ada_is_aligner_type (type))
9503 {
de4d072f 9504 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9505 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9506
14f9c5c9 9507 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9508 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9509
9510 return unwrap_value (v);
9511 }
d2e4a39e 9512 else
14f9c5c9 9513 {
d2e4a39e 9514 struct type *raw_real_type =
61ee279c 9515 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9516
5bf03f13
JB
9517 /* If there is no parallel XVS or XVE type, then the value is
9518 already unwrapped. Return it without further modification. */
9519 if ((type == raw_real_type)
9520 && ada_find_parallel_type (type, "___XVE") == NULL)
9521 return val;
14f9c5c9 9522
d2e4a39e 9523 return
4c4b4cd2
PH
9524 coerce_unspec_val_to_type
9525 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9526 value_address (val),
1ed6ede0 9527 NULL, 1));
14f9c5c9
AS
9528 }
9529}
d2e4a39e
AS
9530
9531static struct value *
50eff16b 9532cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9533{
50eff16b
UW
9534 struct value *scale = ada_scaling_factor (value_type (arg));
9535 arg = value_cast (value_type (scale), arg);
14f9c5c9 9536
50eff16b
UW
9537 arg = value_binop (arg, scale, BINOP_MUL);
9538 return value_cast (type, arg);
14f9c5c9
AS
9539}
9540
d2e4a39e 9541static struct value *
50eff16b 9542cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9543{
50eff16b
UW
9544 if (type == value_type (arg))
9545 return arg;
5b4ee69b 9546
50eff16b
UW
9547 struct value *scale = ada_scaling_factor (type);
9548 if (ada_is_fixed_point_type (value_type (arg)))
9549 arg = cast_from_fixed (value_type (scale), arg);
9550 else
9551 arg = value_cast (value_type (scale), arg);
9552
9553 arg = value_binop (arg, scale, BINOP_DIV);
9554 return value_cast (type, arg);
14f9c5c9
AS
9555}
9556
d99dcf51
JB
9557/* Given two array types T1 and T2, return nonzero iff both arrays
9558 contain the same number of elements. */
9559
9560static int
9561ada_same_array_size_p (struct type *t1, struct type *t2)
9562{
9563 LONGEST lo1, hi1, lo2, hi2;
9564
9565 /* Get the array bounds in order to verify that the size of
9566 the two arrays match. */
9567 if (!get_array_bounds (t1, &lo1, &hi1)
9568 || !get_array_bounds (t2, &lo2, &hi2))
9569 error (_("unable to determine array bounds"));
9570
9571 /* To make things easier for size comparison, normalize a bit
9572 the case of empty arrays by making sure that the difference
9573 between upper bound and lower bound is always -1. */
9574 if (lo1 > hi1)
9575 hi1 = lo1 - 1;
9576 if (lo2 > hi2)
9577 hi2 = lo2 - 1;
9578
9579 return (hi1 - lo1 == hi2 - lo2);
9580}
9581
9582/* Assuming that VAL is an array of integrals, and TYPE represents
9583 an array with the same number of elements, but with wider integral
9584 elements, return an array "casted" to TYPE. In practice, this
9585 means that the returned array is built by casting each element
9586 of the original array into TYPE's (wider) element type. */
9587
9588static struct value *
9589ada_promote_array_of_integrals (struct type *type, struct value *val)
9590{
9591 struct type *elt_type = TYPE_TARGET_TYPE (type);
9592 LONGEST lo, hi;
9593 struct value *res;
9594 LONGEST i;
9595
9596 /* Verify that both val and type are arrays of scalars, and
9597 that the size of val's elements is smaller than the size
9598 of type's element. */
9599 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9600 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9601 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9602 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9603 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9604 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9605
9606 if (!get_array_bounds (type, &lo, &hi))
9607 error (_("unable to determine array bounds"));
9608
9609 res = allocate_value (type);
9610
9611 /* Promote each array element. */
9612 for (i = 0; i < hi - lo + 1; i++)
9613 {
9614 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9615
9616 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9617 value_contents_all (elt), TYPE_LENGTH (elt_type));
9618 }
9619
9620 return res;
9621}
9622
4c4b4cd2
PH
9623/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9624 return the converted value. */
9625
d2e4a39e
AS
9626static struct value *
9627coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9628{
df407dfe 9629 struct type *type2 = value_type (val);
5b4ee69b 9630
14f9c5c9
AS
9631 if (type == type2)
9632 return val;
9633
61ee279c
PH
9634 type2 = ada_check_typedef (type2);
9635 type = ada_check_typedef (type);
14f9c5c9 9636
d2e4a39e
AS
9637 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9638 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9639 {
9640 val = ada_value_ind (val);
df407dfe 9641 type2 = value_type (val);
14f9c5c9
AS
9642 }
9643
d2e4a39e 9644 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9645 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9646 {
d99dcf51
JB
9647 if (!ada_same_array_size_p (type, type2))
9648 error (_("cannot assign arrays of different length"));
9649
9650 if (is_integral_type (TYPE_TARGET_TYPE (type))
9651 && is_integral_type (TYPE_TARGET_TYPE (type2))
9652 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9653 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9654 {
9655 /* Allow implicit promotion of the array elements to
9656 a wider type. */
9657 return ada_promote_array_of_integrals (type, val);
9658 }
9659
9660 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9661 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9662 error (_("Incompatible types in assignment"));
04624583 9663 deprecated_set_value_type (val, type);
14f9c5c9 9664 }
d2e4a39e 9665 return val;
14f9c5c9
AS
9666}
9667
4c4b4cd2
PH
9668static struct value *
9669ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9670{
9671 struct value *val;
9672 struct type *type1, *type2;
9673 LONGEST v, v1, v2;
9674
994b9211
AC
9675 arg1 = coerce_ref (arg1);
9676 arg2 = coerce_ref (arg2);
18af8284
JB
9677 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9678 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9679
76a01679
JB
9680 if (TYPE_CODE (type1) != TYPE_CODE_INT
9681 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9682 return value_binop (arg1, arg2, op);
9683
76a01679 9684 switch (op)
4c4b4cd2
PH
9685 {
9686 case BINOP_MOD:
9687 case BINOP_DIV:
9688 case BINOP_REM:
9689 break;
9690 default:
9691 return value_binop (arg1, arg2, op);
9692 }
9693
9694 v2 = value_as_long (arg2);
9695 if (v2 == 0)
323e0a4a 9696 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9697
9698 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9699 return value_binop (arg1, arg2, op);
9700
9701 v1 = value_as_long (arg1);
9702 switch (op)
9703 {
9704 case BINOP_DIV:
9705 v = v1 / v2;
76a01679
JB
9706 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9707 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9708 break;
9709 case BINOP_REM:
9710 v = v1 % v2;
76a01679
JB
9711 if (v * v1 < 0)
9712 v -= v2;
4c4b4cd2
PH
9713 break;
9714 default:
9715 /* Should not reach this point. */
9716 v = 0;
9717 }
9718
9719 val = allocate_value (type1);
990a07ab 9720 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9721 TYPE_LENGTH (value_type (val)),
9722 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9723 return val;
9724}
9725
9726static int
9727ada_value_equal (struct value *arg1, struct value *arg2)
9728{
df407dfe
AC
9729 if (ada_is_direct_array_type (value_type (arg1))
9730 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9731 {
79e8fcaa
JB
9732 struct type *arg1_type, *arg2_type;
9733
f58b38bf
JB
9734 /* Automatically dereference any array reference before
9735 we attempt to perform the comparison. */
9736 arg1 = ada_coerce_ref (arg1);
9737 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9738
4c4b4cd2
PH
9739 arg1 = ada_coerce_to_simple_array (arg1);
9740 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9741
9742 arg1_type = ada_check_typedef (value_type (arg1));
9743 arg2_type = ada_check_typedef (value_type (arg2));
9744
9745 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9746 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9747 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9748 /* FIXME: The following works only for types whose
76a01679
JB
9749 representations use all bits (no padding or undefined bits)
9750 and do not have user-defined equality. */
79e8fcaa
JB
9751 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9752 && memcmp (value_contents (arg1), value_contents (arg2),
9753 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9754 }
9755 return value_equal (arg1, arg2);
9756}
9757
52ce6436
PH
9758/* Total number of component associations in the aggregate starting at
9759 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9760 OP_AGGREGATE. */
52ce6436
PH
9761
9762static int
9763num_component_specs (struct expression *exp, int pc)
9764{
9765 int n, m, i;
5b4ee69b 9766
52ce6436
PH
9767 m = exp->elts[pc + 1].longconst;
9768 pc += 3;
9769 n = 0;
9770 for (i = 0; i < m; i += 1)
9771 {
9772 switch (exp->elts[pc].opcode)
9773 {
9774 default:
9775 n += 1;
9776 break;
9777 case OP_CHOICES:
9778 n += exp->elts[pc + 1].longconst;
9779 break;
9780 }
9781 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9782 }
9783 return n;
9784}
9785
9786/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9787 component of LHS (a simple array or a record), updating *POS past
9788 the expression, assuming that LHS is contained in CONTAINER. Does
9789 not modify the inferior's memory, nor does it modify LHS (unless
9790 LHS == CONTAINER). */
9791
9792static void
9793assign_component (struct value *container, struct value *lhs, LONGEST index,
9794 struct expression *exp, int *pos)
9795{
9796 struct value *mark = value_mark ();
9797 struct value *elt;
5b4ee69b 9798
52ce6436
PH
9799 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9800 {
22601c15
UW
9801 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9802 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9803
52ce6436
PH
9804 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9805 }
9806 else
9807 {
9808 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9809 elt = ada_to_fixed_value (elt);
52ce6436
PH
9810 }
9811
9812 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9813 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9814 else
9815 value_assign_to_component (container, elt,
9816 ada_evaluate_subexp (NULL, exp, pos,
9817 EVAL_NORMAL));
9818
9819 value_free_to_mark (mark);
9820}
9821
9822/* Assuming that LHS represents an lvalue having a record or array
9823 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9824 of that aggregate's value to LHS, advancing *POS past the
9825 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9826 lvalue containing LHS (possibly LHS itself). Does not modify
9827 the inferior's memory, nor does it modify the contents of
0963b4bd 9828 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9829
9830static struct value *
9831assign_aggregate (struct value *container,
9832 struct value *lhs, struct expression *exp,
9833 int *pos, enum noside noside)
9834{
9835 struct type *lhs_type;
9836 int n = exp->elts[*pos+1].longconst;
9837 LONGEST low_index, high_index;
9838 int num_specs;
9839 LONGEST *indices;
9840 int max_indices, num_indices;
52ce6436 9841 int i;
52ce6436
PH
9842
9843 *pos += 3;
9844 if (noside != EVAL_NORMAL)
9845 {
52ce6436
PH
9846 for (i = 0; i < n; i += 1)
9847 ada_evaluate_subexp (NULL, exp, pos, noside);
9848 return container;
9849 }
9850
9851 container = ada_coerce_ref (container);
9852 if (ada_is_direct_array_type (value_type (container)))
9853 container = ada_coerce_to_simple_array (container);
9854 lhs = ada_coerce_ref (lhs);
9855 if (!deprecated_value_modifiable (lhs))
9856 error (_("Left operand of assignment is not a modifiable lvalue."));
9857
9858 lhs_type = value_type (lhs);
9859 if (ada_is_direct_array_type (lhs_type))
9860 {
9861 lhs = ada_coerce_to_simple_array (lhs);
9862 lhs_type = value_type (lhs);
9863 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9864 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9865 }
9866 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9867 {
9868 low_index = 0;
9869 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9870 }
9871 else
9872 error (_("Left-hand side must be array or record."));
9873
9874 num_specs = num_component_specs (exp, *pos - 3);
9875 max_indices = 4 * num_specs + 4;
8d749320 9876 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9877 indices[0] = indices[1] = low_index - 1;
9878 indices[2] = indices[3] = high_index + 1;
9879 num_indices = 4;
9880
9881 for (i = 0; i < n; i += 1)
9882 {
9883 switch (exp->elts[*pos].opcode)
9884 {
1fbf5ada
JB
9885 case OP_CHOICES:
9886 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9887 &num_indices, max_indices,
9888 low_index, high_index);
9889 break;
9890 case OP_POSITIONAL:
9891 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9892 &num_indices, max_indices,
9893 low_index, high_index);
1fbf5ada
JB
9894 break;
9895 case OP_OTHERS:
9896 if (i != n-1)
9897 error (_("Misplaced 'others' clause"));
9898 aggregate_assign_others (container, lhs, exp, pos, indices,
9899 num_indices, low_index, high_index);
9900 break;
9901 default:
9902 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9903 }
9904 }
9905
9906 return container;
9907}
9908
9909/* Assign into the component of LHS indexed by the OP_POSITIONAL
9910 construct at *POS, updating *POS past the construct, given that
9911 the positions are relative to lower bound LOW, where HIGH is the
9912 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9913 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9914 assign_aggregate. */
52ce6436
PH
9915static void
9916aggregate_assign_positional (struct value *container,
9917 struct value *lhs, struct expression *exp,
9918 int *pos, LONGEST *indices, int *num_indices,
9919 int max_indices, LONGEST low, LONGEST high)
9920{
9921 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9922
9923 if (ind - 1 == high)
e1d5a0d2 9924 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9925 if (ind <= high)
9926 {
9927 add_component_interval (ind, ind, indices, num_indices, max_indices);
9928 *pos += 3;
9929 assign_component (container, lhs, ind, exp, pos);
9930 }
9931 else
9932 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9933}
9934
9935/* Assign into the components of LHS indexed by the OP_CHOICES
9936 construct at *POS, updating *POS past the construct, given that
9937 the allowable indices are LOW..HIGH. Record the indices assigned
9938 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9939 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9940static void
9941aggregate_assign_from_choices (struct value *container,
9942 struct value *lhs, struct expression *exp,
9943 int *pos, LONGEST *indices, int *num_indices,
9944 int max_indices, LONGEST low, LONGEST high)
9945{
9946 int j;
9947 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9948 int choice_pos, expr_pc;
9949 int is_array = ada_is_direct_array_type (value_type (lhs));
9950
9951 choice_pos = *pos += 3;
9952
9953 for (j = 0; j < n_choices; j += 1)
9954 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9955 expr_pc = *pos;
9956 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9957
9958 for (j = 0; j < n_choices; j += 1)
9959 {
9960 LONGEST lower, upper;
9961 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9962
52ce6436
PH
9963 if (op == OP_DISCRETE_RANGE)
9964 {
9965 choice_pos += 1;
9966 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9967 EVAL_NORMAL));
9968 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9969 EVAL_NORMAL));
9970 }
9971 else if (is_array)
9972 {
9973 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9974 EVAL_NORMAL));
9975 upper = lower;
9976 }
9977 else
9978 {
9979 int ind;
0d5cff50 9980 const char *name;
5b4ee69b 9981
52ce6436
PH
9982 switch (op)
9983 {
9984 case OP_NAME:
9985 name = &exp->elts[choice_pos + 2].string;
9986 break;
9987 case OP_VAR_VALUE:
9988 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9989 break;
9990 default:
9991 error (_("Invalid record component association."));
9992 }
9993 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9994 ind = 0;
9995 if (! find_struct_field (name, value_type (lhs), 0,
9996 NULL, NULL, NULL, NULL, &ind))
9997 error (_("Unknown component name: %s."), name);
9998 lower = upper = ind;
9999 }
10000
10001 if (lower <= upper && (lower < low || upper > high))
10002 error (_("Index in component association out of bounds."));
10003
10004 add_component_interval (lower, upper, indices, num_indices,
10005 max_indices);
10006 while (lower <= upper)
10007 {
10008 int pos1;
5b4ee69b 10009
52ce6436
PH
10010 pos1 = expr_pc;
10011 assign_component (container, lhs, lower, exp, &pos1);
10012 lower += 1;
10013 }
10014 }
10015}
10016
10017/* Assign the value of the expression in the OP_OTHERS construct in
10018 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10019 have not been previously assigned. The index intervals already assigned
10020 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10021 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10022static void
10023aggregate_assign_others (struct value *container,
10024 struct value *lhs, struct expression *exp,
10025 int *pos, LONGEST *indices, int num_indices,
10026 LONGEST low, LONGEST high)
10027{
10028 int i;
5ce64950 10029 int expr_pc = *pos + 1;
52ce6436
PH
10030
10031 for (i = 0; i < num_indices - 2; i += 2)
10032 {
10033 LONGEST ind;
5b4ee69b 10034
52ce6436
PH
10035 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10036 {
5ce64950 10037 int localpos;
5b4ee69b 10038
5ce64950
MS
10039 localpos = expr_pc;
10040 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10041 }
10042 }
10043 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10044}
10045
10046/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10047 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10048 modifying *SIZE as needed. It is an error if *SIZE exceeds
10049 MAX_SIZE. The resulting intervals do not overlap. */
10050static void
10051add_component_interval (LONGEST low, LONGEST high,
10052 LONGEST* indices, int *size, int max_size)
10053{
10054 int i, j;
5b4ee69b 10055
52ce6436
PH
10056 for (i = 0; i < *size; i += 2) {
10057 if (high >= indices[i] && low <= indices[i + 1])
10058 {
10059 int kh;
5b4ee69b 10060
52ce6436
PH
10061 for (kh = i + 2; kh < *size; kh += 2)
10062 if (high < indices[kh])
10063 break;
10064 if (low < indices[i])
10065 indices[i] = low;
10066 indices[i + 1] = indices[kh - 1];
10067 if (high > indices[i + 1])
10068 indices[i + 1] = high;
10069 memcpy (indices + i + 2, indices + kh, *size - kh);
10070 *size -= kh - i - 2;
10071 return;
10072 }
10073 else if (high < indices[i])
10074 break;
10075 }
10076
10077 if (*size == max_size)
10078 error (_("Internal error: miscounted aggregate components."));
10079 *size += 2;
10080 for (j = *size-1; j >= i+2; j -= 1)
10081 indices[j] = indices[j - 2];
10082 indices[i] = low;
10083 indices[i + 1] = high;
10084}
10085
6e48bd2c
JB
10086/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10087 is different. */
10088
10089static struct value *
b7e22850 10090ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10091{
10092 if (type == ada_check_typedef (value_type (arg2)))
10093 return arg2;
10094
10095 if (ada_is_fixed_point_type (type))
10096 return (cast_to_fixed (type, arg2));
10097
10098 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10099 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10100
10101 return value_cast (type, arg2);
10102}
10103
284614f0
JB
10104/* Evaluating Ada expressions, and printing their result.
10105 ------------------------------------------------------
10106
21649b50
JB
10107 1. Introduction:
10108 ----------------
10109
284614f0
JB
10110 We usually evaluate an Ada expression in order to print its value.
10111 We also evaluate an expression in order to print its type, which
10112 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10113 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10114 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10115 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10116 similar.
10117
10118 Evaluating expressions is a little more complicated for Ada entities
10119 than it is for entities in languages such as C. The main reason for
10120 this is that Ada provides types whose definition might be dynamic.
10121 One example of such types is variant records. Or another example
10122 would be an array whose bounds can only be known at run time.
10123
10124 The following description is a general guide as to what should be
10125 done (and what should NOT be done) in order to evaluate an expression
10126 involving such types, and when. This does not cover how the semantic
10127 information is encoded by GNAT as this is covered separatly. For the
10128 document used as the reference for the GNAT encoding, see exp_dbug.ads
10129 in the GNAT sources.
