* gdb.ada/ptype_arith_binop.exp: Remove some commented-out code
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
d2e4a39e 82static struct type *desc_data_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
d2e4a39e 129static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 130
4c4b4cd2 131static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 132 struct type *);
14f9c5c9 133
d2e4a39e 134static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 135 struct symbol *, struct block *);
14f9c5c9 136
d2e4a39e 137static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 138
4c4b4cd2
PH
139static char *ada_op_name (enum exp_opcode);
140
141static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 142
d2e4a39e 143static int numeric_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int integer_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int scalar_type_p (struct type *);
14f9c5c9 148
d2e4a39e 149static int discrete_type_p (struct type *);
14f9c5c9 150
aeb5907d
JB
151static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
4c4b4cd2 159static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 160 int, int, int *);
4c4b4cd2 161
d2e4a39e 162static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 163 int *, enum noside);
14f9c5c9 164
d2e4a39e 165static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 166
d2e4a39e 167static int is_dynamic_field (struct type *, int);
14f9c5c9 168
10a2c479 169static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 170 const gdb_byte *,
4c4b4cd2
PH
171 CORE_ADDR, struct value *);
172
173static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 174
d2e4a39e 175static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 176 struct objfile *);
14f9c5c9 177
d2e4a39e 178static struct type *to_static_fixed_type (struct type *);
f192137b 179static struct type *static_unwrap_type (struct type *type);
14f9c5c9 180
d2e4a39e 181static struct value *unwrap_value (struct value *);
14f9c5c9 182
d2e4a39e 183static struct type *packed_array_type (struct type *, long *);
14f9c5c9 184
d2e4a39e 185static struct type *decode_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *decode_packed_array (struct value *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
52ce6436
PH
192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
d2e4a39e 205static int wild_match (const char *, int, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236static struct value *ada_coerce_to_simple_array (struct value *);
237
238static int ada_is_direct_array_type (struct type *);
239
72d5681a
PH
240static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
714e53ab
PH
242
243static void check_size (const struct type *);
52ce6436
PH
244
245static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
4c4b4cd2
PH
275\f
276
76a01679 277
4c4b4cd2 278/* Maximum-sized dynamic type. */
14f9c5c9
AS
279static unsigned int varsize_limit;
280
4c4b4cd2
PH
281/* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283static char *ada_completer_word_break_characters =
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
301static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
305static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
309/* Space for allocating results of ada_lookup_symbol_list. */
310static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
41d27058
JB
314/* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318static const char *
319ada_unqualified_name (const char *decoded_name)
320{
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329}
330
331/* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334static char *
335add_angle_brackets (const char *str)
336{
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344}
96d887e8 345
4c4b4cd2
PH
346static char *
347ada_get_gdb_completer_word_break_characters (void)
348{
349 return ada_completer_word_break_characters;
350}
351
e79af960
JB
352/* Print an array element index using the Ada syntax. */
353
354static void
355ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 356 const struct value_print_options *options)
e79af960 357{
79a45b7d 358 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
359 fprintf_filtered (stream, " => ");
360}
361
4c4b4cd2
PH
362/* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365static void
14f9c5c9
AS
366extract_string (CORE_ADDR addr, char *buf)
367{
d2e4a39e 368 int char_index = 0;
14f9c5c9 369
4c4b4cd2
PH
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
d2e4a39e
AS
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 375 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
379}
380
f27cf670 381/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 383 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 384
f27cf670
AS
385void *
386grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 387{
d2e4a39e
AS
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
4c4b4cd2 392 *size = min_size;
f27cf670 393 vect = xrealloc (vect, *size * element_size);
d2e4a39e 394 }
f27cf670 395 return vect;
14f9c5c9
AS
396}
397
398/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 399 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
400
401static int
ebf56fd3 402field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
403{
404 int len = strlen (target);
d2e4a39e 405 return
4c4b4cd2
PH
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
14f9c5c9
AS
411}
412
413
4c4b4cd2
PH
414/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421int
422ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424{
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
323e0a4a 431 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
432 field_name, TYPE_NAME (type));
433
434 return -1;
435}
436
437/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
438
439int
d2e4a39e 440ada_name_prefix_len (const char *name)
14f9c5c9
AS
441{
442 if (name == NULL)
443 return 0;
d2e4a39e 444 else
14f9c5c9 445 {
d2e4a39e 446 const char *p = strstr (name, "___");
14f9c5c9 447 if (p == NULL)
4c4b4cd2 448 return strlen (name);
14f9c5c9 449 else
4c4b4cd2 450 return p - name;
14f9c5c9
AS
451 }
452}
453
4c4b4cd2
PH
454/* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
14f9c5c9 457static int
d2e4a39e 458is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
459{
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
4c4b4cd2 465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
466}
467
4c4b4cd2
PH
468/* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
14f9c5c9 470
d2e4a39e 471static struct value *
4c4b4cd2 472coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 473{
61ee279c 474 type = ada_check_typedef (type);
df407dfe 475 if (value_type (val) == type)
4c4b4cd2 476 return val;
d2e4a39e 477 else
14f9c5c9 478 {
4c4b4cd2
PH
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
714e53ab 483 check_size (type);
4c4b4cd2
PH
484
485 result = allocate_value (type);
74bcbdf3 486 set_value_component_location (result, val);
9bbda503
AC
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
74bcbdf3 489 VALUE_ADDRESS (result) += value_offset (val);
d69fe07e 490 if (value_lazy (val)
df407dfe 491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 492 set_value_lazy (result, 1);
d2e4a39e 493 else
0fd88904 494 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 495 TYPE_LENGTH (type));
14f9c5c9
AS
496 return result;
497 }
498}
499
fc1a4b47
AC
500static const gdb_byte *
501cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
502{
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507}
508
509static CORE_ADDR
ebf56fd3 510cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
511{
512 if (address == 0)
513 return 0;
d2e4a39e 514 else
14f9c5c9
AS
515 return address + offset;
516}
517
4c4b4cd2
PH
518/* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
a2249542 522
77109804
AC
523/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
14f9c5c9 527static void
a2249542 528lim_warning (const char *format, ...)
14f9c5c9 529{
a2249542
MK
530 va_list args;
531 va_start (args, format);
532
4c4b4cd2
PH
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
a2249542
MK
535 vwarning (format, args);
536
537 va_end (args);
4c4b4cd2
PH
538}
539
714e53ab
PH
540/* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544static void
545check_size (const struct type *type)
546{
547 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 548 error (_("object size is larger than varsize-limit"));
714e53ab
PH
549}
550
551
c3e5cd34
PH
552/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 557static LONGEST
c3e5cd34 558max_of_size (int size)
4c4b4cd2 559{
76a01679
JB
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
4c4b4cd2
PH
562}
563
c3e5cd34 564/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 565static LONGEST
c3e5cd34 566min_of_size (int size)
4c4b4cd2 567{
c3e5cd34 568 return -max_of_size (size) - 1;
4c4b4cd2
PH
569}
570
c3e5cd34 571/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 572static ULONGEST
c3e5cd34 573umax_of_size (int size)
4c4b4cd2 574{
76a01679
JB
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
4c4b4cd2
PH
577}
578
c3e5cd34
PH
579/* Maximum value of integral type T, as a signed quantity. */
580static LONGEST
581max_of_type (struct type *t)
4c4b4cd2 582{
c3e5cd34
PH
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587}
588
589/* Minimum value of integral type T, as a signed quantity. */
590static LONGEST
591min_of_type (struct type *t)
592{
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
597}
598
599/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 600static LONGEST
4c4b4cd2
PH
601discrete_type_high_bound (struct type *type)
602{
76a01679 603 switch (TYPE_CODE (type))
4c4b4cd2
PH
604 {
605 case TYPE_CODE_RANGE:
690cc4eb 606 return TYPE_HIGH_BOUND (type);
4c4b4cd2 607 case TYPE_CODE_ENUM:
690cc4eb
PH
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
76a01679 612 case TYPE_CODE_INT:
690cc4eb 613 return max_of_type (type);
4c4b4cd2 614 default:
323e0a4a 615 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
616 }
617}
618
619/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 620static LONGEST
4c4b4cd2
PH
621discrete_type_low_bound (struct type *type)
622{
76a01679 623 switch (TYPE_CODE (type))
4c4b4cd2
PH
624 {
625 case TYPE_CODE_RANGE:
690cc4eb 626 return TYPE_LOW_BOUND (type);
4c4b4cd2 627 case TYPE_CODE_ENUM:
690cc4eb
PH
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
76a01679 632 case TYPE_CODE_INT:
690cc4eb 633 return min_of_type (type);
4c4b4cd2 634 default:
323e0a4a 635 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
636 }
637}
638
639/* The identity on non-range types. For range types, the underlying
76a01679 640 non-range scalar type. */
4c4b4cd2
PH
641
642static struct type *
643base_type (struct type *type)
644{
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
76a01679
JB
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
4c4b4cd2
PH
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
14f9c5c9 652}
4c4b4cd2 653\f
76a01679 654
4c4b4cd2 655 /* Language Selection */
14f9c5c9
AS
656
657/* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
4c4b4cd2 660 MAIN_PST is not used. */
d2e4a39e 661
14f9c5c9 662enum language
d2e4a39e 663ada_update_initial_language (enum language lang,
4c4b4cd2 664 struct partial_symtab *main_pst)
14f9c5c9 665{
d2e4a39e 666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
14f9c5c9
AS
669
670 return lang;
671}
96d887e8
PH
672
673/* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677char *
678ada_main_name (void)
679{
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
6c038f32 683
96d887e8
PH
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
323e0a4a 695 error (_("Invalid address for Ada main program name."));
96d887e8
PH
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703}
14f9c5c9 704\f
4c4b4cd2 705 /* Symbols */
d2e4a39e 706
4c4b4cd2
PH
707/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
14f9c5c9 709
d2e4a39e
AS
710const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
14f9c5c9
AS
733};
734
4c4b4cd2
PH
735/* The "encoded" form of DECODED, according to GNAT conventions.
736 The result is valid until the next call to ada_encode. */
737
14f9c5c9 738char *
4c4b4cd2 739ada_encode (const char *decoded)
14f9c5c9 740{
4c4b4cd2
PH
741 static char *encoding_buffer = NULL;
742 static size_t encoding_buffer_size = 0;
d2e4a39e 743 const char *p;
14f9c5c9 744 int k;
d2e4a39e 745
4c4b4cd2 746 if (decoded == NULL)
14f9c5c9
AS
747 return NULL;
748
4c4b4cd2
PH
749 GROW_VECT (encoding_buffer, encoding_buffer_size,
750 2 * strlen (decoded) + 10);
14f9c5c9
AS
751
752 k = 0;
4c4b4cd2 753 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 754 {
cdc7bb92 755 if (*p == '.')
4c4b4cd2
PH
756 {
757 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
758 k += 2;
759 }
14f9c5c9 760 else if (*p == '"')
4c4b4cd2
PH
761 {
762 const struct ada_opname_map *mapping;
763
764 for (mapping = ada_opname_table;
1265e4aa
JB
765 mapping->encoded != NULL
766 && strncmp (mapping->decoded, p,
767 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
768 ;
769 if (mapping->encoded == NULL)
323e0a4a 770 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
771 strcpy (encoding_buffer + k, mapping->encoded);
772 k += strlen (mapping->encoded);
773 break;
774 }
d2e4a39e 775 else
4c4b4cd2
PH
776 {
777 encoding_buffer[k] = *p;
778 k += 1;
779 }
14f9c5c9
AS
780 }
781
4c4b4cd2
PH
782 encoding_buffer[k] = '\0';
783 return encoding_buffer;
14f9c5c9
AS
784}
785
786/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
787 quotes, unfolded, but with the quotes stripped away. Result good
788 to next call. */
789
d2e4a39e
AS
790char *
791ada_fold_name (const char *name)
14f9c5c9 792{
d2e4a39e 793 static char *fold_buffer = NULL;
14f9c5c9
AS
794 static size_t fold_buffer_size = 0;
795
796 int len = strlen (name);
d2e4a39e 797 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
798
799 if (name[0] == '\'')
800 {
d2e4a39e
AS
801 strncpy (fold_buffer, name + 1, len - 2);
802 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
803 }
804 else
805 {
806 int i;
807 for (i = 0; i <= len; i += 1)
4c4b4cd2 808 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
809 }
810
811 return fold_buffer;
812}
813
529cad9c
PH
814/* Return nonzero if C is either a digit or a lowercase alphabet character. */
815
816static int
817is_lower_alphanum (const char c)
818{
819 return (isdigit (c) || (isalpha (c) && islower (c)));
820}
821
29480c32
JB
822/* Remove either of these suffixes:
823 . .{DIGIT}+
824 . ${DIGIT}+
825 . ___{DIGIT}+
826 . __{DIGIT}+.
827 These are suffixes introduced by the compiler for entities such as
828 nested subprogram for instance, in order to avoid name clashes.
829 They do not serve any purpose for the debugger. */
830
831static void
832ada_remove_trailing_digits (const char *encoded, int *len)
833{
834 if (*len > 1 && isdigit (encoded[*len - 1]))
835 {
836 int i = *len - 2;
837 while (i > 0 && isdigit (encoded[i]))
838 i--;
839 if (i >= 0 && encoded[i] == '.')
840 *len = i;
841 else if (i >= 0 && encoded[i] == '$')
842 *len = i;
843 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
844 *len = i - 2;
845 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
846 *len = i - 1;
847 }
848}
849
850/* Remove the suffix introduced by the compiler for protected object
851 subprograms. */
852
853static void
854ada_remove_po_subprogram_suffix (const char *encoded, int *len)
855{
856 /* Remove trailing N. */
857
858 /* Protected entry subprograms are broken into two
859 separate subprograms: The first one is unprotected, and has
860 a 'N' suffix; the second is the protected version, and has
861 the 'P' suffix. The second calls the first one after handling
862 the protection. Since the P subprograms are internally generated,
863 we leave these names undecoded, giving the user a clue that this
864 entity is internal. */
865
866 if (*len > 1
867 && encoded[*len - 1] == 'N'
868 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
869 *len = *len - 1;
870}
871
872/* If ENCODED follows the GNAT entity encoding conventions, then return
873 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
874 replaced by ENCODED.
14f9c5c9 875
4c4b4cd2 876 The resulting string is valid until the next call of ada_decode.
29480c32 877 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
878 is returned. */
879
880const char *
881ada_decode (const char *encoded)
14f9c5c9
AS
882{
883 int i, j;
884 int len0;
d2e4a39e 885 const char *p;
4c4b4cd2 886 char *decoded;
14f9c5c9 887 int at_start_name;
4c4b4cd2
PH
888 static char *decoding_buffer = NULL;
889 static size_t decoding_buffer_size = 0;
d2e4a39e 890
29480c32
JB
891 /* The name of the Ada main procedure starts with "_ada_".
892 This prefix is not part of the decoded name, so skip this part
893 if we see this prefix. */
4c4b4cd2
PH
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
14f9c5c9 896
29480c32
JB
897 /* If the name starts with '_', then it is not a properly encoded
898 name, so do not attempt to decode it. Similarly, if the name
899 starts with '<', the name should not be decoded. */
4c4b4cd2 900 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
901 goto Suppress;
902
4c4b4cd2 903 len0 = strlen (encoded);
4c4b4cd2 904
29480c32
JB
905 ada_remove_trailing_digits (encoded, &len0);
906 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 907
4c4b4cd2
PH
908 /* Remove the ___X.* suffix if present. Do not forget to verify that
909 the suffix is located before the current "end" of ENCODED. We want
910 to avoid re-matching parts of ENCODED that have previously been
911 marked as discarded (by decrementing LEN0). */
912 p = strstr (encoded, "___");
913 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
914 {
915 if (p[3] == 'X')
4c4b4cd2 916 len0 = p - encoded;
14f9c5c9 917 else
4c4b4cd2 918 goto Suppress;
14f9c5c9 919 }
4c4b4cd2 920
29480c32
JB
921 /* Remove any trailing TKB suffix. It tells us that this symbol
922 is for the body of a task, but that information does not actually
923 appear in the decoded name. */
924
4c4b4cd2 925 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 926 len0 -= 3;
76a01679 927
29480c32
JB
928 /* Remove trailing "B" suffixes. */
929 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
930
4c4b4cd2 931 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
932 len0 -= 1;
933
4c4b4cd2 934 /* Make decoded big enough for possible expansion by operator name. */
29480c32 935
4c4b4cd2
PH
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
14f9c5c9 938
29480c32
JB
939 /* Remove trailing __{digit}+ or trailing ${digit}+. */
940
4c4b4cd2 941 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 942 {
4c4b4cd2
PH
943 i = len0 - 2;
944 while ((i >= 0 && isdigit (encoded[i]))
945 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
946 i -= 1;
947 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
948 len0 = i - 1;
949 else if (encoded[i] == '$')
950 len0 = i;
d2e4a39e 951 }
14f9c5c9 952
29480c32
JB
953 /* The first few characters that are not alphabetic are not part
954 of any encoding we use, so we can copy them over verbatim. */
955
4c4b4cd2
PH
956 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
957 decoded[j] = encoded[i];
14f9c5c9
AS
958
959 at_start_name = 1;
960 while (i < len0)
961 {
29480c32 962 /* Is this a symbol function? */
4c4b4cd2
PH
963 if (at_start_name && encoded[i] == 'O')
964 {
965 int k;
966 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
967 {
968 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
969 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
970 op_len - 1) == 0)
971 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
972 {
973 strcpy (decoded + j, ada_opname_table[k].decoded);
974 at_start_name = 0;
975 i += op_len;
976 j += strlen (ada_opname_table[k].decoded);
977 break;
978 }
979 }
980 if (ada_opname_table[k].encoded != NULL)
981 continue;
982 }
14f9c5c9
AS
983 at_start_name = 0;
984
529cad9c
PH
985 /* Replace "TK__" with "__", which will eventually be translated
986 into "." (just below). */
987
4c4b4cd2
PH
988 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
989 i += 2;
529cad9c 990
29480c32
JB
991 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
992 be translated into "." (just below). These are internal names
993 generated for anonymous blocks inside which our symbol is nested. */
994
995 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
996 && encoded [i+2] == 'B' && encoded [i+3] == '_'
997 && isdigit (encoded [i+4]))
998 {
999 int k = i + 5;
1000
1001 while (k < len0 && isdigit (encoded[k]))
1002 k++; /* Skip any extra digit. */
1003
1004 /* Double-check that the "__B_{DIGITS}+" sequence we found
1005 is indeed followed by "__". */
1006 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1007 i = k;
1008 }
1009
529cad9c
PH
1010 /* Remove _E{DIGITS}+[sb] */
1011
1012 /* Just as for protected object subprograms, there are 2 categories
1013 of subprograms created by the compiler for each entry. The first
1014 one implements the actual entry code, and has a suffix following
1015 the convention above; the second one implements the barrier and
1016 uses the same convention as above, except that the 'E' is replaced
1017 by a 'B'.
1018
1019 Just as above, we do not decode the name of barrier functions
1020 to give the user a clue that the code he is debugging has been
1021 internally generated. */
1022
1023 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1024 && isdigit (encoded[i+2]))
1025 {
1026 int k = i + 3;
1027
1028 while (k < len0 && isdigit (encoded[k]))
1029 k++;
1030
1031 if (k < len0
1032 && (encoded[k] == 'b' || encoded[k] == 's'))
1033 {
1034 k++;
1035 /* Just as an extra precaution, make sure that if this
1036 suffix is followed by anything else, it is a '_'.
1037 Otherwise, we matched this sequence by accident. */
1038 if (k == len0
1039 || (k < len0 && encoded[k] == '_'))
1040 i = k;
1041 }
1042 }
1043
1044 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1045 the GNAT front-end in protected object subprograms. */
1046
1047 if (i < len0 + 3
1048 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1049 {
1050 /* Backtrack a bit up until we reach either the begining of
1051 the encoded name, or "__". Make sure that we only find
1052 digits or lowercase characters. */
1053 const char *ptr = encoded + i - 1;
1054
1055 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1056 ptr--;
1057 if (ptr < encoded
1058 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1059 i++;
1060 }
1061
4c4b4cd2
PH
1062 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1063 {
29480c32
JB
1064 /* This is a X[bn]* sequence not separated from the previous
1065 part of the name with a non-alpha-numeric character (in other
1066 words, immediately following an alpha-numeric character), then
1067 verify that it is placed at the end of the encoded name. If
1068 not, then the encoding is not valid and we should abort the
1069 decoding. Otherwise, just skip it, it is used in body-nested
1070 package names. */
4c4b4cd2
PH
1071 do
1072 i += 1;
1073 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1074 if (i < len0)
1075 goto Suppress;
1076 }
cdc7bb92 1077 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1078 {
29480c32 1079 /* Replace '__' by '.'. */
4c4b4cd2
PH
1080 decoded[j] = '.';
1081 at_start_name = 1;
1082 i += 2;
1083 j += 1;
1084 }
14f9c5c9 1085 else
4c4b4cd2 1086 {
29480c32
JB
1087 /* It's a character part of the decoded name, so just copy it
1088 over. */
4c4b4cd2
PH
1089 decoded[j] = encoded[i];
1090 i += 1;
1091 j += 1;
1092 }
14f9c5c9 1093 }
4c4b4cd2 1094 decoded[j] = '\000';
14f9c5c9 1095
29480c32
JB
1096 /* Decoded names should never contain any uppercase character.
1097 Double-check this, and abort the decoding if we find one. */
1098
4c4b4cd2
PH
1099 for (i = 0; decoded[i] != '\0'; i += 1)
1100 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1101 goto Suppress;
1102
4c4b4cd2
PH
1103 if (strcmp (decoded, encoded) == 0)
1104 return encoded;
1105 else
1106 return decoded;
14f9c5c9
AS
1107
1108Suppress:
4c4b4cd2
PH
1109 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1110 decoded = decoding_buffer;
1111 if (encoded[0] == '<')
1112 strcpy (decoded, encoded);
14f9c5c9 1113 else
4c4b4cd2
PH
1114 sprintf (decoded, "<%s>", encoded);
1115 return decoded;
1116
1117}
1118
1119/* Table for keeping permanent unique copies of decoded names. Once
1120 allocated, names in this table are never released. While this is a
1121 storage leak, it should not be significant unless there are massive
1122 changes in the set of decoded names in successive versions of a
1123 symbol table loaded during a single session. */
1124static struct htab *decoded_names_store;
1125
1126/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1127 in the language-specific part of GSYMBOL, if it has not been
1128 previously computed. Tries to save the decoded name in the same
1129 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1130 in any case, the decoded symbol has a lifetime at least that of
1131 GSYMBOL).
1132 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1133 const, but nevertheless modified to a semantically equivalent form
1134 when a decoded name is cached in it.
76a01679 1135*/
4c4b4cd2 1136
76a01679
JB
1137char *
1138ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1139{
76a01679 1140 char **resultp =
4c4b4cd2
PH
1141 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1142 if (*resultp == NULL)
1143 {
1144 const char *decoded = ada_decode (gsymbol->name);
714835d5 1145 if (gsymbol->obj_section != NULL)
76a01679 1146 {
714835d5
UW
1147 struct objfile *objf = gsymbol->obj_section->objfile;
1148 *resultp = obsavestring (decoded, strlen (decoded),
1149 &objf->objfile_obstack);
76a01679 1150 }
4c4b4cd2 1151 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1152 case, we put the result on the heap. Since we only decode
1153 when needed, we hope this usually does not cause a
1154 significant memory leak (FIXME). */
4c4b4cd2 1155 if (*resultp == NULL)
76a01679
JB
1156 {
1157 char **slot = (char **) htab_find_slot (decoded_names_store,
1158 decoded, INSERT);
1159 if (*slot == NULL)
1160 *slot = xstrdup (decoded);
1161 *resultp = *slot;
1162 }
4c4b4cd2 1163 }
14f9c5c9 1164
4c4b4cd2
PH
1165 return *resultp;
1166}
76a01679 1167
2c0b251b 1168static char *
76a01679 1169ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1170{
1171 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1172}
1173
1174/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1175 suffixes that encode debugging information or leading _ada_ on
1176 SYM_NAME (see is_name_suffix commentary for the debugging
1177 information that is ignored). If WILD, then NAME need only match a
1178 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1179 either argument is NULL. */
14f9c5c9 1180
2c0b251b 1181static int
d2e4a39e 1182ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1183{
1184 if (sym_name == NULL || name == NULL)
1185 return 0;
1186 else if (wild)
1187 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1188 else
1189 {
1190 int len_name = strlen (name);
4c4b4cd2
PH
1191 return (strncmp (sym_name, name, len_name) == 0
1192 && is_name_suffix (sym_name + len_name))
1193 || (strncmp (sym_name, "_ada_", 5) == 0
1194 && strncmp (sym_name + 5, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1196 }
14f9c5c9 1197}
14f9c5c9 1198\f
d2e4a39e 1199
4c4b4cd2 1200 /* Arrays */
14f9c5c9 1201
4c4b4cd2 1202/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1203
d2e4a39e
AS
1204static char *bound_name[] = {
1205 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1206 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1207};
1208
1209/* Maximum number of array dimensions we are prepared to handle. */
1210
4c4b4cd2 1211#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1212
4c4b4cd2 1213/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1214
1215static void
ebf56fd3 1216modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1217{
4c4b4cd2 1218 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1219}
1220
1221
4c4b4cd2
PH
1222/* The desc_* routines return primitive portions of array descriptors
1223 (fat pointers). */
14f9c5c9
AS
1224
1225/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1226 level of indirection, if needed. */
1227
d2e4a39e
AS
1228static struct type *
1229desc_base_type (struct type *type)
14f9c5c9
AS
1230{
1231 if (type == NULL)
1232 return NULL;
61ee279c 1233 type = ada_check_typedef (type);
1265e4aa
JB
1234 if (type != NULL
1235 && (TYPE_CODE (type) == TYPE_CODE_PTR
1236 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1237 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1238 else
1239 return type;
1240}
1241
4c4b4cd2
PH
1242/* True iff TYPE indicates a "thin" array pointer type. */
1243
14f9c5c9 1244static int
d2e4a39e 1245is_thin_pntr (struct type *type)
14f9c5c9 1246{
d2e4a39e 1247 return
14f9c5c9
AS
1248 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1249 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1250}
1251
4c4b4cd2
PH
1252/* The descriptor type for thin pointer type TYPE. */
1253
d2e4a39e
AS
1254static struct type *
1255thin_descriptor_type (struct type *type)
14f9c5c9 1256{
d2e4a39e 1257 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1258 if (base_type == NULL)
1259 return NULL;
1260 if (is_suffix (ada_type_name (base_type), "___XVE"))
1261 return base_type;
d2e4a39e 1262 else
14f9c5c9 1263 {
d2e4a39e 1264 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1265 if (alt_type == NULL)
4c4b4cd2 1266 return base_type;
14f9c5c9 1267 else
4c4b4cd2 1268 return alt_type;
14f9c5c9
AS
1269 }
1270}
1271
4c4b4cd2
PH
1272/* A pointer to the array data for thin-pointer value VAL. */
1273
d2e4a39e
AS
1274static struct value *
1275thin_data_pntr (struct value *val)
14f9c5c9 1276{
df407dfe 1277 struct type *type = value_type (val);
14f9c5c9 1278 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1279 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1280 value_copy (val));
d2e4a39e 1281 else
14f9c5c9 1282 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1283 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1284}
1285
4c4b4cd2
PH
1286/* True iff TYPE indicates a "thick" array pointer type. */
1287
14f9c5c9 1288static int
d2e4a39e 1289is_thick_pntr (struct type *type)
14f9c5c9
AS
1290{
1291 type = desc_base_type (type);
1292 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1293 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1294}
1295
4c4b4cd2
PH
1296/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1297 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1298
d2e4a39e
AS
1299static struct type *
1300desc_bounds_type (struct type *type)
14f9c5c9 1301{
d2e4a39e 1302 struct type *r;
14f9c5c9
AS
1303
1304 type = desc_base_type (type);
1305
1306 if (type == NULL)
1307 return NULL;
1308 else if (is_thin_pntr (type))
1309 {
1310 type = thin_descriptor_type (type);
1311 if (type == NULL)
4c4b4cd2 1312 return NULL;
14f9c5c9
AS
1313 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1314 if (r != NULL)
61ee279c 1315 return ada_check_typedef (r);
14f9c5c9
AS
1316 }
1317 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1318 {
1319 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1320 if (r != NULL)
61ee279c 1321 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1322 }
1323 return NULL;
1324}
1325
1326/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1327 one, a pointer to its bounds data. Otherwise NULL. */
1328
d2e4a39e
AS
1329static struct value *
1330desc_bounds (struct value *arr)
14f9c5c9 1331{
df407dfe 1332 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1333 if (is_thin_pntr (type))
14f9c5c9 1334 {
d2e4a39e 1335 struct type *bounds_type =
4c4b4cd2 1336 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1337 LONGEST addr;
1338
4cdfadb1 1339 if (bounds_type == NULL)
323e0a4a 1340 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1341
1342 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1343 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1344 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1345 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1346 addr = value_as_long (arr);
d2e4a39e 1347 else
df407dfe 1348 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1349
d2e4a39e 1350 return
4c4b4cd2
PH
1351 value_from_longest (lookup_pointer_type (bounds_type),
1352 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1353 }
1354
1355 else if (is_thick_pntr (type))
d2e4a39e 1356 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1357 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1358 else
1359 return NULL;
1360}
1361
4c4b4cd2
PH
1362/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1363 position of the field containing the address of the bounds data. */
1364
14f9c5c9 1365static int
d2e4a39e 1366fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1367{
1368 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1369}
1370
1371/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1372 size of the field containing the address of the bounds data. */
1373
14f9c5c9 1374static int
d2e4a39e 1375fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1376{
1377 type = desc_base_type (type);
1378
d2e4a39e 1379 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1380 return TYPE_FIELD_BITSIZE (type, 1);
1381 else
61ee279c 1382 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1383}
1384
4c4b4cd2 1385/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1386 pointer to one, the type of its array data (a
4c4b4cd2
PH
1387 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1388 ada_type_of_array to get an array type with bounds data. */
1389
d2e4a39e
AS
1390static struct type *
1391desc_data_type (struct type *type)
14f9c5c9
AS
1392{
1393 type = desc_base_type (type);
1394
4c4b4cd2 1395 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1396 if (is_thin_pntr (type))
d2e4a39e
AS
1397 return lookup_pointer_type
1398 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1399 else if (is_thick_pntr (type))
1400 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1401 else
1402 return NULL;
1403}
1404
1405/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1406 its array data. */
4c4b4cd2 1407
d2e4a39e
AS
1408static struct value *
1409desc_data (struct value *arr)
14f9c5c9 1410{
df407dfe 1411 struct type *type = value_type (arr);
14f9c5c9
AS
1412 if (is_thin_pntr (type))
1413 return thin_data_pntr (arr);
1414 else if (is_thick_pntr (type))
d2e4a39e 1415 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1416 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1417 else
1418 return NULL;
1419}
1420
1421
1422/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1423 position of the field containing the address of the data. */
1424
14f9c5c9 1425static int
d2e4a39e 1426fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1427{
1428 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1429}
1430
1431/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1432 size of the field containing the address of the data. */
1433
14f9c5c9 1434static int
d2e4a39e 1435fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1436{
1437 type = desc_base_type (type);
1438
1439 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1440 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1441 else
14f9c5c9
AS
1442 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1443}
1444
4c4b4cd2 1445/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1446 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1447 bound, if WHICH is 1. The first bound is I=1. */
1448
d2e4a39e
AS
1449static struct value *
1450desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1451{
d2e4a39e 1452 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1453 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1454}
1455
1456/* If BOUNDS is an array-bounds structure type, return the bit position
1457 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1458 bound, if WHICH is 1. The first bound is I=1. */
1459
14f9c5c9 1460static int
d2e4a39e 1461desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1462{
d2e4a39e 1463 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1464}
1465
1466/* If BOUNDS is an array-bounds structure type, return the bit field size
1467 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1468 bound, if WHICH is 1. The first bound is I=1. */
1469
76a01679 1470static int
d2e4a39e 1471desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1472{
1473 type = desc_base_type (type);
1474
d2e4a39e
AS
1475 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1476 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1477 else
1478 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1479}
1480
1481/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1482 Ith bound (numbering from 1). Otherwise, NULL. */
1483
d2e4a39e
AS
1484static struct type *
1485desc_index_type (struct type *type, int i)
14f9c5c9
AS
1486{
1487 type = desc_base_type (type);
1488
1489 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1490 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1491 else
14f9c5c9
AS
1492 return NULL;
1493}
1494
4c4b4cd2
PH
1495/* The number of index positions in the array-bounds type TYPE.
1496 Return 0 if TYPE is NULL. */
1497
14f9c5c9 1498static int
d2e4a39e 1499desc_arity (struct type *type)
14f9c5c9
AS
1500{
1501 type = desc_base_type (type);
1502
1503 if (type != NULL)
1504 return TYPE_NFIELDS (type) / 2;
1505 return 0;
1506}
1507
4c4b4cd2
PH
1508/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1509 an array descriptor type (representing an unconstrained array
1510 type). */
1511
76a01679
JB
1512static int
1513ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1514{
1515 if (type == NULL)
1516 return 0;
61ee279c 1517 type = ada_check_typedef (type);
4c4b4cd2 1518 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1519 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1520}
1521
52ce6436
PH
1522/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1523 * to one. */
1524
2c0b251b 1525static int
52ce6436
PH
1526ada_is_array_type (struct type *type)
1527{
1528 while (type != NULL
1529 && (TYPE_CODE (type) == TYPE_CODE_PTR
1530 || TYPE_CODE (type) == TYPE_CODE_REF))
1531 type = TYPE_TARGET_TYPE (type);
1532 return ada_is_direct_array_type (type);
1533}
1534
4c4b4cd2 1535/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1536
14f9c5c9 1537int
4c4b4cd2 1538ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1539{
1540 if (type == NULL)
1541 return 0;
61ee279c 1542 type = ada_check_typedef (type);
14f9c5c9 1543 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1544 || (TYPE_CODE (type) == TYPE_CODE_PTR
1545 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1546}
1547
4c4b4cd2
PH
1548/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1549
14f9c5c9 1550int
4c4b4cd2 1551ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1552{
d2e4a39e 1553 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1554
1555 if (type == NULL)
1556 return 0;
61ee279c 1557 type = ada_check_typedef (type);
d2e4a39e 1558 return
14f9c5c9
AS
1559 data_type != NULL
1560 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1561 && TYPE_TARGET_TYPE (data_type) != NULL
1562 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1563 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1564 && desc_arity (desc_bounds_type (type)) > 0;
1565}
1566
1567/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1568 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1569 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1570 is still needed. */
1571
14f9c5c9 1572int
ebf56fd3 1573ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1574{
d2e4a39e 1575 return
14f9c5c9
AS
1576 type != NULL
1577 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1578 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1579 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1580 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1581}
1582
1583
4c4b4cd2 1584/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1585 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1586 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1587 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1588 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1589 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1590 a descriptor. */
d2e4a39e
AS
1591struct type *
1592ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1593{
df407dfe
AC
1594 if (ada_is_packed_array_type (value_type (arr)))
1595 return decode_packed_array_type (value_type (arr));
14f9c5c9 1596
df407dfe
AC
1597 if (!ada_is_array_descriptor_type (value_type (arr)))
1598 return value_type (arr);
d2e4a39e
AS
1599
1600 if (!bounds)
1601 return
df407dfe 1602 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1603 else
1604 {
d2e4a39e 1605 struct type *elt_type;
14f9c5c9 1606 int arity;
d2e4a39e 1607 struct value *descriptor;
df407dfe 1608 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1609
df407dfe
AC
1610 elt_type = ada_array_element_type (value_type (arr), -1);
1611 arity = ada_array_arity (value_type (arr));
14f9c5c9 1612
d2e4a39e 1613 if (elt_type == NULL || arity == 0)
df407dfe 1614 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1615
1616 descriptor = desc_bounds (arr);
d2e4a39e 1617 if (value_as_long (descriptor) == 0)
4c4b4cd2 1618 return NULL;
d2e4a39e 1619 while (arity > 0)
4c4b4cd2
PH
1620 {
1621 struct type *range_type = alloc_type (objf);
1622 struct type *array_type = alloc_type (objf);
1623 struct value *low = desc_one_bound (descriptor, arity, 0);
1624 struct value *high = desc_one_bound (descriptor, arity, 1);
1625 arity -= 1;
1626
df407dfe 1627 create_range_type (range_type, value_type (low),
529cad9c
PH
1628 longest_to_int (value_as_long (low)),
1629 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1630 elt_type = create_array_type (array_type, elt_type, range_type);
1631 }
14f9c5c9
AS
1632
1633 return lookup_pointer_type (elt_type);
1634 }
1635}
1636
1637/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1638 Otherwise, returns either a standard GDB array with bounds set
1639 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1640 GDB array. Returns NULL if ARR is a null fat pointer. */
1641
d2e4a39e
AS
1642struct value *
1643ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1644{
df407dfe 1645 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1646 {
d2e4a39e 1647 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1648 if (arrType == NULL)
4c4b4cd2 1649 return NULL;
14f9c5c9
AS
1650 return value_cast (arrType, value_copy (desc_data (arr)));
1651 }
df407dfe 1652 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1653 return decode_packed_array (arr);
1654 else
1655 return arr;
1656}
1657
1658/* If ARR does not represent an array, returns ARR unchanged.
