Add --enable-build-with-cxx configure switch
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab 234
52ce6436
PH
235static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
239 struct expression *,
240 int *, enum noside);
52ce6436
PH
241
242static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
852dff6c
JB
266
267static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
268\f
269
ee01b665
JB
270/* The result of a symbol lookup to be stored in our symbol cache. */
271
272struct cache_entry
273{
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum namespace;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286};
287
288/* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297#define HASH_SIZE 1009
298
299struct ada_symbol_cache
300{
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306};
307
308static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 309
4c4b4cd2 310/* Maximum-sized dynamic type. */
14f9c5c9
AS
311static unsigned int varsize_limit;
312
4c4b4cd2
PH
313/* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315static char *ada_completer_word_break_characters =
316#ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318#else
14f9c5c9 319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 320#endif
14f9c5c9 321
4c4b4cd2 322/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 323static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 324 = "__gnat_ada_main_program_name";
14f9c5c9 325
4c4b4cd2
PH
326/* Limit on the number of warnings to raise per expression evaluation. */
327static int warning_limit = 2;
328
329/* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331static int warnings_issued = 0;
332
333static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335};
336
337static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339};
340
341/* Space for allocating results of ada_lookup_symbol_list. */
342static struct obstack symbol_list_obstack;
343
c6044dd1
JB
344/* Maintenance-related settings for this module. */
345
346static struct cmd_list_element *maint_set_ada_cmdlist;
347static struct cmd_list_element *maint_show_ada_cmdlist;
348
349/* Implement the "maintenance set ada" (prefix) command. */
350
351static void
352maint_set_ada_cmd (char *args, int from_tty)
353{
635c7e8a
TT
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
c6044dd1
JB
356}
357
358/* Implement the "maintenance show ada" (prefix) command. */
359
360static void
361maint_show_ada_cmd (char *args, int from_tty)
362{
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364}
365
366/* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368static int ada_ignore_descriptive_types_p = 0;
369
e802dbe0
JB
370 /* Inferior-specific data. */
371
372/* Per-inferior data for this module. */
373
374struct ada_inferior_data
375{
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
3eecfa55
JB
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
e802dbe0
JB
386};
387
388/* Our key to this module's inferior data. */
389static const struct inferior_data *ada_inferior_data;
390
391/* A cleanup routine for our inferior data. */
392static void
393ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394{
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400}
401
402/* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410static struct ada_inferior_data *
411get_ada_inferior_data (struct inferior *inf)
412{
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
41bf6aca 418 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423}
424
425/* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428static void
429ada_inferior_exit (struct inferior *inf)
430{
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433}
434
ee01b665
JB
435
436 /* program-space-specific data. */
437
438/* This module's per-program-space data. */
439struct ada_pspace_data
440{
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443};
444
445/* Key to our per-program-space data. */
446static const struct program_space_data *ada_pspace_data_handle;
447
448/* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453static struct ada_pspace_data *
454get_ada_pspace_data (struct program_space *pspace)
455{
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466}
467
468/* The cleanup callback for this module's per-program-space data. */
469
470static void
471ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472{
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478}
479
4c4b4cd2
PH
480 /* Utilities */
481
720d1a40 482/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 483 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509static struct type *
510ada_typedef_target_type (struct type *type)
511{
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515}
516
41d27058
JB
517/* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521static const char *
522ada_unqualified_name (const char *decoded_name)
523{
2b0f535a
JB
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
41d27058
JB
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540}
541
542/* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545static char *
546add_angle_brackets (const char *str)
547{
548 static char *result = NULL;
549
550 xfree (result);
88c15c34 551 result = xstrprintf ("<%s>", str);
41d27058
JB
552 return result;
553}
96d887e8 554
4c4b4cd2
PH
555static char *
556ada_get_gdb_completer_word_break_characters (void)
557{
558 return ada_completer_word_break_characters;
559}
560
e79af960
JB
561/* Print an array element index using the Ada syntax. */
562
563static void
564ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 565 const struct value_print_options *options)
e79af960 566{
79a45b7d 567 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
568 fprintf_filtered (stream, " => ");
569}
570
f27cf670 571/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 573 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 574
f27cf670
AS
575void *
576grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 577{
d2e4a39e
AS
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
4c4b4cd2 582 *size = min_size;
f27cf670 583 vect = xrealloc (vect, *size * element_size);
d2e4a39e 584 }
f27cf670 585 return vect;
14f9c5c9
AS
586}
587
588/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 589 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
590
591static int
ebf56fd3 592field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
593{
594 int len = strlen (target);
5b4ee69b 595
d2e4a39e 596 return
4c4b4cd2
PH
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
14f9c5c9
AS
602}
603
604
872c8b51
JB
605/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
612
613int
614ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616{
617 int fieldno;
872c8b51
JB
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
622 return fieldno;
623
624 if (!maybe_missing)
323e0a4a 625 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 626 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
627
628 return -1;
629}
630
631/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
632
633int
d2e4a39e 634ada_name_prefix_len (const char *name)
14f9c5c9
AS
635{
636 if (name == NULL)
637 return 0;
d2e4a39e 638 else
14f9c5c9 639 {
d2e4a39e 640 const char *p = strstr (name, "___");
5b4ee69b 641
14f9c5c9 642 if (p == NULL)
4c4b4cd2 643 return strlen (name);
14f9c5c9 644 else
4c4b4cd2 645 return p - name;
14f9c5c9
AS
646 }
647}
648
4c4b4cd2
PH
649/* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
14f9c5c9 652static int
d2e4a39e 653is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
654{
655 int len1, len2;
5b4ee69b 656
14f9c5c9
AS
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
4c4b4cd2 661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
662}
663
4c4b4cd2
PH
664/* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
14f9c5c9 666
d2e4a39e 667static struct value *
4c4b4cd2 668coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 669{
61ee279c 670 type = ada_check_typedef (type);
df407dfe 671 if (value_type (val) == type)
4c4b4cd2 672 return val;
d2e4a39e 673 else
14f9c5c9 674 {
4c4b4cd2
PH
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
c1b5a1a6 679 ada_ensure_varsize_limit (type);
4c4b4cd2 680
41e8491f
JK
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
9a0dc9e3 687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 688 }
74bcbdf3 689 set_value_component_location (result, val);
9bbda503
AC
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
42ae5230 692 set_value_address (result, value_address (val));
14f9c5c9
AS
693 return result;
694 }
695}
696
fc1a4b47
AC
697static const gdb_byte *
698cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
699{
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704}
705
706static CORE_ADDR
ebf56fd3 707cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
708{
709 if (address == 0)
710 return 0;
d2e4a39e 711 else
14f9c5c9
AS
712 return address + offset;
713}
714
4c4b4cd2
PH
715/* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
a2249542 719
77109804
AC
720/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
a0b31db1 722static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 723
14f9c5c9 724static void
a2249542 725lim_warning (const char *format, ...)
14f9c5c9 726{
a2249542 727 va_list args;
a2249542 728
5b4ee69b 729 va_start (args, format);
4c4b4cd2
PH
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
a2249542
MK
732 vwarning (format, args);
733
734 va_end (args);
4c4b4cd2
PH
735}
736
714e53ab
PH
737/* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
c1b5a1a6
JB
741void
742ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
743{
744 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 745 error (_("object size is larger than varsize-limit"));
714e53ab
PH
746}
747
0963b4bd 748/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 749static LONGEST
c3e5cd34 750max_of_size (int size)
4c4b4cd2 751{
76a01679 752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 753
76a01679 754 return top_bit | (top_bit - 1);
4c4b4cd2
PH
755}
756
0963b4bd 757/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 758static LONGEST
c3e5cd34 759min_of_size (int size)
4c4b4cd2 760{
c3e5cd34 761 return -max_of_size (size) - 1;
4c4b4cd2
PH
762}
763
0963b4bd 764/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 765static ULONGEST
c3e5cd34 766umax_of_size (int size)
4c4b4cd2 767{
76a01679 768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 769
76a01679 770 return top_bit | (top_bit - 1);
4c4b4cd2
PH
771}
772
0963b4bd 773/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
774static LONGEST
775max_of_type (struct type *t)
4c4b4cd2 776{
c3e5cd34
PH
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781}
782
0963b4bd 783/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
784static LONGEST
785min_of_type (struct type *t)
786{
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
791}
792
793/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
794LONGEST
795ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 796{
8739bc53 797 type = resolve_dynamic_type (type, 0);
76a01679 798 switch (TYPE_CODE (type))
4c4b4cd2
PH
799 {
800 case TYPE_CODE_RANGE:
690cc4eb 801 return TYPE_HIGH_BOUND (type);
4c4b4cd2 802 case TYPE_CODE_ENUM:
14e75d8e 803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
76a01679 807 case TYPE_CODE_INT:
690cc4eb 808 return max_of_type (type);
4c4b4cd2 809 default:
43bbcdc2 810 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
811 }
812}
813
14e75d8e 814/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
815LONGEST
816ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 817{
8739bc53 818 type = resolve_dynamic_type (type, 0);
76a01679 819 switch (TYPE_CODE (type))
4c4b4cd2
PH
820 {
821 case TYPE_CODE_RANGE:
690cc4eb 822 return TYPE_LOW_BOUND (type);
4c4b4cd2 823 case TYPE_CODE_ENUM:
14e75d8e 824 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
76a01679 828 case TYPE_CODE_INT:
690cc4eb 829 return min_of_type (type);
4c4b4cd2 830 default:
43bbcdc2 831 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
832 }
833}
834
835/* The identity on non-range types. For range types, the underlying
76a01679 836 non-range scalar type. */
4c4b4cd2
PH
837
838static struct type *
18af8284 839get_base_type (struct type *type)
4c4b4cd2
PH
840{
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
76a01679
JB
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
4c4b4cd2
PH
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
14f9c5c9 848}
41246937
JB
849
850/* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855struct value *
856ada_get_decoded_value (struct value *value)
857{
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873}
874
875/* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880struct type *
881ada_get_decoded_type (struct type *type)
882{
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887}
888
4c4b4cd2 889\f
76a01679 890
4c4b4cd2 891 /* Language Selection */
14f9c5c9
AS
892
893/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 894 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 895
14f9c5c9 896enum language
ccefe4c4 897ada_update_initial_language (enum language lang)
14f9c5c9 898{
d2e4a39e 899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 900 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 901 return language_ada;
14f9c5c9
AS
902
903 return lang;
904}
96d887e8
PH
905
906/* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910char *
911ada_main_name (void)
912{
3b7344d5 913 struct bound_minimal_symbol msym;
f9bc20b9 914 static char *main_program_name = NULL;
6c038f32 915
96d887e8
PH
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
3b7344d5 923 if (msym.minsym != NULL)
96d887e8 924 {
f9bc20b9
JB
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
77e371c0 928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 929 if (main_program_name_addr == 0)
323e0a4a 930 error (_("Invalid address for Ada main program name."));
96d887e8 931
f9bc20b9
JB
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
96d887e8
PH
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943}
14f9c5c9 944\f
4c4b4cd2 945 /* Symbols */
d2e4a39e 946
4c4b4cd2
PH
947/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
14f9c5c9 949
d2e4a39e
AS
950const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
14f9c5c9
AS
973};
974
4c4b4cd2
PH
975/* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
14f9c5c9 978char *
4c4b4cd2 979ada_encode (const char *decoded)
14f9c5c9 980{
4c4b4cd2
PH
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
d2e4a39e 983 const char *p;
14f9c5c9 984 int k;
d2e4a39e 985
4c4b4cd2 986 if (decoded == NULL)
14f9c5c9
AS
987 return NULL;
988
4c4b4cd2
PH
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
14f9c5c9
AS
991
992 k = 0;
4c4b4cd2 993 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 994 {
cdc7bb92 995 if (*p == '.')
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
14f9c5c9 1000 else if (*p == '"')
4c4b4cd2
PH
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1265e4aa
JB
1005 mapping->encoded != NULL
1006 && strncmp (mapping->decoded, p,
1007 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1008 ;
1009 if (mapping->encoded == NULL)
323e0a4a 1010 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1011 strcpy (encoding_buffer + k, mapping->encoded);
1012 k += strlen (mapping->encoded);
1013 break;
1014 }
d2e4a39e 1015 else
4c4b4cd2
PH
1016 {
1017 encoding_buffer[k] = *p;
1018 k += 1;
1019 }
14f9c5c9
AS
1020 }
1021
4c4b4cd2
PH
1022 encoding_buffer[k] = '\0';
1023 return encoding_buffer;
14f9c5c9
AS
1024}
1025
1026/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1027 quotes, unfolded, but with the quotes stripped away. Result good
1028 to next call. */
1029
d2e4a39e
AS
1030char *
1031ada_fold_name (const char *name)
14f9c5c9 1032{
d2e4a39e 1033 static char *fold_buffer = NULL;
14f9c5c9
AS
1034 static size_t fold_buffer_size = 0;
1035
1036 int len = strlen (name);
d2e4a39e 1037 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1038
1039 if (name[0] == '\'')
1040 {
d2e4a39e
AS
1041 strncpy (fold_buffer, name + 1, len - 2);
1042 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1043 }
1044 else
1045 {
1046 int i;
5b4ee69b 1047
14f9c5c9 1048 for (i = 0; i <= len; i += 1)
4c4b4cd2 1049 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1050 }
1051
1052 return fold_buffer;
1053}
1054
529cad9c
PH
1055/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1056
1057static int
1058is_lower_alphanum (const char c)
1059{
1060 return (isdigit (c) || (isalpha (c) && islower (c)));
1061}
1062
c90092fe
JB
1063/* ENCODED is the linkage name of a symbol and LEN contains its length.
1064 This function saves in LEN the length of that same symbol name but
1065 without either of these suffixes:
29480c32
JB
1066 . .{DIGIT}+
1067 . ${DIGIT}+
1068 . ___{DIGIT}+
1069 . __{DIGIT}+.
c90092fe 1070
29480c32
JB
1071 These are suffixes introduced by the compiler for entities such as
1072 nested subprogram for instance, in order to avoid name clashes.
1073 They do not serve any purpose for the debugger. */
1074
1075static void
1076ada_remove_trailing_digits (const char *encoded, int *len)
1077{
1078 if (*len > 1 && isdigit (encoded[*len - 1]))
1079 {
1080 int i = *len - 2;
5b4ee69b 1081
29480c32
JB
1082 while (i > 0 && isdigit (encoded[i]))
1083 i--;
1084 if (i >= 0 && encoded[i] == '.')
1085 *len = i;
1086 else if (i >= 0 && encoded[i] == '$')
1087 *len = i;
1088 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1089 *len = i - 2;
1090 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1091 *len = i - 1;
1092 }
1093}
1094
1095/* Remove the suffix introduced by the compiler for protected object
1096 subprograms. */
1097
1098static void
1099ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1100{
1101 /* Remove trailing N. */
1102
1103 /* Protected entry subprograms are broken into two
1104 separate subprograms: The first one is unprotected, and has
1105 a 'N' suffix; the second is the protected version, and has
0963b4bd 1106 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1107 the protection. Since the P subprograms are internally generated,
1108 we leave these names undecoded, giving the user a clue that this
1109 entity is internal. */
1110
1111 if (*len > 1
1112 && encoded[*len - 1] == 'N'
1113 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1114 *len = *len - 1;
1115}
1116
69fadcdf
JB
1117/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1118
1119static void
1120ada_remove_Xbn_suffix (const char *encoded, int *len)
1121{
1122 int i = *len - 1;
1123
1124 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1125 i--;
1126
1127 if (encoded[i] != 'X')
1128 return;
1129
1130 if (i == 0)
1131 return;
1132
1133 if (isalnum (encoded[i-1]))
1134 *len = i;
1135}
1136
29480c32
JB
1137/* If ENCODED follows the GNAT entity encoding conventions, then return
1138 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1139 replaced by ENCODED.
14f9c5c9 1140
4c4b4cd2 1141 The resulting string is valid until the next call of ada_decode.
29480c32 1142 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1143 is returned. */
1144
1145const char *
1146ada_decode (const char *encoded)
14f9c5c9
AS
1147{
1148 int i, j;
1149 int len0;
d2e4a39e 1150 const char *p;
4c4b4cd2 1151 char *decoded;
14f9c5c9 1152 int at_start_name;
4c4b4cd2
PH
1153 static char *decoding_buffer = NULL;
1154 static size_t decoding_buffer_size = 0;
d2e4a39e 1155
29480c32
JB
1156 /* The name of the Ada main procedure starts with "_ada_".
1157 This prefix is not part of the decoded name, so skip this part
1158 if we see this prefix. */
4c4b4cd2
PH
1159 if (strncmp (encoded, "_ada_", 5) == 0)
1160 encoded += 5;
14f9c5c9 1161
29480c32
JB
1162 /* If the name starts with '_', then it is not a properly encoded
1163 name, so do not attempt to decode it. Similarly, if the name
1164 starts with '<', the name should not be decoded. */
4c4b4cd2 1165 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1166 goto Suppress;
1167
4c4b4cd2 1168 len0 = strlen (encoded);
4c4b4cd2 1169
29480c32
JB
1170 ada_remove_trailing_digits (encoded, &len0);
1171 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1172
4c4b4cd2
PH
1173 /* Remove the ___X.* suffix if present. Do not forget to verify that
1174 the suffix is located before the current "end" of ENCODED. We want
1175 to avoid re-matching parts of ENCODED that have previously been
1176 marked as discarded (by decrementing LEN0). */
1177 p = strstr (encoded, "___");
1178 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1179 {
1180 if (p[3] == 'X')
4c4b4cd2 1181 len0 = p - encoded;
14f9c5c9 1182 else
4c4b4cd2 1183 goto Suppress;
14f9c5c9 1184 }
4c4b4cd2 1185
29480c32
JB
1186 /* Remove any trailing TKB suffix. It tells us that this symbol
1187 is for the body of a task, but that information does not actually
1188 appear in the decoded name. */
1189
4c4b4cd2 1190 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1191 len0 -= 3;
76a01679 1192
a10967fa
JB
1193 /* Remove any trailing TB suffix. The TB suffix is slightly different
1194 from the TKB suffix because it is used for non-anonymous task
1195 bodies. */
1196
1197 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1198 len0 -= 2;
1199
29480c32
JB
1200 /* Remove trailing "B" suffixes. */
1201 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1202
4c4b4cd2 1203 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1204 len0 -= 1;
1205
4c4b4cd2 1206 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1207
4c4b4cd2
PH
1208 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1209 decoded = decoding_buffer;
14f9c5c9 1210
29480c32
JB
1211 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1212
4c4b4cd2 1213 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1214 {
4c4b4cd2
PH
1215 i = len0 - 2;
1216 while ((i >= 0 && isdigit (encoded[i]))
1217 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1218 i -= 1;
1219 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1220 len0 = i - 1;
1221 else if (encoded[i] == '$')
1222 len0 = i;
d2e4a39e 1223 }
14f9c5c9 1224
29480c32
JB
1225 /* The first few characters that are not alphabetic are not part
1226 of any encoding we use, so we can copy them over verbatim. */
1227
4c4b4cd2
PH
1228 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1229 decoded[j] = encoded[i];
14f9c5c9
AS
1230
1231 at_start_name = 1;
1232 while (i < len0)
1233 {
29480c32 1234 /* Is this a symbol function? */
4c4b4cd2
PH
1235 if (at_start_name && encoded[i] == 'O')
1236 {
1237 int k;
5b4ee69b 1238
4c4b4cd2
PH
1239 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1240 {
1241 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1242 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1243 op_len - 1) == 0)
1244 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1245 {
1246 strcpy (decoded + j, ada_opname_table[k].decoded);
1247 at_start_name = 0;
1248 i += op_len;
1249 j += strlen (ada_opname_table[k].decoded);
1250 break;
1251 }
1252 }
1253 if (ada_opname_table[k].encoded != NULL)
1254 continue;
1255 }
14f9c5c9
AS
1256 at_start_name = 0;
1257
529cad9c
PH
1258 /* Replace "TK__" with "__", which will eventually be translated
1259 into "." (just below). */
1260
4c4b4cd2
PH
1261 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1262 i += 2;
529cad9c 1263
29480c32
JB
1264 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1265 be translated into "." (just below). These are internal names
1266 generated for anonymous blocks inside which our symbol is nested. */
1267
1268 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1269 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1270 && isdigit (encoded [i+4]))
1271 {
1272 int k = i + 5;
1273
1274 while (k < len0 && isdigit (encoded[k]))
1275 k++; /* Skip any extra digit. */
1276
1277 /* Double-check that the "__B_{DIGITS}+" sequence we found
1278 is indeed followed by "__". */
1279 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1280 i = k;
1281 }
1282
529cad9c
PH
1283 /* Remove _E{DIGITS}+[sb] */
1284
1285 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1286 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1287 one implements the actual entry code, and has a suffix following
1288 the convention above; the second one implements the barrier and
1289 uses the same convention as above, except that the 'E' is replaced
1290 by a 'B'.
1291
1292 Just as above, we do not decode the name of barrier functions
1293 to give the user a clue that the code he is debugging has been
1294 internally generated. */
1295
1296 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1297 && isdigit (encoded[i+2]))
1298 {
1299 int k = i + 3;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++;
1303
1304 if (k < len0
1305 && (encoded[k] == 'b' || encoded[k] == 's'))
1306 {
1307 k++;
1308 /* Just as an extra precaution, make sure that if this
1309 suffix is followed by anything else, it is a '_'.
1310 Otherwise, we matched this sequence by accident. */
1311 if (k == len0
1312 || (k < len0 && encoded[k] == '_'))
1313 i = k;
1314 }
1315 }
1316
1317 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1318 the GNAT front-end in protected object subprograms. */
1319
1320 if (i < len0 + 3
1321 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1322 {
1323 /* Backtrack a bit up until we reach either the begining of
1324 the encoded name, or "__". Make sure that we only find
1325 digits or lowercase characters. */
1326 const char *ptr = encoded + i - 1;
1327
1328 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1329 ptr--;
1330 if (ptr < encoded
1331 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1332 i++;
1333 }
1334
4c4b4cd2
PH
1335 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1336 {
29480c32
JB
1337 /* This is a X[bn]* sequence not separated from the previous
1338 part of the name with a non-alpha-numeric character (in other
1339 words, immediately following an alpha-numeric character), then
1340 verify that it is placed at the end of the encoded name. If
1341 not, then the encoding is not valid and we should abort the
1342 decoding. Otherwise, just skip it, it is used in body-nested
1343 package names. */
4c4b4cd2
PH
1344 do
1345 i += 1;
1346 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1347 if (i < len0)
1348 goto Suppress;
1349 }
cdc7bb92 1350 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1351 {
29480c32 1352 /* Replace '__' by '.'. */
4c4b4cd2
PH
1353 decoded[j] = '.';
1354 at_start_name = 1;
1355 i += 2;
1356 j += 1;
1357 }
14f9c5c9 1358 else
4c4b4cd2 1359 {
29480c32
JB
1360 /* It's a character part of the decoded name, so just copy it
1361 over. */
4c4b4cd2
PH
1362 decoded[j] = encoded[i];
1363 i += 1;
1364 j += 1;
1365 }
14f9c5c9 1366 }
4c4b4cd2 1367 decoded[j] = '\000';
14f9c5c9 1368
29480c32
JB
1369 /* Decoded names should never contain any uppercase character.
1370 Double-check this, and abort the decoding if we find one. */
1371
4c4b4cd2
PH
1372 for (i = 0; decoded[i] != '\0'; i += 1)
1373 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1374 goto Suppress;
1375
4c4b4cd2
PH
1376 if (strcmp (decoded, encoded) == 0)
1377 return encoded;
1378 else
1379 return decoded;
14f9c5c9
AS
1380
1381Suppress:
4c4b4cd2
PH
1382 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1383 decoded = decoding_buffer;
1384 if (encoded[0] == '<')
1385 strcpy (decoded, encoded);
14f9c5c9 1386 else
88c15c34 1387 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1388 return decoded;
1389
1390}
1391
1392/* Table for keeping permanent unique copies of decoded names. Once
1393 allocated, names in this table are never released. While this is a
1394 storage leak, it should not be significant unless there are massive
1395 changes in the set of decoded names in successive versions of a
1396 symbol table loaded during a single session. */
1397static struct htab *decoded_names_store;
1398
1399/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1400 in the language-specific part of GSYMBOL, if it has not been
1401 previously computed. Tries to save the decoded name in the same
1402 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1403 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1404 GSYMBOL).
4c4b4cd2
PH
1405 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1406 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1407 when a decoded name is cached in it. */
4c4b4cd2 1408
45e6c716 1409const char *
f85f34ed 1410ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1411{
f85f34ed
TT
1412 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1413 const char **resultp =
1414 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1415
f85f34ed 1416 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1417 {
1418 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1419 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1420
f85f34ed 1421 gsymbol->ada_mangled = 1;
5b4ee69b 1422
f85f34ed
TT
1423 if (obstack != NULL)
1424 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1425 else
76a01679 1426 {
f85f34ed
TT
1427 /* Sometimes, we can't find a corresponding objfile, in
1428 which case, we put the result on the heap. Since we only
1429 decode when needed, we hope this usually does not cause a
1430 significant memory leak (FIXME). */
1431
76a01679
JB
1432 char **slot = (char **) htab_find_slot (decoded_names_store,
1433 decoded, INSERT);
5b4ee69b 1434
76a01679
JB
1435 if (*slot == NULL)
1436 *slot = xstrdup (decoded);
1437 *resultp = *slot;
1438 }
4c4b4cd2 1439 }
14f9c5c9 1440
4c4b4cd2
PH
1441 return *resultp;
1442}
76a01679 1443
2c0b251b 1444static char *
76a01679 1445ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1446{
1447 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1448}
1449
1450/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1451 suffixes that encode debugging information or leading _ada_ on
1452 SYM_NAME (see is_name_suffix commentary for the debugging
1453 information that is ignored). If WILD, then NAME need only match a
1454 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1455 either argument is NULL. */
14f9c5c9 1456
2c0b251b 1457static int
40658b94 1458match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1459{
1460 if (sym_name == NULL || name == NULL)
1461 return 0;
1462 else if (wild)
73589123 1463 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1464 else
1465 {
1466 int len_name = strlen (name);
5b4ee69b 1467
4c4b4cd2
PH
1468 return (strncmp (sym_name, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name))
1470 || (strncmp (sym_name, "_ada_", 5) == 0
1471 && strncmp (sym_name + 5, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1473 }
14f9c5c9 1474}
14f9c5c9 1475\f
d2e4a39e 1476
4c4b4cd2 1477 /* Arrays */
14f9c5c9 1478
28c85d6c
JB
1479/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1480 generated by the GNAT compiler to describe the index type used
1481 for each dimension of an array, check whether it follows the latest
1482 known encoding. If not, fix it up to conform to the latest encoding.
1483 Otherwise, do nothing. This function also does nothing if
1484 INDEX_DESC_TYPE is NULL.
1485
1486 The GNAT encoding used to describle the array index type evolved a bit.
1487 Initially, the information would be provided through the name of each
1488 field of the structure type only, while the type of these fields was
1489 described as unspecified and irrelevant. The debugger was then expected
1490 to perform a global type lookup using the name of that field in order
1491 to get access to the full index type description. Because these global
1492 lookups can be very expensive, the encoding was later enhanced to make
1493 the global lookup unnecessary by defining the field type as being
1494 the full index type description.
1495
1496 The purpose of this routine is to allow us to support older versions
1497 of the compiler by detecting the use of the older encoding, and by
1498 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1499 we essentially replace each field's meaningless type by the associated
1500 index subtype). */
1501
1502void
1503ada_fixup_array_indexes_type (struct type *index_desc_type)
1504{
1505 int i;
1506
1507 if (index_desc_type == NULL)
1508 return;
1509 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1510
1511 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1512 to check one field only, no need to check them all). If not, return
1513 now.