10130
10131 Ideally, we should embed each part of this description next to its
10132 associated code. Unfortunately, the amount of code is so vast right
10133 now that it's hard to see whether the code handling a particular
10134 situation might be duplicated or not. One day, when the code is
10135 cleaned up, this guide might become redundant with the comments
10136 inserted in the code, and we might want to remove it.
10137
21649b50
JB
10138 2. ``Fixing'' an Entity, the Simple Case:
10139 -----------------------------------------
10140
284614f0
JB
10141 When evaluating Ada expressions, the tricky issue is that they may
10142 reference entities whose type contents and size are not statically
10143 known. Consider for instance a variant record:
10144
10145 type Rec (Empty : Boolean := True) is record
10146 case Empty is
10147 when True => null;
10148 when False => Value : Integer;
10149 end case;
10150 end record;
10151 Yes : Rec := (Empty => False, Value => 1);
10152 No : Rec := (empty => True);
10153
10154 The size and contents of that record depends on the value of the
10155 descriminant (Rec.Empty). At this point, neither the debugging
10156 information nor the associated type structure in GDB are able to
10157 express such dynamic types. So what the debugger does is to create
10158 "fixed" versions of the type that applies to the specific object.
10159 We also informally refer to this opperation as "fixing" an object,
10160 which means creating its associated fixed type.
10161
10162 Example: when printing the value of variable "Yes" above, its fixed
10163 type would look like this:
10164
10165 type Rec is record
10166 Empty : Boolean;
10167 Value : Integer;
10168 end record;
10169
10170 On the other hand, if we printed the value of "No", its fixed type
10171 would become:
10172
10173 type Rec is record
10174 Empty : Boolean;
10175 end record;
10176
10177 Things become a little more complicated when trying to fix an entity
10178 with a dynamic type that directly contains another dynamic type,
10179 such as an array of variant records, for instance. There are
10180 two possible cases: Arrays, and records.
10181
21649b50
JB
10182 3. ``Fixing'' Arrays:
10183 ---------------------
10184
10185 The type structure in GDB describes an array in terms of its bounds,
10186 and the type of its elements. By design, all elements in the array
10187 have the same type and we cannot represent an array of variant elements
10188 using the current type structure in GDB. When fixing an array,
10189 we cannot fix the array element, as we would potentially need one
10190 fixed type per element of the array. As a result, the best we can do
10191 when fixing an array is to produce an array whose bounds and size
10192 are correct (allowing us to read it from memory), but without having
10193 touched its element type. Fixing each element will be done later,
10194 when (if) necessary.
10195
10196 Arrays are a little simpler to handle than records, because the same
10197 amount of memory is allocated for each element of the array, even if
1b536f04 10198 the amount of space actually used by each element differs from element
21649b50 10199 to element. Consider for instance the following array of type Rec:
284614f0
JB
10200
10201 type Rec_Array is array (1 .. 2) of Rec;
10202
1b536f04
JB
10203 The actual amount of memory occupied by each element might be different
10204 from element to element, depending on the value of their discriminant.
21649b50 10205 But the amount of space reserved for each element in the array remains
1b536f04 10206 fixed regardless. So we simply need to compute that size using
21649b50
JB
10207 the debugging information available, from which we can then determine
10208 the array size (we multiply the number of elements of the array by
10209 the size of each element).
10210
10211 The simplest case is when we have an array of a constrained element
10212 type. For instance, consider the following type declarations:
10213
10214 type Bounded_String (Max_Size : Integer) is
10215 Length : Integer;
10216 Buffer : String (1 .. Max_Size);
10217 end record;
10218 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10219
10220 In this case, the compiler describes the array as an array of
10221 variable-size elements (identified by its XVS suffix) for which
10222 the size can be read in the parallel XVZ variable.
10223
10224 In the case of an array of an unconstrained element type, the compiler
10225 wraps the array element inside a private PAD type. This type should not
10226 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10227 that we also use the adjective "aligner" in our code to designate
10228 these wrapper types.
10229
1b536f04 10230 In some cases, the size allocated for each element is statically
21649b50
JB
10231 known. In that case, the PAD type already has the correct size,
10232 and the array element should remain unfixed.
10233
10234 But there are cases when this size is not statically known.
10235 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10236
10237 type Dynamic is array (1 .. Five) of Integer;
10238 type Wrapper (Has_Length : Boolean := False) is record
10239 Data : Dynamic;
10240 case Has_Length is
10241 when True => Length : Integer;
10242 when False => null;
10243 end case;
10244 end record;
10245 type Wrapper_Array is array (1 .. 2) of Wrapper;
10246
10247 Hello : Wrapper_Array := (others => (Has_Length => True,
10248 Data => (others => 17),
10249 Length => 1));
10250
10251
10252 The debugging info would describe variable Hello as being an
10253 array of a PAD type. The size of that PAD type is not statically
10254 known, but can be determined using a parallel XVZ variable.
10255 In that case, a copy of the PAD type with the correct size should
10256 be used for the fixed array.
10257
21649b50
JB
10258 3. ``Fixing'' record type objects:
10259 ----------------------------------
10260
10261 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10262 record types. In this case, in order to compute the associated
10263 fixed type, we need to determine the size and offset of each of
10264 its components. This, in turn, requires us to compute the fixed
10265 type of each of these components.
10266
10267 Consider for instance the example:
10268
10269 type Bounded_String (Max_Size : Natural) is record
10270 Str : String (1 .. Max_Size);
10271 Length : Natural;
10272 end record;
10273 My_String : Bounded_String (Max_Size => 10);
10274
10275 In that case, the position of field "Length" depends on the size
10276 of field Str, which itself depends on the value of the Max_Size
21649b50 10277 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10278 we need to fix the type of field Str. Therefore, fixing a variant
10279 record requires us to fix each of its components.
10280
10281 However, if a component does not have a dynamic size, the component
10282 should not be fixed. In particular, fields that use a PAD type
10283 should not fixed. Here is an example where this might happen
10284 (assuming type Rec above):
10285
10286 type Container (Big : Boolean) is record
10287 First : Rec;
10288 After : Integer;
10289 case Big is
10290 when True => Another : Integer;
10291 when False => null;
10292 end case;
10293 end record;
10294 My_Container : Container := (Big => False,
10295 First => (Empty => True),
10296 After => 42);
10297
10298 In that example, the compiler creates a PAD type for component First,
10299 whose size is constant, and then positions the component After just
10300 right after it. The offset of component After is therefore constant
10301 in this case.
10302
10303 The debugger computes the position of each field based on an algorithm
10304 that uses, among other things, the actual position and size of the field
21649b50
JB
10305 preceding it. Let's now imagine that the user is trying to print
10306 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10307 end up computing the offset of field After based on the size of the
10308 fixed version of field First. And since in our example First has
10309 only one actual field, the size of the fixed type is actually smaller
10310 than the amount of space allocated to that field, and thus we would
10311 compute the wrong offset of field After.
10312
21649b50
JB
10313 To make things more complicated, we need to watch out for dynamic
10314 components of variant records (identified by the ___XVL suffix in
10315 the component name). Even if the target type is a PAD type, the size
10316 of that type might not be statically known. So the PAD type needs
10317 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10318 we might end up with the wrong size for our component. This can be
10319 observed with the following type declarations:
284614f0
JB
10320
10321 type Octal is new Integer range 0 .. 7;
10322 type Octal_Array is array (Positive range <>) of Octal;
10323 pragma Pack (Octal_Array);
10324
10325 type Octal_Buffer (Size : Positive) is record
10326 Buffer : Octal_Array (1 .. Size);
10327 Length : Integer;
10328 end record;
10329
10330 In that case, Buffer is a PAD type whose size is unset and needs
10331 to be computed by fixing the unwrapped type.
10332
21649b50
JB
10333 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10334 ----------------------------------------------------------
10335
10336 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10337 thus far, be actually fixed?
10338
10339 The answer is: Only when referencing that element. For instance
10340 when selecting one component of a record, this specific component
10341 should be fixed at that point in time. Or when printing the value
10342 of a record, each component should be fixed before its value gets
10343 printed. Similarly for arrays, the element of the array should be
10344 fixed when printing each element of the array, or when extracting
10345 one element out of that array. On the other hand, fixing should
10346 not be performed on the elements when taking a slice of an array!
10347
31432a67 10348 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10349 size of each field is that we end up also miscomputing the size
10350 of the containing type. This can have adverse results when computing
10351 the value of an entity. GDB fetches the value of an entity based
10352 on the size of its type, and thus a wrong size causes GDB to fetch
10353 the wrong amount of memory. In the case where the computed size is
10354 too small, GDB fetches too little data to print the value of our
31432a67 10355 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10356 past the buffer containing the data =:-o. */
10357
ced9779b
JB
10358/* Evaluate a subexpression of EXP, at index *POS, and return a value
10359 for that subexpression cast to TO_TYPE. Advance *POS over the
10360 subexpression. */
10361
10362static value *
10363ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10364 enum noside noside, struct type *to_type)
10365{
10366 int pc = *pos;
10367
10368 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10369 || exp->elts[pc].opcode == OP_VAR_VALUE)
10370 {
10371 (*pos) += 4;
10372
10373 value *val;
10374 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10375 {
10376 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10377 return value_zero (to_type, not_lval);
10378
10379 val = evaluate_var_msym_value (noside,
10380 exp->elts[pc + 1].objfile,
10381 exp->elts[pc + 2].msymbol);
10382 }
10383 else
10384 val = evaluate_var_value (noside,
10385 exp->elts[pc + 1].block,
10386 exp->elts[pc + 2].symbol);
10387
10388 if (noside == EVAL_SKIP)
10389 return eval_skip_value (exp);
10390
10391 val = ada_value_cast (to_type, val);
10392
10393 /* Follow the Ada language semantics that do not allow taking
10394 an address of the result of a cast (view conversion in Ada). */
10395 if (VALUE_LVAL (val) == lval_memory)
10396 {
10397 if (value_lazy (val))
10398 value_fetch_lazy (val);
10399 VALUE_LVAL (val) = not_lval;
10400 }
10401 return val;
10402 }
10403
10404 value *val = evaluate_subexp (to_type, exp, pos, noside);
10405 if (noside == EVAL_SKIP)
10406 return eval_skip_value (exp);
10407 return ada_value_cast (to_type, val);
10408}
10409
284614f0
JB
10410/* Implement the evaluate_exp routine in the exp_descriptor structure
10411 for the Ada language. */
10412
52ce6436 10413static struct value *
ebf56fd3 10414ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10415 int *pos, enum noside noside)
14f9c5c9
AS
10416{
10417 enum exp_opcode op;
b5385fc0 10418 int tem;
14f9c5c9 10419 int pc;
5ec18f2b 10420 int preeval_pos;
14f9c5c9
AS
10421 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10422 struct type *type;
52ce6436 10423 int nargs, oplen;
d2e4a39e 10424 struct value **argvec;
14f9c5c9 10425
d2e4a39e
AS
10426 pc = *pos;
10427 *pos += 1;
14f9c5c9
AS
10428 op = exp->elts[pc].opcode;
10429
d2e4a39e 10430 switch (op)
14f9c5c9
AS
10431 {
10432 default:
10433 *pos -= 1;
6e48bd2c 10434 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10435
10436 if (noside == EVAL_NORMAL)
10437 arg1 = unwrap_value (arg1);
6e48bd2c 10438
edd079d9 10439 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10440 then we need to perform the conversion manually, because
10441 evaluate_subexp_standard doesn't do it. This conversion is
10442 necessary in Ada because the different kinds of float/fixed
10443 types in Ada have different representations.
10444
10445 Similarly, we need to perform the conversion from OP_LONG
10446 ourselves. */
edd079d9 10447 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10448 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10449
10450 return arg1;
4c4b4cd2
PH
10451
10452 case OP_STRING:
10453 {
76a01679 10454 struct value *result;
5b4ee69b 10455
76a01679
JB
10456 *pos -= 1;
10457 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10458 /* The result type will have code OP_STRING, bashed there from
10459 OP_ARRAY. Bash it back. */
df407dfe
AC
10460 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10461 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10462 return result;
4c4b4cd2 10463 }
14f9c5c9
AS
10464
10465 case UNOP_CAST:
10466 (*pos) += 2;
10467 type = exp->elts[pc + 1].type;
ced9779b 10468 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10469
4c4b4cd2
PH
10470 case UNOP_QUAL:
10471 (*pos) += 2;
10472 type = exp->elts[pc + 1].type;
10473 return ada_evaluate_subexp (type, exp, pos, noside);
10474
14f9c5c9
AS
10475 case BINOP_ASSIGN:
10476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10477 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10478 {
10479 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10480 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10481 return arg1;
10482 return ada_value_assign (arg1, arg1);
10483 }
003f3813
JB
10484 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10485 except if the lhs of our assignment is a convenience variable.
10486 In the case of assigning to a convenience variable, the lhs
10487 should be exactly the result of the evaluation of the rhs. */
10488 type = value_type (arg1);
10489 if (VALUE_LVAL (arg1) == lval_internalvar)
10490 type = NULL;
10491 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10492 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10493 return arg1;
df407dfe
AC
10494 if (ada_is_fixed_point_type (value_type (arg1)))
10495 arg2 = cast_to_fixed (value_type (arg1), arg2);
10496 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10497 error
323e0a4a 10498 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10499 else
df407dfe 10500 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10501 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10502
10503 case BINOP_ADD:
10504 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10505 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10506 if (noside == EVAL_SKIP)
4c4b4cd2 10507 goto nosideret;
2ac8a782
JB
10508 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10509 return (value_from_longest
10510 (value_type (arg1),
10511 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10512 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10513 return (value_from_longest
10514 (value_type (arg2),
10515 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10516 if ((ada_is_fixed_point_type (value_type (arg1))
10517 || ada_is_fixed_point_type (value_type (arg2)))
10518 && value_type (arg1) != value_type (arg2))
323e0a4a 10519 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10520 /* Do the addition, and cast the result to the type of the first
10521 argument. We cannot cast the result to a reference type, so if
10522 ARG1 is a reference type, find its underlying type. */
10523 type = value_type (arg1);
10524 while (TYPE_CODE (type) == TYPE_CODE_REF)
10525 type = TYPE_TARGET_TYPE (type);
f44316fa 10526 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10527 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10528
10529 case BINOP_SUB:
10530 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10531 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10532 if (noside == EVAL_SKIP)
4c4b4cd2 10533 goto nosideret;
2ac8a782
JB
10534 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10535 return (value_from_longest
10536 (value_type (arg1),
10537 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10538 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10539 return (value_from_longest
10540 (value_type (arg2),
10541 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10542 if ((ada_is_fixed_point_type (value_type (arg1))
10543 || ada_is_fixed_point_type (value_type (arg2)))
10544 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10545 error (_("Operands of fixed-point subtraction "
10546 "must have the same type"));
b7789565
JB
10547 /* Do the substraction, and cast the result to the type of the first
10548 argument. We cannot cast the result to a reference type, so if
10549 ARG1 is a reference type, find its underlying type. */
10550 type = value_type (arg1);
10551 while (TYPE_CODE (type) == TYPE_CODE_REF)
10552 type = TYPE_TARGET_TYPE (type);
f44316fa 10553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10554 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10555
10556 case BINOP_MUL:
10557 case BINOP_DIV:
e1578042
JB
10558 case BINOP_REM:
10559 case BINOP_MOD:
14f9c5c9
AS
10560 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10561 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10562 if (noside == EVAL_SKIP)
4c4b4cd2 10563 goto nosideret;
e1578042 10564 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10565 {
10566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10567 return value_zero (value_type (arg1), not_lval);
10568 }
14f9c5c9 10569 else
4c4b4cd2 10570 {
a53b7a21 10571 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10572 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10573 arg1 = cast_from_fixed (type, arg1);
df407dfe 10574 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10575 arg2 = cast_from_fixed (type, arg2);
f44316fa 10576 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10577 return ada_value_binop (arg1, arg2, op);
10578 }
10579
4c4b4cd2
PH
10580 case BINOP_EQUAL:
10581 case BINOP_NOTEQUAL:
14f9c5c9 10582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10583 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10584 if (noside == EVAL_SKIP)
76a01679 10585 goto nosideret;
4c4b4cd2 10586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10587 tem = 0;
4c4b4cd2 10588 else
f44316fa
UW
10589 {
10590 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10591 tem = ada_value_equal (arg1, arg2);
10592 }
4c4b4cd2 10593 if (op == BINOP_NOTEQUAL)
76a01679 10594 tem = !tem;
fbb06eb1
UW
10595 type = language_bool_type (exp->language_defn, exp->gdbarch);
10596 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10597
10598 case UNOP_NEG:
10599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10600 if (noside == EVAL_SKIP)
10601 goto nosideret;
df407dfe
AC
10602 else if (ada_is_fixed_point_type (value_type (arg1)))
10603 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10604 else
f44316fa
UW
10605 {
10606 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10607 return value_neg (arg1);
10608 }
4c4b4cd2 10609
2330c6c6
JB
10610 case BINOP_LOGICAL_AND:
10611 case BINOP_LOGICAL_OR:
10612 case UNOP_LOGICAL_NOT:
000d5124
JB
10613 {
10614 struct value *val;
10615
10616 *pos -= 1;
10617 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10618 type = language_bool_type (exp->language_defn, exp->gdbarch);
10619 return value_cast (type, val);
000d5124 10620 }
2330c6c6
JB
10621
10622 case BINOP_BITWISE_AND:
10623 case BINOP_BITWISE_IOR:
10624 case BINOP_BITWISE_XOR:
000d5124
JB
10625 {
10626 struct value *val;
10627
10628 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10629 *pos = pc;
10630 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10631
10632 return value_cast (value_type (arg1), val);
10633 }
2330c6c6 10634
14f9c5c9
AS
10635 case OP_VAR_VALUE:
10636 *pos -= 1;
6799def4 10637
14f9c5c9 10638 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10639 {
10640 *pos += 4;
10641 goto nosideret;
10642 }
da5c522f
JB
10643
10644 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10645 /* Only encountered when an unresolved symbol occurs in a
10646 context other than a function call, in which case, it is
52ce6436 10647 invalid. */
323e0a4a 10648 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10649 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10650
10651 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10652 {
0c1f74cf 10653 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10654 /* Check to see if this is a tagged type. We also need to handle
10655 the case where the type is a reference to a tagged type, but
10656 we have to be careful to exclude pointers to tagged types.
10657 The latter should be shown as usual (as a pointer), whereas
10658 a reference should mostly be transparent to the user. */
10659 if (ada_is_tagged_type (type, 0)
023db19c 10660 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10661 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10662 {
10663 /* Tagged types are a little special in the fact that the real
10664 type is dynamic and can only be determined by inspecting the
10665 object's tag. This means that we need to get the object's
10666 value first (EVAL_NORMAL) and then extract the actual object
10667 type from its tag.
10668
10669 Note that we cannot skip the final step where we extract
10670 the object type from its tag, because the EVAL_NORMAL phase
10671 results in dynamic components being resolved into fixed ones.
10672 This can cause problems when trying to print the type
10673 description of tagged types whose parent has a dynamic size:
10674 We use the type name of the "_parent" component in order
10675 to print the name of the ancestor type in the type description.