1659 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1660 be ARR itself if it already is in the proper form). */
1661
1662static struct value *
d2e4a39e 1663ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1664{
df407dfe 1665 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1666 {
d2e4a39e 1667 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1668 if (arrVal == NULL)
323e0a4a 1669 error (_("Bounds unavailable for null array pointer."));
529cad9c 1670 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1671 return value_ind (arrVal);
1672 }
df407dfe 1673 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1674 return decode_packed_array (arr);
d2e4a39e 1675 else
14f9c5c9
AS
1676 return arr;
1677}
1678
1679/* If TYPE represents a GNAT array type, return it translated to an
1680 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1681 packing). For other types, is the identity. */
1682
d2e4a39e
AS
1683struct type *
1684ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1685{
d2e4a39e 1686 struct value *mark = value_mark ();
6d84d3d8 1687 struct value *dummy = value_from_longest (builtin_type_int32, 0);
d2e4a39e 1688 struct type *result;
04624583 1689 deprecated_set_value_type (dummy, type);
14f9c5c9 1690 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1691 value_free_to_mark (mark);
14f9c5c9
AS
1692 return result;
1693}
1694
4c4b4cd2
PH
1695/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1696
14f9c5c9 1697int
d2e4a39e 1698ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1699{
1700 if (type == NULL)
1701 return 0;
4c4b4cd2 1702 type = desc_base_type (type);
61ee279c 1703 type = ada_check_typedef (type);
d2e4a39e 1704 return
14f9c5c9
AS
1705 ada_type_name (type) != NULL
1706 && strstr (ada_type_name (type), "___XP") != NULL;
1707}
1708
1709/* Given that TYPE is a standard GDB array type with all bounds filled
1710 in, and that the element size of its ultimate scalar constituents
1711 (that is, either its elements, or, if it is an array of arrays, its
1712 elements' elements, etc.) is *ELT_BITS, return an identical type,
1713 but with the bit sizes of its elements (and those of any
1714 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1715 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1716 in bits. */
1717
d2e4a39e
AS
1718static struct type *
1719packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1720{
d2e4a39e
AS
1721 struct type *new_elt_type;
1722 struct type *new_type;
14f9c5c9
AS
1723 LONGEST low_bound, high_bound;
1724
61ee279c 1725 type = ada_check_typedef (type);
14f9c5c9
AS
1726 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1727 return type;
1728
1729 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1730 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1731 elt_bits);
262452ec 1732 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1733 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1734 TYPE_NAME (new_type) = ada_type_name (type);
1735
262452ec 1736 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1737 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1738 low_bound = high_bound = 0;
1739 if (high_bound < low_bound)
1740 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1741 else
14f9c5c9
AS
1742 {
1743 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1744 TYPE_LENGTH (new_type) =
4c4b4cd2 1745 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1746 }
1747
876cecd0 1748 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1749 return new_type;
1750}
1751
4c4b4cd2
PH
1752/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1753
d2e4a39e
AS
1754static struct type *
1755decode_packed_array_type (struct type *type)
1756{
4c4b4cd2 1757 struct symbol *sym;
d2e4a39e 1758 struct block **blocks;
727e3d2e
JB
1759 char *raw_name = ada_type_name (ada_check_typedef (type));
1760 char *name;
1761 char *tail;
d2e4a39e 1762 struct type *shadow_type;
14f9c5c9
AS
1763 long bits;
1764 int i, n;
1765
727e3d2e
JB
1766 if (!raw_name)
1767 raw_name = ada_type_name (desc_base_type (type));
1768
1769 if (!raw_name)
1770 return NULL;
1771
1772 name = (char *) alloca (strlen (raw_name) + 1);
1773 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1774 type = desc_base_type (type);
1775
14f9c5c9
AS
1776 memcpy (name, raw_name, tail - raw_name);
1777 name[tail - raw_name] = '\000';
1778
4c4b4cd2
PH
1779 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1780 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1781 {
323e0a4a 1782 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1783 return NULL;
1784 }
4c4b4cd2 1785 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1786
1787 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1788 {
323e0a4a 1789 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1790 return NULL;
1791 }
d2e4a39e 1792
14f9c5c9
AS
1793 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1794 {
4c4b4cd2 1795 lim_warning
323e0a4a 1796 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1797 return NULL;
1798 }
d2e4a39e 1799
14f9c5c9
AS
1800 return packed_array_type (shadow_type, &bits);
1801}
1802
4c4b4cd2 1803/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1804 returns a simple array that denotes that array. Its type is a
1805 standard GDB array type except that the BITSIZEs of the array
1806 target types are set to the number of bits in each element, and the
4c4b4cd2 1807 type length is set appropriately. */
14f9c5c9 1808
d2e4a39e
AS
1809static struct value *
1810decode_packed_array (struct value *arr)
14f9c5c9 1811{
4c4b4cd2 1812 struct type *type;
14f9c5c9 1813
4c4b4cd2 1814 arr = ada_coerce_ref (arr);
df407dfe 1815 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1816 arr = ada_value_ind (arr);
1817
df407dfe 1818 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1819 if (type == NULL)
1820 {
323e0a4a 1821 error (_("can't unpack array"));
14f9c5c9
AS
1822 return NULL;
1823 }
61ee279c 1824
32c9a795
MD
1825 if (gdbarch_bits_big_endian (current_gdbarch)
1826 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1827 {
1828 /* This is a (right-justified) modular type representing a packed
1829 array with no wrapper. In order to interpret the value through
1830 the (left-justified) packed array type we just built, we must
1831 first left-justify it. */
1832 int bit_size, bit_pos;
1833 ULONGEST mod;
1834
df407dfe 1835 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1836 bit_size = 0;
1837 while (mod > 0)
1838 {
1839 bit_size += 1;
1840 mod >>= 1;
1841 }
df407dfe 1842 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1843 arr = ada_value_primitive_packed_val (arr, NULL,
1844 bit_pos / HOST_CHAR_BIT,
1845 bit_pos % HOST_CHAR_BIT,
1846 bit_size,
1847 type);
1848 }
1849
4c4b4cd2 1850 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1851}
1852
1853
1854/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1855 given in IND. ARR must be a simple array. */
14f9c5c9 1856
d2e4a39e
AS
1857static struct value *
1858value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1859{
1860 int i;
1861 int bits, elt_off, bit_off;
1862 long elt_total_bit_offset;
d2e4a39e
AS
1863 struct type *elt_type;
1864 struct value *v;
14f9c5c9
AS
1865
1866 bits = 0;
1867 elt_total_bit_offset = 0;
df407dfe 1868 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1869 for (i = 0; i < arity; i += 1)
14f9c5c9 1870 {
d2e4a39e 1871 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1872 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1873 error
323e0a4a 1874 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1875 else
4c4b4cd2
PH
1876 {
1877 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1878 LONGEST lowerbound, upperbound;
1879 LONGEST idx;
1880
1881 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1882 {
323e0a4a 1883 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1884 lowerbound = upperbound = 0;
1885 }
1886
3cb382c9 1887 idx = pos_atr (ind[i]);
4c4b4cd2 1888 if (idx < lowerbound || idx > upperbound)
323e0a4a 1889 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1890 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1891 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1892 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1893 }
14f9c5c9
AS
1894 }
1895 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1896 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1897
1898 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1899 bits, elt_type);
14f9c5c9
AS
1900 return v;
1901}
1902
4c4b4cd2 1903/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1904
1905static int
d2e4a39e 1906has_negatives (struct type *type)
14f9c5c9 1907{
d2e4a39e
AS
1908 switch (TYPE_CODE (type))
1909 {
1910 default:
1911 return 0;
1912 case TYPE_CODE_INT:
1913 return !TYPE_UNSIGNED (type);
1914 case TYPE_CODE_RANGE:
1915 return TYPE_LOW_BOUND (type) < 0;
1916 }
14f9c5c9 1917}
d2e4a39e 1918
14f9c5c9
AS
1919
1920/* Create a new value of type TYPE from the contents of OBJ starting
1921 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1922 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1923 assigning through the result will set the field fetched from.
1924 VALADDR is ignored unless OBJ is NULL, in which case,
1925 VALADDR+OFFSET must address the start of storage containing the
1926 packed value. The value returned in this case is never an lval.
1927 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1928
d2e4a39e 1929struct value *
fc1a4b47 1930ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1931 long offset, int bit_offset, int bit_size,
4c4b4cd2 1932 struct type *type)
14f9c5c9 1933{
d2e4a39e 1934 struct value *v;
4c4b4cd2
PH
1935 int src, /* Index into the source area */
1936 targ, /* Index into the target area */
1937 srcBitsLeft, /* Number of source bits left to move */
1938 nsrc, ntarg, /* Number of source and target bytes */
1939 unusedLS, /* Number of bits in next significant
1940 byte of source that are unused */
1941 accumSize; /* Number of meaningful bits in accum */
1942 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1943 unsigned char *unpacked;
4c4b4cd2 1944 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1945 unsigned char sign;
1946 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1947 /* Transmit bytes from least to most significant; delta is the direction
1948 the indices move. */
32c9a795 1949 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1950
61ee279c 1951 type = ada_check_typedef (type);
14f9c5c9
AS
1952
1953 if (obj == NULL)
1954 {
1955 v = allocate_value (type);
d2e4a39e 1956 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1957 }
9214ee5f 1958 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1959 {
1960 v = value_at (type,
df407dfe 1961 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 1962 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
1963 read_memory (VALUE_ADDRESS (v), bytes, len);
1964 }
d2e4a39e 1965 else
14f9c5c9
AS
1966 {
1967 v = allocate_value (type);
0fd88904 1968 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1969 }
d2e4a39e
AS
1970
1971 if (obj != NULL)
14f9c5c9 1972 {
74bcbdf3
PA
1973 set_value_component_location (v, obj);
1974 VALUE_ADDRESS (v) += value_offset (obj) + offset;
9bbda503
AC
1975 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1976 set_value_bitsize (v, bit_size);
df407dfe 1977 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
1978 {
1979 VALUE_ADDRESS (v) += 1;
9bbda503 1980 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1981 }
14f9c5c9
AS
1982 }
1983 else
9bbda503 1984 set_value_bitsize (v, bit_size);
0fd88904 1985 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
1986
1987 srcBitsLeft = bit_size;
1988 nsrc = len;
1989 ntarg = TYPE_LENGTH (type);
1990 sign = 0;
1991 if (bit_size == 0)
1992 {
1993 memset (unpacked, 0, TYPE_LENGTH (type));
1994 return v;
1995 }
32c9a795 1996 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 1997 {
d2e4a39e 1998 src = len - 1;
1265e4aa
JB
1999 if (has_negatives (type)
2000 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2001 sign = ~0;
d2e4a39e
AS
2002
2003 unusedLS =
4c4b4cd2
PH
2004 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2005 % HOST_CHAR_BIT;
14f9c5c9
AS
2006
2007 switch (TYPE_CODE (type))
4c4b4cd2
PH
2008 {
2009 case TYPE_CODE_ARRAY:
2010 case TYPE_CODE_UNION:
2011 case TYPE_CODE_STRUCT:
2012 /* Non-scalar values must be aligned at a byte boundary... */
2013 accumSize =
2014 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2015 /* ... And are placed at the beginning (most-significant) bytes
2016 of the target. */
529cad9c 2017 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2018 ntarg = targ + 1;
4c4b4cd2
PH
2019 break;
2020 default:
2021 accumSize = 0;
2022 targ = TYPE_LENGTH (type) - 1;
2023 break;
2024 }
14f9c5c9 2025 }
d2e4a39e 2026 else
14f9c5c9
AS
2027 {
2028 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2029
2030 src = targ = 0;
2031 unusedLS = bit_offset;
2032 accumSize = 0;
2033
d2e4a39e 2034 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2035 sign = ~0;
14f9c5c9 2036 }
d2e4a39e 2037
14f9c5c9
AS
2038 accum = 0;
2039 while (nsrc > 0)
2040 {
2041 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2042 part of the value. */
d2e4a39e 2043 unsigned int unusedMSMask =
4c4b4cd2
PH
2044 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2045 1;
2046 /* Sign-extend bits for this byte. */
14f9c5c9 2047 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2048 accum |=
4c4b4cd2 2049 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2050 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2051 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2052 {
2053 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2054 accumSize -= HOST_CHAR_BIT;
2055 accum >>= HOST_CHAR_BIT;
2056 ntarg -= 1;
2057 targ += delta;
2058 }
14f9c5c9
AS
2059 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2060 unusedLS = 0;
2061 nsrc -= 1;
2062 src += delta;
2063 }
2064 while (ntarg > 0)
2065 {
2066 accum |= sign << accumSize;
2067 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2068 accumSize -= HOST_CHAR_BIT;
2069 accum >>= HOST_CHAR_BIT;
2070 ntarg -= 1;
2071 targ += delta;
2072 }
2073
2074 return v;
2075}
d2e4a39e 2076
14f9c5c9
AS
2077/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2078 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2079 not overlap. */
14f9c5c9 2080static void
fc1a4b47 2081move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2082 int src_offset, int n)
14f9c5c9
AS
2083{
2084 unsigned int accum, mask;
2085 int accum_bits, chunk_size;
2086
2087 target += targ_offset / HOST_CHAR_BIT;
2088 targ_offset %= HOST_CHAR_BIT;
2089 source += src_offset / HOST_CHAR_BIT;
2090 src_offset %= HOST_CHAR_BIT;
32c9a795 2091 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2092 {
2093 accum = (unsigned char) *source;
2094 source += 1;
2095 accum_bits = HOST_CHAR_BIT - src_offset;
2096
d2e4a39e 2097 while (n > 0)
4c4b4cd2
PH
2098 {
2099 int unused_right;
2100 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2101 accum_bits += HOST_CHAR_BIT;
2102 source += 1;
2103 chunk_size = HOST_CHAR_BIT - targ_offset;
2104 if (chunk_size > n)
2105 chunk_size = n;
2106 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2107 mask = ((1 << chunk_size) - 1) << unused_right;
2108 *target =
2109 (*target & ~mask)
2110 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2111 n -= chunk_size;
2112 accum_bits -= chunk_size;
2113 target += 1;
2114 targ_offset = 0;
2115 }
14f9c5c9
AS
2116 }
2117 else
2118 {
2119 accum = (unsigned char) *source >> src_offset;
2120 source += 1;
2121 accum_bits = HOST_CHAR_BIT - src_offset;
2122
d2e4a39e 2123 while (n > 0)
4c4b4cd2
PH
2124 {
2125 accum = accum + ((unsigned char) *source << accum_bits);
2126 accum_bits += HOST_CHAR_BIT;
2127 source += 1;
2128 chunk_size = HOST_CHAR_BIT - targ_offset;
2129 if (chunk_size > n)
2130 chunk_size = n;
2131 mask = ((1 << chunk_size) - 1) << targ_offset;
2132 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2133 n -= chunk_size;
2134 accum_bits -= chunk_size;
2135 accum >>= chunk_size;
2136 target += 1;
2137 targ_offset = 0;
2138 }
14f9c5c9
AS
2139 }
2140}
2141
14f9c5c9
AS
2142/* Store the contents of FROMVAL into the location of TOVAL.
2143 Return a new value with the location of TOVAL and contents of
2144 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2145 floating-point or non-scalar types. */
14f9c5c9 2146
d2e4a39e
AS
2147static struct value *
2148ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2149{
df407dfe
AC
2150 struct type *type = value_type (toval);
2151 int bits = value_bitsize (toval);
14f9c5c9 2152
52ce6436
PH
2153 toval = ada_coerce_ref (toval);
2154 fromval = ada_coerce_ref (fromval);
2155
2156 if (ada_is_direct_array_type (value_type (toval)))
2157 toval = ada_coerce_to_simple_array (toval);
2158 if (ada_is_direct_array_type (value_type (fromval)))
2159 fromval = ada_coerce_to_simple_array (fromval);
2160
88e3b34b 2161 if (!deprecated_value_modifiable (toval))
323e0a4a 2162 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2163
d2e4a39e 2164 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2165 && bits > 0
d2e4a39e 2166 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2167 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2168 {
df407dfe
AC
2169 int len = (value_bitpos (toval)
2170 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2171 int from_size;
d2e4a39e
AS
2172 char *buffer = (char *) alloca (len);
2173 struct value *val;
52ce6436 2174 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2175
2176 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2177 fromval = value_cast (type, fromval);
14f9c5c9 2178
52ce6436 2179 read_memory (to_addr, buffer, len);
aced2898
PH
2180 from_size = value_bitsize (fromval);
2181 if (from_size == 0)
2182 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2183 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2184 move_bits (buffer, value_bitpos (toval),
aced2898 2185 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2186 else
0fd88904 2187 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2188 0, bits);
52ce6436
PH
2189 write_memory (to_addr, buffer, len);
2190 if (deprecated_memory_changed_hook)
2191 deprecated_memory_changed_hook (to_addr, len);
2192
14f9c5c9 2193 val = value_copy (toval);
0fd88904 2194 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2195 TYPE_LENGTH (type));
04624583 2196 deprecated_set_value_type (val, type);
d2e4a39e 2197
14f9c5c9
AS
2198 return val;
2199 }
2200
2201 return value_assign (toval, fromval);
2202}
2203
2204
52ce6436
PH
2205/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2206 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2207 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2208 * COMPONENT, and not the inferior's memory. The current contents
2209 * of COMPONENT are ignored. */
2210static void
2211value_assign_to_component (struct value *container, struct value *component,
2212 struct value *val)
2213{
2214 LONGEST offset_in_container =
2215 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2216 - VALUE_ADDRESS (container) - value_offset (container));
2217 int bit_offset_in_container =
2218 value_bitpos (component) - value_bitpos (container);
2219 int bits;
2220
2221 val = value_cast (value_type (component), val);
2222
2223 if (value_bitsize (component) == 0)
2224 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2225 else
2226 bits = value_bitsize (component);
2227
32c9a795 2228 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2229 move_bits (value_contents_writeable (container) + offset_in_container,
2230 value_bitpos (container) + bit_offset_in_container,
2231 value_contents (val),
2232 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2233 bits);
2234 else
2235 move_bits (value_contents_writeable (container) + offset_in_container,
2236 value_bitpos (container) + bit_offset_in_container,
2237 value_contents (val), 0, bits);
2238}
2239
4c4b4cd2
PH
2240/* The value of the element of array ARR at the ARITY indices given in IND.
2241 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2242 thereto. */
2243
d2e4a39e
AS
2244struct value *
2245ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2246{
2247 int k;
d2e4a39e
AS
2248 struct value *elt;
2249 struct type *elt_type;
14f9c5c9
AS
2250
2251 elt = ada_coerce_to_simple_array (arr);
2252
df407dfe 2253 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2254 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2255 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2256 return value_subscript_packed (elt, arity, ind);
2257
2258 for (k = 0; k < arity; k += 1)
2259 {
2260 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2261 error (_("too many subscripts (%d expected)"), k);
3cb382c9 2262 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
14f9c5c9
AS
2263 }
2264 return elt;
2265}
2266
2267/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2268 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2269 IND. Does not read the entire array into memory. */
14f9c5c9 2270
2c0b251b 2271static struct value *
d2e4a39e 2272ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2273 struct value **ind)
14f9c5c9
AS
2274{
2275 int k;
2276
2277 for (k = 0; k < arity; k += 1)
2278 {
2279 LONGEST lwb, upb;
d2e4a39e 2280 struct value *idx;
14f9c5c9
AS
2281
2282 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2283 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2284 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2285 value_copy (arr));
14f9c5c9 2286 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
3cb382c9 2287 idx = value_pos_atr (builtin_type_int32, ind[k]);
4c4b4cd2 2288 if (lwb != 0)
89eef114
UW
2289 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2290 BINOP_SUB);
2291
2292 arr = value_ptradd (arr, idx);
14f9c5c9
AS
2293 type = TYPE_TARGET_TYPE (type);
2294 }
2295
2296 return value_ind (arr);
2297}
2298
0b5d8877 2299/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2300 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2301 elements starting at index LOW. The lower bound of this array is LOW, as
2302 per Ada rules. */
0b5d8877 2303static struct value *
f5938064
JG
2304ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2305 int low, int high)
0b5d8877 2306{
6c038f32 2307 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2308 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2309 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2310 struct type *index_type =
2311 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2312 low, high);
6c038f32 2313 struct type *slice_type =
0b5d8877 2314 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2315 return value_at_lazy (slice_type, base);
0b5d8877
PH
2316}
2317
2318
2319static struct value *
2320ada_value_slice (struct value *array, int low, int high)
2321{
df407dfe 2322 struct type *type = value_type (array);
6c038f32 2323 struct type *index_type =
0b5d8877 2324 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2325 struct type *slice_type =
0b5d8877 2326 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2327 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2328}
2329
14f9c5c9
AS
2330/* If type is a record type in the form of a standard GNAT array
2331 descriptor, returns the number of dimensions for type. If arr is a
2332 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2333 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2334
2335int
d2e4a39e 2336ada_array_arity (struct type *type)
14f9c5c9
AS
2337{
2338 int arity;
2339
2340 if (type == NULL)
2341 return 0;
2342
2343 type = desc_base_type (type);
2344
2345 arity = 0;
d2e4a39e 2346 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2347 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2348 else
2349 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2350 {
4c4b4cd2 2351 arity += 1;
61ee279c 2352 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2353 }
d2e4a39e 2354
14f9c5c9
AS
2355 return arity;
2356}
2357
2358/* If TYPE is a record type in the form of a standard GNAT array
2359 descriptor or a simple array type, returns the element type for
2360 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2361 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2362
d2e4a39e
AS
2363struct type *
2364ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2365{
2366 type = desc_base_type (type);
2367
d2e4a39e 2368 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2369 {
2370 int k;
d2e4a39e 2371 struct type *p_array_type;
14f9c5c9
AS
2372
2373 p_array_type = desc_data_type (type);
2374
2375 k = ada_array_arity (type);
2376 if (k == 0)
4c4b4cd2 2377 return NULL;
d2e4a39e 2378
4c4b4cd2 2379 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2380 if (nindices >= 0 && k > nindices)
4c4b4cd2 2381 k = nindices;
14f9c5c9 2382 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2383 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2384 {
61ee279c 2385 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2386 k -= 1;
2387 }
14f9c5c9
AS
2388 return p_array_type;
2389 }
2390 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2391 {
2392 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2393 {
2394 type = TYPE_TARGET_TYPE (type);
2395 nindices -= 1;
2396 }
14f9c5c9
AS
2397 return type;
2398 }
2399
2400 return NULL;
2401}
2402
4c4b4cd2
PH
2403/* The type of nth index in arrays of given type (n numbering from 1).
2404 Does not examine memory. */
14f9c5c9 2405
d2e4a39e
AS
2406struct type *
2407ada_index_type (struct type *type, int n)
14f9c5c9 2408{
4c4b4cd2
PH
2409 struct type *result_type;
2410
14f9c5c9
AS
2411 type = desc_base_type (type);
2412
2413 if (n > ada_array_arity (type))
2414 return NULL;
2415
4c4b4cd2 2416 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2417 {
2418 int i;
2419
2420 for (i = 1; i < n; i += 1)
4c4b4cd2 2421 type = TYPE_TARGET_TYPE (type);
262452ec 2422 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2423 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2424 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2425 perhaps stabsread.c would make more sense. */
2426 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
6d84d3d8 2427 result_type = builtin_type_int32;
14f9c5c9 2428
4c4b4cd2 2429 return result_type;
14f9c5c9 2430 }
d2e4a39e 2431 else
14f9c5c9
AS
2432 return desc_index_type (desc_bounds_type (type), n);
2433}
2434
2435/* Given that arr is an array type, returns the lower bound of the
2436 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2437 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2438 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2439 bounds type. It works for other arrays with bounds supplied by
2440 run-time quantities other than discriminants. */
14f9c5c9 2441
abb68b3e 2442static LONGEST
d2e4a39e 2443ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2444 struct type ** typep)
14f9c5c9 2445{
262452ec
JK
2446 struct type *type, *index_type_desc, *index_type;
2447 LONGEST retval;
2448
2449 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2450
2451 if (ada_is_packed_array_type (arr_type))
2452 arr_type = decode_packed_array_type (arr_type);
2453
4c4b4cd2 2454 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2455 {
2456 if (typep != NULL)
6d84d3d8 2457 *typep = builtin_type_int32;
d2e4a39e 2458 return (LONGEST) - which;
14f9c5c9
AS
2459 }
2460
2461 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2462 type = TYPE_TARGET_TYPE (arr_type);
2463 else
2464 type = arr_type;
2465
2466 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2467 if (index_type_desc != NULL)
2468 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2469 NULL, TYPE_OBJFILE (arr_type));
2470 else
14f9c5c9 2471 {
d2e4a39e 2472 while (n > 1)
4c4b4cd2
PH
2473 {
2474 type = TYPE_TARGET_TYPE (type);
2475 n -= 1;
2476 }
14f9c5c9 2477
abb68b3e 2478 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2479 }
262452ec
JK
2480
2481 switch (TYPE_CODE (index_type))
14f9c5c9 2482 {
262452ec
JK
2483 case TYPE_CODE_RANGE:
2484 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2485 : TYPE_HIGH_BOUND (index_type);
2486 break;
2487 case TYPE_CODE_ENUM:
2488 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2489 : TYPE_FIELD_BITPOS (index_type,
2490 TYPE_NFIELDS (index_type) - 1);
2491 break;
2492 default:
2493 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2494 }
abb68b3e 2495
262452ec
JK
2496 if (typep != NULL)
2497 *typep = index_type;
abb68b3e 2498
262452ec 2499 return retval;
14f9c5c9
AS
2500}
2501
2502/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2505 supplied by run-time quantities other than discriminants. */
14f9c5c9 2506
d2e4a39e 2507struct value *
4dc81987 2508ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2509{
df407dfe 2510 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2511
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2514 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2515 {
d2e4a39e 2516 struct type *type;
14f9c5c9
AS
2517 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2518 return value_from_longest (type, v);
2519 }
2520 else
2521 return desc_one_bound (desc_bounds (arr), n, which);
2522}
2523
2524/* Given that arr is an array value, returns the length of the
2525 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2526 supplied by run-time quantities other than discriminants.
2527 Does not work for arrays indexed by enumeration types with representation
2528 clauses at the moment. */
14f9c5c9 2529
2c0b251b 2530static struct value *
d2e4a39e 2531ada_array_length (struct value *arr, int n)
14f9c5c9 2532{
df407dfe 2533 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2534
2535 if (ada_is_packed_array_type (arr_type))
2536 return ada_array_length (decode_packed_array (arr), n);
2537
4c4b4cd2 2538 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2539 {
d2e4a39e 2540 struct type *type;
14f9c5c9 2541 LONGEST v =
4c4b4cd2
PH
2542 ada_array_bound_from_type (arr_type, n, 1, &type) -
2543 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2544 return value_from_longest (type, v);
2545 }
2546 else
d2e4a39e 2547 return
030b4912 2548 value_from_longest (builtin_type_int32,
4c4b4cd2
PH
2549 value_as_long (desc_one_bound (desc_bounds (arr),
2550 n, 1))
2551 - value_as_long (desc_one_bound (desc_bounds (arr),
2552 n, 0)) + 1);
2553}
2554
2555/* An empty array whose type is that of ARR_TYPE (an array type),
2556 with bounds LOW to LOW-1. */
2557
2558static struct value *
2559empty_array (struct type *arr_type, int low)
2560{
6c038f32 2561 struct type *index_type =
0b5d8877
PH
2562 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2563 low, low - 1);
2564 struct type *elt_type = ada_array_element_type (arr_type, 1);
2565 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2566}
14f9c5c9 2567\f
d2e4a39e 2568
4c4b4cd2 2569 /* Name resolution */
14f9c5c9 2570
4c4b4cd2
PH
2571/* The "decoded" name for the user-definable Ada operator corresponding
2572 to OP. */
14f9c5c9 2573
d2e4a39e 2574static const char *
4c4b4cd2 2575ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2576{
2577 int i;
2578
4c4b4cd2 2579 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2580 {
2581 if (ada_opname_table[i].op == op)
4c4b4cd2 2582 return ada_opname_table[i].decoded;
14f9c5c9 2583 }
323e0a4a 2584 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2585}
2586
2587
4c4b4cd2
PH
2588/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2589 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2590 undefined namespace) and converts operators that are
2591 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2592 non-null, it provides a preferred result type [at the moment, only
2593 type void has any effect---causing procedures to be preferred over
2594 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2595 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2596
4c4b4cd2
PH
2597static void
2598resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2599{
2600 int pc;
2601 pc = 0;
4c4b4cd2 2602 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2603}
2604
4c4b4cd2
PH
2605/* Resolve the operator of the subexpression beginning at
2606 position *POS of *EXPP. "Resolving" consists of replacing
2607 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2608 with their resolutions, replacing built-in operators with
2609 function calls to user-defined operators, where appropriate, and,
2610 when DEPROCEDURE_P is non-zero, converting function-valued variables
2611 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2612 are as in ada_resolve, above. */
14f9c5c9 2613
d2e4a39e 2614static struct value *
4c4b4cd2 2615resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2616 struct type *context_type)
14f9c5c9
AS
2617{
2618 int pc = *pos;
2619 int i;
4c4b4cd2 2620 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2621 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2622 struct value **argvec; /* Vector of operand types (alloca'ed). */
2623 int nargs; /* Number of operands. */
52ce6436 2624 int oplen;
14f9c5c9
AS
2625
2626 argvec = NULL;
2627 nargs = 0;
2628 exp = *expp;
2629
52ce6436
PH
2630 /* Pass one: resolve operands, saving their types and updating *pos,
2631 if needed. */
14f9c5c9
AS
2632 switch (op)
2633 {
4c4b4cd2
PH
2634 case OP_FUNCALL:
2635 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2636 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2637 *pos += 7;
4c4b4cd2
PH
2638 else
2639 {
2640 *pos += 3;
2641 resolve_subexp (expp, pos, 0, NULL);
2642 }
2643 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2644 break;
2645
14f9c5c9 2646 case UNOP_ADDR:
4c4b4cd2
PH
2647 *pos += 1;
2648 resolve_subexp (expp, pos, 0, NULL);
2649 break;
2650
52ce6436
PH
2651 case UNOP_QUAL:
2652 *pos += 3;
2653 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2654 break;
2655
52ce6436 2656 case OP_ATR_MODULUS:
4c4b4cd2
PH
2657 case OP_ATR_SIZE:
2658 case OP_ATR_TAG:
4c4b4cd2
PH
2659 case OP_ATR_FIRST:
2660 case OP_ATR_LAST:
2661 case OP_ATR_LENGTH:
2662 case OP_ATR_POS:
2663 case OP_ATR_VAL:
4c4b4cd2
PH
2664 case OP_ATR_MIN:
2665 case OP_ATR_MAX:
52ce6436
PH
2666 case TERNOP_IN_RANGE:
2667 case BINOP_IN_BOUNDS:
2668 case UNOP_IN_RANGE:
2669 case OP_AGGREGATE:
2670 case OP_OTHERS:
2671 case OP_CHOICES:
2672 case OP_POSITIONAL:
2673 case OP_DISCRETE_RANGE:
2674 case OP_NAME:
2675 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2676 *pos += oplen;
14f9c5c9
AS
2677 break;
2678
2679 case BINOP_ASSIGN:
2680 {
4c4b4cd2
PH
2681 struct value *arg1;
2682
2683 *pos += 1;
2684 arg1 = resolve_subexp (expp, pos, 0, NULL);
2685 if (arg1 == NULL)
2686 resolve_subexp (expp, pos, 1, NULL);
2687 else
df407dfe 2688 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2689 break;
14f9c5c9
AS
2690 }
2691
4c4b4cd2 2692 case UNOP_CAST:
4c4b4cd2
PH
2693 *pos += 3;
2694 nargs = 1;
2695 break;
14f9c5c9 2696
4c4b4cd2
PH
2697 case BINOP_ADD:
2698 case BINOP_SUB:
2699 case BINOP_MUL:
2700 case BINOP_DIV:
2701 case BINOP_REM:
2702 case BINOP_MOD:
2703 case BINOP_EXP:
2704 case BINOP_CONCAT:
2705 case BINOP_LOGICAL_AND:
2706 case BINOP_LOGICAL_OR:
2707 case BINOP_BITWISE_AND:
2708 case BINOP_BITWISE_IOR:
2709 case BINOP_BITWISE_XOR:
14f9c5c9 2710
4c4b4cd2
PH
2711 case BINOP_EQUAL:
2712 case BINOP_NOTEQUAL:
2713 case BINOP_LESS:
2714 case BINOP_GTR:
2715 case BINOP_LEQ:
2716 case BINOP_GEQ:
14f9c5c9 2717
4c4b4cd2
PH
2718 case BINOP_REPEAT:
2719 case BINOP_SUBSCRIPT:
2720 case BINOP_COMMA:
40c8aaa9
JB
2721 *pos += 1;
2722 nargs = 2;
2723 break;
14f9c5c9 2724
4c4b4cd2
PH
2725 case UNOP_NEG:
2726 case UNOP_PLUS:
2727 case UNOP_LOGICAL_NOT:
2728 case UNOP_ABS:
2729 case UNOP_IND:
2730 *pos += 1;
2731 nargs = 1;
2732 break;
14f9c5c9 2733
4c4b4cd2
PH
2734 case OP_LONG:
2735 case OP_DOUBLE:
2736 case OP_VAR_VALUE:
2737 *pos += 4;
2738 break;
14f9c5c9 2739
4c4b4cd2
PH
2740 case OP_TYPE:
2741 case OP_BOOL:
2742 case OP_LAST:
4c4b4cd2
PH
2743 case OP_INTERNALVAR:
2744 *pos += 3;
2745 break;
14f9c5c9 2746
4c4b4cd2
PH
2747 case UNOP_MEMVAL:
2748 *pos += 3;
2749 nargs = 1;
2750 break;
2751
67f3407f
DJ
2752 case OP_REGISTER:
2753 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2754 break;
2755
4c4b4cd2
PH
2756 case STRUCTOP_STRUCT:
2757 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2758 nargs = 1;
2759 break;
2760
4c4b4cd2 2761 case TERNOP_SLICE:
4c4b4cd2
PH
2762 *pos += 1;
2763 nargs = 3;
2764 break;
2765
52ce6436 2766 case OP_STRING:
14f9c5c9 2767 break;
4c4b4cd2
PH
2768
2769 default:
323e0a4a 2770 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2771 }
2772
76a01679 2773 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2774 for (i = 0; i < nargs; i += 1)
2775 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2776 argvec[i] = NULL;
2777 exp = *expp;
2778
2779 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2780 switch (op)
2781 {
2782 default:
2783 break;
2784
14f9c5c9 2785 case OP_VAR_VALUE:
4c4b4cd2 2786 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2787 {
2788 struct ada_symbol_info *candidates;
2789 int n_candidates;
2790
2791 n_candidates =
2792 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2793 (exp->elts[pc + 2].symbol),
2794 exp->elts[pc + 1].block, VAR_DOMAIN,
2795 &candidates);
2796
2797 if (n_candidates > 1)
2798 {
2799 /* Types tend to get re-introduced locally, so if there
2800 are any local symbols that are not types, first filter
2801 out all types. */
2802 int j;
2803 for (j = 0; j < n_candidates; j += 1)
2804 switch (SYMBOL_CLASS (candidates[j].sym))
2805 {
2806 case LOC_REGISTER:
2807 case LOC_ARG:
2808 case LOC_REF_ARG:
76a01679
JB
2809 case LOC_REGPARM_ADDR:
2810 case LOC_LOCAL:
76a01679 2811 case LOC_COMPUTED:
76a01679
JB
2812 goto FoundNonType;
2813 default:
2814 break;
2815 }
2816 FoundNonType:
2817 if (j < n_candidates)
2818 {
2819 j = 0;
2820 while (j < n_candidates)
2821 {
2822 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2823 {
2824 candidates[j] = candidates[n_candidates - 1];
2825 n_candidates -= 1;
2826 }
2827 else
2828 j += 1;
2829 }
2830 }
2831 }
2832
2833 if (n_candidates == 0)
323e0a4a 2834 error (_("No definition found for %s"),
76a01679
JB
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2836 else if (n_candidates == 1)
2837 i = 0;
2838 else if (deprocedure_p
2839 && !is_nonfunction (candidates, n_candidates))
2840 {
06d5cf63
JB
2841 i = ada_resolve_function
2842 (candidates, n_candidates, NULL, 0,
2843 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2844 context_type);
76a01679 2845 if (i < 0)
323e0a4a 2846 error (_("Could not find a match for %s"),
76a01679
JB
2847 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2848 }
2849 else
2850 {
323e0a4a 2851 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2852 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2853 user_select_syms (candidates, n_candidates, 1);
2854 i = 0;
2855 }
2856
2857 exp->elts[pc + 1].block = candidates[i].block;
2858 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2859 if (innermost_block == NULL
2860 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2861 innermost_block = candidates[i].block;
2862 }
2863
2864 if (deprocedure_p
2865 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2866 == TYPE_CODE_FUNC))
2867 {
2868 replace_operator_with_call (expp, pc, 0, 0,
2869 exp->elts[pc + 2].symbol,
2870 exp->elts[pc + 1].block);
2871 exp = *expp;
2872 }
14f9c5c9
AS
2873 break;
2874
2875 case OP_FUNCALL:
2876 {
4c4b4cd2 2877 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2878 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2879 {
2880 struct ada_symbol_info *candidates;
2881 int n_candidates;
2882
2883 n_candidates =
76a01679
JB
2884 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2885 (exp->elts[pc + 5].symbol),
2886 exp->elts[pc + 4].block, VAR_DOMAIN,
2887 &candidates);
4c4b4cd2
PH
2888 if (n_candidates == 1)
2889 i = 0;
2890 else
2891 {
06d5cf63
JB
2892 i = ada_resolve_function
2893 (candidates, n_candidates,
2894 argvec, nargs,
2895 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2896 context_type);
4c4b4cd2 2897 if (i < 0)
323e0a4a 2898 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2899 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2900 }
2901
2902 exp->elts[pc + 4].block = candidates[i].block;
2903 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2904 if (innermost_block == NULL
2905 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2906 innermost_block = candidates[i].block;
2907 }
14f9c5c9
AS
2908 }
2909 break;
2910 case BINOP_ADD:
2911 case BINOP_SUB:
2912 case BINOP_MUL:
2913 case BINOP_DIV:
2914 case BINOP_REM:
2915 case BINOP_MOD:
2916 case BINOP_CONCAT:
2917 case BINOP_BITWISE_AND:
2918 case BINOP_BITWISE_IOR:
2919 case BINOP_BITWISE_XOR:
2920 case BINOP_EQUAL:
2921 case BINOP_NOTEQUAL:
2922 case BINOP_LESS:
2923 case BINOP_GTR:
2924 case BINOP_LEQ:
2925 case BINOP_GEQ:
2926 case BINOP_EXP:
2927 case UNOP_NEG:
2928 case UNOP_PLUS:
2929 case UNOP_LOGICAL_NOT:
2930 case UNOP_ABS:
2931 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2932 {
2933 struct ada_symbol_info *candidates;
2934 int n_candidates;
2935
2936 n_candidates =
2937 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2938 (struct block *) NULL, VAR_DOMAIN,
2939 &candidates);
2940 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2941 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2942 if (i < 0)
2943 break;
2944
76a01679
JB
2945 replace_operator_with_call (expp, pc, nargs, 1,
2946 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2947 exp = *expp;
2948 }
14f9c5c9 2949 break;
4c4b4cd2
PH
2950
2951 case OP_TYPE:
b3dbf008 2952 case OP_REGISTER:
4c4b4cd2 2953 return NULL;
14f9c5c9
AS
2954 }
2955
2956 *pos = pc;
2957 return evaluate_subexp_type (exp, pos);
2958}
2959
2960/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2961 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2962 a non-pointer. A type of 'void' (which is never a valid expression type)
2963 by convention matches anything. */
14f9c5c9 2964/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2965 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2966
2967static int
4dc81987 2968ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2969{
61ee279c
PH
2970 ftype = ada_check_typedef (ftype);
2971 atype = ada_check_typedef (atype);
14f9c5c9
AS
2972
2973 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2974 ftype = TYPE_TARGET_TYPE (ftype);
2975 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2976 atype = TYPE_TARGET_TYPE (atype);
2977
d2e4a39e 2978 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2979 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2980 return 1;
2981
d2e4a39e 2982 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2983 {
2984 default:
2985 return 1;
2986 case TYPE_CODE_PTR:
2987 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2988 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2989 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2990 else
1265e4aa
JB
2991 return (may_deref
2992 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
2993 case TYPE_CODE_INT:
2994 case TYPE_CODE_ENUM:
2995 case TYPE_CODE_RANGE:
2996 switch (TYPE_CODE (atype))
4c4b4cd2
PH
2997 {
2998 case TYPE_CODE_INT:
2999 case TYPE_CODE_ENUM:
3000 case TYPE_CODE_RANGE:
3001 return 1;
3002 default:
3003 return 0;
3004 }
14f9c5c9
AS
3005
3006 case TYPE_CODE_ARRAY:
d2e4a39e 3007 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3008 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3009
3010 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3011 if (ada_is_array_descriptor_type (ftype))
3012 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3013 || ada_is_array_descriptor_type (atype));
14f9c5c9 3014 else
4c4b4cd2
PH
3015 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3016 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3017
3018 case TYPE_CODE_UNION:
3019 case TYPE_CODE_FLT:
3020 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3021 }
3022}
3023
3024/* Return non-zero if the formals of FUNC "sufficiently match" the
3025 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3026 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3027 argument function. */
14f9c5c9
AS
3028
3029static int
d2e4a39e 3030ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3031{
3032 int i;
d2e4a39e 3033 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3034
1265e4aa
JB
3035 if (SYMBOL_CLASS (func) == LOC_CONST
3036 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3037 return (n_actuals == 0);
3038 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3039 return 0;
3040
3041 if (TYPE_NFIELDS (func_type) != n_actuals)
3042 return 0;
3043
3044 for (i = 0; i < n_actuals; i += 1)
3045 {
4c4b4cd2 3046 if (actuals[i] == NULL)
76a01679
JB
3047 return 0;
3048 else
3049 {
61ee279c 3050 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3051 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3052
76a01679
JB
3053 if (!ada_type_match (ftype, atype, 1))
3054 return 0;
3055 }
14f9c5c9
AS
3056 }
3057 return 1;
3058}
3059
3060/* False iff function type FUNC_TYPE definitely does not produce a value
3061 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3062 FUNC_TYPE is not a valid function type with a non-null return type
3063 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3064
3065static int
d2e4a39e 3066return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3067{
d2e4a39e 3068 struct type *return_type;
14f9c5c9
AS
3069
3070 if (func_type == NULL)
3071 return 1;
3072
4c4b4cd2
PH
3073 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3074 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3075 else
3076 return_type = base_type (func_type);
14f9c5c9
AS
3077 if (return_type == NULL)
3078 return 1;
3079
4c4b4cd2 3080 context_type = base_type (context_type);
14f9c5c9
AS
3081
3082 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3083 return context_type == NULL || return_type == context_type;
3084 else if (context_type == NULL)
3085 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3086 else
3087 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3088}
3089
3090
4c4b4cd2 3091/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3092 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3093 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3094 that returns that type, then eliminate matches that don't. If
3095 CONTEXT_TYPE is void and there is at least one match that does not
3096 return void, eliminate all matches that do.