1514
1515 If our INDEX_DESC_TYPE was generated using the older encoding,
1516 the field type should be a meaningless integer type whose name
1517 is not equal to the field name. */
1518 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1519 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1520 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1521 return;
1522
1523 /* Fixup each field of INDEX_DESC_TYPE. */
1524 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1525 {
0d5cff50 1526 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1527 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1528
1529 if (raw_type)
1530 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1531 }
1532}
1533
4c4b4cd2 1534/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1535
d2e4a39e
AS
1536static char *bound_name[] = {
1537 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1538 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1539};
1540
1541/* Maximum number of array dimensions we are prepared to handle. */
1542
4c4b4cd2 1543#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1544
14f9c5c9 1545
4c4b4cd2
PH
1546/* The desc_* routines return primitive portions of array descriptors
1547 (fat pointers). */
14f9c5c9
AS
1548
1549/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1550 level of indirection, if needed. */
1551
d2e4a39e
AS
1552static struct type *
1553desc_base_type (struct type *type)
14f9c5c9
AS
1554{
1555 if (type == NULL)
1556 return NULL;
61ee279c 1557 type = ada_check_typedef (type);
720d1a40
JB
1558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1559 type = ada_typedef_target_type (type);
1560
1265e4aa
JB
1561 if (type != NULL
1562 && (TYPE_CODE (type) == TYPE_CODE_PTR
1563 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1564 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1565 else
1566 return type;
1567}
1568
4c4b4cd2
PH
1569/* True iff TYPE indicates a "thin" array pointer type. */
1570
14f9c5c9 1571static int
d2e4a39e 1572is_thin_pntr (struct type *type)
14f9c5c9 1573{
d2e4a39e 1574 return
14f9c5c9
AS
1575 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1576 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1577}
1578
4c4b4cd2
PH
1579/* The descriptor type for thin pointer type TYPE. */
1580
d2e4a39e
AS
1581static struct type *
1582thin_descriptor_type (struct type *type)
14f9c5c9 1583{
d2e4a39e 1584 struct type *base_type = desc_base_type (type);
5b4ee69b 1585
14f9c5c9
AS
1586 if (base_type == NULL)
1587 return NULL;
1588 if (is_suffix (ada_type_name (base_type), "___XVE"))
1589 return base_type;
d2e4a39e 1590 else
14f9c5c9 1591 {
d2e4a39e 1592 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1593
14f9c5c9 1594 if (alt_type == NULL)
4c4b4cd2 1595 return base_type;
14f9c5c9 1596 else
4c4b4cd2 1597 return alt_type;
14f9c5c9
AS
1598 }
1599}
1600
4c4b4cd2
PH
1601/* A pointer to the array data for thin-pointer value VAL. */
1602
d2e4a39e
AS
1603static struct value *
1604thin_data_pntr (struct value *val)
14f9c5c9 1605{
828292f2 1606 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1607 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1608
556bdfd4
UW
1609 data_type = lookup_pointer_type (data_type);
1610
14f9c5c9 1611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1612 return value_cast (data_type, value_copy (val));
d2e4a39e 1613 else
42ae5230 1614 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1615}
1616
4c4b4cd2
PH
1617/* True iff TYPE indicates a "thick" array pointer type. */
1618
14f9c5c9 1619static int
d2e4a39e 1620is_thick_pntr (struct type *type)
14f9c5c9
AS
1621{
1622 type = desc_base_type (type);
1623 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1624 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1625}
1626
4c4b4cd2
PH
1627/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1628 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1629
d2e4a39e
AS
1630static struct type *
1631desc_bounds_type (struct type *type)
14f9c5c9 1632{
d2e4a39e 1633 struct type *r;
14f9c5c9
AS
1634
1635 type = desc_base_type (type);
1636
1637 if (type == NULL)
1638 return NULL;
1639 else if (is_thin_pntr (type))
1640 {
1641 type = thin_descriptor_type (type);
1642 if (type == NULL)
4c4b4cd2 1643 return NULL;
14f9c5c9
AS
1644 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1645 if (r != NULL)
61ee279c 1646 return ada_check_typedef (r);
14f9c5c9
AS
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1649 {
1650 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1651 if (r != NULL)
61ee279c 1652 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1653 }
1654 return NULL;
1655}
1656
1657/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1658 one, a pointer to its bounds data. Otherwise NULL. */
1659
d2e4a39e
AS
1660static struct value *
1661desc_bounds (struct value *arr)
14f9c5c9 1662{
df407dfe 1663 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1664
d2e4a39e 1665 if (is_thin_pntr (type))
14f9c5c9 1666 {
d2e4a39e 1667 struct type *bounds_type =
4c4b4cd2 1668 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1669 LONGEST addr;
1670
4cdfadb1 1671 if (bounds_type == NULL)
323e0a4a 1672 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1673
1674 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1675 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1676 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1678 addr = value_as_long (arr);
d2e4a39e 1679 else
42ae5230 1680 addr = value_address (arr);
14f9c5c9 1681
d2e4a39e 1682 return
4c4b4cd2
PH
1683 value_from_longest (lookup_pointer_type (bounds_type),
1684 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1685 }
1686
1687 else if (is_thick_pntr (type))
05e522ef
JB
1688 {
1689 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1690 _("Bad GNAT array descriptor"));
1691 struct type *p_bounds_type = value_type (p_bounds);
1692
1693 if (p_bounds_type
1694 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1695 {
1696 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1697
1698 if (TYPE_STUB (target_type))
1699 p_bounds = value_cast (lookup_pointer_type
1700 (ada_check_typedef (target_type)),
1701 p_bounds);
1702 }
1703 else
1704 error (_("Bad GNAT array descriptor"));
1705
1706 return p_bounds;
1707 }
14f9c5c9
AS
1708 else
1709 return NULL;
1710}
1711
4c4b4cd2
PH
1712/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1713 position of the field containing the address of the bounds data. */
1714
14f9c5c9 1715static int
d2e4a39e 1716fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1717{
1718 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1719}
1720
1721/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1722 size of the field containing the address of the bounds data. */
1723
14f9c5c9 1724static int
d2e4a39e 1725fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1726{
1727 type = desc_base_type (type);
1728
d2e4a39e 1729 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1730 return TYPE_FIELD_BITSIZE (type, 1);
1731 else
61ee279c 1732 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1733}
1734
4c4b4cd2 1735/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1736 pointer to one, the type of its array data (a array-with-no-bounds type);
1737 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1738 data. */
4c4b4cd2 1739
d2e4a39e 1740static struct type *
556bdfd4 1741desc_data_target_type (struct type *type)
14f9c5c9
AS
1742{
1743 type = desc_base_type (type);
1744
4c4b4cd2 1745 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1746 if (is_thin_pntr (type))
556bdfd4 1747 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1748 else if (is_thick_pntr (type))
556bdfd4
UW
1749 {
1750 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1751
1752 if (data_type
1753 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1754 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1755 }
1756
1757 return NULL;
14f9c5c9
AS
1758}
1759
1760/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1761 its array data. */
4c4b4cd2 1762
d2e4a39e
AS
1763static struct value *
1764desc_data (struct value *arr)
14f9c5c9 1765{
df407dfe 1766 struct type *type = value_type (arr);
5b4ee69b 1767
14f9c5c9
AS
1768 if (is_thin_pntr (type))
1769 return thin_data_pntr (arr);
1770 else if (is_thick_pntr (type))
d2e4a39e 1771 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1772 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1773 else
1774 return NULL;
1775}
1776
1777
1778/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1779 position of the field containing the address of the data. */
1780
14f9c5c9 1781static int
d2e4a39e 1782fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1783{
1784 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1785}
1786
1787/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1788 size of the field containing the address of the data. */
1789
14f9c5c9 1790static int
d2e4a39e 1791fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1792{
1793 type = desc_base_type (type);
1794
1795 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1796 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1797 else
14f9c5c9
AS
1798 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1799}
1800
4c4b4cd2 1801/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1802 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
d2e4a39e
AS
1805static struct value *
1806desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1807{
d2e4a39e 1808 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1809 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1810}
1811
1812/* If BOUNDS is an array-bounds structure type, return the bit position
1813 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1814 bound, if WHICH is 1. The first bound is I=1. */
1815
14f9c5c9 1816static int
d2e4a39e 1817desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1818{
d2e4a39e 1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1820}
1821
1822/* If BOUNDS is an array-bounds structure type, return the bit field size
1823 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1824 bound, if WHICH is 1. The first bound is I=1. */
1825
76a01679 1826static int
d2e4a39e 1827desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1828{
1829 type = desc_base_type (type);
1830
d2e4a39e
AS
1831 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1832 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1833 else
1834 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1835}
1836
1837/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1838 Ith bound (numbering from 1). Otherwise, NULL. */
1839
d2e4a39e
AS
1840static struct type *
1841desc_index_type (struct type *type, int i)
14f9c5c9
AS
1842{
1843 type = desc_base_type (type);
1844
1845 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1846 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1847 else
14f9c5c9
AS
1848 return NULL;
1849}
1850
4c4b4cd2
PH
1851/* The number of index positions in the array-bounds type TYPE.
1852 Return 0 if TYPE is NULL. */
1853
14f9c5c9 1854static int
d2e4a39e 1855desc_arity (struct type *type)
14f9c5c9
AS
1856{
1857 type = desc_base_type (type);
1858
1859 if (type != NULL)
1860 return TYPE_NFIELDS (type) / 2;
1861 return 0;
1862}
1863
4c4b4cd2
PH
1864/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1865 an array descriptor type (representing an unconstrained array
1866 type). */
1867
76a01679
JB
1868static int
1869ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1870{
1871 if (type == NULL)
1872 return 0;
61ee279c 1873 type = ada_check_typedef (type);
4c4b4cd2 1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1875 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1876}
1877
52ce6436 1878/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1879 * to one. */
52ce6436 1880
2c0b251b 1881static int
52ce6436
PH
1882ada_is_array_type (struct type *type)
1883{
1884 while (type != NULL
1885 && (TYPE_CODE (type) == TYPE_CODE_PTR
1886 || TYPE_CODE (type) == TYPE_CODE_REF))
1887 type = TYPE_TARGET_TYPE (type);
1888 return ada_is_direct_array_type (type);
1889}
1890
4c4b4cd2 1891/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1892
14f9c5c9 1893int
4c4b4cd2 1894ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1895{
1896 if (type == NULL)
1897 return 0;
61ee279c 1898 type = ada_check_typedef (type);
14f9c5c9 1899 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1900 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1901 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1902 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1903}
1904
4c4b4cd2
PH
1905/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1906
14f9c5c9 1907int
4c4b4cd2 1908ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1909{
556bdfd4 1910 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1911
1912 if (type == NULL)
1913 return 0;
61ee279c 1914 type = ada_check_typedef (type);
556bdfd4
UW
1915 return (data_type != NULL
1916 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1917 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1918}
1919
1920/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1921 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1922 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1923 is still needed. */
1924
14f9c5c9 1925int
ebf56fd3 1926ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1927{
d2e4a39e 1928 return
14f9c5c9
AS
1929 type != NULL
1930 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1931 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1932 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1933 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1934}
1935
1936
4c4b4cd2 1937/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1938 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1939 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1940 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1941 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1942 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1943 a descriptor. */
d2e4a39e
AS
1944struct type *
1945ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1946{
ad82864c
JB
1947 if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1949
df407dfe
AC
1950 if (!ada_is_array_descriptor_type (value_type (arr)))
1951 return value_type (arr);
d2e4a39e
AS
1952
1953 if (!bounds)
ad82864c
JB
1954 {
1955 struct type *array_type =
1956 ada_check_typedef (desc_data_target_type (value_type (arr)));
1957
1958 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1959 TYPE_FIELD_BITSIZE (array_type, 0) =
1960 decode_packed_array_bitsize (value_type (arr));
1961
1962 return array_type;
1963 }
14f9c5c9
AS
1964 else
1965 {
d2e4a39e 1966 struct type *elt_type;
14f9c5c9 1967 int arity;
d2e4a39e 1968 struct value *descriptor;
14f9c5c9 1969
df407dfe
AC
1970 elt_type = ada_array_element_type (value_type (arr), -1);
1971 arity = ada_array_arity (value_type (arr));
14f9c5c9 1972
d2e4a39e 1973 if (elt_type == NULL || arity == 0)
df407dfe 1974 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1975
1976 descriptor = desc_bounds (arr);
d2e4a39e 1977 if (value_as_long (descriptor) == 0)
4c4b4cd2 1978 return NULL;
d2e4a39e 1979 while (arity > 0)
4c4b4cd2 1980 {
e9bb382b
UW
1981 struct type *range_type = alloc_type_copy (value_type (arr));
1982 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1983 struct value *low = desc_one_bound (descriptor, arity, 0);
1984 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1985
5b4ee69b 1986 arity -= 1;
0c9c3474
SA
1987 create_static_range_type (range_type, value_type (low),
1988 longest_to_int (value_as_long (low)),
1989 longest_to_int (value_as_long (high)));
4c4b4cd2 1990 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1991
1992 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1993 {
1994 /* We need to store the element packed bitsize, as well as
1995 recompute the array size, because it was previously
1996 computed based on the unpacked element size. */
1997 LONGEST lo = value_as_long (low);
1998 LONGEST hi = value_as_long (high);
1999
2000 TYPE_FIELD_BITSIZE (elt_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002 /* If the array has no element, then the size is already
2003 zero, and does not need to be recomputed. */
2004 if (lo < hi)
2005 {
2006 int array_bitsize =
2007 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2008
2009 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2010 }
2011 }
4c4b4cd2 2012 }
14f9c5c9
AS
2013
2014 return lookup_pointer_type (elt_type);
2015 }
2016}
2017
2018/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2019 Otherwise, returns either a standard GDB array with bounds set
2020 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2021 GDB array. Returns NULL if ARR is a null fat pointer. */
2022
d2e4a39e
AS
2023struct value *
2024ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2025{
df407dfe 2026 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2027 {
d2e4a39e 2028 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2029
14f9c5c9 2030 if (arrType == NULL)
4c4b4cd2 2031 return NULL;
14f9c5c9
AS
2032 return value_cast (arrType, value_copy (desc_data (arr)));
2033 }
ad82864c
JB
2034 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2035 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2036 else
2037 return arr;
2038}
2039
2040/* If ARR does not represent an array, returns ARR unchanged.
2041 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2042 be ARR itself if it already is in the proper form). */
2043
720d1a40 2044struct value *
d2e4a39e 2045ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2046{
df407dfe 2047 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2048 {
d2e4a39e 2049 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2050
14f9c5c9 2051 if (arrVal == NULL)
323e0a4a 2052 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2053 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2054 return value_ind (arrVal);
2055 }
ad82864c
JB
2056 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2057 return decode_constrained_packed_array (arr);
d2e4a39e 2058 else
14f9c5c9
AS
2059 return arr;
2060}
2061
2062/* If TYPE represents a GNAT array type, return it translated to an
2063 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2064 packing). For other types, is the identity. */
2065
d2e4a39e
AS
2066struct type *
2067ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2068{
ad82864c
JB
2069 if (ada_is_constrained_packed_array_type (type))
2070 return decode_constrained_packed_array_type (type);
17280b9f
UW
2071
2072 if (ada_is_array_descriptor_type (type))
556bdfd4 2073 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2074
2075 return type;
14f9c5c9
AS
2076}
2077
4c4b4cd2
PH
2078/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2079
ad82864c
JB
2080static int
2081ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2082{
2083 if (type == NULL)
2084 return 0;
4c4b4cd2 2085 type = desc_base_type (type);
61ee279c 2086 type = ada_check_typedef (type);
d2e4a39e 2087 return
14f9c5c9
AS
2088 ada_type_name (type) != NULL
2089 && strstr (ada_type_name (type), "___XP") != NULL;
2090}
2091
ad82864c
JB
2092/* Non-zero iff TYPE represents a standard GNAT constrained
2093 packed-array type. */
2094
2095int
2096ada_is_constrained_packed_array_type (struct type *type)
2097{
2098 return ada_is_packed_array_type (type)
2099 && !ada_is_array_descriptor_type (type);
2100}
2101
2102/* Non-zero iff TYPE represents an array descriptor for a
2103 unconstrained packed-array type. */
2104
2105static int
2106ada_is_unconstrained_packed_array_type (struct type *type)
2107{
2108 return ada_is_packed_array_type (type)
2109 && ada_is_array_descriptor_type (type);
2110}
2111
2112/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2113 return the size of its elements in bits. */
2114
2115static long
2116decode_packed_array_bitsize (struct type *type)
2117{
0d5cff50
DE
2118 const char *raw_name;
2119 const char *tail;
ad82864c
JB
2120 long bits;
2121
720d1a40
JB
2122 /* Access to arrays implemented as fat pointers are encoded as a typedef
2123 of the fat pointer type. We need the name of the fat pointer type
2124 to do the decoding, so strip the typedef layer. */
2125 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2126 type = ada_typedef_target_type (type);
2127
2128 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2129 if (!raw_name)
2130 raw_name = ada_type_name (desc_base_type (type));
2131
2132 if (!raw_name)
2133 return 0;
2134
2135 tail = strstr (raw_name, "___XP");
720d1a40 2136 gdb_assert (tail != NULL);
ad82864c
JB
2137
2138 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2139 {
2140 lim_warning
2141 (_("could not understand bit size information on packed array"));
2142 return 0;
2143 }
2144
2145 return bits;
2146}
2147
14f9c5c9
AS
2148/* Given that TYPE is a standard GDB array type with all bounds filled
2149 in, and that the element size of its ultimate scalar constituents
2150 (that is, either its elements, or, if it is an array of arrays, its
2151 elements' elements, etc.) is *ELT_BITS, return an identical type,
2152 but with the bit sizes of its elements (and those of any
2153 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2154 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2155 in bits.
2156
2157 Note that, for arrays whose index type has an XA encoding where
2158 a bound references a record discriminant, getting that discriminant,
2159 and therefore the actual value of that bound, is not possible
2160 because none of the given parameters gives us access to the record.
2161 This function assumes that it is OK in the context where it is being
2162 used to return an array whose bounds are still dynamic and where
2163 the length is arbitrary. */
4c4b4cd2 2164
d2e4a39e 2165static struct type *
ad82864c 2166constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2167{
d2e4a39e
AS
2168 struct type *new_elt_type;
2169 struct type *new_type;
99b1c762
JB
2170 struct type *index_type_desc;
2171 struct type *index_type;
14f9c5c9
AS
2172 LONGEST low_bound, high_bound;
2173
61ee279c 2174 type = ada_check_typedef (type);
14f9c5c9
AS
2175 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2176 return type;
2177
99b1c762
JB
2178 index_type_desc = ada_find_parallel_type (type, "___XA");
2179 if (index_type_desc)
2180 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2181 NULL);
2182 else
2183 index_type = TYPE_INDEX_TYPE (type);
2184
e9bb382b 2185 new_type = alloc_type_copy (type);
ad82864c
JB
2186 new_elt_type =
2187 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2188 elt_bits);
99b1c762 2189 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2190 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2191 TYPE_NAME (new_type) = ada_type_name (type);
2192
4a46959e
JB
2193 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2194 && is_dynamic_type (check_typedef (index_type)))
2195 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2196 low_bound = high_bound = 0;
2197 if (high_bound < low_bound)
2198 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2199 else
14f9c5c9
AS
2200 {
2201 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2202 TYPE_LENGTH (new_type) =
4c4b4cd2 2203 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2204 }
2205
876cecd0 2206 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2207 return new_type;
2208}
2209
ad82864c
JB
2210/* The array type encoded by TYPE, where
2211 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2212
d2e4a39e 2213static struct type *
ad82864c 2214decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2215{
0d5cff50 2216 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2217 char *name;
0d5cff50 2218 const char *tail;
d2e4a39e 2219 struct type *shadow_type;
14f9c5c9 2220 long bits;
14f9c5c9 2221
727e3d2e
JB
2222 if (!raw_name)
2223 raw_name = ada_type_name (desc_base_type (type));
2224
2225 if (!raw_name)
2226 return NULL;
2227
2228 name = (char *) alloca (strlen (raw_name) + 1);
2229 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2230 type = desc_base_type (type);
2231
14f9c5c9
AS
2232 memcpy (name, raw_name, tail - raw_name);
2233 name[tail - raw_name] = '\000';
2234
b4ba55a1
JB
2235 shadow_type = ada_find_parallel_type_with_name (type, name);
2236
2237 if (shadow_type == NULL)
14f9c5c9 2238 {
323e0a4a 2239 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2240 return NULL;
2241 }
cb249c71 2242 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2243
2244 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2245 {
0963b4bd
MS
2246 lim_warning (_("could not understand bounds "
2247 "information on packed array"));
14f9c5c9
AS
2248 return NULL;
2249 }
d2e4a39e 2250
ad82864c
JB
2251 bits = decode_packed_array_bitsize (type);
2252 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2253}
2254
ad82864c
JB
2255/* Given that ARR is a struct value *indicating a GNAT constrained packed
2256 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2257 standard GDB array type except that the BITSIZEs of the array
2258 target types are set to the number of bits in each element, and the
4c4b4cd2 2259 type length is set appropriately. */
14f9c5c9 2260
d2e4a39e 2261static struct value *
ad82864c 2262decode_constrained_packed_array (struct value *arr)
14f9c5c9 2263{
4c4b4cd2 2264 struct type *type;
14f9c5c9 2265
11aa919a
PMR
2266 /* If our value is a pointer, then dereference it. Likewise if
2267 the value is a reference. Make sure that this operation does not
2268 cause the target type to be fixed, as this would indirectly cause
2269 this array to be decoded. The rest of the routine assumes that
2270 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2271 and "value_ind" routines to perform the dereferencing, as opposed
2272 to using "ada_coerce_ref" or "ada_value_ind". */
2273 arr = coerce_ref (arr);
828292f2 2274 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2275 arr = value_ind (arr);
4c4b4cd2 2276
ad82864c 2277 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2278 if (type == NULL)
2279 {
323e0a4a 2280 error (_("can't unpack array"));
14f9c5c9
AS
2281 return NULL;
2282 }
61ee279c 2283
50810684 2284 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2285 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2286 {
2287 /* This is a (right-justified) modular type representing a packed
2288 array with no wrapper. In order to interpret the value through
2289 the (left-justified) packed array type we just built, we must
2290 first left-justify it. */
2291 int bit_size, bit_pos;
2292 ULONGEST mod;
2293
df407dfe 2294 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2295 bit_size = 0;
2296 while (mod > 0)
2297 {
2298 bit_size += 1;
2299 mod >>= 1;
2300 }
df407dfe 2301 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2302 arr = ada_value_primitive_packed_val (arr, NULL,
2303 bit_pos / HOST_CHAR_BIT,
2304 bit_pos % HOST_CHAR_BIT,
2305 bit_size,
2306 type);
2307 }
2308
4c4b4cd2 2309 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2310}
2311
2312
2313/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2314 given in IND. ARR must be a simple array. */
14f9c5c9 2315
d2e4a39e
AS
2316static struct value *
2317value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2318{
2319 int i;
2320 int bits, elt_off, bit_off;
2321 long elt_total_bit_offset;
d2e4a39e
AS
2322 struct type *elt_type;
2323 struct value *v;
14f9c5c9
AS
2324
2325 bits = 0;
2326 elt_total_bit_offset = 0;
df407dfe 2327 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2328 for (i = 0; i < arity; i += 1)
14f9c5c9 2329 {
d2e4a39e 2330 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2331 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2332 error
0963b4bd
MS
2333 (_("attempt to do packed indexing of "
2334 "something other than a packed array"));
14f9c5c9 2335 else
4c4b4cd2
PH
2336 {
2337 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2338 LONGEST lowerbound, upperbound;
2339 LONGEST idx;
2340
2341 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2342 {
323e0a4a 2343 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2344 lowerbound = upperbound = 0;
2345 }
2346
3cb382c9 2347 idx = pos_atr (ind[i]);
4c4b4cd2 2348 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2349 lim_warning (_("packed array index %ld out of bounds"),
2350 (long) idx);
4c4b4cd2
PH
2351 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2352 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2353 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2354 }
14f9c5c9
AS
2355 }
2356 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2357 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2358
2359 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2360 bits, elt_type);
14f9c5c9
AS
2361 return v;
2362}
2363
4c4b4cd2 2364/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2365
2366static int
d2e4a39e 2367has_negatives (struct type *type)
14f9c5c9 2368{
d2e4a39e
AS
2369 switch (TYPE_CODE (type))
2370 {
2371 default:
2372 return 0;
2373 case TYPE_CODE_INT:
2374 return !TYPE_UNSIGNED (type);
2375 case TYPE_CODE_RANGE:
2376 return TYPE_LOW_BOUND (type) < 0;
2377 }
14f9c5c9 2378}
d2e4a39e 2379
14f9c5c9
AS
2380
2381/* Create a new value of type TYPE from the contents of OBJ starting
2382 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2383 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2384 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2385 VALADDR is ignored unless OBJ is NULL, in which case,
2386 VALADDR+OFFSET must address the start of storage containing the
2387 packed value. The value returned in this case is never an lval.