10676 If that component had a dynamic size, the resolution into
10677 a fixed type would result in the loss of that type name,
10678 thus preventing us from printing the name of the ancestor
10679 type in the type description. */
10680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10681
10682 if (TYPE_CODE (type) != TYPE_CODE_REF)
10683 {
10684 struct type *actual_type;
10685
10686 actual_type = type_from_tag (ada_value_tag (arg1));
10687 if (actual_type == NULL)
10688 /* If, for some reason, we were unable to determine
10689 the actual type from the tag, then use the static
10690 approximation that we just computed as a fallback.
10691 This can happen if the debugging information is
10692 incomplete, for instance. */
10693 actual_type = type;
10694 return value_zero (actual_type, not_lval);
10695 }
10696 else
10697 {
10698 /* In the case of a ref, ada_coerce_ref takes care
10699 of determining the actual type. But the evaluation
10700 should return a ref as it should be valid to ask
10701 for its address; so rebuild a ref after coerce. */
10702 arg1 = ada_coerce_ref (arg1);
a65cfae5 10703 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10704 }
10705 }
0c1f74cf 10706
84754697
JB
10707 /* Records and unions for which GNAT encodings have been
10708 generated need to be statically fixed as well.
10709 Otherwise, non-static fixing produces a type where
10710 all dynamic properties are removed, which prevents "ptype"
10711 from being able to completely describe the type.
10712 For instance, a case statement in a variant record would be
10713 replaced by the relevant components based on the actual
10714 value of the discriminants. */
10715 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10716 && dynamic_template_type (type) != NULL)
10717 || (TYPE_CODE (type) == TYPE_CODE_UNION
10718 && ada_find_parallel_type (type, "___XVU") != NULL))
10719 {
10720 *pos += 4;
10721 return value_zero (to_static_fixed_type (type), not_lval);
10722 }
4c4b4cd2 10723 }
da5c522f
JB
10724
10725 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10726 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10727
10728 case OP_FUNCALL:
10729 (*pos) += 2;
10730
10731 /* Allocate arg vector, including space for the function to be
10732 called in argvec[0] and a terminating NULL. */
10733 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10734 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10735
10736 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10737 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10738 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10739 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10740 else
10741 {
10742 for (tem = 0; tem <= nargs; tem += 1)
10743 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 argvec[tem] = 0;
10745
10746 if (noside == EVAL_SKIP)
10747 goto nosideret;
10748 }
10749
ad82864c
JB
10750 if (ada_is_constrained_packed_array_type
10751 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10752 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10753 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10754 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10755 /* This is a packed array that has already been fixed, and
10756 therefore already coerced to a simple array. Nothing further
10757 to do. */
10758 ;
e6c2c623
PMR
10759 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10760 {
10761 /* Make sure we dereference references so that all the code below
10762 feels like it's really handling the referenced value. Wrapping
10763 types (for alignment) may be there, so make sure we strip them as
10764 well. */
10765 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10766 }
10767 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10768 && VALUE_LVAL (argvec[0]) == lval_memory)
10769 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10770
df407dfe 10771 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10772
10773 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10774 them. So, if this is an array typedef (encoding use for array
10775 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10776 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10777 type = ada_typedef_target_type (type);
10778
4c4b4cd2
PH
10779 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10780 {
61ee279c 10781 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10782 {
10783 case TYPE_CODE_FUNC:
61ee279c 10784 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10785 break;
10786 case TYPE_CODE_ARRAY:
10787 break;
10788 case TYPE_CODE_STRUCT:
10789 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10790 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10791 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10792 break;
10793 default:
323e0a4a 10794 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10795 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10796 break;
10797 }
10798 }
10799
10800 switch (TYPE_CODE (type))
10801 {
10802 case TYPE_CODE_FUNC:
10803 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10804 {
7022349d
PA
10805 if (TYPE_TARGET_TYPE (type) == NULL)
10806 error_call_unknown_return_type (NULL);
10807 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10808 }
7022349d 10809 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10810 case TYPE_CODE_INTERNAL_FUNCTION:
10811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10812 /* We don't know anything about what the internal
10813 function might return, but we have to return
10814 something. */
10815 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10816 not_lval);
10817 else
10818 return call_internal_function (exp->gdbarch, exp->language_defn,
10819 argvec[0], nargs, argvec + 1);
10820
4c4b4cd2
PH
10821 case TYPE_CODE_STRUCT:
10822 {
10823 int arity;
10824
4c4b4cd2
PH
10825 arity = ada_array_arity (type);
10826 type = ada_array_element_type (type, nargs);
10827 if (type == NULL)
323e0a4a 10828 error (_("cannot subscript or call a record"));
4c4b4cd2 10829 if (arity != nargs)
323e0a4a 10830 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10832 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10833 return
10834 unwrap_value (ada_value_subscript
10835 (argvec[0], nargs, argvec + 1));
10836 }
10837 case TYPE_CODE_ARRAY:
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 {
10840 type = ada_array_element_type (type, nargs);
10841 if (type == NULL)
323e0a4a 10842 error (_("element type of array unknown"));
4c4b4cd2 10843 else
0a07e705 10844 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10845 }
10846 return
10847 unwrap_value (ada_value_subscript
10848 (ada_coerce_to_simple_array (argvec[0]),
10849 nargs, argvec + 1));
10850 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 {
deede10c 10853 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10854 type = ada_array_element_type (type, nargs);
10855 if (type == NULL)
323e0a4a 10856 error (_("element type of array unknown"));
4c4b4cd2 10857 else
0a07e705 10858 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10859 }
10860 return
deede10c
JB
10861 unwrap_value (ada_value_ptr_subscript (argvec[0],
10862 nargs, argvec + 1));
4c4b4cd2
PH
10863
10864 default:
e1d5a0d2
PH
10865 error (_("Attempt to index or call something other than an "
10866 "array or function"));
4c4b4cd2
PH
10867 }
10868
10869 case TERNOP_SLICE:
10870 {
10871 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10872 struct value *low_bound_val =
10873 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10874 struct value *high_bound_val =
10875 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10876 LONGEST low_bound;
10877 LONGEST high_bound;
5b4ee69b 10878
994b9211
AC
10879 low_bound_val = coerce_ref (low_bound_val);
10880 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10881 low_bound = value_as_long (low_bound_val);
10882 high_bound = value_as_long (high_bound_val);
963a6417 10883
4c4b4cd2
PH
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886
4c4b4cd2
PH
10887 /* If this is a reference to an aligner type, then remove all
10888 the aligners. */
df407dfe
AC
10889 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10890 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10891 TYPE_TARGET_TYPE (value_type (array)) =
10892 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10893
ad82864c 10894 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10895 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10896
10897 /* If this is a reference to an array or an array lvalue,
10898 convert to a pointer. */
df407dfe
AC
10899 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10900 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10901 && VALUE_LVAL (array) == lval_memory))
10902 array = value_addr (array);
10903
1265e4aa 10904 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10905 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10906 (value_type (array))))
0b5d8877 10907 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10908
10909 array = ada_coerce_to_simple_array_ptr (array);
10910
714e53ab
PH
10911 /* If we have more than one level of pointer indirection,
10912 dereference the value until we get only one level. */
df407dfe
AC
10913 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10914 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10915 == TYPE_CODE_PTR))
10916 array = value_ind (array);
10917
10918 /* Make sure we really do have an array type before going further,
10919 to avoid a SEGV when trying to get the index type or the target
10920 type later down the road if the debug info generated by
10921 the compiler is incorrect or incomplete. */
df407dfe 10922 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10923 error (_("cannot take slice of non-array"));
714e53ab 10924
828292f2
JB
10925 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10926 == TYPE_CODE_PTR)
4c4b4cd2 10927 {
828292f2
JB
10928 struct type *type0 = ada_check_typedef (value_type (array));
10929
0b5d8877 10930 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10931 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10932 else
10933 {
10934 struct type *arr_type0 =
828292f2 10935 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10936
f5938064
JG
10937 return ada_value_slice_from_ptr (array, arr_type0,
10938 longest_to_int (low_bound),
10939 longest_to_int (high_bound));
4c4b4cd2
PH
10940 }
10941 }
10942 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10943 return array;
10944 else if (high_bound < low_bound)
df407dfe 10945 return empty_array (value_type (array), low_bound);
4c4b4cd2 10946 else
529cad9c
PH
10947 return ada_value_slice (array, longest_to_int (low_bound),
10948 longest_to_int (high_bound));
4c4b4cd2 10949 }
14f9c5c9 10950
4c4b4cd2
PH
10951 case UNOP_IN_RANGE:
10952 (*pos) += 2;
10953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10954 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10955
14f9c5c9 10956 if (noside == EVAL_SKIP)
4c4b4cd2 10957 goto nosideret;
14f9c5c9 10958
4c4b4cd2
PH
10959 switch (TYPE_CODE (type))
10960 {
10961 default:
e1d5a0d2
PH
10962 lim_warning (_("Membership test incompletely implemented; "
10963 "always returns true"));
fbb06eb1
UW
10964 type = language_bool_type (exp->language_defn, exp->gdbarch);
10965 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10966
10967 case TYPE_CODE_RANGE:
030b4912
UW
10968 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10969 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10972 type = language_bool_type (exp->language_defn, exp->gdbarch);
10973 return
10974 value_from_longest (type,
4c4b4cd2
PH
10975 (value_less (arg1, arg3)
10976 || value_equal (arg1, arg3))
10977 && (value_less (arg2, arg1)
10978 || value_equal (arg2, arg1)));
10979 }
10980
10981 case BINOP_IN_BOUNDS:
14f9c5c9 10982 (*pos) += 2;
4c4b4cd2
PH
10983 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10984 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10985
4c4b4cd2
PH
10986 if (noside == EVAL_SKIP)
10987 goto nosideret;
14f9c5c9 10988
4c4b4cd2 10989 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10990 {
10991 type = language_bool_type (exp->language_defn, exp->gdbarch);
10992 return value_zero (type, not_lval);
10993 }
14f9c5c9 10994
4c4b4cd2 10995 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10996
1eea4ebd
UW
10997 type = ada_index_type (value_type (arg2), tem, "range");
10998 if (!type)
10999 type = value_type (arg1);
14f9c5c9 11000
1eea4ebd
UW
11001 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11002 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11003
f44316fa
UW
11004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11006 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11007 return
fbb06eb1 11008 value_from_longest (type,
4c4b4cd2
PH
11009 (value_less (arg1, arg3)
11010 || value_equal (arg1, arg3))
11011 && (value_less (arg2, arg1)
11012 || value_equal (arg2, arg1)));
11013
11014 case TERNOP_IN_RANGE:
11015 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11017 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021
f44316fa
UW
11022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11023 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11024 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11025 return
fbb06eb1 11026 value_from_longest (type,
4c4b4cd2
PH
11027 (value_less (arg1, arg3)
11028 || value_equal (arg1, arg3))
11029 && (value_less (arg2, arg1)
11030 || value_equal (arg2, arg1)));
11031
11032 case OP_ATR_FIRST:
11033 case OP_ATR_LAST:
11034 case OP_ATR_LENGTH:
11035 {
76a01679 11036 struct type *type_arg;
5b4ee69b 11037
76a01679
JB
11038 if (exp->elts[*pos].opcode == OP_TYPE)
11039 {
11040 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11041 arg1 = NULL;
5bc23cb3 11042 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11043 }
11044 else
11045 {
11046 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11047 type_arg = NULL;
11048 }
11049
11050 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11051 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11052 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11053 *pos += 4;
11054
11055 if (noside == EVAL_SKIP)
11056 goto nosideret;
11057
11058 if (type_arg == NULL)
11059 {
11060 arg1 = ada_coerce_ref (arg1);
11061
ad82864c 11062 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11063 arg1 = ada_coerce_to_simple_array (arg1);
11064
aa4fb036 11065 if (op == OP_ATR_LENGTH)
1eea4ebd 11066 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11067 else
11068 {
11069 type = ada_index_type (value_type (arg1), tem,
11070 ada_attribute_name (op));
11071 if (type == NULL)
11072 type = builtin_type (exp->gdbarch)->builtin_int;
11073 }
76a01679
JB
11074
11075 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11076 return allocate_value (type);
76a01679
JB
11077
11078 switch (op)
11079 {
11080 default: /* Should never happen. */
323e0a4a 11081 error (_("unexpected attribute encountered"));
76a01679 11082 case OP_ATR_FIRST:
1eea4ebd
UW
11083 return value_from_longest
11084 (type, ada_array_bound (arg1, tem, 0));
76a01679 11085 case OP_ATR_LAST:
1eea4ebd
UW
11086 return value_from_longest
11087 (type, ada_array_bound (arg1, tem, 1));
76a01679 11088 case OP_ATR_LENGTH:
1eea4ebd
UW
11089 return value_from_longest
11090 (type, ada_array_length (arg1, tem));
76a01679
JB
11091 }
11092 }
11093 else if (discrete_type_p (type_arg))
11094 {
11095 struct type *range_type;
0d5cff50 11096 const char *name = ada_type_name (type_arg);
5b4ee69b 11097
76a01679
JB
11098 range_type = NULL;
11099 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11100 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11101 if (range_type == NULL)
11102 range_type = type_arg;
11103 switch (op)
11104 {
11105 default:
323e0a4a 11106 error (_("unexpected attribute encountered"));
76a01679 11107 case OP_ATR_FIRST:
690cc4eb 11108 return value_from_longest
43bbcdc2 11109 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11110 case OP_ATR_LAST:
690cc4eb 11111 return value_from_longest
43bbcdc2 11112 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11113 case OP_ATR_LENGTH:
323e0a4a 11114 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11115 }
11116 }
11117 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11118 error (_("unimplemented type attribute"));
76a01679
JB
11119 else
11120 {
11121 LONGEST low, high;
11122
ad82864c
JB
11123 if (ada_is_constrained_packed_array_type (type_arg))
11124 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11125
aa4fb036 11126 if (op == OP_ATR_LENGTH)
1eea4ebd 11127 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11128 else
11129 {
11130 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11131 if (type == NULL)
11132 type = builtin_type (exp->gdbarch)->builtin_int;
11133 }
1eea4ebd 11134
76a01679
JB
11135 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11136 return allocate_value (type);
11137
11138 switch (op)
11139 {
11140 default:
323e0a4a 11141 error (_("unexpected attribute encountered"));
76a01679 11142 case OP_ATR_FIRST:
1eea4ebd 11143 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11144 return value_from_longest (type, low);
11145 case OP_ATR_LAST:
1eea4ebd 11146 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11147 return value_from_longest (type, high);
11148 case OP_ATR_LENGTH:
1eea4ebd
UW
11149 low = ada_array_bound_from_type (type_arg, tem, 0);
11150 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11151 return value_from_longest (type, high - low + 1);
11152 }
11153 }
14f9c5c9
AS
11154 }
11155
4c4b4cd2
PH
11156 case OP_ATR_TAG:
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 if (noside == EVAL_SKIP)
76a01679 11159 goto nosideret;
4c4b4cd2
PH
11160
11161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11162 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11163
11164 return ada_value_tag (arg1);
11165
11166 case OP_ATR_MIN:
11167 case OP_ATR_MAX:
11168 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11170 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11171 if (noside == EVAL_SKIP)
76a01679 11172 goto nosideret;
d2e4a39e 11173 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11174 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11175 else
f44316fa
UW
11176 {
11177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11178 return value_binop (arg1, arg2,
11179 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11180 }
14f9c5c9 11181
4c4b4cd2
PH
11182 case OP_ATR_MODULUS:
11183 {
31dedfee 11184 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11185
5b4ee69b 11186 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11187 if (noside == EVAL_SKIP)
11188 goto nosideret;
4c4b4cd2 11189
76a01679 11190 if (!ada_is_modular_type (type_arg))
323e0a4a 11191 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11192
76a01679
JB
11193 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11194 ada_modulus (type_arg));
4c4b4cd2
PH
11195 }
11196
11197
11198 case OP_ATR_POS:
11199 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11201 if (noside == EVAL_SKIP)
76a01679 11202 goto nosideret;
3cb382c9
UW
11203 type = builtin_type (exp->gdbarch)->builtin_int;
11204 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11205 return value_zero (type, not_lval);
14f9c5c9 11206 else
3cb382c9 11207 return value_pos_atr (type, arg1);
14f9c5c9 11208
4c4b4cd2
PH
11209 case OP_ATR_SIZE:
11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11211 type = value_type (arg1);
11212
11213 /* If the argument is a reference, then dereference its type, since
11214 the user is really asking for the size of the actual object,
11215 not the size of the pointer. */
11216 if (TYPE_CODE (type) == TYPE_CODE_REF)
11217 type = TYPE_TARGET_TYPE (type);
11218
4c4b4cd2 11219 if (noside == EVAL_SKIP)
76a01679 11220 goto nosideret;
4c4b4cd2 11221 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11222 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11223 else
22601c15 11224 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11225 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11226
11227 case OP_ATR_VAL:
11228 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11230 type = exp->elts[pc + 2].type;
14f9c5c9 11231 if (noside == EVAL_SKIP)
76a01679 11232 goto nosideret;
4c4b4cd2 11233 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11234 return value_zero (type, not_lval);
4c4b4cd2 11235 else
76a01679 11236 return value_val_atr (type, arg1);
4c4b4cd2
PH
11237
11238 case BINOP_EXP:
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11241 if (noside == EVAL_SKIP)
11242 goto nosideret;
11243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11244 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11245 else
f44316fa
UW
11246 {
11247 /* For integer exponentiation operations,
11248 only promote the first argument. */
11249 if (is_integral_type (value_type (arg2)))
11250 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11251 else
11252 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11253
11254 return value_binop (arg1, arg2, op);
11255 }
4c4b4cd2
PH
11256
11257 case UNOP_PLUS:
11258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11259 if (noside == EVAL_SKIP)
11260 goto nosideret;
11261 else
11262 return arg1;
11263
11264 case UNOP_ABS:
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
f44316fa 11268 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11269 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11270 return value_neg (arg1);
14f9c5c9 11271 else
4c4b4cd2 11272 return arg1;
14f9c5c9
AS
11273
11274 case UNOP_IND:
5ec18f2b 11275 preeval_pos = *pos;
6b0d7253 11276 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11277 if (noside == EVAL_SKIP)
4c4b4cd2 11278 goto nosideret;
df407dfe 11279 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11281 {
11282 if (ada_is_array_descriptor_type (type))
11283 /* GDB allows dereferencing GNAT array descriptors. */
11284 {
11285 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11286
4c4b4cd2 11287 if (arrType == NULL)
323e0a4a 11288 error (_("Attempt to dereference null array pointer."));
00a4c844 11289 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11290 }
11291 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11292 || TYPE_CODE (type) == TYPE_CODE_REF
11293 /* In C you can dereference an array to get the 1st elt. */
11294 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11295 {
5ec18f2b
JG
11296 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11297 only be determined by inspecting the object's tag.