3097
14f9c5c9
AS
3098 Asks the user if there is more than one match remaining. Returns -1
3099 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3100 solely for messages. May re-arrange and modify SYMS in
3101 the process; the index returned is for the modified vector. */
14f9c5c9 3102
4c4b4cd2
PH
3103static int
3104ada_resolve_function (struct ada_symbol_info syms[],
3105 int nsyms, struct value **args, int nargs,
3106 const char *name, struct type *context_type)
14f9c5c9
AS
3107{
3108 int k;
4c4b4cd2 3109 int m; /* Number of hits */
d2e4a39e
AS
3110 struct type *fallback;
3111 struct type *return_type;
14f9c5c9
AS
3112
3113 return_type = context_type;
3114 if (context_type == NULL)
3115 fallback = builtin_type_void;
3116 else
3117 fallback = NULL;
3118
d2e4a39e 3119 m = 0;
14f9c5c9
AS
3120 while (1)
3121 {
3122 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3123 {
61ee279c 3124 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3125
3126 if (ada_args_match (syms[k].sym, args, nargs)
3127 && return_match (type, return_type))
3128 {
3129 syms[m] = syms[k];
3130 m += 1;
3131 }
3132 }
14f9c5c9 3133 if (m > 0 || return_type == fallback)
4c4b4cd2 3134 break;
14f9c5c9 3135 else
4c4b4cd2 3136 return_type = fallback;
14f9c5c9
AS
3137 }
3138
3139 if (m == 0)
3140 return -1;
3141 else if (m > 1)
3142 {
323e0a4a 3143 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3144 user_select_syms (syms, m, 1);
14f9c5c9
AS
3145 return 0;
3146 }
3147 return 0;
3148}
3149
4c4b4cd2
PH
3150/* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
3155
14f9c5c9 3156static int
4c4b4cd2 3157encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3158{
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
d2e4a39e 3166 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3167 ;
d2e4a39e 3168 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3169 ;
d2e4a39e 3170 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3171 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3172 {
3173 int n0, n1;
3174 n0 = k0;
3175 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3176 n0 -= 1;
3177 n1 = k1;
3178 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3179 n1 -= 1;
3180 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3181 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3182 }
14f9c5c9
AS
3183 return (strcmp (N0, N1) < 0);
3184 }
3185}
d2e4a39e 3186
4c4b4cd2
PH
3187/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3188 encoded names. */
3189
d2e4a39e 3190static void
4c4b4cd2 3191sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3192{
4c4b4cd2 3193 int i;
d2e4a39e 3194 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3195 {
4c4b4cd2 3196 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3197 int j;
3198
d2e4a39e 3199 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3200 {
3201 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3202 SYMBOL_LINKAGE_NAME (sym.sym)))
3203 break;
3204 syms[j + 1] = syms[j];
3205 }
d2e4a39e 3206 syms[j + 1] = sym;
14f9c5c9
AS
3207 }
3208}
3209
4c4b4cd2
PH
3210/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3211 by asking the user (if necessary), returning the number selected,
3212 and setting the first elements of SYMS items. Error if no symbols
3213 selected. */
14f9c5c9
AS
3214
3215/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3216 to be re-integrated one of these days. */
14f9c5c9
AS
3217
3218int
4c4b4cd2 3219user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3220{
3221 int i;
d2e4a39e 3222 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3223 int n_chosen;
3224 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3225 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3226
3227 if (max_results < 1)
323e0a4a 3228 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3229 if (nsyms <= 1)
3230 return nsyms;
3231
717d2f5a
JB
3232 if (select_mode == multiple_symbols_cancel)
3233 error (_("\
3234canceled because the command is ambiguous\n\
3235See set/show multiple-symbol."));
3236
3237 /* If select_mode is "all", then return all possible symbols.
3238 Only do that if more than one symbol can be selected, of course.
3239 Otherwise, display the menu as usual. */
3240 if (select_mode == multiple_symbols_all && max_results > 1)
3241 return nsyms;
3242
323e0a4a 3243 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3244 if (max_results > 1)
323e0a4a 3245 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3246
4c4b4cd2 3247 sort_choices (syms, nsyms);
14f9c5c9
AS
3248
3249 for (i = 0; i < nsyms; i += 1)
3250 {
4c4b4cd2
PH
3251 if (syms[i].sym == NULL)
3252 continue;
3253
3254 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3255 {
76a01679
JB
3256 struct symtab_and_line sal =
3257 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3258 if (sal.symtab == NULL)
3259 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3260 i + first_choice,
3261 SYMBOL_PRINT_NAME (syms[i].sym),
3262 sal.line);
3263 else
3264 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3265 SYMBOL_PRINT_NAME (syms[i].sym),
3266 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3267 continue;
3268 }
d2e4a39e 3269 else
4c4b4cd2
PH
3270 {
3271 int is_enumeral =
3272 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3273 && SYMBOL_TYPE (syms[i].sym) != NULL
3274 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3275 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3276
3277 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3278 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3279 i + first_choice,
3280 SYMBOL_PRINT_NAME (syms[i].sym),
3281 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3282 else if (is_enumeral
3283 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3284 {
a3f17187 3285 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3286 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3287 gdb_stdout, -1, 0);
323e0a4a 3288 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3289 SYMBOL_PRINT_NAME (syms[i].sym));
3290 }
3291 else if (symtab != NULL)
3292 printf_unfiltered (is_enumeral
323e0a4a
AC
3293 ? _("[%d] %s in %s (enumeral)\n")
3294 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3295 i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 symtab->filename);
3298 else
3299 printf_unfiltered (is_enumeral
323e0a4a
AC
3300 ? _("[%d] %s (enumeral)\n")
3301 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3302 i + first_choice,
3303 SYMBOL_PRINT_NAME (syms[i].sym));
3304 }
14f9c5c9 3305 }
d2e4a39e 3306
14f9c5c9 3307 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3308 "overload-choice");
14f9c5c9
AS
3309
3310 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3311 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3312
3313 return n_chosen;
3314}
3315
3316/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3317 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3318 order in CHOICES[0 .. N-1], and return N.
3319
3320 The user types choices as a sequence of numbers on one line
3321 separated by blanks, encoding them as follows:
3322
4c4b4cd2 3323 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3324 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3325 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3326
4c4b4cd2 3327 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3328
3329 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3330 prompts (for use with the -f switch). */
14f9c5c9
AS
3331
3332int
d2e4a39e 3333get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3334 int is_all_choice, char *annotation_suffix)
14f9c5c9 3335{
d2e4a39e 3336 char *args;
0bcd0149 3337 char *prompt;
14f9c5c9
AS
3338 int n_chosen;
3339 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3340
14f9c5c9
AS
3341 prompt = getenv ("PS2");
3342 if (prompt == NULL)
0bcd0149 3343 prompt = "> ";
14f9c5c9 3344
0bcd0149 3345 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3346
14f9c5c9 3347 if (args == NULL)
323e0a4a 3348 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3349
3350 n_chosen = 0;
76a01679 3351
4c4b4cd2
PH
3352 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3353 order, as given in args. Choices are validated. */
14f9c5c9
AS
3354 while (1)
3355 {
d2e4a39e 3356 char *args2;
14f9c5c9
AS
3357 int choice, j;
3358
3359 while (isspace (*args))
4c4b4cd2 3360 args += 1;
14f9c5c9 3361 if (*args == '\0' && n_chosen == 0)
323e0a4a 3362 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3363 else if (*args == '\0')
4c4b4cd2 3364 break;
14f9c5c9
AS
3365
3366 choice = strtol (args, &args2, 10);
d2e4a39e 3367 if (args == args2 || choice < 0
4c4b4cd2 3368 || choice > n_choices + first_choice - 1)
323e0a4a 3369 error (_("Argument must be choice number"));
14f9c5c9
AS
3370 args = args2;
3371
d2e4a39e 3372 if (choice == 0)
323e0a4a 3373 error (_("cancelled"));
14f9c5c9
AS
3374
3375 if (choice < first_choice)
4c4b4cd2
PH
3376 {
3377 n_chosen = n_choices;
3378 for (j = 0; j < n_choices; j += 1)
3379 choices[j] = j;
3380 break;
3381 }
14f9c5c9
AS
3382 choice -= first_choice;
3383
d2e4a39e 3384 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3385 {
3386 }
14f9c5c9
AS
3387
3388 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3389 {
3390 int k;
3391 for (k = n_chosen - 1; k > j; k -= 1)
3392 choices[k + 1] = choices[k];
3393 choices[j + 1] = choice;
3394 n_chosen += 1;
3395 }
14f9c5c9
AS
3396 }
3397
3398 if (n_chosen > max_results)
323e0a4a 3399 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3400
14f9c5c9
AS
3401 return n_chosen;
3402}
3403
4c4b4cd2
PH
3404/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3405 on the function identified by SYM and BLOCK, and taking NARGS
3406 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3407
3408static void
d2e4a39e 3409replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3410 int oplen, struct symbol *sym,
3411 struct block *block)
14f9c5c9
AS
3412{
3413 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3414 symbol, -oplen for operator being replaced). */
d2e4a39e 3415 struct expression *newexp = (struct expression *)
14f9c5c9 3416 xmalloc (sizeof (struct expression)
4c4b4cd2 3417 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3418 struct expression *exp = *expp;
14f9c5c9
AS
3419
3420 newexp->nelts = exp->nelts + 7 - oplen;
3421 newexp->language_defn = exp->language_defn;
3422 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3423 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3424 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3425
3426 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3427 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3428
3429 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3430 newexp->elts[pc + 4].block = block;
3431 newexp->elts[pc + 5].symbol = sym;
3432
3433 *expp = newexp;
aacb1f0a 3434 xfree (exp);
d2e4a39e 3435}
14f9c5c9
AS
3436
3437/* Type-class predicates */
3438
4c4b4cd2
PH
3439/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3440 or FLOAT). */
14f9c5c9
AS
3441
3442static int
d2e4a39e 3443numeric_type_p (struct type *type)
14f9c5c9
AS
3444{
3445 if (type == NULL)
3446 return 0;
d2e4a39e
AS
3447 else
3448 {
3449 switch (TYPE_CODE (type))
4c4b4cd2
PH
3450 {
3451 case TYPE_CODE_INT:
3452 case TYPE_CODE_FLT:
3453 return 1;
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3457 default:
3458 return 0;
3459 }
d2e4a39e 3460 }
14f9c5c9
AS
3461}
3462
4c4b4cd2 3463/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3464
3465static int
d2e4a39e 3466integer_type_p (struct type *type)
14f9c5c9
AS
3467{
3468 if (type == NULL)
3469 return 0;
d2e4a39e
AS
3470 else
3471 {
3472 switch (TYPE_CODE (type))
4c4b4cd2
PH
3473 {
3474 case TYPE_CODE_INT:
3475 return 1;
3476 case TYPE_CODE_RANGE:
3477 return (type == TYPE_TARGET_TYPE (type)
3478 || integer_type_p (TYPE_TARGET_TYPE (type)));
3479 default:
3480 return 0;
3481 }
d2e4a39e 3482 }
14f9c5c9
AS
3483}
3484
4c4b4cd2 3485/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3486
3487static int
d2e4a39e 3488scalar_type_p (struct type *type)
14f9c5c9
AS
3489{
3490 if (type == NULL)
3491 return 0;
d2e4a39e
AS
3492 else
3493 {
3494 switch (TYPE_CODE (type))
4c4b4cd2
PH
3495 {
3496 case TYPE_CODE_INT:
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3499 case TYPE_CODE_FLT:
3500 return 1;
3501 default:
3502 return 0;
3503 }
d2e4a39e 3504 }
14f9c5c9
AS
3505}
3506
4c4b4cd2 3507/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3508
3509static int
d2e4a39e 3510discrete_type_p (struct type *type)
14f9c5c9
AS
3511{
3512 if (type == NULL)
3513 return 0;
d2e4a39e
AS
3514 else
3515 {
3516 switch (TYPE_CODE (type))
4c4b4cd2
PH
3517 {
3518 case TYPE_CODE_INT:
3519 case TYPE_CODE_RANGE:
3520 case TYPE_CODE_ENUM:
3521 return 1;
3522 default:
3523 return 0;
3524 }
d2e4a39e 3525 }
14f9c5c9
AS
3526}
3527
4c4b4cd2
PH
3528/* Returns non-zero if OP with operands in the vector ARGS could be
3529 a user-defined function. Errs on the side of pre-defined operators
3530 (i.e., result 0). */
14f9c5c9
AS
3531
3532static int
d2e4a39e 3533possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3534{
76a01679 3535 struct type *type0 =
df407dfe 3536 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3537 struct type *type1 =
df407dfe 3538 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3539
4c4b4cd2
PH
3540 if (type0 == NULL)
3541 return 0;
3542
14f9c5c9
AS
3543 switch (op)
3544 {
3545 default:
3546 return 0;
3547
3548 case BINOP_ADD:
3549 case BINOP_SUB:
3550 case BINOP_MUL:
3551 case BINOP_DIV:
d2e4a39e 3552 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3553
3554 case BINOP_REM:
3555 case BINOP_MOD:
3556 case BINOP_BITWISE_AND:
3557 case BINOP_BITWISE_IOR:
3558 case BINOP_BITWISE_XOR:
d2e4a39e 3559 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3560
3561 case BINOP_EQUAL:
3562 case BINOP_NOTEQUAL:
3563 case BINOP_LESS:
3564 case BINOP_GTR:
3565 case BINOP_LEQ:
3566 case BINOP_GEQ:
d2e4a39e 3567 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3568
3569 case BINOP_CONCAT:
ee90b9ab 3570 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3571
3572 case BINOP_EXP:
d2e4a39e 3573 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3574
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3578 case UNOP_ABS:
3579 return (!numeric_type_p (type0));
14f9c5c9
AS
3580
3581 }
3582}
3583\f
4c4b4cd2 3584 /* Renaming */
14f9c5c9 3585
aeb5907d
JB
3586/* NOTES:
3587
3588 1. In the following, we assume that a renaming type's name may
3589 have an ___XD suffix. It would be nice if this went away at some
3590 point.
3591 2. We handle both the (old) purely type-based representation of
3592 renamings and the (new) variable-based encoding. At some point,
3593 it is devoutly to be hoped that the former goes away
3594 (FIXME: hilfinger-2007-07-09).
3595 3. Subprogram renamings are not implemented, although the XRS
3596 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3597
3598/* If SYM encodes a renaming,
3599
3600 <renaming> renames <renamed entity>,
3601
3602 sets *LEN to the length of the renamed entity's name,
3603 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3604 the string describing the subcomponent selected from the renamed
3605 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3606 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3607 are undefined). Otherwise, returns a value indicating the category
3608 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3609 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3610 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3611 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3612 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3613 may be NULL, in which case they are not assigned.
3614
3615 [Currently, however, GCC does not generate subprogram renamings.] */
3616
3617enum ada_renaming_category
3618ada_parse_renaming (struct symbol *sym,
3619 const char **renamed_entity, int *len,
3620 const char **renaming_expr)
3621{
3622 enum ada_renaming_category kind;
3623 const char *info;
3624 const char *suffix;
3625
3626 if (sym == NULL)
3627 return ADA_NOT_RENAMING;
3628 switch (SYMBOL_CLASS (sym))
14f9c5c9 3629 {
aeb5907d
JB
3630 default:
3631 return ADA_NOT_RENAMING;
3632 case LOC_TYPEDEF:
3633 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3634 renamed_entity, len, renaming_expr);
3635 case LOC_LOCAL:
3636 case LOC_STATIC:
3637 case LOC_COMPUTED:
3638 case LOC_OPTIMIZED_OUT:
3639 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3640 if (info == NULL)
3641 return ADA_NOT_RENAMING;
3642 switch (info[5])
3643 {
3644 case '_':
3645 kind = ADA_OBJECT_RENAMING;
3646 info += 6;
3647 break;
3648 case 'E':
3649 kind = ADA_EXCEPTION_RENAMING;
3650 info += 7;
3651 break;
3652 case 'P':
3653 kind = ADA_PACKAGE_RENAMING;
3654 info += 7;
3655 break;
3656 case 'S':
3657 kind = ADA_SUBPROGRAM_RENAMING;
3658 info += 7;
3659 break;
3660 default:
3661 return ADA_NOT_RENAMING;
3662 }
14f9c5c9 3663 }
4c4b4cd2 3664
aeb5907d
JB
3665 if (renamed_entity != NULL)
3666 *renamed_entity = info;
3667 suffix = strstr (info, "___XE");
3668 if (suffix == NULL || suffix == info)
3669 return ADA_NOT_RENAMING;
3670 if (len != NULL)
3671 *len = strlen (info) - strlen (suffix);
3672 suffix += 5;
3673 if (renaming_expr != NULL)
3674 *renaming_expr = suffix;
3675 return kind;
3676}
3677
3678/* Assuming TYPE encodes a renaming according to the old encoding in
3679 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3680 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3681 ADA_NOT_RENAMING otherwise. */
3682static enum ada_renaming_category
3683parse_old_style_renaming (struct type *type,
3684 const char **renamed_entity, int *len,
3685 const char **renaming_expr)
3686{
3687 enum ada_renaming_category kind;
3688 const char *name;
3689 const char *info;
3690 const char *suffix;
14f9c5c9 3691
aeb5907d
JB
3692 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3693 || TYPE_NFIELDS (type) != 1)
3694 return ADA_NOT_RENAMING;
14f9c5c9 3695
aeb5907d
JB
3696 name = type_name_no_tag (type);
3697 if (name == NULL)
3698 return ADA_NOT_RENAMING;
3699
3700 name = strstr (name, "___XR");
3701 if (name == NULL)
3702 return ADA_NOT_RENAMING;
3703 switch (name[5])
3704 {
3705 case '\0':
3706 case '_':
3707 kind = ADA_OBJECT_RENAMING;
3708 break;
3709 case 'E':
3710 kind = ADA_EXCEPTION_RENAMING;
3711 break;
3712 case 'P':
3713 kind = ADA_PACKAGE_RENAMING;
3714 break;
3715 case 'S':
3716 kind = ADA_SUBPROGRAM_RENAMING;
3717 break;
3718 default:
3719 return ADA_NOT_RENAMING;
3720 }
14f9c5c9 3721
aeb5907d
JB
3722 info = TYPE_FIELD_NAME (type, 0);
3723 if (info == NULL)
3724 return ADA_NOT_RENAMING;
3725 if (renamed_entity != NULL)
3726 *renamed_entity = info;
3727 suffix = strstr (info, "___XE");
3728 if (renaming_expr != NULL)
3729 *renaming_expr = suffix + 5;
3730 if (suffix == NULL || suffix == info)
3731 return ADA_NOT_RENAMING;
3732 if (len != NULL)
3733 *len = suffix - info;
3734 return kind;
3735}
52ce6436 3736
14f9c5c9 3737\f
d2e4a39e 3738
4c4b4cd2 3739 /* Evaluation: Function Calls */
14f9c5c9 3740
4c4b4cd2
PH
3741/* Return an lvalue containing the value VAL. This is the identity on
3742 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3743 on the stack, using and updating *SP as the stack pointer, and
3744 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3745
d2e4a39e 3746static struct value *
4c4b4cd2 3747ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3748{
c3e5cd34
PH
3749 if (! VALUE_LVAL (val))
3750 {
df407dfe 3751 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3752
3753 /* The following is taken from the structure-return code in
3754 call_function_by_hand. FIXME: Therefore, some refactoring seems
3755 indicated. */
4d1e7dd1 3756 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3757 {
3758 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3759 reserving sufficient space. */
3760 *sp -= len;
3761 if (gdbarch_frame_align_p (current_gdbarch))
3762 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3763 VALUE_ADDRESS (val) = *sp;
3764 }
3765 else
3766 {
3767 /* Stack grows upward. Align the frame, allocate space, and
3768 then again, re-align the frame. */
3769 if (gdbarch_frame_align_p (current_gdbarch))
3770 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3771 VALUE_ADDRESS (val) = *sp;
3772 *sp += len;
3773 if (gdbarch_frame_align_p (current_gdbarch))
3774 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3775 }
a84a8a0d 3776 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3777
990a07ab 3778 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3779 }
14f9c5c9
AS
3780
3781 return val;
3782}
3783
3784/* Return the value ACTUAL, converted to be an appropriate value for a
3785 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3786 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3787 values not residing in memory, updating it as needed. */
14f9c5c9 3788
a93c0eb6
JB
3789struct value *
3790ada_convert_actual (struct value *actual, struct type *formal_type0,
3791 CORE_ADDR *sp)
14f9c5c9 3792{
df407dfe 3793 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3794 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3795 struct type *formal_target =
3796 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3797 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3798 struct type *actual_target =
3799 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3800 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3801
4c4b4cd2 3802 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3803 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3804 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3805 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3806 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3807 {
a84a8a0d 3808 struct value *result;
14f9c5c9 3809 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3810 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3811 result = desc_data (actual);
14f9c5c9 3812 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3813 {
3814 if (VALUE_LVAL (actual) != lval_memory)
3815 {
3816 struct value *val;
df407dfe 3817 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3818 val = allocate_value (actual_type);
990a07ab 3819 memcpy ((char *) value_contents_raw (val),
0fd88904 3820 (char *) value_contents (actual),
4c4b4cd2
PH
3821 TYPE_LENGTH (actual_type));
3822 actual = ensure_lval (val, sp);
3823 }
a84a8a0d 3824 result = value_addr (actual);
4c4b4cd2 3825 }
a84a8a0d
JB
3826 else
3827 return actual;
3828 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3829 }
3830 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3831 return ada_value_ind (actual);
3832
3833 return actual;
3834}
3835
3836
4c4b4cd2
PH
3837/* Push a descriptor of type TYPE for array value ARR on the stack at
3838 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3839 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3840 to-descriptor type rather than a descriptor type), a struct value *
3841 representing a pointer to this descriptor. */
14f9c5c9 3842
d2e4a39e
AS
3843static struct value *
3844make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3845{
d2e4a39e
AS
3846 struct type *bounds_type = desc_bounds_type (type);
3847 struct type *desc_type = desc_base_type (type);
3848 struct value *descriptor = allocate_value (desc_type);
3849 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3850 int i;
d2e4a39e 3851
df407dfe 3852 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3853 {
0fd88904 3854 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3855 value_as_long (ada_array_bound (arr, i, 0)),
3856 desc_bound_bitpos (bounds_type, i, 0),
3857 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3858 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3859 value_as_long (ada_array_bound (arr, i, 1)),
3860 desc_bound_bitpos (bounds_type, i, 1),
3861 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3862 }
d2e4a39e 3863
4c4b4cd2 3864 bounds = ensure_lval (bounds, sp);
d2e4a39e 3865
0fd88904 3866 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3867 VALUE_ADDRESS (ensure_lval (arr, sp)),
3868 fat_pntr_data_bitpos (desc_type),
3869 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3870
0fd88904 3871 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3872 VALUE_ADDRESS (bounds),
3873 fat_pntr_bounds_bitpos (desc_type),
3874 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3875
4c4b4cd2 3876 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3877
3878 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3879 return value_addr (descriptor);
3880 else
3881 return descriptor;
3882}
14f9c5c9 3883\f
963a6417
PH
3884/* Dummy definitions for an experimental caching module that is not
3885 * used in the public sources. */
96d887e8 3886
96d887e8
PH
3887static int
3888lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3889 struct symbol **sym, struct block **block)
96d887e8
PH
3890{
3891 return 0;
3892}
3893
3894static void
3895cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3896 struct block *block)
96d887e8
PH
3897{
3898}
4c4b4cd2
PH
3899\f
3900 /* Symbol Lookup */
3901
3902/* Return the result of a standard (literal, C-like) lookup of NAME in
3903 given DOMAIN, visible from lexical block BLOCK. */
3904
3905static struct symbol *
3906standard_lookup (const char *name, const struct block *block,
3907 domain_enum domain)
3908{
3909 struct symbol *sym;
4c4b4cd2 3910
2570f2b7 3911 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3912 return sym;
2570f2b7
UW
3913 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3914 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3915 return sym;
3916}
3917
3918
3919/* Non-zero iff there is at least one non-function/non-enumeral symbol
3920 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3921 since they contend in overloading in the same way. */
3922static int
3923is_nonfunction (struct ada_symbol_info syms[], int n)
3924{
3925 int i;
3926
3927 for (i = 0; i < n; i += 1)
3928 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3929 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3930 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3931 return 1;
3932
3933 return 0;
3934}
3935
3936/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3937 struct types. Otherwise, they may not. */
14f9c5c9
AS
3938
3939static int
d2e4a39e 3940equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3941{
d2e4a39e 3942 if (type0 == type1)
14f9c5c9 3943 return 1;
d2e4a39e 3944 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3945 || TYPE_CODE (type0) != TYPE_CODE (type1))
3946 return 0;
d2e4a39e 3947 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3948 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3949 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3950 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3951 return 1;
d2e4a39e 3952
14f9c5c9
AS
3953 return 0;
3954}
3955
3956/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3957 no more defined than that of SYM1. */
14f9c5c9
AS
3958
3959static int
d2e4a39e 3960lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3961{
3962 if (sym0 == sym1)
3963 return 1;
176620f1 3964 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3965 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3966 return 0;
3967
d2e4a39e 3968 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3969 {
3970 case LOC_UNDEF:
3971 return 1;
3972 case LOC_TYPEDEF:
3973 {
4c4b4cd2
PH
3974 struct type *type0 = SYMBOL_TYPE (sym0);
3975 struct type *type1 = SYMBOL_TYPE (sym1);
3976 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3977 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3978 int len0 = strlen (name0);
3979 return
3980 TYPE_CODE (type0) == TYPE_CODE (type1)
3981 && (equiv_types (type0, type1)
3982 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3983 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3984 }
3985 case LOC_CONST:
3986 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3987 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3988 default:
3989 return 0;
14f9c5c9
AS
3990 }
3991}
3992
4c4b4cd2
PH
3993/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3994 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
3995
3996static void
76a01679
JB
3997add_defn_to_vec (struct obstack *obstackp,
3998 struct symbol *sym,
2570f2b7 3999 struct block *block)
14f9c5c9
AS
4000{
4001 int i;
4002 size_t tmp;
4c4b4cd2 4003 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4004
529cad9c
PH
4005 /* Do not try to complete stub types, as the debugger is probably
4006 already scanning all symbols matching a certain name at the
4007 time when this function is called. Trying to replace the stub
4008 type by its associated full type will cause us to restart a scan
4009 which may lead to an infinite recursion. Instead, the client
4010 collecting the matching symbols will end up collecting several
4011 matches, with at least one of them complete. It can then filter
4012 out the stub ones if needed. */
4013
4c4b4cd2
PH
4014 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4015 {
4016 if (lesseq_defined_than (sym, prevDefns[i].sym))
4017 return;
4018 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4019 {
4020 prevDefns[i].sym = sym;
4021 prevDefns[i].block = block;
4c4b4cd2 4022 return;
76a01679 4023 }
4c4b4cd2
PH
4024 }
4025
4026 {
4027 struct ada_symbol_info info;
4028
4029 info.sym = sym;
4030 info.block = block;
4c4b4cd2
PH
4031 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4032 }
4033}
4034
4035/* Number of ada_symbol_info structures currently collected in
4036 current vector in *OBSTACKP. */
4037
76a01679
JB
4038static int
4039num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4040{
4041 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4042}
4043
4044/* Vector of ada_symbol_info structures currently collected in current
4045 vector in *OBSTACKP. If FINISH, close off the vector and return
4046 its final address. */
4047
76a01679 4048static struct ada_symbol_info *
4c4b4cd2
PH
4049defns_collected (struct obstack *obstackp, int finish)
4050{
4051 if (finish)
4052 return obstack_finish (obstackp);
4053 else
4054 return (struct ada_symbol_info *) obstack_base (obstackp);
4055}
4056
96d887e8
PH
4057/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4058 Check the global symbols if GLOBAL, the static symbols if not.
4059 Do wild-card match if WILD. */
4c4b4cd2 4060
96d887e8
PH
4061static struct partial_symbol *
4062ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4063 int global, domain_enum namespace, int wild)
4c4b4cd2 4064{
96d887e8
PH
4065 struct partial_symbol **start;
4066 int name_len = strlen (name);
4067 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4068 int i;
4c4b4cd2 4069
96d887e8 4070 if (length == 0)
4c4b4cd2 4071 {
96d887e8 4072 return (NULL);
4c4b4cd2
PH
4073 }
4074
96d887e8
PH
4075 start = (global ?
4076 pst->objfile->global_psymbols.list + pst->globals_offset :
4077 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4078
96d887e8 4079 if (wild)
4c4b4cd2 4080 {
96d887e8
PH
4081 for (i = 0; i < length; i += 1)
4082 {
4083 struct partial_symbol *psym = start[i];
4c4b4cd2 4084
5eeb2539
AR
4085 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4086 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4087 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4088 return psym;
4089 }
4090 return NULL;
4c4b4cd2 4091 }
96d887e8
PH
4092 else
4093 {
4094 if (global)
4095 {
4096 int U;
4097 i = 0;
4098 U = length - 1;
4099 while (U - i > 4)
4100 {
4101 int M = (U + i) >> 1;
4102 struct partial_symbol *psym = start[M];
4103 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4104 i = M + 1;
4105 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4106 U = M - 1;
4107 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4108 i = M + 1;
4109 else
4110 U = M;
4111 }
4112 }
4113 else
4114 i = 0;
4c4b4cd2 4115
96d887e8
PH
4116 while (i < length)
4117 {
4118 struct partial_symbol *psym = start[i];
4c4b4cd2 4119
5eeb2539
AR
4120 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4121 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4122 {
4123 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4124
96d887e8
PH
4125 if (cmp < 0)
4126 {
4127 if (global)
4128 break;
4129 }
4130 else if (cmp == 0
4131 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4132 + name_len))
96d887e8
PH
4133 return psym;
4134 }
4135 i += 1;
4136 }
4c4b4cd2 4137
96d887e8
PH
4138 if (global)
4139 {
4140 int U;
4141 i = 0;
4142 U = length - 1;
4143 while (U - i > 4)
4144 {
4145 int M = (U + i) >> 1;
4146 struct partial_symbol *psym = start[M];
4147 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4148 i = M + 1;
4149 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4150 U = M - 1;
4151 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4152 i = M + 1;
4153 else
4154 U = M;
4155 }
4156 }
4157 else
4158 i = 0;
4c4b4cd2 4159
96d887e8
PH
4160 while (i < length)
4161 {
4162 struct partial_symbol *psym = start[i];
4c4b4cd2 4163
5eeb2539
AR
4164 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4165 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4166 {
4167 int cmp;
4c4b4cd2 4168
96d887e8
PH
4169 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4170 if (cmp == 0)
4171 {
4172 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4173 if (cmp == 0)
4174 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4175 name_len);
96d887e8 4176 }
4c4b4cd2 4177
96d887e8
PH
4178 if (cmp < 0)
4179 {
4180 if (global)
4181 break;
4182 }
4183 else if (cmp == 0
4184 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4185 + name_len + 5))
96d887e8
PH
4186 return psym;
4187 }
4188 i += 1;
4189 }
4190 }
4191 return NULL;
4c4b4cd2
PH
4192}
4193
96d887e8 4194/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4195
96d887e8
PH
4196static struct symtab *
4197symtab_for_sym (struct symbol *sym)
4c4b4cd2 4198{
96d887e8
PH
4199 struct symtab *s;
4200 struct objfile *objfile;
4201 struct block *b;
4202 struct symbol *tmp_sym;
4203 struct dict_iterator iter;
4204 int j;
4c4b4cd2 4205
11309657 4206 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4207 {
4208 switch (SYMBOL_CLASS (sym))
4209 {
4210 case LOC_CONST:
4211 case LOC_STATIC:
4212 case LOC_TYPEDEF:
4213 case LOC_REGISTER:
4214 case LOC_LABEL:
4215 case LOC_BLOCK:
4216 case LOC_CONST_BYTES:
76a01679
JB
4217 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4218 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4219 return s;
4220 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4221 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4222 return s;
96d887e8
PH
4223 break;
4224 default:
4225 break;
4226 }
4227 switch (SYMBOL_CLASS (sym))
4228 {
4229 case LOC_REGISTER:
4230 case LOC_ARG:
4231 case LOC_REF_ARG:
96d887e8
PH
4232 case LOC_REGPARM_ADDR:
4233 case LOC_LOCAL:
4234 case LOC_TYPEDEF:
96d887e8 4235 case LOC_COMPUTED:
76a01679
JB
4236 for (j = FIRST_LOCAL_BLOCK;
4237 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4238 {
4239 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4240 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4241 return s;
4242 }
4243 break;
96d887e8
PH
4244 default:
4245 break;
4246 }
4247 }
4248 return NULL;
4c4b4cd2
PH
4249}
4250
96d887e8
PH
4251/* Return a minimal symbol matching NAME according to Ada decoding
4252 rules. Returns NULL if there is no such minimal symbol. Names
4253 prefixed with "standard__" are handled specially: "standard__" is
4254 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4255
96d887e8
PH
4256struct minimal_symbol *
4257ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4258{
4c4b4cd2 4259 struct objfile *objfile;
96d887e8
PH
4260 struct minimal_symbol *msymbol;
4261 int wild_match;
4c4b4cd2 4262
96d887e8 4263 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4264 {
96d887e8 4265 name += sizeof ("standard__") - 1;
4c4b4cd2 4266 wild_match = 0;
4c4b4cd2
PH
4267 }
4268 else
96d887e8 4269 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4270
96d887e8
PH
4271 ALL_MSYMBOLS (objfile, msymbol)
4272 {
4273 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4274 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4275 return msymbol;
4276 }
4c4b4cd2 4277
96d887e8
PH
4278 return NULL;
4279}
4c4b4cd2 4280
96d887e8
PH
4281/* For all subprograms that statically enclose the subprogram of the
4282 selected frame, add symbols matching identifier NAME in DOMAIN
4283 and their blocks to the list of data in OBSTACKP, as for
4284 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4285 wildcard prefix. */
4c4b4cd2 4286
96d887e8
PH
4287static void
4288add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4289 const char *name, domain_enum namespace,
96d887e8
PH
4290 int wild_match)
4291{
96d887e8 4292}
14f9c5c9 4293
96d887e8
PH
4294/* True if TYPE is definitely an artificial type supplied to a symbol
4295 for which no debugging information was given in the symbol file. */
14f9c5c9 4296
96d887e8
PH
4297static int
4298is_nondebugging_type (struct type *type)
4299{
4300 char *name = ada_type_name (type);
4301 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4302}
4c4b4cd2 4303
96d887e8
PH
4304/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4305 duplicate other symbols in the list (The only case I know of where
4306 this happens is when object files containing stabs-in-ecoff are
4307 linked with files containing ordinary ecoff debugging symbols (or no
4308 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4309 Returns the number of items in the modified list. */
4c4b4cd2 4310
96d887e8
PH
4311static int
4312remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4313{
4314 int i, j;
4c4b4cd2 4315
96d887e8
PH
4316 i = 0;
4317 while (i < nsyms)
4318 {
339c13b6
JB
4319 int remove = 0;
4320
4321 /* If two symbols have the same name and one of them is a stub type,
4322 the get rid of the stub. */
4323
4324 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4325 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4326 {
4327 for (j = 0; j < nsyms; j++)
4328 {
4329 if (j != i
4330 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4331 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4332 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4333 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4334 remove = 1;
4335 }
4336 }
4337
4338 /* Two symbols with the same name, same class and same address
4339 should be identical. */
4340
4341 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4342 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4343 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4344 {
4345 for (j = 0; j < nsyms; j += 1)
4346 {
4347 if (i != j
4348 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4349 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4350 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4351 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4352 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4353 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4354 remove = 1;
4c4b4cd2 4355 }
4c4b4cd2 4356 }
339c13b6
JB
4357
4358 if (remove)
4359 {
4360 for (j = i + 1; j < nsyms; j += 1)
4361 syms[j - 1] = syms[j];
4362 nsyms -= 1;
4363 }
4364
96d887e8 4365 i += 1;
14f9c5c9 4366 }
96d887e8 4367 return nsyms;
14f9c5c9
AS
4368}
4369
96d887e8
PH
4370/* Given a type that corresponds to a renaming entity, use the type name
4371 to extract the scope (package name or function name, fully qualified,
4372 and following the GNAT encoding convention) where this renaming has been
4373 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4374
96d887e8
PH
4375static char *
4376xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4377{
96d887e8
PH
4378 /* The renaming types adhere to the following convention:
4379 <scope>__<rename>___<XR extension>.
4380 So, to extract the scope, we search for the "___XR" extension,
4381 and then backtrack until we find the first "__". */
76a01679 4382
96d887e8
PH
4383 const char *name = type_name_no_tag (renaming_type);
4384 char *suffix = strstr (name, "___XR");
4385 char *last;
4386 int scope_len;
4387 char *scope;
14f9c5c9 4388
96d887e8
PH
4389 /* Now, backtrack a bit until we find the first "__". Start looking
4390 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4391
96d887e8
PH
4392 for (last = suffix - 3; last > name; last--)
4393 if (last[0] == '_' && last[1] == '_')
4394 break;
76a01679 4395
96d887e8 4396 /* Make a copy of scope and return it. */
14f9c5c9 4397
96d887e8
PH
4398 scope_len = last - name;
4399 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4400
96d887e8
PH
4401 strncpy (scope, name, scope_len);
4402 scope[scope_len] = '\0';
4c4b4cd2 4403
96d887e8 4404 return scope;
4c4b4cd2
PH
4405}
4406
96d887e8 4407/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4408
96d887e8
PH
4409static int
4410is_package_name (const char *name)
4c4b4cd2 4411{
96d887e8
PH
4412 /* Here, We take advantage of the fact that no symbols are generated
4413 for packages, while symbols are generated for each function.
4414 So the condition for NAME represent a package becomes equivalent
4415 to NAME not existing in our list of symbols. There is only one
4416 small complication with library-level functions (see below). */
4c4b4cd2 4417
96d887e8 4418 char *fun_name;
76a01679 4419
96d887e8
PH
4420 /* If it is a function that has not been defined at library level,
4421 then we should be able to look it up in the symbols. */
4422 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4423 return 0;
14f9c5c9 4424
96d887e8
PH
4425 /* Library-level function names start with "_ada_". See if function
4426 "_ada_" followed by NAME can be found. */
14f9c5c9 4427
96d887e8 4428 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4429 functions names cannot contain "__" in them. */
96d887e8
PH
4430 if (strstr (name, "__") != NULL)
4431 return 0;
4c4b4cd2 4432
b435e160 4433 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4434
96d887e8
PH
4435 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4436}
14f9c5c9 4437
96d887e8 4438/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4439 not visible from FUNCTION_NAME. */
14f9c5c9 4440
96d887e8 4441static int
aeb5907d 4442old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4443{
aeb5907d
JB
4444 char *scope;
4445
4446 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4447 return 0;
4448
4449 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4450
96d887e8 4451 make_cleanup (xfree, scope);
14f9c5c9 4452
96d887e8
PH
4453 /* If the rename has been defined in a package, then it is visible. */
4454 if (is_package_name (scope))
aeb5907d 4455 return 0;
14f9c5c9 4456
96d887e8
PH
4457 /* Check that the rename is in the current function scope by checking
4458 that its name starts with SCOPE. */
76a01679 4459
96d887e8
PH
4460 /* If the function name starts with "_ada_", it means that it is
4461 a library-level function. Strip this prefix before doing the
4462 comparison, as the encoding for the renaming does not contain
4463 this prefix. */
4464 if (strncmp (function_name, "_ada_", 5) == 0)
4465 function_name += 5;
f26caa11 4466
aeb5907d 4467 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4468}
4469
aeb5907d
JB
4470/* Remove entries from SYMS that corresponds to a renaming entity that
4471 is not visible from the function associated with CURRENT_BLOCK or
4472 that is superfluous due to the presence of more specific renaming
4473 information. Places surviving symbols in the initial entries of
4474 SYMS and returns the number of surviving symbols.
96d887e8
PH
4475
4476 Rationale:
aeb5907d
JB
4477 First, in cases where an object renaming is implemented as a
4478 reference variable, GNAT may produce both the actual reference
4479 variable and the renaming encoding. In this case, we discard the
4480 latter.