2388 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2389
d2e4a39e 2390struct value *
fc1a4b47 2391ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2392 long offset, int bit_offset, int bit_size,
4c4b4cd2 2393 struct type *type)
14f9c5c9 2394{
d2e4a39e 2395 struct value *v;
4c4b4cd2
PH
2396 int src, /* Index into the source area */
2397 targ, /* Index into the target area */
2398 srcBitsLeft, /* Number of source bits left to move */
2399 nsrc, ntarg, /* Number of source and target bytes */
2400 unusedLS, /* Number of bits in next significant
2401 byte of source that are unused */
2402 accumSize; /* Number of meaningful bits in accum */
2403 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2404 unsigned char *unpacked;
4c4b4cd2 2405 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2406 unsigned char sign;
2407 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2408 /* Transmit bytes from least to most significant; delta is the direction
2409 the indices move. */
50810684 2410 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2411
61ee279c 2412 type = ada_check_typedef (type);
14f9c5c9
AS
2413
2414 if (obj == NULL)
2415 {
2416 v = allocate_value (type);
d2e4a39e 2417 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2418 }
9214ee5f 2419 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2420 {
53ba8333 2421 v = value_at (type, value_address (obj));
9f1f738a 2422 type = value_type (v);
d2e4a39e 2423 bytes = (unsigned char *) alloca (len);
53ba8333 2424 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2425 }
d2e4a39e 2426 else
14f9c5c9
AS
2427 {
2428 v = allocate_value (type);
0fd88904 2429 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2430 }
d2e4a39e
AS
2431
2432 if (obj != NULL)
14f9c5c9 2433 {
53ba8333 2434 long new_offset = offset;
5b4ee69b 2435
74bcbdf3 2436 set_value_component_location (v, obj);
9bbda503
AC
2437 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2438 set_value_bitsize (v, bit_size);
df407dfe 2439 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2440 {
53ba8333 2441 ++new_offset;
9bbda503 2442 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2443 }
53ba8333
JB
2444 set_value_offset (v, new_offset);
2445
2446 /* Also set the parent value. This is needed when trying to
2447 assign a new value (in inferior memory). */
2448 set_value_parent (v, obj);
14f9c5c9
AS
2449 }
2450 else
9bbda503 2451 set_value_bitsize (v, bit_size);
0fd88904 2452 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2453
2454 srcBitsLeft = bit_size;
2455 nsrc = len;
2456 ntarg = TYPE_LENGTH (type);
2457 sign = 0;
2458 if (bit_size == 0)
2459 {
2460 memset (unpacked, 0, TYPE_LENGTH (type));
2461 return v;
2462 }
50810684 2463 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2464 {
d2e4a39e 2465 src = len - 1;
1265e4aa
JB
2466 if (has_negatives (type)
2467 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2468 sign = ~0;
d2e4a39e
AS
2469
2470 unusedLS =
4c4b4cd2
PH
2471 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2472 % HOST_CHAR_BIT;
14f9c5c9
AS
2473
2474 switch (TYPE_CODE (type))
4c4b4cd2
PH
2475 {
2476 case TYPE_CODE_ARRAY:
2477 case TYPE_CODE_UNION:
2478 case TYPE_CODE_STRUCT:
2479 /* Non-scalar values must be aligned at a byte boundary... */
2480 accumSize =
2481 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2482 /* ... And are placed at the beginning (most-significant) bytes
2483 of the target. */
529cad9c 2484 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2485 ntarg = targ + 1;
4c4b4cd2
PH
2486 break;
2487 default:
2488 accumSize = 0;
2489 targ = TYPE_LENGTH (type) - 1;
2490 break;
2491 }
14f9c5c9 2492 }
d2e4a39e 2493 else
14f9c5c9
AS
2494 {
2495 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2496
2497 src = targ = 0;
2498 unusedLS = bit_offset;
2499 accumSize = 0;
2500
d2e4a39e 2501 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2502 sign = ~0;
14f9c5c9 2503 }
d2e4a39e 2504
14f9c5c9
AS
2505 accum = 0;
2506 while (nsrc > 0)
2507 {
2508 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2509 part of the value. */
d2e4a39e 2510 unsigned int unusedMSMask =
4c4b4cd2
PH
2511 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2512 1;
2513 /* Sign-extend bits for this byte. */
14f9c5c9 2514 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2515
d2e4a39e 2516 accum |=
4c4b4cd2 2517 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2518 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2519 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2520 {
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
14f9c5c9
AS
2527 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2528 unusedLS = 0;
2529 nsrc -= 1;
2530 src += delta;
2531 }
2532 while (ntarg > 0)
2533 {
2534 accum |= sign << accumSize;
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541
2542 return v;
2543}
d2e4a39e 2544
14f9c5c9
AS
2545/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2546 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2547 not overlap. */
14f9c5c9 2548static void
fc1a4b47 2549move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2550 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2551{
2552 unsigned int accum, mask;
2553 int accum_bits, chunk_size;
2554
2555 target += targ_offset / HOST_CHAR_BIT;
2556 targ_offset %= HOST_CHAR_BIT;
2557 source += src_offset / HOST_CHAR_BIT;
2558 src_offset %= HOST_CHAR_BIT;
50810684 2559 if (bits_big_endian_p)
14f9c5c9
AS
2560 {
2561 accum = (unsigned char) *source;
2562 source += 1;
2563 accum_bits = HOST_CHAR_BIT - src_offset;
2564
d2e4a39e 2565 while (n > 0)
4c4b4cd2
PH
2566 {
2567 int unused_right;
5b4ee69b 2568
4c4b4cd2
PH
2569 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2570 accum_bits += HOST_CHAR_BIT;
2571 source += 1;
2572 chunk_size = HOST_CHAR_BIT - targ_offset;
2573 if (chunk_size > n)
2574 chunk_size = n;
2575 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2576 mask = ((1 << chunk_size) - 1) << unused_right;
2577 *target =
2578 (*target & ~mask)
2579 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2580 n -= chunk_size;
2581 accum_bits -= chunk_size;
2582 target += 1;
2583 targ_offset = 0;
2584 }
14f9c5c9
AS
2585 }
2586 else
2587 {
2588 accum = (unsigned char) *source >> src_offset;
2589 source += 1;
2590 accum_bits = HOST_CHAR_BIT - src_offset;
2591
d2e4a39e 2592 while (n > 0)
4c4b4cd2
PH
2593 {
2594 accum = accum + ((unsigned char) *source << accum_bits);
2595 accum_bits += HOST_CHAR_BIT;
2596 source += 1;
2597 chunk_size = HOST_CHAR_BIT - targ_offset;
2598 if (chunk_size > n)
2599 chunk_size = n;
2600 mask = ((1 << chunk_size) - 1) << targ_offset;
2601 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2602 n -= chunk_size;
2603 accum_bits -= chunk_size;
2604 accum >>= chunk_size;
2605 target += 1;
2606 targ_offset = 0;
2607 }
14f9c5c9
AS
2608 }
2609}
2610
14f9c5c9
AS
2611/* Store the contents of FROMVAL into the location of TOVAL.
2612 Return a new value with the location of TOVAL and contents of
2613 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2614 floating-point or non-scalar types. */
14f9c5c9 2615
d2e4a39e
AS
2616static struct value *
2617ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2618{
df407dfe
AC
2619 struct type *type = value_type (toval);
2620 int bits = value_bitsize (toval);
14f9c5c9 2621
52ce6436
PH
2622 toval = ada_coerce_ref (toval);
2623 fromval = ada_coerce_ref (fromval);
2624
2625 if (ada_is_direct_array_type (value_type (toval)))
2626 toval = ada_coerce_to_simple_array (toval);
2627 if (ada_is_direct_array_type (value_type (fromval)))
2628 fromval = ada_coerce_to_simple_array (fromval);
2629
88e3b34b 2630 if (!deprecated_value_modifiable (toval))
323e0a4a 2631 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2632
d2e4a39e 2633 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2634 && bits > 0
d2e4a39e 2635 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2636 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2637 {
df407dfe
AC
2638 int len = (value_bitpos (toval)
2639 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2640 int from_size;
948f8e3d 2641 gdb_byte *buffer = alloca (len);
d2e4a39e 2642 struct value *val;
42ae5230 2643 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2644
2645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2646 fromval = value_cast (type, fromval);
14f9c5c9 2647
52ce6436 2648 read_memory (to_addr, buffer, len);
aced2898
PH
2649 from_size = value_bitsize (fromval);
2650 if (from_size == 0)
2651 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2652 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2653 move_bits (buffer, value_bitpos (toval),
50810684 2654 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2655 else
50810684
UW
2656 move_bits (buffer, value_bitpos (toval),
2657 value_contents (fromval), 0, bits, 0);
972daa01 2658 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2659
14f9c5c9 2660 val = value_copy (toval);
0fd88904 2661 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2662 TYPE_LENGTH (type));
04624583 2663 deprecated_set_value_type (val, type);
d2e4a39e 2664
14f9c5c9
AS
2665 return val;
2666 }
2667
2668 return value_assign (toval, fromval);
2669}
2670
2671
52ce6436
PH
2672/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2673 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2674 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2675 * COMPONENT, and not the inferior's memory. The current contents
2676 * of COMPONENT are ignored. */
2677static void
2678value_assign_to_component (struct value *container, struct value *component,
2679 struct value *val)
2680{
2681 LONGEST offset_in_container =
42ae5230 2682 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2683 int bit_offset_in_container =
2684 value_bitpos (component) - value_bitpos (container);
2685 int bits;
2686
2687 val = value_cast (value_type (component), val);
2688
2689 if (value_bitsize (component) == 0)
2690 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2691 else
2692 bits = value_bitsize (component);
2693
50810684 2694 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2695 move_bits (value_contents_writeable (container) + offset_in_container,
2696 value_bitpos (container) + bit_offset_in_container,
2697 value_contents (val),
2698 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2699 bits, 1);
52ce6436
PH
2700 else
2701 move_bits (value_contents_writeable (container) + offset_in_container,
2702 value_bitpos (container) + bit_offset_in_container,
50810684 2703 value_contents (val), 0, bits, 0);
52ce6436
PH
2704}
2705
4c4b4cd2
PH
2706/* The value of the element of array ARR at the ARITY indices given in IND.
2707 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2708 thereto. */
2709
d2e4a39e
AS
2710struct value *
2711ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2712{
2713 int k;
d2e4a39e
AS
2714 struct value *elt;
2715 struct type *elt_type;
14f9c5c9
AS
2716
2717 elt = ada_coerce_to_simple_array (arr);
2718
df407dfe 2719 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2720 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2721 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2722 return value_subscript_packed (elt, arity, ind);
2723
2724 for (k = 0; k < arity; k += 1)
2725 {
2726 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2727 error (_("too many subscripts (%d expected)"), k);
2497b498 2728 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2729 }
2730 return elt;
2731}
2732
deede10c
JB
2733/* Assuming ARR is a pointer to a GDB array, the value of the element
2734 of *ARR at the ARITY indices given in IND.
2735 Does not read the entire array into memory. */
14f9c5c9 2736
2c0b251b 2737static struct value *
deede10c 2738ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2739{
2740 int k;
deede10c
JB
2741 struct type *type
2742 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 LONGEST lwb, upb;
14f9c5c9
AS
2747
2748 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2749 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2750 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2751 value_copy (arr));
14f9c5c9 2752 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2753 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2754 type = TYPE_TARGET_TYPE (type);
2755 }
2756
2757 return value_ind (arr);
2758}
2759
0b5d8877 2760/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2761 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2762 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2763 per Ada rules. */
0b5d8877 2764static struct value *
f5938064
JG
2765ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2766 int low, int high)
0b5d8877 2767{
b0dd7688 2768 struct type *type0 = ada_check_typedef (type);
6c038f32 2769 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2770 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2772 struct type *index_type
2773 = create_static_range_type (NULL,
2774 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2775 low, high);
6c038f32 2776 struct type *slice_type =
b0dd7688 2777 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2778
f5938064 2779 return value_at_lazy (slice_type, base);
0b5d8877
PH
2780}
2781
2782
2783static struct value *
2784ada_value_slice (struct value *array, int low, int high)
2785{
b0dd7688 2786 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2787 struct type *index_type
2788 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2789 struct type *slice_type =
0b5d8877 2790 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2791
6c038f32 2792 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2793}
2794
14f9c5c9
AS
2795/* If type is a record type in the form of a standard GNAT array
2796 descriptor, returns the number of dimensions for type. If arr is a
2797 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2798 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2799
2800int
d2e4a39e 2801ada_array_arity (struct type *type)
14f9c5c9
AS
2802{
2803 int arity;
2804
2805 if (type == NULL)
2806 return 0;
2807
2808 type = desc_base_type (type);
2809
2810 arity = 0;
d2e4a39e 2811 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2812 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2813 else
2814 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2815 {
4c4b4cd2 2816 arity += 1;
61ee279c 2817 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2818 }
d2e4a39e 2819
14f9c5c9
AS
2820 return arity;
2821}
2822
2823/* If TYPE is a record type in the form of a standard GNAT array
2824 descriptor or a simple array type, returns the element type for
2825 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2826 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2827
d2e4a39e
AS
2828struct type *
2829ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2830{
2831 type = desc_base_type (type);
2832
d2e4a39e 2833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2834 {
2835 int k;
d2e4a39e 2836 struct type *p_array_type;
14f9c5c9 2837
556bdfd4 2838 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2839
2840 k = ada_array_arity (type);
2841 if (k == 0)
4c4b4cd2 2842 return NULL;
d2e4a39e 2843
4c4b4cd2 2844 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2845 if (nindices >= 0 && k > nindices)
4c4b4cd2 2846 k = nindices;
d2e4a39e 2847 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2848 {
61ee279c 2849 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2850 k -= 1;
2851 }
14f9c5c9
AS
2852 return p_array_type;
2853 }
2854 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2855 {
2856 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2857 {
2858 type = TYPE_TARGET_TYPE (type);
2859 nindices -= 1;
2860 }
14f9c5c9
AS
2861 return type;
2862 }
2863
2864 return NULL;
2865}
2866
4c4b4cd2 2867/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2868 Does not examine memory. Throws an error if N is invalid or TYPE
2869 is not an array type. NAME is the name of the Ada attribute being
2870 evaluated ('range, 'first, 'last, or 'length); it is used in building
2871 the error message. */
14f9c5c9 2872
1eea4ebd
UW
2873static struct type *
2874ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2875{
4c4b4cd2
PH
2876 struct type *result_type;
2877
14f9c5c9
AS
2878 type = desc_base_type (type);
2879
1eea4ebd
UW
2880 if (n < 0 || n > ada_array_arity (type))
2881 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2882
4c4b4cd2 2883 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2884 {
2885 int i;
2886
2887 for (i = 1; i < n; i += 1)
4c4b4cd2 2888 type = TYPE_TARGET_TYPE (type);
262452ec 2889 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2890 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2891 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2892 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2893 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2894 result_type = NULL;
14f9c5c9 2895 }
d2e4a39e 2896 else
1eea4ebd
UW
2897 {
2898 result_type = desc_index_type (desc_bounds_type (type), n);
2899 if (result_type == NULL)
2900 error (_("attempt to take bound of something that is not an array"));
2901 }
2902
2903 return result_type;
14f9c5c9
AS
2904}
2905
2906/* Given that arr is an array type, returns the lower bound of the
2907 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2908 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2909 array-descriptor type. It works for other arrays with bounds supplied
2910 by run-time quantities other than discriminants. */
14f9c5c9 2911
abb68b3e 2912static LONGEST
fb5e3d5c 2913ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2914{
8a48ac95 2915 struct type *type, *index_type_desc, *index_type;
1ce677a4 2916 int i;
262452ec
JK
2917
2918 gdb_assert (which == 0 || which == 1);
14f9c5c9 2919
ad82864c
JB
2920 if (ada_is_constrained_packed_array_type (arr_type))
2921 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2922
4c4b4cd2 2923 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2924 return (LONGEST) - which;
14f9c5c9
AS
2925
2926 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2927 type = TYPE_TARGET_TYPE (arr_type);
2928 else
2929 type = arr_type;
2930
bafffb51
JB
2931 if (TYPE_FIXED_INSTANCE (type))
2932 {
2933 /* The array has already been fixed, so we do not need to
2934 check the parallel ___XA type again. That encoding has
2935 already been applied, so ignore it now. */
2936 index_type_desc = NULL;
2937 }
2938 else
2939 {
2940 index_type_desc = ada_find_parallel_type (type, "___XA");
2941 ada_fixup_array_indexes_type (index_type_desc);
2942 }
2943
262452ec 2944 if (index_type_desc != NULL)
28c85d6c
JB
2945 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2946 NULL);
262452ec 2947 else
8a48ac95
JB
2948 {
2949 struct type *elt_type = check_typedef (type);
2950
2951 for (i = 1; i < n; i++)
2952 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2953
2954 index_type = TYPE_INDEX_TYPE (elt_type);
2955 }
262452ec 2956
43bbcdc2
PH
2957 return
2958 (LONGEST) (which == 0
2959 ? ada_discrete_type_low_bound (index_type)
2960 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2961}
2962
2963/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2964 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2965 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2966 supplied by run-time quantities other than discriminants. */
14f9c5c9 2967
1eea4ebd 2968static LONGEST
4dc81987 2969ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2970{
eb479039
JB
2971 struct type *arr_type;
2972
2973 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2974 arr = value_ind (arr);
2975 arr_type = value_enclosing_type (arr);
14f9c5c9 2976
ad82864c
JB
2977 if (ada_is_constrained_packed_array_type (arr_type))
2978 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2979 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2980 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2981 else
1eea4ebd 2982 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2983}
2984
2985/* Given that arr is an array value, returns the length of the
2986 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2987 supplied by run-time quantities other than discriminants.
2988 Does not work for arrays indexed by enumeration types with representation
2989 clauses at the moment. */
14f9c5c9 2990
1eea4ebd 2991static LONGEST
d2e4a39e 2992ada_array_length (struct value *arr, int n)
14f9c5c9 2993{
eb479039
JB
2994 struct type *arr_type;
2995
2996 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2997 arr = value_ind (arr);
2998 arr_type = value_enclosing_type (arr);
14f9c5c9 2999
ad82864c
JB
3000 if (ada_is_constrained_packed_array_type (arr_type))
3001 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3002
4c4b4cd2 3003 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
3004 return (ada_array_bound_from_type (arr_type, n, 1)
3005 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 3006 else
1eea4ebd
UW
3007 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
3008 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
3009}
3010
3011/* An empty array whose type is that of ARR_TYPE (an array type),
3012 with bounds LOW to LOW-1. */
3013
3014static struct value *
3015empty_array (struct type *arr_type, int low)
3016{
b0dd7688 3017 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3018 struct type *index_type
3019 = create_static_range_type
3020 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3021 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3022
0b5d8877 3023 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3024}
14f9c5c9 3025\f
d2e4a39e 3026
4c4b4cd2 3027 /* Name resolution */
14f9c5c9 3028
4c4b4cd2
PH
3029/* The "decoded" name for the user-definable Ada operator corresponding
3030 to OP. */
14f9c5c9 3031
d2e4a39e 3032static const char *
4c4b4cd2 3033ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3034{
3035 int i;
3036
4c4b4cd2 3037 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3038 {
3039 if (ada_opname_table[i].op == op)
4c4b4cd2 3040 return ada_opname_table[i].decoded;
14f9c5c9 3041 }
323e0a4a 3042 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3043}
3044
3045
4c4b4cd2
PH
3046/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3047 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3048 undefined namespace) and converts operators that are
3049 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3050 non-null, it provides a preferred result type [at the moment, only
3051 type void has any effect---causing procedures to be preferred over
3052 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3053 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3054
4c4b4cd2
PH
3055static void
3056resolve (struct expression **expp, int void_context_p)
14f9c5c9 3057{
30b15541
UW
3058 struct type *context_type = NULL;
3059 int pc = 0;
3060
3061 if (void_context_p)
3062 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3063
3064 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3065}
3066
4c4b4cd2
PH
3067/* Resolve the operator of the subexpression beginning at
3068 position *POS of *EXPP. "Resolving" consists of replacing
3069 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3070 with their resolutions, replacing built-in operators with
3071 function calls to user-defined operators, where appropriate, and,
3072 when DEPROCEDURE_P is non-zero, converting function-valued variables
3073 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3074 are as in ada_resolve, above. */
14f9c5c9 3075
d2e4a39e 3076static struct value *
4c4b4cd2 3077resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3078 struct type *context_type)
14f9c5c9
AS
3079{
3080 int pc = *pos;
3081 int i;
4c4b4cd2 3082 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3083 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3084 struct value **argvec; /* Vector of operand types (alloca'ed). */
3085 int nargs; /* Number of operands. */
52ce6436 3086 int oplen;
14f9c5c9
AS
3087
3088 argvec = NULL;
3089 nargs = 0;
3090 exp = *expp;
3091
52ce6436
PH
3092 /* Pass one: resolve operands, saving their types and updating *pos,
3093 if needed. */
14f9c5c9
AS
3094 switch (op)
3095 {
4c4b4cd2
PH
3096 case OP_FUNCALL:
3097 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3098 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3099 *pos += 7;
4c4b4cd2
PH
3100 else
3101 {
3102 *pos += 3;
3103 resolve_subexp (expp, pos, 0, NULL);
3104 }
3105 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3106 break;
3107
14f9c5c9 3108 case UNOP_ADDR:
4c4b4cd2
PH
3109 *pos += 1;
3110 resolve_subexp (expp, pos, 0, NULL);
3111 break;
3112
52ce6436
PH
3113 case UNOP_QUAL:
3114 *pos += 3;
17466c1a 3115 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3116 break;
3117
52ce6436 3118 case OP_ATR_MODULUS:
4c4b4cd2
PH
3119 case OP_ATR_SIZE:
3120 case OP_ATR_TAG:
4c4b4cd2
PH
3121 case OP_ATR_FIRST:
3122 case OP_ATR_LAST:
3123 case OP_ATR_LENGTH:
3124 case OP_ATR_POS:
3125 case OP_ATR_VAL:
4c4b4cd2
PH
3126 case OP_ATR_MIN:
3127 case OP_ATR_MAX:
52ce6436
PH
3128 case TERNOP_IN_RANGE:
3129 case BINOP_IN_BOUNDS:
3130 case UNOP_IN_RANGE:
3131 case OP_AGGREGATE:
3132 case OP_OTHERS:
3133 case OP_CHOICES:
3134 case OP_POSITIONAL:
3135 case OP_DISCRETE_RANGE:
3136 case OP_NAME:
3137 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3138 *pos += oplen;
14f9c5c9
AS
3139 break;
3140
3141 case BINOP_ASSIGN:
3142 {
4c4b4cd2
PH
3143 struct value *arg1;
3144
3145 *pos += 1;
3146 arg1 = resolve_subexp (expp, pos, 0, NULL);
3147 if (arg1 == NULL)
3148 resolve_subexp (expp, pos, 1, NULL);
3149 else
df407dfe 3150 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3151 break;
14f9c5c9
AS
3152 }
3153
4c4b4cd2 3154 case UNOP_CAST:
4c4b4cd2
PH
3155 *pos += 3;
3156 nargs = 1;
3157 break;
14f9c5c9 3158
4c4b4cd2
PH
3159 case BINOP_ADD:
3160 case BINOP_SUB:
3161 case BINOP_MUL:
3162 case BINOP_DIV:
3163 case BINOP_REM:
3164 case BINOP_MOD:
3165 case BINOP_EXP:
3166 case BINOP_CONCAT:
3167 case BINOP_LOGICAL_AND:
3168 case BINOP_LOGICAL_OR:
3169 case BINOP_BITWISE_AND:
3170 case BINOP_BITWISE_IOR:
3171 case BINOP_BITWISE_XOR:
14f9c5c9 3172
4c4b4cd2
PH
3173 case BINOP_EQUAL:
3174 case BINOP_NOTEQUAL:
3175 case BINOP_LESS:
3176 case BINOP_GTR:
3177 case BINOP_LEQ:
3178 case BINOP_GEQ:
14f9c5c9 3179
4c4b4cd2
PH
3180 case BINOP_REPEAT:
3181 case BINOP_SUBSCRIPT:
3182 case BINOP_COMMA:
40c8aaa9
JB
3183 *pos += 1;
3184 nargs = 2;
3185 break;
14f9c5c9 3186
4c4b4cd2
PH
3187 case UNOP_NEG:
3188 case UNOP_PLUS:
3189 case UNOP_LOGICAL_NOT:
3190 case UNOP_ABS:
3191 case UNOP_IND:
3192 *pos += 1;
3193 nargs = 1;
3194 break;
14f9c5c9 3195
4c4b4cd2
PH
3196 case OP_LONG:
3197 case OP_DOUBLE:
3198 case OP_VAR_VALUE:
3199 *pos += 4;
3200 break;
14f9c5c9 3201
4c4b4cd2
PH
3202 case OP_TYPE:
3203 case OP_BOOL:
3204 case OP_LAST:
4c4b4cd2
PH
3205 case OP_INTERNALVAR:
3206 *pos += 3;
3207 break;
14f9c5c9 3208
4c4b4cd2
PH
3209 case UNOP_MEMVAL:
3210 *pos += 3;
3211 nargs = 1;
3212 break;
3213
67f3407f
DJ
3214 case OP_REGISTER:
3215 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3216 break;
3217
4c4b4cd2
PH
3218 case STRUCTOP_STRUCT:
3219 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3220 nargs = 1;
3221 break;
3222
4c4b4cd2 3223 case TERNOP_SLICE:
4c4b4cd2
PH
3224 *pos += 1;
3225 nargs = 3;
3226 break;
3227
52ce6436 3228 case OP_STRING:
14f9c5c9 3229 break;
4c4b4cd2
PH
3230
3231 default:
323e0a4a 3232 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3233 }
3234
76a01679 3235 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3236 for (i = 0; i < nargs; i += 1)
3237 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3238 argvec[i] = NULL;
3239 exp = *expp;
3240
3241 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3242 switch (op)
3243 {
3244 default:
3245 break;
3246
14f9c5c9 3247 case OP_VAR_VALUE:
4c4b4cd2 3248 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3255 (exp->elts[pc + 2].symbol),
3256 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3257 &candidates);
76a01679
JB
3258
3259 if (n_candidates > 1)
3260 {
3261 /* Types tend to get re-introduced locally, so if there
3262 are any local symbols that are not types, first filter
3263 out all types. */
3264 int j;
3265 for (j = 0; j < n_candidates; j += 1)
3266 switch (SYMBOL_CLASS (candidates[j].sym))
3267 {
3268 case LOC_REGISTER:
3269 case LOC_ARG:
3270 case LOC_REF_ARG:
76a01679
JB
3271 case LOC_REGPARM_ADDR:
3272 case LOC_LOCAL:
76a01679 3273 case LOC_COMPUTED:
76a01679
JB
3274 goto FoundNonType;
3275 default:
3276 break;
3277 }
3278 FoundNonType:
3279 if (j < n_candidates)
3280 {
3281 j = 0;
3282 while (j < n_candidates)
3283 {
3284 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3285 {
3286 candidates[j] = candidates[n_candidates - 1];
3287 n_candidates -= 1;
3288 }
3289 else
3290 j += 1;
3291 }
3292 }
3293 }
3294
3295 if (n_candidates == 0)
323e0a4a 3296 error (_("No definition found for %s"),
76a01679
JB
3297 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3298 else if (n_candidates == 1)
3299 i = 0;
3300 else if (deprocedure_p
3301 && !is_nonfunction (candidates, n_candidates))
3302 {
06d5cf63
JB
3303 i = ada_resolve_function
3304 (candidates, n_candidates, NULL, 0,
3305 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3306 context_type);
76a01679 3307 if (i < 0)
323e0a4a 3308 error (_("Could not find a match for %s"),
76a01679
JB
3309 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3310 }
3311 else
3312 {
323e0a4a 3313 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3314 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3315 user_select_syms (candidates, n_candidates, 1);
3316 i = 0;
3317 }
3318
3319 exp->elts[pc + 1].block = candidates[i].block;
3320 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3321 if (innermost_block == NULL
3322 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3323 innermost_block = candidates[i].block;
3324 }
3325
3326 if (deprocedure_p
3327 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3328 == TYPE_CODE_FUNC))
3329 {
3330 replace_operator_with_call (expp, pc, 0, 0,
3331 exp->elts[pc + 2].symbol,
3332 exp->elts[pc + 1].block);
3333 exp = *expp;
3334 }
14f9c5c9
AS
3335 break;
3336
3337 case OP_FUNCALL:
3338 {
4c4b4cd2 3339 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3340 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3341 {
3342 struct ada_symbol_info *candidates;
3343 int n_candidates;
3344
3345 n_candidates =
76a01679
JB
3346 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3347 (exp->elts[pc + 5].symbol),
3348 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3349 &candidates);
4c4b4cd2
PH
3350 if (n_candidates == 1)
3351 i = 0;
3352 else
3353 {
06d5cf63
JB
3354 i = ada_resolve_function
3355 (candidates, n_candidates,
3356 argvec, nargs,
3357 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3358 context_type);
4c4b4cd2 3359 if (i < 0)
323e0a4a 3360 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3361 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3362 }
3363
3364 exp->elts[pc + 4].block = candidates[i].block;
3365 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3366 if (innermost_block == NULL
3367 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3368 innermost_block = candidates[i].block;
3369 }
14f9c5c9
AS
3370 }
3371 break;
3372 case BINOP_ADD:
3373 case BINOP_SUB:
3374 case BINOP_MUL:
3375 case BINOP_DIV:
3376 case BINOP_REM:
3377 case BINOP_MOD:
3378 case BINOP_CONCAT:
3379 case BINOP_BITWISE_AND:
3380 case BINOP_BITWISE_IOR:
3381 case BINOP_BITWISE_XOR:
3382 case BINOP_EQUAL:
3383 case BINOP_NOTEQUAL:
3384 case BINOP_LESS:
3385 case BINOP_GTR:
3386 case BINOP_LEQ:
3387 case BINOP_GEQ:
3388 case BINOP_EXP:
3389 case UNOP_NEG:
3390 case UNOP_PLUS:
3391 case UNOP_LOGICAL_NOT:
3392 case UNOP_ABS:
3393 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3394 {
3395 struct ada_symbol_info *candidates;
3396 int n_candidates;
3397
3398 n_candidates =
3399 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3400 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3401 &candidates);
4c4b4cd2 3402 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3403 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3404 if (i < 0)
3405 break;
3406
76a01679
JB
3407 replace_operator_with_call (expp, pc, nargs, 1,
3408 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3409 exp = *expp;
3410 }
14f9c5c9 3411 break;
4c4b4cd2
PH
3412
3413 case OP_TYPE:
b3dbf008 3414 case OP_REGISTER:
4c4b4cd2 3415 return NULL;
14f9c5c9
AS
3416 }
3417
3418 *pos = pc;
3419 return evaluate_subexp_type (exp, pos);
3420}
3421
3422/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3423 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3424 a non-pointer. */
14f9c5c9 3425/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3426 liberal. */
14f9c5c9
AS
3427
3428static int
4dc81987 3429ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3430{
61ee279c
PH
3431 ftype = ada_check_typedef (ftype);
3432 atype = ada_check_typedef (atype);
14f9c5c9
AS
3433
3434 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3435 ftype = TYPE_TARGET_TYPE (ftype);
3436 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3437 atype = TYPE_TARGET_TYPE (atype);
3438
d2e4a39e 3439 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3440 {
3441 default:
5b3d5b7d 3442 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3443 case TYPE_CODE_PTR:
3444 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3445 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3446 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3447 else
1265e4aa
JB
3448 return (may_deref
3449 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3450 case TYPE_CODE_INT:
3451 case TYPE_CODE_ENUM:
3452 case TYPE_CODE_RANGE:
3453 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3454 {
3455 case TYPE_CODE_INT:
3456 case TYPE_CODE_ENUM:
3457 case TYPE_CODE_RANGE:
3458 return 1;
3459 default:
3460 return 0;
3461 }
14f9c5c9
AS
3462
3463 case TYPE_CODE_ARRAY:
d2e4a39e 3464 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3465 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3466
3467 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3468 if (ada_is_array_descriptor_type (ftype))
3469 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3470 || ada_is_array_descriptor_type (atype));
14f9c5c9 3471 else
4c4b4cd2
PH
3472 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3473 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3474
3475 case TYPE_CODE_UNION:
3476 case TYPE_CODE_FLT:
3477 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3478 }
3479}
3480
3481/* Return non-zero if the formals of FUNC "sufficiently match" the
3482 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3483 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3484 argument function. */
14f9c5c9
AS
3485
3486static int
d2e4a39e 3487ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3488{
3489 int i;
d2e4a39e 3490 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3491
1265e4aa
JB
3492 if (SYMBOL_CLASS (func) == LOC_CONST
3493 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3494 return (n_actuals == 0);
3495 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3496 return 0;
3497
3498 if (TYPE_NFIELDS (func_type) != n_actuals)
3499 return 0;
3500
3501 for (i = 0; i < n_actuals; i += 1)
3502 {
4c4b4cd2 3503 if (actuals[i] == NULL)
76a01679
JB
3504 return 0;
3505 else
3506 {
5b4ee69b
MS
3507 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3508 i));
df407dfe 3509 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3510
76a01679
JB
3511 if (!ada_type_match (ftype, atype, 1))
3512 return 0;
3513 }
14f9c5c9
AS
3514 }
3515 return 1;
3516}
3517
3518/* False iff function type FUNC_TYPE definitely does not produce a value
3519 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3520 FUNC_TYPE is not a valid function type with a non-null return type
3521 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3522
3523static int
d2e4a39e 3524return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3525{
d2e4a39e 3526 struct type *return_type;
14f9c5c9
AS
3527
3528 if (func_type == NULL)
3529 return 1;
3530
4c4b4cd2 3531 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3532 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3533 else
18af8284 3534 return_type = get_base_type (func_type);
14f9c5c9
AS
3535 if (return_type == NULL)
3536 return 1;
3537
18af8284 3538 context_type = get_base_type (context_type);
14f9c5c9
AS
3539
3540 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3541 return context_type == NULL || return_type == context_type;
3542 else if (context_type == NULL)
3543 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3544 else
3545 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3546}
3547
3548
4c4b4cd2 3549/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3550 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3551 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3552 that returns that type, then eliminate matches that don't. If
3553 CONTEXT_TYPE is void and there is at least one match that does not
3554 return void, eliminate all matches that do.