11298 This means that we need to evaluate completely the
11299 expression in order to get its type. */
11300
023db19c
JB
11301 if ((TYPE_CODE (type) == TYPE_CODE_REF
11302 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11303 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11304 {
11305 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11306 EVAL_NORMAL);
11307 type = value_type (ada_value_ind (arg1));
11308 }
11309 else
11310 {
11311 type = to_static_fixed_type
11312 (ada_aligned_type
11313 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11314 }
c1b5a1a6 11315 ada_ensure_varsize_limit (type);
714e53ab
PH
11316 return value_zero (type, lval_memory);
11317 }
4c4b4cd2 11318 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11319 {
11320 /* GDB allows dereferencing an int. */
11321 if (expect_type == NULL)
11322 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11323 lval_memory);
11324 else
11325 {
11326 expect_type =
11327 to_static_fixed_type (ada_aligned_type (expect_type));
11328 return value_zero (expect_type, lval_memory);
11329 }
11330 }
4c4b4cd2 11331 else
323e0a4a 11332 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11333 }
0963b4bd 11334 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11335 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11336
96967637
JB
11337 if (TYPE_CODE (type) == TYPE_CODE_INT)
11338 /* GDB allows dereferencing an int. If we were given
11339 the expect_type, then use that as the target type.
11340 Otherwise, assume that the target type is an int. */
11341 {
11342 if (expect_type != NULL)
11343 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11344 arg1));
11345 else
11346 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11347 (CORE_ADDR) value_as_address (arg1));
11348 }
6b0d7253 11349
4c4b4cd2
PH
11350 if (ada_is_array_descriptor_type (type))
11351 /* GDB allows dereferencing GNAT array descriptors. */
11352 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11353 else
4c4b4cd2 11354 return ada_value_ind (arg1);
14f9c5c9
AS
11355
11356 case STRUCTOP_STRUCT:
11357 tem = longest_to_int (exp->elts[pc + 1].longconst);
11358 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11359 preeval_pos = *pos;
14f9c5c9
AS
11360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11361 if (noside == EVAL_SKIP)
4c4b4cd2 11362 goto nosideret;
14f9c5c9 11363 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11364 {
df407dfe 11365 struct type *type1 = value_type (arg1);
5b4ee69b 11366
76a01679
JB
11367 if (ada_is_tagged_type (type1, 1))
11368 {
11369 type = ada_lookup_struct_elt_type (type1,
11370 &exp->elts[pc + 2].string,
988f6b3d 11371 1, 1);
5ec18f2b
JG
11372
11373 /* If the field is not found, check if it exists in the
11374 extension of this object's type. This means that we
11375 need to evaluate completely the expression. */
11376
76a01679 11377 if (type == NULL)
5ec18f2b
JG
11378 {
11379 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11380 EVAL_NORMAL);
11381 arg1 = ada_value_struct_elt (arg1,
11382 &exp->elts[pc + 2].string,
11383 0);
11384 arg1 = unwrap_value (arg1);
11385 type = value_type (ada_to_fixed_value (arg1));
11386 }
76a01679
JB
11387 }
11388 else
11389 type =
11390 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11391 0);
76a01679
JB
11392
11393 return value_zero (ada_aligned_type (type), lval_memory);
11394 }
14f9c5c9 11395 else
a579cd9a
MW
11396 {
11397 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11398 arg1 = unwrap_value (arg1);
11399 return ada_to_fixed_value (arg1);
11400 }
284614f0 11401
14f9c5c9 11402 case OP_TYPE:
4c4b4cd2
PH
11403 /* The value is not supposed to be used. This is here to make it
11404 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11405 (*pos) += 2;
11406 if (noside == EVAL_SKIP)
4c4b4cd2 11407 goto nosideret;
14f9c5c9 11408 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11409 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11410 else
323e0a4a 11411 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11412
11413 case OP_AGGREGATE:
11414 case OP_CHOICES:
11415 case OP_OTHERS:
11416 case OP_DISCRETE_RANGE:
11417 case OP_POSITIONAL:
11418 case OP_NAME:
11419 if (noside == EVAL_NORMAL)
11420 switch (op)
11421 {
11422 case OP_NAME:
11423 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11424 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11425 case OP_AGGREGATE:
11426 error (_("Aggregates only allowed on the right of an assignment"));
11427 default:
0963b4bd
MS
11428 internal_error (__FILE__, __LINE__,
11429 _("aggregate apparently mangled"));
52ce6436
PH
11430 }
11431
11432 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11433 *pos += oplen - 1;
11434 for (tem = 0; tem < nargs; tem += 1)
11435 ada_evaluate_subexp (NULL, exp, pos, noside);
11436 goto nosideret;
14f9c5c9
AS
11437 }
11438
11439nosideret:
ced9779b 11440 return eval_skip_value (exp);
14f9c5c9 11441}
14f9c5c9 11442\f
d2e4a39e 11443
4c4b4cd2 11444 /* Fixed point */
14f9c5c9
AS
11445
11446/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11447 type name that encodes the 'small and 'delta information.
4c4b4cd2 11448 Otherwise, return NULL. */
14f9c5c9 11449
d2e4a39e 11450static const char *
ebf56fd3 11451fixed_type_info (struct type *type)
14f9c5c9 11452{
d2e4a39e 11453 const char *name = ada_type_name (type);
14f9c5c9
AS
11454 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11455
d2e4a39e
AS
11456 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11457 {
14f9c5c9 11458 const char *tail = strstr (name, "___XF_");
5b4ee69b 11459
14f9c5c9 11460 if (tail == NULL)
4c4b4cd2 11461 return NULL;
d2e4a39e 11462 else
4c4b4cd2 11463 return tail + 5;
14f9c5c9
AS
11464 }
11465 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11466 return fixed_type_info (TYPE_TARGET_TYPE (type));
11467 else
11468 return NULL;
11469}
11470
4c4b4cd2 11471/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11472
11473int
ebf56fd3 11474ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11475{
11476 return fixed_type_info (type) != NULL;
11477}
11478
4c4b4cd2
PH
11479/* Return non-zero iff TYPE represents a System.Address type. */
11480
11481int
11482ada_is_system_address_type (struct type *type)
11483{
11484 return (TYPE_NAME (type)
11485 && strcmp (TYPE_NAME (type), "system__address") == 0);
11486}
11487
14f9c5c9 11488/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11489 type, return the target floating-point type to be used to represent
11490 of this type during internal computation. */
11491
11492static struct type *
11493ada_scaling_type (struct type *type)
11494{
11495 return builtin_type (get_type_arch (type))->builtin_long_double;
11496}
11497
11498/* Assuming that TYPE is the representation of an Ada fixed-point
11499 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11500 delta cannot be determined. */
14f9c5c9 11501
50eff16b 11502struct value *
ebf56fd3 11503ada_delta (struct type *type)
14f9c5c9
AS
11504{
11505 const char *encoding = fixed_type_info (type);
50eff16b
UW
11506 struct type *scale_type = ada_scaling_type (type);
11507
11508 long long num, den;
11509
11510 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11511 return nullptr;
d2e4a39e 11512 else
50eff16b
UW
11513 return value_binop (value_from_longest (scale_type, num),
11514 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11515}
11516
11517/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11518 factor ('SMALL value) associated with the type. */
14f9c5c9 11519
50eff16b
UW
11520struct value *
11521ada_scaling_factor (struct type *type)
14f9c5c9
AS
11522{
11523 const char *encoding = fixed_type_info (type);
50eff16b
UW
11524 struct type *scale_type = ada_scaling_type (type);
11525
11526 long long num0, den0, num1, den1;
14f9c5c9 11527 int n;
d2e4a39e 11528
50eff16b 11529 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11530 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11531
11532 if (n < 2)
50eff16b 11533 return value_from_longest (scale_type, 1);
14f9c5c9 11534 else if (n == 4)
50eff16b
UW
11535 return value_binop (value_from_longest (scale_type, num1),
11536 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11537 else
50eff16b
UW
11538 return value_binop (value_from_longest (scale_type, num0),
11539 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11540}
11541
14f9c5c9 11542\f
d2e4a39e 11543
4c4b4cd2 11544 /* Range types */
14f9c5c9
AS
11545
11546/* Scan STR beginning at position K for a discriminant name, and
11547 return the value of that discriminant field of DVAL in *PX. If
11548 PNEW_K is not null, put the position of the character beyond the
11549 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11550 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11551
11552static int
108d56a4 11553scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11554 int *pnew_k)
14f9c5c9
AS
11555{
11556 static char *bound_buffer = NULL;
11557 static size_t bound_buffer_len = 0;
5da1a4d3 11558 const char *pstart, *pend, *bound;
d2e4a39e 11559 struct value *bound_val;
14f9c5c9
AS
11560
11561 if (dval == NULL || str == NULL || str[k] == '\0')
11562 return 0;
11563
5da1a4d3
SM
11564 pstart = str + k;
11565 pend = strstr (pstart, "__");
14f9c5c9
AS
11566 if (pend == NULL)
11567 {
5da1a4d3 11568 bound = pstart;
14f9c5c9
AS
11569 k += strlen (bound);
11570 }
d2e4a39e 11571 else
14f9c5c9 11572 {
5da1a4d3
SM
11573 int len = pend - pstart;
11574
11575 /* Strip __ and beyond. */
11576 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11577 strncpy (bound_buffer, pstart, len);
11578 bound_buffer[len] = '\0';
11579
14f9c5c9 11580 bound = bound_buffer;
d2e4a39e 11581 k = pend - str;
14f9c5c9 11582 }
d2e4a39e 11583
df407dfe 11584 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11585 if (bound_val == NULL)
11586 return 0;
11587
11588 *px = value_as_long (bound_val);
11589 if (pnew_k != NULL)
11590 *pnew_k = k;
11591 return 1;
11592}
11593
11594/* Value of variable named NAME in the current environment. If
11595 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11596 otherwise causes an error with message ERR_MSG. */
11597
d2e4a39e 11598static struct value *
edb0c9cb 11599get_var_value (const char *name, const char *err_msg)
14f9c5c9 11600{
b5ec771e 11601 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11602
b5ec771e
PA
11603 struct block_symbol *syms;
11604 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11605 get_selected_block (0),
11606 VAR_DOMAIN, &syms, 1);
ec6a20c2 11607 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11608
11609 if (nsyms != 1)
11610 {
ec6a20c2 11611 do_cleanups (old_chain);
14f9c5c9 11612 if (err_msg == NULL)
4c4b4cd2 11613 return 0;
14f9c5c9 11614 else
8a3fe4f8 11615 error (("%s"), err_msg);
14f9c5c9
AS
11616 }
11617
ec6a20c2
JB
11618 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11619 do_cleanups (old_chain);
11620 return result;
14f9c5c9 11621}
d2e4a39e 11622
edb0c9cb
PA
11623/* Value of integer variable named NAME in the current environment.
11624 If no such variable is found, returns false. Otherwise, sets VALUE
11625 to the variable's value and returns true. */
4c4b4cd2 11626
edb0c9cb
PA
11627bool
11628get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11629{
4c4b4cd2 11630 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11631
14f9c5c9 11632 if (var_val == 0)
edb0c9cb
PA
11633 return false;
11634
11635 value = value_as_long (var_val);
11636 return true;
14f9c5c9 11637}
d2e4a39e 11638
14f9c5c9
AS
11639
11640/* Return a range type whose base type is that of the range type named
11641 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11642 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11643 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11644 corresponding range type from debug information; fall back to using it
11645 if symbol lookup fails. If a new type must be created, allocate it
11646 like ORIG_TYPE was. The bounds information, in general, is encoded
11647 in NAME, the base type given in the named range type. */
14f9c5c9 11648
d2e4a39e 11649static struct type *
28c85d6c 11650to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11651{
0d5cff50 11652 const char *name;
14f9c5c9 11653 struct type *base_type;
108d56a4 11654 const char *subtype_info;
14f9c5c9 11655
28c85d6c
JB
11656 gdb_assert (raw_type != NULL);
11657 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11658
1ce677a4 11659 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11660 base_type = TYPE_TARGET_TYPE (raw_type);
11661 else
11662 base_type = raw_type;
11663
28c85d6c 11664 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11665 subtype_info = strstr (name, "___XD");
11666 if (subtype_info == NULL)
690cc4eb 11667 {
43bbcdc2
PH
11668 LONGEST L = ada_discrete_type_low_bound (raw_type);
11669 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11670
690cc4eb
PH
11671 if (L < INT_MIN || U > INT_MAX)
11672 return raw_type;
11673 else
0c9c3474
SA
11674 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11675 L, U);
690cc4eb 11676 }
14f9c5c9
AS
11677 else
11678 {
11679 static char *name_buf = NULL;
11680 static size_t name_len = 0;
11681 int prefix_len = subtype_info - name;
11682 LONGEST L, U;
11683 struct type *type;
108d56a4 11684 const char *bounds_str;
14f9c5c9
AS
11685 int n;
11686
11687 GROW_VECT (name_buf, name_len, prefix_len + 5);
11688 strncpy (name_buf, name, prefix_len);
11689 name_buf[prefix_len] = '\0';
11690
11691 subtype_info += 5;
11692 bounds_str = strchr (subtype_info, '_');
11693 n = 1;
11694
d2e4a39e 11695 if (*subtype_info == 'L')
4c4b4cd2
PH
11696 {
11697 if (!ada_scan_number (bounds_str, n, &L, &n)
11698 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11699 return raw_type;
11700 if (bounds_str[n] == '_')
11701 n += 2;
0963b4bd 11702 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11703 n += 1;
11704 subtype_info += 1;
11705 }
d2e4a39e 11706 else
4c4b4cd2 11707 {
4c4b4cd2 11708 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11709 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11710 {
323e0a4a 11711 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11712 L = 1;
11713 }
11714 }
14f9c5c9 11715
d2e4a39e 11716 if (*subtype_info == 'U')
4c4b4cd2
PH
11717 {
11718 if (!ada_scan_number (bounds_str, n, &U, &n)
11719 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11720 return raw_type;
11721 }
d2e4a39e 11722 else
4c4b4cd2 11723 {
4c4b4cd2 11724 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11725 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11726 {
323e0a4a 11727 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11728 U = L;
11729 }
11730 }
14f9c5c9 11731
0c9c3474
SA
11732 type = create_static_range_type (alloc_type_copy (raw_type),
11733 base_type, L, U);
f5a91472
JB
11734 /* create_static_range_type alters the resulting type's length
11735 to match the size of the base_type, which is not what we want.
11736 Set it back to the original range type's length. */
11737 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11738 TYPE_NAME (type) = name;
14f9c5c9
AS
11739 return type;
11740 }
11741}
11742
4c4b4cd2
PH
11743/* True iff NAME is the name of a range type. */
11744
14f9c5c9 11745int
d2e4a39e 11746ada_is_range_type_name (const char *name)
14f9c5c9
AS
11747{
11748 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11749}
14f9c5c9 11750\f
d2e4a39e 11751
4c4b4cd2
PH
11752 /* Modular types */
11753
11754/* True iff TYPE is an Ada modular type. */
14f9c5c9 11755
14f9c5c9 11756int
d2e4a39e 11757ada_is_modular_type (struct type *type)
14f9c5c9 11758{
18af8284 11759 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11760
11761 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11762 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11763 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11764}
11765
4c4b4cd2
PH
11766/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11767
61ee279c 11768ULONGEST
0056e4d5 11769ada_modulus (struct type *type)
14f9c5c9 11770{
43bbcdc2 11771 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11772}
d2e4a39e 11773\f
f7f9143b
JB
11774
11775/* Ada exception catchpoint support:
11776 ---------------------------------
11777
11778 We support 3 kinds of exception catchpoints:
11779 . catchpoints on Ada exceptions
11780 . catchpoints on unhandled Ada exceptions
11781 . catchpoints on failed assertions
11782
11783 Exceptions raised during failed assertions, or unhandled exceptions
11784 could perfectly be caught with the general catchpoint on Ada exceptions.
11785 However, we can easily differentiate these two special cases, and having
11786 the option to distinguish these two cases from the rest can be useful
11787 to zero-in on certain situations.
11788
11789 Exception catchpoints are a specialized form of breakpoint,
11790 since they rely on inserting breakpoints inside known routines
11791 of the GNAT runtime. The implementation therefore uses a standard
11792 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11793 of breakpoint_ops.
11794
0259addd
JB
11795 Support in the runtime for exception catchpoints have been changed
11796 a few times already, and these changes affect the implementation
11797 of these catchpoints. In order to be able to support several
11798 variants of the runtime, we use a sniffer that will determine
28010a5d 11799 the runtime variant used by the program being debugged. */
f7f9143b 11800
82eacd52
JB
11801/* Ada's standard exceptions.
11802
11803 The Ada 83 standard also defined Numeric_Error. But there so many
11804 situations where it was unclear from the Ada 83 Reference Manual
11805 (RM) whether Constraint_Error or Numeric_Error should be raised,
11806 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11807 Interpretation saying that anytime the RM says that Numeric_Error
11808 should be raised, the implementation may raise Constraint_Error.
11809 Ada 95 went one step further and pretty much removed Numeric_Error
11810 from the list of standard exceptions (it made it a renaming of
11811 Constraint_Error, to help preserve compatibility when compiling
11812 an Ada83 compiler). As such, we do not include Numeric_Error from
11813 this list of standard exceptions. */
3d0b0fa3 11814
a121b7c1 11815static const char *standard_exc[] = {
3d0b0fa3
JB
11816 "constraint_error",
11817 "program_error",
11818 "storage_error",
11819 "tasking_error"
11820};
11821
0259addd
JB
11822typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11823
11824/* A structure that describes how to support exception catchpoints
11825 for a given executable. */
11826
11827struct exception_support_info
11828{
11829 /* The name of the symbol to break on in order to insert
11830 a catchpoint on exceptions. */
11831 const char *catch_exception_sym;
11832
11833 /* The name of the symbol to break on in order to insert
11834 a catchpoint on unhandled exceptions. */
11835 const char *catch_exception_unhandled_sym;
11836
11837 /* The name of the symbol to break on in order to insert
11838 a catchpoint on failed assertions. */
11839 const char *catch_assert_sym;
11840
11841 /* Assuming that the inferior just triggered an unhandled exception
11842 catchpoint, this function is responsible for returning the address
11843 in inferior memory where the name of that exception is stored.
11844 Return zero if the address could not be computed. */
11845 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11846};
11847
11848static CORE_ADDR ada_unhandled_exception_name_addr (void);
11849static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11850
11851/* The following exception support info structure describes how to
11852 implement exception catchpoints with the latest version of the
11853 Ada runtime (as of 2007-03-06). */
11854
11855static const struct exception_support_info default_exception_support_info =
11856{
11857 "__gnat_debug_raise_exception", /* catch_exception_sym */
11858 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11859 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11860 ada_unhandled_exception_name_addr
11861};
11862
11863/* The following exception support info structure describes how to
11864 implement exception catchpoints with a slightly older version
11865 of the Ada runtime. */
11866
11867static const struct exception_support_info exception_support_info_fallback =
11868{
11869 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11870 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11871 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11872 ada_unhandled_exception_name_addr_from_raise
11873};
11874
f17011e0
JB
11875/* Return nonzero if we can detect the exception support routines
11876 described in EINFO.
11877
11878 This function errors out if an abnormal situation is detected
11879 (for instance, if we find the exception support routines, but
11880 that support is found to be incomplete). */
11881
11882static int
11883ada_has_this_exception_support (const struct exception_support_info *einfo)
11884{
11885 struct symbol *sym;
11886
11887 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11888 that should be compiled with debugging information. As a result, we
11889 expect to find that symbol in the symtabs. */
11890
11891 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11892 if (sym == NULL)
a6af7abe
JB
11893 {
11894 /* Perhaps we did not find our symbol because the Ada runtime was
11895 compiled without debugging info, or simply stripped of it.