4481
4482 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4483 entity. Unfortunately, STABS currently does not support the definition
4484 of types that are local to a given lexical block, so all renamings types
4485 are emitted at library level. As a consequence, if an application
4486 contains two renaming entities using the same name, and a user tries to
4487 print the value of one of these entities, the result of the ada symbol
4488 lookup will also contain the wrong renaming type.
f26caa11 4489
96d887e8
PH
4490 This function partially covers for this limitation by attempting to
4491 remove from the SYMS list renaming symbols that should be visible
4492 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4493 method with the current information available. The implementation
4494 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4495
4496 - When the user tries to print a rename in a function while there
4497 is another rename entity defined in a package: Normally, the
4498 rename in the function has precedence over the rename in the
4499 package, so the latter should be removed from the list. This is
4500 currently not the case.
4501
4502 - This function will incorrectly remove valid renames if
4503 the CURRENT_BLOCK corresponds to a function which symbol name
4504 has been changed by an "Export" pragma. As a consequence,
4505 the user will be unable to print such rename entities. */
4c4b4cd2 4506
14f9c5c9 4507static int
aeb5907d
JB
4508remove_irrelevant_renamings (struct ada_symbol_info *syms,
4509 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4510{
4511 struct symbol *current_function;
4512 char *current_function_name;
4513 int i;
aeb5907d
JB
4514 int is_new_style_renaming;
4515
4516 /* If there is both a renaming foo___XR... encoded as a variable and
4517 a simple variable foo in the same block, discard the latter.
4518 First, zero out such symbols, then compress. */
4519 is_new_style_renaming = 0;
4520 for (i = 0; i < nsyms; i += 1)
4521 {
4522 struct symbol *sym = syms[i].sym;
4523 struct block *block = syms[i].block;
4524 const char *name;
4525 const char *suffix;
4526
4527 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4528 continue;
4529 name = SYMBOL_LINKAGE_NAME (sym);
4530 suffix = strstr (name, "___XR");
4531
4532 if (suffix != NULL)
4533 {
4534 int name_len = suffix - name;
4535 int j;
4536 is_new_style_renaming = 1;
4537 for (j = 0; j < nsyms; j += 1)
4538 if (i != j && syms[j].sym != NULL
4539 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4540 name_len) == 0
4541 && block == syms[j].block)
4542 syms[j].sym = NULL;
4543 }
4544 }
4545 if (is_new_style_renaming)
4546 {
4547 int j, k;
4548
4549 for (j = k = 0; j < nsyms; j += 1)
4550 if (syms[j].sym != NULL)
4551 {
4552 syms[k] = syms[j];
4553 k += 1;
4554 }
4555 return k;
4556 }
4c4b4cd2
PH
4557
4558 /* Extract the function name associated to CURRENT_BLOCK.
4559 Abort if unable to do so. */
76a01679 4560
4c4b4cd2
PH
4561 if (current_block == NULL)
4562 return nsyms;
76a01679 4563
7f0df278 4564 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4565 if (current_function == NULL)
4566 return nsyms;
4567
4568 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4569 if (current_function_name == NULL)
4570 return nsyms;
4571
4572 /* Check each of the symbols, and remove it from the list if it is
4573 a type corresponding to a renaming that is out of the scope of
4574 the current block. */
4575
4576 i = 0;
4577 while (i < nsyms)
4578 {
aeb5907d
JB
4579 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4580 == ADA_OBJECT_RENAMING
4581 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4582 {
4583 int j;
aeb5907d 4584 for (j = i + 1; j < nsyms; j += 1)
76a01679 4585 syms[j - 1] = syms[j];
4c4b4cd2
PH
4586 nsyms -= 1;
4587 }
4588 else
4589 i += 1;
4590 }
4591
4592 return nsyms;
4593}
4594
339c13b6
JB
4595/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4596 whose name and domain match NAME and DOMAIN respectively.
4597 If no match was found, then extend the search to "enclosing"
4598 routines (in other words, if we're inside a nested function,
4599 search the symbols defined inside the enclosing functions).
4600
4601 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4602
4603static void
4604ada_add_local_symbols (struct obstack *obstackp, const char *name,
4605 struct block *block, domain_enum domain,
4606 int wild_match)
4607{
4608 int block_depth = 0;
4609
4610 while (block != NULL)
4611 {
4612 block_depth += 1;
4613 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4614
4615 /* If we found a non-function match, assume that's the one. */
4616 if (is_nonfunction (defns_collected (obstackp, 0),
4617 num_defns_collected (obstackp)))
4618 return;
4619
4620 block = BLOCK_SUPERBLOCK (block);
4621 }
4622
4623 /* If no luck so far, try to find NAME as a local symbol in some lexically
4624 enclosing subprogram. */
4625 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4626 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4627}
4628
4629/* Add to OBSTACKP all non-local symbols whose name and domain match
4630 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4631 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4632
4633static void
4634ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4635 domain_enum domain, int global,
4636 int wild_match)
4637{
4638 struct objfile *objfile;
4639 struct partial_symtab *ps;
4640
4641 ALL_PSYMTABS (objfile, ps)
4642 {
4643 QUIT;
4644 if (ps->readin
4645 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4646 {
4647 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4648 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4649
4650 if (s == NULL || !s->primary)
4651 continue;
4652 ada_add_block_symbols (obstackp,
4653 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4654 name, domain, objfile, wild_match);
4655 }
4656 }
4657}
4658
4c4b4cd2
PH
4659/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4660 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4661 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4662 indicating the symbols found and the blocks and symbol tables (if
4663 any) in which they were found. This vector are transient---good only to
4664 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4665 symbol match within the nest of blocks whose innermost member is BLOCK0,
4666 is the one match returned (no other matches in that or
4667 enclosing blocks is returned). If there are any matches in or
4668 surrounding BLOCK0, then these alone are returned. Otherwise, the
4669 search extends to global and file-scope (static) symbol tables.
4670 Names prefixed with "standard__" are handled specially: "standard__"
4671 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4672
4673int
4c4b4cd2 4674ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4675 domain_enum namespace,
4676 struct ada_symbol_info **results)
14f9c5c9
AS
4677{
4678 struct symbol *sym;
14f9c5c9 4679 struct block *block;
4c4b4cd2 4680 const char *name;
4c4b4cd2 4681 int wild_match;
14f9c5c9 4682 int cacheIfUnique;
4c4b4cd2 4683 int ndefns;
14f9c5c9 4684
4c4b4cd2
PH
4685 obstack_free (&symbol_list_obstack, NULL);
4686 obstack_init (&symbol_list_obstack);
14f9c5c9 4687
14f9c5c9
AS
4688 cacheIfUnique = 0;
4689
4690 /* Search specified block and its superiors. */
4691
4c4b4cd2
PH
4692 wild_match = (strstr (name0, "__") == NULL);
4693 name = name0;
76a01679
JB
4694 block = (struct block *) block0; /* FIXME: No cast ought to be
4695 needed, but adding const will
4696 have a cascade effect. */
339c13b6
JB
4697
4698 /* Special case: If the user specifies a symbol name inside package
4699 Standard, do a non-wild matching of the symbol name without
4700 the "standard__" prefix. This was primarily introduced in order
4701 to allow the user to specifically access the standard exceptions
4702 using, for instance, Standard.Constraint_Error when Constraint_Error
4703 is ambiguous (due to the user defining its own Constraint_Error
4704 entity inside its program). */
4c4b4cd2
PH
4705 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4706 {
4707 wild_match = 0;
4708 block = NULL;
4709 name = name0 + sizeof ("standard__") - 1;
4710 }
4711
339c13b6 4712 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4713
339c13b6
JB
4714 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4715 wild_match);
4c4b4cd2 4716 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4717 goto done;
d2e4a39e 4718
339c13b6
JB
4719 /* No non-global symbols found. Check our cache to see if we have
4720 already performed this search before. If we have, then return
4721 the same result. */
4722
14f9c5c9 4723 cacheIfUnique = 1;
2570f2b7 4724 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4725 {
4726 if (sym != NULL)
2570f2b7 4727 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4728 goto done;
4729 }
14f9c5c9 4730
339c13b6
JB
4731 /* Search symbols from all global blocks. */
4732
4733 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4734 wild_match);
d2e4a39e 4735
4c4b4cd2 4736 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4737 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4738
4c4b4cd2 4739 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4740 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4741 wild_match);
14f9c5c9 4742
4c4b4cd2
PH
4743done:
4744 ndefns = num_defns_collected (&symbol_list_obstack);
4745 *results = defns_collected (&symbol_list_obstack, 1);
4746
4747 ndefns = remove_extra_symbols (*results, ndefns);
4748
d2e4a39e 4749 if (ndefns == 0)
2570f2b7 4750 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4751
4c4b4cd2 4752 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4753 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4754
aeb5907d 4755 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4756
14f9c5c9
AS
4757 return ndefns;
4758}
4759
d2e4a39e 4760struct symbol *
aeb5907d 4761ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4762 domain_enum namespace, struct block **block_found)
14f9c5c9 4763{
4c4b4cd2 4764 struct ada_symbol_info *candidates;
14f9c5c9
AS
4765 int n_candidates;
4766
aeb5907d 4767 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4768
4769 if (n_candidates == 0)
4770 return NULL;
4c4b4cd2 4771
aeb5907d
JB
4772 if (block_found != NULL)
4773 *block_found = candidates[0].block;
4c4b4cd2 4774
21b556f4 4775 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4776}
4777
4778/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4779 scope and in global scopes, or NULL if none. NAME is folded and
4780 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4781 choosing the first symbol if there are multiple choices.
4782 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4783 table in which the symbol was found (in both cases, these
4784 assignments occur only if the pointers are non-null). */
4785struct symbol *
4786ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4787 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4788{
4789 if (is_a_field_of_this != NULL)
4790 *is_a_field_of_this = 0;
4791
4792 return
4793 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4794 block0, namespace, NULL);
4c4b4cd2 4795}
14f9c5c9 4796
4c4b4cd2
PH
4797static struct symbol *
4798ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4799 const char *linkage_name,
4800 const struct block *block,
21b556f4 4801 const domain_enum domain)
4c4b4cd2
PH
4802{
4803 if (linkage_name == NULL)
4804 linkage_name = name;
76a01679 4805 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4806 NULL);
14f9c5c9
AS
4807}
4808
4809
4c4b4cd2
PH
4810/* True iff STR is a possible encoded suffix of a normal Ada name
4811 that is to be ignored for matching purposes. Suffixes of parallel
4812 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4813 are given by any of the regular expressions:
4c4b4cd2 4814
babe1480
JB
4815 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4816 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4817 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4818 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4819
4820 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4821 match is performed. This sequence is used to differentiate homonyms,
4822 is an optional part of a valid name suffix. */
4c4b4cd2 4823
14f9c5c9 4824static int
d2e4a39e 4825is_name_suffix (const char *str)
14f9c5c9
AS
4826{
4827 int k;
4c4b4cd2
PH
4828 const char *matching;
4829 const int len = strlen (str);
4830
babe1480
JB
4831 /* Skip optional leading __[0-9]+. */
4832
4c4b4cd2
PH
4833 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4834 {
babe1480
JB
4835 str += 3;
4836 while (isdigit (str[0]))
4837 str += 1;
4c4b4cd2 4838 }
babe1480
JB
4839
4840 /* [.$][0-9]+ */
4c4b4cd2 4841
babe1480 4842 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4843 {
babe1480 4844 matching = str + 1;
4c4b4cd2
PH
4845 while (isdigit (matching[0]))
4846 matching += 1;
4847 if (matching[0] == '\0')
4848 return 1;
4849 }
4850
4851 /* ___[0-9]+ */
babe1480 4852
4c4b4cd2
PH
4853 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4854 {
4855 matching = str + 3;
4856 while (isdigit (matching[0]))
4857 matching += 1;
4858 if (matching[0] == '\0')
4859 return 1;
4860 }
4861
529cad9c
PH
4862#if 0
4863 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4864 with a N at the end. Unfortunately, the compiler uses the same
4865 convention for other internal types it creates. So treating
4866 all entity names that end with an "N" as a name suffix causes
4867 some regressions. For instance, consider the case of an enumerated
4868 type. To support the 'Image attribute, it creates an array whose
4869 name ends with N.
4870 Having a single character like this as a suffix carrying some
4871 information is a bit risky. Perhaps we should change the encoding
4872 to be something like "_N" instead. In the meantime, do not do
4873 the following check. */
4874 /* Protected Object Subprograms */
4875 if (len == 1 && str [0] == 'N')
4876 return 1;
4877#endif
4878
4879 /* _E[0-9]+[bs]$ */
4880 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4881 {
4882 matching = str + 3;
4883 while (isdigit (matching[0]))
4884 matching += 1;
4885 if ((matching[0] == 'b' || matching[0] == 's')
4886 && matching [1] == '\0')
4887 return 1;
4888 }
4889
4c4b4cd2
PH
4890 /* ??? We should not modify STR directly, as we are doing below. This
4891 is fine in this case, but may become problematic later if we find
4892 that this alternative did not work, and want to try matching
4893 another one from the begining of STR. Since we modified it, we
4894 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4895 if (str[0] == 'X')
4896 {
4897 str += 1;
d2e4a39e 4898 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4899 {
4900 if (str[0] != 'n' && str[0] != 'b')
4901 return 0;
4902 str += 1;
4903 }
14f9c5c9 4904 }
babe1480 4905
14f9c5c9
AS
4906 if (str[0] == '\000')
4907 return 1;
babe1480 4908
d2e4a39e 4909 if (str[0] == '_')
14f9c5c9
AS
4910 {
4911 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4912 return 0;
d2e4a39e 4913 if (str[2] == '_')
4c4b4cd2 4914 {
61ee279c
PH
4915 if (strcmp (str + 3, "JM") == 0)
4916 return 1;
4917 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4918 the LJM suffix in favor of the JM one. But we will
4919 still accept LJM as a valid suffix for a reasonable
4920 amount of time, just to allow ourselves to debug programs
4921 compiled using an older version of GNAT. */
4c4b4cd2
PH
4922 if (strcmp (str + 3, "LJM") == 0)
4923 return 1;
4924 if (str[3] != 'X')
4925 return 0;
1265e4aa
JB
4926 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4927 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4928 return 1;
4929 if (str[4] == 'R' && str[5] != 'T')
4930 return 1;
4931 return 0;
4932 }
4933 if (!isdigit (str[2]))
4934 return 0;
4935 for (k = 3; str[k] != '\0'; k += 1)
4936 if (!isdigit (str[k]) && str[k] != '_')
4937 return 0;
14f9c5c9
AS
4938 return 1;
4939 }
4c4b4cd2 4940 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4941 {
4c4b4cd2
PH
4942 for (k = 2; str[k] != '\0'; k += 1)
4943 if (!isdigit (str[k]) && str[k] != '_')
4944 return 0;
14f9c5c9
AS
4945 return 1;
4946 }
4947 return 0;
4948}
d2e4a39e 4949
aeb5907d
JB
4950/* Return non-zero if the string starting at NAME and ending before
4951 NAME_END contains no capital letters. */
529cad9c
PH
4952
4953static int
4954is_valid_name_for_wild_match (const char *name0)
4955{
4956 const char *decoded_name = ada_decode (name0);
4957 int i;
4958
5823c3ef
JB
4959 /* If the decoded name starts with an angle bracket, it means that
4960 NAME0 does not follow the GNAT encoding format. It should then
4961 not be allowed as a possible wild match. */
4962 if (decoded_name[0] == '<')
4963 return 0;
4964
529cad9c
PH
4965 for (i=0; decoded_name[i] != '\0'; i++)
4966 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4967 return 0;
4968
4969 return 1;
4970}
4971
4c4b4cd2
PH
4972/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4973 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4974 informational suffixes of NAME (i.e., for which is_name_suffix is
4975 true). */
4976
14f9c5c9 4977static int
4c4b4cd2 4978wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4979{
5823c3ef
JB
4980 char* match;
4981 const char* start;
4982 start = name0;
4983 while (1)
14f9c5c9 4984 {
5823c3ef
JB
4985 match = strstr (start, patn0);
4986 if (match == NULL)
4987 return 0;
4988 if ((match == name0
4989 || match[-1] == '.'
4990 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4991 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4992 && is_name_suffix (match + patn_len))
4993 return (match == name0 || is_valid_name_for_wild_match (name0));
4994 start = match + 1;
96d887e8 4995 }
96d887e8
PH
4996}
4997
4998
4999/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5000 vector *defn_symbols, updating the list of symbols in OBSTACKP
5001 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5002 OBJFILE is the section containing BLOCK.
5003 SYMTAB is recorded with each symbol added. */
5004
5005static void
5006ada_add_block_symbols (struct obstack *obstackp,
76a01679 5007 struct block *block, const char *name,
96d887e8 5008 domain_enum domain, struct objfile *objfile,
2570f2b7 5009 int wild)
96d887e8
PH
5010{
5011 struct dict_iterator iter;
5012 int name_len = strlen (name);
5013 /* A matching argument symbol, if any. */
5014 struct symbol *arg_sym;
5015 /* Set true when we find a matching non-argument symbol. */
5016 int found_sym;
5017 struct symbol *sym;
5018
5019 arg_sym = NULL;
5020 found_sym = 0;
5021 if (wild)
5022 {
5023 struct symbol *sym;
5024 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5025 {
5eeb2539
AR
5026 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5027 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5028 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5029 {
2a2d4dc3
AS
5030 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5031 continue;
5032 else if (SYMBOL_IS_ARGUMENT (sym))
5033 arg_sym = sym;
5034 else
5035 {
76a01679
JB
5036 found_sym = 1;
5037 add_defn_to_vec (obstackp,
5038 fixup_symbol_section (sym, objfile),
2570f2b7 5039 block);
76a01679
JB
5040 }
5041 }
5042 }
96d887e8
PH
5043 }
5044 else
5045 {
5046 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5047 {
5eeb2539
AR
5048 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5049 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5050 {
5051 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5052 if (cmp == 0
5053 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5054 {
2a2d4dc3
AS
5055 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5056 {
5057 if (SYMBOL_IS_ARGUMENT (sym))
5058 arg_sym = sym;
5059 else
5060 {
5061 found_sym = 1;
5062 add_defn_to_vec (obstackp,
5063 fixup_symbol_section (sym, objfile),
5064 block);
5065 }
5066 }
76a01679
JB
5067 }
5068 }
5069 }
96d887e8
PH
5070 }
5071
5072 if (!found_sym && arg_sym != NULL)
5073 {
76a01679
JB
5074 add_defn_to_vec (obstackp,
5075 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5076 block);
96d887e8
PH
5077 }
5078
5079 if (!wild)
5080 {
5081 arg_sym = NULL;
5082 found_sym = 0;
5083
5084 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5085 {
5eeb2539
AR
5086 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5087 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5088 {
5089 int cmp;
5090
5091 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5092 if (cmp == 0)
5093 {
5094 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5095 if (cmp == 0)
5096 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5097 name_len);
5098 }
5099
5100 if (cmp == 0
5101 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5102 {
2a2d4dc3
AS
5103 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5104 {
5105 if (SYMBOL_IS_ARGUMENT (sym))
5106 arg_sym = sym;
5107 else
5108 {
5109 found_sym = 1;
5110 add_defn_to_vec (obstackp,
5111 fixup_symbol_section (sym, objfile),
5112 block);
5113 }
5114 }
76a01679
JB
5115 }
5116 }
76a01679 5117 }
96d887e8
PH
5118
5119 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5120 They aren't parameters, right? */
5121 if (!found_sym && arg_sym != NULL)
5122 {
5123 add_defn_to_vec (obstackp,
76a01679 5124 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5125 block);
96d887e8
PH
5126 }
5127 }
5128}
5129\f
41d27058
JB
5130
5131 /* Symbol Completion */
5132
5133/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5134 name in a form that's appropriate for the completion. The result
5135 does not need to be deallocated, but is only good until the next call.
5136
5137 TEXT_LEN is equal to the length of TEXT.
5138 Perform a wild match if WILD_MATCH is set.
5139 ENCODED should be set if TEXT represents the start of a symbol name
5140 in its encoded form. */
5141
5142static const char *
5143symbol_completion_match (const char *sym_name,
5144 const char *text, int text_len,
5145 int wild_match, int encoded)
5146{
5147 char *result;
5148 const int verbatim_match = (text[0] == '<');
5149 int match = 0;
5150
5151 if (verbatim_match)
5152 {
5153 /* Strip the leading angle bracket. */
5154 text = text + 1;
5155 text_len--;
5156 }
5157
5158 /* First, test against the fully qualified name of the symbol. */
5159
5160 if (strncmp (sym_name, text, text_len) == 0)
5161 match = 1;
5162
5163 if (match && !encoded)
5164 {
5165 /* One needed check before declaring a positive match is to verify
5166 that iff we are doing a verbatim match, the decoded version
5167 of the symbol name starts with '<'. Otherwise, this symbol name
5168 is not a suitable completion. */
5169 const char *sym_name_copy = sym_name;
5170 int has_angle_bracket;
5171
5172 sym_name = ada_decode (sym_name);
5173 has_angle_bracket = (sym_name[0] == '<');
5174 match = (has_angle_bracket == verbatim_match);
5175 sym_name = sym_name_copy;
5176 }
5177
5178 if (match && !verbatim_match)
5179 {
5180 /* When doing non-verbatim match, another check that needs to
5181 be done is to verify that the potentially matching symbol name
5182 does not include capital letters, because the ada-mode would
5183 not be able to understand these symbol names without the
5184 angle bracket notation. */
5185 const char *tmp;
5186
5187 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5188 if (*tmp != '\0')
5189 match = 0;
5190 }
5191
5192 /* Second: Try wild matching... */
5193
5194 if (!match && wild_match)
5195 {
5196 /* Since we are doing wild matching, this means that TEXT
5197 may represent an unqualified symbol name. We therefore must
5198 also compare TEXT against the unqualified name of the symbol. */
5199 sym_name = ada_unqualified_name (ada_decode (sym_name));
5200
5201 if (strncmp (sym_name, text, text_len) == 0)
5202 match = 1;
5203 }
5204
5205 /* Finally: If we found a mach, prepare the result to return. */
5206
5207 if (!match)
5208 return NULL;
5209
5210 if (verbatim_match)
5211 sym_name = add_angle_brackets (sym_name);
5212
5213 if (!encoded)
5214 sym_name = ada_decode (sym_name);
5215
5216 return sym_name;
5217}
5218
2ba95b9b
JB
5219typedef char *char_ptr;
5220DEF_VEC_P (char_ptr);
5221
41d27058
JB
5222/* A companion function to ada_make_symbol_completion_list().
5223 Check if SYM_NAME represents a symbol which name would be suitable
5224 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5225 it is appended at the end of the given string vector SV.
5226
5227 ORIG_TEXT is the string original string from the user command
5228 that needs to be completed. WORD is the entire command on which
5229 completion should be performed. These two parameters are used to
5230 determine which part of the symbol name should be added to the
5231 completion vector.
5232 if WILD_MATCH is set, then wild matching is performed.
5233 ENCODED should be set if TEXT represents a symbol name in its
5234 encoded formed (in which case the completion should also be
5235 encoded). */
5236
5237static void
d6565258 5238symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5239 const char *sym_name,
5240 const char *text, int text_len,
5241 const char *orig_text, const char *word,
5242 int wild_match, int encoded)
5243{
5244 const char *match = symbol_completion_match (sym_name, text, text_len,
5245 wild_match, encoded);
5246 char *completion;
5247
5248 if (match == NULL)
5249 return;
5250
5251 /* We found a match, so add the appropriate completion to the given
5252 string vector. */
5253
5254 if (word == orig_text)
5255 {
5256 completion = xmalloc (strlen (match) + 5);
5257 strcpy (completion, match);
5258 }
5259 else if (word > orig_text)
5260 {
5261 /* Return some portion of sym_name. */
5262 completion = xmalloc (strlen (match) + 5);
5263 strcpy (completion, match + (word - orig_text));
5264 }
5265 else
5266 {
5267 /* Return some of ORIG_TEXT plus sym_name. */
5268 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5269 strncpy (completion, word, orig_text - word);
5270 completion[orig_text - word] = '\0';
5271 strcat (completion, match);
5272 }
5273
d6565258 5274 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5275}
5276
5277/* Return a list of possible symbol names completing TEXT0. The list
5278 is NULL terminated. WORD is the entire command on which completion
5279 is made. */
5280
5281static char **
5282ada_make_symbol_completion_list (char *text0, char *word)
5283{
5284 char *text;
5285 int text_len;
5286 int wild_match;
5287 int encoded;
2ba95b9b 5288 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5289 struct symbol *sym;
5290 struct symtab *s;
5291 struct partial_symtab *ps;
5292 struct minimal_symbol *msymbol;
5293 struct objfile *objfile;
5294 struct block *b, *surrounding_static_block = 0;
5295 int i;
5296 struct dict_iterator iter;
5297
5298 if (text0[0] == '<')
5299 {
5300 text = xstrdup (text0);
5301 make_cleanup (xfree, text);
5302 text_len = strlen (text);
5303 wild_match = 0;
5304 encoded = 1;
5305 }
5306 else
5307 {
5308 text = xstrdup (ada_encode (text0));
5309 make_cleanup (xfree, text);
5310 text_len = strlen (text);
5311 for (i = 0; i < text_len; i++)
5312 text[i] = tolower (text[i]);
5313
5314 encoded = (strstr (text0, "__") != NULL);
5315 /* If the name contains a ".", then the user is entering a fully
5316 qualified entity name, and the match must not be done in wild
5317 mode. Similarly, if the user wants to complete what looks like
5318 an encoded name, the match must not be done in wild mode. */
5319 wild_match = (strchr (text0, '.') == NULL && !encoded);
5320 }
5321
5322 /* First, look at the partial symtab symbols. */
5323 ALL_PSYMTABS (objfile, ps)
5324 {
5325 struct partial_symbol **psym;
5326
5327 /* If the psymtab's been read in we'll get it when we search
5328 through the blockvector. */
5329 if (ps->readin)
5330 continue;
5331
5332 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5333 psym < (objfile->global_psymbols.list + ps->globals_offset
5334 + ps->n_global_syms); psym++)
5335 {
5336 QUIT;
d6565258 5337 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5338 text, text_len, text0, word,
5339 wild_match, encoded);
5340 }
5341
5342 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5343 psym < (objfile->static_psymbols.list + ps->statics_offset
5344 + ps->n_static_syms); psym++)
5345 {
5346 QUIT;
d6565258 5347 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5348 text, text_len, text0, word,
5349 wild_match, encoded);
5350 }
5351 }
5352
5353 /* At this point scan through the misc symbol vectors and add each
5354 symbol you find to the list. Eventually we want to ignore
5355 anything that isn't a text symbol (everything else will be
5356 handled by the psymtab code above). */
5357
5358 ALL_MSYMBOLS (objfile, msymbol)
5359 {
5360 QUIT;
d6565258 5361 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5362 text, text_len, text0, word, wild_match, encoded);
5363 }
5364
5365 /* Search upwards from currently selected frame (so that we can
5366 complete on local vars. */
5367
5368 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5369 {
5370 if (!BLOCK_SUPERBLOCK (b))
5371 surrounding_static_block = b; /* For elmin of dups */
5372
5373 ALL_BLOCK_SYMBOLS (b, iter, sym)
5374 {
d6565258 5375 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5376 text, text_len, text0, word,
5377 wild_match, encoded);
5378 }
5379 }
5380
5381 /* Go through the symtabs and check the externs and statics for
5382 symbols which match. */
5383
5384 ALL_SYMTABS (objfile, s)
5385 {
5386 QUIT;
5387 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5388 ALL_BLOCK_SYMBOLS (b, iter, sym)
5389 {
d6565258 5390 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5391 text, text_len, text0, word,
5392 wild_match, encoded);
5393 }
5394 }
5395
5396 ALL_SYMTABS (objfile, s)
5397 {
5398 QUIT;
5399 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5400 /* Don't do this block twice. */
5401 if (b == surrounding_static_block)
5402 continue;
5403 ALL_BLOCK_SYMBOLS (b, iter, sym)
5404 {
d6565258 5405 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5406 text, text_len, text0, word,
5407 wild_match, encoded);
5408 }
5409 }
5410
5411 /* Append the closing NULL entry. */
2ba95b9b 5412 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5413
2ba95b9b
JB
5414 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5415 return the copy. It's unfortunate that we have to make a copy
5416 of an array that we're about to destroy, but there is nothing much
5417 we can do about it. Fortunately, it's typically not a very large
5418 array. */
5419 {
5420 const size_t completions_size =
5421 VEC_length (char_ptr, completions) * sizeof (char *);
5422 char **result = malloc (completions_size);
5423
5424 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5425
5426 VEC_free (char_ptr, completions);
5427 return result;
5428 }
41d27058
JB
5429}
5430
963a6417 5431 /* Field Access */
96d887e8 5432
73fb9985
JB
5433/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5434 for tagged types. */
5435
5436static int
5437ada_is_dispatch_table_ptr_type (struct type *type)
5438{
5439 char *name;
5440
5441 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5442 return 0;
5443
5444 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5445 if (name == NULL)
5446 return 0;
5447
5448 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5449}
5450
963a6417
PH
5451/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5452 to be invisible to users. */
96d887e8 5453
963a6417
PH
5454int
5455ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5456{
963a6417
PH
5457 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5458 return 1;
73fb9985
JB
5459
5460 /* Check the name of that field. */
5461 {
5462 const char *name = TYPE_FIELD_NAME (type, field_num);
5463
5464 /* Anonymous field names should not be printed.
5465 brobecker/2007-02-20: I don't think this can actually happen
5466 but we don't want to print the value of annonymous fields anyway. */
5467 if (name == NULL)
5468 return 1;
5469
5470 /* A field named "_parent" is internally generated by GNAT for
5471 tagged types, and should not be printed either. */
5472 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5473 return 1;
5474 }
5475
5476 /* If this is the dispatch table of a tagged type, then ignore. */
5477 if (ada_is_tagged_type (type, 1)
5478 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5479 return 1;
5480
5481 /* Not a special field, so it should not be ignored. */
5482 return 0;
963a6417 5483}
96d887e8 5484
963a6417
PH
5485/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5486 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5487
963a6417
PH
5488int
5489ada_is_tagged_type (struct type *type, int refok)
5490{
5491 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5492}
96d887e8 5493
963a6417 5494/* True iff TYPE represents the type of X'Tag */
96d887e8 5495
963a6417
PH
5496int
5497ada_is_tag_type (struct type *type)
5498{
5499 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5500 return 0;
5501 else
96d887e8 5502 {
963a6417
PH
5503 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5504 return (name != NULL
5505 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5506 }
96d887e8
PH
5507}
5508
963a6417 5509/* The type of the tag on VAL. */
76a01679 5510
963a6417
PH
5511struct type *
5512ada_tag_type (struct value *val)
96d887e8 5513{
df407dfe 5514 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5515}
96d887e8 5516
963a6417 5517/* The value of the tag on VAL. */
96d887e8 5518
963a6417
PH
5519struct value *
5520ada_value_tag (struct value *val)
5521{
03ee6b2e 5522 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5523}
5524
963a6417
PH
5525/* The value of the tag on the object of type TYPE whose contents are
5526 saved at VALADDR, if it is non-null, or is at memory address
5527 ADDRESS. */
96d887e8 5528
963a6417 5529static struct value *
10a2c479 5530value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5531 const gdb_byte *valaddr,
963a6417 5532 CORE_ADDR address)
96d887e8 5533{
963a6417
PH
5534 int tag_byte_offset, dummy1, dummy2;
5535 struct type *tag_type;
5536 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5537 NULL, NULL, NULL))
96d887e8 5538 {
fc1a4b47 5539 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5540 ? NULL
5541 : valaddr + tag_byte_offset);
963a6417 5542 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5543
963a6417 5544 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5545 }
963a6417
PH
5546 return NULL;
5547}
96d887e8 5548
963a6417
PH
5549static struct type *
5550type_from_tag (struct value *tag)
5551{
5552 const char *type_name = ada_tag_name (tag);
5553 if (type_name != NULL)
5554 return ada_find_any_type (ada_encode (type_name));
5555 return NULL;
5556}
96d887e8 5557
963a6417
PH
5558struct tag_args
5559{
5560 struct value *tag;
5561 char *name;
5562};
4c4b4cd2 5563
529cad9c
PH
5564
5565static int ada_tag_name_1 (void *);
5566static int ada_tag_name_2 (struct tag_args *);
5567
4c4b4cd2
PH
5568/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5569 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5570 The value stored in ARGS->name is valid until the next call to
5571 ada_tag_name_1. */
5572
5573static int
5574ada_tag_name_1 (void *args0)
5575{
5576 struct tag_args *args = (struct tag_args *) args0;
5577 static char name[1024];
76a01679 5578 char *p;
4c4b4cd2
PH
5579 struct value *val;
5580 args->name = NULL;
03ee6b2e 5581 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5582 if (val == NULL)
5583 return ada_tag_name_2 (args);
03ee6b2e 5584 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5585 if (val == NULL)
5586 return 0;
5587 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5588 for (p = name; *p != '\0'; p += 1)
5589 if (isalpha (*p))
5590 *p = tolower (*p);
5591 args->name = name;
5592 return 0;
5593}
5594
5595/* Utility function for ada_tag_name_1 that tries the second
5596 representation for the dispatch table (in which there is no
5597 explicit 'tsd' field in the referent of the tag pointer, and instead
5598 the tsd pointer is stored just before the dispatch table. */
5599
5600static int
5601ada_tag_name_2 (struct tag_args *args)
5602{
5603 struct type *info_type;
5604 static char name[1024];
5605 char *p;
5606 struct value *val, *valp;
5607
5608 args->name = NULL;
5609 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5610 if (info_type == NULL)
5611 return 0;
5612 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5613 valp = value_cast (info_type, args->tag);
5614 if (valp == NULL)
5615 return 0;
89eef114
UW
5616 val = value_ind (value_ptradd (valp,
5617 value_from_longest (builtin_type_int8, -1)));
4c4b4cd2
PH
5618 if (val == NULL)
5619 return 0;
03ee6b2e 5620 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5621 if (val == NULL)
5622 return 0;
5623 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5624 for (p = name; *p != '\0'; p += 1)
5625 if (isalpha (*p))
5626 *p = tolower (*p);
5627 args->name = name;
5628 return 0;
5629}
5630
5631/* The type name of the dynamic type denoted by the 'tag value TAG, as
5632 * a C string. */
5633
5634const char *
5635ada_tag_name (struct value *tag)
5636{
5637 struct tag_args args;
df407dfe 5638 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5639 return NULL;
76a01679 5640 args.tag = tag;
4c4b4cd2
PH
5641 args.name = NULL;
5642 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5643 return args.name;
5644}
5645
5646/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5647
d2e4a39e 5648struct type *
ebf56fd3 5649ada_parent_type (struct type *type)
14f9c5c9
AS
5650{
5651 int i;
5652
61ee279c 5653 type = ada_check_typedef (type);
14f9c5c9
AS
5654
5655 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5656 return NULL;
5657
5658 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5659 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5660 {
5661 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5662
5663 /* If the _parent field is a pointer, then dereference it. */
5664 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5665 parent_type = TYPE_TARGET_TYPE (parent_type);
5666 /* If there is a parallel XVS type, get the actual base type. */
5667 parent_type = ada_get_base_type (parent_type);
5668
5669 return ada_check_typedef (parent_type);
5670 }
14f9c5c9
AS
5671
5672 return NULL;
5673}
5674
4c4b4cd2
PH
5675/* True iff field number FIELD_NUM of structure type TYPE contains the
5676 parent-type (inherited) fields of a derived type. Assumes TYPE is
5677 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5678
5679int
ebf56fd3 5680ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5681{
61ee279c 5682 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5683 return (name != NULL
5684 && (strncmp (name, "PARENT", 6) == 0
5685 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5686}
5687
4c4b4cd2 5688/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5689 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5690 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5691 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5692 structures. */
14f9c5c9
AS
5693
5694int
ebf56fd3 5695ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5696{
d2e4a39e
AS
5697 const char *name = TYPE_FIELD_NAME (type, field_num);
5698 return (name != NULL
4c4b4cd2
PH
5699 && (strncmp (name, "PARENT", 6) == 0
5700 || strcmp (name, "REP") == 0
5701 || strncmp (name, "_parent", 7) == 0
5702 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5703}
5704
4c4b4cd2
PH
5705/* True iff field number FIELD_NUM of structure or union type TYPE
5706 is a variant wrapper. Assumes TYPE is a structure type with at least
5707 FIELD_NUM+1 fields. */
14f9c5c9
AS
5708
5709int
ebf56fd3 5710ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5711{
d2e4a39e 5712 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5713 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5714 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5715 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5716 == TYPE_CODE_UNION)));
14f9c5c9
AS
5717}
5718
5719/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5720 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5721 returns the type of the controlling discriminant for the variant. */
5722
d2e4a39e 5723struct type *
ebf56fd3 5724ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5725{
d2e4a39e 5726 char *name = ada_variant_discrim_name (var_type);
76a01679 5727 struct type *type =
4c4b4cd2 5728 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5729 if (type == NULL)
6d84d3d8 5730 return builtin_type_int32;
14f9c5c9
AS
5731 else
5732 return type;
5733}
5734
4c4b4cd2 5735/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5736 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5737 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5738
5739int
ebf56fd3 5740ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5741{
d2e4a39e 5742 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5743 return (name != NULL && name[0] == 'O');
5744}
5745
5746/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5747 returns the name of the discriminant controlling the variant.
5748 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5749
d2e4a39e 5750char *
ebf56fd3 5751ada_variant_discrim_name (struct type *type0)
14f9c5c9 5752{
d2e4a39e 5753 static char *result = NULL;
14f9c5c9 5754 static size_t result_len = 0;
d2e4a39e
AS
5755 struct type *type;
5756 const char *name;
5757 const char *discrim_end;
5758 const char *discrim_start;
14f9c5c9
AS
5759
5760 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5761 type = TYPE_TARGET_TYPE (type0);
5762 else
5763 type = type0;
5764
5765 name = ada_type_name (type);
5766
5767 if (name == NULL || name[0] == '\000')
5768 return "";
5769
5770 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5771 discrim_end -= 1)
5772 {
4c4b4cd2
PH
5773 if (strncmp (discrim_end, "___XVN", 6) == 0)
5774 break;
14f9c5c9
AS
5775 }
5776 if (discrim_end == name)
5777 return "";
5778
d2e4a39e 5779 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5780 discrim_start -= 1)
5781 {
d2e4a39e 5782 if (discrim_start == name + 1)
4c4b4cd2 5783 return "";
76a01679 5784 if ((discrim_start > name + 3
4c4b4cd2
PH
5785 && strncmp (discrim_start - 3, "___", 3) == 0)
5786 || discrim_start[-1] == '.')
5787 break;
14f9c5c9
AS
5788 }
5789
5790 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5791 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5792 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5793 return result;
5794}
5795
4c4b4cd2
PH
5796/* Scan STR for a subtype-encoded number, beginning at position K.
5797 Put the position of the character just past the number scanned in
5798 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5799 Return 1 if there was a valid number at the given position, and 0
5800 otherwise. A "subtype-encoded" number consists of the absolute value
5801 in decimal, followed by the letter 'm' to indicate a negative number.