3555
14f9c5c9
AS
3556 Asks the user if there is more than one match remaining. Returns -1
3557 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3558 solely for messages. May re-arrange and modify SYMS in
3559 the process; the index returned is for the modified vector. */
14f9c5c9 3560
4c4b4cd2
PH
3561static int
3562ada_resolve_function (struct ada_symbol_info syms[],
3563 int nsyms, struct value **args, int nargs,
3564 const char *name, struct type *context_type)
14f9c5c9 3565{
30b15541 3566 int fallback;
14f9c5c9 3567 int k;
4c4b4cd2 3568 int m; /* Number of hits */
14f9c5c9 3569
d2e4a39e 3570 m = 0;
30b15541
UW
3571 /* In the first pass of the loop, we only accept functions matching
3572 context_type. If none are found, we add a second pass of the loop
3573 where every function is accepted. */
3574 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3575 {
3576 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3577 {
61ee279c 3578 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3579
3580 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3581 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3582 {
3583 syms[m] = syms[k];
3584 m += 1;
3585 }
3586 }
14f9c5c9
AS
3587 }
3588
3589 if (m == 0)
3590 return -1;
3591 else if (m > 1)
3592 {
323e0a4a 3593 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3594 user_select_syms (syms, m, 1);
14f9c5c9
AS
3595 return 0;
3596 }
3597 return 0;
3598}
3599
4c4b4cd2
PH
3600/* Returns true (non-zero) iff decoded name N0 should appear before N1
3601 in a listing of choices during disambiguation (see sort_choices, below).
3602 The idea is that overloadings of a subprogram name from the
3603 same package should sort in their source order. We settle for ordering
3604 such symbols by their trailing number (__N or $N). */
3605
14f9c5c9 3606static int
0d5cff50 3607encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3608{
3609 if (N1 == NULL)
3610 return 0;
3611 else if (N0 == NULL)
3612 return 1;
3613 else
3614 {
3615 int k0, k1;
5b4ee69b 3616
d2e4a39e 3617 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3618 ;
d2e4a39e 3619 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3620 ;
d2e4a39e 3621 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3622 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3623 {
3624 int n0, n1;
5b4ee69b 3625
4c4b4cd2
PH
3626 n0 = k0;
3627 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3628 n0 -= 1;
3629 n1 = k1;
3630 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3631 n1 -= 1;
3632 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3633 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3634 }
14f9c5c9
AS
3635 return (strcmp (N0, N1) < 0);
3636 }
3637}
d2e4a39e 3638
4c4b4cd2
PH
3639/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3640 encoded names. */
3641
d2e4a39e 3642static void
4c4b4cd2 3643sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3644{
4c4b4cd2 3645 int i;
5b4ee69b 3646
d2e4a39e 3647 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3648 {
4c4b4cd2 3649 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3650 int j;
3651
d2e4a39e 3652 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3653 {
3654 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3655 SYMBOL_LINKAGE_NAME (sym.sym)))
3656 break;
3657 syms[j + 1] = syms[j];
3658 }
d2e4a39e 3659 syms[j + 1] = sym;
14f9c5c9
AS
3660 }
3661}
3662
4c4b4cd2
PH
3663/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3664 by asking the user (if necessary), returning the number selected,
3665 and setting the first elements of SYMS items. Error if no symbols
3666 selected. */
14f9c5c9
AS
3667
3668/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3669 to be re-integrated one of these days. */
14f9c5c9
AS
3670
3671int
4c4b4cd2 3672user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3673{
3674 int i;
d2e4a39e 3675 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3676 int n_chosen;
3677 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3678 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3679
3680 if (max_results < 1)
323e0a4a 3681 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3682 if (nsyms <= 1)
3683 return nsyms;
3684
717d2f5a
JB
3685 if (select_mode == multiple_symbols_cancel)
3686 error (_("\
3687canceled because the command is ambiguous\n\
3688See set/show multiple-symbol."));
3689
3690 /* If select_mode is "all", then return all possible symbols.
3691 Only do that if more than one symbol can be selected, of course.
3692 Otherwise, display the menu as usual. */
3693 if (select_mode == multiple_symbols_all && max_results > 1)
3694 return nsyms;
3695
323e0a4a 3696 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3697 if (max_results > 1)
323e0a4a 3698 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3699
4c4b4cd2 3700 sort_choices (syms, nsyms);
14f9c5c9
AS
3701
3702 for (i = 0; i < nsyms; i += 1)
3703 {
4c4b4cd2
PH
3704 if (syms[i].sym == NULL)
3705 continue;
3706
3707 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3708 {
76a01679
JB
3709 struct symtab_and_line sal =
3710 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3711
323e0a4a
AC
3712 if (sal.symtab == NULL)
3713 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3714 i + first_choice,
3715 SYMBOL_PRINT_NAME (syms[i].sym),
3716 sal.line);
3717 else
3718 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3719 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3720 symtab_to_filename_for_display (sal.symtab),
3721 sal.line);
4c4b4cd2
PH
3722 continue;
3723 }
d2e4a39e 3724 else
4c4b4cd2
PH
3725 {
3726 int is_enumeral =
3727 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3728 && SYMBOL_TYPE (syms[i].sym) != NULL
3729 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
1994afbf
DE
3730 struct symtab *symtab = NULL;
3731
3732 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3733 symtab = symbol_symtab (syms[i].sym);
4c4b4cd2
PH
3734
3735 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3736 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3737 i + first_choice,
3738 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3739 symtab_to_filename_for_display (symtab),
3740 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3741 else if (is_enumeral
3742 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3743 {
a3f17187 3744 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3745 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3746 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3747 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3748 SYMBOL_PRINT_NAME (syms[i].sym));
3749 }
3750 else if (symtab != NULL)
3751 printf_unfiltered (is_enumeral
323e0a4a
AC
3752 ? _("[%d] %s in %s (enumeral)\n")
3753 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3754 i + first_choice,
3755 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3756 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3757 else
3758 printf_unfiltered (is_enumeral
323e0a4a
AC
3759 ? _("[%d] %s (enumeral)\n")
3760 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3761 i + first_choice,
3762 SYMBOL_PRINT_NAME (syms[i].sym));
3763 }
14f9c5c9 3764 }
d2e4a39e 3765
14f9c5c9 3766 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3767 "overload-choice");
14f9c5c9
AS
3768
3769 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3770 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3771
3772 return n_chosen;
3773}
3774
3775/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3776 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3777 order in CHOICES[0 .. N-1], and return N.
3778
3779 The user types choices as a sequence of numbers on one line
3780 separated by blanks, encoding them as follows:
3781
4c4b4cd2 3782 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3783 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3784 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3785
4c4b4cd2 3786 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3787
3788 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3789 prompts (for use with the -f switch). */
14f9c5c9
AS
3790
3791int
d2e4a39e 3792get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3793 int is_all_choice, char *annotation_suffix)
14f9c5c9 3794{
d2e4a39e 3795 char *args;
0bcd0149 3796 char *prompt;
14f9c5c9
AS
3797 int n_chosen;
3798 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3799
14f9c5c9
AS
3800 prompt = getenv ("PS2");
3801 if (prompt == NULL)
0bcd0149 3802 prompt = "> ";
14f9c5c9 3803
0bcd0149 3804 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3805
14f9c5c9 3806 if (args == NULL)
323e0a4a 3807 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3808
3809 n_chosen = 0;
76a01679 3810
4c4b4cd2
PH
3811 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3812 order, as given in args. Choices are validated. */
14f9c5c9
AS
3813 while (1)
3814 {
d2e4a39e 3815 char *args2;
14f9c5c9
AS
3816 int choice, j;
3817
0fcd72ba 3818 args = skip_spaces (args);
14f9c5c9 3819 if (*args == '\0' && n_chosen == 0)
323e0a4a 3820 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3821 else if (*args == '\0')
4c4b4cd2 3822 break;
14f9c5c9
AS
3823
3824 choice = strtol (args, &args2, 10);
d2e4a39e 3825 if (args == args2 || choice < 0
4c4b4cd2 3826 || choice > n_choices + first_choice - 1)
323e0a4a 3827 error (_("Argument must be choice number"));
14f9c5c9
AS
3828 args = args2;
3829
d2e4a39e 3830 if (choice == 0)
323e0a4a 3831 error (_("cancelled"));
14f9c5c9
AS
3832
3833 if (choice < first_choice)
4c4b4cd2
PH
3834 {
3835 n_chosen = n_choices;
3836 for (j = 0; j < n_choices; j += 1)
3837 choices[j] = j;
3838 break;
3839 }
14f9c5c9
AS
3840 choice -= first_choice;
3841
d2e4a39e 3842 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3843 {
3844 }
14f9c5c9
AS
3845
3846 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3847 {
3848 int k;
5b4ee69b 3849
4c4b4cd2
PH
3850 for (k = n_chosen - 1; k > j; k -= 1)
3851 choices[k + 1] = choices[k];
3852 choices[j + 1] = choice;
3853 n_chosen += 1;
3854 }
14f9c5c9
AS
3855 }
3856
3857 if (n_chosen > max_results)
323e0a4a 3858 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3859
14f9c5c9
AS
3860 return n_chosen;
3861}
3862
4c4b4cd2
PH
3863/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3864 on the function identified by SYM and BLOCK, and taking NARGS
3865 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3866
3867static void
d2e4a39e 3868replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3869 int oplen, struct symbol *sym,
270140bd 3870 const struct block *block)
14f9c5c9
AS
3871{
3872 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3873 symbol, -oplen for operator being replaced). */
d2e4a39e 3874 struct expression *newexp = (struct expression *)
8c1a34e7 3875 xzalloc (sizeof (struct expression)
4c4b4cd2 3876 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3877 struct expression *exp = *expp;
14f9c5c9
AS
3878
3879 newexp->nelts = exp->nelts + 7 - oplen;
3880 newexp->language_defn = exp->language_defn;
3489610d 3881 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3882 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3883 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3884 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3885
3886 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3887 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3888
3889 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3890 newexp->elts[pc + 4].block = block;
3891 newexp->elts[pc + 5].symbol = sym;
3892
3893 *expp = newexp;
aacb1f0a 3894 xfree (exp);
d2e4a39e 3895}
14f9c5c9
AS
3896
3897/* Type-class predicates */
3898
4c4b4cd2
PH
3899/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3900 or FLOAT). */
14f9c5c9
AS
3901
3902static int
d2e4a39e 3903numeric_type_p (struct type *type)
14f9c5c9
AS
3904{
3905 if (type == NULL)
3906 return 0;
d2e4a39e
AS
3907 else
3908 {
3909 switch (TYPE_CODE (type))
4c4b4cd2
PH
3910 {
3911 case TYPE_CODE_INT:
3912 case TYPE_CODE_FLT:
3913 return 1;
3914 case TYPE_CODE_RANGE:
3915 return (type == TYPE_TARGET_TYPE (type)
3916 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3917 default:
3918 return 0;
3919 }
d2e4a39e 3920 }
14f9c5c9
AS
3921}
3922
4c4b4cd2 3923/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3924
3925static int
d2e4a39e 3926integer_type_p (struct type *type)
14f9c5c9
AS
3927{
3928 if (type == NULL)
3929 return 0;
d2e4a39e
AS
3930 else
3931 {
3932 switch (TYPE_CODE (type))
4c4b4cd2
PH
3933 {
3934 case TYPE_CODE_INT:
3935 return 1;
3936 case TYPE_CODE_RANGE:
3937 return (type == TYPE_TARGET_TYPE (type)
3938 || integer_type_p (TYPE_TARGET_TYPE (type)));
3939 default:
3940 return 0;
3941 }
d2e4a39e 3942 }
14f9c5c9
AS
3943}
3944
4c4b4cd2 3945/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3946
3947static int
d2e4a39e 3948scalar_type_p (struct type *type)
14f9c5c9
AS
3949{
3950 if (type == NULL)
3951 return 0;
d2e4a39e
AS
3952 else
3953 {
3954 switch (TYPE_CODE (type))
4c4b4cd2
PH
3955 {
3956 case TYPE_CODE_INT:
3957 case TYPE_CODE_RANGE:
3958 case TYPE_CODE_ENUM:
3959 case TYPE_CODE_FLT:
3960 return 1;
3961 default:
3962 return 0;
3963 }
d2e4a39e 3964 }
14f9c5c9
AS
3965}
3966
4c4b4cd2 3967/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3968
3969static int
d2e4a39e 3970discrete_type_p (struct type *type)
14f9c5c9
AS
3971{
3972 if (type == NULL)
3973 return 0;
d2e4a39e
AS
3974 else
3975 {
3976 switch (TYPE_CODE (type))
4c4b4cd2
PH
3977 {
3978 case TYPE_CODE_INT:
3979 case TYPE_CODE_RANGE:
3980 case TYPE_CODE_ENUM:
872f0337 3981 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3982 return 1;
3983 default:
3984 return 0;
3985 }
d2e4a39e 3986 }
14f9c5c9
AS
3987}
3988
4c4b4cd2
PH
3989/* Returns non-zero if OP with operands in the vector ARGS could be
3990 a user-defined function. Errs on the side of pre-defined operators
3991 (i.e., result 0). */
14f9c5c9
AS
3992
3993static int
d2e4a39e 3994possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3995{
76a01679 3996 struct type *type0 =
df407dfe 3997 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3998 struct type *type1 =
df407dfe 3999 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4000
4c4b4cd2
PH
4001 if (type0 == NULL)
4002 return 0;
4003
14f9c5c9
AS
4004 switch (op)
4005 {
4006 default:
4007 return 0;
4008
4009 case BINOP_ADD:
4010 case BINOP_SUB:
4011 case BINOP_MUL:
4012 case BINOP_DIV:
d2e4a39e 4013 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4014
4015 case BINOP_REM:
4016 case BINOP_MOD:
4017 case BINOP_BITWISE_AND:
4018 case BINOP_BITWISE_IOR:
4019 case BINOP_BITWISE_XOR:
d2e4a39e 4020 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4021
4022 case BINOP_EQUAL:
4023 case BINOP_NOTEQUAL:
4024 case BINOP_LESS:
4025 case BINOP_GTR:
4026 case BINOP_LEQ:
4027 case BINOP_GEQ:
d2e4a39e 4028 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4029
4030 case BINOP_CONCAT:
ee90b9ab 4031 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4032
4033 case BINOP_EXP:
d2e4a39e 4034 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4035
4036 case UNOP_NEG:
4037 case UNOP_PLUS:
4038 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4039 case UNOP_ABS:
4040 return (!numeric_type_p (type0));
14f9c5c9
AS
4041
4042 }
4043}
4044\f
4c4b4cd2 4045 /* Renaming */
14f9c5c9 4046
aeb5907d
JB
4047/* NOTES:
4048
4049 1. In the following, we assume that a renaming type's name may
4050 have an ___XD suffix. It would be nice if this went away at some
4051 point.
4052 2. We handle both the (old) purely type-based representation of
4053 renamings and the (new) variable-based encoding. At some point,
4054 it is devoutly to be hoped that the former goes away
4055 (FIXME: hilfinger-2007-07-09).
4056 3. Subprogram renamings are not implemented, although the XRS
4057 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4058
4059/* If SYM encodes a renaming,
4060
4061 <renaming> renames <renamed entity>,
4062
4063 sets *LEN to the length of the renamed entity's name,
4064 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4065 the string describing the subcomponent selected from the renamed
0963b4bd 4066 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4067 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4068 are undefined). Otherwise, returns a value indicating the category
4069 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4070 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4071 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4072 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4073 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4074 may be NULL, in which case they are not assigned.
4075
4076 [Currently, however, GCC does not generate subprogram renamings.] */
4077
4078enum ada_renaming_category
4079ada_parse_renaming (struct symbol *sym,
4080 const char **renamed_entity, int *len,
4081 const char **renaming_expr)
4082{
4083 enum ada_renaming_category kind;
4084 const char *info;
4085 const char *suffix;
4086
4087 if (sym == NULL)
4088 return ADA_NOT_RENAMING;
4089 switch (SYMBOL_CLASS (sym))
14f9c5c9 4090 {
aeb5907d
JB
4091 default:
4092 return ADA_NOT_RENAMING;
4093 case LOC_TYPEDEF:
4094 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4095 renamed_entity, len, renaming_expr);
4096 case LOC_LOCAL:
4097 case LOC_STATIC:
4098 case LOC_COMPUTED:
4099 case LOC_OPTIMIZED_OUT:
4100 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4101 if (info == NULL)
4102 return ADA_NOT_RENAMING;
4103 switch (info[5])
4104 {
4105 case '_':
4106 kind = ADA_OBJECT_RENAMING;
4107 info += 6;
4108 break;
4109 case 'E':
4110 kind = ADA_EXCEPTION_RENAMING;
4111 info += 7;
4112 break;
4113 case 'P':
4114 kind = ADA_PACKAGE_RENAMING;
4115 info += 7;
4116 break;
4117 case 'S':
4118 kind = ADA_SUBPROGRAM_RENAMING;
4119 info += 7;
4120 break;
4121 default:
4122 return ADA_NOT_RENAMING;
4123 }
14f9c5c9 4124 }
4c4b4cd2 4125
aeb5907d
JB
4126 if (renamed_entity != NULL)
4127 *renamed_entity = info;
4128 suffix = strstr (info, "___XE");
4129 if (suffix == NULL || suffix == info)
4130 return ADA_NOT_RENAMING;
4131 if (len != NULL)
4132 *len = strlen (info) - strlen (suffix);
4133 suffix += 5;
4134 if (renaming_expr != NULL)
4135 *renaming_expr = suffix;
4136 return kind;
4137}
4138
4139/* Assuming TYPE encodes a renaming according to the old encoding in
4140 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4141 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4142 ADA_NOT_RENAMING otherwise. */
4143static enum ada_renaming_category
4144parse_old_style_renaming (struct type *type,
4145 const char **renamed_entity, int *len,
4146 const char **renaming_expr)
4147{
4148 enum ada_renaming_category kind;
4149 const char *name;
4150 const char *info;
4151 const char *suffix;
14f9c5c9 4152
aeb5907d
JB
4153 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4154 || TYPE_NFIELDS (type) != 1)
4155 return ADA_NOT_RENAMING;
14f9c5c9 4156
aeb5907d
JB
4157 name = type_name_no_tag (type);
4158 if (name == NULL)
4159 return ADA_NOT_RENAMING;
4160
4161 name = strstr (name, "___XR");
4162 if (name == NULL)
4163 return ADA_NOT_RENAMING;
4164 switch (name[5])
4165 {
4166 case '\0':
4167 case '_':
4168 kind = ADA_OBJECT_RENAMING;
4169 break;
4170 case 'E':
4171 kind = ADA_EXCEPTION_RENAMING;
4172 break;
4173 case 'P':
4174 kind = ADA_PACKAGE_RENAMING;
4175 break;
4176 case 'S':
4177 kind = ADA_SUBPROGRAM_RENAMING;
4178 break;
4179 default:
4180 return ADA_NOT_RENAMING;
4181 }
14f9c5c9 4182
aeb5907d
JB
4183 info = TYPE_FIELD_NAME (type, 0);
4184 if (info == NULL)
4185 return ADA_NOT_RENAMING;
4186 if (renamed_entity != NULL)
4187 *renamed_entity = info;
4188 suffix = strstr (info, "___XE");
4189 if (renaming_expr != NULL)
4190 *renaming_expr = suffix + 5;
4191 if (suffix == NULL || suffix == info)
4192 return ADA_NOT_RENAMING;
4193 if (len != NULL)
4194 *len = suffix - info;
4195 return kind;
a5ee536b
JB
4196}
4197
4198/* Compute the value of the given RENAMING_SYM, which is expected to
4199 be a symbol encoding a renaming expression. BLOCK is the block
4200 used to evaluate the renaming. */
52ce6436 4201
a5ee536b
JB
4202static struct value *
4203ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4204 const struct block *block)
a5ee536b 4205{
bbc13ae3 4206 const char *sym_name;
a5ee536b
JB
4207 struct expression *expr;
4208 struct value *value;
4209 struct cleanup *old_chain = NULL;
4210
bbc13ae3 4211 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4212 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4213 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4214 value = evaluate_expression (expr);
4215
4216 do_cleanups (old_chain);
4217 return value;
4218}
14f9c5c9 4219\f
d2e4a39e 4220
4c4b4cd2 4221 /* Evaluation: Function Calls */
14f9c5c9 4222
4c4b4cd2 4223/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4224 lvalues, and otherwise has the side-effect of allocating memory
4225 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4226
d2e4a39e 4227static struct value *
40bc484c 4228ensure_lval (struct value *val)
14f9c5c9 4229{
40bc484c
JB
4230 if (VALUE_LVAL (val) == not_lval
4231 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4232 {
df407dfe 4233 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4234 const CORE_ADDR addr =
4235 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4236
40bc484c 4237 set_value_address (val, addr);
a84a8a0d 4238 VALUE_LVAL (val) = lval_memory;
40bc484c 4239 write_memory (addr, value_contents (val), len);
c3e5cd34 4240 }
14f9c5c9
AS
4241
4242 return val;
4243}
4244
4245/* Return the value ACTUAL, converted to be an appropriate value for a
4246 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4247 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4248 values not residing in memory, updating it as needed. */
14f9c5c9 4249
a93c0eb6 4250struct value *
40bc484c 4251ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4252{
df407dfe 4253 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4254 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4255 struct type *formal_target =
4256 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4257 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4258 struct type *actual_target =
4259 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4260 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4261
4c4b4cd2 4262 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4263 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4264 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4265 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4266 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4267 {
a84a8a0d 4268 struct value *result;
5b4ee69b 4269
14f9c5c9 4270 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4271 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4272 result = desc_data (actual);
14f9c5c9 4273 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4274 {
4275 if (VALUE_LVAL (actual) != lval_memory)
4276 {
4277 struct value *val;
5b4ee69b 4278
df407dfe 4279 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4280 val = allocate_value (actual_type);
990a07ab 4281 memcpy ((char *) value_contents_raw (val),
0fd88904 4282 (char *) value_contents (actual),
4c4b4cd2 4283 TYPE_LENGTH (actual_type));
40bc484c 4284 actual = ensure_lval (val);
4c4b4cd2 4285 }
a84a8a0d 4286 result = value_addr (actual);
4c4b4cd2 4287 }
a84a8a0d
JB
4288 else
4289 return actual;
b1af9e97 4290 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4291 }
4292 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4293 return ada_value_ind (actual);
4294
4295 return actual;
4296}
4297
438c98a1
JB
4298/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4299 type TYPE. This is usually an inefficient no-op except on some targets
4300 (such as AVR) where the representation of a pointer and an address
4301 differs. */
4302
4303static CORE_ADDR
4304value_pointer (struct value *value, struct type *type)
4305{
4306 struct gdbarch *gdbarch = get_type_arch (type);
4307 unsigned len = TYPE_LENGTH (type);
4308 gdb_byte *buf = alloca (len);
4309 CORE_ADDR addr;
4310
4311 addr = value_address (value);
4312 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4313 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4314 return addr;
4315}
4316
14f9c5c9 4317
4c4b4cd2
PH
4318/* Push a descriptor of type TYPE for array value ARR on the stack at
4319 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4320 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4321 to-descriptor type rather than a descriptor type), a struct value *
4322 representing a pointer to this descriptor. */
14f9c5c9 4323
d2e4a39e 4324static struct value *
40bc484c 4325make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4326{
d2e4a39e
AS
4327 struct type *bounds_type = desc_bounds_type (type);
4328 struct type *desc_type = desc_base_type (type);
4329 struct value *descriptor = allocate_value (desc_type);
4330 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4331 int i;
d2e4a39e 4332
0963b4bd
MS
4333 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4334 i > 0; i -= 1)
14f9c5c9 4335 {
19f220c3
JK
4336 modify_field (value_type (bounds), value_contents_writeable (bounds),
4337 ada_array_bound (arr, i, 0),
4338 desc_bound_bitpos (bounds_type, i, 0),
4339 desc_bound_bitsize (bounds_type, i, 0));
4340 modify_field (value_type (bounds), value_contents_writeable (bounds),
4341 ada_array_bound (arr, i, 1),
4342 desc_bound_bitpos (bounds_type, i, 1),
4343 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4344 }
d2e4a39e 4345
40bc484c 4346 bounds = ensure_lval (bounds);
d2e4a39e 4347
19f220c3
JK
4348 modify_field (value_type (descriptor),
4349 value_contents_writeable (descriptor),
4350 value_pointer (ensure_lval (arr),
4351 TYPE_FIELD_TYPE (desc_type, 0)),
4352 fat_pntr_data_bitpos (desc_type),
4353 fat_pntr_data_bitsize (desc_type));
4354
4355 modify_field (value_type (descriptor),
4356 value_contents_writeable (descriptor),
4357 value_pointer (bounds,
4358 TYPE_FIELD_TYPE (desc_type, 1)),
4359 fat_pntr_bounds_bitpos (desc_type),
4360 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4361
40bc484c 4362 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4363
4364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4365 return value_addr (descriptor);
4366 else
4367 return descriptor;
4368}
14f9c5c9 4369\f
3d9434b5
JB
4370 /* Symbol Cache Module */
4371
3d9434b5 4372/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4373 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4374 on the type of entity being printed, the cache can make it as much
4375 as an order of magnitude faster than without it.