11896 It happens on some GNU/Linux distributions for instance, where
11897 users have to install a separate debug package in order to get
11898 the runtime's debugging info. In that situation, let the user
11899 know why we cannot insert an Ada exception catchpoint.
11900
11901 Note: Just for the purpose of inserting our Ada exception
11902 catchpoint, we could rely purely on the associated minimal symbol.
11903 But we would be operating in degraded mode anyway, since we are
11904 still lacking the debugging info needed later on to extract
11905 the name of the exception being raised (this name is printed in
11906 the catchpoint message, and is also used when trying to catch
11907 a specific exception). We do not handle this case for now. */
3b7344d5 11908 struct bound_minimal_symbol msym
1c8e84b0
JB
11909 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11910
3b7344d5 11911 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11912 error (_("Your Ada runtime appears to be missing some debugging "
11913 "information.\nCannot insert Ada exception catchpoint "
11914 "in this configuration."));
11915
11916 return 0;
11917 }
f17011e0
JB
11918
11919 /* Make sure that the symbol we found corresponds to a function. */
11920
11921 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11922 error (_("Symbol \"%s\" is not a function (class = %d)"),
11923 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11924
11925 return 1;
11926}
11927
0259addd
JB
11928/* Inspect the Ada runtime and determine which exception info structure
11929 should be used to provide support for exception catchpoints.
11930
3eecfa55
JB
11931 This function will always set the per-inferior exception_info,
11932 or raise an error. */
0259addd
JB
11933
11934static void
11935ada_exception_support_info_sniffer (void)
11936{
3eecfa55 11937 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11938
11939 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11940 if (data->exception_info != NULL)
0259addd
JB
11941 return;
11942
11943 /* Check the latest (default) exception support info. */
f17011e0 11944 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11945 {
3eecfa55 11946 data->exception_info = &default_exception_support_info;
0259addd
JB
11947 return;
11948 }
11949
11950 /* Try our fallback exception suport info. */
f17011e0 11951 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11952 {
3eecfa55 11953 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11954 return;
11955 }
11956
11957 /* Sometimes, it is normal for us to not be able to find the routine
11958 we are looking for. This happens when the program is linked with
11959 the shared version of the GNAT runtime, and the program has not been
11960 started yet. Inform the user of these two possible causes if
11961 applicable. */
11962
ccefe4c4 11963 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11964 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11965
11966 /* If the symbol does not exist, then check that the program is
11967 already started, to make sure that shared libraries have been
11968 loaded. If it is not started, this may mean that the symbol is
11969 in a shared library. */
11970
11971 if (ptid_get_pid (inferior_ptid) == 0)
11972 error (_("Unable to insert catchpoint. Try to start the program first."));
11973
11974 /* At this point, we know that we are debugging an Ada program and
11975 that the inferior has been started, but we still are not able to
0963b4bd 11976 find the run-time symbols. That can mean that we are in
0259addd
JB
11977 configurable run time mode, or that a-except as been optimized
11978 out by the linker... In any case, at this point it is not worth
11979 supporting this feature. */
11980
7dda8cff 11981 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11982}
11983
f7f9143b
JB
11984/* True iff FRAME is very likely to be that of a function that is
11985 part of the runtime system. This is all very heuristic, but is
11986 intended to be used as advice as to what frames are uninteresting
11987 to most users. */
11988
11989static int
11990is_known_support_routine (struct frame_info *frame)
11991{
692465f1 11992 enum language func_lang;
f7f9143b 11993 int i;
f35a17b5 11994 const char *fullname;
f7f9143b 11995
4ed6b5be
JB
11996 /* If this code does not have any debugging information (no symtab),
11997 This cannot be any user code. */
f7f9143b 11998
51abb421 11999 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12000 if (sal.symtab == NULL)
12001 return 1;
12002
4ed6b5be
JB
12003 /* If there is a symtab, but the associated source file cannot be
12004 located, then assume this is not user code: Selecting a frame
12005 for which we cannot display the code would not be very helpful
12006 for the user. This should also take care of case such as VxWorks
12007 where the kernel has some debugging info provided for a few units. */
f7f9143b 12008
f35a17b5
JK
12009 fullname = symtab_to_fullname (sal.symtab);
12010 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12011 return 1;
12012
4ed6b5be
JB
12013 /* Check the unit filename againt the Ada runtime file naming.
12014 We also check the name of the objfile against the name of some
12015 known system libraries that sometimes come with debugging info
12016 too. */
12017
f7f9143b
JB
12018 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12019 {
12020 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12021 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12022 return 1;
eb822aa6
DE
12023 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12024 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12025 return 1;
f7f9143b
JB
12026 }
12027
4ed6b5be 12028 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12029
c6dc63a1
TT
12030 gdb::unique_xmalloc_ptr<char> func_name
12031 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12032 if (func_name == NULL)
12033 return 1;
12034
12035 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12036 {
12037 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12038 if (re_exec (func_name.get ()))
12039 return 1;
f7f9143b
JB
12040 }
12041
12042 return 0;
12043}
12044
12045/* Find the first frame that contains debugging information and that is not
12046 part of the Ada run-time, starting from FI and moving upward. */
12047
0ef643c8 12048void
f7f9143b
JB
12049ada_find_printable_frame (struct frame_info *fi)
12050{
12051 for (; fi != NULL; fi = get_prev_frame (fi))
12052 {
12053 if (!is_known_support_routine (fi))
12054 {
12055 select_frame (fi);
12056 break;
12057 }
12058 }
12059
12060}
12061
12062/* Assuming that the inferior just triggered an unhandled exception
12063 catchpoint, return the address in inferior memory where the name
12064 of the exception is stored.
12065
12066 Return zero if the address could not be computed. */
12067
12068static CORE_ADDR
12069ada_unhandled_exception_name_addr (void)
0259addd
JB
12070{
12071 return parse_and_eval_address ("e.full_name");
12072}
12073
12074/* Same as ada_unhandled_exception_name_addr, except that this function
12075 should be used when the inferior uses an older version of the runtime,
12076 where the exception name needs to be extracted from a specific frame
12077 several frames up in the callstack. */
12078
12079static CORE_ADDR
12080ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12081{
12082 int frame_level;
12083 struct frame_info *fi;
3eecfa55 12084 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12085
12086 /* To determine the name of this exception, we need to select
12087 the frame corresponding to RAISE_SYM_NAME. This frame is
12088 at least 3 levels up, so we simply skip the first 3 frames
12089 without checking the name of their associated function. */
12090 fi = get_current_frame ();
12091 for (frame_level = 0; frame_level < 3; frame_level += 1)
12092 if (fi != NULL)
12093 fi = get_prev_frame (fi);
12094
12095 while (fi != NULL)
12096 {
692465f1
JB
12097 enum language func_lang;
12098
c6dc63a1
TT
12099 gdb::unique_xmalloc_ptr<char> func_name
12100 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12101 if (func_name != NULL)
12102 {
c6dc63a1 12103 if (strcmp (func_name.get (),
55b87a52
KS
12104 data->exception_info->catch_exception_sym) == 0)
12105 break; /* We found the frame we were looking for... */
12106 fi = get_prev_frame (fi);
12107 }
f7f9143b
JB
12108 }
12109
12110 if (fi == NULL)
12111 return 0;
12112
12113 select_frame (fi);
12114 return parse_and_eval_address ("id.full_name");
12115}
12116
12117/* Assuming the inferior just triggered an Ada exception catchpoint
12118 (of any type), return the address in inferior memory where the name
12119 of the exception is stored, if applicable.
12120
45db7c09
PA
12121 Assumes the selected frame is the current frame.
12122
f7f9143b
JB
12123 Return zero if the address could not be computed, or if not relevant. */
12124
12125static CORE_ADDR
761269c8 12126ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12127 struct breakpoint *b)
12128{
3eecfa55
JB
12129 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12130
f7f9143b
JB
12131 switch (ex)
12132 {
761269c8 12133 case ada_catch_exception:
f7f9143b
JB
12134 return (parse_and_eval_address ("e.full_name"));
12135 break;
12136
761269c8 12137 case ada_catch_exception_unhandled:
3eecfa55 12138 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12139 break;
12140
761269c8 12141 case ada_catch_assert:
f7f9143b
JB
12142 return 0; /* Exception name is not relevant in this case. */
12143 break;
12144
12145 default:
12146 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12147 break;
12148 }
12149
12150 return 0; /* Should never be reached. */
12151}
12152
e547c119
JB
12153/* Assuming the inferior is stopped at an exception catchpoint,
12154 return the message which was associated to the exception, if
12155 available. Return NULL if the message could not be retrieved.
12156
12157 The caller must xfree the string after use.
12158
12159 Note: The exception message can be associated to an exception
12160 either through the use of the Raise_Exception function, or
12161 more simply (Ada 2005 and later), via:
12162
12163 raise Exception_Name with "exception message";
12164
12165 */
12166
12167static char *
12168ada_exception_message_1 (void)
12169{
12170 struct value *e_msg_val;
12171 char *e_msg = NULL;
12172 int e_msg_len;
12173 struct cleanup *cleanups;
12174
12175 /* For runtimes that support this feature, the exception message
12176 is passed as an unbounded string argument called "message". */
12177 e_msg_val = parse_and_eval ("message");
12178 if (e_msg_val == NULL)
12179 return NULL; /* Exception message not supported. */
12180
12181 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12182 gdb_assert (e_msg_val != NULL);
12183 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12184
12185 /* If the message string is empty, then treat it as if there was
12186 no exception message. */
12187 if (e_msg_len <= 0)
12188 return NULL;
12189
12190 e_msg = (char *) xmalloc (e_msg_len + 1);
12191 cleanups = make_cleanup (xfree, e_msg);
12192 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12193 e_msg[e_msg_len] = '\0';
12194
12195 discard_cleanups (cleanups);
12196 return e_msg;
12197}
12198
12199/* Same as ada_exception_message_1, except that all exceptions are
12200 contained here (returning NULL instead). */
12201
12202static char *
12203ada_exception_message (void)
12204{
12205 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12206
12207 TRY
12208 {
12209 e_msg = ada_exception_message_1 ();
12210 }
12211 CATCH (e, RETURN_MASK_ERROR)
12212 {
12213 e_msg = NULL;
12214 }
12215 END_CATCH
12216
12217 return e_msg;
12218}
12219
f7f9143b
JB
12220/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12221 any error that ada_exception_name_addr_1 might cause to be thrown.
12222 When an error is intercepted, a warning with the error message is printed,
12223 and zero is returned. */
12224
12225static CORE_ADDR
761269c8 12226ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12227 struct breakpoint *b)
12228{
f7f9143b
JB
12229 CORE_ADDR result = 0;
12230
492d29ea 12231 TRY
f7f9143b
JB
12232 {
12233 result = ada_exception_name_addr_1 (ex, b);
12234 }
12235
492d29ea 12236 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12237 {
12238 warning (_("failed to get exception name: %s"), e.message);
12239 return 0;
12240 }
492d29ea 12241 END_CATCH
f7f9143b
JB
12242
12243 return result;
12244}
12245
28010a5d
PA
12246static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12247
12248/* Ada catchpoints.
12249
12250 In the case of catchpoints on Ada exceptions, the catchpoint will
12251 stop the target on every exception the program throws. When a user
12252 specifies the name of a specific exception, we translate this
12253 request into a condition expression (in text form), and then parse
12254 it into an expression stored in each of the catchpoint's locations.
12255 We then use this condition to check whether the exception that was
12256 raised is the one the user is interested in. If not, then the
12257 target is resumed again. We store the name of the requested
12258 exception, in order to be able to re-set the condition expression
12259 when symbols change. */
12260
12261/* An instance of this type is used to represent an Ada catchpoint
5625a286 12262 breakpoint location. */
28010a5d 12263
5625a286 12264class ada_catchpoint_location : public bp_location
28010a5d 12265{
5625a286
PA
12266public:
12267 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12268 : bp_location (ops, owner)
12269 {}
28010a5d
PA
12270
12271 /* The condition that checks whether the exception that was raised
12272 is the specific exception the user specified on catchpoint
12273 creation. */
4d01a485 12274 expression_up excep_cond_expr;
28010a5d
PA
12275};
12276
12277/* Implement the DTOR method in the bp_location_ops structure for all
12278 Ada exception catchpoint kinds. */
12279
12280static void
12281ada_catchpoint_location_dtor (struct bp_location *bl)
12282{
12283 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12284
4d01a485 12285 al->excep_cond_expr.reset ();
28010a5d
PA
12286}
12287
12288/* The vtable to be used in Ada catchpoint locations. */
12289
12290static const struct bp_location_ops ada_catchpoint_location_ops =
12291{
12292 ada_catchpoint_location_dtor
12293};
12294
c1fc2657 12295/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12296
c1fc2657 12297struct ada_catchpoint : public breakpoint
28010a5d 12298{
c1fc2657 12299 ~ada_catchpoint () override;
28010a5d
PA
12300
12301 /* The name of the specific exception the user specified. */
12302 char *excep_string;
12303};
12304
12305/* Parse the exception condition string in the context of each of the
12306 catchpoint's locations, and store them for later evaluation. */
12307
12308static void
12309create_excep_cond_exprs (struct ada_catchpoint *c)
12310{
12311 struct cleanup *old_chain;
12312 struct bp_location *bl;
12313 char *cond_string;
12314
12315 /* Nothing to do if there's no specific exception to catch. */
12316 if (c->excep_string == NULL)
12317 return;
12318
12319 /* Same if there are no locations... */
c1fc2657 12320 if (c->loc == NULL)
28010a5d
PA
12321 return;
12322
12323 /* Compute the condition expression in text form, from the specific
12324 expection we want to catch. */
12325 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12326 old_chain = make_cleanup (xfree, cond_string);
12327
12328 /* Iterate over all the catchpoint's locations, and parse an
12329 expression for each. */
c1fc2657 12330 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12331 {
12332 struct ada_catchpoint_location *ada_loc
12333 = (struct ada_catchpoint_location *) bl;
4d01a485 12334 expression_up exp;
28010a5d
PA
12335
12336 if (!bl->shlib_disabled)
12337 {
bbc13ae3 12338 const char *s;
28010a5d
PA
12339
12340 s = cond_string;
492d29ea 12341 TRY
28010a5d 12342 {
036e657b
JB
12343 exp = parse_exp_1 (&s, bl->address,
12344 block_for_pc (bl->address),
12345 0);
28010a5d 12346 }
492d29ea 12347 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12348 {
12349 warning (_("failed to reevaluate internal exception condition "
12350 "for catchpoint %d: %s"),
c1fc2657 12351 c->number, e.message);
849f2b52 12352 }
492d29ea 12353 END_CATCH
28010a5d
PA
12354 }
12355
b22e99fd 12356 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12357 }
12358
12359 do_cleanups (old_chain);
12360}
12361
c1fc2657 12362/* ada_catchpoint destructor. */
28010a5d 12363
c1fc2657 12364ada_catchpoint::~ada_catchpoint ()
28010a5d 12365{
c1fc2657 12366 xfree (this->excep_string);
28010a5d
PA
12367}
12368
12369/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12370 structure for all exception catchpoint kinds. */
12371
12372static struct bp_location *
761269c8 12373allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12374 struct breakpoint *self)
12375{
5625a286 12376 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12377}
12378
12379/* Implement the RE_SET method in the breakpoint_ops structure for all
12380 exception catchpoint kinds. */
12381
12382static void
761269c8 12383re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12384{
12385 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12386
12387 /* Call the base class's method. This updates the catchpoint's
12388 locations. */
2060206e 12389 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12390
12391 /* Reparse the exception conditional expressions. One for each
12392 location. */
12393 create_excep_cond_exprs (c);
12394}
12395
12396/* Returns true if we should stop for this breakpoint hit. If the
12397 user specified a specific exception, we only want to cause a stop
12398 if the program thrown that exception. */
12399
12400static int
12401should_stop_exception (const struct bp_location *bl)
12402{
12403 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12404 const struct ada_catchpoint_location *ada_loc
12405 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12406 int stop;
12407
12408 /* With no specific exception, should always stop. */
12409 if (c->excep_string == NULL)
12410 return 1;
12411
12412 if (ada_loc->excep_cond_expr == NULL)
12413 {
12414 /* We will have a NULL expression if back when we were creating
12415 the expressions, this location's had failed to parse. */
12416 return 1;
12417 }
12418
12419 stop = 1;
492d29ea 12420 TRY
28010a5d
PA
12421 {
12422 struct value *mark;
12423
12424 mark = value_mark ();
4d01a485 12425 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12426 value_free_to_mark (mark);
12427 }
492d29ea
PA
12428 CATCH (ex, RETURN_MASK_ALL)
12429 {
12430 exception_fprintf (gdb_stderr, ex,
12431 _("Error in testing exception condition:\n"));
12432 }
12433 END_CATCH
12434
28010a5d
PA
12435 return stop;
12436}
12437
12438/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12439 for all exception catchpoint kinds. */
12440
12441static void
761269c8 12442check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12443{
12444 bs->stop = should_stop_exception (bs->bp_location_at);
12445}
12446
f7f9143b
JB
12447/* Implement the PRINT_IT method in the breakpoint_ops structure
12448 for all exception catchpoint kinds. */
12449
12450static enum print_stop_action
761269c8 12451print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12452{
79a45e25 12453 struct ui_out *uiout = current_uiout;
348d480f 12454 struct breakpoint *b = bs->breakpoint_at;
e547c119 12455 char *exception_message;
348d480f 12456
956a9fb9 12457 annotate_catchpoint (b->number);
f7f9143b 12458
112e8700 12459 if (uiout->is_mi_like_p ())
f7f9143b 12460 {
112e8700 12461 uiout->field_string ("reason",
956a9fb9 12462 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12463 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12464 }
12465
112e8700
SM
12466 uiout->text (b->disposition == disp_del
12467 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12468 uiout->field_int ("bkptno", b->number);
12469 uiout->text (", ");
f7f9143b 12470
45db7c09
PA
12471 /* ada_exception_name_addr relies on the selected frame being the
12472 current frame. Need to do this here because this function may be
12473 called more than once when printing a stop, and below, we'll
12474 select the first frame past the Ada run-time (see
12475 ada_find_printable_frame). */
12476 select_frame (get_current_frame ());
12477
f7f9143b
JB
12478 switch (ex)
12479 {
761269c8
JB
12480 case ada_catch_exception:
12481 case ada_catch_exception_unhandled:
956a9fb9
JB
12482 {
12483 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12484 char exception_name[256];
12485
12486 if (addr != 0)
12487 {
c714b426
PA
12488 read_memory (addr, (gdb_byte *) exception_name,
12489 sizeof (exception_name) - 1);
956a9fb9
JB
12490 exception_name [sizeof (exception_name) - 1] = '\0';
12491 }
12492 else
12493 {
12494 /* For some reason, we were unable to read the exception
12495 name. This could happen if the Runtime was compiled
12496 without debugging info, for instance. In that case,
12497 just replace the exception name by the generic string
12498 "exception" - it will read as "an exception" in the
12499 notification we are about to print. */
967cff16 12500 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12501 }
12502 /* In the case of unhandled exception breakpoints, we print
12503 the exception name as "unhandled EXCEPTION_NAME", to make
12504 it clearer to the user which kind of catchpoint just got
12505 hit. We used ui_out_text to make sure that this extra
12506 info does not pollute the exception name in the MI case. */
761269c8 12507 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12508 uiout->text ("unhandled ");
12509 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12510 }
12511 break;
761269c8 12512 case ada_catch_assert:
956a9fb9
JB
12513 /* In this case, the name of the exception is not really
12514 important. Just print "failed assertion" to make it clearer
12515 that his program just hit an assertion-failure catchpoint.