5802 Assumes 0m does not occur. */
14f9c5c9
AS
5803
5804int
d2e4a39e 5805ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5806{
5807 ULONGEST RU;
5808
d2e4a39e 5809 if (!isdigit (str[k]))
14f9c5c9
AS
5810 return 0;
5811
4c4b4cd2 5812 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5813 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5814 LONGEST. */
14f9c5c9
AS
5815 RU = 0;
5816 while (isdigit (str[k]))
5817 {
d2e4a39e 5818 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5819 k += 1;
5820 }
5821
d2e4a39e 5822 if (str[k] == 'm')
14f9c5c9
AS
5823 {
5824 if (R != NULL)
4c4b4cd2 5825 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5826 k += 1;
5827 }
5828 else if (R != NULL)
5829 *R = (LONGEST) RU;
5830
4c4b4cd2 5831 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5832 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5833 number representable as a LONGEST (although either would probably work
5834 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5835 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5836
5837 if (new_k != NULL)
5838 *new_k = k;
5839 return 1;
5840}
5841
4c4b4cd2
PH
5842/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5843 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5844 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5845
d2e4a39e 5846int
ebf56fd3 5847ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5848{
d2e4a39e 5849 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5850 int p;
5851
5852 p = 0;
5853 while (1)
5854 {
d2e4a39e 5855 switch (name[p])
4c4b4cd2
PH
5856 {
5857 case '\0':
5858 return 0;
5859 case 'S':
5860 {
5861 LONGEST W;
5862 if (!ada_scan_number (name, p + 1, &W, &p))
5863 return 0;
5864 if (val == W)
5865 return 1;
5866 break;
5867 }
5868 case 'R':
5869 {
5870 LONGEST L, U;
5871 if (!ada_scan_number (name, p + 1, &L, &p)
5872 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5873 return 0;
5874 if (val >= L && val <= U)
5875 return 1;
5876 break;
5877 }
5878 case 'O':
5879 return 1;
5880 default:
5881 return 0;
5882 }
5883 }
5884}
5885
5886/* FIXME: Lots of redundancy below. Try to consolidate. */
5887
5888/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5889 ARG_TYPE, extract and return the value of one of its (non-static)
5890 fields. FIELDNO says which field. Differs from value_primitive_field
5891 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5892
4c4b4cd2 5893static struct value *
d2e4a39e 5894ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5895 struct type *arg_type)
14f9c5c9 5896{
14f9c5c9
AS
5897 struct type *type;
5898
61ee279c 5899 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5900 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5901
4c4b4cd2 5902 /* Handle packed fields. */
14f9c5c9
AS
5903
5904 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5905 {
5906 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5907 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5908
0fd88904 5909 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5910 offset + bit_pos / 8,
5911 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5912 }
5913 else
5914 return value_primitive_field (arg1, offset, fieldno, arg_type);
5915}
5916
52ce6436
PH
5917/* Find field with name NAME in object of type TYPE. If found,
5918 set the following for each argument that is non-null:
5919 - *FIELD_TYPE_P to the field's type;
5920 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5921 an object of that type;
5922 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5923 - *BIT_SIZE_P to its size in bits if the field is packed, and
5924 0 otherwise;
5925 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5926 fields up to but not including the desired field, or by the total
5927 number of fields if not found. A NULL value of NAME never
5928 matches; the function just counts visible fields in this case.
5929
5930 Returns 1 if found, 0 otherwise. */
5931
4c4b4cd2 5932static int
76a01679
JB
5933find_struct_field (char *name, struct type *type, int offset,
5934 struct type **field_type_p,
52ce6436
PH
5935 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5936 int *index_p)
4c4b4cd2
PH
5937{
5938 int i;
5939
61ee279c 5940 type = ada_check_typedef (type);
76a01679 5941
52ce6436
PH
5942 if (field_type_p != NULL)
5943 *field_type_p = NULL;
5944 if (byte_offset_p != NULL)
d5d6fca5 5945 *byte_offset_p = 0;
52ce6436
PH
5946 if (bit_offset_p != NULL)
5947 *bit_offset_p = 0;
5948 if (bit_size_p != NULL)
5949 *bit_size_p = 0;
5950
5951 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5952 {
5953 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5954 int fld_offset = offset + bit_pos / 8;
5955 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5956
4c4b4cd2
PH
5957 if (t_field_name == NULL)
5958 continue;
5959
52ce6436 5960 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5961 {
5962 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5963 if (field_type_p != NULL)
5964 *field_type_p = TYPE_FIELD_TYPE (type, i);
5965 if (byte_offset_p != NULL)
5966 *byte_offset_p = fld_offset;
5967 if (bit_offset_p != NULL)
5968 *bit_offset_p = bit_pos % 8;
5969 if (bit_size_p != NULL)
5970 *bit_size_p = bit_size;
76a01679
JB
5971 return 1;
5972 }
4c4b4cd2
PH
5973 else if (ada_is_wrapper_field (type, i))
5974 {
52ce6436
PH
5975 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5976 field_type_p, byte_offset_p, bit_offset_p,
5977 bit_size_p, index_p))
76a01679
JB
5978 return 1;
5979 }
4c4b4cd2
PH
5980 else if (ada_is_variant_part (type, i))
5981 {
52ce6436
PH
5982 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5983 fixed type?? */
4c4b4cd2 5984 int j;
52ce6436
PH
5985 struct type *field_type
5986 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5987
52ce6436 5988 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5989 {
76a01679
JB
5990 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5991 fld_offset
5992 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5993 field_type_p, byte_offset_p,
52ce6436 5994 bit_offset_p, bit_size_p, index_p))
76a01679 5995 return 1;
4c4b4cd2
PH
5996 }
5997 }
52ce6436
PH
5998 else if (index_p != NULL)
5999 *index_p += 1;
4c4b4cd2
PH
6000 }
6001 return 0;
6002}
6003
52ce6436 6004/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6005
52ce6436
PH
6006static int
6007num_visible_fields (struct type *type)
6008{
6009 int n;
6010 n = 0;
6011 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6012 return n;
6013}
14f9c5c9 6014
4c4b4cd2 6015/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6016 and search in it assuming it has (class) type TYPE.
6017 If found, return value, else return NULL.
6018
4c4b4cd2 6019 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6020
4c4b4cd2 6021static struct value *
d2e4a39e 6022ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6023 struct type *type)
14f9c5c9
AS
6024{
6025 int i;
61ee279c 6026 type = ada_check_typedef (type);
14f9c5c9 6027
52ce6436 6028 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6029 {
6030 char *t_field_name = TYPE_FIELD_NAME (type, i);
6031
6032 if (t_field_name == NULL)
4c4b4cd2 6033 continue;
14f9c5c9
AS
6034
6035 else if (field_name_match (t_field_name, name))
4c4b4cd2 6036 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6037
6038 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6039 {
06d5cf63
JB
6040 struct value *v = /* Do not let indent join lines here. */
6041 ada_search_struct_field (name, arg,
6042 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6043 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6044 if (v != NULL)
6045 return v;
6046 }
14f9c5c9
AS
6047
6048 else if (ada_is_variant_part (type, i))
4c4b4cd2 6049 {
52ce6436 6050 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6051 int j;
61ee279c 6052 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6053 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6054
52ce6436 6055 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6056 {
06d5cf63
JB
6057 struct value *v = ada_search_struct_field /* Force line break. */
6058 (name, arg,
6059 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6060 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6061 if (v != NULL)
6062 return v;
6063 }
6064 }
14f9c5c9
AS
6065 }
6066 return NULL;
6067}
d2e4a39e 6068
52ce6436
PH
6069static struct value *ada_index_struct_field_1 (int *, struct value *,
6070 int, struct type *);
6071
6072
6073/* Return field #INDEX in ARG, where the index is that returned by
6074 * find_struct_field through its INDEX_P argument. Adjust the address
6075 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6076 * If found, return value, else return NULL. */
6077
6078static struct value *
6079ada_index_struct_field (int index, struct value *arg, int offset,
6080 struct type *type)
6081{
6082 return ada_index_struct_field_1 (&index, arg, offset, type);
6083}
6084
6085
6086/* Auxiliary function for ada_index_struct_field. Like
6087 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6088 * *INDEX_P. */
6089
6090static struct value *
6091ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6092 struct type *type)
6093{
6094 int i;
6095 type = ada_check_typedef (type);
6096
6097 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6098 {
6099 if (TYPE_FIELD_NAME (type, i) == NULL)
6100 continue;
6101 else if (ada_is_wrapper_field (type, i))
6102 {
6103 struct value *v = /* Do not let indent join lines here. */
6104 ada_index_struct_field_1 (index_p, arg,
6105 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6106 TYPE_FIELD_TYPE (type, i));
6107 if (v != NULL)
6108 return v;
6109 }
6110
6111 else if (ada_is_variant_part (type, i))
6112 {
6113 /* PNH: Do we ever get here? See ada_search_struct_field,
6114 find_struct_field. */
6115 error (_("Cannot assign this kind of variant record"));
6116 }
6117 else if (*index_p == 0)
6118 return ada_value_primitive_field (arg, offset, i, type);
6119 else
6120 *index_p -= 1;
6121 }
6122 return NULL;
6123}
6124
4c4b4cd2
PH
6125/* Given ARG, a value of type (pointer or reference to a)*
6126 structure/union, extract the component named NAME from the ultimate
6127 target structure/union and return it as a value with its
f5938064 6128 appropriate type.
14f9c5c9 6129
4c4b4cd2
PH
6130 The routine searches for NAME among all members of the structure itself
6131 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6132 (e.g., '_parent').
6133
03ee6b2e
PH
6134 If NO_ERR, then simply return NULL in case of error, rather than
6135 calling error. */
14f9c5c9 6136
d2e4a39e 6137struct value *
03ee6b2e 6138ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6139{
4c4b4cd2 6140 struct type *t, *t1;
d2e4a39e 6141 struct value *v;
14f9c5c9 6142
4c4b4cd2 6143 v = NULL;
df407dfe 6144 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6145 if (TYPE_CODE (t) == TYPE_CODE_REF)
6146 {
6147 t1 = TYPE_TARGET_TYPE (t);
6148 if (t1 == NULL)
03ee6b2e 6149 goto BadValue;
61ee279c 6150 t1 = ada_check_typedef (t1);
4c4b4cd2 6151 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6152 {
994b9211 6153 arg = coerce_ref (arg);
76a01679
JB
6154 t = t1;
6155 }
4c4b4cd2 6156 }
14f9c5c9 6157
4c4b4cd2
PH
6158 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6159 {
6160 t1 = TYPE_TARGET_TYPE (t);
6161 if (t1 == NULL)
03ee6b2e 6162 goto BadValue;
61ee279c 6163 t1 = ada_check_typedef (t1);
4c4b4cd2 6164 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6165 {
6166 arg = value_ind (arg);
6167 t = t1;
6168 }
4c4b4cd2 6169 else
76a01679 6170 break;
4c4b4cd2 6171 }
14f9c5c9 6172
4c4b4cd2 6173 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6174 goto BadValue;
14f9c5c9 6175
4c4b4cd2
PH
6176 if (t1 == t)
6177 v = ada_search_struct_field (name, arg, 0, t);
6178 else
6179 {
6180 int bit_offset, bit_size, byte_offset;
6181 struct type *field_type;
6182 CORE_ADDR address;
6183
76a01679
JB
6184 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6185 address = value_as_address (arg);
4c4b4cd2 6186 else
0fd88904 6187 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6188
1ed6ede0 6189 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6190 if (find_struct_field (name, t1, 0,
6191 &field_type, &byte_offset, &bit_offset,
52ce6436 6192 &bit_size, NULL))
76a01679
JB
6193 {
6194 if (bit_size != 0)
6195 {
714e53ab
PH
6196 if (TYPE_CODE (t) == TYPE_CODE_REF)
6197 arg = ada_coerce_ref (arg);
6198 else
6199 arg = ada_value_ind (arg);
76a01679
JB
6200 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6201 bit_offset, bit_size,
6202 field_type);
6203 }
6204 else
f5938064 6205 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6206 }
6207 }
6208
03ee6b2e
PH
6209 if (v != NULL || no_err)
6210 return v;
6211 else
323e0a4a 6212 error (_("There is no member named %s."), name);
14f9c5c9 6213
03ee6b2e
PH
6214 BadValue:
6215 if (no_err)
6216 return NULL;
6217 else
6218 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6219}
6220
6221/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6222 If DISPP is non-null, add its byte displacement from the beginning of a
6223 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6224 work for packed fields).
6225
6226 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6227 followed by "___".
14f9c5c9 6228
4c4b4cd2
PH
6229 TYPE can be either a struct or union. If REFOK, TYPE may also
6230 be a (pointer or reference)+ to a struct or union, and the
6231 ultimate target type will be searched.
14f9c5c9
AS
6232
6233 Looks recursively into variant clauses and parent types.
6234
4c4b4cd2
PH
6235 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6236 TYPE is not a type of the right kind. */
14f9c5c9 6237
4c4b4cd2 6238static struct type *
76a01679
JB
6239ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6240 int noerr, int *dispp)
14f9c5c9
AS
6241{
6242 int i;
6243
6244 if (name == NULL)
6245 goto BadName;
6246
76a01679 6247 if (refok && type != NULL)
4c4b4cd2
PH
6248 while (1)
6249 {
61ee279c 6250 type = ada_check_typedef (type);
76a01679
JB
6251 if (TYPE_CODE (type) != TYPE_CODE_PTR
6252 && TYPE_CODE (type) != TYPE_CODE_REF)
6253 break;
6254 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6255 }
14f9c5c9 6256
76a01679 6257 if (type == NULL
1265e4aa
JB
6258 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6259 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6260 {
4c4b4cd2 6261 if (noerr)
76a01679 6262 return NULL;
4c4b4cd2 6263 else
76a01679
JB
6264 {
6265 target_terminal_ours ();
6266 gdb_flush (gdb_stdout);
323e0a4a
AC
6267 if (type == NULL)
6268 error (_("Type (null) is not a structure or union type"));
6269 else
6270 {
6271 /* XXX: type_sprint */
6272 fprintf_unfiltered (gdb_stderr, _("Type "));
6273 type_print (type, "", gdb_stderr, -1);
6274 error (_(" is not a structure or union type"));
6275 }
76a01679 6276 }
14f9c5c9
AS
6277 }
6278
6279 type = to_static_fixed_type (type);
6280
6281 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6282 {
6283 char *t_field_name = TYPE_FIELD_NAME (type, i);
6284 struct type *t;
6285 int disp;
d2e4a39e 6286
14f9c5c9 6287 if (t_field_name == NULL)
4c4b4cd2 6288 continue;
14f9c5c9
AS
6289
6290 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6291 {
6292 if (dispp != NULL)
6293 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6294 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6295 }
14f9c5c9
AS
6296
6297 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6298 {
6299 disp = 0;
6300 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6301 0, 1, &disp);
6302 if (t != NULL)
6303 {
6304 if (dispp != NULL)
6305 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6306 return t;
6307 }
6308 }
14f9c5c9
AS
6309
6310 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6311 {
6312 int j;
61ee279c 6313 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6314
6315 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6316 {
b1f33ddd
JB
6317 /* FIXME pnh 2008/01/26: We check for a field that is
6318 NOT wrapped in a struct, since the compiler sometimes
6319 generates these for unchecked variant types. Revisit
6320 if the compiler changes this practice. */
6321 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6322 disp = 0;
b1f33ddd
JB
6323 if (v_field_name != NULL
6324 && field_name_match (v_field_name, name))
6325 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6326 else
6327 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6328 name, 0, 1, &disp);
6329
4c4b4cd2
PH
6330 if (t != NULL)
6331 {
6332 if (dispp != NULL)
6333 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6334 return t;
6335 }
6336 }
6337 }
14f9c5c9
AS
6338
6339 }
6340
6341BadName:
d2e4a39e 6342 if (!noerr)
14f9c5c9
AS
6343 {
6344 target_terminal_ours ();
6345 gdb_flush (gdb_stdout);
323e0a4a
AC
6346 if (name == NULL)
6347 {
6348 /* XXX: type_sprint */
6349 fprintf_unfiltered (gdb_stderr, _("Type "));
6350 type_print (type, "", gdb_stderr, -1);
6351 error (_(" has no component named <null>"));
6352 }
6353 else
6354 {
6355 /* XXX: type_sprint */
6356 fprintf_unfiltered (gdb_stderr, _("Type "));
6357 type_print (type, "", gdb_stderr, -1);
6358 error (_(" has no component named %s"), name);
6359 }
14f9c5c9
AS
6360 }
6361
6362 return NULL;
6363}
6364
b1f33ddd
JB
6365/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6366 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6367 represents an unchecked union (that is, the variant part of a
6368 record that is named in an Unchecked_Union pragma). */
6369
6370static int
6371is_unchecked_variant (struct type *var_type, struct type *outer_type)
6372{
6373 char *discrim_name = ada_variant_discrim_name (var_type);
6374 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6375 == NULL);
6376}
6377
6378
14f9c5c9
AS
6379/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6380 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6381 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6382 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6383
d2e4a39e 6384int
ebf56fd3 6385ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6386 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6387{
6388 int others_clause;
6389 int i;
d2e4a39e 6390 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6391 struct value *outer;
6392 struct value *discrim;
14f9c5c9
AS
6393 LONGEST discrim_val;
6394
0c281816
JB
6395 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6396 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6397 if (discrim == NULL)
14f9c5c9 6398 return -1;
0c281816 6399 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6400
6401 others_clause = -1;
6402 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6403 {
6404 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6405 others_clause = i;
14f9c5c9 6406 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6407 return i;
14f9c5c9
AS
6408 }
6409
6410 return others_clause;
6411}
d2e4a39e 6412\f
14f9c5c9
AS
6413
6414
4c4b4cd2 6415 /* Dynamic-Sized Records */
14f9c5c9
AS
6416
6417/* Strategy: The type ostensibly attached to a value with dynamic size
6418 (i.e., a size that is not statically recorded in the debugging
6419 data) does not accurately reflect the size or layout of the value.
6420 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6421 conventional types that are constructed on the fly. */
14f9c5c9
AS
6422
6423/* There is a subtle and tricky problem here. In general, we cannot
6424 determine the size of dynamic records without its data. However,
6425 the 'struct value' data structure, which GDB uses to represent
6426 quantities in the inferior process (the target), requires the size
6427 of the type at the time of its allocation in order to reserve space
6428 for GDB's internal copy of the data. That's why the
6429 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6430 rather than struct value*s.
14f9c5c9
AS
6431
6432 However, GDB's internal history variables ($1, $2, etc.) are
6433 struct value*s containing internal copies of the data that are not, in
6434 general, the same as the data at their corresponding addresses in
6435 the target. Fortunately, the types we give to these values are all
6436 conventional, fixed-size types (as per the strategy described
6437 above), so that we don't usually have to perform the
6438 'to_fixed_xxx_type' conversions to look at their values.
6439 Unfortunately, there is one exception: if one of the internal
6440 history variables is an array whose elements are unconstrained
6441 records, then we will need to create distinct fixed types for each
6442 element selected. */
6443
6444/* The upshot of all of this is that many routines take a (type, host
6445 address, target address) triple as arguments to represent a value.
6446 The host address, if non-null, is supposed to contain an internal
6447 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6448 target at the target address. */
14f9c5c9
AS
6449
6450/* Assuming that VAL0 represents a pointer value, the result of
6451 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6452 dynamic-sized types. */
14f9c5c9 6453
d2e4a39e
AS
6454struct value *
6455ada_value_ind (struct value *val0)
14f9c5c9 6456{
d2e4a39e 6457 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6458 return ada_to_fixed_value (val);
14f9c5c9
AS
6459}
6460
6461/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6462 qualifiers on VAL0. */
6463
d2e4a39e
AS
6464static struct value *
6465ada_coerce_ref (struct value *val0)
6466{
df407dfe 6467 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6468 {
6469 struct value *val = val0;
994b9211 6470 val = coerce_ref (val);
d2e4a39e 6471 val = unwrap_value (val);
4c4b4cd2 6472 return ada_to_fixed_value (val);
d2e4a39e
AS
6473 }
6474 else
14f9c5c9
AS
6475 return val0;
6476}
6477
6478/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6479 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6480
6481static unsigned int
ebf56fd3 6482align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6483{
6484 return (off + alignment - 1) & ~(alignment - 1);
6485}
6486
4c4b4cd2 6487/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6488
6489static unsigned int
ebf56fd3 6490field_alignment (struct type *type, int f)
14f9c5c9 6491{
d2e4a39e 6492 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6493 int len;
14f9c5c9
AS
6494 int align_offset;
6495
64a1bf19
JB
6496 /* The field name should never be null, unless the debugging information
6497 is somehow malformed. In this case, we assume the field does not
6498 require any alignment. */
6499 if (name == NULL)
6500 return 1;
6501
6502 len = strlen (name);
6503
4c4b4cd2
PH
6504 if (!isdigit (name[len - 1]))
6505 return 1;
14f9c5c9 6506
d2e4a39e 6507 if (isdigit (name[len - 2]))
14f9c5c9
AS
6508 align_offset = len - 2;
6509 else
6510 align_offset = len - 1;
6511
4c4b4cd2 6512 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6513 return TARGET_CHAR_BIT;
6514
4c4b4cd2
PH
6515 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6516}
6517
6518/* Find a symbol named NAME. Ignores ambiguity. */
6519
6520struct symbol *
6521ada_find_any_symbol (const char *name)
6522{
6523 struct symbol *sym;
6524
6525 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6526 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6527 return sym;
6528
6529 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6530 return sym;
14f9c5c9
AS
6531}
6532
6533/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6534
d2e4a39e 6535struct type *
ebf56fd3 6536ada_find_any_type (const char *name)
14f9c5c9 6537{
4c4b4cd2 6538 struct symbol *sym = ada_find_any_symbol (name);
3c513ee6 6539 struct type *type = NULL;
14f9c5c9 6540
14f9c5c9 6541 if (sym != NULL)
3c513ee6 6542 type = SYMBOL_TYPE (sym);
14f9c5c9 6543
3c513ee6
JB
6544 if (type == NULL)
6545 type = language_lookup_primitive_type_by_name
6546 (language_def (language_ada), current_gdbarch, name);
6547
6548 return type;
14f9c5c9
AS
6549}
6550
aeb5907d
JB
6551/* Given NAME and an associated BLOCK, search all symbols for
6552 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6553 associated to NAME. Return this symbol if found, return
6554 NULL otherwise. */
6555
6556struct symbol *
6557ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6558{
6559 struct symbol *sym;
6560
6561 sym = find_old_style_renaming_symbol (name, block);
6562
6563 if (sym != NULL)
6564 return sym;
6565
6566 /* Not right yet. FIXME pnh 7/20/2007. */
6567 sym = ada_find_any_symbol (name);
6568 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6569 return sym;
6570 else
6571 return NULL;
6572}
6573
6574static struct symbol *
6575find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6576{
7f0df278 6577 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6578 char *rename;
6579
6580 if (function_sym != NULL)
6581 {
6582 /* If the symbol is defined inside a function, NAME is not fully
6583 qualified. This means we need to prepend the function name
6584 as well as adding the ``___XR'' suffix to build the name of
6585 the associated renaming symbol. */
6586 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6587 /* Function names sometimes contain suffixes used
6588 for instance to qualify nested subprograms. When building
6589 the XR type name, we need to make sure that this suffix is
6590 not included. So do not include any suffix in the function
6591 name length below. */
6592 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6593 const int rename_len = function_name_len + 2 /* "__" */
6594 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6595
529cad9c
PH
6596 /* Strip the suffix if necessary. */
6597 function_name[function_name_len] = '\0';
6598
4c4b4cd2
PH
6599 /* Library-level functions are a special case, as GNAT adds
6600 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6601 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6602 have this prefix, so we need to skip this prefix if present. */
6603 if (function_name_len > 5 /* "_ada_" */
6604 && strstr (function_name, "_ada_") == function_name)
6605 function_name = function_name + 5;
6606
6607 rename = (char *) alloca (rename_len * sizeof (char));
6608 sprintf (rename, "%s__%s___XR", function_name, name);
6609 }
6610 else
6611 {
6612 const int rename_len = strlen (name) + 6;
6613 rename = (char *) alloca (rename_len * sizeof (char));
6614 sprintf (rename, "%s___XR", name);
6615 }
6616
6617 return ada_find_any_symbol (rename);
6618}
6619
14f9c5c9 6620/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6621 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6622 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6623 otherwise return 0. */
6624
14f9c5c9 6625int
d2e4a39e 6626ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6627{
6628 if (type1 == NULL)
6629 return 1;
6630 else if (type0 == NULL)
6631 return 0;
6632 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6633 return 1;
6634 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6635 return 0;
4c4b4cd2
PH
6636 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6637 return 1;
14f9c5c9
AS
6638 else if (ada_is_packed_array_type (type0))
6639 return 1;
4c4b4cd2
PH
6640 else if (ada_is_array_descriptor_type (type0)
6641 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6642 return 1;
aeb5907d
JB
6643 else
6644 {
6645 const char *type0_name = type_name_no_tag (type0);
6646 const char *type1_name = type_name_no_tag (type1);
6647
6648 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6649 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6650 return 1;
6651 }
14f9c5c9
AS
6652 return 0;
6653}
6654
6655/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6656 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6657
d2e4a39e
AS
6658char *
6659ada_type_name (struct type *type)
14f9c5c9 6660{
d2e4a39e 6661 if (type == NULL)
14f9c5c9
AS
6662 return NULL;
6663 else if (TYPE_NAME (type) != NULL)
6664 return TYPE_NAME (type);
6665 else
6666 return TYPE_TAG_NAME (type);
6667}
6668
6669/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6670 SUFFIX to the name of TYPE. */
14f9c5c9 6671
d2e4a39e 6672struct type *
ebf56fd3 6673ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6674{
d2e4a39e 6675 static char *name;
14f9c5c9 6676 static size_t name_len = 0;
14f9c5c9 6677 int len;
d2e4a39e
AS
6678 char *typename = ada_type_name (type);
6679
14f9c5c9
AS
6680 if (typename == NULL)
6681 return NULL;
6682
6683 len = strlen (typename);
6684
d2e4a39e 6685 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6686
6687 strcpy (name, typename);
6688 strcpy (name + len, suffix);
6689
6690 return ada_find_any_type (name);
6691}
6692
6693
6694/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6695 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6696
d2e4a39e
AS
6697static struct type *
6698dynamic_template_type (struct type *type)
14f9c5c9 6699{
61ee279c 6700 type = ada_check_typedef (type);
14f9c5c9
AS
6701
6702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6703 || ada_type_name (type) == NULL)
14f9c5c9 6704 return NULL;
d2e4a39e 6705 else
14f9c5c9
AS
6706 {
6707 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6708 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6709 return type;
14f9c5c9 6710 else
4c4b4cd2 6711 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6712 }
6713}
6714
6715/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6716 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6717
d2e4a39e
AS
6718static int
6719is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6720{
6721 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6722 return name != NULL
14f9c5c9
AS
6723 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6724 && strstr (name, "___XVL") != NULL;
6725}
6726
4c4b4cd2
PH
6727/* The index of the variant field of TYPE, or -1 if TYPE does not
6728 represent a variant record type. */
14f9c5c9 6729
d2e4a39e 6730static int
4c4b4cd2 6731variant_field_index (struct type *type)
14f9c5c9
AS
6732{
6733 int f;
6734
4c4b4cd2
PH
6735 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6736 return -1;
6737
6738 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6739 {
6740 if (ada_is_variant_part (type, f))
6741 return f;
6742 }
6743 return -1;
14f9c5c9
AS
6744}
6745
4c4b4cd2
PH
6746/* A record type with no fields. */
6747
d2e4a39e
AS
6748static struct type *
6749empty_record (struct objfile *objfile)
14f9c5c9 6750{
d2e4a39e 6751 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6752 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6753 TYPE_NFIELDS (type) = 0;
6754 TYPE_FIELDS (type) = NULL;
b1f33ddd 6755 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6756 TYPE_NAME (type) = "<empty>";
6757 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6758 TYPE_LENGTH (type) = 0;
6759 return type;
6760}
6761
6762/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6763 the value of type TYPE at VALADDR or ADDRESS (see comments at
6764 the beginning of this section) VAL according to GNAT conventions.
6765 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6766 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6767 an outer-level type (i.e., as opposed to a branch of a variant.) A
6768 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6769 of the variant.
14f9c5c9 6770
4c4b4cd2
PH
6771 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6772 length are not statically known are discarded. As a consequence,
6773 VALADDR, ADDRESS and DVAL0 are ignored.
6774
6775 NOTE: Limitations: For now, we assume that dynamic fields and
6776 variants occupy whole numbers of bytes. However, they need not be
6777 byte-aligned. */
6778
6779struct type *
10a2c479 6780ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6781 const gdb_byte *valaddr,
4c4b4cd2
PH
6782 CORE_ADDR address, struct value *dval0,
6783 int keep_dynamic_fields)
14f9c5c9 6784{
d2e4a39e
AS
6785 struct value *mark = value_mark ();
6786 struct value *dval;
6787 struct type *rtype;
14f9c5c9 6788 int nfields, bit_len;
4c4b4cd2 6789 int variant_field;
14f9c5c9 6790 long off;
4c4b4cd2 6791 int fld_bit_len, bit_incr;
14f9c5c9
AS
6792 int f;
6793
4c4b4cd2
PH
6794 /* Compute the number of fields in this record type that are going
6795 to be processed: unless keep_dynamic_fields, this includes only
6796 fields whose position and length are static will be processed. */
6797 if (keep_dynamic_fields)
6798 nfields = TYPE_NFIELDS (type);
6799 else
6800 {
6801 nfields = 0;
76a01679 6802 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6803 && !ada_is_variant_part (type, nfields)
6804 && !is_dynamic_field (type, nfields))
6805 nfields++;
6806 }
6807
14f9c5c9
AS
6808 rtype = alloc_type (TYPE_OBJFILE (type));
6809 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6810 INIT_CPLUS_SPECIFIC (rtype);
6811 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6812 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6813 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6814 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6815 TYPE_NAME (rtype) = ada_type_name (type);
6816 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6817 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6818
d2e4a39e
AS
6819 off = 0;
6820 bit_len = 0;
4c4b4cd2
PH
6821 variant_field = -1;
6822
14f9c5c9
AS
6823 for (f = 0; f < nfields; f += 1)
6824 {
6c038f32
PH
6825 off = align_value (off, field_alignment (type, f))
6826 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6827 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6828 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6829
d2e4a39e 6830 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6831 {
6832 variant_field = f;
6833 fld_bit_len = bit_incr = 0;
6834 }
14f9c5c9 6835 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
6836 {
6837 if (dval0 == NULL)
b5304971
JG
6838 {
6839 /* rtype's length is computed based on the run-time
6840 value of discriminants. If the discriminants are not
6841 initialized, the type size may be completely bogus and
6842 GDB may fail to allocate a value for it. So check the
6843 size first before creating the value. */
6844 check_size (rtype);
6845 dval = value_from_contents_and_address (rtype, valaddr, address);
6846 }
4c4b4cd2
PH
6847 else
6848 dval = dval0;
6849
1ed6ede0
JB
6850 /* Get the fixed type of the field. Note that, in this case, we
6851 do not want to get the real type out of the tag: if the current
6852 field is the parent part of a tagged record, we will get the
6853 tag of the object. Clearly wrong: the real type of the parent
6854 is not the real type of the child. We would end up in an infinite
6855 loop. */
4c4b4cd2
PH
6856 TYPE_FIELD_TYPE (rtype, f) =
6857 ada_to_fixed_type
6858 (ada_get_base_type
6859 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6860 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 6861 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
6862 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6863 bit_incr = fld_bit_len =
6864 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6865 }
14f9c5c9 6866 else
4c4b4cd2
PH
6867 {
6868 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6869 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6870 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6871 bit_incr = fld_bit_len =
6872 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6873 else
6874 bit_incr = fld_bit_len =
6875 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6876 }
14f9c5c9 6877 if (off + fld_bit_len > bit_len)
4c4b4cd2 6878 bit_len = off + fld_bit_len;
14f9c5c9 6879 off += bit_incr;
4c4b4cd2
PH
6880 TYPE_LENGTH (rtype) =
6881 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6882 }
4c4b4cd2
PH
6883
6884 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6885 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6886 the record. This can happen in the presence of representation
6887 clauses. */
6888 if (variant_field >= 0)
6889 {
6890 struct type *branch_type;
6891
6892 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6893
6894 if (dval0 == NULL)
6895 dval = value_from_contents_and_address (rtype, valaddr, address);
6896 else
6897 dval = dval0;
6898
6899 branch_type =
6900 to_fixed_variant_branch_type
6901 (TYPE_FIELD_TYPE (type, variant_field),
6902 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6903 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6904 if (branch_type == NULL)
6905 {
6906 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6907 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6908 TYPE_NFIELDS (rtype) -= 1;
6909 }
6910 else
6911 {
6912 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6913 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6914 fld_bit_len =
6915 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6916 TARGET_CHAR_BIT;
6917 if (off + fld_bit_len > bit_len)
6918 bit_len = off + fld_bit_len;
6919 TYPE_LENGTH (rtype) =
6920 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6921 }
6922 }
6923
714e53ab
PH
6924 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6925 should contain the alignment of that record, which should be a strictly
6926 positive value. If null or negative, then something is wrong, most
6927 probably in the debug info. In that case, we don't round up the size
6928 of the resulting type. If this record is not part of another structure,
6929 the current RTYPE length might be good enough for our purposes. */
6930 if (TYPE_LENGTH (type) <= 0)
6931 {
323e0a4a
AC
6932 if (TYPE_NAME (rtype))
6933 warning (_("Invalid type size for `%s' detected: %d."),
6934 TYPE_NAME (rtype), TYPE_LENGTH (type));
6935 else
6936 warning (_("Invalid type size for <unnamed> detected: %d."),
6937 TYPE_LENGTH (type));
714e53ab
PH
6938 }
6939 else
6940 {
6941 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6942 TYPE_LENGTH (type));
6943 }
14f9c5c9
AS
6944
6945 value_free_to_mark (mark);
d2e4a39e 6946 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6947 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6948 return rtype;
6949}
6950
4c4b4cd2
PH
6951/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6952 of 1. */
14f9c5c9 6953
d2e4a39e 6954static struct type *
fc1a4b47 6955template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6956 CORE_ADDR address, struct value *dval0)
6957{
6958 return ada_template_to_fixed_record_type_1 (type, valaddr,
6959 address, dval0, 1);
6960}
6961
6962/* An ordinary record type in which ___XVL-convention fields and
6963 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6964 static approximations, containing all possible fields. Uses
6965 no runtime values. Useless for use in values, but that's OK,
6966 since the results are used only for type determinations. Works on both
6967 structs and unions. Representation note: to save space, we memorize
6968 the result of this function in the TYPE_TARGET_TYPE of the
6969 template type. */
6970
6971static struct type *
6972template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6973{
6974 struct type *type;
6975 int nfields;
6976 int f;
6977
4c4b4cd2
PH
6978 if (TYPE_TARGET_TYPE (type0) != NULL)
6979 return TYPE_TARGET_TYPE (type0);
6980
6981 nfields = TYPE_NFIELDS (type0);
6982 type = type0;
14f9c5c9
AS
6983
6984 for (f = 0; f < nfields; f += 1)
6985 {
61ee279c 6986 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6987 struct type *new_type;
14f9c5c9 6988
4c4b4cd2
PH
6989 if (is_dynamic_field (type0, f))
6990 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6991 else
f192137b 6992 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6993 if (type == type0 && new_type != field_type)
6994 {
6995 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6996 TYPE_CODE (type) = TYPE_CODE (type0);
6997 INIT_CPLUS_SPECIFIC (type);
6998 TYPE_NFIELDS (type) = nfields;
6999 TYPE_FIELDS (type) = (struct field *)
7000 TYPE_ALLOC (type, nfields * sizeof (struct field));
7001 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7002 sizeof (struct field) * nfields);
7003 TYPE_NAME (type) = ada_type_name (type0);
7004 TYPE_TAG_NAME (type) = NULL;
876cecd0 7005 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7006 TYPE_LENGTH (type) = 0;
7007 }
7008 TYPE_FIELD_TYPE (type, f) = new_type;
7009 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7010 }
14f9c5c9
AS
7011 return type;
7012}
7013
4c4b4cd2 7014/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7015 whose address in memory is ADDRESS, returns a revision of TYPE,
7016 which should be a non-dynamic-sized record, in which the variant
7017 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7018 for discriminant values in DVAL0, which can be NULL if the record
7019 contains the necessary discriminant values. */
7020
d2e4a39e 7021static struct type *
fc1a4b47 7022to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7023 CORE_ADDR address, struct value *dval0)
14f9c5c9 7024{
d2e4a39e 7025 struct value *mark = value_mark ();
4c4b4cd2 7026 struct value *dval;
d2e4a39e 7027 struct type *rtype;
14f9c5c9
AS
7028 struct type *branch_type;
7029 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7030 int variant_field = variant_field_index (type);
14f9c5c9 7031
4c4b4cd2 7032 if (variant_field == -1)
14f9c5c9
AS
7033 return type;
7034
4c4b4cd2
PH
7035 if (dval0 == NULL)
7036 dval = value_from_contents_and_address (type, valaddr, address);
7037 else
7038 dval = dval0;
7039
14f9c5c9
AS
7040 rtype = alloc_type (TYPE_OBJFILE (type));
7041 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7042 INIT_CPLUS_SPECIFIC (rtype);
7043 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7044 TYPE_FIELDS (rtype) =
7045 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7046 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7047 sizeof (struct field) * nfields);
14f9c5c9
AS
7048 TYPE_NAME (rtype) = ada_type_name (type);
7049 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7050 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7051 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7052
4c4b4cd2
PH
7053 branch_type = to_fixed_variant_branch_type
7054 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7055 cond_offset_host (valaddr,
4c4b4cd2
PH
7056 TYPE_FIELD_BITPOS (type, variant_field)
7057 / TARGET_CHAR_BIT),
d2e4a39e 7058 cond_offset_target (address,
4c4b4cd2
PH
7059 TYPE_FIELD_BITPOS (type, variant_field)
7060 / TARGET_CHAR_BIT), dval);
d2e4a39e 7061 if (branch_type == NULL)
14f9c5c9 7062 {
4c4b4cd2
PH
7063 int f;
7064 for (f = variant_field + 1; f < nfields; f += 1)
7065 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7066 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7067 }
7068 else
7069 {
4c4b4cd2
PH
7070 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7071 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7072 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7073 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7074 }
4c4b4cd2 7075 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7076
4c4b4cd2 7077 value_free_to_mark (mark);
14f9c5c9
AS
7078 return rtype;
7079}
7080
7081/* An ordinary record type (with fixed-length fields) that describes
7082 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7083 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7084 should be in DVAL, a record value; it may be NULL if the object
7085 at ADDR itself contains any necessary discriminant values.
7086 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7087 values from the record are needed. Except in the case that DVAL,
7088 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7089 unchecked) is replaced by a particular branch of the variant.
7090
7091 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7092 is questionable and may be removed. It can arise during the
7093 processing of an unconstrained-array-of-record type where all the
7094 variant branches have exactly the same size. This is because in
7095 such cases, the compiler does not bother to use the XVS convention
7096 when encoding the record. I am currently dubious of this
7097 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7098
d2e4a39e 7099static struct type *
fc1a4b47 7100to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7101 CORE_ADDR address, struct value *dval)
14f9c5c9 7102{
d2e4a39e 7103 struct type *templ_type;
14f9c5c9 7104
876cecd0 7105 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7106 return type0;
7107
d2e4a39e 7108 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7109
7110 if (templ_type != NULL)
7111 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7112 else if (variant_field_index (type0) >= 0)
7113 {
7114 if (dval == NULL && valaddr == NULL && address == 0)
7115 return type0;
7116 return to_record_with_fixed_variant_part (type0, valaddr, address,
7117 dval);
7118 }
14f9c5c9
AS
7119 else
7120 {
876cecd0 7121 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7122 return type0;
7123 }
7124
7125}
7126
7127/* An ordinary record type (with fixed-length fields) that describes
7128 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7129 union type. Any necessary discriminants' values should be in DVAL,
7130 a record value. That is, this routine selects the appropriate
7131 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7132 indicated in the union's type name. Returns VAR_TYPE0 itself if
7133 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7134
d2e4a39e 7135static struct type *
fc1a4b47 7136to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7137 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7138{
7139 int which;
d2e4a39e
AS
7140 struct type *templ_type;
7141 struct type *var_type;
14f9c5c9
AS
7142
7143 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7144 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7145 else
14f9c5c9
AS
7146 var_type = var_type0;
7147
7148 templ_type = ada_find_parallel_type (var_type, "___XVU");
7149
7150 if (templ_type != NULL)
7151 var_type = templ_type;
7152
b1f33ddd
JB
7153 if (is_unchecked_variant (var_type, value_type (dval)))
7154 return var_type0;
d2e4a39e
AS
7155 which =
7156 ada_which_variant_applies (var_type,
0fd88904 7157 value_type (dval), value_contents (dval));
14f9c5c9
AS
7158
7159 if (which < 0)
7160 return empty_record (TYPE_OBJFILE (var_type));
7161 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7162 return to_fixed_record_type
d2e4a39e
AS
7163 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7164 valaddr, address, dval);
4c4b4cd2 7165 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7166 return
7167 to_fixed_record_type
7168 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7169 else
7170 return TYPE_FIELD_TYPE (var_type, which);
7171}
7172
7173/* Assuming that TYPE0 is an array type describing the type of a value
7174 at ADDR, and that DVAL describes a record containing any
7175 discriminants used in TYPE0, returns a type for the value that
7176 contains no dynamic components (that is, no components whose sizes
7177 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7178 true, gives an error message if the resulting type's size is over
4c4b4cd2 7179 varsize_limit. */
14f9c5c9 7180
d2e4a39e
AS
7181static struct type *
7182to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7183 int ignore_too_big)
14f9c5c9 7184{
d2e4a39e
AS
7185 struct type *index_type_desc;
7186 struct type *result;
14f9c5c9 7187
4c4b4cd2 7188 if (ada_is_packed_array_type (type0) /* revisit? */
876cecd0 7189 || TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7190 return type0;
14f9c5c9
AS
7191
7192 index_type_desc = ada_find_parallel_type (type0, "___XA");
7193 if (index_type_desc == NULL)
7194 {
61ee279c 7195 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7196 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7197 depend on the contents of the array in properly constructed
7198 debugging data. */
529cad9c
PH
7199 /* Create a fixed version of the array element type.