4376
4377 The descriptive type DWARF extension has significantly reduced
4378 the need for this cache, at least when DWARF is being used. However,
4379 even in this case, some expensive name-based symbol searches are still
4380 sometimes necessary - to find an XVZ variable, mostly. */
4381
ee01b665 4382/* Initialize the contents of SYM_CACHE. */
3d9434b5 4383
ee01b665
JB
4384static void
4385ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4386{
4387 obstack_init (&sym_cache->cache_space);
4388 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4389}
3d9434b5 4390
ee01b665
JB
4391/* Free the memory used by SYM_CACHE. */
4392
4393static void
4394ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4395{
ee01b665
JB
4396 obstack_free (&sym_cache->cache_space, NULL);
4397 xfree (sym_cache);
4398}
3d9434b5 4399
ee01b665
JB
4400/* Return the symbol cache associated to the given program space PSPACE.
4401 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4402
ee01b665
JB
4403static struct ada_symbol_cache *
4404ada_get_symbol_cache (struct program_space *pspace)
4405{
4406 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4407
66c168ae 4408 if (pspace_data->sym_cache == NULL)
ee01b665 4409 {
66c168ae
JB
4410 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4411 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4412 }
4413
66c168ae 4414 return pspace_data->sym_cache;
ee01b665 4415}
3d9434b5
JB
4416
4417/* Clear all entries from the symbol cache. */
4418
4419static void
4420ada_clear_symbol_cache (void)
4421{
ee01b665
JB
4422 struct ada_symbol_cache *sym_cache
4423 = ada_get_symbol_cache (current_program_space);
4424
4425 obstack_free (&sym_cache->cache_space, NULL);
4426 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4427}
4428
4429/* Search our cache for an entry matching NAME and NAMESPACE.
4430 Return it if found, or NULL otherwise. */
4431
4432static struct cache_entry **
4433find_entry (const char *name, domain_enum namespace)
4434{
ee01b665
JB
4435 struct ada_symbol_cache *sym_cache
4436 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4437 int h = msymbol_hash (name) % HASH_SIZE;
4438 struct cache_entry **e;
4439
ee01b665 4440 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4441 {
4442 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4443 return e;
4444 }
4445 return NULL;
4446}
4447
4448/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4449 Return 1 if found, 0 otherwise.
4450
4451 If an entry was found and SYM is not NULL, set *SYM to the entry's
4452 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4453
96d887e8
PH
4454static int
4455lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4456 struct symbol **sym, const struct block **block)
96d887e8 4457{
3d9434b5
JB
4458 struct cache_entry **e = find_entry (name, namespace);
4459
4460 if (e == NULL)
4461 return 0;
4462 if (sym != NULL)
4463 *sym = (*e)->sym;
4464 if (block != NULL)
4465 *block = (*e)->block;
4466 return 1;
96d887e8
PH
4467}
4468
3d9434b5
JB
4469/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4470 in domain NAMESPACE, save this result in our symbol cache. */
4471
96d887e8
PH
4472static void
4473cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4474 const struct block *block)
96d887e8 4475{
ee01b665
JB
4476 struct ada_symbol_cache *sym_cache
4477 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4478 int h;
4479 char *copy;
4480 struct cache_entry *e;
4481
1994afbf
DE
4482 /* Symbols for builtin types don't have a block.
4483 For now don't cache such symbols. */
4484 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4485 return;
4486
3d9434b5
JB
4487 /* If the symbol is a local symbol, then do not cache it, as a search
4488 for that symbol depends on the context. To determine whether
4489 the symbol is local or not, we check the block where we found it
4490 against the global and static blocks of its associated symtab. */
4491 if (sym
08be3fe3 4492 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4493 GLOBAL_BLOCK) != block
08be3fe3 4494 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4495 STATIC_BLOCK) != block)
3d9434b5
JB
4496 return;
4497
4498 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4499 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4500 sizeof (*e));
4501 e->next = sym_cache->root[h];
4502 sym_cache->root[h] = e;
4503 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4504 strcpy (copy, name);
4505 e->sym = sym;
4506 e->namespace = namespace;
4507 e->block = block;
96d887e8 4508}
4c4b4cd2
PH
4509\f
4510 /* Symbol Lookup */
4511
c0431670
JB
4512/* Return nonzero if wild matching should be used when searching for
4513 all symbols matching LOOKUP_NAME.
4514
4515 LOOKUP_NAME is expected to be a symbol name after transformation
4516 for Ada lookups (see ada_name_for_lookup). */
4517
4518static int
4519should_use_wild_match (const char *lookup_name)
4520{
4521 return (strstr (lookup_name, "__") == NULL);
4522}
4523
4c4b4cd2
PH
4524/* Return the result of a standard (literal, C-like) lookup of NAME in
4525 given DOMAIN, visible from lexical block BLOCK. */
4526
4527static struct symbol *
4528standard_lookup (const char *name, const struct block *block,
4529 domain_enum domain)
4530{
acbd605d
MGD
4531 /* Initialize it just to avoid a GCC false warning. */
4532 struct symbol *sym = NULL;
4c4b4cd2 4533
2570f2b7 4534 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4535 return sym;
2570f2b7
UW
4536 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4537 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4538 return sym;
4539}
4540
4541
4542/* Non-zero iff there is at least one non-function/non-enumeral symbol
4543 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4544 since they contend in overloading in the same way. */
4545static int
4546is_nonfunction (struct ada_symbol_info syms[], int n)
4547{
4548 int i;
4549
4550 for (i = 0; i < n; i += 1)
4551 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4552 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4553 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4554 return 1;
4555
4556 return 0;
4557}
4558
4559/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4560 struct types. Otherwise, they may not. */
14f9c5c9
AS
4561
4562static int
d2e4a39e 4563equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4564{
d2e4a39e 4565 if (type0 == type1)
14f9c5c9 4566 return 1;
d2e4a39e 4567 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4568 || TYPE_CODE (type0) != TYPE_CODE (type1))
4569 return 0;
d2e4a39e 4570 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4571 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4572 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4573 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4574 return 1;
d2e4a39e 4575
14f9c5c9
AS
4576 return 0;
4577}
4578
4579/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4580 no more defined than that of SYM1. */
14f9c5c9
AS
4581
4582static int
d2e4a39e 4583lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4584{
4585 if (sym0 == sym1)
4586 return 1;
176620f1 4587 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4588 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4589 return 0;
4590
d2e4a39e 4591 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4592 {
4593 case LOC_UNDEF:
4594 return 1;
4595 case LOC_TYPEDEF:
4596 {
4c4b4cd2
PH
4597 struct type *type0 = SYMBOL_TYPE (sym0);
4598 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4599 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4600 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4601 int len0 = strlen (name0);
5b4ee69b 4602
4c4b4cd2
PH
4603 return
4604 TYPE_CODE (type0) == TYPE_CODE (type1)
4605 && (equiv_types (type0, type1)
4606 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4607 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4608 }
4609 case LOC_CONST:
4610 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4611 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4612 default:
4613 return 0;
14f9c5c9
AS
4614 }
4615}
4616
4c4b4cd2
PH
4617/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4618 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4619
4620static void
76a01679
JB
4621add_defn_to_vec (struct obstack *obstackp,
4622 struct symbol *sym,
f0c5f9b2 4623 const struct block *block)
14f9c5c9
AS
4624{
4625 int i;
4c4b4cd2 4626 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4627
529cad9c
PH
4628 /* Do not try to complete stub types, as the debugger is probably
4629 already scanning all symbols matching a certain name at the
4630 time when this function is called. Trying to replace the stub
4631 type by its associated full type will cause us to restart a scan
4632 which may lead to an infinite recursion. Instead, the client
4633 collecting the matching symbols will end up collecting several
4634 matches, with at least one of them complete. It can then filter
4635 out the stub ones if needed. */
4636
4c4b4cd2
PH
4637 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4638 {
4639 if (lesseq_defined_than (sym, prevDefns[i].sym))
4640 return;
4641 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4642 {
4643 prevDefns[i].sym = sym;
4644 prevDefns[i].block = block;
4c4b4cd2 4645 return;
76a01679 4646 }
4c4b4cd2
PH
4647 }
4648
4649 {
4650 struct ada_symbol_info info;
4651
4652 info.sym = sym;
4653 info.block = block;
4c4b4cd2
PH
4654 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4655 }
4656}
4657
4658/* Number of ada_symbol_info structures currently collected in
4659 current vector in *OBSTACKP. */
4660
76a01679
JB
4661static int
4662num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4663{
4664 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4665}
4666
4667/* Vector of ada_symbol_info structures currently collected in current
4668 vector in *OBSTACKP. If FINISH, close off the vector and return
4669 its final address. */
4670
76a01679 4671static struct ada_symbol_info *
4c4b4cd2
PH
4672defns_collected (struct obstack *obstackp, int finish)
4673{
4674 if (finish)
4675 return obstack_finish (obstackp);
4676 else
4677 return (struct ada_symbol_info *) obstack_base (obstackp);
4678}
4679
7c7b6655
TT
4680/* Return a bound minimal symbol matching NAME according to Ada
4681 decoding rules. Returns an invalid symbol if there is no such
4682 minimal symbol. Names prefixed with "standard__" are handled
4683 specially: "standard__" is first stripped off, and only static and
4684 global symbols are searched. */
4c4b4cd2 4685
7c7b6655 4686struct bound_minimal_symbol
96d887e8 4687ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4688{
7c7b6655 4689 struct bound_minimal_symbol result;
4c4b4cd2 4690 struct objfile *objfile;
96d887e8 4691 struct minimal_symbol *msymbol;
dc4024cd 4692 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4693
7c7b6655
TT
4694 memset (&result, 0, sizeof (result));
4695
c0431670
JB
4696 /* Special case: If the user specifies a symbol name inside package
4697 Standard, do a non-wild matching of the symbol name without
4698 the "standard__" prefix. This was primarily introduced in order
4699 to allow the user to specifically access the standard exceptions
4700 using, for instance, Standard.Constraint_Error when Constraint_Error
4701 is ambiguous (due to the user defining its own Constraint_Error
4702 entity inside its program). */
96d887e8 4703 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4704 name += sizeof ("standard__") - 1;
4c4b4cd2 4705
96d887e8
PH
4706 ALL_MSYMBOLS (objfile, msymbol)
4707 {
efd66ac6 4708 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4709 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4710 {
4711 result.minsym = msymbol;
4712 result.objfile = objfile;
4713 break;
4714 }
96d887e8 4715 }
4c4b4cd2 4716
7c7b6655 4717 return result;
96d887e8 4718}
4c4b4cd2 4719
96d887e8
PH
4720/* For all subprograms that statically enclose the subprogram of the
4721 selected frame, add symbols matching identifier NAME in DOMAIN
4722 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4723 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4724 with a wildcard prefix. */
4c4b4cd2 4725
96d887e8
PH
4726static void
4727add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4728 const char *name, domain_enum namespace,
48b78332 4729 int wild_match_p)
96d887e8 4730{
96d887e8 4731}
14f9c5c9 4732
96d887e8
PH
4733/* True if TYPE is definitely an artificial type supplied to a symbol
4734 for which no debugging information was given in the symbol file. */
14f9c5c9 4735
96d887e8
PH
4736static int
4737is_nondebugging_type (struct type *type)
4738{
0d5cff50 4739 const char *name = ada_type_name (type);
5b4ee69b 4740
96d887e8
PH
4741 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4742}
4c4b4cd2 4743
8f17729f
JB
4744/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4745 that are deemed "identical" for practical purposes.
4746
4747 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4748 types and that their number of enumerals is identical (in other
4749 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4750
4751static int
4752ada_identical_enum_types_p (struct type *type1, struct type *type2)
4753{
4754 int i;
4755
4756 /* The heuristic we use here is fairly conservative. We consider
4757 that 2 enumerate types are identical if they have the same
4758 number of enumerals and that all enumerals have the same
4759 underlying value and name. */
4760
4761 /* All enums in the type should have an identical underlying value. */
4762 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4763 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4764 return 0;
4765
4766 /* All enumerals should also have the same name (modulo any numerical
4767 suffix). */
4768 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4769 {
0d5cff50
DE
4770 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4771 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4772 int len_1 = strlen (name_1);
4773 int len_2 = strlen (name_2);
4774
4775 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4776 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4777 if (len_1 != len_2
4778 || strncmp (TYPE_FIELD_NAME (type1, i),
4779 TYPE_FIELD_NAME (type2, i),
4780 len_1) != 0)
4781 return 0;
4782 }
4783
4784 return 1;
4785}
4786
4787/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4788 that are deemed "identical" for practical purposes. Sometimes,
4789 enumerals are not strictly identical, but their types are so similar
4790 that they can be considered identical.
4791
4792 For instance, consider the following code:
4793
4794 type Color is (Black, Red, Green, Blue, White);
4795 type RGB_Color is new Color range Red .. Blue;
4796
4797 Type RGB_Color is a subrange of an implicit type which is a copy
4798 of type Color. If we call that implicit type RGB_ColorB ("B" is
4799 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4800 As a result, when an expression references any of the enumeral
4801 by name (Eg. "print green"), the expression is technically
4802 ambiguous and the user should be asked to disambiguate. But
4803 doing so would only hinder the user, since it wouldn't matter
4804 what choice he makes, the outcome would always be the same.
4805 So, for practical purposes, we consider them as the same. */
4806
4807static int
4808symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4809{
4810 int i;
4811
4812 /* Before performing a thorough comparison check of each type,
4813 we perform a series of inexpensive checks. We expect that these
4814 checks will quickly fail in the vast majority of cases, and thus
4815 help prevent the unnecessary use of a more expensive comparison.
4816 Said comparison also expects us to make some of these checks
4817 (see ada_identical_enum_types_p). */
4818
4819 /* Quick check: All symbols should have an enum type. */
4820 for (i = 0; i < nsyms; i++)
4821 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4822 return 0;
4823
4824 /* Quick check: They should all have the same value. */
4825 for (i = 1; i < nsyms; i++)
4826 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4827 return 0;
4828
4829 /* Quick check: They should all have the same number of enumerals. */
4830 for (i = 1; i < nsyms; i++)
4831 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4832 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4833 return 0;
4834
4835 /* All the sanity checks passed, so we might have a set of
4836 identical enumeration types. Perform a more complete
4837 comparison of the type of each symbol. */
4838 for (i = 1; i < nsyms; i++)
4839 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4840 SYMBOL_TYPE (syms[0].sym)))
4841 return 0;
4842
4843 return 1;
4844}
4845
96d887e8
PH
4846/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4847 duplicate other symbols in the list (The only case I know of where
4848 this happens is when object files containing stabs-in-ecoff are
4849 linked with files containing ordinary ecoff debugging symbols (or no
4850 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4851 Returns the number of items in the modified list. */
4c4b4cd2 4852
96d887e8
PH
4853static int
4854remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4855{
4856 int i, j;
4c4b4cd2 4857
8f17729f
JB
4858 /* We should never be called with less than 2 symbols, as there
4859 cannot be any extra symbol in that case. But it's easy to
4860 handle, since we have nothing to do in that case. */
4861 if (nsyms < 2)
4862 return nsyms;
4863
96d887e8
PH
4864 i = 0;
4865 while (i < nsyms)
4866 {
a35ddb44 4867 int remove_p = 0;
339c13b6
JB
4868
4869 /* If two symbols have the same name and one of them is a stub type,
4870 the get rid of the stub. */
4871
4872 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4873 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4874 {
4875 for (j = 0; j < nsyms; j++)
4876 {
4877 if (j != i
4878 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4879 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4880 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4881 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4882 remove_p = 1;
339c13b6
JB
4883 }
4884 }
4885
4886 /* Two symbols with the same name, same class and same address
4887 should be identical. */
4888
4889 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4890 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4891 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4892 {
4893 for (j = 0; j < nsyms; j += 1)
4894 {
4895 if (i != j
4896 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4897 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4898 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4899 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4900 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4901 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4902 remove_p = 1;
4c4b4cd2 4903 }
4c4b4cd2 4904 }
339c13b6 4905
a35ddb44 4906 if (remove_p)
339c13b6
JB
4907 {
4908 for (j = i + 1; j < nsyms; j += 1)
4909 syms[j - 1] = syms[j];
4910 nsyms -= 1;
4911 }
4912
96d887e8 4913 i += 1;
14f9c5c9 4914 }
8f17729f
JB
4915
4916 /* If all the remaining symbols are identical enumerals, then
4917 just keep the first one and discard the rest.
4918
4919 Unlike what we did previously, we do not discard any entry
4920 unless they are ALL identical. This is because the symbol
4921 comparison is not a strict comparison, but rather a practical
4922 comparison. If all symbols are considered identical, then
4923 we can just go ahead and use the first one and discard the rest.
4924 But if we cannot reduce the list to a single element, we have
4925 to ask the user to disambiguate anyways. And if we have to
4926 present a multiple-choice menu, it's less confusing if the list
4927 isn't missing some choices that were identical and yet distinct. */
4928 if (symbols_are_identical_enums (syms, nsyms))
4929 nsyms = 1;
4930
96d887e8 4931 return nsyms;
14f9c5c9
AS
4932}
4933
96d887e8
PH
4934/* Given a type that corresponds to a renaming entity, use the type name
4935 to extract the scope (package name or function name, fully qualified,
4936 and following the GNAT encoding convention) where this renaming has been
4937 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4938
96d887e8
PH
4939static char *
4940xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4941{
96d887e8 4942 /* The renaming types adhere to the following convention:
0963b4bd 4943 <scope>__<rename>___<XR extension>.
96d887e8
PH
4944 So, to extract the scope, we search for the "___XR" extension,
4945 and then backtrack until we find the first "__". */
76a01679 4946
96d887e8
PH
4947 const char *name = type_name_no_tag (renaming_type);
4948 char *suffix = strstr (name, "___XR");
4949 char *last;
4950 int scope_len;
4951 char *scope;
14f9c5c9 4952
96d887e8
PH
4953 /* Now, backtrack a bit until we find the first "__". Start looking
4954 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4955
96d887e8
PH
4956 for (last = suffix - 3; last > name; last--)
4957 if (last[0] == '_' && last[1] == '_')
4958 break;
76a01679 4959
96d887e8 4960 /* Make a copy of scope and return it. */
14f9c5c9 4961
96d887e8
PH
4962 scope_len = last - name;
4963 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4964
96d887e8
PH
4965 strncpy (scope, name, scope_len);
4966 scope[scope_len] = '\0';
4c4b4cd2 4967
96d887e8 4968 return scope;
4c4b4cd2
PH
4969}
4970
96d887e8 4971/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4972
96d887e8
PH
4973static int
4974is_package_name (const char *name)
4c4b4cd2 4975{
96d887e8
PH
4976 /* Here, We take advantage of the fact that no symbols are generated
4977 for packages, while symbols are generated for each function.
4978 So the condition for NAME represent a package becomes equivalent
4979 to NAME not existing in our list of symbols. There is only one
4980 small complication with library-level functions (see below). */
4c4b4cd2 4981
96d887e8 4982 char *fun_name;
76a01679 4983
96d887e8
PH
4984 /* If it is a function that has not been defined at library level,
4985 then we should be able to look it up in the symbols. */
4986 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4987 return 0;
14f9c5c9 4988
96d887e8
PH
4989 /* Library-level function names start with "_ada_". See if function
4990 "_ada_" followed by NAME can be found. */
14f9c5c9 4991
96d887e8 4992 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4993 functions names cannot contain "__" in them. */
96d887e8
PH
4994 if (strstr (name, "__") != NULL)
4995 return 0;
4c4b4cd2 4996
b435e160 4997 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4998
96d887e8
PH
4999 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5000}
14f9c5c9 5001
96d887e8 5002/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5003 not visible from FUNCTION_NAME. */
14f9c5c9 5004
96d887e8 5005static int
0d5cff50 5006old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5007{
aeb5907d 5008 char *scope;
1509e573 5009 struct cleanup *old_chain;
aeb5907d
JB
5010
5011 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5012 return 0;
5013
5014 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5015 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5016
96d887e8
PH
5017 /* If the rename has been defined in a package, then it is visible. */
5018 if (is_package_name (scope))
1509e573
JB
5019 {
5020 do_cleanups (old_chain);
5021 return 0;
5022 }
14f9c5c9 5023
96d887e8
PH
5024 /* Check that the rename is in the current function scope by checking
5025 that its name starts with SCOPE. */
76a01679 5026
96d887e8
PH
5027 /* If the function name starts with "_ada_", it means that it is
5028 a library-level function. Strip this prefix before doing the
5029 comparison, as the encoding for the renaming does not contain
5030 this prefix. */
5031 if (strncmp (function_name, "_ada_", 5) == 0)
5032 function_name += 5;
f26caa11 5033
1509e573
JB
5034 {
5035 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5036
5037 do_cleanups (old_chain);
5038 return is_invisible;
5039 }
f26caa11
PH
5040}
5041
aeb5907d
JB
5042/* Remove entries from SYMS that corresponds to a renaming entity that
5043 is not visible from the function associated with CURRENT_BLOCK or
5044 that is superfluous due to the presence of more specific renaming
5045 information. Places surviving symbols in the initial entries of
5046 SYMS and returns the number of surviving symbols.
96d887e8
PH
5047
5048 Rationale:
aeb5907d
JB
5049 First, in cases where an object renaming is implemented as a
5050 reference variable, GNAT may produce both the actual reference
5051 variable and the renaming encoding. In this case, we discard the
5052 latter.
5053
5054 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5055 entity. Unfortunately, STABS currently does not support the definition
5056 of types that are local to a given lexical block, so all renamings types
5057 are emitted at library level. As a consequence, if an application
5058 contains two renaming entities using the same name, and a user tries to
5059 print the value of one of these entities, the result of the ada symbol
5060 lookup will also contain the wrong renaming type.
f26caa11 5061
96d887e8
PH
5062 This function partially covers for this limitation by attempting to
5063 remove from the SYMS list renaming symbols that should be visible
5064 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5065 method with the current information available. The implementation
5066 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5067
5068 - When the user tries to print a rename in a function while there
5069 is another rename entity defined in a package: Normally, the
5070 rename in the function has precedence over the rename in the
5071 package, so the latter should be removed from the list. This is
5072 currently not the case.
5073
5074 - This function will incorrectly remove valid renames if
5075 the CURRENT_BLOCK corresponds to a function which symbol name
5076 has been changed by an "Export" pragma. As a consequence,
5077 the user will be unable to print such rename entities. */
4c4b4cd2 5078
14f9c5c9 5079static int
aeb5907d
JB
5080remove_irrelevant_renamings (struct ada_symbol_info *syms,
5081 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5082{
5083 struct symbol *current_function;
0d5cff50 5084 const char *current_function_name;
4c4b4cd2 5085 int i;
aeb5907d
JB
5086 int is_new_style_renaming;
5087
5088 /* If there is both a renaming foo___XR... encoded as a variable and
5089 a simple variable foo in the same block, discard the latter.
0963b4bd 5090 First, zero out such symbols, then compress. */
aeb5907d
JB
5091 is_new_style_renaming = 0;
5092 for (i = 0; i < nsyms; i += 1)
5093 {
5094 struct symbol *sym = syms[i].sym;
270140bd 5095 const struct block *block = syms[i].block;
aeb5907d
JB
5096 const char *name;
5097 const char *suffix;
5098
5099 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5100 continue;
5101 name = SYMBOL_LINKAGE_NAME (sym);
5102 suffix = strstr (name, "___XR");
5103
5104 if (suffix != NULL)
5105 {
5106 int name_len = suffix - name;
5107 int j;
5b4ee69b 5108
aeb5907d
JB
5109 is_new_style_renaming = 1;
5110 for (j = 0; j < nsyms; j += 1)
5111 if (i != j && syms[j].sym != NULL
5112 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5113 name_len) == 0
5114 && block == syms[j].block)
5115 syms[j].sym = NULL;
5116 }
5117 }
5118 if (is_new_style_renaming)
5119 {
5120 int j, k;
5121
5122 for (j = k = 0; j < nsyms; j += 1)
5123 if (syms[j].sym != NULL)
5124 {
5125 syms[k] = syms[j];
5126 k += 1;
5127 }
5128 return k;
5129 }
4c4b4cd2
PH
5130
5131 /* Extract the function name associated to CURRENT_BLOCK.
5132 Abort if unable to do so. */
76a01679 5133
4c4b4cd2
PH
5134 if (current_block == NULL)
5135 return nsyms;
76a01679 5136
7f0df278 5137 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5138 if (current_function == NULL)
5139 return nsyms;
5140
5141 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5142 if (current_function_name == NULL)
5143 return nsyms;
5144
5145 /* Check each of the symbols, and remove it from the list if it is
5146 a type corresponding to a renaming that is out of the scope of
5147 the current block. */
5148
5149 i = 0;
5150 while (i < nsyms)
5151 {
aeb5907d
JB
5152 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5153 == ADA_OBJECT_RENAMING
5154 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5155 {
5156 int j;
5b4ee69b 5157
aeb5907d 5158 for (j = i + 1; j < nsyms; j += 1)
76a01679 5159 syms[j - 1] = syms[j];
4c4b4cd2
PH
5160 nsyms -= 1;
5161 }
5162 else
5163 i += 1;
5164 }
5165
5166 return nsyms;
5167}
5168
339c13b6
JB
5169/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5170 whose name and domain match NAME and DOMAIN respectively.