12516 We used ui_out_text because this info does not belong in
12517 the MI output. */
112e8700 12518 uiout->text ("failed assertion");
956a9fb9 12519 break;
f7f9143b 12520 }
e547c119
JB
12521
12522 exception_message = ada_exception_message ();
12523 if (exception_message != NULL)
12524 {
12525 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12526
12527 uiout->text (" (");
12528 uiout->field_string ("exception-message", exception_message);
12529 uiout->text (")");
12530
12531 do_cleanups (cleanups);
12532 }
12533
112e8700 12534 uiout->text (" at ");
956a9fb9 12535 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12536
12537 return PRINT_SRC_AND_LOC;
12538}
12539
12540/* Implement the PRINT_ONE method in the breakpoint_ops structure
12541 for all exception catchpoint kinds. */
12542
12543static void
761269c8 12544print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12545 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12546{
79a45e25 12547 struct ui_out *uiout = current_uiout;
28010a5d 12548 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12549 struct value_print_options opts;
12550
12551 get_user_print_options (&opts);
12552 if (opts.addressprint)
f7f9143b
JB
12553 {
12554 annotate_field (4);
112e8700 12555 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12556 }
12557
12558 annotate_field (5);
a6d9a66e 12559 *last_loc = b->loc;
f7f9143b
JB
12560 switch (ex)
12561 {
761269c8 12562 case ada_catch_exception:
28010a5d 12563 if (c->excep_string != NULL)
f7f9143b 12564 {
28010a5d
PA
12565 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12566
112e8700 12567 uiout->field_string ("what", msg);
f7f9143b
JB
12568 xfree (msg);
12569 }
12570 else
112e8700 12571 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12572
12573 break;
12574
761269c8 12575 case ada_catch_exception_unhandled:
112e8700 12576 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12577 break;
12578
761269c8 12579 case ada_catch_assert:
112e8700 12580 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12581 break;
12582
12583 default:
12584 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12585 break;
12586 }
12587}
12588
12589/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12590 for all exception catchpoint kinds. */
12591
12592static void
761269c8 12593print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12594 struct breakpoint *b)
12595{
28010a5d 12596 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12597 struct ui_out *uiout = current_uiout;
28010a5d 12598
112e8700 12599 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12600 : _("Catchpoint "));
112e8700
SM
12601 uiout->field_int ("bkptno", b->number);
12602 uiout->text (": ");
00eb2c4a 12603
f7f9143b
JB
12604 switch (ex)
12605 {
761269c8 12606 case ada_catch_exception:
28010a5d 12607 if (c->excep_string != NULL)
00eb2c4a
JB
12608 {
12609 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12610 struct cleanup *old_chain = make_cleanup (xfree, info);
12611
112e8700 12612 uiout->text (info);
00eb2c4a
JB
12613 do_cleanups (old_chain);
12614 }
f7f9143b 12615 else
112e8700 12616 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12617 break;
12618
761269c8 12619 case ada_catch_exception_unhandled:
112e8700 12620 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12621 break;
12622
761269c8 12623 case ada_catch_assert:
112e8700 12624 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12625 break;
12626
12627 default:
12628 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12629 break;
12630 }
12631}
12632
6149aea9
PA
12633/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12634 for all exception catchpoint kinds. */
12635
12636static void
761269c8 12637print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12638 struct breakpoint *b, struct ui_file *fp)
12639{
28010a5d
PA
12640 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12641
6149aea9
PA
12642 switch (ex)
12643 {
761269c8 12644 case ada_catch_exception:
6149aea9 12645 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12646 if (c->excep_string != NULL)
12647 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12648 break;
12649
761269c8 12650 case ada_catch_exception_unhandled:
78076abc 12651 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12652 break;
12653
761269c8 12654 case ada_catch_assert:
6149aea9
PA
12655 fprintf_filtered (fp, "catch assert");
12656 break;
12657
12658 default:
12659 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12660 }
d9b3f62e 12661 print_recreate_thread (b, fp);
6149aea9
PA
12662}
12663
f7f9143b
JB
12664/* Virtual table for "catch exception" breakpoints. */
12665
28010a5d
PA
12666static struct bp_location *
12667allocate_location_catch_exception (struct breakpoint *self)
12668{
761269c8 12669 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12670}
12671
12672static void
12673re_set_catch_exception (struct breakpoint *b)
12674{
761269c8 12675 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12676}
12677
12678static void
12679check_status_catch_exception (bpstat bs)
12680{
761269c8 12681 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12682}
12683
f7f9143b 12684static enum print_stop_action
348d480f 12685print_it_catch_exception (bpstat bs)
f7f9143b 12686{
761269c8 12687 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12688}
12689
12690static void
a6d9a66e 12691print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12692{
761269c8 12693 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12694}
12695
12696static void
12697print_mention_catch_exception (struct breakpoint *b)
12698{
761269c8 12699 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12700}
12701
6149aea9
PA
12702static void
12703print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12704{
761269c8 12705 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12706}
12707
2060206e 12708static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12709
12710/* Virtual table for "catch exception unhandled" breakpoints. */
12711
28010a5d
PA
12712static struct bp_location *
12713allocate_location_catch_exception_unhandled (struct breakpoint *self)
12714{
761269c8 12715 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12716}
12717
12718static void
12719re_set_catch_exception_unhandled (struct breakpoint *b)
12720{
761269c8 12721 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12722}
12723
12724static void
12725check_status_catch_exception_unhandled (bpstat bs)
12726{
761269c8 12727 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12728}
12729
f7f9143b 12730static enum print_stop_action
348d480f 12731print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12732{
761269c8 12733 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12734}
12735
12736static void
a6d9a66e
UW
12737print_one_catch_exception_unhandled (struct breakpoint *b,
12738 struct bp_location **last_loc)
f7f9143b 12739{
761269c8 12740 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12741}
12742
12743static void
12744print_mention_catch_exception_unhandled (struct breakpoint *b)
12745{
761269c8 12746 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12747}
12748
6149aea9
PA
12749static void
12750print_recreate_catch_exception_unhandled (struct breakpoint *b,
12751 struct ui_file *fp)
12752{
761269c8 12753 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12754}
12755
2060206e 12756static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12757
12758/* Virtual table for "catch assert" breakpoints. */
12759
28010a5d
PA
12760static struct bp_location *
12761allocate_location_catch_assert (struct breakpoint *self)
12762{
761269c8 12763 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12764}
12765
12766static void
12767re_set_catch_assert (struct breakpoint *b)
12768{
761269c8 12769 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12770}
12771
12772static void
12773check_status_catch_assert (bpstat bs)
12774{
761269c8 12775 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12776}
12777
f7f9143b 12778static enum print_stop_action
348d480f 12779print_it_catch_assert (bpstat bs)
f7f9143b 12780{
761269c8 12781 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12782}
12783
12784static void
a6d9a66e 12785print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12786{
761269c8 12787 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12788}
12789
12790static void
12791print_mention_catch_assert (struct breakpoint *b)
12792{
761269c8 12793 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12794}
12795
6149aea9
PA
12796static void
12797print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12798{
761269c8 12799 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12800}
12801
2060206e 12802static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12803
f7f9143b
JB
12804/* Return a newly allocated copy of the first space-separated token
12805 in ARGSP, and then adjust ARGSP to point immediately after that
12806 token.
12807
12808 Return NULL if ARGPS does not contain any more tokens. */
12809
12810static char *
a121b7c1 12811ada_get_next_arg (const char **argsp)
f7f9143b 12812{
a121b7c1
PA
12813 const char *args = *argsp;
12814 const char *end;
f7f9143b
JB
12815 char *result;
12816
f1735a53 12817 args = skip_spaces (args);
f7f9143b
JB
12818 if (args[0] == '\0')
12819 return NULL; /* No more arguments. */
12820
12821 /* Find the end of the current argument. */
12822
f1735a53 12823 end = skip_to_space (args);
f7f9143b
JB
12824
12825 /* Adjust ARGSP to point to the start of the next argument. */
12826
12827 *argsp = end;
12828
12829 /* Make a copy of the current argument and return it. */
12830
224c3ddb 12831 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12832 strncpy (result, args, end - args);
12833 result[end - args] = '\0';
12834
12835 return result;
12836}
12837
12838/* Split the arguments specified in a "catch exception" command.
12839 Set EX to the appropriate catchpoint type.
28010a5d 12840 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12841 specified by the user.
12842 If a condition is found at the end of the arguments, the condition
12843 expression is stored in COND_STRING (memory must be deallocated
12844 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12845
12846static void
a121b7c1 12847catch_ada_exception_command_split (const char *args,
761269c8 12848 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12849 char **excep_string,
12850 char **cond_string)
f7f9143b
JB
12851{
12852 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12853 char *exception_name;
5845583d 12854 char *cond = NULL;
f7f9143b
JB
12855
12856 exception_name = ada_get_next_arg (&args);
5845583d
JB
12857 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12858 {
12859 /* This is not an exception name; this is the start of a condition
12860 expression for a catchpoint on all exceptions. So, "un-get"
12861 this token, and set exception_name to NULL. */
12862 xfree (exception_name);
12863 exception_name = NULL;
12864 args -= 2;
12865 }
f7f9143b
JB
12866 make_cleanup (xfree, exception_name);
12867
5845583d 12868 /* Check to see if we have a condition. */
f7f9143b 12869
f1735a53 12870 args = skip_spaces (args);
61012eef 12871 if (startswith (args, "if")
5845583d
JB
12872 && (isspace (args[2]) || args[2] == '\0'))
12873 {
12874 args += 2;
f1735a53 12875 args = skip_spaces (args);
5845583d
JB
12876
12877 if (args[0] == '\0')
12878 error (_("Condition missing after `if' keyword"));
12879 cond = xstrdup (args);
12880 make_cleanup (xfree, cond);
12881
12882 args += strlen (args);
12883 }
12884
12885 /* Check that we do not have any more arguments. Anything else
12886 is unexpected. */
f7f9143b
JB
12887
12888 if (args[0] != '\0')
12889 error (_("Junk at end of expression"));
12890
12891 discard_cleanups (old_chain);
12892
12893 if (exception_name == NULL)
12894 {
12895 /* Catch all exceptions. */
761269c8 12896 *ex = ada_catch_exception;
28010a5d 12897 *excep_string = NULL;
f7f9143b
JB
12898 }
12899 else if (strcmp (exception_name, "unhandled") == 0)
12900 {
12901 /* Catch unhandled exceptions. */
761269c8 12902 *ex = ada_catch_exception_unhandled;
28010a5d 12903 *excep_string = NULL;
f7f9143b
JB
12904 }
12905 else
12906 {
12907 /* Catch a specific exception. */
761269c8 12908 *ex = ada_catch_exception;
28010a5d 12909 *excep_string = exception_name;
f7f9143b 12910 }
5845583d 12911 *cond_string = cond;
f7f9143b
JB
12912}
12913
12914/* Return the name of the symbol on which we should break in order to
12915 implement a catchpoint of the EX kind. */
12916
12917static const char *
761269c8 12918ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12919{
3eecfa55
JB
12920 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12921
12922 gdb_assert (data->exception_info != NULL);
0259addd 12923
f7f9143b
JB
12924 switch (ex)
12925 {
761269c8 12926 case ada_catch_exception:
3eecfa55 12927 return (data->exception_info->catch_exception_sym);
f7f9143b 12928 break;
761269c8 12929 case ada_catch_exception_unhandled:
3eecfa55 12930 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12931 break;
761269c8 12932 case ada_catch_assert:
3eecfa55 12933 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12934 break;
12935 default:
12936 internal_error (__FILE__, __LINE__,
12937 _("unexpected catchpoint kind (%d)"), ex);
12938 }
12939}
12940
12941/* Return the breakpoint ops "virtual table" used for catchpoints
12942 of the EX kind. */
12943
c0a91b2b 12944static const struct breakpoint_ops *
761269c8 12945ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12946{
12947 switch (ex)
12948 {
761269c8 12949 case ada_catch_exception:
f7f9143b
JB
12950 return (&catch_exception_breakpoint_ops);
12951 break;
761269c8 12952 case ada_catch_exception_unhandled:
f7f9143b
JB
12953 return (&catch_exception_unhandled_breakpoint_ops);
12954 break;
761269c8 12955 case ada_catch_assert:
f7f9143b
JB
12956 return (&catch_assert_breakpoint_ops);
12957 break;
12958 default:
12959 internal_error (__FILE__, __LINE__,
12960 _("unexpected catchpoint kind (%d)"), ex);
12961 }
12962}
12963
12964/* Return the condition that will be used to match the current exception
12965 being raised with the exception that the user wants to catch. This
12966 assumes that this condition is used when the inferior just triggered
12967 an exception catchpoint.
12968
12969 The string returned is a newly allocated string that needs to be
12970 deallocated later. */
12971
12972static char *
28010a5d 12973ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12974{
3d0b0fa3
JB
12975 int i;
12976
0963b4bd 12977 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12978 runtime units that have been compiled without debugging info; if
28010a5d 12979 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12980 exception (e.g. "constraint_error") then, during the evaluation
12981 of the condition expression, the symbol lookup on this name would
0963b4bd 12982 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12983 may then be set only on user-defined exceptions which have the
12984 same not-fully-qualified name (e.g. my_package.constraint_error).
12985
12986 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12987 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12988 exception constraint_error" is rewritten into "catch exception
12989 standard.constraint_error".
12990
12991 If an exception named contraint_error is defined in another package of
12992 the inferior program, then the only way to specify this exception as a
12993 breakpoint condition is to use its fully-qualified named:
12994 e.g. my_package.constraint_error. */
12995
12996 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12997 {
28010a5d 12998 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12999 {
13000 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13001 excep_string);
3d0b0fa3
JB
13002 }
13003 }
28010a5d 13004 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13005}
13006
13007/* Return the symtab_and_line that should be used to insert an exception
13008 catchpoint of the TYPE kind.
13009
28010a5d
PA
13010 EXCEP_STRING should contain the name of a specific exception that
13011 the catchpoint should catch, or NULL otherwise.
f7f9143b 13012
28010a5d
PA
13013 ADDR_STRING returns the name of the function where the real
13014 breakpoint that implements the catchpoints is set, depending on the
13015 type of catchpoint we need to create. */
f7f9143b
JB
13016
13017static struct symtab_and_line
761269c8 13018ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 13019 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13020{
13021 const char *sym_name;
13022 struct symbol *sym;
f7f9143b 13023
0259addd
JB
13024 /* First, find out which exception support info to use. */
13025 ada_exception_support_info_sniffer ();
13026
13027 /* Then lookup the function on which we will break in order to catch
f7f9143b 13028 the Ada exceptions requested by the user. */
f7f9143b
JB
13029 sym_name = ada_exception_sym_name (ex);
13030 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13031
f17011e0
JB
13032 /* We can assume that SYM is not NULL at this stage. If the symbol
13033 did not exist, ada_exception_support_info_sniffer would have
13034 raised an exception.
f7f9143b 13035
f17011e0
JB
13036 Also, ada_exception_support_info_sniffer should have already
13037 verified that SYM is a function symbol. */
13038 gdb_assert (sym != NULL);
13039 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13040
13041 /* Set ADDR_STRING. */
f7f9143b
JB
13042 *addr_string = xstrdup (sym_name);
13043
f7f9143b 13044 /* Set OPS. */
4b9eee8c 13045 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13046
f17011e0 13047 return find_function_start_sal (sym, 1);
f7f9143b
JB
13048}
13049
b4a5b78b 13050/* Create an Ada exception catchpoint.
f7f9143b 13051
b4a5b78b 13052 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13053
2df4d1d5
JB
13054 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13055 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13056 of the exception to which this catchpoint applies. When not NULL,
13057 the string must be allocated on the heap, and its deallocation
13058 is no longer the responsibility of the caller.
13059
13060 COND_STRING, if not NULL, is the catchpoint condition. This string
13061 must be allocated on the heap, and its deallocation is no longer
13062 the responsibility of the caller.
f7f9143b 13063
b4a5b78b
JB
13064 TEMPFLAG, if nonzero, means that the underlying breakpoint
13065 should be temporary.
28010a5d 13066
b4a5b78b 13067 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13068
349774ef 13069void
28010a5d 13070create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13071 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13072 char *excep_string,
5845583d 13073 char *cond_string,
28010a5d 13074 int tempflag,
349774ef 13075 int disabled,
28010a5d
PA
13076 int from_tty)
13077{
f2fc3015 13078 const char *addr_string = NULL;
b4a5b78b
JB
13079 const struct breakpoint_ops *ops = NULL;
13080 struct symtab_and_line sal
13081 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13082
b270e6f9
TT
13083 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13084 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13085 ops, tempflag, disabled, from_tty);
28010a5d 13086 c->excep_string = excep_string;
b270e6f9 13087 create_excep_cond_exprs (c.get ());
5845583d 13088 if (cond_string != NULL)
b270e6f9
TT
13089 set_breakpoint_condition (c.get (), cond_string, from_tty);
13090 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13091}
13092
9ac4176b
PA
13093/* Implement the "catch exception" command. */
13094
13095static void
eb4c3f4a 13096catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13097 struct cmd_list_element *command)
13098{
a121b7c1 13099 const char *arg = arg_entry;
9ac4176b
PA
13100 struct gdbarch *gdbarch = get_current_arch ();
13101 int tempflag;
761269c8 13102 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13103 char *excep_string = NULL;
5845583d 13104 char *cond_string = NULL;
9ac4176b
PA
13105
13106 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13107
13108 if (!arg)
13109 arg = "";
b4a5b78b
JB
13110 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13111 &cond_string);
13112 create_ada_exception_catchpoint (gdbarch, ex_kind,
13113 excep_string, cond_string,
349774ef
JB
13114 tempflag, 1 /* enabled */,
13115 from_tty);
9ac4176b
PA
13116}
13117
b4a5b78b 13118/* Split the arguments specified in a "catch assert" command.
5845583d 13119
b4a5b78b
JB
13120 ARGS contains the command's arguments (or the empty string if
13121 no arguments were passed).