7200 We're not providing the address of an element here,
e1d5a0d2 7201 and thus the actual object value cannot be inspected to do
529cad9c
PH
7202 the conversion. This should not be a problem, since arrays of
7203 unconstrained objects are not allowed. In particular, all
7204 the elements of an array of a tagged type should all be of
7205 the same type specified in the debugging info. No need to
7206 consult the object tag. */
1ed6ede0 7207 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7208
7209 if (elt_type0 == elt_type)
4c4b4cd2 7210 result = type0;
14f9c5c9 7211 else
4c4b4cd2
PH
7212 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7213 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7214 }
7215 else
7216 {
7217 int i;
7218 struct type *elt_type0;
7219
7220 elt_type0 = type0;
7221 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7222 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7223
7224 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7225 depend on the contents of the array in properly constructed
7226 debugging data. */
529cad9c
PH
7227 /* Create a fixed version of the array element type.
7228 We're not providing the address of an element here,
e1d5a0d2 7229 and thus the actual object value cannot be inspected to do
529cad9c
PH
7230 the conversion. This should not be a problem, since arrays of
7231 unconstrained objects are not allowed. In particular, all
7232 the elements of an array of a tagged type should all be of
7233 the same type specified in the debugging info. No need to
7234 consult the object tag. */
1ed6ede0
JB
7235 result =
7236 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7237 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7238 {
7239 struct type *range_type =
7240 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7241 dval, TYPE_OBJFILE (type0));
7242 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7243 result, range_type);
7244 }
d2e4a39e 7245 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7246 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7247 }
7248
876cecd0 7249 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7250 return result;
d2e4a39e 7251}
14f9c5c9
AS
7252
7253
7254/* A standard type (containing no dynamically sized components)
7255 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7256 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7257 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7258 ADDRESS or in VALADDR contains these discriminants.
7259
1ed6ede0
JB
7260 If CHECK_TAG is not null, in the case of tagged types, this function
7261 attempts to locate the object's tag and use it to compute the actual
7262 type. However, when ADDRESS is null, we cannot use it to determine the
7263 location of the tag, and therefore compute the tagged type's actual type.
7264 So we return the tagged type without consulting the tag. */
529cad9c 7265
f192137b
JB
7266static struct type *
7267ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7268 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7269{
61ee279c 7270 type = ada_check_typedef (type);
d2e4a39e
AS
7271 switch (TYPE_CODE (type))
7272 {
7273 default:
14f9c5c9 7274 return type;
d2e4a39e 7275 case TYPE_CODE_STRUCT:
4c4b4cd2 7276 {
76a01679 7277 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7278 struct type *fixed_record_type =
7279 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7280 /* If STATIC_TYPE is a tagged type and we know the object's address,
7281 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7282 type from there. Note that we have to use the fixed record
7283 type (the parent part of the record may have dynamic fields
7284 and the way the location of _tag is expressed may depend on
7285 them). */
529cad9c 7286
1ed6ede0 7287 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7288 {
7289 struct type *real_type =
1ed6ede0
JB
7290 type_from_tag (value_tag_from_contents_and_address
7291 (fixed_record_type,
7292 valaddr,
7293 address));
76a01679 7294 if (real_type != NULL)
1ed6ede0 7295 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7296 }
4af88198
JB
7297
7298 /* Check to see if there is a parallel ___XVZ variable.
7299 If there is, then it provides the actual size of our type. */
7300 else if (ada_type_name (fixed_record_type) != NULL)
7301 {
7302 char *name = ada_type_name (fixed_record_type);
7303 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7304 int xvz_found = 0;
7305 LONGEST size;
7306
7307 sprintf (xvz_name, "%s___XVZ", name);
7308 size = get_int_var_value (xvz_name, &xvz_found);
7309 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7310 {
7311 fixed_record_type = copy_type (fixed_record_type);
7312 TYPE_LENGTH (fixed_record_type) = size;
7313
7314 /* The FIXED_RECORD_TYPE may have be a stub. We have
7315 observed this when the debugging info is STABS, and
7316 apparently it is something that is hard to fix.
7317
7318 In practice, we don't need the actual type definition
7319 at all, because the presence of the XVZ variable allows us
7320 to assume that there must be a XVS type as well, which we
7321 should be able to use later, when we need the actual type
7322 definition.
7323
7324 In the meantime, pretend that the "fixed" type we are
7325 returning is NOT a stub, because this can cause trouble
7326 when using this type to create new types targeting it.
7327 Indeed, the associated creation routines often check
7328 whether the target type is a stub and will try to replace
7329 it, thus using a type with the wrong size. This, in turn,
7330 might cause the new type to have the wrong size too.
7331 Consider the case of an array, for instance, where the size
7332 of the array is computed from the number of elements in
7333 our array multiplied by the size of its element. */
7334 TYPE_STUB (fixed_record_type) = 0;
7335 }
7336 }
1ed6ede0 7337 return fixed_record_type;
4c4b4cd2 7338 }
d2e4a39e 7339 case TYPE_CODE_ARRAY:
4c4b4cd2 7340 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7341 case TYPE_CODE_UNION:
7342 if (dval == NULL)
4c4b4cd2 7343 return type;
d2e4a39e 7344 else
4c4b4cd2 7345 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7346 }
14f9c5c9
AS
7347}
7348
f192137b
JB
7349/* The same as ada_to_fixed_type_1, except that it preserves the type
7350 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7351 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7352
7353struct type *
7354ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7355 CORE_ADDR address, struct value *dval, int check_tag)
7356
7357{
7358 struct type *fixed_type =
7359 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7360
7361 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7362 && TYPE_TARGET_TYPE (type) == fixed_type)
7363 return type;
7364
7365 return fixed_type;
7366}
7367
14f9c5c9 7368/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7369 TYPE0, but based on no runtime data. */
14f9c5c9 7370
d2e4a39e
AS
7371static struct type *
7372to_static_fixed_type (struct type *type0)
14f9c5c9 7373{
d2e4a39e 7374 struct type *type;
14f9c5c9
AS
7375
7376 if (type0 == NULL)
7377 return NULL;
7378
876cecd0 7379 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7380 return type0;
7381
61ee279c 7382 type0 = ada_check_typedef (type0);
d2e4a39e 7383
14f9c5c9
AS
7384 switch (TYPE_CODE (type0))
7385 {
7386 default:
7387 return type0;
7388 case TYPE_CODE_STRUCT:
7389 type = dynamic_template_type (type0);
d2e4a39e 7390 if (type != NULL)
4c4b4cd2
PH
7391 return template_to_static_fixed_type (type);
7392 else
7393 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7394 case TYPE_CODE_UNION:
7395 type = ada_find_parallel_type (type0, "___XVU");
7396 if (type != NULL)
4c4b4cd2
PH
7397 return template_to_static_fixed_type (type);
7398 else
7399 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7400 }
7401}
7402
4c4b4cd2
PH
7403/* A static approximation of TYPE with all type wrappers removed. */
7404
d2e4a39e
AS
7405static struct type *
7406static_unwrap_type (struct type *type)
14f9c5c9
AS
7407{
7408 if (ada_is_aligner_type (type))
7409 {
61ee279c 7410 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7411 if (ada_type_name (type1) == NULL)
4c4b4cd2 7412 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7413
7414 return static_unwrap_type (type1);
7415 }
d2e4a39e 7416 else
14f9c5c9 7417 {
d2e4a39e
AS
7418 struct type *raw_real_type = ada_get_base_type (type);
7419 if (raw_real_type == type)
4c4b4cd2 7420 return type;
14f9c5c9 7421 else
4c4b4cd2 7422 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7423 }
7424}
7425
7426/* In some cases, incomplete and private types require
4c4b4cd2 7427 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7428 type Foo;
7429 type FooP is access Foo;
7430 V: FooP;
7431 type Foo is array ...;
4c4b4cd2 7432 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7433 cross-references to such types, we instead substitute for FooP a
7434 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7435 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7436
7437/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7438 exists, otherwise TYPE. */
7439
d2e4a39e 7440struct type *
61ee279c 7441ada_check_typedef (struct type *type)
14f9c5c9 7442{
727e3d2e
JB
7443 if (type == NULL)
7444 return NULL;
7445
14f9c5c9
AS
7446 CHECK_TYPEDEF (type);
7447 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7448 || !TYPE_STUB (type)
14f9c5c9
AS
7449 || TYPE_TAG_NAME (type) == NULL)
7450 return type;
d2e4a39e 7451 else
14f9c5c9 7452 {
d2e4a39e
AS
7453 char *name = TYPE_TAG_NAME (type);
7454 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7455 return (type1 == NULL) ? type : type1;
7456 }
7457}
7458
7459/* A value representing the data at VALADDR/ADDRESS as described by
7460 type TYPE0, but with a standard (static-sized) type that correctly
7461 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7462 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7463 creation of struct values]. */
14f9c5c9 7464
4c4b4cd2
PH
7465static struct value *
7466ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7467 struct value *val0)
14f9c5c9 7468{
1ed6ede0 7469 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7470 if (type == type0 && val0 != NULL)
7471 return val0;
d2e4a39e 7472 else
4c4b4cd2
PH
7473 return value_from_contents_and_address (type, 0, address);
7474}
7475
7476/* A value representing VAL, but with a standard (static-sized) type
7477 that correctly describes it. Does not necessarily create a new
7478 value. */
7479
7480static struct value *
7481ada_to_fixed_value (struct value *val)
7482{
df407dfe
AC
7483 return ada_to_fixed_value_create (value_type (val),
7484 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7485 val);
14f9c5c9
AS
7486}
7487
4c4b4cd2 7488/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7489 chosen to approximate the real type of VAL as well as possible, but
7490 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7491 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7492
2c0b251b 7493static struct value *
d2e4a39e 7494ada_to_static_fixed_value (struct value *val)
14f9c5c9 7495{
d2e4a39e 7496 struct type *type =
df407dfe
AC
7497 to_static_fixed_type (static_unwrap_type (value_type (val)));
7498 if (type == value_type (val))
14f9c5c9
AS
7499 return val;
7500 else
4c4b4cd2 7501 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7502}
d2e4a39e 7503\f
14f9c5c9 7504
14f9c5c9
AS
7505/* Attributes */
7506
4c4b4cd2
PH
7507/* Table mapping attribute numbers to names.
7508 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7509
d2e4a39e 7510static const char *attribute_names[] = {
14f9c5c9
AS
7511 "<?>",
7512
d2e4a39e 7513 "first",
14f9c5c9
AS
7514 "last",
7515 "length",
7516 "image",
14f9c5c9
AS
7517 "max",
7518 "min",
4c4b4cd2
PH
7519 "modulus",
7520 "pos",
7521 "size",
7522 "tag",
14f9c5c9 7523 "val",
14f9c5c9
AS
7524 0
7525};
7526
d2e4a39e 7527const char *
4c4b4cd2 7528ada_attribute_name (enum exp_opcode n)
14f9c5c9 7529{
4c4b4cd2
PH
7530 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7531 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7532 else
7533 return attribute_names[0];
7534}
7535
4c4b4cd2 7536/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7537
4c4b4cd2
PH
7538static LONGEST
7539pos_atr (struct value *arg)
14f9c5c9 7540{
24209737
PH
7541 struct value *val = coerce_ref (arg);
7542 struct type *type = value_type (val);
14f9c5c9 7543
d2e4a39e 7544 if (!discrete_type_p (type))
323e0a4a 7545 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7546
7547 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7548 {
7549 int i;
24209737 7550 LONGEST v = value_as_long (val);
14f9c5c9 7551
d2e4a39e 7552 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7553 {
7554 if (v == TYPE_FIELD_BITPOS (type, i))
7555 return i;
7556 }
323e0a4a 7557 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7558 }
7559 else
24209737 7560 return value_as_long (val);
4c4b4cd2
PH
7561}
7562
7563static struct value *
3cb382c9 7564value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7565{
3cb382c9 7566 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7567}
7568
4c4b4cd2 7569/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7570
d2e4a39e
AS
7571static struct value *
7572value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7573{
d2e4a39e 7574 if (!discrete_type_p (type))
323e0a4a 7575 error (_("'VAL only defined on discrete types"));
df407dfe 7576 if (!integer_type_p (value_type (arg)))
323e0a4a 7577 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7578
7579 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7580 {
7581 long pos = value_as_long (arg);
7582 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7583 error (_("argument to 'VAL out of range"));
d2e4a39e 7584 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7585 }
7586 else
7587 return value_from_longest (type, value_as_long (arg));
7588}
14f9c5c9 7589\f
d2e4a39e 7590
4c4b4cd2 7591 /* Evaluation */
14f9c5c9 7592
4c4b4cd2
PH
7593/* True if TYPE appears to be an Ada character type.
7594 [At the moment, this is true only for Character and Wide_Character;
7595 It is a heuristic test that could stand improvement]. */
14f9c5c9 7596
d2e4a39e
AS
7597int
7598ada_is_character_type (struct type *type)
14f9c5c9 7599{
7b9f71f2
JB
7600 const char *name;
7601
7602 /* If the type code says it's a character, then assume it really is,
7603 and don't check any further. */
7604 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7605 return 1;
7606
7607 /* Otherwise, assume it's a character type iff it is a discrete type
7608 with a known character type name. */
7609 name = ada_type_name (type);
7610 return (name != NULL
7611 && (TYPE_CODE (type) == TYPE_CODE_INT
7612 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7613 && (strcmp (name, "character") == 0
7614 || strcmp (name, "wide_character") == 0
5a517ebd 7615 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7616 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7617}
7618
4c4b4cd2 7619/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7620
7621int
ebf56fd3 7622ada_is_string_type (struct type *type)
14f9c5c9 7623{
61ee279c 7624 type = ada_check_typedef (type);
d2e4a39e 7625 if (type != NULL
14f9c5c9 7626 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7627 && (ada_is_simple_array_type (type)
7628 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7629 && ada_array_arity (type) == 1)
7630 {
7631 struct type *elttype = ada_array_element_type (type, 1);
7632
7633 return ada_is_character_type (elttype);
7634 }
d2e4a39e 7635 else
14f9c5c9
AS
7636 return 0;
7637}
7638
7639
7640/* True if TYPE is a struct type introduced by the compiler to force the
7641 alignment of a value. Such types have a single field with a
4c4b4cd2 7642 distinctive name. */
14f9c5c9
AS
7643
7644int
ebf56fd3 7645ada_is_aligner_type (struct type *type)
14f9c5c9 7646{
61ee279c 7647 type = ada_check_typedef (type);
714e53ab
PH
7648
7649 /* If we can find a parallel XVS type, then the XVS type should
7650 be used instead of this type. And hence, this is not an aligner
7651 type. */
7652 if (ada_find_parallel_type (type, "___XVS") != NULL)
7653 return 0;
7654
14f9c5c9 7655 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7656 && TYPE_NFIELDS (type) == 1
7657 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7658}
7659
7660/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7661 the parallel type. */
14f9c5c9 7662
d2e4a39e
AS
7663struct type *
7664ada_get_base_type (struct type *raw_type)
14f9c5c9 7665{
d2e4a39e
AS
7666 struct type *real_type_namer;
7667 struct type *raw_real_type;
14f9c5c9
AS
7668
7669 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7670 return raw_type;
7671
7672 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7673 if (real_type_namer == NULL
14f9c5c9
AS
7674 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7675 || TYPE_NFIELDS (real_type_namer) != 1)
7676 return raw_type;
7677
7678 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7679 if (raw_real_type == NULL)
14f9c5c9
AS
7680 return raw_type;
7681 else
7682 return raw_real_type;
d2e4a39e 7683}
14f9c5c9 7684
4c4b4cd2 7685/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7686
d2e4a39e
AS
7687struct type *
7688ada_aligned_type (struct type *type)
14f9c5c9
AS
7689{
7690 if (ada_is_aligner_type (type))
7691 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7692 else
7693 return ada_get_base_type (type);
7694}
7695
7696
7697/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7698 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7699
fc1a4b47
AC
7700const gdb_byte *
7701ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7702{
d2e4a39e 7703 if (ada_is_aligner_type (type))
14f9c5c9 7704 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7705 valaddr +
7706 TYPE_FIELD_BITPOS (type,
7707 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7708 else
7709 return valaddr;
7710}
7711
4c4b4cd2
PH
7712
7713
14f9c5c9 7714/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7715 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7716const char *
7717ada_enum_name (const char *name)
14f9c5c9 7718{
4c4b4cd2
PH
7719 static char *result;
7720 static size_t result_len = 0;
d2e4a39e 7721 char *tmp;
14f9c5c9 7722
4c4b4cd2
PH
7723 /* First, unqualify the enumeration name:
7724 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7725 all the preceeding characters, the unqualified name starts
7726 right after that dot.
4c4b4cd2 7727 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7728 translates dots into "__". Search forward for double underscores,
7729 but stop searching when we hit an overloading suffix, which is
7730 of the form "__" followed by digits. */
4c4b4cd2 7731
c3e5cd34
PH
7732 tmp = strrchr (name, '.');
7733 if (tmp != NULL)
4c4b4cd2
PH
7734 name = tmp + 1;
7735 else
14f9c5c9 7736 {
4c4b4cd2
PH
7737 while ((tmp = strstr (name, "__")) != NULL)
7738 {
7739 if (isdigit (tmp[2]))
7740 break;
7741 else
7742 name = tmp + 2;
7743 }
14f9c5c9
AS
7744 }
7745
7746 if (name[0] == 'Q')
7747 {
14f9c5c9
AS
7748 int v;
7749 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7750 {
7751 if (sscanf (name + 2, "%x", &v) != 1)
7752 return name;
7753 }
14f9c5c9 7754 else
4c4b4cd2 7755 return name;
14f9c5c9 7756
4c4b4cd2 7757 GROW_VECT (result, result_len, 16);
14f9c5c9 7758 if (isascii (v) && isprint (v))
4c4b4cd2 7759 sprintf (result, "'%c'", v);
14f9c5c9 7760 else if (name[1] == 'U')
4c4b4cd2 7761 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7762 else
4c4b4cd2 7763 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7764
7765 return result;
7766 }
d2e4a39e 7767 else
4c4b4cd2 7768 {
c3e5cd34
PH
7769 tmp = strstr (name, "__");
7770 if (tmp == NULL)
7771 tmp = strstr (name, "$");
7772 if (tmp != NULL)
4c4b4cd2
PH
7773 {
7774 GROW_VECT (result, result_len, tmp - name + 1);
7775 strncpy (result, name, tmp - name);
7776 result[tmp - name] = '\0';
7777 return result;
7778 }
7779
7780 return name;
7781 }
14f9c5c9
AS
7782}
7783
d2e4a39e 7784static struct value *
ebf56fd3 7785evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7786 enum noside noside)
14f9c5c9 7787{
76a01679 7788 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7789 (expect_type, exp, pos, noside);
14f9c5c9
AS
7790}
7791
7792/* Evaluate the subexpression of EXP starting at *POS as for
7793 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7794 expression. */
14f9c5c9 7795
d2e4a39e
AS
7796static struct value *
7797evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7798{
4c4b4cd2 7799 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7800 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7801}
7802
7803/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7804 value it wraps. */
14f9c5c9 7805
d2e4a39e
AS
7806static struct value *
7807unwrap_value (struct value *val)
14f9c5c9 7808{
df407dfe 7809 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7810 if (ada_is_aligner_type (type))
7811 {
de4d072f 7812 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7813 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7814 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7815 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7816
7817 return unwrap_value (v);
7818 }
d2e4a39e 7819 else
14f9c5c9 7820 {
d2e4a39e 7821 struct type *raw_real_type =
61ee279c 7822 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7823
14f9c5c9 7824 if (type == raw_real_type)
4c4b4cd2 7825 return val;
14f9c5c9 7826
d2e4a39e 7827 return
4c4b4cd2
PH
7828 coerce_unspec_val_to_type
7829 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 7830 VALUE_ADDRESS (val) + value_offset (val),
1ed6ede0 7831 NULL, 1));
14f9c5c9
AS
7832 }
7833}
d2e4a39e
AS
7834
7835static struct value *
7836cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7837{
7838 LONGEST val;
7839
df407dfe 7840 if (type == value_type (arg))
14f9c5c9 7841 return arg;
df407dfe 7842 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7843 val = ada_float_to_fixed (type,
df407dfe 7844 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7845 value_as_long (arg)));
d2e4a39e 7846 else
14f9c5c9 7847 {
a53b7a21 7848 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7849 val = ada_float_to_fixed (type, argd);
7850 }
7851
7852 return value_from_longest (type, val);
7853}
7854
d2e4a39e 7855static struct value *
a53b7a21 7856cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7857{
df407dfe 7858 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7859 value_as_long (arg));
a53b7a21 7860 return value_from_double (type, val);
14f9c5c9
AS
7861}
7862
4c4b4cd2
PH
7863/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7864 return the converted value. */
7865
d2e4a39e
AS
7866static struct value *
7867coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7868{
df407dfe 7869 struct type *type2 = value_type (val);
14f9c5c9
AS
7870 if (type == type2)
7871 return val;
7872
61ee279c
PH
7873 type2 = ada_check_typedef (type2);
7874 type = ada_check_typedef (type);
14f9c5c9 7875
d2e4a39e
AS
7876 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7877 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7878 {
7879 val = ada_value_ind (val);
df407dfe 7880 type2 = value_type (val);
14f9c5c9
AS
7881 }
7882
d2e4a39e 7883 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7884 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7885 {
7886 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7887 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7888 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7889 error (_("Incompatible types in assignment"));
04624583 7890 deprecated_set_value_type (val, type);
14f9c5c9 7891 }
d2e4a39e 7892 return val;
14f9c5c9
AS
7893}
7894
4c4b4cd2
PH
7895static struct value *
7896ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7897{
7898 struct value *val;
7899 struct type *type1, *type2;
7900 LONGEST v, v1, v2;
7901
994b9211
AC
7902 arg1 = coerce_ref (arg1);
7903 arg2 = coerce_ref (arg2);
df407dfe
AC
7904 type1 = base_type (ada_check_typedef (value_type (arg1)));
7905 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7906
76a01679
JB
7907 if (TYPE_CODE (type1) != TYPE_CODE_INT
7908 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7909 return value_binop (arg1, arg2, op);
7910
76a01679 7911 switch (op)
4c4b4cd2
PH
7912 {
7913 case BINOP_MOD:
7914 case BINOP_DIV:
7915 case BINOP_REM:
7916 break;
7917 default:
7918 return value_binop (arg1, arg2, op);
7919 }
7920
7921 v2 = value_as_long (arg2);
7922 if (v2 == 0)
323e0a4a 7923 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7924
7925 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7926 return value_binop (arg1, arg2, op);
7927
7928 v1 = value_as_long (arg1);
7929 switch (op)
7930 {
7931 case BINOP_DIV:
7932 v = v1 / v2;
76a01679
JB
7933 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7934 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7935 break;
7936 case BINOP_REM:
7937 v = v1 % v2;
76a01679
JB
7938 if (v * v1 < 0)
7939 v -= v2;
4c4b4cd2
PH
7940 break;
7941 default:
7942 /* Should not reach this point. */
7943 v = 0;
7944 }
7945
7946 val = allocate_value (type1);
990a07ab 7947 store_unsigned_integer (value_contents_raw (val),
df407dfe 7948 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7949 return val;
7950}
7951
7952static int
7953ada_value_equal (struct value *arg1, struct value *arg2)
7954{
df407dfe
AC
7955 if (ada_is_direct_array_type (value_type (arg1))
7956 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7957 {
f58b38bf
JB
7958 /* Automatically dereference any array reference before
7959 we attempt to perform the comparison. */
7960 arg1 = ada_coerce_ref (arg1);
7961 arg2 = ada_coerce_ref (arg2);
7962
4c4b4cd2
PH
7963 arg1 = ada_coerce_to_simple_array (arg1);
7964 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7965 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7966 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7967 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7968 /* FIXME: The following works only for types whose
76a01679
JB
7969 representations use all bits (no padding or undefined bits)
7970 and do not have user-defined equality. */
7971 return
df407dfe 7972 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7973 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7974 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7975 }
7976 return value_equal (arg1, arg2);
7977}
7978
52ce6436
PH
7979/* Total number of component associations in the aggregate starting at
7980 index PC in EXP. Assumes that index PC is the start of an
7981 OP_AGGREGATE. */
7982
7983static int
7984num_component_specs (struct expression *exp, int pc)
7985{
7986 int n, m, i;
7987 m = exp->elts[pc + 1].longconst;
7988 pc += 3;
7989 n = 0;
7990 for (i = 0; i < m; i += 1)
7991 {
7992 switch (exp->elts[pc].opcode)
7993 {
7994 default:
7995 n += 1;
7996 break;
7997 case OP_CHOICES:
7998 n += exp->elts[pc + 1].longconst;
7999 break;
8000 }
8001 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8002 }
8003 return n;
8004}
8005
8006/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8007 component of LHS (a simple array or a record), updating *POS past
8008 the expression, assuming that LHS is contained in CONTAINER. Does
8009 not modify the inferior's memory, nor does it modify LHS (unless
8010 LHS == CONTAINER). */
8011
8012static void
8013assign_component (struct value *container, struct value *lhs, LONGEST index,
8014 struct expression *exp, int *pos)
8015{
8016 struct value *mark = value_mark ();
8017 struct value *elt;
8018 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8019 {
6d84d3d8 8020 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
8021 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8022 }
8023 else
8024 {
8025 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8026 elt = ada_to_fixed_value (unwrap_value (elt));
8027 }
8028
8029 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8030 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8031 else
8032 value_assign_to_component (container, elt,
8033 ada_evaluate_subexp (NULL, exp, pos,
8034 EVAL_NORMAL));
8035
8036 value_free_to_mark (mark);
8037}
8038
8039/* Assuming that LHS represents an lvalue having a record or array
8040 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8041 of that aggregate's value to LHS, advancing *POS past the
8042 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8043 lvalue containing LHS (possibly LHS itself). Does not modify
8044 the inferior's memory, nor does it modify the contents of
8045 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8046
8047static struct value *
8048assign_aggregate (struct value *container,
8049 struct value *lhs, struct expression *exp,
8050 int *pos, enum noside noside)
8051{
8052 struct type *lhs_type;
8053 int n = exp->elts[*pos+1].longconst;
8054 LONGEST low_index, high_index;
8055 int num_specs;
8056 LONGEST *indices;
8057 int max_indices, num_indices;
8058 int is_array_aggregate;
8059 int i;
8060 struct value *mark = value_mark ();
8061
8062 *pos += 3;
8063 if (noside != EVAL_NORMAL)
8064 {
8065 int i;
8066 for (i = 0; i < n; i += 1)
8067 ada_evaluate_subexp (NULL, exp, pos, noside);
8068 return container;
8069 }
8070
8071 container = ada_coerce_ref (container);
8072 if (ada_is_direct_array_type (value_type (container)))
8073 container = ada_coerce_to_simple_array (container);
8074 lhs = ada_coerce_ref (lhs);
8075 if (!deprecated_value_modifiable (lhs))
8076 error (_("Left operand of assignment is not a modifiable lvalue."));
8077
8078 lhs_type = value_type (lhs);
8079 if (ada_is_direct_array_type (lhs_type))
8080 {
8081 lhs = ada_coerce_to_simple_array (lhs);
8082 lhs_type = value_type (lhs);
8083 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8084 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8085 is_array_aggregate = 1;
8086 }
8087 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8088 {
8089 low_index = 0;
8090 high_index = num_visible_fields (lhs_type) - 1;
8091 is_array_aggregate = 0;
8092 }
8093 else
8094 error (_("Left-hand side must be array or record."));
8095
8096 num_specs = num_component_specs (exp, *pos - 3);
8097 max_indices = 4 * num_specs + 4;
8098 indices = alloca (max_indices * sizeof (indices[0]));
8099 indices[0] = indices[1] = low_index - 1;
8100 indices[2] = indices[3] = high_index + 1;
8101 num_indices = 4;
8102
8103 for (i = 0; i < n; i += 1)
8104 {
8105 switch (exp->elts[*pos].opcode)
8106 {
8107 case OP_CHOICES:
8108 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8109 &num_indices, max_indices,
8110 low_index, high_index);
8111 break;
8112 case OP_POSITIONAL:
8113 aggregate_assign_positional (container, lhs, exp, pos, indices,
8114 &num_indices, max_indices,
8115 low_index, high_index);
8116 break;
8117 case OP_OTHERS:
8118 if (i != n-1)
8119 error (_("Misplaced 'others' clause"));
8120 aggregate_assign_others (container, lhs, exp, pos, indices,
8121 num_indices, low_index, high_index);
8122 break;
8123 default:
8124 error (_("Internal error: bad aggregate clause"));
8125 }
8126 }
8127
8128 return container;
8129}
8130
8131/* Assign into the component of LHS indexed by the OP_POSITIONAL
8132 construct at *POS, updating *POS past the construct, given that
8133 the positions are relative to lower bound LOW, where HIGH is the
8134 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8135 updating *NUM_INDICES as needed. CONTAINER is as for
8136 assign_aggregate. */
8137static void
8138aggregate_assign_positional (struct value *container,
8139 struct value *lhs, struct expression *exp,
8140 int *pos, LONGEST *indices, int *num_indices,
8141 int max_indices, LONGEST low, LONGEST high)
8142{
8143 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8144
8145 if (ind - 1 == high)
e1d5a0d2 8146 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8147 if (ind <= high)
8148 {
8149 add_component_interval (ind, ind, indices, num_indices, max_indices);
8150 *pos += 3;
8151 assign_component (container, lhs, ind, exp, pos);
8152 }
8153 else
8154 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8155}
8156
8157/* Assign into the components of LHS indexed by the OP_CHOICES
8158 construct at *POS, updating *POS past the construct, given that
8159 the allowable indices are LOW..HIGH. Record the indices assigned
8160 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8161 needed. CONTAINER is as for assign_aggregate. */
8162static void
8163aggregate_assign_from_choices (struct value *container,
8164 struct value *lhs, struct expression *exp,
8165 int *pos, LONGEST *indices, int *num_indices,
8166 int max_indices, LONGEST low, LONGEST high)
8167{
8168 int j;
8169 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8170 int choice_pos, expr_pc;
8171 int is_array = ada_is_direct_array_type (value_type (lhs));
8172
8173 choice_pos = *pos += 3;
8174
8175 for (j = 0; j < n_choices; j += 1)
8176 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8177 expr_pc = *pos;
8178 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8179
8180 for (j = 0; j < n_choices; j += 1)
8181 {
8182 LONGEST lower, upper;
8183 enum exp_opcode op = exp->elts[choice_pos].opcode;
8184 if (op == OP_DISCRETE_RANGE)
8185 {
8186 choice_pos += 1;
8187 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8188 EVAL_NORMAL));
8189 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8190 EVAL_NORMAL));
8191 }
8192 else if (is_array)
8193 {
8194 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8195 EVAL_NORMAL));
8196 upper = lower;
8197 }
8198 else
8199 {
8200 int ind;
8201 char *name;
8202 switch (op)
8203 {
8204 case OP_NAME:
8205 name = &exp->elts[choice_pos + 2].string;
8206 break;
8207 case OP_VAR_VALUE:
8208 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8209 break;
8210 default:
8211 error (_("Invalid record component association."));
8212 }
8213 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8214 ind = 0;
8215 if (! find_struct_field (name, value_type (lhs), 0,
8216 NULL, NULL, NULL, NULL, &ind))
8217 error (_("Unknown component name: %s."), name);
8218 lower = upper = ind;
8219 }
8220
8221 if (lower <= upper && (lower < low || upper > high))
8222 error (_("Index in component association out of bounds."));
8223
8224 add_component_interval (lower, upper, indices, num_indices,
8225 max_indices);
8226 while (lower <= upper)
8227 {
8228 int pos1;
8229 pos1 = expr_pc;
8230 assign_component (container, lhs, lower, exp, &pos1);
8231 lower += 1;
8232 }
8233 }
8234}
8235
8236/* Assign the value of the expression in the OP_OTHERS construct in
8237 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8238 have not been previously assigned. The index intervals already assigned
8239 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8240 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8241static void
8242aggregate_assign_others (struct value *container,
8243 struct value *lhs, struct expression *exp,
8244 int *pos, LONGEST *indices, int num_indices,
8245 LONGEST low, LONGEST high)
8246{
8247 int i;
8248 int expr_pc = *pos+1;
8249
8250 for (i = 0; i < num_indices - 2; i += 2)
8251 {
8252 LONGEST ind;
8253 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8254 {
8255 int pos;
8256 pos = expr_pc;
8257 assign_component (container, lhs, ind, exp, &pos);
8258 }
8259 }
8260 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8261}
8262
8263/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8264 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8265 modifying *SIZE as needed. It is an error if *SIZE exceeds
8266 MAX_SIZE. The resulting intervals do not overlap. */
8267static void
8268add_component_interval (LONGEST low, LONGEST high,
8269 LONGEST* indices, int *size, int max_size)
8270{
8271 int i, j;
8272 for (i = 0; i < *size; i += 2) {
8273 if (high >= indices[i] && low <= indices[i + 1])
8274 {
8275 int kh;
8276 for (kh = i + 2; kh < *size; kh += 2)
8277 if (high < indices[kh])
8278 break;
8279 if (low < indices[i])
8280 indices[i] = low;
8281 indices[i + 1] = indices[kh - 1];
8282 if (high > indices[i + 1])
8283 indices[i + 1] = high;
8284 memcpy (indices + i + 2, indices + kh, *size - kh);
8285 *size -= kh - i - 2;
8286 return;
8287 }
8288 else if (high < indices[i])
8289 break;
8290 }
8291
8292 if (*size == max_size)
8293 error (_("Internal error: miscounted aggregate components."));
8294 *size += 2;
8295 for (j = *size-1; j >= i+2; j -= 1)
8296 indices[j] = indices[j - 2];
8297 indices[i] = low;
8298 indices[i + 1] = high;
8299}
8300
6e48bd2c
JB
8301/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8302 is different. */
8303
8304static struct value *
8305ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8306{
8307 if (type == ada_check_typedef (value_type (arg2)))
8308 return arg2;
8309
8310 if (ada_is_fixed_point_type (type))
8311 return (cast_to_fixed (type, arg2));
8312
8313 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8314 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8315
8316 return value_cast (type, arg2);
8317}
8318
52ce6436 8319static struct value *
ebf56fd3 8320ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8321 int *pos, enum noside noside)
14f9c5c9
AS
8322{
8323 enum exp_opcode op;
14f9c5c9
AS
8324 int tem, tem2, tem3;
8325 int pc;
8326 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8327 struct type *type;
52ce6436 8328 int nargs, oplen;
d2e4a39e 8329 struct value **argvec;
14f9c5c9 8330
d2e4a39e
AS
8331 pc = *pos;
8332 *pos += 1;
14f9c5c9
AS
8333 op = exp->elts[pc].opcode;
8334
d2e4a39e 8335 switch (op)
14f9c5c9
AS
8336 {
8337 default:
8338 *pos -= 1;
6e48bd2c
JB
8339 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8340 arg1 = unwrap_value (arg1);
8341
8342 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8343 then we need to perform the conversion manually, because
8344 evaluate_subexp_standard doesn't do it. This conversion is
8345 necessary in Ada because the different kinds of float/fixed
8346 types in Ada have different representations.
8347
8348 Similarly, we need to perform the conversion from OP_LONG
8349 ourselves. */
8350 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8351 arg1 = ada_value_cast (expect_type, arg1, noside);
8352
8353 return arg1;
4c4b4cd2
PH
8354
8355 case OP_STRING:
8356 {
76a01679
JB
8357 struct value *result;
8358 *pos -= 1;
8359 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8360 /* The result type will have code OP_STRING, bashed there from
8361 OP_ARRAY. Bash it back. */
df407dfe
AC
8362 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8363 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8364 return result;
4c4b4cd2 8365 }
14f9c5c9
AS
8366
8367 case UNOP_CAST:
8368 (*pos) += 2;
8369 type = exp->elts[pc + 1].type;
8370 arg1 = evaluate_subexp (type, exp, pos, noside);
8371 if (noside == EVAL_SKIP)
4c4b4cd2 8372 goto nosideret;
6e48bd2c 8373 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8374 return arg1;
8375
4c4b4cd2
PH
8376 case UNOP_QUAL:
8377 (*pos) += 2;
8378 type = exp->elts[pc + 1].type;
8379 return ada_evaluate_subexp (type, exp, pos, noside);
8380
14f9c5c9
AS
8381 case BINOP_ASSIGN:
8382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8383 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8384 {
8385 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8386 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8387 return arg1;
8388 return ada_value_assign (arg1, arg1);
8389 }
003f3813
JB
8390 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8391 except if the lhs of our assignment is a convenience variable.
8392 In the case of assigning to a convenience variable, the lhs
8393 should be exactly the result of the evaluation of the rhs. */
8394 type = value_type (arg1);
8395 if (VALUE_LVAL (arg1) == lval_internalvar)
8396 type = NULL;
8397 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8398 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8399 return arg1;
df407dfe
AC
8400 if (ada_is_fixed_point_type (value_type (arg1)))
8401 arg2 = cast_to_fixed (value_type (arg1), arg2);
8402 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8403 error
323e0a4a 8404 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8405 else
df407dfe 8406 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8407 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8408
8409 case BINOP_ADD:
8410 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8411 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8412 if (noside == EVAL_SKIP)
4c4b4cd2 8413 goto nosideret;
2ac8a782
JB
8414 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8415 return (value_from_longest
8416 (value_type (arg1),
8417 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8418 if ((ada_is_fixed_point_type (value_type (arg1))
8419 || ada_is_fixed_point_type (value_type (arg2)))
8420 && value_type (arg1) != value_type (arg2))
323e0a4a 8421 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8422 /* Do the addition, and cast the result to the type of the first
8423 argument. We cannot cast the result to a reference type, so if
8424 ARG1 is a reference type, find its underlying type. */
8425 type = value_type (arg1);
8426 while (TYPE_CODE (type) == TYPE_CODE_REF)
8427 type = TYPE_TARGET_TYPE (type);
f44316fa 8428 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8429 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8430
8431 case BINOP_SUB:
8432 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8433 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8434 if (noside == EVAL_SKIP)
4c4b4cd2 8435 goto nosideret;
2ac8a782
JB
8436 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8437 return (value_from_longest
8438 (value_type (arg1),
8439 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8440 if ((ada_is_fixed_point_type (value_type (arg1))
8441 || ada_is_fixed_point_type (value_type (arg2)))
8442 && value_type (arg1) != value_type (arg2))
323e0a4a 8443 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8444 /* Do the substraction, and cast the result to the type of the first
8445 argument. We cannot cast the result to a reference type, so if
8446 ARG1 is a reference type, find its underlying type. */
8447 type = value_type (arg1);
8448 while (TYPE_CODE (type) == TYPE_CODE_REF)
8449 type = TYPE_TARGET_TYPE (type);
f44316fa 8450 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8451 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8452
8453 case BINOP_MUL:
8454 case BINOP_DIV:
8455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8456 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8457 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8458 goto nosideret;
8459 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8460 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
9c2be529
JB
8461 {
8462 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8463 return value_zero (value_type (arg1), not_lval);
8464 }
14f9c5c9 8465 else
4c4b4cd2 8466 {
a53b7a21 8467 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8468 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8469 arg1 = cast_from_fixed (type, arg1);
df407dfe 8470 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8471 arg2 = cast_from_fixed (type, arg2);
f44316fa 8472 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8473 return ada_value_binop (arg1, arg2, op);
8474 }
8475
8476 case BINOP_REM:
8477 case BINOP_MOD:
8478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8479 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8480 if (noside == EVAL_SKIP)
76a01679 8481 goto nosideret;
4c4b4cd2 8482 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8483 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8484 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8485 else
f44316fa
UW
8486 {
8487 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8488 return ada_value_binop (arg1, arg2, op);
8489 }
14f9c5c9 8490
4c4b4cd2
PH
8491 case BINOP_EQUAL:
8492 case BINOP_NOTEQUAL:
14f9c5c9 8493 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8494 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8495 if (noside == EVAL_SKIP)
76a01679 8496 goto nosideret;
4c4b4cd2 8497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8498 tem = 0;
4c4b4cd2 8499 else
f44316fa
UW
8500 {
8501 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8502 tem = ada_value_equal (arg1, arg2);
8503 }
4c4b4cd2 8504 if (op == BINOP_NOTEQUAL)
76a01679 8505 tem = !tem;
fbb06eb1
UW
8506 type = language_bool_type (exp->language_defn, exp->gdbarch);
8507 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8508
8509 case UNOP_NEG:
8510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8511 if (noside == EVAL_SKIP)
8512 goto nosideret;
df407dfe
AC
8513 else if (ada_is_fixed_point_type (value_type (arg1)))
8514 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8515 else
f44316fa
UW
8516 {
8517 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8518 return value_neg (arg1);
8519 }
4c4b4cd2 8520
2330c6c6
JB
8521 case BINOP_LOGICAL_AND:
8522 case BINOP_LOGICAL_OR:
8523 case UNOP_LOGICAL_NOT:
000d5124
JB
8524 {
8525 struct value *val;
8526
8527 *pos -= 1;
8528 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8529 type = language_bool_type (exp->language_defn, exp->gdbarch);
8530 return value_cast (type, val);
000d5124 8531 }
2330c6c6
JB
8532
8533 case BINOP_BITWISE_AND:
8534 case BINOP_BITWISE_IOR:
8535 case BINOP_BITWISE_XOR:
000d5124
JB
8536 {
8537 struct value *val;
8538
8539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8540 *pos = pc;
8541 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8542
8543 return value_cast (value_type (arg1), val);
8544 }
2330c6c6 8545
14f9c5c9
AS
8546 case OP_VAR_VALUE:
8547 *pos -= 1;
6799def4 8548
14f9c5c9 8549 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8550 {
8551 *pos += 4;
8552 goto nosideret;
8553 }
8554 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8555 /* Only encountered when an unresolved symbol occurs in a
8556 context other than a function call, in which case, it is
52ce6436 8557 invalid. */
323e0a4a 8558 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8559 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8560 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8561 {
0c1f74cf
JB
8562 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8563 if (ada_is_tagged_type (type, 0))
8564 {
8565 /* Tagged types are a little special in the fact that the real
8566 type is dynamic and can only be determined by inspecting the
8567 object's tag. This means that we need to get the object's
8568 value first (EVAL_NORMAL) and then extract the actual object
8569 type from its tag.