5171 If no match was found, then extend the search to "enclosing"
5172 routines (in other words, if we're inside a nested function,
5173 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5174 If WILD_MATCH_P is nonzero, perform the naming matching in
5175 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5176
5177 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5178
5179static void
5180ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5181 const struct block *block, domain_enum domain,
d0a8ab18 5182 int wild_match_p)
339c13b6
JB
5183{
5184 int block_depth = 0;
5185
5186 while (block != NULL)
5187 {
5188 block_depth += 1;
d0a8ab18
JB
5189 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5190 wild_match_p);
339c13b6
JB
5191
5192 /* If we found a non-function match, assume that's the one. */
5193 if (is_nonfunction (defns_collected (obstackp, 0),
5194 num_defns_collected (obstackp)))
5195 return;
5196
5197 block = BLOCK_SUPERBLOCK (block);
5198 }
5199
5200 /* If no luck so far, try to find NAME as a local symbol in some lexically
5201 enclosing subprogram. */
5202 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5203 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5204}
5205
ccefe4c4 5206/* An object of this type is used as the user_data argument when
40658b94 5207 calling the map_matching_symbols method. */
ccefe4c4 5208
40658b94 5209struct match_data
ccefe4c4 5210{
40658b94 5211 struct objfile *objfile;
ccefe4c4 5212 struct obstack *obstackp;
40658b94
PH
5213 struct symbol *arg_sym;
5214 int found_sym;
ccefe4c4
TT
5215};
5216
40658b94
PH
5217/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5218 to a list of symbols. DATA0 is a pointer to a struct match_data *
5219 containing the obstack that collects the symbol list, the file that SYM
5220 must come from, a flag indicating whether a non-argument symbol has
5221 been found in the current block, and the last argument symbol
5222 passed in SYM within the current block (if any). When SYM is null,
5223 marking the end of a block, the argument symbol is added if no
5224 other has been found. */
ccefe4c4 5225
40658b94
PH
5226static int
5227aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5228{
40658b94
PH
5229 struct match_data *data = (struct match_data *) data0;
5230
5231 if (sym == NULL)
5232 {
5233 if (!data->found_sym && data->arg_sym != NULL)
5234 add_defn_to_vec (data->obstackp,
5235 fixup_symbol_section (data->arg_sym, data->objfile),
5236 block);
5237 data->found_sym = 0;
5238 data->arg_sym = NULL;
5239 }
5240 else
5241 {
5242 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5243 return 0;
5244 else if (SYMBOL_IS_ARGUMENT (sym))
5245 data->arg_sym = sym;
5246 else
5247 {
5248 data->found_sym = 1;
5249 add_defn_to_vec (data->obstackp,
5250 fixup_symbol_section (sym, data->objfile),
5251 block);
5252 }
5253 }
5254 return 0;
5255}
5256
db230ce3
JB
5257/* Implements compare_names, but only applying the comparision using
5258 the given CASING. */
5b4ee69b 5259
40658b94 5260static int
db230ce3
JB
5261compare_names_with_case (const char *string1, const char *string2,
5262 enum case_sensitivity casing)
40658b94
PH
5263{
5264 while (*string1 != '\0' && *string2 != '\0')
5265 {
db230ce3
JB
5266 char c1, c2;
5267
40658b94
PH
5268 if (isspace (*string1) || isspace (*string2))
5269 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5270
5271 if (casing == case_sensitive_off)
5272 {
5273 c1 = tolower (*string1);
5274 c2 = tolower (*string2);
5275 }
5276 else
5277 {
5278 c1 = *string1;
5279 c2 = *string2;
5280 }
5281 if (c1 != c2)
40658b94 5282 break;
db230ce3 5283
40658b94
PH
5284 string1 += 1;
5285 string2 += 1;
5286 }
db230ce3 5287
40658b94
PH
5288 switch (*string1)
5289 {
5290 case '(':
5291 return strcmp_iw_ordered (string1, string2);
5292 case '_':
5293 if (*string2 == '\0')
5294 {
052874e8 5295 if (is_name_suffix (string1))
40658b94
PH
5296 return 0;
5297 else
1a1d5513 5298 return 1;
40658b94 5299 }
dbb8534f 5300 /* FALLTHROUGH */
40658b94
PH
5301 default:
5302 if (*string2 == '(')
5303 return strcmp_iw_ordered (string1, string2);
5304 else
db230ce3
JB
5305 {
5306 if (casing == case_sensitive_off)
5307 return tolower (*string1) - tolower (*string2);
5308 else
5309 return *string1 - *string2;
5310 }
40658b94 5311 }
ccefe4c4
TT
5312}
5313
db230ce3
JB
5314/* Compare STRING1 to STRING2, with results as for strcmp.
5315 Compatible with strcmp_iw_ordered in that...
5316
5317 strcmp_iw_ordered (STRING1, STRING2) <= 0
5318
5319 ... implies...
5320
5321 compare_names (STRING1, STRING2) <= 0
5322
5323 (they may differ as to what symbols compare equal). */
5324
5325static int
5326compare_names (const char *string1, const char *string2)
5327{
5328 int result;
5329
5330 /* Similar to what strcmp_iw_ordered does, we need to perform
5331 a case-insensitive comparison first, and only resort to
5332 a second, case-sensitive, comparison if the first one was
5333 not sufficient to differentiate the two strings. */
5334
5335 result = compare_names_with_case (string1, string2, case_sensitive_off);
5336 if (result == 0)
5337 result = compare_names_with_case (string1, string2, case_sensitive_on);
5338
5339 return result;
5340}
5341
339c13b6
JB
5342/* Add to OBSTACKP all non-local symbols whose name and domain match
5343 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5344 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5345
5346static void
40658b94
PH
5347add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5348 domain_enum domain, int global,
5349 int is_wild_match)
339c13b6
JB
5350{
5351 struct objfile *objfile;
40658b94 5352 struct match_data data;
339c13b6 5353
6475f2fe 5354 memset (&data, 0, sizeof data);
ccefe4c4 5355 data.obstackp = obstackp;
339c13b6 5356
ccefe4c4 5357 ALL_OBJFILES (objfile)
40658b94
PH
5358 {
5359 data.objfile = objfile;
5360
5361 if (is_wild_match)
4186eb54
KS
5362 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5363 aux_add_nonlocal_symbols, &data,
5364 wild_match, NULL);
40658b94 5365 else
4186eb54
KS
5366 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5367 aux_add_nonlocal_symbols, &data,
5368 full_match, compare_names);
40658b94
PH
5369 }
5370
5371 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5372 {
5373 ALL_OBJFILES (objfile)
5374 {
5375 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5376 strcpy (name1, "_ada_");
5377 strcpy (name1 + sizeof ("_ada_") - 1, name);
5378 data.objfile = objfile;
ade7ed9e
DE
5379 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5380 global,
0963b4bd
MS
5381 aux_add_nonlocal_symbols,
5382 &data,
40658b94
PH
5383 full_match, compare_names);
5384 }
5385 }
339c13b6
JB
5386}
5387
4eeaa230
DE
5388/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5389 non-zero, enclosing scope and in global scopes, returning the number of
5390 matches.
9f88c959 5391 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5392 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5393 any) in which they were found. This vector is transient---good only to
5394 the next call of ada_lookup_symbol_list.
5395
5396 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5397 symbol match within the nest of blocks whose innermost member is BLOCK0,
5398 is the one match returned (no other matches in that or
d9680e73 5399 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5400 surrounding BLOCK0, then these alone are returned.
5401
9f88c959 5402 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5403 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5404
4eeaa230
DE
5405static int
5406ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5407 domain_enum namespace,
5408 struct ada_symbol_info **results,
5409 int full_search)
14f9c5c9
AS
5410{
5411 struct symbol *sym;
f0c5f9b2 5412 const struct block *block;
4c4b4cd2 5413 const char *name;
82ccd55e 5414 const int wild_match_p = should_use_wild_match (name0);
b1eedac9 5415 int syms_from_global_search = 0;
4c4b4cd2 5416 int ndefns;
14f9c5c9 5417
4c4b4cd2
PH
5418 obstack_free (&symbol_list_obstack, NULL);
5419 obstack_init (&symbol_list_obstack);
14f9c5c9 5420
14f9c5c9
AS
5421 /* Search specified block and its superiors. */
5422
4c4b4cd2 5423 name = name0;
f0c5f9b2 5424 block = block0;
339c13b6
JB
5425
5426 /* Special case: If the user specifies a symbol name inside package
5427 Standard, do a non-wild matching of the symbol name without
5428 the "standard__" prefix. This was primarily introduced in order
5429 to allow the user to specifically access the standard exceptions
5430 using, for instance, Standard.Constraint_Error when Constraint_Error
5431 is ambiguous (due to the user defining its own Constraint_Error
5432 entity inside its program). */
4c4b4cd2
PH
5433 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5434 {
4c4b4cd2
PH
5435 block = NULL;
5436 name = name0 + sizeof ("standard__") - 1;
5437 }
5438
339c13b6 5439 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5440
4eeaa230
DE
5441 if (block != NULL)
5442 {
5443 if (full_search)
5444 {
5445 ada_add_local_symbols (&symbol_list_obstack, name, block,
5446 namespace, wild_match_p);
5447 }
5448 else
5449 {
5450 /* In the !full_search case we're are being called by
5451 ada_iterate_over_symbols, and we don't want to search
5452 superblocks. */
5453 ada_add_block_symbols (&symbol_list_obstack, block, name,
5454 namespace, NULL, wild_match_p);
5455 }
5456 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5457 goto done;
5458 }
d2e4a39e 5459
339c13b6
JB
5460 /* No non-global symbols found. Check our cache to see if we have
5461 already performed this search before. If we have, then return
5462 the same result. */
5463
2570f2b7 5464 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5465 {
5466 if (sym != NULL)
2570f2b7 5467 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5468 goto done;
5469 }
14f9c5c9 5470
b1eedac9
JB
5471 syms_from_global_search = 1;
5472
339c13b6
JB
5473 /* Search symbols from all global blocks. */
5474
40658b94 5475 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5476 wild_match_p);
d2e4a39e 5477
4c4b4cd2 5478 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5479 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5480
4c4b4cd2 5481 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5482 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5483 wild_match_p);
14f9c5c9 5484
4c4b4cd2
PH
5485done:
5486 ndefns = num_defns_collected (&symbol_list_obstack);
5487 *results = defns_collected (&symbol_list_obstack, 1);
5488
5489 ndefns = remove_extra_symbols (*results, ndefns);
5490
b1eedac9 5491 if (ndefns == 0 && full_search && syms_from_global_search)
2570f2b7 5492 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5493
b1eedac9 5494 if (ndefns == 1 && full_search && syms_from_global_search)
2570f2b7 5495 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5496
aeb5907d 5497 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5498
14f9c5c9
AS
5499 return ndefns;
5500}
5501
4eeaa230
DE
5502/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5503 in global scopes, returning the number of matches, and setting *RESULTS
5504 to a vector of (SYM,BLOCK) tuples.
5505 See ada_lookup_symbol_list_worker for further details. */
5506
5507int
5508ada_lookup_symbol_list (const char *name0, const struct block *block0,
5509 domain_enum domain, struct ada_symbol_info **results)
5510{
5511 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5512}
5513
5514/* Implementation of the la_iterate_over_symbols method. */
5515
5516static void
5517ada_iterate_over_symbols (const struct block *block,
5518 const char *name, domain_enum domain,
5519 symbol_found_callback_ftype *callback,
5520 void *data)
5521{
5522 int ndefs, i;
5523 struct ada_symbol_info *results;
5524
5525 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5526 for (i = 0; i < ndefs; ++i)
5527 {
5528 if (! (*callback) (results[i].sym, data))
5529 break;
5530 }
5531}
5532
f8eba3c6
TT
5533/* If NAME is the name of an entity, return a string that should
5534 be used to look that entity up in Ada units. This string should
5535 be deallocated after use using xfree.
5536
5537 NAME can have any form that the "break" or "print" commands might
5538 recognize. In other words, it does not have to be the "natural"
5539 name, or the "encoded" name. */
5540
5541char *
5542ada_name_for_lookup (const char *name)
5543{
5544 char *canon;
5545 int nlen = strlen (name);
5546
5547 if (name[0] == '<' && name[nlen - 1] == '>')
5548 {
5549 canon = xmalloc (nlen - 1);
5550 memcpy (canon, name + 1, nlen - 2);
5551 canon[nlen - 2] = '\0';
5552 }
5553 else
5554 canon = xstrdup (ada_encode (ada_fold_name (name)));
5555 return canon;
5556}
5557
4e5c77fe
JB
5558/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5559 to 1, but choosing the first symbol found if there are multiple
5560 choices.
5561
5e2336be
JB
5562 The result is stored in *INFO, which must be non-NULL.
5563 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5564
5565void
5566ada_lookup_encoded_symbol (const char *name, const struct block *block,
5567 domain_enum namespace,
5e2336be 5568 struct ada_symbol_info *info)
14f9c5c9 5569{
4c4b4cd2 5570 struct ada_symbol_info *candidates;
14f9c5c9
AS
5571 int n_candidates;
5572
5e2336be
JB
5573 gdb_assert (info != NULL);
5574 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5575
4eeaa230 5576 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5577 if (n_candidates == 0)
4e5c77fe 5578 return;
4c4b4cd2 5579
5e2336be
JB
5580 *info = candidates[0];
5581 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5582}
aeb5907d
JB
5583
5584/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5585 scope and in global scopes, or NULL if none. NAME is folded and
5586 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5587 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5588 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5589
aeb5907d
JB
5590struct symbol *
5591ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5592 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5593{
5e2336be 5594 struct ada_symbol_info info;
4e5c77fe 5595
aeb5907d
JB
5596 if (is_a_field_of_this != NULL)
5597 *is_a_field_of_this = 0;
5598
4e5c77fe 5599 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5600 block0, namespace, &info);
5601 return info.sym;
4c4b4cd2 5602}
14f9c5c9 5603
4c4b4cd2 5604static struct symbol *
f606139a
DE
5605ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5606 const char *name,
76a01679 5607 const struct block *block,
21b556f4 5608 const domain_enum domain)
4c4b4cd2 5609{
04dccad0
JB
5610 struct symbol *sym;
5611
5612 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5613 if (sym != NULL)
5614 return sym;
5615
5616 /* If we haven't found a match at this point, try the primitive
5617 types. In other languages, this search is performed before
5618 searching for global symbols in order to short-circuit that
5619 global-symbol search if it happens that the name corresponds
5620 to a primitive type. But we cannot do the same in Ada, because
5621 it is perfectly legitimate for a program to declare a type which
5622 has the same name as a standard type. If looking up a type in
5623 that situation, we have traditionally ignored the primitive type
5624 in favor of user-defined types. This is why, unlike most other
5625 languages, we search the primitive types this late and only after
5626 having searched the global symbols without success. */
5627
5628 if (domain == VAR_DOMAIN)
5629 {
5630 struct gdbarch *gdbarch;
5631
5632 if (block == NULL)
5633 gdbarch = target_gdbarch ();
5634 else
5635 gdbarch = block_gdbarch (block);
5636 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5637 if (sym != NULL)
5638 return sym;
5639 }
5640
5641 return NULL;
14f9c5c9
AS
5642}
5643
5644
4c4b4cd2
PH
5645/* True iff STR is a possible encoded suffix of a normal Ada name
5646 that is to be ignored for matching purposes. Suffixes of parallel
5647 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5648 are given by any of the regular expressions:
4c4b4cd2 5649
babe1480
JB
5650 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5651 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5652 TKB [subprogram suffix for task bodies]
babe1480 5653 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5654 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5655
5656 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5657 match is performed. This sequence is used to differentiate homonyms,
5658 is an optional part of a valid name suffix. */
4c4b4cd2 5659
14f9c5c9 5660static int
d2e4a39e 5661is_name_suffix (const char *str)
14f9c5c9
AS
5662{
5663 int k;
4c4b4cd2
PH
5664 const char *matching;
5665 const int len = strlen (str);
5666
babe1480
JB
5667 /* Skip optional leading __[0-9]+. */
5668
4c4b4cd2
PH
5669 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5670 {
babe1480
JB
5671 str += 3;
5672 while (isdigit (str[0]))
5673 str += 1;
4c4b4cd2 5674 }
babe1480
JB
5675
5676 /* [.$][0-9]+ */
4c4b4cd2 5677
babe1480 5678 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5679 {
babe1480 5680 matching = str + 1;
4c4b4cd2
PH
5681 while (isdigit (matching[0]))
5682 matching += 1;
5683 if (matching[0] == '\0')
5684 return 1;
5685 }
5686
5687 /* ___[0-9]+ */
babe1480 5688
4c4b4cd2
PH
5689 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5690 {
5691 matching = str + 3;
5692 while (isdigit (matching[0]))
5693 matching += 1;
5694 if (matching[0] == '\0')
5695 return 1;
5696 }
5697
9ac7f98e
JB
5698 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5699
5700 if (strcmp (str, "TKB") == 0)
5701 return 1;
5702
529cad9c
PH
5703#if 0
5704 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5705 with a N at the end. Unfortunately, the compiler uses the same
5706 convention for other internal types it creates. So treating
529cad9c 5707 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5708 some regressions. For instance, consider the case of an enumerated
5709 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5710 name ends with N.
5711 Having a single character like this as a suffix carrying some
0963b4bd 5712 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5713 to be something like "_N" instead. In the meantime, do not do
5714 the following check. */
5715 /* Protected Object Subprograms */
5716 if (len == 1 && str [0] == 'N')
5717 return 1;
5718#endif
5719
5720 /* _E[0-9]+[bs]$ */
5721 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5722 {
5723 matching = str + 3;
5724 while (isdigit (matching[0]))
5725 matching += 1;
5726 if ((matching[0] == 'b' || matching[0] == 's')
5727 && matching [1] == '\0')
5728 return 1;
5729 }
5730
4c4b4cd2
PH
5731 /* ??? We should not modify STR directly, as we are doing below. This
5732 is fine in this case, but may become problematic later if we find
5733 that this alternative did not work, and want to try matching
5734 another one from the begining of STR. Since we modified it, we
5735 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5736 if (str[0] == 'X')
5737 {
5738 str += 1;
d2e4a39e 5739 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5740 {
5741 if (str[0] != 'n' && str[0] != 'b')
5742 return 0;
5743 str += 1;
5744 }
14f9c5c9 5745 }
babe1480 5746
14f9c5c9
AS
5747 if (str[0] == '\000')
5748 return 1;
babe1480 5749
d2e4a39e 5750 if (str[0] == '_')
14f9c5c9
AS
5751 {
5752 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5753 return 0;
d2e4a39e 5754 if (str[2] == '_')
4c4b4cd2 5755 {
61ee279c
PH
5756 if (strcmp (str + 3, "JM") == 0)
5757 return 1;
5758 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5759 the LJM suffix in favor of the JM one. But we will
5760 still accept LJM as a valid suffix for a reasonable
5761 amount of time, just to allow ourselves to debug programs
5762 compiled using an older version of GNAT. */
4c4b4cd2
PH
5763 if (strcmp (str + 3, "LJM") == 0)
5764 return 1;
5765 if (str[3] != 'X')
5766 return 0;
1265e4aa
JB
5767 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5768 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5769 return 1;
5770 if (str[4] == 'R' && str[5] != 'T')
5771 return 1;
5772 return 0;
5773 }
5774 if (!isdigit (str[2]))
5775 return 0;
5776 for (k = 3; str[k] != '\0'; k += 1)
5777 if (!isdigit (str[k]) && str[k] != '_')
5778 return 0;
14f9c5c9
AS
5779 return 1;
5780 }
4c4b4cd2 5781 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5782 {
4c4b4cd2
PH
5783 for (k = 2; str[k] != '\0'; k += 1)
5784 if (!isdigit (str[k]) && str[k] != '_')
5785 return 0;
14f9c5c9
AS
5786 return 1;
5787 }
5788 return 0;
5789}
d2e4a39e 5790
aeb5907d
JB
5791/* Return non-zero if the string starting at NAME and ending before
5792 NAME_END contains no capital letters. */
529cad9c
PH
5793
5794static int
5795is_valid_name_for_wild_match (const char *name0)
5796{
5797 const char *decoded_name = ada_decode (name0);
5798 int i;
5799
5823c3ef
JB
5800 /* If the decoded name starts with an angle bracket, it means that
5801 NAME0 does not follow the GNAT encoding format. It should then
5802 not be allowed as a possible wild match. */
5803 if (decoded_name[0] == '<')
5804 return 0;
5805
529cad9c
PH
5806 for (i=0; decoded_name[i] != '\0'; i++)
5807 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5808 return 0;
5809
5810 return 1;
5811}
5812
73589123
PH
5813/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5814 that could start a simple name. Assumes that *NAMEP points into
5815 the string beginning at NAME0. */
4c4b4cd2 5816
14f9c5c9 5817static int
73589123 5818advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5819{
73589123 5820 const char *name = *namep;
5b4ee69b 5821
5823c3ef 5822 while (1)
14f9c5c9 5823 {
aa27d0b3 5824 int t0, t1;
73589123
PH
5825
5826 t0 = *name;
5827 if (t0 == '_')
5828 {
5829 t1 = name[1];
5830 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5831 {
5832 name += 1;
5833 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5834 break;
5835 else
5836 name += 1;
5837 }
aa27d0b3
JB
5838 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5839 || name[2] == target0))
73589123
PH
5840 {
5841 name += 2;
5842 break;
5843 }
5844 else
5845 return 0;
5846 }
5847 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5848 name += 1;
5849 else
5823c3ef 5850 return 0;
73589123
PH
5851 }
5852
5853 *namep = name;
5854 return 1;
5855}
5856
5857/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5858 informational suffixes of NAME (i.e., for which is_name_suffix is
5859 true). Assumes that PATN is a lower-cased Ada simple name. */
5860
5861static int
5862wild_match (const char *name, const char *patn)
5863{
22e048c9 5864 const char *p;
73589123
PH
5865 const char *name0 = name;
5866
5867 while (1)
5868 {
5869 const char *match = name;
5870
5871 if (*name == *patn)
5872 {
5873 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5874 if (*p != *name)
5875 break;
5876 if (*p == '\0' && is_name_suffix (name))
5877 return match != name0 && !is_valid_name_for_wild_match (name0);
5878
5879 if (name[-1] == '_')
5880 name -= 1;
5881 }
5882 if (!advance_wild_match (&name, name0, *patn))
5883 return 1;
96d887e8 5884 }
96d887e8
PH
5885}
5886
40658b94
PH
5887/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5888 informational suffix. */
5889
c4d840bd
PH
5890static int
5891full_match (const char *sym_name, const char *search_name)
5892{
40658b94 5893 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5894}
5895
5896
96d887e8
PH
5897/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5898 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5899 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5900 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5901
5902static void
5903ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5904 const struct block *block, const char *name,
96d887e8 5905 domain_enum domain, struct objfile *objfile,
2570f2b7 5906 int wild)
96d887e8 5907{
8157b174 5908 struct block_iterator iter;
96d887e8
PH
5909 int name_len = strlen (name);
5910 /* A matching argument symbol, if any. */
5911 struct symbol *arg_sym;
5912 /* Set true when we find a matching non-argument symbol. */
5913 int found_sym;
5914 struct symbol *sym;
5915
5916 arg_sym = NULL;
5917 found_sym = 0;
5918 if (wild)
5919 {
8157b174
TT
5920 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5921 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5922 {
4186eb54
KS
5923 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5924 SYMBOL_DOMAIN (sym), domain)
73589123 5925 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5926 {
2a2d4dc3
AS
5927 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5928 continue;
5929 else if (SYMBOL_IS_ARGUMENT (sym))
5930 arg_sym = sym;
5931 else
5932 {
76a01679
JB
5933 found_sym = 1;
5934 add_defn_to_vec (obstackp,
5935 fixup_symbol_section (sym, objfile),
2570f2b7 5936 block);
76a01679
JB
5937 }
5938 }
5939 }
96d887e8
PH
5940 }
5941 else
5942 {
8157b174
TT
5943 for (sym = block_iter_match_first (block, name, full_match, &iter);
5944 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5945 {
4186eb54
KS
5946 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5947 SYMBOL_DOMAIN (sym), domain))
76a01679 5948 {
c4d840bd
PH
5949 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5950 {
5951 if (SYMBOL_IS_ARGUMENT (sym))
5952 arg_sym = sym;
5953 else
2a2d4dc3 5954 {
c4d840bd
PH
5955 found_sym = 1;
5956 add_defn_to_vec (obstackp,
5957 fixup_symbol_section (sym, objfile),
5958 block);
2a2d4dc3 5959 }
c4d840bd 5960 }
76a01679
JB
5961 }
5962 }
96d887e8
PH
5963 }
5964
5965 if (!found_sym && arg_sym != NULL)
5966 {
76a01679
JB
5967 add_defn_to_vec (obstackp,
5968 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5969 block);
96d887e8
PH
5970 }
5971
5972 if (!wild)
5973 {
5974 arg_sym = NULL;
5975 found_sym = 0;
5976
5977 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5978 {
4186eb54
KS
5979 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5980 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5981 {
5982 int cmp;
5983
5984 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5985 if (cmp == 0)
5986 {
5987 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5988 if (cmp == 0)
5989 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5990 name_len);
5991 }
5992
5993 if (cmp == 0
5994 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5995 {
2a2d4dc3
AS
5996 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5997 {
5998 if (SYMBOL_IS_ARGUMENT (sym))
5999 arg_sym = sym;
6000 else
6001 {
6002 found_sym = 1;
6003 add_defn_to_vec (obstackp,
6004 fixup_symbol_section (sym, objfile),
6005 block);
6006 }
6007 }
76a01679
JB
6008 }
6009 }
76a01679 6010 }
96d887e8
PH
6011
6012 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6013 They aren't parameters, right? */
6014 if (!found_sym && arg_sym != NULL)
6015 {
6016 add_defn_to_vec (obstackp,
76a01679 6017 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6018 block);
96d887e8
PH
6019 }
6020 }
6021}
6022\f
41d27058
JB
6023
6024 /* Symbol Completion */
6025
6026/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6027 name in a form that's appropriate for the completion. The result
6028 does not need to be deallocated, but is only good until the next call.
6029
6030 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6031 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6032 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6033 in its encoded form. */
6034
6035static const char *
6036symbol_completion_match (const char *sym_name,
6037 const char *text, int text_len,
6ea35997 6038 int wild_match_p, int encoded_p)
41d27058 6039{
41d27058
JB
6040 const int verbatim_match = (text[0] == '<');
6041 int match = 0;
6042
6043 if (verbatim_match)
6044 {
6045 /* Strip the leading angle bracket. */
6046 text = text + 1;
6047 text_len--;
6048 }
6049
6050 /* First, test against the fully qualified name of the symbol. */
6051
6052 if (strncmp (sym_name, text, text_len) == 0)
6053 match = 1;
6054
6ea35997 6055 if (match && !encoded_p)
41d27058
JB
6056 {
6057 /* One needed check before declaring a positive match is to verify
6058 that iff we are doing a verbatim match, the decoded version
6059 of the symbol name starts with '<'. Otherwise, this symbol name
6060 is not a suitable completion. */
6061 const char *sym_name_copy = sym_name;
6062 int has_angle_bracket;
6063
6064 sym_name = ada_decode (sym_name);
6065 has_angle_bracket = (sym_name[0] == '<');
6066 match = (has_angle_bracket == verbatim_match);
6067 sym_name = sym_name_copy;
6068 }
6069
6070 if (match && !verbatim_match)
6071 {
6072 /* When doing non-verbatim match, another check that needs to
6073 be done is to verify that the potentially matching symbol name
6074 does not include capital letters, because the ada-mode would
6075 not be able to understand these symbol names without the
6076 angle bracket notation. */
6077 const char *tmp;
6078
6079 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6080 if (*tmp != '\0')
6081 match = 0;
6082 }
6083
6084 /* Second: Try wild matching... */
6085
e701b3c0 6086 if (!match && wild_match_p)
41d27058
JB
6087 {
6088 /* Since we are doing wild matching, this means that TEXT
6089 may represent an unqualified symbol name. We therefore must
6090 also compare TEXT against the unqualified name of the symbol. */
6091 sym_name = ada_unqualified_name (ada_decode (sym_name));
6092
6093 if (strncmp (sym_name, text, text_len) == 0)
6094 match = 1;
6095 }
6096
6097 /* Finally: If we found a mach, prepare the result to return. */
6098
6099 if (!match)
6100 return NULL;
6101
6102 if (verbatim_match)
6103 sym_name = add_angle_brackets (sym_name);
6104
6ea35997 6105 if (!encoded_p)
41d27058
JB
6106 sym_name = ada_decode (sym_name);
6107
6108 return sym_name;
6109}
6110
6111/* A companion function to ada_make_symbol_completion_list().
6112 Check if SYM_NAME represents a symbol which name would be suitable
6113 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6114 it is appended at the end of the given string vector SV.