5845583d
JB
13122
13123 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13124 (the memory needs to be deallocated after use). */
5845583d 13125
b4a5b78b 13126static void
a121b7c1 13127catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13128{
f1735a53 13129 args = skip_spaces (args);
f7f9143b 13130
5845583d 13131 /* Check whether a condition was provided. */
61012eef 13132 if (startswith (args, "if")
5845583d 13133 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13134 {
5845583d 13135 args += 2;
f1735a53 13136 args = skip_spaces (args);
5845583d
JB
13137 if (args[0] == '\0')
13138 error (_("condition missing after `if' keyword"));
13139 *cond_string = xstrdup (args);
f7f9143b
JB
13140 }
13141
5845583d
JB
13142 /* Otherwise, there should be no other argument at the end of
13143 the command. */
13144 else if (args[0] != '\0')
13145 error (_("Junk at end of arguments."));
f7f9143b
JB
13146}
13147
9ac4176b
PA
13148/* Implement the "catch assert" command. */
13149
13150static void
eb4c3f4a 13151catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13152 struct cmd_list_element *command)
13153{
a121b7c1 13154 const char *arg = arg_entry;
9ac4176b
PA
13155 struct gdbarch *gdbarch = get_current_arch ();
13156 int tempflag;
5845583d 13157 char *cond_string = NULL;
9ac4176b
PA
13158
13159 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13160
13161 if (!arg)
13162 arg = "";
b4a5b78b 13163 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13164 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13165 NULL, cond_string,
349774ef
JB
13166 tempflag, 1 /* enabled */,
13167 from_tty);
9ac4176b 13168}
778865d3
JB
13169
13170/* Return non-zero if the symbol SYM is an Ada exception object. */
13171
13172static int
13173ada_is_exception_sym (struct symbol *sym)
13174{
13175 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13176
13177 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13178 && SYMBOL_CLASS (sym) != LOC_BLOCK
13179 && SYMBOL_CLASS (sym) != LOC_CONST
13180 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13181 && type_name != NULL && strcmp (type_name, "exception") == 0);
13182}
13183
13184/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13185 Ada exception object. This matches all exceptions except the ones
13186 defined by the Ada language. */
13187
13188static int
13189ada_is_non_standard_exception_sym (struct symbol *sym)
13190{
13191 int i;
13192
13193 if (!ada_is_exception_sym (sym))
13194 return 0;
13195
13196 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13197 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13198 return 0; /* A standard exception. */
13199
13200 /* Numeric_Error is also a standard exception, so exclude it.
13201 See the STANDARD_EXC description for more details as to why
13202 this exception is not listed in that array. */
13203 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13204 return 0;
13205
13206 return 1;
13207}
13208
ab816a27 13209/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13210 objects.
13211
13212 The comparison is determined first by exception name, and then
13213 by exception address. */
13214
ab816a27 13215bool
cc536b21 13216ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13217{
778865d3
JB
13218 int result;
13219
ab816a27
TT
13220 result = strcmp (name, other.name);
13221 if (result < 0)
13222 return true;
13223 if (result == 0 && addr < other.addr)
13224 return true;
13225 return false;
13226}
778865d3 13227
ab816a27 13228bool
cc536b21 13229ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13230{
13231 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13232}
13233
13234/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13235 routine, but keeping the first SKIP elements untouched.
13236
13237 All duplicates are also removed. */
13238
13239static void
ab816a27 13240sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13241 int skip)
13242{
ab816a27
TT
13243 std::sort (exceptions->begin () + skip, exceptions->end ());
13244 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13245 exceptions->end ());
778865d3
JB
13246}
13247
778865d3
JB
13248/* Add all exceptions defined by the Ada standard whose name match
13249 a regular expression.
13250
13251 If PREG is not NULL, then this regexp_t object is used to
13252 perform the symbol name matching. Otherwise, no name-based
13253 filtering is performed.
13254
13255 EXCEPTIONS is a vector of exceptions to which matching exceptions
13256 gets pushed. */
13257
13258static void
2d7cc5c7 13259ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13260 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13261{
13262 int i;
13263
13264 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13265 {
13266 if (preg == NULL
2d7cc5c7 13267 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13268 {
13269 struct bound_minimal_symbol msymbol
13270 = ada_lookup_simple_minsym (standard_exc[i]);
13271
13272 if (msymbol.minsym != NULL)
13273 {
13274 struct ada_exc_info info
77e371c0 13275 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13276
ab816a27 13277 exceptions->push_back (info);
778865d3
JB
13278 }
13279 }
13280 }
13281}
13282
13283/* Add all Ada exceptions defined locally and accessible from the given
13284 FRAME.
13285
13286 If PREG is not NULL, then this regexp_t object is used to
13287 perform the symbol name matching. Otherwise, no name-based
13288 filtering is performed.
13289
13290 EXCEPTIONS is a vector of exceptions to which matching exceptions
13291 gets pushed. */
13292
13293static void
2d7cc5c7
PA
13294ada_add_exceptions_from_frame (compiled_regex *preg,
13295 struct frame_info *frame,
ab816a27 13296 std::vector<ada_exc_info> *exceptions)
778865d3 13297{
3977b71f 13298 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13299
13300 while (block != 0)
13301 {
13302 struct block_iterator iter;
13303 struct symbol *sym;
13304
13305 ALL_BLOCK_SYMBOLS (block, iter, sym)
13306 {
13307 switch (SYMBOL_CLASS (sym))
13308 {
13309 case LOC_TYPEDEF:
13310 case LOC_BLOCK:
13311 case LOC_CONST:
13312 break;
13313 default:
13314 if (ada_is_exception_sym (sym))
13315 {
13316 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13317 SYMBOL_VALUE_ADDRESS (sym)};
13318
ab816a27 13319 exceptions->push_back (info);
778865d3
JB
13320 }
13321 }
13322 }
13323 if (BLOCK_FUNCTION (block) != NULL)
13324 break;
13325 block = BLOCK_SUPERBLOCK (block);
13326 }
13327}
13328
14bc53a8
PA
13329/* Return true if NAME matches PREG or if PREG is NULL. */
13330
13331static bool
2d7cc5c7 13332name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13333{
13334 return (preg == NULL
2d7cc5c7 13335 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13336}
13337
778865d3
JB
13338/* Add all exceptions defined globally whose name name match
13339 a regular expression, excluding standard exceptions.
13340
13341 The reason we exclude standard exceptions is that they need
13342 to be handled separately: Standard exceptions are defined inside
13343 a runtime unit which is normally not compiled with debugging info,
13344 and thus usually do not show up in our symbol search. However,
13345 if the unit was in fact built with debugging info, we need to
13346 exclude them because they would duplicate the entry we found
13347 during the special loop that specifically searches for those
13348 standard exceptions.
13349
13350 If PREG is not NULL, then this regexp_t object is used to
13351 perform the symbol name matching. Otherwise, no name-based
13352 filtering is performed.
13353
13354 EXCEPTIONS is a vector of exceptions to which matching exceptions
13355 gets pushed. */
13356
13357static void
2d7cc5c7 13358ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13359 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13360{
13361 struct objfile *objfile;
43f3e411 13362 struct compunit_symtab *s;
778865d3 13363
14bc53a8
PA
13364 /* In Ada, the symbol "search name" is a linkage name, whereas the
13365 regular expression used to do the matching refers to the natural
13366 name. So match against the decoded name. */
13367 expand_symtabs_matching (NULL,
b5ec771e 13368 lookup_name_info::match_any (),
14bc53a8
PA
13369 [&] (const char *search_name)
13370 {
13371 const char *decoded = ada_decode (search_name);
13372 return name_matches_regex (decoded, preg);
13373 },
13374 NULL,
13375 VARIABLES_DOMAIN);
778865d3 13376
43f3e411 13377 ALL_COMPUNITS (objfile, s)
778865d3 13378 {
43f3e411 13379 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13380 int i;
13381
13382 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13383 {
13384 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13385 struct block_iterator iter;
13386 struct symbol *sym;
13387
13388 ALL_BLOCK_SYMBOLS (b, iter, sym)
13389 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13390 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13391 {
13392 struct ada_exc_info info
13393 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13394
ab816a27 13395 exceptions->push_back (info);
778865d3
JB
13396 }
13397 }
13398 }
13399}
13400
13401/* Implements ada_exceptions_list with the regular expression passed
13402 as a regex_t, rather than a string.
13403
13404 If not NULL, PREG is used to filter out exceptions whose names
13405 do not match. Otherwise, all exceptions are listed. */
13406
ab816a27 13407static std::vector<ada_exc_info>
2d7cc5c7 13408ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13409{
ab816a27 13410 std::vector<ada_exc_info> result;
778865d3
JB
13411 int prev_len;
13412
13413 /* First, list the known standard exceptions. These exceptions
13414 need to be handled separately, as they are usually defined in
13415 runtime units that have been compiled without debugging info. */
13416
13417 ada_add_standard_exceptions (preg, &result);
13418
13419 /* Next, find all exceptions whose scope is local and accessible
13420 from the currently selected frame. */
13421
13422 if (has_stack_frames ())
13423 {
ab816a27 13424 prev_len = result.size ();
778865d3
JB
13425 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13426 &result);
ab816a27 13427 if (result.size () > prev_len)
778865d3
JB
13428 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13429 }
13430
13431 /* Add all exceptions whose scope is global. */
13432
ab816a27 13433 prev_len = result.size ();
778865d3 13434 ada_add_global_exceptions (preg, &result);
ab816a27 13435 if (result.size () > prev_len)
778865d3
JB
13436 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13437
778865d3
JB
13438 return result;
13439}
13440
13441/* Return a vector of ada_exc_info.
13442
13443 If REGEXP is NULL, all exceptions are included in the result.
13444 Otherwise, it should contain a valid regular expression,
13445 and only the exceptions whose names match that regular expression
13446 are included in the result.
13447
13448 The exceptions are sorted in the following order:
13449 - Standard exceptions (defined by the Ada language), in
13450 alphabetical order;
13451 - Exceptions only visible from the current frame, in
13452 alphabetical order;
13453 - Exceptions whose scope is global, in alphabetical order. */
13454
ab816a27 13455std::vector<ada_exc_info>
778865d3
JB
13456ada_exceptions_list (const char *regexp)
13457{
2d7cc5c7
PA
13458 if (regexp == NULL)
13459 return ada_exceptions_list_1 (NULL);
778865d3 13460
2d7cc5c7
PA
13461 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13462 return ada_exceptions_list_1 (&reg);
778865d3
JB
13463}
13464
13465/* Implement the "info exceptions" command. */
13466
13467static void
1d12d88f 13468info_exceptions_command (const char *regexp, int from_tty)
778865d3 13469{
778865d3 13470 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13471
ab816a27 13472 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13473
13474 if (regexp != NULL)
13475 printf_filtered
13476 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13477 else
13478 printf_filtered (_("All defined Ada exceptions:\n"));
13479
ab816a27
TT
13480 for (const ada_exc_info &info : exceptions)
13481 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13482}
13483
4c4b4cd2
PH
13484 /* Operators */
13485/* Information about operators given special treatment in functions
13486 below. */
13487/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13488
13489#define ADA_OPERATORS \
13490 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13491 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13492 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13493 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13494 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13495 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13496 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13497 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13498 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13499 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13500 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13501 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13502 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13503 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13504 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13505 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13506 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13507 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13508 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13509
13510static void
554794dc
SDJ
13511ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13512 int *argsp)
4c4b4cd2
PH
13513{
13514 switch (exp->elts[pc - 1].opcode)
13515 {
76a01679 13516 default:
4c4b4cd2
PH
13517 operator_length_standard (exp, pc, oplenp, argsp);
13518 break;
13519
13520#define OP_DEFN(op, len, args, binop) \
13521 case op: *oplenp = len; *argsp = args; break;
13522 ADA_OPERATORS;
13523#undef OP_DEFN
52ce6436
PH
13524
13525 case OP_AGGREGATE:
13526 *oplenp = 3;
13527 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13528 break;
13529
13530 case OP_CHOICES:
13531 *oplenp = 3;
13532 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13533 break;
4c4b4cd2
PH
13534 }
13535}
13536
c0201579
JK
13537/* Implementation of the exp_descriptor method operator_check. */
13538
13539static int
13540ada_operator_check (struct expression *exp, int pos,
13541 int (*objfile_func) (struct objfile *objfile, void *data),
13542 void *data)
13543{
13544 const union exp_element *const elts = exp->elts;
13545 struct type *type = NULL;
13546
13547 switch (elts[pos].opcode)
13548 {
13549 case UNOP_IN_RANGE:
13550 case UNOP_QUAL:
13551 type = elts[pos + 1].type;
13552 break;
13553
13554 default:
13555 return operator_check_standard (exp, pos, objfile_func, data);
13556 }
13557
13558 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13559
13560 if (type && TYPE_OBJFILE (type)
13561 && (*objfile_func) (TYPE_OBJFILE (type), data))
13562 return 1;
13563
13564 return 0;
13565}
13566
a121b7c1 13567static const char *
4c4b4cd2
PH
13568ada_op_name (enum exp_opcode opcode)
13569{
13570 switch (opcode)
13571 {
76a01679 13572 default:
4c4b4cd2 13573 return op_name_standard (opcode);
52ce6436 13574
4c4b4cd2
PH
13575#define OP_DEFN(op, len, args, binop) case op: return #op;
13576 ADA_OPERATORS;
13577#undef OP_DEFN
52ce6436
PH
13578
13579 case OP_AGGREGATE:
13580 return "OP_AGGREGATE";
13581 case OP_CHOICES:
13582 return "OP_CHOICES";
13583 case OP_NAME:
13584 return "OP_NAME";
4c4b4cd2
PH
13585 }
13586}
13587
13588/* As for operator_length, but assumes PC is pointing at the first
13589 element of the operator, and gives meaningful results only for the
52ce6436 13590 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13591
13592static void
76a01679
JB
13593ada_forward_operator_length (struct expression *exp, int pc,
13594 int *oplenp, int *argsp)
4c4b4cd2 13595{
76a01679 13596 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13597 {
13598 default:
13599 *oplenp = *argsp = 0;
13600 break;
52ce6436 13601
4c4b4cd2
PH
13602#define OP_DEFN(op, len, args, binop) \
13603 case op: *oplenp = len; *argsp = args; break;
13604 ADA_OPERATORS;
13605#undef OP_DEFN
52ce6436
PH
13606
13607 case OP_AGGREGATE:
13608 *oplenp = 3;
13609 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13610 break;
13611
13612 case OP_CHOICES:
13613 *oplenp = 3;
13614 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13615 break;
13616
13617 case OP_STRING:
13618 case OP_NAME:
13619 {
13620 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13621
52ce6436
PH
13622 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13623 *argsp = 0;
13624 break;
13625 }
4c4b4cd2
PH
13626 }
13627}
13628
13629static int
13630ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13631{
13632 enum exp_opcode op = exp->elts[elt].opcode;
13633 int oplen, nargs;
13634 int pc = elt;
13635 int i;
76a01679 13636
4c4b4cd2
PH
13637 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13638
76a01679 13639 switch (op)
4c4b4cd2 13640 {
76a01679 13641 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13642 case OP_ATR_FIRST:
13643 case OP_ATR_LAST:
13644 case OP_ATR_LENGTH:
13645 case OP_ATR_IMAGE:
13646 case OP_ATR_MAX:
13647 case OP_ATR_MIN:
13648 case OP_ATR_MODULUS:
13649 case OP_ATR_POS:
13650 case OP_ATR_SIZE:
13651 case OP_ATR_TAG:
13652 case OP_ATR_VAL:
13653 break;
13654
13655 case UNOP_IN_RANGE:
13656 case UNOP_QUAL:
323e0a4a
AC
13657 /* XXX: gdb_sprint_host_address, type_sprint */
13658 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13659 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13660 fprintf_filtered (stream, " (");
13661 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13662 fprintf_filtered (stream, ")");
13663 break;
13664 case BINOP_IN_BOUNDS:
52ce6436
PH
13665 fprintf_filtered (stream, " (%d)",
13666 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13667 break;
13668 case TERNOP_IN_RANGE:
13669 break;
13670
52ce6436
PH
13671 case OP_AGGREGATE:
13672 case OP_OTHERS:
13673 case OP_DISCRETE_RANGE:
13674 case OP_POSITIONAL:
13675 case OP_CHOICES:
13676 break;
13677
13678 case OP_NAME:
13679 case OP_STRING:
13680 {
13681 char *name = &exp->elts[elt + 2].string;
13682 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13683
52ce6436
PH
13684 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13685 break;
13686 }
13687
4c4b4cd2
PH
13688 default:
13689 return dump_subexp_body_standard (exp, stream, elt);
13690 }
13691
13692 elt += oplen;
13693 for (i = 0; i < nargs; i += 1)
13694 elt = dump_subexp (exp, stream, elt);
13695
13696 return elt;
13697}
13698
13699/* The Ada extension of print_subexp (q.v.). */
13700
76a01679
JB
13701static void
13702ada_print_subexp (struct expression *exp, int *pos,
13703 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13704{
52ce6436 13705 int oplen, nargs, i;
4c4b4cd2
PH
13706 int pc = *pos;
13707 enum exp_opcode op = exp->elts[pc].opcode;
13708
13709 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13710
52ce6436 13711 *pos += oplen;
4c4b4cd2
PH
13712 switch (op)
13713 {
13714 default:
52ce6436 13715 *pos -= oplen;
4c4b4cd2
PH
13716 print_subexp_standard (exp, pos, stream, prec);
13717 return;
13718
13719 case OP_VAR_VALUE:
4c4b4cd2
PH
13720 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13721 return;
13722
13723 case BINOP_IN_BOUNDS:
323e0a4a 13724 /* XXX: sprint_subexp */
4c4b4cd2 13725 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13726 fputs_filtered (" in ", stream);
4c4b4cd2 13727 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13728 fputs_filtered ("'range", stream);
4c4b4cd2 13729 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13730 fprintf_filtered (stream, "(%ld)",
13731 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13732 return;
13733
13734 case TERNOP_IN_RANGE:
4c4b4cd2 13735 if (prec >= PREC_EQUAL)
76a01679 13736 fputs_filtered ("(", stream);
323e0a4a 13737 /* XXX: sprint_subexp */
4c4b4cd2 13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13739 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13740 print_subexp (exp, pos, stream, PREC_EQUAL);
13741 fputs_filtered (" .. ", stream);
13742 print_subexp (exp, pos, stream, PREC_EQUAL);
13743 if (prec >= PREC_EQUAL)
76a01679
JB
13744 fputs_filtered (")", stream);
13745 return;
4c4b4cd2
PH
13746
13747 case OP_ATR_FIRST:
13748 case OP_ATR_LAST:
13749 case OP_ATR_LENGTH:
13750 case OP_ATR_IMAGE:
13751 case OP_ATR_MAX:
13752 case OP_ATR_MIN:
13753 case OP_ATR_MODULUS:
13754 case OP_ATR_POS:
13755 case OP_ATR_SIZE:
13756 case OP_ATR_TAG:
13757 case OP_ATR_VAL:
4c4b4cd2 13758 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13759 {
13760 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13761 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13762 &type_print_raw_options);
76a01679
JB
13763 *pos += 3;
13764 }
4c4b4cd2 13765 else
76a01679 13766 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13767 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13768 if (nargs > 1)
76a01679
JB
13769 {
13770 int tem;
5b4ee69b 13771
76a01679
JB
13772 for (tem = 1; tem < nargs; tem += 1)
13773 {
13774 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13775 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13776 }