8570
8571 Note that we cannot skip the final step where we extract
8572 the object type from its tag, because the EVAL_NORMAL phase
8573 results in dynamic components being resolved into fixed ones.
8574 This can cause problems when trying to print the type
8575 description of tagged types whose parent has a dynamic size:
8576 We use the type name of the "_parent" component in order
8577 to print the name of the ancestor type in the type description.
8578 If that component had a dynamic size, the resolution into
8579 a fixed type would result in the loss of that type name,
8580 thus preventing us from printing the name of the ancestor
8581 type in the type description. */
b79819ba
JB
8582 struct type *actual_type;
8583
0c1f74cf 8584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8585 actual_type = type_from_tag (ada_value_tag (arg1));
8586 if (actual_type == NULL)
8587 /* If, for some reason, we were unable to determine
8588 the actual type from the tag, then use the static
8589 approximation that we just computed as a fallback.
8590 This can happen if the debugging information is
8591 incomplete, for instance. */
8592 actual_type = type;
8593
8594 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8595 }
8596
4c4b4cd2
PH
8597 *pos += 4;
8598 return value_zero
8599 (to_static_fixed_type
8600 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8601 not_lval);
8602 }
d2e4a39e 8603 else
4c4b4cd2
PH
8604 {
8605 arg1 =
8606 unwrap_value (evaluate_subexp_standard
8607 (expect_type, exp, pos, noside));
8608 return ada_to_fixed_value (arg1);
8609 }
8610
8611 case OP_FUNCALL:
8612 (*pos) += 2;
8613
8614 /* Allocate arg vector, including space for the function to be
8615 called in argvec[0] and a terminating NULL. */
8616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8617 argvec =
8618 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8619
8620 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8621 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8622 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8623 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8624 else
8625 {
8626 for (tem = 0; tem <= nargs; tem += 1)
8627 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8628 argvec[tem] = 0;
8629
8630 if (noside == EVAL_SKIP)
8631 goto nosideret;
8632 }
8633
df407dfe 8634 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8635 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8636 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8637 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8638 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8639 argvec[0] = value_addr (argvec[0]);
8640
df407dfe 8641 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8643 {
61ee279c 8644 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8645 {
8646 case TYPE_CODE_FUNC:
61ee279c 8647 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8648 break;
8649 case TYPE_CODE_ARRAY:
8650 break;
8651 case TYPE_CODE_STRUCT:
8652 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8653 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8654 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8655 break;
8656 default:
323e0a4a 8657 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8658 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8659 break;
8660 }
8661 }
8662
8663 switch (TYPE_CODE (type))
8664 {
8665 case TYPE_CODE_FUNC:
8666 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8667 return allocate_value (TYPE_TARGET_TYPE (type));
8668 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8669 case TYPE_CODE_STRUCT:
8670 {
8671 int arity;
8672
4c4b4cd2
PH
8673 arity = ada_array_arity (type);
8674 type = ada_array_element_type (type, nargs);
8675 if (type == NULL)
323e0a4a 8676 error (_("cannot subscript or call a record"));
4c4b4cd2 8677 if (arity != nargs)
323e0a4a 8678 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8679 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8680 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8681 return
8682 unwrap_value (ada_value_subscript
8683 (argvec[0], nargs, argvec + 1));
8684 }
8685 case TYPE_CODE_ARRAY:
8686 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8687 {
8688 type = ada_array_element_type (type, nargs);
8689 if (type == NULL)
323e0a4a 8690 error (_("element type of array unknown"));
4c4b4cd2 8691 else
0a07e705 8692 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8693 }
8694 return
8695 unwrap_value (ada_value_subscript
8696 (ada_coerce_to_simple_array (argvec[0]),
8697 nargs, argvec + 1));
8698 case TYPE_CODE_PTR: /* Pointer to array */
8699 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8700 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8701 {
8702 type = ada_array_element_type (type, nargs);
8703 if (type == NULL)
323e0a4a 8704 error (_("element type of array unknown"));
4c4b4cd2 8705 else
0a07e705 8706 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8707 }
8708 return
8709 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8710 nargs, argvec + 1));
8711
8712 default:
e1d5a0d2
PH
8713 error (_("Attempt to index or call something other than an "
8714 "array or function"));
4c4b4cd2
PH
8715 }
8716
8717 case TERNOP_SLICE:
8718 {
8719 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8720 struct value *low_bound_val =
8721 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8722 struct value *high_bound_val =
8723 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8724 LONGEST low_bound;
8725 LONGEST high_bound;
994b9211
AC
8726 low_bound_val = coerce_ref (low_bound_val);
8727 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8728 low_bound = pos_atr (low_bound_val);
8729 high_bound = pos_atr (high_bound_val);
963a6417 8730
4c4b4cd2
PH
8731 if (noside == EVAL_SKIP)
8732 goto nosideret;
8733
4c4b4cd2
PH
8734 /* If this is a reference to an aligner type, then remove all
8735 the aligners. */
df407dfe
AC
8736 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8737 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8738 TYPE_TARGET_TYPE (value_type (array)) =
8739 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8740
df407dfe 8741 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8742 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8743
8744 /* If this is a reference to an array or an array lvalue,
8745 convert to a pointer. */
df407dfe
AC
8746 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8747 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8748 && VALUE_LVAL (array) == lval_memory))
8749 array = value_addr (array);
8750
1265e4aa 8751 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8752 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8753 (value_type (array))))
0b5d8877 8754 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8755
8756 array = ada_coerce_to_simple_array_ptr (array);
8757
714e53ab
PH
8758 /* If we have more than one level of pointer indirection,
8759 dereference the value until we get only one level. */
df407dfe
AC
8760 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8761 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8762 == TYPE_CODE_PTR))
8763 array = value_ind (array);
8764
8765 /* Make sure we really do have an array type before going further,
8766 to avoid a SEGV when trying to get the index type or the target
8767 type later down the road if the debug info generated by
8768 the compiler is incorrect or incomplete. */
df407dfe 8769 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8770 error (_("cannot take slice of non-array"));
714e53ab 8771
df407dfe 8772 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8773 {
0b5d8877 8774 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8775 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8776 low_bound);
8777 else
8778 {
8779 struct type *arr_type0 =
df407dfe 8780 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8781 NULL, 1);
f5938064
JG
8782 return ada_value_slice_from_ptr (array, arr_type0,
8783 longest_to_int (low_bound),
8784 longest_to_int (high_bound));
4c4b4cd2
PH
8785 }
8786 }
8787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8788 return array;
8789 else if (high_bound < low_bound)
df407dfe 8790 return empty_array (value_type (array), low_bound);
4c4b4cd2 8791 else
529cad9c
PH
8792 return ada_value_slice (array, longest_to_int (low_bound),
8793 longest_to_int (high_bound));
4c4b4cd2 8794 }
14f9c5c9 8795
4c4b4cd2
PH
8796 case UNOP_IN_RANGE:
8797 (*pos) += 2;
8798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8799 type = exp->elts[pc + 1].type;
14f9c5c9 8800
14f9c5c9 8801 if (noside == EVAL_SKIP)
4c4b4cd2 8802 goto nosideret;
14f9c5c9 8803
4c4b4cd2
PH
8804 switch (TYPE_CODE (type))
8805 {
8806 default:
e1d5a0d2
PH
8807 lim_warning (_("Membership test incompletely implemented; "
8808 "always returns true"));
fbb06eb1
UW
8809 type = language_bool_type (exp->language_defn, exp->gdbarch);
8810 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8811
8812 case TYPE_CODE_RANGE:
030b4912
UW
8813 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8814 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8815 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8816 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
8817 type = language_bool_type (exp->language_defn, exp->gdbarch);
8818 return
8819 value_from_longest (type,
4c4b4cd2
PH
8820 (value_less (arg1, arg3)
8821 || value_equal (arg1, arg3))
8822 && (value_less (arg2, arg1)
8823 || value_equal (arg2, arg1)));
8824 }
8825
8826 case BINOP_IN_BOUNDS:
14f9c5c9 8827 (*pos) += 2;
4c4b4cd2
PH
8828 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8829 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8830
4c4b4cd2
PH
8831 if (noside == EVAL_SKIP)
8832 goto nosideret;
14f9c5c9 8833
4c4b4cd2 8834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
8835 {
8836 type = language_bool_type (exp->language_defn, exp->gdbarch);
8837 return value_zero (type, not_lval);
8838 }
14f9c5c9 8839
4c4b4cd2 8840 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8841
df407dfe 8842 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8843 error (_("invalid dimension number to 'range"));
14f9c5c9 8844
4c4b4cd2
PH
8845 arg3 = ada_array_bound (arg2, tem, 1);
8846 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8847
f44316fa
UW
8848 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8849 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8850 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8851 return
fbb06eb1 8852 value_from_longest (type,
4c4b4cd2
PH
8853 (value_less (arg1, arg3)
8854 || value_equal (arg1, arg3))
8855 && (value_less (arg2, arg1)
8856 || value_equal (arg2, arg1)));
8857
8858 case TERNOP_IN_RANGE:
8859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8860 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8861 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8862
8863 if (noside == EVAL_SKIP)
8864 goto nosideret;
8865
f44316fa
UW
8866 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8867 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8868 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8869 return
fbb06eb1 8870 value_from_longest (type,
4c4b4cd2
PH
8871 (value_less (arg1, arg3)
8872 || value_equal (arg1, arg3))
8873 && (value_less (arg2, arg1)
8874 || value_equal (arg2, arg1)));
8875
8876 case OP_ATR_FIRST:
8877 case OP_ATR_LAST:
8878 case OP_ATR_LENGTH:
8879 {
76a01679
JB
8880 struct type *type_arg;
8881 if (exp->elts[*pos].opcode == OP_TYPE)
8882 {
8883 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8884 arg1 = NULL;
8885 type_arg = exp->elts[pc + 2].type;
8886 }
8887 else
8888 {
8889 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8890 type_arg = NULL;
8891 }
8892
8893 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8894 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8895 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8896 *pos += 4;
8897
8898 if (noside == EVAL_SKIP)
8899 goto nosideret;
8900
8901 if (type_arg == NULL)
8902 {
8903 arg1 = ada_coerce_ref (arg1);
8904
df407dfe 8905 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8906 arg1 = ada_coerce_to_simple_array (arg1);
8907
df407dfe 8908 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8909 error (_("invalid dimension number to '%s"),
76a01679
JB
8910 ada_attribute_name (op));
8911
8912 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8913 {
df407dfe 8914 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
8915 if (type == NULL)
8916 error
323e0a4a 8917 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8918 return allocate_value (type);
8919 }
8920
8921 switch (op)
8922 {
8923 default: /* Should never happen. */
323e0a4a 8924 error (_("unexpected attribute encountered"));
76a01679
JB
8925 case OP_ATR_FIRST:
8926 return ada_array_bound (arg1, tem, 0);
8927 case OP_ATR_LAST:
8928 return ada_array_bound (arg1, tem, 1);
8929 case OP_ATR_LENGTH:
8930 return ada_array_length (arg1, tem);
8931 }
8932 }
8933 else if (discrete_type_p (type_arg))
8934 {
8935 struct type *range_type;
8936 char *name = ada_type_name (type_arg);
8937 range_type = NULL;
8938 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8939 range_type =
8940 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8941 if (range_type == NULL)
8942 range_type = type_arg;
8943 switch (op)
8944 {
8945 default:
323e0a4a 8946 error (_("unexpected attribute encountered"));
76a01679 8947 case OP_ATR_FIRST:
690cc4eb
PH
8948 return value_from_longest
8949 (range_type, discrete_type_low_bound (range_type));
76a01679 8950 case OP_ATR_LAST:
690cc4eb
PH
8951 return value_from_longest
8952 (range_type, discrete_type_high_bound (range_type));
76a01679 8953 case OP_ATR_LENGTH:
323e0a4a 8954 error (_("the 'length attribute applies only to array types"));
76a01679
JB
8955 }
8956 }
8957 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 8958 error (_("unimplemented type attribute"));
76a01679
JB
8959 else
8960 {
8961 LONGEST low, high;
8962
8963 if (ada_is_packed_array_type (type_arg))
8964 type_arg = decode_packed_array_type (type_arg);
8965
8966 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 8967 error (_("invalid dimension number to '%s"),
76a01679
JB
8968 ada_attribute_name (op));
8969
8970 type = ada_index_type (type_arg, tem);
8971 if (type == NULL)
8972 error
323e0a4a 8973 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8975 return allocate_value (type);
8976
8977 switch (op)
8978 {
8979 default:
323e0a4a 8980 error (_("unexpected attribute encountered"));
76a01679
JB
8981 case OP_ATR_FIRST:
8982 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8983 return value_from_longest (type, low);
8984 case OP_ATR_LAST:
8985 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8986 return value_from_longest (type, high);
8987 case OP_ATR_LENGTH:
8988 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8989 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8990 return value_from_longest (type, high - low + 1);
8991 }
8992 }
14f9c5c9
AS
8993 }
8994
4c4b4cd2
PH
8995 case OP_ATR_TAG:
8996 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8997 if (noside == EVAL_SKIP)
76a01679 8998 goto nosideret;
4c4b4cd2
PH
8999
9000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9001 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9002
9003 return ada_value_tag (arg1);
9004
9005 case OP_ATR_MIN:
9006 case OP_ATR_MAX:
9007 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9008 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9009 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9010 if (noside == EVAL_SKIP)
76a01679 9011 goto nosideret;
d2e4a39e 9012 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9013 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9014 else
f44316fa
UW
9015 {
9016 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9017 return value_binop (arg1, arg2,
9018 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9019 }
14f9c5c9 9020
4c4b4cd2
PH
9021 case OP_ATR_MODULUS:
9022 {
76a01679
JB
9023 struct type *type_arg = exp->elts[pc + 2].type;
9024 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9025
76a01679
JB
9026 if (noside == EVAL_SKIP)
9027 goto nosideret;
4c4b4cd2 9028
76a01679 9029 if (!ada_is_modular_type (type_arg))
323e0a4a 9030 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9031
76a01679
JB
9032 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9033 ada_modulus (type_arg));
4c4b4cd2
PH
9034 }
9035
9036
9037 case OP_ATR_POS:
9038 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9040 if (noside == EVAL_SKIP)
76a01679 9041 goto nosideret;
3cb382c9
UW
9042 type = builtin_type (exp->gdbarch)->builtin_int;
9043 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9044 return value_zero (type, not_lval);
14f9c5c9 9045 else
3cb382c9 9046 return value_pos_atr (type, arg1);
14f9c5c9 9047
4c4b4cd2
PH
9048 case OP_ATR_SIZE:
9049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9050 type = value_type (arg1);
9051
9052 /* If the argument is a reference, then dereference its type, since
9053 the user is really asking for the size of the actual object,
9054 not the size of the pointer. */
9055 if (TYPE_CODE (type) == TYPE_CODE_REF)
9056 type = TYPE_TARGET_TYPE (type);
9057
4c4b4cd2 9058 if (noside == EVAL_SKIP)
76a01679 9059 goto nosideret;
4c4b4cd2 9060 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9061 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9062 else
6d2e05aa 9063 return value_from_longest (builtin_type_int32,
8c1c099f 9064 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9065
9066 case OP_ATR_VAL:
9067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9068 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9069 type = exp->elts[pc + 2].type;
14f9c5c9 9070 if (noside == EVAL_SKIP)
76a01679 9071 goto nosideret;
4c4b4cd2 9072 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9073 return value_zero (type, not_lval);
4c4b4cd2 9074 else
76a01679 9075 return value_val_atr (type, arg1);
4c4b4cd2
PH
9076
9077 case BINOP_EXP:
9078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9079 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9080 if (noside == EVAL_SKIP)
9081 goto nosideret;
9082 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9083 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9084 else
f44316fa
UW
9085 {
9086 /* For integer exponentiation operations,
9087 only promote the first argument. */
9088 if (is_integral_type (value_type (arg2)))
9089 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9090 else
9091 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9092
9093 return value_binop (arg1, arg2, op);
9094 }
4c4b4cd2
PH
9095
9096 case UNOP_PLUS:
9097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9098 if (noside == EVAL_SKIP)
9099 goto nosideret;
9100 else
9101 return arg1;
9102
9103 case UNOP_ABS:
9104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9105 if (noside == EVAL_SKIP)
9106 goto nosideret;
f44316fa 9107 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9108 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9109 return value_neg (arg1);
14f9c5c9 9110 else
4c4b4cd2 9111 return arg1;
14f9c5c9
AS
9112
9113 case UNOP_IND:
6b0d7253 9114 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9115 if (noside == EVAL_SKIP)
4c4b4cd2 9116 goto nosideret;
df407dfe 9117 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9118 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9119 {
9120 if (ada_is_array_descriptor_type (type))
9121 /* GDB allows dereferencing GNAT array descriptors. */
9122 {
9123 struct type *arrType = ada_type_of_array (arg1, 0);
9124 if (arrType == NULL)
323e0a4a 9125 error (_("Attempt to dereference null array pointer."));
00a4c844 9126 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9127 }
9128 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9129 || TYPE_CODE (type) == TYPE_CODE_REF
9130 /* In C you can dereference an array to get the 1st elt. */
9131 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9132 {
9133 type = to_static_fixed_type
9134 (ada_aligned_type
9135 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9136 check_size (type);
9137 return value_zero (type, lval_memory);
9138 }
4c4b4cd2 9139 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9140 {
9141 /* GDB allows dereferencing an int. */
9142 if (expect_type == NULL)
9143 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9144 lval_memory);
9145 else
9146 {
9147 expect_type =
9148 to_static_fixed_type (ada_aligned_type (expect_type));
9149 return value_zero (expect_type, lval_memory);
9150 }
9151 }
4c4b4cd2 9152 else
323e0a4a 9153 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9154 }
76a01679 9155 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9156 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9157
96967637
JB
9158 if (TYPE_CODE (type) == TYPE_CODE_INT)
9159 /* GDB allows dereferencing an int. If we were given
9160 the expect_type, then use that as the target type.
9161 Otherwise, assume that the target type is an int. */
9162 {
9163 if (expect_type != NULL)
9164 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9165 arg1));
9166 else
9167 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9168 (CORE_ADDR) value_as_address (arg1));
9169 }
6b0d7253 9170
4c4b4cd2
PH
9171 if (ada_is_array_descriptor_type (type))
9172 /* GDB allows dereferencing GNAT array descriptors. */
9173 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9174 else
4c4b4cd2 9175 return ada_value_ind (arg1);
14f9c5c9
AS
9176
9177 case STRUCTOP_STRUCT:
9178 tem = longest_to_int (exp->elts[pc + 1].longconst);
9179 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9181 if (noside == EVAL_SKIP)
4c4b4cd2 9182 goto nosideret;
14f9c5c9 9183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9184 {
df407dfe 9185 struct type *type1 = value_type (arg1);
76a01679
JB
9186 if (ada_is_tagged_type (type1, 1))
9187 {
9188 type = ada_lookup_struct_elt_type (type1,
9189 &exp->elts[pc + 2].string,
9190 1, 1, NULL);
9191 if (type == NULL)
9192 /* In this case, we assume that the field COULD exist
9193 in some extension of the type. Return an object of
9194 "type" void, which will match any formal
9195 (see ada_type_match). */
9196 return value_zero (builtin_type_void, lval_memory);
9197 }
9198 else
9199 type =
9200 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9201 0, NULL);
9202
9203 return value_zero (ada_aligned_type (type), lval_memory);
9204 }
14f9c5c9 9205 else
76a01679
JB
9206 return
9207 ada_to_fixed_value (unwrap_value
9208 (ada_value_struct_elt
03ee6b2e 9209 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9210 case OP_TYPE:
4c4b4cd2
PH
9211 /* The value is not supposed to be used. This is here to make it
9212 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9213 (*pos) += 2;
9214 if (noside == EVAL_SKIP)
4c4b4cd2 9215 goto nosideret;
14f9c5c9 9216 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9217 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9218 else
323e0a4a 9219 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9220
9221 case OP_AGGREGATE:
9222 case OP_CHOICES:
9223 case OP_OTHERS:
9224 case OP_DISCRETE_RANGE:
9225 case OP_POSITIONAL:
9226 case OP_NAME:
9227 if (noside == EVAL_NORMAL)
9228 switch (op)
9229 {
9230 case OP_NAME:
9231 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9232 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9233 case OP_AGGREGATE:
9234 error (_("Aggregates only allowed on the right of an assignment"));
9235 default:
e1d5a0d2 9236 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9237 }
9238
9239 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9240 *pos += oplen - 1;
9241 for (tem = 0; tem < nargs; tem += 1)
9242 ada_evaluate_subexp (NULL, exp, pos, noside);
9243 goto nosideret;
14f9c5c9
AS
9244 }
9245
9246nosideret:
cb18ec49 9247 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9248}
14f9c5c9 9249\f
d2e4a39e 9250
4c4b4cd2 9251 /* Fixed point */
14f9c5c9
AS
9252
9253/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9254 type name that encodes the 'small and 'delta information.
4c4b4cd2 9255 Otherwise, return NULL. */
14f9c5c9 9256
d2e4a39e 9257static const char *
ebf56fd3 9258fixed_type_info (struct type *type)
14f9c5c9 9259{
d2e4a39e 9260 const char *name = ada_type_name (type);
14f9c5c9
AS
9261 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9262
d2e4a39e
AS
9263 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9264 {
14f9c5c9
AS
9265 const char *tail = strstr (name, "___XF_");
9266 if (tail == NULL)
4c4b4cd2 9267 return NULL;
d2e4a39e 9268 else
4c4b4cd2 9269 return tail + 5;
14f9c5c9
AS
9270 }
9271 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9272 return fixed_type_info (TYPE_TARGET_TYPE (type));
9273 else
9274 return NULL;
9275}
9276
4c4b4cd2 9277/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9278
9279int
ebf56fd3 9280ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9281{
9282 return fixed_type_info (type) != NULL;
9283}
9284
4c4b4cd2
PH
9285/* Return non-zero iff TYPE represents a System.Address type. */
9286
9287int
9288ada_is_system_address_type (struct type *type)
9289{
9290 return (TYPE_NAME (type)
9291 && strcmp (TYPE_NAME (type), "system__address") == 0);
9292}
9293
14f9c5c9
AS
9294/* Assuming that TYPE is the representation of an Ada fixed-point
9295 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9296 delta cannot be determined. */
14f9c5c9
AS
9297
9298DOUBLEST
ebf56fd3 9299ada_delta (struct type *type)
14f9c5c9
AS
9300{
9301 const char *encoding = fixed_type_info (type);
facc390f 9302 DOUBLEST num, den;
14f9c5c9 9303
facc390f
JB
9304 /* Strictly speaking, num and den are encoded as integer. However,
9305 they may not fit into a long, and they will have to be converted
9306 to DOUBLEST anyway. So scan them as DOUBLEST. */
9307 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9308 &num, &den) < 2)
14f9c5c9 9309 return -1.0;
d2e4a39e 9310 else
facc390f 9311 return num / den;
14f9c5c9
AS
9312}
9313
9314/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9315 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9316
9317static DOUBLEST
ebf56fd3 9318scaling_factor (struct type *type)
14f9c5c9
AS
9319{
9320 const char *encoding = fixed_type_info (type);
facc390f 9321 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9322 int n;
d2e4a39e 9323
facc390f
JB
9324 /* Strictly speaking, num's and den's are encoded as integer. However,
9325 they may not fit into a long, and they will have to be converted
9326 to DOUBLEST anyway. So scan them as DOUBLEST. */
9327 n = sscanf (encoding,
9328 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9329 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9330 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9331
9332 if (n < 2)
9333 return 1.0;
9334 else if (n == 4)
facc390f 9335 return num1 / den1;
d2e4a39e 9336 else
facc390f 9337 return num0 / den0;
14f9c5c9
AS
9338}
9339
9340
9341/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9342 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9343
9344DOUBLEST
ebf56fd3 9345ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9346{
d2e4a39e 9347 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9348}
9349
4c4b4cd2
PH
9350/* The representation of a fixed-point value of type TYPE
9351 corresponding to the value X. */
14f9c5c9
AS
9352
9353LONGEST
ebf56fd3 9354ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9355{
9356 return (LONGEST) (x / scaling_factor (type) + 0.5);
9357}
9358
9359
4c4b4cd2 9360 /* VAX floating formats */
14f9c5c9
AS
9361
9362/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9363 types. */
9364
14f9c5c9 9365int
d2e4a39e 9366ada_is_vax_floating_type (struct type *type)
14f9c5c9 9367{
d2e4a39e 9368 int name_len =
14f9c5c9 9369 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9370 return
14f9c5c9 9371 name_len > 6
d2e4a39e 9372 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9373 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9374 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9375}
9376
9377/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9378 ada_is_vax_floating_point. */
9379
14f9c5c9 9380int
d2e4a39e 9381ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9382{
d2e4a39e 9383 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9384}
9385
4c4b4cd2 9386/* A value representing the special debugging function that outputs
14f9c5c9 9387 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9388 ada_is_vax_floating_type (TYPE). */
9389
d2e4a39e
AS
9390struct value *
9391ada_vax_float_print_function (struct type *type)
9392{
9393 switch (ada_vax_float_type_suffix (type))
9394 {
9395 case 'F':
9396 return get_var_value ("DEBUG_STRING_F", 0);
9397 case 'D':
9398 return get_var_value ("DEBUG_STRING_D", 0);
9399 case 'G':
9400 return get_var_value ("DEBUG_STRING_G", 0);
9401 default:
323e0a4a 9402 error (_("invalid VAX floating-point type"));
d2e4a39e 9403 }
14f9c5c9 9404}
14f9c5c9 9405\f
d2e4a39e 9406
4c4b4cd2 9407 /* Range types */
14f9c5c9
AS
9408
9409/* Scan STR beginning at position K for a discriminant name, and
9410 return the value of that discriminant field of DVAL in *PX. If
9411 PNEW_K is not null, put the position of the character beyond the
9412 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9413 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9414
9415static int
07d8f827 9416scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9417 int *pnew_k)
14f9c5c9
AS
9418{
9419 static char *bound_buffer = NULL;
9420 static size_t bound_buffer_len = 0;
9421 char *bound;
9422 char *pend;
d2e4a39e 9423 struct value *bound_val;
14f9c5c9
AS
9424
9425 if (dval == NULL || str == NULL || str[k] == '\0')
9426 return 0;
9427
d2e4a39e 9428 pend = strstr (str + k, "__");
14f9c5c9
AS
9429 if (pend == NULL)
9430 {
d2e4a39e 9431 bound = str + k;
14f9c5c9
AS
9432 k += strlen (bound);
9433 }
d2e4a39e 9434 else
14f9c5c9 9435 {
d2e4a39e 9436 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9437 bound = bound_buffer;
d2e4a39e
AS
9438 strncpy (bound_buffer, str + k, pend - (str + k));
9439 bound[pend - (str + k)] = '\0';
9440 k = pend - str;
14f9c5c9 9441 }
d2e4a39e 9442
df407dfe 9443 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9444 if (bound_val == NULL)
9445 return 0;
9446
9447 *px = value_as_long (bound_val);
9448 if (pnew_k != NULL)
9449 *pnew_k = k;
9450 return 1;
9451}
9452
9453/* Value of variable named NAME in the current environment. If
9454 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9455 otherwise causes an error with message ERR_MSG. */
9456
d2e4a39e
AS
9457static struct value *
9458get_var_value (char *name, char *err_msg)
14f9c5c9 9459{
4c4b4cd2 9460 struct ada_symbol_info *syms;
14f9c5c9
AS
9461 int nsyms;
9462
4c4b4cd2
PH
9463 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9464 &syms);
14f9c5c9
AS
9465
9466 if (nsyms != 1)
9467 {
9468 if (err_msg == NULL)
4c4b4cd2 9469 return 0;
14f9c5c9 9470 else
8a3fe4f8 9471 error (("%s"), err_msg);
14f9c5c9
AS
9472 }
9473
4c4b4cd2 9474 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9475}
d2e4a39e 9476
14f9c5c9 9477/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9478 no such variable found, returns 0, and sets *FLAG to 0. If
9479 successful, sets *FLAG to 1. */
9480
14f9c5c9 9481LONGEST
4c4b4cd2 9482get_int_var_value (char *name, int *flag)
14f9c5c9 9483{
4c4b4cd2 9484 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9485
14f9c5c9
AS
9486 if (var_val == 0)
9487 {
9488 if (flag != NULL)
4c4b4cd2 9489 *flag = 0;
14f9c5c9
AS
9490 return 0;
9491 }
9492 else
9493 {
9494 if (flag != NULL)
4c4b4cd2 9495 *flag = 1;
14f9c5c9
AS
9496 return value_as_long (var_val);
9497 }
9498}
d2e4a39e 9499
14f9c5c9
AS
9500
9501/* Return a range type whose base type is that of the range type named
9502 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9503 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9504 Extract discriminant values, if needed, from DVAL. If a new type
9505 must be created, allocate in OBJFILE's space. The bounds
9506 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9507 the named range type. */
14f9c5c9 9508
d2e4a39e 9509static struct type *
ebf56fd3 9510to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9511{
9512 struct type *raw_type = ada_find_any_type (name);
9513 struct type *base_type;
d2e4a39e 9514 char *subtype_info;
14f9c5c9
AS
9515
9516 if (raw_type == NULL)
6d84d3d8 9517 base_type = builtin_type_int32;
14f9c5c9
AS
9518 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9519 base_type = TYPE_TARGET_TYPE (raw_type);
9520 else
9521 base_type = raw_type;
9522
9523 subtype_info = strstr (name, "___XD");
9524 if (subtype_info == NULL)
690cc4eb
PH
9525 {
9526 LONGEST L = discrete_type_low_bound (raw_type);
9527 LONGEST U = discrete_type_high_bound (raw_type);
9528 if (L < INT_MIN || U > INT_MAX)
9529 return raw_type;
9530 else
9531 return create_range_type (alloc_type (objfile), raw_type,
9532 discrete_type_low_bound (raw_type),
9533 discrete_type_high_bound (raw_type));
9534 }
14f9c5c9
AS
9535 else
9536 {
9537 static char *name_buf = NULL;
9538 static size_t name_len = 0;
9539 int prefix_len = subtype_info - name;
9540 LONGEST L, U;
9541 struct type *type;
9542 char *bounds_str;
9543 int n;
9544
9545 GROW_VECT (name_buf, name_len, prefix_len + 5);
9546 strncpy (name_buf, name, prefix_len);
9547 name_buf[prefix_len] = '\0';
9548
9549 subtype_info += 5;
9550 bounds_str = strchr (subtype_info, '_');
9551 n = 1;
9552
d2e4a39e 9553 if (*subtype_info == 'L')
4c4b4cd2
PH
9554 {
9555 if (!ada_scan_number (bounds_str, n, &L, &n)
9556 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9557 return raw_type;
9558 if (bounds_str[n] == '_')
9559 n += 2;
9560 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9561 n += 1;
9562 subtype_info += 1;
9563 }
d2e4a39e 9564 else
4c4b4cd2
PH
9565 {
9566 int ok;
9567 strcpy (name_buf + prefix_len, "___L");
9568 L = get_int_var_value (name_buf, &ok);
9569 if (!ok)
9570 {
323e0a4a 9571 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9572 L = 1;
9573 }
9574 }
14f9c5c9 9575
d2e4a39e 9576 if (*subtype_info == 'U')
4c4b4cd2
PH
9577 {
9578 if (!ada_scan_number (bounds_str, n, &U, &n)
9579 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9580 return raw_type;
9581 }
d2e4a39e 9582 else
4c4b4cd2
PH
9583 {
9584 int ok;
9585 strcpy (name_buf + prefix_len, "___U");
9586 U = get_int_var_value (name_buf, &ok);
9587 if (!ok)
9588 {
323e0a4a 9589 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9590 U = L;
9591 }
9592 }
14f9c5c9 9593
d2e4a39e 9594 if (objfile == NULL)
4c4b4cd2 9595 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9596 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9597 TYPE_NAME (type) = name;
14f9c5c9
AS
9598 return type;
9599 }
9600}
9601
4c4b4cd2
PH
9602/* True iff NAME is the name of a range type. */
9603
14f9c5c9 9604int
d2e4a39e 9605ada_is_range_type_name (const char *name)
14f9c5c9
AS
9606{
9607 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9608}
14f9c5c9 9609\f
d2e4a39e 9610
4c4b4cd2
PH
9611 /* Modular types */
9612
9613/* True iff TYPE is an Ada modular type. */
14f9c5c9 9614
14f9c5c9 9615int
d2e4a39e 9616ada_is_modular_type (struct type *type)
14f9c5c9 9617{
4c4b4cd2 9618 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9619
9620 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9621 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9622 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9623}
9624
0056e4d5
JB
9625/* Try to determine the lower and upper bounds of the given modular type
9626 using the type name only. Return non-zero and set L and U as the lower
9627 and upper bounds (respectively) if successful. */
9628
9629int
9630ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9631{
9632 char *name = ada_type_name (type);
9633 char *suffix;
9634 int k;
9635 LONGEST U;
9636
9637 if (name == NULL)
9638 return 0;
9639
9640 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9641 we are looking for static bounds, which means an __XDLU suffix.
9642 Moreover, we know that the lower bound of modular types is always
9643 zero, so the actual suffix should start with "__XDLU_0__", and
9644 then be followed by the upper bound value. */
9645 suffix = strstr (name, "__XDLU_0__");
9646 if (suffix == NULL)
9647 return 0;
9648 k = 10;
9649 if (!ada_scan_number (suffix, k, &U, NULL))
9650 return 0;
9651
9652 *modulus = (ULONGEST) U + 1;
9653 return 1;
9654}
9655
4c4b4cd2
PH
9656/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9657
61ee279c 9658ULONGEST
0056e4d5 9659ada_modulus (struct type *type)
14f9c5c9 9660{
0056e4d5
JB
9661 ULONGEST modulus;
9662
9663 /* Normally, the modulus of a modular type is equal to the value of
9664 its upper bound + 1. However, the upper bound is currently stored
9665 as an int, which is not always big enough to hold the actual bound
9666 value. To workaround this, try to take advantage of the encoding
9667 that GNAT uses with with discrete types. To avoid some unnecessary
9668 parsing, we do this only when the size of TYPE is greater than
9669 the size of the field holding the bound. */
9670 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9671 && ada_modulus_from_name (type, &modulus))
9672 return modulus;
9673
d37209fd 9674 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9675}
d2e4a39e 9676\f
f7f9143b
JB
9677
9678/* Ada exception catchpoint support:
9679 ---------------------------------
9680
9681 We support 3 kinds of exception catchpoints:
9682 . catchpoints on Ada exceptions
9683 . catchpoints on unhandled Ada exceptions
9684 . catchpoints on failed assertions
9685
9686 Exceptions raised during failed assertions, or unhandled exceptions
9687 could perfectly be caught with the general catchpoint on Ada exceptions.
9688 However, we can easily differentiate these two special cases, and having
9689 the option to distinguish these two cases from the rest can be useful
9690 to zero-in on certain situations.
9691
9692 Exception catchpoints are a specialized form of breakpoint,
9693 since they rely on inserting breakpoints inside known routines
9694 of the GNAT runtime. The implementation therefore uses a standard
9695 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9696 of breakpoint_ops.
9697
0259addd
JB
9698 Support in the runtime for exception catchpoints have been changed
9699 a few times already, and these changes affect the implementation
9700 of these catchpoints. In order to be able to support several
9701 variants of the runtime, we use a sniffer that will determine
9702 the runtime variant used by the program being debugged.
9703
f7f9143b
JB
9704 At this time, we do not support the use of conditions on Ada exception
9705 catchpoints. The COND and COND_STRING fields are therefore set
9706 to NULL (most of the time, see below).
9707
9708 Conditions where EXP_STRING, COND, and COND_STRING are used:
9709
9710 When a user specifies the name of a specific exception in the case
9711 of catchpoints on Ada exceptions, we store the name of that exception
9712 in the EXP_STRING. We then translate this request into an actual
9713 condition stored in COND_STRING, and then parse it into an expression
9714 stored in COND. */
9715
9716/* The different types of catchpoints that we introduced for catching
9717 Ada exceptions. */
9718
9719enum exception_catchpoint_kind
9720{
9721 ex_catch_exception,
9722 ex_catch_exception_unhandled,
9723 ex_catch_assert
9724};
9725
3d0b0fa3
JB
9726/* Ada's standard exceptions. */
9727
9728static char *standard_exc[] = {
9729 "constraint_error",
9730 "program_error",
9731 "storage_error",
9732 "tasking_error"
9733};
9734
0259addd
JB
9735typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9736
9737/* A structure that describes how to support exception catchpoints
9738 for a given executable. */
9739
9740struct exception_support_info
9741{
9742 /* The name of the symbol to break on in order to insert
9743 a catchpoint on exceptions. */
9744 const char *catch_exception_sym;
9745
9746 /* The name of the symbol to break on in order to insert
9747 a catchpoint on unhandled exceptions. */
9748 const char *catch_exception_unhandled_sym;
9749
9750 /* The name of the symbol to break on in order to insert
9751 a catchpoint on failed assertions. */
9752 const char *catch_assert_sym;
9753
9754 /* Assuming that the inferior just triggered an unhandled exception
9755 catchpoint, this function is responsible for returning the address
9756 in inferior memory where the name of that exception is stored.
9757 Return zero if the address could not be computed. */
9758 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9759};
9760
9761static CORE_ADDR ada_unhandled_exception_name_addr (void);
9762static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9763
9764/* The following exception support info structure describes how to
9765 implement exception catchpoints with the latest version of the
9766 Ada runtime (as of 2007-03-06). */
9767
9768static const struct exception_support_info default_exception_support_info =
9769{
9770 "__gnat_debug_raise_exception", /* catch_exception_sym */
9771 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9772 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9773 ada_unhandled_exception_name_addr
9774};
9775
9776/* The following exception support info structure describes how to
9777 implement exception catchpoints with a slightly older version
9778 of the Ada runtime. */
9779
9780static const struct exception_support_info exception_support_info_fallback =
9781{
9782 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9783 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9784 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9785 ada_unhandled_exception_name_addr_from_raise
9786};
9787
9788/* For each executable, we sniff which exception info structure to use
9789 and cache it in the following global variable. */
9790
9791static const struct exception_support_info *exception_info = NULL;
9792
9793/* Inspect the Ada runtime and determine which exception info structure
9794 should be used to provide support for exception catchpoints.