6115
6116 ORIG_TEXT is the string original string from the user command
6117 that needs to be completed. WORD is the entire command on which
6118 completion should be performed. These two parameters are used to
6119 determine which part of the symbol name should be added to the
6120 completion vector.
c0af1706 6121 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6122 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6123 encoded formed (in which case the completion should also be
6124 encoded). */
6125
6126static void
d6565258 6127symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6128 const char *sym_name,
6129 const char *text, int text_len,
6130 const char *orig_text, const char *word,
cb8e9b97 6131 int wild_match_p, int encoded_p)
41d27058
JB
6132{
6133 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6134 wild_match_p, encoded_p);
41d27058
JB
6135 char *completion;
6136
6137 if (match == NULL)
6138 return;
6139
6140 /* We found a match, so add the appropriate completion to the given
6141 string vector. */
6142
6143 if (word == orig_text)
6144 {
6145 completion = xmalloc (strlen (match) + 5);
6146 strcpy (completion, match);
6147 }
6148 else if (word > orig_text)
6149 {
6150 /* Return some portion of sym_name. */
6151 completion = xmalloc (strlen (match) + 5);
6152 strcpy (completion, match + (word - orig_text));
6153 }
6154 else
6155 {
6156 /* Return some of ORIG_TEXT plus sym_name. */
6157 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6158 strncpy (completion, word, orig_text - word);
6159 completion[orig_text - word] = '\0';
6160 strcat (completion, match);
6161 }
6162
d6565258 6163 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6164}
6165
ccefe4c4 6166/* An object of this type is passed as the user_data argument to the
bb4142cf 6167 expand_symtabs_matching method. */
ccefe4c4
TT
6168struct add_partial_datum
6169{
6170 VEC(char_ptr) **completions;
6f937416 6171 const char *text;
ccefe4c4 6172 int text_len;
6f937416
PA
6173 const char *text0;
6174 const char *word;
ccefe4c4
TT
6175 int wild_match;
6176 int encoded;
6177};
6178
bb4142cf
DE
6179/* A callback for expand_symtabs_matching. */
6180
7b08b9eb 6181static int
bb4142cf 6182ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6183{
6184 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6185
6186 return symbol_completion_match (name, data->text, data->text_len,
6187 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6188}
6189
49c4e619
TT
6190/* Return a list of possible symbol names completing TEXT0. WORD is
6191 the entire command on which completion is made. */
41d27058 6192
49c4e619 6193static VEC (char_ptr) *
6f937416
PA
6194ada_make_symbol_completion_list (const char *text0, const char *word,
6195 enum type_code code)
41d27058
JB
6196{
6197 char *text;
6198 int text_len;
b1ed564a
JB
6199 int wild_match_p;
6200 int encoded_p;
2ba95b9b 6201 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6202 struct symbol *sym;
43f3e411 6203 struct compunit_symtab *s;
41d27058
JB
6204 struct minimal_symbol *msymbol;
6205 struct objfile *objfile;
3977b71f 6206 const struct block *b, *surrounding_static_block = 0;
41d27058 6207 int i;
8157b174 6208 struct block_iterator iter;
b8fea896 6209 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6210
2f68a895
TT
6211 gdb_assert (code == TYPE_CODE_UNDEF);
6212
41d27058
JB
6213 if (text0[0] == '<')
6214 {
6215 text = xstrdup (text0);
6216 make_cleanup (xfree, text);
6217 text_len = strlen (text);
b1ed564a
JB
6218 wild_match_p = 0;
6219 encoded_p = 1;
41d27058
JB
6220 }
6221 else
6222 {
6223 text = xstrdup (ada_encode (text0));
6224 make_cleanup (xfree, text);
6225 text_len = strlen (text);
6226 for (i = 0; i < text_len; i++)
6227 text[i] = tolower (text[i]);
6228
b1ed564a 6229 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6230 /* If the name contains a ".", then the user is entering a fully
6231 qualified entity name, and the match must not be done in wild
6232 mode. Similarly, if the user wants to complete what looks like
6233 an encoded name, the match must not be done in wild mode. */
b1ed564a 6234 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6235 }
6236
6237 /* First, look at the partial symtab symbols. */
41d27058 6238 {
ccefe4c4
TT
6239 struct add_partial_datum data;
6240
6241 data.completions = &completions;
6242 data.text = text;
6243 data.text_len = text_len;
6244 data.text0 = text0;
6245 data.word = word;
b1ed564a
JB
6246 data.wild_match = wild_match_p;
6247 data.encoded = encoded_p;
276d885b
GB
6248 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6249 ALL_DOMAIN, &data);
41d27058
JB
6250 }
6251
6252 /* At this point scan through the misc symbol vectors and add each
6253 symbol you find to the list. Eventually we want to ignore
6254 anything that isn't a text symbol (everything else will be
6255 handled by the psymtab code above). */
6256
6257 ALL_MSYMBOLS (objfile, msymbol)
6258 {
6259 QUIT;
efd66ac6 6260 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6261 text, text_len, text0, word, wild_match_p,
6262 encoded_p);
41d27058
JB
6263 }
6264
6265 /* Search upwards from currently selected frame (so that we can
6266 complete on local vars. */
6267
6268 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6269 {
6270 if (!BLOCK_SUPERBLOCK (b))
6271 surrounding_static_block = b; /* For elmin of dups */
6272
6273 ALL_BLOCK_SYMBOLS (b, iter, sym)
6274 {
d6565258 6275 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6276 text, text_len, text0, word,
b1ed564a 6277 wild_match_p, encoded_p);
41d27058
JB
6278 }
6279 }
6280
6281 /* Go through the symtabs and check the externs and statics for
43f3e411 6282 symbols which match. */
41d27058 6283
43f3e411 6284 ALL_COMPUNITS (objfile, s)
41d27058
JB
6285 {
6286 QUIT;
43f3e411 6287 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6288 ALL_BLOCK_SYMBOLS (b, iter, sym)
6289 {
d6565258 6290 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6291 text, text_len, text0, word,
b1ed564a 6292 wild_match_p, encoded_p);
41d27058
JB
6293 }
6294 }
6295
43f3e411 6296 ALL_COMPUNITS (objfile, s)
41d27058
JB
6297 {
6298 QUIT;
43f3e411 6299 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6300 /* Don't do this block twice. */
6301 if (b == surrounding_static_block)
6302 continue;
6303 ALL_BLOCK_SYMBOLS (b, iter, sym)
6304 {
d6565258 6305 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6306 text, text_len, text0, word,
b1ed564a 6307 wild_match_p, encoded_p);
41d27058
JB
6308 }
6309 }
6310
b8fea896 6311 do_cleanups (old_chain);
49c4e619 6312 return completions;
41d27058
JB
6313}
6314
963a6417 6315 /* Field Access */
96d887e8 6316
73fb9985
JB
6317/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6318 for tagged types. */
6319
6320static int
6321ada_is_dispatch_table_ptr_type (struct type *type)
6322{
0d5cff50 6323 const char *name;
73fb9985
JB
6324
6325 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6326 return 0;
6327
6328 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6329 if (name == NULL)
6330 return 0;
6331
6332 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6333}
6334
ac4a2da4
JG
6335/* Return non-zero if TYPE is an interface tag. */
6336
6337static int
6338ada_is_interface_tag (struct type *type)
6339{
6340 const char *name = TYPE_NAME (type);
6341
6342 if (name == NULL)
6343 return 0;
6344
6345 return (strcmp (name, "ada__tags__interface_tag") == 0);
6346}
6347
963a6417
PH
6348/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6349 to be invisible to users. */
96d887e8 6350
963a6417
PH
6351int
6352ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6353{
963a6417
PH
6354 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6355 return 1;
ffde82bf 6356
73fb9985
JB
6357 /* Check the name of that field. */
6358 {
6359 const char *name = TYPE_FIELD_NAME (type, field_num);
6360
6361 /* Anonymous field names should not be printed.
6362 brobecker/2007-02-20: I don't think this can actually happen
6363 but we don't want to print the value of annonymous fields anyway. */
6364 if (name == NULL)
6365 return 1;
6366
ffde82bf
JB
6367 /* Normally, fields whose name start with an underscore ("_")
6368 are fields that have been internally generated by the compiler,
6369 and thus should not be printed. The "_parent" field is special,
6370 however: This is a field internally generated by the compiler
6371 for tagged types, and it contains the components inherited from
6372 the parent type. This field should not be printed as is, but
6373 should not be ignored either. */
73fb9985
JB
6374 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6375 return 1;
6376 }
6377
ac4a2da4
JG
6378 /* If this is the dispatch table of a tagged type or an interface tag,
6379 then ignore. */
73fb9985 6380 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6381 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6382 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6383 return 1;
6384
6385 /* Not a special field, so it should not be ignored. */
6386 return 0;
963a6417 6387}
96d887e8 6388
963a6417 6389/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6390 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6391
963a6417
PH
6392int
6393ada_is_tagged_type (struct type *type, int refok)
6394{
6395 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6396}
96d887e8 6397
963a6417 6398/* True iff TYPE represents the type of X'Tag */
96d887e8 6399
963a6417
PH
6400int
6401ada_is_tag_type (struct type *type)
6402{
6403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6404 return 0;
6405 else
96d887e8 6406 {
963a6417 6407 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6408
963a6417
PH
6409 return (name != NULL
6410 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6411 }
96d887e8
PH
6412}
6413
963a6417 6414/* The type of the tag on VAL. */
76a01679 6415
963a6417
PH
6416struct type *
6417ada_tag_type (struct value *val)
96d887e8 6418{
df407dfe 6419 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6420}
96d887e8 6421
b50d69b5
JG
6422/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6423 retired at Ada 05). */
6424
6425static int
6426is_ada95_tag (struct value *tag)
6427{
6428 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6429}
6430
963a6417 6431/* The value of the tag on VAL. */
96d887e8 6432
963a6417
PH
6433struct value *
6434ada_value_tag (struct value *val)
6435{
03ee6b2e 6436 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6437}
6438
963a6417
PH
6439/* The value of the tag on the object of type TYPE whose contents are
6440 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6441 ADDRESS. */
96d887e8 6442
963a6417 6443static struct value *
10a2c479 6444value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6445 const gdb_byte *valaddr,
963a6417 6446 CORE_ADDR address)
96d887e8 6447{
b5385fc0 6448 int tag_byte_offset;
963a6417 6449 struct type *tag_type;
5b4ee69b 6450
963a6417 6451 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6452 NULL, NULL, NULL))
96d887e8 6453 {
fc1a4b47 6454 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6455 ? NULL
6456 : valaddr + tag_byte_offset);
963a6417 6457 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6458
963a6417 6459 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6460 }
963a6417
PH
6461 return NULL;
6462}
96d887e8 6463
963a6417
PH
6464static struct type *
6465type_from_tag (struct value *tag)
6466{
6467 const char *type_name = ada_tag_name (tag);
5b4ee69b 6468
963a6417
PH
6469 if (type_name != NULL)
6470 return ada_find_any_type (ada_encode (type_name));
6471 return NULL;
6472}
96d887e8 6473
b50d69b5
JG
6474/* Given a value OBJ of a tagged type, return a value of this
6475 type at the base address of the object. The base address, as
6476 defined in Ada.Tags, it is the address of the primary tag of
6477 the object, and therefore where the field values of its full
6478 view can be fetched. */
6479
6480struct value *
6481ada_tag_value_at_base_address (struct value *obj)
6482{
6483 volatile struct gdb_exception e;
6484 struct value *val;
6485 LONGEST offset_to_top = 0;
6486 struct type *ptr_type, *obj_type;
6487 struct value *tag;
6488 CORE_ADDR base_address;
6489
6490 obj_type = value_type (obj);
6491
6492 /* It is the responsability of the caller to deref pointers. */
6493
6494 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6495 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6496 return obj;
6497
6498 tag = ada_value_tag (obj);
6499 if (!tag)
6500 return obj;
6501
6502 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6503
6504 if (is_ada95_tag (tag))
6505 return obj;
6506
6507 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6508 ptr_type = lookup_pointer_type (ptr_type);
6509 val = value_cast (ptr_type, tag);
6510 if (!val)
6511 return obj;
6512
6513 /* It is perfectly possible that an exception be raised while
6514 trying to determine the base address, just like for the tag;
6515 see ada_tag_name for more details. We do not print the error
6516 message for the same reason. */
6517
6518 TRY_CATCH (e, RETURN_MASK_ERROR)
6519 {
6520 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6521 }
6522
6523 if (e.reason < 0)
6524 return obj;
6525
6526 /* If offset is null, nothing to do. */
6527
6528 if (offset_to_top == 0)
6529 return obj;
6530
6531 /* -1 is a special case in Ada.Tags; however, what should be done
6532 is not quite clear from the documentation. So do nothing for
6533 now. */
6534
6535 if (offset_to_top == -1)
6536 return obj;
6537
6538 base_address = value_address (obj) - offset_to_top;
6539 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6540
6541 /* Make sure that we have a proper tag at the new address.
6542 Otherwise, offset_to_top is bogus (which can happen when
6543 the object is not initialized yet). */
6544
6545 if (!tag)
6546 return obj;
6547
6548 obj_type = type_from_tag (tag);
6549
6550 if (!obj_type)
6551 return obj;
6552
6553 return value_from_contents_and_address (obj_type, NULL, base_address);
6554}
6555
1b611343
JB
6556/* Return the "ada__tags__type_specific_data" type. */
6557
6558static struct type *
6559ada_get_tsd_type (struct inferior *inf)
963a6417 6560{
1b611343 6561 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6562
1b611343
JB
6563 if (data->tsd_type == 0)
6564 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6565 return data->tsd_type;
6566}
529cad9c 6567
1b611343
JB
6568/* Return the TSD (type-specific data) associated to the given TAG.
6569 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6570
1b611343 6571 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6572
1b611343
JB
6573static struct value *
6574ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6575{
4c4b4cd2 6576 struct value *val;
1b611343 6577 struct type *type;
5b4ee69b 6578
1b611343
JB
6579 /* First option: The TSD is simply stored as a field of our TAG.
6580 Only older versions of GNAT would use this format, but we have
6581 to test it first, because there are no visible markers for
6582 the current approach except the absence of that field. */
529cad9c 6583
1b611343
JB
6584 val = ada_value_struct_elt (tag, "tsd", 1);
6585 if (val)
6586 return val;
e802dbe0 6587
1b611343
JB
6588 /* Try the second representation for the dispatch table (in which
6589 there is no explicit 'tsd' field in the referent of the tag pointer,
6590 and instead the tsd pointer is stored just before the dispatch
6591 table. */
e802dbe0 6592
1b611343
JB
6593 type = ada_get_tsd_type (current_inferior());
6594 if (type == NULL)
6595 return NULL;
6596 type = lookup_pointer_type (lookup_pointer_type (type));
6597 val = value_cast (type, tag);
6598 if (val == NULL)
6599 return NULL;
6600 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6601}
6602
1b611343
JB
6603/* Given the TSD of a tag (type-specific data), return a string
6604 containing the name of the associated type.
6605
6606 The returned value is good until the next call. May return NULL
6607 if we are unable to determine the tag name. */
6608
6609static char *
6610ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6611{
529cad9c
PH
6612 static char name[1024];
6613 char *p;
1b611343 6614 struct value *val;
529cad9c 6615
1b611343 6616 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6617 if (val == NULL)
1b611343 6618 return NULL;
4c4b4cd2
PH
6619 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6620 for (p = name; *p != '\0'; p += 1)
6621 if (isalpha (*p))
6622 *p = tolower (*p);
1b611343 6623 return name;
4c4b4cd2
PH
6624}
6625
6626/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6627 a C string.
6628
6629 Return NULL if the TAG is not an Ada tag, or if we were unable to
6630 determine the name of that tag. The result is good until the next
6631 call. */
4c4b4cd2
PH
6632
6633const char *
6634ada_tag_name (struct value *tag)
6635{
1b611343
JB
6636 volatile struct gdb_exception e;
6637 char *name = NULL;
5b4ee69b 6638
df407dfe 6639 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6640 return NULL;
1b611343
JB
6641
6642 /* It is perfectly possible that an exception be raised while trying
6643 to determine the TAG's name, even under normal circumstances:
6644 The associated variable may be uninitialized or corrupted, for
6645 instance. We do not let any exception propagate past this point.
6646 instead we return NULL.
6647
6648 We also do not print the error message either (which often is very
6649 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6650 the caller print a more meaningful message if necessary. */
6651 TRY_CATCH (e, RETURN_MASK_ERROR)
6652 {
6653 struct value *tsd = ada_get_tsd_from_tag (tag);
6654
6655 if (tsd != NULL)
6656 name = ada_tag_name_from_tsd (tsd);
6657 }
6658
6659 return name;
4c4b4cd2
PH
6660}
6661
6662/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6663
d2e4a39e 6664struct type *
ebf56fd3 6665ada_parent_type (struct type *type)
14f9c5c9
AS
6666{
6667 int i;
6668
61ee279c 6669 type = ada_check_typedef (type);
14f9c5c9
AS
6670
6671 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6672 return NULL;
6673
6674 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6675 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6676 {
6677 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6678
6679 /* If the _parent field is a pointer, then dereference it. */
6680 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6681 parent_type = TYPE_TARGET_TYPE (parent_type);
6682 /* If there is a parallel XVS type, get the actual base type. */
6683 parent_type = ada_get_base_type (parent_type);
6684
6685 return ada_check_typedef (parent_type);
6686 }
14f9c5c9
AS
6687
6688 return NULL;
6689}
6690
4c4b4cd2
PH
6691/* True iff field number FIELD_NUM of structure type TYPE contains the
6692 parent-type (inherited) fields of a derived type. Assumes TYPE is
6693 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6694
6695int
ebf56fd3 6696ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6697{
61ee279c 6698 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6699
4c4b4cd2
PH
6700 return (name != NULL
6701 && (strncmp (name, "PARENT", 6) == 0
6702 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6703}
6704
4c4b4cd2 6705/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6706 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6707 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6708 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6709 structures. */
14f9c5c9
AS
6710
6711int
ebf56fd3 6712ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6713{
d2e4a39e 6714 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6715
d2e4a39e 6716 return (name != NULL
4c4b4cd2
PH
6717 && (strncmp (name, "PARENT", 6) == 0
6718 || strcmp (name, "REP") == 0
6719 || strncmp (name, "_parent", 7) == 0
6720 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6721}
6722
4c4b4cd2
PH
6723/* True iff field number FIELD_NUM of structure or union type TYPE
6724 is a variant wrapper. Assumes TYPE is a structure type with at least
6725 FIELD_NUM+1 fields. */
14f9c5c9
AS
6726
6727int
ebf56fd3 6728ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6729{
d2e4a39e 6730 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6731
14f9c5c9 6732 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6733 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6734 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6735 == TYPE_CODE_UNION)));
14f9c5c9
AS
6736}
6737
6738/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6739 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6740 returns the type of the controlling discriminant for the variant.
6741 May return NULL if the type could not be found. */
14f9c5c9 6742
d2e4a39e 6743struct type *
ebf56fd3 6744ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6745{
d2e4a39e 6746 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6747
7c964f07 6748 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6749}
6750
4c4b4cd2 6751/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6752 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6753 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6754
6755int
ebf56fd3 6756ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6757{
d2e4a39e 6758 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6759
14f9c5c9
AS
6760 return (name != NULL && name[0] == 'O');
6761}
6762
6763/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6764 returns the name of the discriminant controlling the variant.
6765 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6766
d2e4a39e 6767char *
ebf56fd3 6768ada_variant_discrim_name (struct type *type0)
14f9c5c9 6769{
d2e4a39e 6770 static char *result = NULL;
14f9c5c9 6771 static size_t result_len = 0;
d2e4a39e
AS
6772 struct type *type;
6773 const char *name;
6774 const char *discrim_end;
6775 const char *discrim_start;
14f9c5c9
AS
6776
6777 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6778 type = TYPE_TARGET_TYPE (type0);
6779 else
6780 type = type0;
6781
6782 name = ada_type_name (type);
6783
6784 if (name == NULL || name[0] == '\000')
6785 return "";
6786
6787 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6788 discrim_end -= 1)
6789 {
4c4b4cd2
PH
6790 if (strncmp (discrim_end, "___XVN", 6) == 0)
6791 break;
14f9c5c9
AS
6792 }
6793 if (discrim_end == name)
6794 return "";
6795
d2e4a39e 6796 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6797 discrim_start -= 1)
6798 {
d2e4a39e 6799 if (discrim_start == name + 1)
4c4b4cd2 6800 return "";
76a01679 6801 if ((discrim_start > name + 3
4c4b4cd2
PH
6802 && strncmp (discrim_start - 3, "___", 3) == 0)
6803 || discrim_start[-1] == '.')
6804 break;
14f9c5c9
AS
6805 }
6806
6807 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6808 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6809 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6810 return result;
6811}
6812
4c4b4cd2
PH
6813/* Scan STR for a subtype-encoded number, beginning at position K.
6814 Put the position of the character just past the number scanned in
6815 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6816 Return 1 if there was a valid number at the given position, and 0
6817 otherwise. A "subtype-encoded" number consists of the absolute value
6818 in decimal, followed by the letter 'm' to indicate a negative number.
6819 Assumes 0m does not occur. */
14f9c5c9
AS
6820
6821int
d2e4a39e 6822ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6823{
6824 ULONGEST RU;
6825
d2e4a39e 6826 if (!isdigit (str[k]))
14f9c5c9
AS
6827 return 0;
6828
4c4b4cd2 6829 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6830 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6831 LONGEST. */
14f9c5c9
AS
6832 RU = 0;
6833 while (isdigit (str[k]))
6834 {
d2e4a39e 6835 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6836 k += 1;
6837 }
6838
d2e4a39e 6839 if (str[k] == 'm')
14f9c5c9
AS
6840 {
6841 if (R != NULL)
4c4b4cd2 6842 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6843 k += 1;
6844 }
6845 else if (R != NULL)
6846 *R = (LONGEST) RU;
6847
4c4b4cd2 6848 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6849 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6850 number representable as a LONGEST (although either would probably work
6851 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6852 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6853
6854 if (new_k != NULL)
6855 *new_k = k;
6856 return 1;
6857}
6858
4c4b4cd2
PH
6859/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6860 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6861 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6862
d2e4a39e 6863int
ebf56fd3 6864ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6865{
d2e4a39e 6866 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6867 int p;
6868
6869 p = 0;
6870 while (1)
6871 {
d2e4a39e 6872 switch (name[p])
4c4b4cd2
PH
6873 {
6874 case '\0':
6875 return 0;
6876 case 'S':
6877 {
6878 LONGEST W;
5b4ee69b 6879
4c4b4cd2
PH
6880 if (!ada_scan_number (name, p + 1, &W, &p))
6881 return 0;
6882 if (val == W)
6883 return 1;
6884 break;
6885 }
6886 case 'R':
6887 {
6888 LONGEST L, U;
5b4ee69b 6889
4c4b4cd2
PH
6890 if (!ada_scan_number (name, p + 1, &L, &p)
6891 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6892 return 0;
6893 if (val >= L && val <= U)
6894 return 1;
6895 break;
6896 }
6897 case 'O':
6898 return 1;
6899 default:
6900 return 0;
6901 }
6902 }
6903}
6904
0963b4bd 6905/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6906
6907/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6908 ARG_TYPE, extract and return the value of one of its (non-static)
6909 fields. FIELDNO says which field. Differs from value_primitive_field
6910 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6911
4c4b4cd2 6912static struct value *
d2e4a39e 6913ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6914 struct type *arg_type)
14f9c5c9 6915{
14f9c5c9
AS
6916 struct type *type;
6917
61ee279c 6918 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6919 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6920
4c4b4cd2 6921 /* Handle packed fields. */
14f9c5c9
AS
6922
6923 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6924 {
6925 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6926 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6927
0fd88904 6928 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6929 offset + bit_pos / 8,
6930 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6931 }
6932 else
6933 return value_primitive_field (arg1, offset, fieldno, arg_type);
6934}
6935
52ce6436
PH
6936/* Find field with name NAME in object of type TYPE. If found,
6937 set the following for each argument that is non-null:
6938 - *FIELD_TYPE_P to the field's type;
6939 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6940 an object of that type;
6941 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6942 - *BIT_SIZE_P to its size in bits if the field is packed, and
6943 0 otherwise;
6944 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6945 fields up to but not including the desired field, or by the total
6946 number of fields if not found. A NULL value of NAME never
6947 matches; the function just counts visible fields in this case.
6948
0963b4bd 6949 Returns 1 if found, 0 otherwise. */
52ce6436 6950
4c4b4cd2 6951static int
0d5cff50 6952find_struct_field (const char *name, struct type *type, int offset,
76a01679 6953 struct type **field_type_p,
52ce6436
PH
6954 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6955 int *index_p)
4c4b4cd2
PH
6956{
6957 int i;
6958
61ee279c 6959 type = ada_check_typedef (type);
76a01679 6960
52ce6436
PH
6961 if (field_type_p != NULL)
6962 *field_type_p = NULL;
6963 if (byte_offset_p != NULL)
d5d6fca5 6964 *byte_offset_p = 0;
52ce6436
PH
6965 if (bit_offset_p != NULL)
6966 *bit_offset_p = 0;
6967 if (bit_size_p != NULL)
6968 *bit_size_p = 0;
6969
6970 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6971 {
6972 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6973 int fld_offset = offset + bit_pos / 8;
0d5cff50 6974 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6975
4c4b4cd2
PH
6976 if (t_field_name == NULL)
6977 continue;
6978
52ce6436 6979 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6980 {
6981 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6982
52ce6436
PH
6983 if (field_type_p != NULL)
6984 *field_type_p = TYPE_FIELD_TYPE (type, i);
6985 if (byte_offset_p != NULL)
6986 *byte_offset_p = fld_offset;
6987 if (bit_offset_p != NULL)
6988 *bit_offset_p = bit_pos % 8;
6989 if (bit_size_p != NULL)
6990 *bit_size_p = bit_size;
76a01679
JB
6991 return 1;
6992 }
4c4b4cd2
PH
6993 else if (ada_is_wrapper_field (type, i))
6994 {
52ce6436
PH
6995 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6996 field_type_p, byte_offset_p, bit_offset_p,
6997 bit_size_p, index_p))
76a01679
JB
6998 return 1;
6999 }
4c4b4cd2
PH
7000 else if (ada_is_variant_part (type, i))
7001 {
52ce6436
PH
7002 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7003 fixed type?? */
4c4b4cd2 7004 int j;
52ce6436
PH
7005 struct type *field_type
7006 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7007
52ce6436 7008 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7009 {
76a01679
JB
7010 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7011 fld_offset
7012 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7013 field_type_p, byte_offset_p,
52ce6436 7014 bit_offset_p, bit_size_p, index_p))
76a01679 7015 return 1;
4c4b4cd2
PH
7016 }
7017 }
52ce6436
PH
7018 else if (index_p != NULL)
7019 *index_p += 1;
4c4b4cd2
PH
7020 }
7021 return 0;
7022}
7023
0963b4bd 7024/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7025
52ce6436
PH
7026static int
7027num_visible_fields (struct type *type)
7028{
7029 int n;
5b4ee69b 7030
52ce6436
PH
7031 n = 0;
7032 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7033 return n;
7034}
14f9c5c9 7035
4c4b4cd2 7036/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7037 and search in it assuming it has (class) type TYPE.