13777 fputs_filtered (")", stream);
13778 }
4c4b4cd2 13779 return;
14f9c5c9 13780
4c4b4cd2 13781 case UNOP_QUAL:
4c4b4cd2
PH
13782 type_print (exp->elts[pc + 1].type, "", stream, 0);
13783 fputs_filtered ("'(", stream);
13784 print_subexp (exp, pos, stream, PREC_PREFIX);
13785 fputs_filtered (")", stream);
13786 return;
14f9c5c9 13787
4c4b4cd2 13788 case UNOP_IN_RANGE:
323e0a4a 13789 /* XXX: sprint_subexp */
4c4b4cd2 13790 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13791 fputs_filtered (" in ", stream);
79d43c61
TT
13792 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13793 &type_print_raw_options);
4c4b4cd2 13794 return;
52ce6436
PH
13795
13796 case OP_DISCRETE_RANGE:
13797 print_subexp (exp, pos, stream, PREC_SUFFIX);
13798 fputs_filtered ("..", stream);
13799 print_subexp (exp, pos, stream, PREC_SUFFIX);
13800 return;
13801
13802 case OP_OTHERS:
13803 fputs_filtered ("others => ", stream);
13804 print_subexp (exp, pos, stream, PREC_SUFFIX);
13805 return;
13806
13807 case OP_CHOICES:
13808 for (i = 0; i < nargs-1; i += 1)
13809 {
13810 if (i > 0)
13811 fputs_filtered ("|", stream);
13812 print_subexp (exp, pos, stream, PREC_SUFFIX);
13813 }
13814 fputs_filtered (" => ", stream);
13815 print_subexp (exp, pos, stream, PREC_SUFFIX);
13816 return;
13817
13818 case OP_POSITIONAL:
13819 print_subexp (exp, pos, stream, PREC_SUFFIX);
13820 return;
13821
13822 case OP_AGGREGATE:
13823 fputs_filtered ("(", stream);
13824 for (i = 0; i < nargs; i += 1)
13825 {
13826 if (i > 0)
13827 fputs_filtered (", ", stream);
13828 print_subexp (exp, pos, stream, PREC_SUFFIX);
13829 }
13830 fputs_filtered (")", stream);
13831 return;
4c4b4cd2
PH
13832 }
13833}
14f9c5c9
AS
13834
13835/* Table mapping opcodes into strings for printing operators
13836 and precedences of the operators. */
13837
d2e4a39e
AS
13838static const struct op_print ada_op_print_tab[] = {
13839 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13840 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13841 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13842 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13843 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13844 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13845 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13846 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13847 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13848 {">=", BINOP_GEQ, PREC_ORDER, 0},
13849 {">", BINOP_GTR, PREC_ORDER, 0},
13850 {"<", BINOP_LESS, PREC_ORDER, 0},
13851 {">>", BINOP_RSH, PREC_SHIFT, 0},
13852 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13853 {"+", BINOP_ADD, PREC_ADD, 0},
13854 {"-", BINOP_SUB, PREC_ADD, 0},
13855 {"&", BINOP_CONCAT, PREC_ADD, 0},
13856 {"*", BINOP_MUL, PREC_MUL, 0},
13857 {"/", BINOP_DIV, PREC_MUL, 0},
13858 {"rem", BINOP_REM, PREC_MUL, 0},
13859 {"mod", BINOP_MOD, PREC_MUL, 0},
13860 {"**", BINOP_EXP, PREC_REPEAT, 0},
13861 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13862 {"-", UNOP_NEG, PREC_PREFIX, 0},
13863 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13864 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13865 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13866 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13867 {".all", UNOP_IND, PREC_SUFFIX, 1},
13868 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13869 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13870 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13871};
13872\f
72d5681a
PH
13873enum ada_primitive_types {
13874 ada_primitive_type_int,
13875 ada_primitive_type_long,
13876 ada_primitive_type_short,
13877 ada_primitive_type_char,
13878 ada_primitive_type_float,
13879 ada_primitive_type_double,
13880 ada_primitive_type_void,
13881 ada_primitive_type_long_long,
13882 ada_primitive_type_long_double,
13883 ada_primitive_type_natural,
13884 ada_primitive_type_positive,
13885 ada_primitive_type_system_address,
08f49010 13886 ada_primitive_type_storage_offset,
72d5681a
PH
13887 nr_ada_primitive_types
13888};
6c038f32
PH
13889
13890static void
d4a9a881 13891ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13892 struct language_arch_info *lai)
13893{
d4a9a881 13894 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13895
72d5681a 13896 lai->primitive_type_vector
d4a9a881 13897 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13898 struct type *);
e9bb382b
UW
13899
13900 lai->primitive_type_vector [ada_primitive_type_int]
13901 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13902 0, "integer");
13903 lai->primitive_type_vector [ada_primitive_type_long]
13904 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13905 0, "long_integer");
13906 lai->primitive_type_vector [ada_primitive_type_short]
13907 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13908 0, "short_integer");
13909 lai->string_char_type
13910 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13911 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13912 lai->primitive_type_vector [ada_primitive_type_float]
13913 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13914 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13915 lai->primitive_type_vector [ada_primitive_type_double]
13916 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13917 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13918 lai->primitive_type_vector [ada_primitive_type_long_long]
13919 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13920 0, "long_long_integer");
13921 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13922 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13923 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13924 lai->primitive_type_vector [ada_primitive_type_natural]
13925 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13926 0, "natural");
13927 lai->primitive_type_vector [ada_primitive_type_positive]
13928 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13929 0, "positive");
13930 lai->primitive_type_vector [ada_primitive_type_void]
13931 = builtin->builtin_void;
13932
13933 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13934 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13935 "void"));
72d5681a
PH
13936 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13937 = "system__address";
fbb06eb1 13938
08f49010
XR
13939 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13940 type. This is a signed integral type whose size is the same as
13941 the size of addresses. */
13942 {
13943 unsigned int addr_length = TYPE_LENGTH
13944 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13945
13946 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13947 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13948 "storage_offset");
13949 }
13950
47e729a8 13951 lai->bool_type_symbol = NULL;
fbb06eb1 13952 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13953}
6c038f32
PH
13954\f
13955 /* Language vector */
13956
13957/* Not really used, but needed in the ada_language_defn. */
13958
13959static void
6c7a06a3 13960emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13961{
6c7a06a3 13962 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13963}
13964
13965static int
410a0ff2 13966parse (struct parser_state *ps)
6c038f32
PH
13967{
13968 warnings_issued = 0;
410a0ff2 13969 return ada_parse (ps);
6c038f32
PH
13970}
13971
13972static const struct exp_descriptor ada_exp_descriptor = {
13973 ada_print_subexp,
13974 ada_operator_length,
c0201579 13975 ada_operator_check,
6c038f32
PH
13976 ada_op_name,
13977 ada_dump_subexp_body,
13978 ada_evaluate_subexp
13979};
13980
b5ec771e
PA
13981/* symbol_name_matcher_ftype adapter for wild_match. */
13982
13983static bool
13984do_wild_match (const char *symbol_search_name,
13985 const lookup_name_info &lookup_name,
a207cff2 13986 completion_match_result *comp_match_res)
b5ec771e
PA
13987{
13988 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13989}
13990
13991/* symbol_name_matcher_ftype adapter for full_match. */
13992
13993static bool
13994do_full_match (const char *symbol_search_name,
13995 const lookup_name_info &lookup_name,
a207cff2 13996 completion_match_result *comp_match_res)
b5ec771e
PA
13997{
13998 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13999}
14000
14001/* Build the Ada lookup name for LOOKUP_NAME. */
14002
14003ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14004{
14005 const std::string &user_name = lookup_name.name ();
14006
14007 if (user_name[0] == '<')
14008 {
14009 if (user_name.back () == '>')
14010 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14011 else
14012 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14013 m_encoded_p = true;
14014 m_verbatim_p = true;
14015 m_wild_match_p = false;
14016 m_standard_p = false;
14017 }
14018 else
14019 {
14020 m_verbatim_p = false;
14021
14022 m_encoded_p = user_name.find ("__") != std::string::npos;
14023
14024 if (!m_encoded_p)
14025 {
14026 const char *folded = ada_fold_name (user_name.c_str ());
14027 const char *encoded = ada_encode_1 (folded, false);
14028 if (encoded != NULL)
14029 m_encoded_name = encoded;
14030 else
14031 m_encoded_name = user_name;
14032 }
14033 else
14034 m_encoded_name = user_name;
14035
14036 /* Handle the 'package Standard' special case. See description
14037 of m_standard_p. */
14038 if (startswith (m_encoded_name.c_str (), "standard__"))
14039 {
14040 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14041 m_standard_p = true;
14042 }
14043 else
14044 m_standard_p = false;
74ccd7f5 14045
b5ec771e
PA
14046 /* If the name contains a ".", then the user is entering a fully
14047 qualified entity name, and the match must not be done in wild
14048 mode. Similarly, if the user wants to complete what looks
14049 like an encoded name, the match must not be done in wild
14050 mode. Also, in the standard__ special case always do
14051 non-wild matching. */
14052 m_wild_match_p
14053 = (lookup_name.match_type () != symbol_name_match_type::FULL
14054 && !m_encoded_p
14055 && !m_standard_p
14056 && user_name.find ('.') == std::string::npos);
14057 }
14058}
14059
14060/* symbol_name_matcher_ftype method for Ada. This only handles
14061 completion mode. */
14062
14063static bool
14064ada_symbol_name_matches (const char *symbol_search_name,
14065 const lookup_name_info &lookup_name,
a207cff2 14066 completion_match_result *comp_match_res)
74ccd7f5 14067{
b5ec771e
PA
14068 return lookup_name.ada ().matches (symbol_search_name,
14069 lookup_name.match_type (),
a207cff2 14070 comp_match_res);
b5ec771e
PA
14071}
14072
14073/* Implement the "la_get_symbol_name_matcher" language_defn method for
14074 Ada. */
14075
14076static symbol_name_matcher_ftype *
14077ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14078{
14079 if (lookup_name.completion_mode ())
14080 return ada_symbol_name_matches;
74ccd7f5 14081 else
b5ec771e
PA
14082 {
14083 if (lookup_name.ada ().wild_match_p ())
14084 return do_wild_match;
14085 else
14086 return do_full_match;
14087 }
74ccd7f5
JB
14088}
14089
a5ee536b
JB
14090/* Implement the "la_read_var_value" language_defn method for Ada. */
14091
14092static struct value *
63e43d3a
PMR
14093ada_read_var_value (struct symbol *var, const struct block *var_block,
14094 struct frame_info *frame)
a5ee536b 14095{
3977b71f 14096 const struct block *frame_block = NULL;
a5ee536b
JB
14097 struct symbol *renaming_sym = NULL;
14098
14099 /* The only case where default_read_var_value is not sufficient
14100 is when VAR is a renaming... */
14101 if (frame)
14102 frame_block = get_frame_block (frame, NULL);
14103 if (frame_block)
14104 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14105 if (renaming_sym != NULL)
14106 return ada_read_renaming_var_value (renaming_sym, frame_block);
14107
14108 /* This is a typical case where we expect the default_read_var_value
14109 function to work. */
63e43d3a 14110 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14111}
14112
56618e20
TT
14113static const char *ada_extensions[] =
14114{
14115 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14116};
14117
47e77640 14118extern const struct language_defn ada_language_defn = {
6c038f32 14119 "ada", /* Language name */
6abde28f 14120 "Ada",
6c038f32 14121 language_ada,
6c038f32 14122 range_check_off,
6c038f32
PH
14123 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14124 that's not quite what this means. */
6c038f32 14125 array_row_major,
9a044a89 14126 macro_expansion_no,
56618e20 14127 ada_extensions,
6c038f32
PH
14128 &ada_exp_descriptor,
14129 parse,
b3f11165 14130 ada_yyerror,
6c038f32
PH
14131 resolve,
14132 ada_printchar, /* Print a character constant */
14133 ada_printstr, /* Function to print string constant */
14134 emit_char, /* Function to print single char (not used) */
6c038f32 14135 ada_print_type, /* Print a type using appropriate syntax */
be942545 14136 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14137 ada_val_print, /* Print a value using appropriate syntax */
14138 ada_value_print, /* Print a top-level value */
a5ee536b 14139 ada_read_var_value, /* la_read_var_value */
6c038f32 14140 NULL, /* Language specific skip_trampoline */
2b2d9e11 14141 NULL, /* name_of_this */
6c038f32
PH
14142 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14143 basic_lookup_transparent_type, /* lookup_transparent_type */
14144 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14145 ada_sniff_from_mangled_name,
0963b4bd
MS
14146 NULL, /* Language specific
14147 class_name_from_physname */
6c038f32
PH
14148 ada_op_print_tab, /* expression operators for printing */
14149 0, /* c-style arrays */
14150 1, /* String lower bound */
6c038f32 14151 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14152 ada_collect_symbol_completion_matches,
72d5681a 14153 ada_language_arch_info,
e79af960 14154 ada_print_array_index,
41f1b697 14155 default_pass_by_reference,
ae6a3a4c 14156 c_get_string,
43cc5389 14157 c_watch_location_expression,
b5ec771e 14158 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14159 ada_iterate_over_symbols,
5ffa0793 14160 default_search_name_hash,
a53b64ea 14161 &ada_varobj_ops,
bb2ec1b3
TT
14162 NULL,
14163 NULL,
6c038f32
PH
14164 LANG_MAGIC
14165};
14166
5bf03f13
JB
14167/* Command-list for the "set/show ada" prefix command. */
14168static struct cmd_list_element *set_ada_list;
14169static struct cmd_list_element *show_ada_list;
14170
14171/* Implement the "set ada" prefix command. */
14172
14173static void
981a3fb3 14174set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14175{
14176 printf_unfiltered (_(\
14177"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14178 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14179}
14180
14181/* Implement the "show ada" prefix command. */
14182
14183static void
981a3fb3 14184show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14185{
14186 cmd_show_list (show_ada_list, from_tty, "");
14187}
14188
2060206e
PA
14189static void
14190initialize_ada_catchpoint_ops (void)
14191{
14192 struct breakpoint_ops *ops;
14193
14194 initialize_breakpoint_ops ();
14195
14196 ops = &catch_exception_breakpoint_ops;
14197 *ops = bkpt_breakpoint_ops;
2060206e
PA
14198 ops->allocate_location = allocate_location_catch_exception;
14199 ops->re_set = re_set_catch_exception;
14200 ops->check_status = check_status_catch_exception;
14201 ops->print_it = print_it_catch_exception;
14202 ops->print_one = print_one_catch_exception;
14203 ops->print_mention = print_mention_catch_exception;
14204 ops->print_recreate = print_recreate_catch_exception;
14205
14206 ops = &catch_exception_unhandled_breakpoint_ops;
14207 *ops = bkpt_breakpoint_ops;
2060206e
PA
14208 ops->allocate_location = allocate_location_catch_exception_unhandled;
14209 ops->re_set = re_set_catch_exception_unhandled;
14210 ops->check_status = check_status_catch_exception_unhandled;
14211 ops->print_it = print_it_catch_exception_unhandled;
14212 ops->print_one = print_one_catch_exception_unhandled;
14213 ops->print_mention = print_mention_catch_exception_unhandled;
14214 ops->print_recreate = print_recreate_catch_exception_unhandled;
14215
14216 ops = &catch_assert_breakpoint_ops;
14217 *ops = bkpt_breakpoint_ops;
2060206e
PA
14218 ops->allocate_location = allocate_location_catch_assert;
14219 ops->re_set = re_set_catch_assert;
14220 ops->check_status = check_status_catch_assert;
14221 ops->print_it = print_it_catch_assert;
14222 ops->print_one = print_one_catch_assert;
14223 ops->print_mention = print_mention_catch_assert;
14224 ops->print_recreate = print_recreate_catch_assert;
14225}
14226
3d9434b5
JB
14227/* This module's 'new_objfile' observer. */
14228
14229static void
14230ada_new_objfile_observer (struct objfile *objfile)
14231{
14232 ada_clear_symbol_cache ();
14233}
14234
14235/* This module's 'free_objfile' observer. */
14236
14237static void
14238ada_free_objfile_observer (struct objfile *objfile)
14239{
14240 ada_clear_symbol_cache ();
14241}
14242
d2e4a39e 14243void
6c038f32 14244_initialize_ada_language (void)
14f9c5c9 14245{
2060206e
PA
14246 initialize_ada_catchpoint_ops ();
14247
5bf03f13
JB
14248 add_prefix_cmd ("ada", no_class, set_ada_command,
14249 _("Prefix command for changing Ada-specfic settings"),
14250 &set_ada_list, "set ada ", 0, &setlist);
14251
14252 add_prefix_cmd ("ada", no_class, show_ada_command,
14253 _("Generic command for showing Ada-specific settings."),
14254 &show_ada_list, "show ada ", 0, &showlist);
14255
14256 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14257 &trust_pad_over_xvs, _("\
14258Enable or disable an optimization trusting PAD types over XVS types"), _("\
14259Show whether an optimization trusting PAD types over XVS types is activated"),
14260 _("\
14261This is related to the encoding used by the GNAT compiler. The debugger\n\
14262should normally trust the contents of PAD types, but certain older versions\n\
14263of GNAT have a bug that sometimes causes the information in the PAD type\n\
14264to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14265work around this bug. It is always safe to turn this option \"off\", but\n\
14266this incurs a slight performance penalty, so it is recommended to NOT change\n\
14267this option to \"off\" unless necessary."),
14268 NULL, NULL, &set_ada_list, &show_ada_list);
14269
d72413e6
PMR
14270 add_setshow_boolean_cmd ("print-signatures", class_vars,
14271 &print_signatures, _("\
14272Enable or disable the output of formal and return types for functions in the \
14273overloads selection menu"), _("\
14274Show whether the output of formal and return types for functions in the \
14275overloads selection menu is activated"),
14276 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14277
9ac4176b
PA
14278 add_catch_command ("exception", _("\
14279Catch Ada exceptions, when raised.\n\
14280With an argument, catch only exceptions with the given name."),
14281 catch_ada_exception_command,
14282 NULL,
14283 CATCH_PERMANENT,
14284 CATCH_TEMPORARY);
14285 add_catch_command ("assert", _("\
14286Catch failed Ada assertions, when raised.\n\
14287With an argument, catch only exceptions with the given name."),
14288 catch_assert_command,
14289 NULL,
14290 CATCH_PERMANENT,
14291 CATCH_TEMPORARY);
14292
6c038f32 14293 varsize_limit = 65536;
6c038f32 14294
778865d3
JB
14295 add_info ("exceptions", info_exceptions_command,
14296 _("\
14297List all Ada exception names.\n\
14298If a regular expression is passed as an argument, only those matching\n\
14299the regular expression are listed."));
14300
c6044dd1
JB
14301 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14302 _("Set Ada maintenance-related variables."),
14303 &maint_set_ada_cmdlist, "maintenance set ada ",
14304 0/*allow-unknown*/, &maintenance_set_cmdlist);
14305
14306 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14307 _("Show Ada maintenance-related variables"),
14308 &maint_show_ada_cmdlist, "maintenance show ada ",
14309 0/*allow-unknown*/, &maintenance_show_cmdlist);
14310
14311 add_setshow_boolean_cmd
14312 ("ignore-descriptive-types", class_maintenance,
14313 &ada_ignore_descriptive_types_p,
14314 _("Set whether descriptive types generated by GNAT should be ignored."),
14315 _("Show whether descriptive types generated by GNAT should be ignored."),
14316 _("\
14317When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14318DWARF attribute."),
14319 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14320
6c038f32
PH
14321 decoded_names_store = htab_create_alloc
14322 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14323 NULL, xcalloc, xfree);
6b69afc4 14324
3d9434b5
JB
14325 /* The ada-lang observers. */
14326 observer_attach_new_objfile (ada_new_objfile_observer);
14327 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14328 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14329
14330 /* Setup various context-specific data. */
e802dbe0 14331 ada_inferior_data
8e260fc0 14332 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14333 ada_pspace_data_handle
14334 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14335}
This page took 3.546027 seconds and 4 git commands to generate.