9795
9796 This function will always set exception_info, or raise an error. */
9797
9798static void
9799ada_exception_support_info_sniffer (void)
9800{
9801 struct symbol *sym;
9802
9803 /* If the exception info is already known, then no need to recompute it. */
9804 if (exception_info != NULL)
9805 return;
9806
9807 /* Check the latest (default) exception support info. */
9808 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9809 NULL, VAR_DOMAIN);
9810 if (sym != NULL)
9811 {
9812 exception_info = &default_exception_support_info;
9813 return;
9814 }
9815
9816 /* Try our fallback exception suport info. */
9817 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9818 NULL, VAR_DOMAIN);
9819 if (sym != NULL)
9820 {
9821 exception_info = &exception_support_info_fallback;
9822 return;
9823 }
9824
9825 /* Sometimes, it is normal for us to not be able to find the routine
9826 we are looking for. This happens when the program is linked with
9827 the shared version of the GNAT runtime, and the program has not been
9828 started yet. Inform the user of these two possible causes if
9829 applicable. */
9830
9831 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9832 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9833
9834 /* If the symbol does not exist, then check that the program is
9835 already started, to make sure that shared libraries have been
9836 loaded. If it is not started, this may mean that the symbol is
9837 in a shared library. */
9838
9839 if (ptid_get_pid (inferior_ptid) == 0)
9840 error (_("Unable to insert catchpoint. Try to start the program first."));
9841
9842 /* At this point, we know that we are debugging an Ada program and
9843 that the inferior has been started, but we still are not able to
9844 find the run-time symbols. That can mean that we are in
9845 configurable run time mode, or that a-except as been optimized
9846 out by the linker... In any case, at this point it is not worth
9847 supporting this feature. */
9848
9849 error (_("Cannot insert catchpoints in this configuration."));
9850}
9851
9852/* An observer of "executable_changed" events.
9853 Its role is to clear certain cached values that need to be recomputed
9854 each time a new executable is loaded by GDB. */
9855
9856static void
781b42b0 9857ada_executable_changed_observer (void)
0259addd
JB
9858{
9859 /* If the executable changed, then it is possible that the Ada runtime
9860 is different. So we need to invalidate the exception support info
9861 cache. */
9862 exception_info = NULL;
9863}
9864
f7f9143b
JB
9865/* Return the name of the function at PC, NULL if could not find it.
9866 This function only checks the debugging information, not the symbol
9867 table. */
9868
9869static char *
9870function_name_from_pc (CORE_ADDR pc)
9871{
9872 char *func_name;
9873
9874 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9875 return NULL;
9876
9877 return func_name;
9878}
9879
9880/* True iff FRAME is very likely to be that of a function that is
9881 part of the runtime system. This is all very heuristic, but is
9882 intended to be used as advice as to what frames are uninteresting
9883 to most users. */
9884
9885static int
9886is_known_support_routine (struct frame_info *frame)
9887{
4ed6b5be 9888 struct symtab_and_line sal;
f7f9143b
JB
9889 char *func_name;
9890 int i;
f7f9143b 9891
4ed6b5be
JB
9892 /* If this code does not have any debugging information (no symtab),
9893 This cannot be any user code. */
f7f9143b 9894
4ed6b5be 9895 find_frame_sal (frame, &sal);
f7f9143b
JB
9896 if (sal.symtab == NULL)
9897 return 1;
9898
4ed6b5be
JB
9899 /* If there is a symtab, but the associated source file cannot be
9900 located, then assume this is not user code: Selecting a frame
9901 for which we cannot display the code would not be very helpful
9902 for the user. This should also take care of case such as VxWorks
9903 where the kernel has some debugging info provided for a few units. */
f7f9143b 9904
9bbc9174 9905 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9906 return 1;
9907
4ed6b5be
JB
9908 /* Check the unit filename againt the Ada runtime file naming.
9909 We also check the name of the objfile against the name of some
9910 known system libraries that sometimes come with debugging info
9911 too. */
9912
f7f9143b
JB
9913 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9914 {
9915 re_comp (known_runtime_file_name_patterns[i]);
9916 if (re_exec (sal.symtab->filename))
9917 return 1;
4ed6b5be
JB
9918 if (sal.symtab->objfile != NULL
9919 && re_exec (sal.symtab->objfile->name))
9920 return 1;
f7f9143b
JB
9921 }
9922
4ed6b5be 9923 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9924
4ed6b5be 9925 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9926 if (func_name == NULL)
9927 return 1;
9928
9929 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9930 {
9931 re_comp (known_auxiliary_function_name_patterns[i]);
9932 if (re_exec (func_name))
9933 return 1;
9934 }
9935
9936 return 0;
9937}
9938
9939/* Find the first frame that contains debugging information and that is not
9940 part of the Ada run-time, starting from FI and moving upward. */
9941
0ef643c8 9942void
f7f9143b
JB
9943ada_find_printable_frame (struct frame_info *fi)
9944{
9945 for (; fi != NULL; fi = get_prev_frame (fi))
9946 {
9947 if (!is_known_support_routine (fi))
9948 {
9949 select_frame (fi);
9950 break;
9951 }
9952 }
9953
9954}
9955
9956/* Assuming that the inferior just triggered an unhandled exception
9957 catchpoint, return the address in inferior memory where the name
9958 of the exception is stored.
9959
9960 Return zero if the address could not be computed. */
9961
9962static CORE_ADDR
9963ada_unhandled_exception_name_addr (void)
0259addd
JB
9964{
9965 return parse_and_eval_address ("e.full_name");
9966}
9967
9968/* Same as ada_unhandled_exception_name_addr, except that this function
9969 should be used when the inferior uses an older version of the runtime,
9970 where the exception name needs to be extracted from a specific frame
9971 several frames up in the callstack. */
9972
9973static CORE_ADDR
9974ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9975{
9976 int frame_level;
9977 struct frame_info *fi;
9978
9979 /* To determine the name of this exception, we need to select
9980 the frame corresponding to RAISE_SYM_NAME. This frame is
9981 at least 3 levels up, so we simply skip the first 3 frames
9982 without checking the name of their associated function. */
9983 fi = get_current_frame ();
9984 for (frame_level = 0; frame_level < 3; frame_level += 1)
9985 if (fi != NULL)
9986 fi = get_prev_frame (fi);
9987
9988 while (fi != NULL)
9989 {
9990 const char *func_name =
9991 function_name_from_pc (get_frame_address_in_block (fi));
9992 if (func_name != NULL
0259addd 9993 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9994 break; /* We found the frame we were looking for... */
9995 fi = get_prev_frame (fi);
9996 }
9997
9998 if (fi == NULL)
9999 return 0;
10000
10001 select_frame (fi);
10002 return parse_and_eval_address ("id.full_name");
10003}
10004
10005/* Assuming the inferior just triggered an Ada exception catchpoint
10006 (of any type), return the address in inferior memory where the name
10007 of the exception is stored, if applicable.
10008
10009 Return zero if the address could not be computed, or if not relevant. */
10010
10011static CORE_ADDR
10012ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10013 struct breakpoint *b)
10014{
10015 switch (ex)
10016 {
10017 case ex_catch_exception:
10018 return (parse_and_eval_address ("e.full_name"));
10019 break;
10020
10021 case ex_catch_exception_unhandled:
0259addd 10022 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10023 break;
10024
10025 case ex_catch_assert:
10026 return 0; /* Exception name is not relevant in this case. */
10027 break;
10028
10029 default:
10030 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10031 break;
10032 }
10033
10034 return 0; /* Should never be reached. */
10035}
10036
10037/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10038 any error that ada_exception_name_addr_1 might cause to be thrown.
10039 When an error is intercepted, a warning with the error message is printed,
10040 and zero is returned. */
10041
10042static CORE_ADDR
10043ada_exception_name_addr (enum exception_catchpoint_kind ex,
10044 struct breakpoint *b)
10045{
10046 struct gdb_exception e;
10047 CORE_ADDR result = 0;
10048
10049 TRY_CATCH (e, RETURN_MASK_ERROR)
10050 {
10051 result = ada_exception_name_addr_1 (ex, b);
10052 }
10053
10054 if (e.reason < 0)
10055 {
10056 warning (_("failed to get exception name: %s"), e.message);
10057 return 0;
10058 }
10059
10060 return result;
10061}
10062
10063/* Implement the PRINT_IT method in the breakpoint_ops structure
10064 for all exception catchpoint kinds. */
10065
10066static enum print_stop_action
10067print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10068{
10069 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10070 char exception_name[256];
10071
10072 if (addr != 0)
10073 {
10074 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10075 exception_name [sizeof (exception_name) - 1] = '\0';
10076 }
10077
10078 ada_find_printable_frame (get_current_frame ());
10079
10080 annotate_catchpoint (b->number);
10081 switch (ex)
10082 {
10083 case ex_catch_exception:
10084 if (addr != 0)
10085 printf_filtered (_("\nCatchpoint %d, %s at "),
10086 b->number, exception_name);
10087 else
10088 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10089 break;
10090 case ex_catch_exception_unhandled:
10091 if (addr != 0)
10092 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10093 b->number, exception_name);
10094 else
10095 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10096 b->number);
10097 break;
10098 case ex_catch_assert:
10099 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10100 b->number);
10101 break;
10102 }
10103
10104 return PRINT_SRC_AND_LOC;
10105}
10106
10107/* Implement the PRINT_ONE method in the breakpoint_ops structure
10108 for all exception catchpoint kinds. */
10109
10110static void
10111print_one_exception (enum exception_catchpoint_kind ex,
10112 struct breakpoint *b, CORE_ADDR *last_addr)
10113{
79a45b7d
TT
10114 struct value_print_options opts;
10115
10116 get_user_print_options (&opts);
10117 if (opts.addressprint)
f7f9143b
JB
10118 {
10119 annotate_field (4);
10120 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10121 }
10122
10123 annotate_field (5);
10124 *last_addr = b->loc->address;
10125 switch (ex)
10126 {
10127 case ex_catch_exception:
10128 if (b->exp_string != NULL)
10129 {
10130 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10131
10132 ui_out_field_string (uiout, "what", msg);
10133 xfree (msg);
10134 }
10135 else
10136 ui_out_field_string (uiout, "what", "all Ada exceptions");
10137
10138 break;
10139
10140 case ex_catch_exception_unhandled:
10141 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10142 break;
10143
10144 case ex_catch_assert:
10145 ui_out_field_string (uiout, "what", "failed Ada assertions");
10146 break;
10147
10148 default:
10149 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10150 break;
10151 }
10152}
10153
10154/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10155 for all exception catchpoint kinds. */
10156
10157static void
10158print_mention_exception (enum exception_catchpoint_kind ex,
10159 struct breakpoint *b)
10160{
10161 switch (ex)
10162 {
10163 case ex_catch_exception:
10164 if (b->exp_string != NULL)
10165 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10166 b->number, b->exp_string);
10167 else
10168 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10169
10170 break;
10171
10172 case ex_catch_exception_unhandled:
10173 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10174 b->number);
10175 break;
10176
10177 case ex_catch_assert:
10178 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10179 break;
10180
10181 default:
10182 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10183 break;
10184 }
10185}
10186
10187/* Virtual table for "catch exception" breakpoints. */
10188
10189static enum print_stop_action
10190print_it_catch_exception (struct breakpoint *b)
10191{
10192 return print_it_exception (ex_catch_exception, b);
10193}
10194
10195static void
10196print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10197{
10198 print_one_exception (ex_catch_exception, b, last_addr);
10199}
10200
10201static void
10202print_mention_catch_exception (struct breakpoint *b)
10203{
10204 print_mention_exception (ex_catch_exception, b);
10205}
10206
10207static struct breakpoint_ops catch_exception_breakpoint_ops =
10208{
ce78b96d
JB
10209 NULL, /* insert */
10210 NULL, /* remove */
10211 NULL, /* breakpoint_hit */
f7f9143b
JB
10212 print_it_catch_exception,
10213 print_one_catch_exception,
10214 print_mention_catch_exception
10215};
10216
10217/* Virtual table for "catch exception unhandled" breakpoints. */
10218
10219static enum print_stop_action
10220print_it_catch_exception_unhandled (struct breakpoint *b)
10221{
10222 return print_it_exception (ex_catch_exception_unhandled, b);
10223}
10224
10225static void
10226print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10227{
10228 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10229}
10230
10231static void
10232print_mention_catch_exception_unhandled (struct breakpoint *b)
10233{
10234 print_mention_exception (ex_catch_exception_unhandled, b);
10235}
10236
10237static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10238 NULL, /* insert */
10239 NULL, /* remove */
10240 NULL, /* breakpoint_hit */
f7f9143b
JB
10241 print_it_catch_exception_unhandled,
10242 print_one_catch_exception_unhandled,
10243 print_mention_catch_exception_unhandled
10244};
10245
10246/* Virtual table for "catch assert" breakpoints. */
10247
10248static enum print_stop_action
10249print_it_catch_assert (struct breakpoint *b)
10250{
10251 return print_it_exception (ex_catch_assert, b);
10252}
10253
10254static void
10255print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10256{
10257 print_one_exception (ex_catch_assert, b, last_addr);
10258}
10259
10260static void
10261print_mention_catch_assert (struct breakpoint *b)
10262{
10263 print_mention_exception (ex_catch_assert, b);
10264}
10265
10266static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10267 NULL, /* insert */
10268 NULL, /* remove */
10269 NULL, /* breakpoint_hit */
f7f9143b
JB
10270 print_it_catch_assert,
10271 print_one_catch_assert,
10272 print_mention_catch_assert
10273};
10274
10275/* Return non-zero if B is an Ada exception catchpoint. */
10276
10277int
10278ada_exception_catchpoint_p (struct breakpoint *b)
10279{
10280 return (b->ops == &catch_exception_breakpoint_ops
10281 || b->ops == &catch_exception_unhandled_breakpoint_ops
10282 || b->ops == &catch_assert_breakpoint_ops);
10283}
10284
f7f9143b
JB
10285/* Return a newly allocated copy of the first space-separated token
10286 in ARGSP, and then adjust ARGSP to point immediately after that
10287 token.
10288
10289 Return NULL if ARGPS does not contain any more tokens. */
10290
10291static char *
10292ada_get_next_arg (char **argsp)
10293{
10294 char *args = *argsp;
10295 char *end;
10296 char *result;
10297
10298 /* Skip any leading white space. */
10299
10300 while (isspace (*args))
10301 args++;
10302
10303 if (args[0] == '\0')
10304 return NULL; /* No more arguments. */
10305
10306 /* Find the end of the current argument. */
10307
10308 end = args;
10309 while (*end != '\0' && !isspace (*end))
10310 end++;
10311
10312 /* Adjust ARGSP to point to the start of the next argument. */
10313
10314 *argsp = end;
10315
10316 /* Make a copy of the current argument and return it. */
10317
10318 result = xmalloc (end - args + 1);
10319 strncpy (result, args, end - args);
10320 result[end - args] = '\0';
10321
10322 return result;
10323}
10324
10325/* Split the arguments specified in a "catch exception" command.
10326 Set EX to the appropriate catchpoint type.
10327 Set EXP_STRING to the name of the specific exception if
10328 specified by the user. */
10329
10330static void
10331catch_ada_exception_command_split (char *args,
10332 enum exception_catchpoint_kind *ex,
10333 char **exp_string)
10334{
10335 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10336 char *exception_name;
10337
10338 exception_name = ada_get_next_arg (&args);
10339 make_cleanup (xfree, exception_name);
10340
10341 /* Check that we do not have any more arguments. Anything else
10342 is unexpected. */
10343
10344 while (isspace (*args))
10345 args++;
10346
10347 if (args[0] != '\0')
10348 error (_("Junk at end of expression"));
10349
10350 discard_cleanups (old_chain);
10351
10352 if (exception_name == NULL)
10353 {
10354 /* Catch all exceptions. */
10355 *ex = ex_catch_exception;
10356 *exp_string = NULL;
10357 }
10358 else if (strcmp (exception_name, "unhandled") == 0)
10359 {
10360 /* Catch unhandled exceptions. */
10361 *ex = ex_catch_exception_unhandled;
10362 *exp_string = NULL;
10363 }
10364 else
10365 {
10366 /* Catch a specific exception. */
10367 *ex = ex_catch_exception;
10368 *exp_string = exception_name;
10369 }
10370}
10371
10372/* Return the name of the symbol on which we should break in order to
10373 implement a catchpoint of the EX kind. */
10374
10375static const char *
10376ada_exception_sym_name (enum exception_catchpoint_kind ex)
10377{
0259addd
JB
10378 gdb_assert (exception_info != NULL);
10379
f7f9143b
JB
10380 switch (ex)
10381 {
10382 case ex_catch_exception:
0259addd 10383 return (exception_info->catch_exception_sym);
f7f9143b
JB
10384 break;
10385 case ex_catch_exception_unhandled:
0259addd 10386 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10387 break;
10388 case ex_catch_assert:
0259addd 10389 return (exception_info->catch_assert_sym);
f7f9143b
JB
10390 break;
10391 default:
10392 internal_error (__FILE__, __LINE__,
10393 _("unexpected catchpoint kind (%d)"), ex);
10394 }
10395}
10396
10397/* Return the breakpoint ops "virtual table" used for catchpoints
10398 of the EX kind. */
10399
10400static struct breakpoint_ops *
4b9eee8c 10401ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10402{
10403 switch (ex)
10404 {
10405 case ex_catch_exception:
10406 return (&catch_exception_breakpoint_ops);
10407 break;
10408 case ex_catch_exception_unhandled:
10409 return (&catch_exception_unhandled_breakpoint_ops);
10410 break;
10411 case ex_catch_assert:
10412 return (&catch_assert_breakpoint_ops);
10413 break;
10414 default:
10415 internal_error (__FILE__, __LINE__,
10416 _("unexpected catchpoint kind (%d)"), ex);
10417 }
10418}
10419
10420/* Return the condition that will be used to match the current exception
10421 being raised with the exception that the user wants to catch. This
10422 assumes that this condition is used when the inferior just triggered
10423 an exception catchpoint.
10424
10425 The string returned is a newly allocated string that needs to be
10426 deallocated later. */
10427
10428static char *
10429ada_exception_catchpoint_cond_string (const char *exp_string)
10430{
3d0b0fa3
JB
10431 int i;
10432
10433 /* The standard exceptions are a special case. They are defined in
10434 runtime units that have been compiled without debugging info; if
10435 EXP_STRING is the not-fully-qualified name of a standard
10436 exception (e.g. "constraint_error") then, during the evaluation
10437 of the condition expression, the symbol lookup on this name would
10438 *not* return this standard exception. The catchpoint condition
10439 may then be set only on user-defined exceptions which have the
10440 same not-fully-qualified name (e.g. my_package.constraint_error).
10441
10442 To avoid this unexcepted behavior, these standard exceptions are
10443 systematically prefixed by "standard". This means that "catch
10444 exception constraint_error" is rewritten into "catch exception
10445 standard.constraint_error".
10446
10447 If an exception named contraint_error is defined in another package of
10448 the inferior program, then the only way to specify this exception as a
10449 breakpoint condition is to use its fully-qualified named:
10450 e.g. my_package.constraint_error. */
10451
10452 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10453 {
10454 if (strcmp (standard_exc [i], exp_string) == 0)
10455 {
10456 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10457 exp_string);
10458 }
10459 }
f7f9143b
JB
10460 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10461}
10462
10463/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10464
10465static struct expression *
10466ada_parse_catchpoint_condition (char *cond_string,
10467 struct symtab_and_line sal)
10468{
10469 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10470}
10471
10472/* Return the symtab_and_line that should be used to insert an exception
10473 catchpoint of the TYPE kind.
10474
10475 EX_STRING should contain the name of a specific exception
10476 that the catchpoint should catch, or NULL otherwise.
10477
10478 The idea behind all the remaining parameters is that their names match
10479 the name of certain fields in the breakpoint structure that are used to
10480 handle exception catchpoints. This function returns the value to which
10481 these fields should be set, depending on the type of catchpoint we need
10482 to create.
10483
10484 If COND and COND_STRING are both non-NULL, any value they might
10485 hold will be free'ed, and then replaced by newly allocated ones.
10486 These parameters are left untouched otherwise. */
10487
10488static struct symtab_and_line
10489ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10490 char **addr_string, char **cond_string,
10491 struct expression **cond, struct breakpoint_ops **ops)
10492{
10493 const char *sym_name;
10494 struct symbol *sym;
10495 struct symtab_and_line sal;
10496
0259addd
JB
10497 /* First, find out which exception support info to use. */
10498 ada_exception_support_info_sniffer ();
10499
10500 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10501 the Ada exceptions requested by the user. */
10502
10503 sym_name = ada_exception_sym_name (ex);
10504 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10505
10506 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10507 that should be compiled with debugging information. As a result, we
10508 expect to find that symbol in the symtabs. If we don't find it, then
10509 the target most likely does not support Ada exceptions, or we cannot
10510 insert exception breakpoints yet, because the GNAT runtime hasn't been
10511 loaded yet. */
10512
10513 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10514 in such a way that no debugging information is produced for the symbol
10515 we are looking for. In this case, we could search the minimal symbols
10516 as a fall-back mechanism. This would still be operating in degraded
10517 mode, however, as we would still be missing the debugging information
10518 that is needed in order to extract the name of the exception being
10519 raised (this name is printed in the catchpoint message, and is also
10520 used when trying to catch a specific exception). We do not handle
10521 this case for now. */
10522
10523 if (sym == NULL)
0259addd 10524 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10525
10526 /* Make sure that the symbol we found corresponds to a function. */
10527 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10528 error (_("Symbol \"%s\" is not a function (class = %d)"),
10529 sym_name, SYMBOL_CLASS (sym));
10530
10531 sal = find_function_start_sal (sym, 1);
10532
10533 /* Set ADDR_STRING. */
10534
10535 *addr_string = xstrdup (sym_name);
10536
10537 /* Set the COND and COND_STRING (if not NULL). */
10538
10539 if (cond_string != NULL && cond != NULL)
10540 {
10541 if (*cond_string != NULL)
10542 {
10543 xfree (*cond_string);
10544 *cond_string = NULL;
10545 }
10546 if (*cond != NULL)
10547 {
10548 xfree (*cond);
10549 *cond = NULL;
10550 }
10551 if (exp_string != NULL)
10552 {
10553 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10554 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10555 }
10556 }
10557
10558 /* Set OPS. */
4b9eee8c 10559 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10560
10561 return sal;
10562}
10563
10564/* Parse the arguments (ARGS) of the "catch exception" command.
10565
10566 Set TYPE to the appropriate exception catchpoint type.
10567 If the user asked the catchpoint to catch only a specific
10568 exception, then save the exception name in ADDR_STRING.
10569
10570 See ada_exception_sal for a description of all the remaining
10571 function arguments of this function. */
10572
10573struct symtab_and_line
10574ada_decode_exception_location (char *args, char **addr_string,
10575 char **exp_string, char **cond_string,
10576 struct expression **cond,
10577 struct breakpoint_ops **ops)
10578{
10579 enum exception_catchpoint_kind ex;
10580
10581 catch_ada_exception_command_split (args, &ex, exp_string);
10582 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10583 cond, ops);
10584}
10585
10586struct symtab_and_line
10587ada_decode_assert_location (char *args, char **addr_string,
10588 struct breakpoint_ops **ops)
10589{
10590 /* Check that no argument where provided at the end of the command. */
10591
10592 if (args != NULL)
10593 {
10594 while (isspace (*args))
10595 args++;
10596 if (*args != '\0')
10597 error (_("Junk at end of arguments."));
10598 }
10599
10600 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10601 ops);
10602}
10603
4c4b4cd2
PH
10604 /* Operators */
10605/* Information about operators given special treatment in functions
10606 below. */
10607/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10608
10609#define ADA_OPERATORS \
10610 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10611 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10612 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10613 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10614 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10615 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10616 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10617 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10618 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10619 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10620 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10621 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10622 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10623 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10624 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10625 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10626 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10627 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10628 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10629
10630static void
10631ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10632{
10633 switch (exp->elts[pc - 1].opcode)
10634 {
76a01679 10635 default:
4c4b4cd2
PH
10636 operator_length_standard (exp, pc, oplenp, argsp);
10637 break;
10638
10639#define OP_DEFN(op, len, args, binop) \
10640 case op: *oplenp = len; *argsp = args; break;
10641 ADA_OPERATORS;
10642#undef OP_DEFN
52ce6436
PH
10643
10644 case OP_AGGREGATE:
10645 *oplenp = 3;
10646 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10647 break;
10648
10649 case OP_CHOICES:
10650 *oplenp = 3;
10651 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10652 break;
4c4b4cd2
PH
10653 }
10654}
10655
10656static char *
10657ada_op_name (enum exp_opcode opcode)
10658{
10659 switch (opcode)
10660 {
76a01679 10661 default:
4c4b4cd2 10662 return op_name_standard (opcode);
52ce6436 10663
4c4b4cd2
PH
10664#define OP_DEFN(op, len, args, binop) case op: return #op;
10665 ADA_OPERATORS;
10666#undef OP_DEFN
52ce6436
PH
10667
10668 case OP_AGGREGATE:
10669 return "OP_AGGREGATE";
10670 case OP_CHOICES:
10671 return "OP_CHOICES";
10672 case OP_NAME:
10673 return "OP_NAME";
4c4b4cd2
PH
10674 }
10675}
10676
10677/* As for operator_length, but assumes PC is pointing at the first
10678 element of the operator, and gives meaningful results only for the
52ce6436 10679 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10680
10681static void
76a01679
JB
10682ada_forward_operator_length (struct expression *exp, int pc,
10683 int *oplenp, int *argsp)
4c4b4cd2 10684{
76a01679 10685 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10686 {
10687 default:
10688 *oplenp = *argsp = 0;
10689 break;
52ce6436 10690
4c4b4cd2
PH
10691#define OP_DEFN(op, len, args, binop) \
10692 case op: *oplenp = len; *argsp = args; break;
10693 ADA_OPERATORS;
10694#undef OP_DEFN
52ce6436
PH
10695
10696 case OP_AGGREGATE:
10697 *oplenp = 3;
10698 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10699 break;
10700
10701 case OP_CHOICES:
10702 *oplenp = 3;
10703 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10704 break;
10705
10706 case OP_STRING:
10707 case OP_NAME:
10708 {
10709 int len = longest_to_int (exp->elts[pc + 1].longconst);
10710 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10711 *argsp = 0;
10712 break;
10713 }
4c4b4cd2
PH
10714 }
10715}
10716
10717static int
10718ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10719{
10720 enum exp_opcode op = exp->elts[elt].opcode;
10721 int oplen, nargs;
10722 int pc = elt;
10723 int i;
76a01679 10724
4c4b4cd2
PH
10725 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10726
76a01679 10727 switch (op)
4c4b4cd2 10728 {
76a01679 10729 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10730 case OP_ATR_FIRST:
10731 case OP_ATR_LAST:
10732 case OP_ATR_LENGTH:
10733 case OP_ATR_IMAGE:
10734 case OP_ATR_MAX:
10735 case OP_ATR_MIN:
10736 case OP_ATR_MODULUS:
10737 case OP_ATR_POS:
10738 case OP_ATR_SIZE:
10739 case OP_ATR_TAG:
10740 case OP_ATR_VAL:
10741 break;
10742
10743 case UNOP_IN_RANGE:
10744 case UNOP_QUAL:
323e0a4a
AC
10745 /* XXX: gdb_sprint_host_address, type_sprint */
10746 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10747 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10748 fprintf_filtered (stream, " (");
10749 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10750 fprintf_filtered (stream, ")");
10751 break;
10752 case BINOP_IN_BOUNDS:
52ce6436
PH
10753 fprintf_filtered (stream, " (%d)",
10754 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10755 break;
10756 case TERNOP_IN_RANGE:
10757 break;
10758
52ce6436
PH
10759 case OP_AGGREGATE:
10760 case OP_OTHERS:
10761 case OP_DISCRETE_RANGE:
10762 case OP_POSITIONAL:
10763 case OP_CHOICES:
10764 break;
10765
10766 case OP_NAME:
10767 case OP_STRING:
10768 {
10769 char *name = &exp->elts[elt + 2].string;
10770 int len = longest_to_int (exp->elts[elt + 1].longconst);
10771 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10772 break;
10773 }
10774
4c4b4cd2
PH
10775 default:
10776 return dump_subexp_body_standard (exp, stream, elt);
10777 }
10778
10779 elt += oplen;
10780 for (i = 0; i < nargs; i += 1)
10781 elt = dump_subexp (exp, stream, elt);
10782
10783 return elt;
10784}
10785
10786/* The Ada extension of print_subexp (q.v.). */
10787
76a01679
JB
10788static void
10789ada_print_subexp (struct expression *exp, int *pos,
10790 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10791{
52ce6436 10792 int oplen, nargs, i;
4c4b4cd2
PH
10793 int pc = *pos;
10794 enum exp_opcode op = exp->elts[pc].opcode;
10795
10796 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10797
52ce6436 10798 *pos += oplen;
4c4b4cd2
PH
10799 switch (op)
10800 {
10801 default:
52ce6436 10802 *pos -= oplen;
4c4b4cd2
PH
10803 print_subexp_standard (exp, pos, stream, prec);
10804 return;
10805
10806 case OP_VAR_VALUE:
4c4b4cd2
PH
10807 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10808 return;
10809
10810 case BINOP_IN_BOUNDS:
323e0a4a 10811 /* XXX: sprint_subexp */
4c4b4cd2 10812 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10813 fputs_filtered (" in ", stream);
4c4b4cd2 10814 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10815 fputs_filtered ("'range", stream);
4c4b4cd2 10816 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10817 fprintf_filtered (stream, "(%ld)",
10818 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10819 return;
10820
10821 case TERNOP_IN_RANGE:
4c4b4cd2 10822 if (prec >= PREC_EQUAL)
76a01679 10823 fputs_filtered ("(", stream);
323e0a4a 10824 /* XXX: sprint_subexp */
4c4b4cd2 10825 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10826 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10827 print_subexp (exp, pos, stream, PREC_EQUAL);
10828 fputs_filtered (" .. ", stream);
10829 print_subexp (exp, pos, stream, PREC_EQUAL);
10830 if (prec >= PREC_EQUAL)
76a01679
JB
10831 fputs_filtered (")", stream);
10832 return;
4c4b4cd2
PH
10833
10834 case OP_ATR_FIRST:
10835 case OP_ATR_LAST:
10836 case OP_ATR_LENGTH:
10837 case OP_ATR_IMAGE:
10838 case OP_ATR_MAX:
10839 case OP_ATR_MIN:
10840 case OP_ATR_MODULUS:
10841 case OP_ATR_POS:
10842 case OP_ATR_SIZE:
10843 case OP_ATR_TAG:
10844 case OP_ATR_VAL:
4c4b4cd2 10845 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10846 {
10847 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10848 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10849 *pos += 3;
10850 }
4c4b4cd2 10851 else
76a01679 10852 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10853 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10854 if (nargs > 1)
76a01679
JB
10855 {
10856 int tem;
10857 for (tem = 1; tem < nargs; tem += 1)
10858 {
10859 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10860 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10861 }
10862 fputs_filtered (")", stream);
10863 }
4c4b4cd2 10864 return;
14f9c5c9 10865
4c4b4cd2 10866 case UNOP_QUAL:
4c4b4cd2
PH
10867 type_print (exp->elts[pc + 1].type, "", stream, 0);
10868 fputs_filtered ("'(", stream);
10869 print_subexp (exp, pos, stream, PREC_PREFIX);
10870 fputs_filtered (")", stream);
10871 return;
14f9c5c9 10872
4c4b4cd2 10873 case UNOP_IN_RANGE:
323e0a4a 10874 /* XXX: sprint_subexp */
4c4b4cd2 10875 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10876 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10877 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10878 return;
52ce6436
PH
10879
10880 case OP_DISCRETE_RANGE:
10881 print_subexp (exp, pos, stream, PREC_SUFFIX);
10882 fputs_filtered ("..", stream);
10883 print_subexp (exp, pos, stream, PREC_SUFFIX);
10884 return;
10885
10886 case OP_OTHERS:
10887 fputs_filtered ("others => ", stream);
10888 print_subexp (exp, pos, stream, PREC_SUFFIX);
10889 return;
10890
10891 case OP_CHOICES:
10892 for (i = 0; i < nargs-1; i += 1)
10893 {
10894 if (i > 0)
10895 fputs_filtered ("|", stream);
10896 print_subexp (exp, pos, stream, PREC_SUFFIX);
10897 }
10898 fputs_filtered (" => ", stream);
10899 print_subexp (exp, pos, stream, PREC_SUFFIX);
10900 return;
10901
10902 case OP_POSITIONAL:
10903 print_subexp (exp, pos, stream, PREC_SUFFIX);
10904 return;
10905
10906 case OP_AGGREGATE:
10907 fputs_filtered ("(", stream);
10908 for (i = 0; i < nargs; i += 1)
10909 {
10910 if (i > 0)
10911 fputs_filtered (", ", stream);
10912 print_subexp (exp, pos, stream, PREC_SUFFIX);
10913 }
10914 fputs_filtered (")", stream);
10915 return;
4c4b4cd2
PH
10916 }
10917}
14f9c5c9
AS
10918
10919/* Table mapping opcodes into strings for printing operators
10920 and precedences of the operators. */
10921
d2e4a39e
AS
10922static const struct op_print ada_op_print_tab[] = {
10923 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10924 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10925 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10926 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10927 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10928 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10929 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10930 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10931 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10932 {">=", BINOP_GEQ, PREC_ORDER, 0},
10933 {">", BINOP_GTR, PREC_ORDER, 0},
10934 {"<", BINOP_LESS, PREC_ORDER, 0},
10935 {">>", BINOP_RSH, PREC_SHIFT, 0},
10936 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10937 {"+", BINOP_ADD, PREC_ADD, 0},
10938 {"-", BINOP_SUB, PREC_ADD, 0},
10939 {"&", BINOP_CONCAT, PREC_ADD, 0},
10940 {"*", BINOP_MUL, PREC_MUL, 0},
10941 {"/", BINOP_DIV, PREC_MUL, 0},
10942 {"rem", BINOP_REM, PREC_MUL, 0},
10943 {"mod", BINOP_MOD, PREC_MUL, 0},
10944 {"**", BINOP_EXP, PREC_REPEAT, 0},
10945 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10946 {"-", UNOP_NEG, PREC_PREFIX, 0},
10947 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10948 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10949 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10950 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10951 {".all", UNOP_IND, PREC_SUFFIX, 1},
10952 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10953 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10954 {NULL, 0, 0, 0}
14f9c5c9
AS
10955};
10956\f
72d5681a
PH
10957enum ada_primitive_types {
10958 ada_primitive_type_int,
10959 ada_primitive_type_long,
10960 ada_primitive_type_short,
10961 ada_primitive_type_char,
10962 ada_primitive_type_float,
10963 ada_primitive_type_double,
10964 ada_primitive_type_void,
10965 ada_primitive_type_long_long,
10966 ada_primitive_type_long_double,
10967 ada_primitive_type_natural,
10968 ada_primitive_type_positive,
10969 ada_primitive_type_system_address,
10970 nr_ada_primitive_types
10971};
6c038f32
PH
10972
10973static void
d4a9a881 10974ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10975 struct language_arch_info *lai)
10976{
d4a9a881 10977 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10978 lai->primitive_type_vector
d4a9a881 10979 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10980 struct type *);
10981 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10982 init_type (TYPE_CODE_INT,
d4a9a881 10983 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10984 0, "integer", (struct objfile *) NULL);
72d5681a 10985 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10986 init_type (TYPE_CODE_INT,
d4a9a881 10987 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10988 0, "long_integer", (struct objfile *) NULL);
72d5681a 10989 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10990 init_type (TYPE_CODE_INT,
d4a9a881 10991 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10992 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10993 lai->string_char_type =
10994 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10995 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10996 0, "character", (struct objfile *) NULL);
72d5681a 10997 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10998 init_type (TYPE_CODE_FLT,
d4a9a881 10999 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 11000 0, "float", (struct objfile *) NULL);
72d5681a 11001 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 11002 init_type (TYPE_CODE_FLT,
d4a9a881 11003 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11004 0, "long_float", (struct objfile *) NULL);
72d5681a 11005 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 11006 init_type (TYPE_CODE_INT,
d4a9a881 11007 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11008 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 11009 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 11010 init_type (TYPE_CODE_FLT,
d4a9a881 11011 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11012 0, "long_long_float", (struct objfile *) NULL);
72d5681a 11013 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 11014 init_type (TYPE_CODE_INT,
d4a9a881 11015 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11016 0, "natural", (struct objfile *) NULL);
72d5681a 11017 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 11018 init_type (TYPE_CODE_INT,
d4a9a881 11019 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11020 0, "positive", (struct objfile *) NULL);
72d5681a 11021 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 11022
72d5681a 11023 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
11024 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11025 (struct objfile *) NULL));
72d5681a
PH
11026 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11027 = "system__address";
fbb06eb1 11028
47e729a8 11029 lai->bool_type_symbol = NULL;
fbb06eb1 11030 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11031}
6c038f32
PH
11032\f
11033 /* Language vector */
11034
11035/* Not really used, but needed in the ada_language_defn. */
11036
11037static void
11038emit_char (int c, struct ui_file *stream, int quoter)
11039{
11040 ada_emit_char (c, stream, quoter, 1);
11041}
11042
11043static int
11044parse (void)
11045{
11046 warnings_issued = 0;
11047 return ada_parse ();
11048}
11049
11050static const struct exp_descriptor ada_exp_descriptor = {
11051 ada_print_subexp,
11052 ada_operator_length,
11053 ada_op_name,
11054 ada_dump_subexp_body,
11055 ada_evaluate_subexp
11056};
11057
11058const struct language_defn ada_language_defn = {
11059 "ada", /* Language name */
11060 language_ada,
6c038f32
PH
11061 range_check_off,
11062 type_check_off,
11063 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11064 that's not quite what this means. */
6c038f32 11065 array_row_major,
9a044a89 11066 macro_expansion_no,
6c038f32
PH
11067 &ada_exp_descriptor,
11068 parse,
11069 ada_error,
11070 resolve,
11071 ada_printchar, /* Print a character constant */
11072 ada_printstr, /* Function to print string constant */
11073 emit_char, /* Function to print single char (not used) */
6c038f32 11074 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11075 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11076 ada_val_print, /* Print a value using appropriate syntax */
11077 ada_value_print, /* Print a top-level value */
11078 NULL, /* Language specific skip_trampoline */
2b2d9e11 11079 NULL, /* name_of_this */
6c038f32
PH
11080 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11081 basic_lookup_transparent_type, /* lookup_transparent_type */
11082 ada_la_decode, /* Language specific symbol demangler */
11083 NULL, /* Language specific class_name_from_physname */
11084 ada_op_print_tab, /* expression operators for printing */
11085 0, /* c-style arrays */
11086 1, /* String lower bound */
6c038f32 11087 ada_get_gdb_completer_word_break_characters,
41d27058 11088 ada_make_symbol_completion_list,
72d5681a 11089 ada_language_arch_info,
e79af960 11090 ada_print_array_index,
41f1b697 11091 default_pass_by_reference,
ae6a3a4c 11092 c_get_string,
6c038f32
PH
11093 LANG_MAGIC
11094};
11095
2c0b251b
PA
11096/* Provide a prototype to silence -Wmissing-prototypes. */
11097extern initialize_file_ftype _initialize_ada_language;
11098
d2e4a39e 11099void
6c038f32 11100_initialize_ada_language (void)
14f9c5c9 11101{
6c038f32
PH
11102 add_language (&ada_language_defn);
11103
11104 varsize_limit = 65536;
6c038f32
PH
11105
11106 obstack_init (&symbol_list_obstack);
11107
11108 decoded_names_store = htab_create_alloc
11109 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11110 NULL, xcalloc, xfree);
6b69afc4
JB
11111
11112 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11113}
This page took 1.113499 seconds and 4 git commands to generate.