7038 If found, return value, else return NULL.
7039
4c4b4cd2 7040 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7041
4c4b4cd2 7042static struct value *
d2e4a39e 7043ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 7044 struct type *type)
14f9c5c9
AS
7045{
7046 int i;
14f9c5c9 7047
5b4ee69b 7048 type = ada_check_typedef (type);
52ce6436 7049 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7050 {
0d5cff50 7051 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7052
7053 if (t_field_name == NULL)
4c4b4cd2 7054 continue;
14f9c5c9
AS
7055
7056 else if (field_name_match (t_field_name, name))
4c4b4cd2 7057 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7058
7059 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7060 {
0963b4bd 7061 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7062 ada_search_struct_field (name, arg,
7063 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7064 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7065
4c4b4cd2
PH
7066 if (v != NULL)
7067 return v;
7068 }
14f9c5c9
AS
7069
7070 else if (ada_is_variant_part (type, i))
4c4b4cd2 7071 {
0963b4bd 7072 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7073 int j;
5b4ee69b
MS
7074 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7075 i));
4c4b4cd2
PH
7076 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7077
52ce6436 7078 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7079 {
0963b4bd
MS
7080 struct value *v = ada_search_struct_field /* Force line
7081 break. */
06d5cf63
JB
7082 (name, arg,
7083 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7084 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7085
4c4b4cd2
PH
7086 if (v != NULL)
7087 return v;
7088 }
7089 }
14f9c5c9
AS
7090 }
7091 return NULL;
7092}
d2e4a39e 7093
52ce6436
PH
7094static struct value *ada_index_struct_field_1 (int *, struct value *,
7095 int, struct type *);
7096
7097
7098/* Return field #INDEX in ARG, where the index is that returned by
7099 * find_struct_field through its INDEX_P argument. Adjust the address
7100 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7101 * If found, return value, else return NULL. */
52ce6436
PH
7102
7103static struct value *
7104ada_index_struct_field (int index, struct value *arg, int offset,
7105 struct type *type)
7106{
7107 return ada_index_struct_field_1 (&index, arg, offset, type);
7108}
7109
7110
7111/* Auxiliary function for ada_index_struct_field. Like
7112 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7113 * *INDEX_P. */
52ce6436
PH
7114
7115static struct value *
7116ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7117 struct type *type)
7118{
7119 int i;
7120 type = ada_check_typedef (type);
7121
7122 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7123 {
7124 if (TYPE_FIELD_NAME (type, i) == NULL)
7125 continue;
7126 else if (ada_is_wrapper_field (type, i))
7127 {
0963b4bd 7128 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7129 ada_index_struct_field_1 (index_p, arg,
7130 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7131 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7132
52ce6436
PH
7133 if (v != NULL)
7134 return v;
7135 }
7136
7137 else if (ada_is_variant_part (type, i))
7138 {
7139 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7140 find_struct_field. */
52ce6436
PH
7141 error (_("Cannot assign this kind of variant record"));
7142 }
7143 else if (*index_p == 0)
7144 return ada_value_primitive_field (arg, offset, i, type);
7145 else
7146 *index_p -= 1;
7147 }
7148 return NULL;
7149}
7150
4c4b4cd2
PH
7151/* Given ARG, a value of type (pointer or reference to a)*
7152 structure/union, extract the component named NAME from the ultimate
7153 target structure/union and return it as a value with its
f5938064 7154 appropriate type.
14f9c5c9 7155
4c4b4cd2
PH
7156 The routine searches for NAME among all members of the structure itself
7157 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7158 (e.g., '_parent').
7159
03ee6b2e
PH
7160 If NO_ERR, then simply return NULL in case of error, rather than
7161 calling error. */
14f9c5c9 7162
d2e4a39e 7163struct value *
03ee6b2e 7164ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7165{
4c4b4cd2 7166 struct type *t, *t1;
d2e4a39e 7167 struct value *v;
14f9c5c9 7168
4c4b4cd2 7169 v = NULL;
df407dfe 7170 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7171 if (TYPE_CODE (t) == TYPE_CODE_REF)
7172 {
7173 t1 = TYPE_TARGET_TYPE (t);
7174 if (t1 == NULL)
03ee6b2e 7175 goto BadValue;
61ee279c 7176 t1 = ada_check_typedef (t1);
4c4b4cd2 7177 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7178 {
994b9211 7179 arg = coerce_ref (arg);
76a01679
JB
7180 t = t1;
7181 }
4c4b4cd2 7182 }
14f9c5c9 7183
4c4b4cd2
PH
7184 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7185 {
7186 t1 = TYPE_TARGET_TYPE (t);
7187 if (t1 == NULL)
03ee6b2e 7188 goto BadValue;
61ee279c 7189 t1 = ada_check_typedef (t1);
4c4b4cd2 7190 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7191 {
7192 arg = value_ind (arg);
7193 t = t1;
7194 }
4c4b4cd2 7195 else
76a01679 7196 break;
4c4b4cd2 7197 }
14f9c5c9 7198
4c4b4cd2 7199 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7200 goto BadValue;
14f9c5c9 7201
4c4b4cd2
PH
7202 if (t1 == t)
7203 v = ada_search_struct_field (name, arg, 0, t);
7204 else
7205 {
7206 int bit_offset, bit_size, byte_offset;
7207 struct type *field_type;
7208 CORE_ADDR address;
7209
76a01679 7210 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7211 address = value_address (ada_value_ind (arg));
4c4b4cd2 7212 else
b50d69b5 7213 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7214
1ed6ede0 7215 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7216 if (find_struct_field (name, t1, 0,
7217 &field_type, &byte_offset, &bit_offset,
52ce6436 7218 &bit_size, NULL))
76a01679
JB
7219 {
7220 if (bit_size != 0)
7221 {
714e53ab
PH
7222 if (TYPE_CODE (t) == TYPE_CODE_REF)
7223 arg = ada_coerce_ref (arg);
7224 else
7225 arg = ada_value_ind (arg);
76a01679
JB
7226 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7227 bit_offset, bit_size,
7228 field_type);
7229 }
7230 else
f5938064 7231 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7232 }
7233 }
7234
03ee6b2e
PH
7235 if (v != NULL || no_err)
7236 return v;
7237 else
323e0a4a 7238 error (_("There is no member named %s."), name);
14f9c5c9 7239
03ee6b2e
PH
7240 BadValue:
7241 if (no_err)
7242 return NULL;
7243 else
0963b4bd
MS
7244 error (_("Attempt to extract a component of "
7245 "a value that is not a record."));
14f9c5c9
AS
7246}
7247
7248/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7249 If DISPP is non-null, add its byte displacement from the beginning of a
7250 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7251 work for packed fields).
7252
7253 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7254 followed by "___".
14f9c5c9 7255
0963b4bd 7256 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7257 be a (pointer or reference)+ to a struct or union, and the
7258 ultimate target type will be searched.
14f9c5c9
AS
7259
7260 Looks recursively into variant clauses and parent types.
7261
4c4b4cd2
PH
7262 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7263 TYPE is not a type of the right kind. */
14f9c5c9 7264
4c4b4cd2 7265static struct type *
76a01679
JB
7266ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7267 int noerr, int *dispp)
14f9c5c9
AS
7268{
7269 int i;
7270
7271 if (name == NULL)
7272 goto BadName;
7273
76a01679 7274 if (refok && type != NULL)
4c4b4cd2
PH
7275 while (1)
7276 {
61ee279c 7277 type = ada_check_typedef (type);
76a01679
JB
7278 if (TYPE_CODE (type) != TYPE_CODE_PTR
7279 && TYPE_CODE (type) != TYPE_CODE_REF)
7280 break;
7281 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7282 }
14f9c5c9 7283
76a01679 7284 if (type == NULL
1265e4aa
JB
7285 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7286 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7287 {
4c4b4cd2 7288 if (noerr)
76a01679 7289 return NULL;
4c4b4cd2 7290 else
76a01679
JB
7291 {
7292 target_terminal_ours ();
7293 gdb_flush (gdb_stdout);
323e0a4a
AC
7294 if (type == NULL)
7295 error (_("Type (null) is not a structure or union type"));
7296 else
7297 {
7298 /* XXX: type_sprint */
7299 fprintf_unfiltered (gdb_stderr, _("Type "));
7300 type_print (type, "", gdb_stderr, -1);
7301 error (_(" is not a structure or union type"));
7302 }
76a01679 7303 }
14f9c5c9
AS
7304 }
7305
7306 type = to_static_fixed_type (type);
7307
7308 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7309 {
0d5cff50 7310 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7311 struct type *t;
7312 int disp;
d2e4a39e 7313
14f9c5c9 7314 if (t_field_name == NULL)
4c4b4cd2 7315 continue;
14f9c5c9
AS
7316
7317 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7318 {
7319 if (dispp != NULL)
7320 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7321 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7322 }
14f9c5c9
AS
7323
7324 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7325 {
7326 disp = 0;
7327 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7328 0, 1, &disp);
7329 if (t != NULL)
7330 {
7331 if (dispp != NULL)
7332 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7333 return t;
7334 }
7335 }
14f9c5c9
AS
7336
7337 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7338 {
7339 int j;
5b4ee69b
MS
7340 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7341 i));
4c4b4cd2
PH
7342
7343 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7344 {
b1f33ddd
JB
7345 /* FIXME pnh 2008/01/26: We check for a field that is
7346 NOT wrapped in a struct, since the compiler sometimes
7347 generates these for unchecked variant types. Revisit
0963b4bd 7348 if the compiler changes this practice. */
0d5cff50 7349 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7350 disp = 0;
b1f33ddd
JB
7351 if (v_field_name != NULL
7352 && field_name_match (v_field_name, name))
7353 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7354 else
0963b4bd
MS
7355 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7356 j),
b1f33ddd
JB
7357 name, 0, 1, &disp);
7358
4c4b4cd2
PH
7359 if (t != NULL)
7360 {
7361 if (dispp != NULL)
7362 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7363 return t;
7364 }
7365 }
7366 }
14f9c5c9
AS
7367
7368 }
7369
7370BadName:
d2e4a39e 7371 if (!noerr)
14f9c5c9
AS
7372 {
7373 target_terminal_ours ();
7374 gdb_flush (gdb_stdout);
323e0a4a
AC
7375 if (name == NULL)
7376 {
7377 /* XXX: type_sprint */
7378 fprintf_unfiltered (gdb_stderr, _("Type "));
7379 type_print (type, "", gdb_stderr, -1);
7380 error (_(" has no component named <null>"));
7381 }
7382 else
7383 {
7384 /* XXX: type_sprint */
7385 fprintf_unfiltered (gdb_stderr, _("Type "));
7386 type_print (type, "", gdb_stderr, -1);
7387 error (_(" has no component named %s"), name);
7388 }
14f9c5c9
AS
7389 }
7390
7391 return NULL;
7392}
7393
b1f33ddd
JB
7394/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7395 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7396 represents an unchecked union (that is, the variant part of a
0963b4bd 7397 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7398
7399static int
7400is_unchecked_variant (struct type *var_type, struct type *outer_type)
7401{
7402 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7403
b1f33ddd
JB
7404 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7405 == NULL);
7406}
7407
7408
14f9c5c9
AS
7409/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7410 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7411 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7412 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7413
d2e4a39e 7414int
ebf56fd3 7415ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7416 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7417{
7418 int others_clause;
7419 int i;
d2e4a39e 7420 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7421 struct value *outer;
7422 struct value *discrim;
14f9c5c9
AS
7423 LONGEST discrim_val;
7424
012370f6
TT
7425 /* Using plain value_from_contents_and_address here causes problems
7426 because we will end up trying to resolve a type that is currently
7427 being constructed. */
7428 outer = value_from_contents_and_address_unresolved (outer_type,
7429 outer_valaddr, 0);
0c281816
JB
7430 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7431 if (discrim == NULL)
14f9c5c9 7432 return -1;
0c281816 7433 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7434
7435 others_clause = -1;
7436 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7437 {
7438 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7439 others_clause = i;
14f9c5c9 7440 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7441 return i;
14f9c5c9
AS
7442 }
7443
7444 return others_clause;
7445}
d2e4a39e 7446\f
14f9c5c9
AS
7447
7448
4c4b4cd2 7449 /* Dynamic-Sized Records */
14f9c5c9
AS
7450
7451/* Strategy: The type ostensibly attached to a value with dynamic size
7452 (i.e., a size that is not statically recorded in the debugging
7453 data) does not accurately reflect the size or layout of the value.
7454 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7455 conventional types that are constructed on the fly. */
14f9c5c9
AS
7456
7457/* There is a subtle and tricky problem here. In general, we cannot
7458 determine the size of dynamic records without its data. However,
7459 the 'struct value' data structure, which GDB uses to represent
7460 quantities in the inferior process (the target), requires the size
7461 of the type at the time of its allocation in order to reserve space
7462 for GDB's internal copy of the data. That's why the
7463 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7464 rather than struct value*s.
14f9c5c9
AS
7465
7466 However, GDB's internal history variables ($1, $2, etc.) are
7467 struct value*s containing internal copies of the data that are not, in
7468 general, the same as the data at their corresponding addresses in
7469 the target. Fortunately, the types we give to these values are all
7470 conventional, fixed-size types (as per the strategy described
7471 above), so that we don't usually have to perform the
7472 'to_fixed_xxx_type' conversions to look at their values.
7473 Unfortunately, there is one exception: if one of the internal
7474 history variables is an array whose elements are unconstrained
7475 records, then we will need to create distinct fixed types for each
7476 element selected. */
7477
7478/* The upshot of all of this is that many routines take a (type, host
7479 address, target address) triple as arguments to represent a value.
7480 The host address, if non-null, is supposed to contain an internal
7481 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7482 target at the target address. */
14f9c5c9
AS
7483
7484/* Assuming that VAL0 represents a pointer value, the result of
7485 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7486 dynamic-sized types. */
14f9c5c9 7487
d2e4a39e
AS
7488struct value *
7489ada_value_ind (struct value *val0)
14f9c5c9 7490{
c48db5ca 7491 struct value *val = value_ind (val0);
5b4ee69b 7492
b50d69b5
JG
7493 if (ada_is_tagged_type (value_type (val), 0))
7494 val = ada_tag_value_at_base_address (val);
7495
4c4b4cd2 7496 return ada_to_fixed_value (val);
14f9c5c9
AS
7497}
7498
7499/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7500 qualifiers on VAL0. */
7501
d2e4a39e
AS
7502static struct value *
7503ada_coerce_ref (struct value *val0)
7504{
df407dfe 7505 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7506 {
7507 struct value *val = val0;
5b4ee69b 7508
994b9211 7509 val = coerce_ref (val);
b50d69b5
JG
7510
7511 if (ada_is_tagged_type (value_type (val), 0))
7512 val = ada_tag_value_at_base_address (val);
7513
4c4b4cd2 7514 return ada_to_fixed_value (val);
d2e4a39e
AS
7515 }
7516 else
14f9c5c9
AS
7517 return val0;
7518}
7519
7520/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7521 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7522
7523static unsigned int
ebf56fd3 7524align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7525{
7526 return (off + alignment - 1) & ~(alignment - 1);
7527}
7528
4c4b4cd2 7529/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7530
7531static unsigned int
ebf56fd3 7532field_alignment (struct type *type, int f)
14f9c5c9 7533{
d2e4a39e 7534 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7535 int len;
14f9c5c9
AS
7536 int align_offset;
7537
64a1bf19
JB
7538 /* The field name should never be null, unless the debugging information
7539 is somehow malformed. In this case, we assume the field does not
7540 require any alignment. */
7541 if (name == NULL)
7542 return 1;
7543
7544 len = strlen (name);
7545
4c4b4cd2
PH
7546 if (!isdigit (name[len - 1]))
7547 return 1;
14f9c5c9 7548
d2e4a39e 7549 if (isdigit (name[len - 2]))
14f9c5c9
AS
7550 align_offset = len - 2;
7551 else
7552 align_offset = len - 1;
7553
4c4b4cd2 7554 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7555 return TARGET_CHAR_BIT;
7556
4c4b4cd2
PH
7557 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7558}
7559
852dff6c 7560/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7561
852dff6c
JB
7562static struct symbol *
7563ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7564{
7565 struct symbol *sym;
7566
7567 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7568 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7569 return sym;
7570
4186eb54
KS
7571 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7572 return sym;
14f9c5c9
AS
7573}
7574
dddfab26
UW
7575/* Find a type named NAME. Ignores ambiguity. This routine will look
7576 solely for types defined by debug info, it will not search the GDB
7577 primitive types. */
4c4b4cd2 7578
852dff6c 7579static struct type *
ebf56fd3 7580ada_find_any_type (const char *name)
14f9c5c9 7581{
852dff6c 7582 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7583
14f9c5c9 7584 if (sym != NULL)
dddfab26 7585 return SYMBOL_TYPE (sym);
14f9c5c9 7586
dddfab26 7587 return NULL;
14f9c5c9
AS
7588}
7589
739593e0
JB
7590/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7591 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7592 symbol, in which case it is returned. Otherwise, this looks for
7593 symbols whose name is that of NAME_SYM suffixed with "___XR".
7594 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7595
7596struct symbol *
270140bd 7597ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7598{
739593e0 7599 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7600 struct symbol *sym;
7601
739593e0
JB
7602 if (strstr (name, "___XR") != NULL)
7603 return name_sym;
7604
aeb5907d
JB
7605 sym = find_old_style_renaming_symbol (name, block);
7606
7607 if (sym != NULL)
7608 return sym;
7609
0963b4bd 7610 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7611 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7612 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7613 return sym;
7614 else
7615 return NULL;
7616}
7617
7618static struct symbol *
270140bd 7619find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7620{
7f0df278 7621 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7622 char *rename;
7623
7624 if (function_sym != NULL)
7625 {
7626 /* If the symbol is defined inside a function, NAME is not fully
7627 qualified. This means we need to prepend the function name
7628 as well as adding the ``___XR'' suffix to build the name of
7629 the associated renaming symbol. */
0d5cff50 7630 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7631 /* Function names sometimes contain suffixes used
7632 for instance to qualify nested subprograms. When building
7633 the XR type name, we need to make sure that this suffix is
7634 not included. So do not include any suffix in the function
7635 name length below. */
69fadcdf 7636 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7637 const int rename_len = function_name_len + 2 /* "__" */
7638 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7639
529cad9c 7640 /* Strip the suffix if necessary. */
69fadcdf
JB
7641 ada_remove_trailing_digits (function_name, &function_name_len);
7642 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7643 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7644
4c4b4cd2
PH
7645 /* Library-level functions are a special case, as GNAT adds
7646 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7647 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7648 have this prefix, so we need to skip this prefix if present. */
7649 if (function_name_len > 5 /* "_ada_" */
7650 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7651 {
7652 function_name += 5;
7653 function_name_len -= 5;
7654 }
4c4b4cd2
PH
7655
7656 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7657 strncpy (rename, function_name, function_name_len);
7658 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7659 "__%s___XR", name);
4c4b4cd2
PH
7660 }
7661 else
7662 {
7663 const int rename_len = strlen (name) + 6;
5b4ee69b 7664
4c4b4cd2 7665 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7666 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7667 }
7668
852dff6c 7669 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7670}
7671
14f9c5c9 7672/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7673 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7674 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7675 otherwise return 0. */
7676
14f9c5c9 7677int
d2e4a39e 7678ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7679{
7680 if (type1 == NULL)
7681 return 1;
7682 else if (type0 == NULL)
7683 return 0;
7684 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7685 return 1;
7686 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7687 return 0;
4c4b4cd2
PH
7688 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7689 return 1;
ad82864c 7690 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7691 return 1;
4c4b4cd2
PH
7692 else if (ada_is_array_descriptor_type (type0)
7693 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7694 return 1;
aeb5907d
JB
7695 else
7696 {
7697 const char *type0_name = type_name_no_tag (type0);
7698 const char *type1_name = type_name_no_tag (type1);
7699
7700 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7701 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7702 return 1;
7703 }
14f9c5c9
AS
7704 return 0;
7705}
7706
7707/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7708 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7709
0d5cff50 7710const char *
d2e4a39e 7711ada_type_name (struct type *type)
14f9c5c9 7712{
d2e4a39e 7713 if (type == NULL)
14f9c5c9
AS
7714 return NULL;
7715 else if (TYPE_NAME (type) != NULL)
7716 return TYPE_NAME (type);
7717 else
7718 return TYPE_TAG_NAME (type);
7719}
7720
b4ba55a1
JB
7721/* Search the list of "descriptive" types associated to TYPE for a type
7722 whose name is NAME. */
7723
7724static struct type *
7725find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7726{
7727 struct type *result;
7728
c6044dd1
JB
7729 if (ada_ignore_descriptive_types_p)
7730 return NULL;
7731
b4ba55a1
JB
7732 /* If there no descriptive-type info, then there is no parallel type
7733 to be found. */
7734 if (!HAVE_GNAT_AUX_INFO (type))
7735 return NULL;
7736
7737 result = TYPE_DESCRIPTIVE_TYPE (type);
7738 while (result != NULL)
7739 {
0d5cff50 7740 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7741
7742 if (result_name == NULL)
7743 {
7744 warning (_("unexpected null name on descriptive type"));
7745 return NULL;
7746 }
7747
7748 /* If the names match, stop. */
7749 if (strcmp (result_name, name) == 0)
7750 break;
7751
7752 /* Otherwise, look at the next item on the list, if any. */
7753 if (HAVE_GNAT_AUX_INFO (result))
7754 result = TYPE_DESCRIPTIVE_TYPE (result);
7755 else
7756 result = NULL;
7757 }
7758
7759 /* If we didn't find a match, see whether this is a packed array. With
7760 older compilers, the descriptive type information is either absent or
7761 irrelevant when it comes to packed arrays so the above lookup fails.
7762 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7763 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7764 return ada_find_any_type (name);
7765
7766 return result;
7767}
7768
7769/* Find a parallel type to TYPE with the specified NAME, using the
7770 descriptive type taken from the debugging information, if available,
7771 and otherwise using the (slower) name-based method. */
7772
7773static struct type *
7774ada_find_parallel_type_with_name (struct type *type, const char *name)
7775{
7776 struct type *result = NULL;
7777
7778 if (HAVE_GNAT_AUX_INFO (type))
7779 result = find_parallel_type_by_descriptive_type (type, name);
7780 else
7781 result = ada_find_any_type (name);
7782
7783 return result;
7784}
7785
7786/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7787 SUFFIX to the name of TYPE. */
14f9c5c9 7788
d2e4a39e 7789struct type *
ebf56fd3 7790ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7791{
0d5cff50
DE
7792 char *name;
7793 const char *typename = ada_type_name (type);
14f9c5c9 7794 int len;
d2e4a39e 7795
14f9c5c9
AS
7796 if (typename == NULL)
7797 return NULL;
7798
7799 len = strlen (typename);
7800
b4ba55a1 7801 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7802
7803 strcpy (name, typename);
7804 strcpy (name + len, suffix);
7805
b4ba55a1 7806 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7807}
7808
14f9c5c9 7809/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7810 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7811
d2e4a39e
AS
7812static struct type *
7813dynamic_template_type (struct type *type)
14f9c5c9 7814{
61ee279c 7815 type = ada_check_typedef (type);
14f9c5c9
AS
7816
7817 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7818 || ada_type_name (type) == NULL)
14f9c5c9 7819 return NULL;
d2e4a39e 7820 else
14f9c5c9
AS
7821 {
7822 int len = strlen (ada_type_name (type));
5b4ee69b 7823
4c4b4cd2
PH
7824 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7825 return type;
14f9c5c9 7826 else
4c4b4cd2 7827 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7828 }
7829}
7830
7831/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7832 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7833
d2e4a39e
AS
7834static int
7835is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7836{
7837 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7838
d2e4a39e 7839 return name != NULL
14f9c5c9
AS
7840 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7841 && strstr (name, "___XVL") != NULL;
7842}
7843
4c4b4cd2
PH
7844/* The index of the variant field of TYPE, or -1 if TYPE does not
7845 represent a variant record type. */
14f9c5c9 7846
d2e4a39e 7847static int
4c4b4cd2 7848variant_field_index (struct type *type)
14f9c5c9
AS
7849{
7850 int f;
7851
4c4b4cd2
PH
7852 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7853 return -1;
7854
7855 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7856 {
7857 if (ada_is_variant_part (type, f))
7858 return f;
7859 }
7860 return -1;
14f9c5c9
AS
7861}
7862
4c4b4cd2
PH
7863/* A record type with no fields. */
7864
d2e4a39e 7865static struct type *
e9bb382b 7866empty_record (struct type *template)
14f9c5c9 7867{
e9bb382b 7868 struct type *type = alloc_type_copy (template);
5b4ee69b 7869
14f9c5c9
AS
7870 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7871 TYPE_NFIELDS (type) = 0;
7872 TYPE_FIELDS (type) = NULL;
b1f33ddd 7873 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7874 TYPE_NAME (type) = "<empty>";
7875 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7876 TYPE_LENGTH (type) = 0;
7877 return type;
7878}
7879
7880/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7881 the value of type TYPE at VALADDR or ADDRESS (see comments at
7882 the beginning of this section) VAL according to GNAT conventions.
7883 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7884 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7885 an outer-level type (i.e., as opposed to a branch of a variant.) A
7886 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7887 of the variant.
14f9c5c9 7888
4c4b4cd2
PH
7889 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7890 length are not statically known are discarded. As a consequence,
7891 VALADDR, ADDRESS and DVAL0 are ignored.
7892
7893 NOTE: Limitations: For now, we assume that dynamic fields and
7894 variants occupy whole numbers of bytes. However, they need not be
7895 byte-aligned. */
7896
7897struct type *
10a2c479 7898ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7899 const gdb_byte *valaddr,
4c4b4cd2
PH
7900 CORE_ADDR address, struct value *dval0,
7901 int keep_dynamic_fields)
14f9c5c9 7902{
d2e4a39e
AS
7903 struct value *mark = value_mark ();
7904 struct value *dval;
7905 struct type *rtype;
14f9c5c9 7906 int nfields, bit_len;
4c4b4cd2 7907 int variant_field;
14f9c5c9 7908 long off;
d94e4f4f 7909 int fld_bit_len;
14f9c5c9
AS
7910 int f;
7911
4c4b4cd2
PH
7912 /* Compute the number of fields in this record type that are going
7913 to be processed: unless keep_dynamic_fields, this includes only
7914 fields whose position and length are static will be processed. */
7915 if (keep_dynamic_fields)
7916 nfields = TYPE_NFIELDS (type);
7917 else
7918 {
7919 nfields = 0;
76a01679 7920 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7921 && !ada_is_variant_part (type, nfields)
7922 && !is_dynamic_field (type, nfields))
7923 nfields++;
7924 }
7925
e9bb382b 7926 rtype = alloc_type_copy (type);
14f9c5c9
AS
7927 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7928 INIT_CPLUS_SPECIFIC (rtype);
7929 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7930 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7931 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7932 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7933 TYPE_NAME (rtype) = ada_type_name (type);
7934 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7935 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7936
d2e4a39e
AS
7937 off = 0;
7938 bit_len = 0;
4c4b4cd2
PH
7939 variant_field = -1;
7940
14f9c5c9
AS
7941 for (f = 0; f < nfields; f += 1)
7942 {
6c038f32
PH
7943 off = align_value (off, field_alignment (type, f))
7944 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7945 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7946 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7947
d2e4a39e 7948 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7949 {
7950 variant_field = f;
d94e4f4f 7951 fld_bit_len = 0;
4c4b4cd2 7952 }
14f9c5c9 7953 else if (is_dynamic_field (type, f))
4c4b4cd2 7954 {
284614f0
JB
7955 const gdb_byte *field_valaddr = valaddr;
7956 CORE_ADDR field_address = address;
7957 struct type *field_type =
7958 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7959
4c4b4cd2 7960 if (dval0 == NULL)
b5304971
JG
7961 {
7962 /* rtype's length is computed based on the run-time
7963 value of discriminants. If the discriminants are not
7964 initialized, the type size may be completely bogus and
0963b4bd 7965 GDB may fail to allocate a value for it. So check the
b5304971 7966 size first before creating the value. */
c1b5a1a6 7967 ada_ensure_varsize_limit (rtype);
012370f6
TT
7968 /* Using plain value_from_contents_and_address here
7969 causes problems because we will end up trying to
7970 resolve a type that is currently being
7971 constructed. */
7972 dval = value_from_contents_and_address_unresolved (rtype,
7973 valaddr,
7974 address);
9f1f738a 7975 rtype = value_type (dval);
b5304971 7976 }
4c4b4cd2
PH
7977 else
7978 dval = dval0;
7979
284614f0
JB
7980 /* If the type referenced by this field is an aligner type, we need
7981 to unwrap that aligner type, because its size might not be set.
7982 Keeping the aligner type would cause us to compute the wrong
7983 size for this field, impacting the offset of the all the fields
7984 that follow this one. */
7985 if (ada_is_aligner_type (field_type))
7986 {
7987 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7988
7989 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7990 field_address = cond_offset_target (field_address, field_offset);
7991 field_type = ada_aligned_type (field_type);
7992 }
7993
7994 field_valaddr = cond_offset_host (field_valaddr,
7995 off / TARGET_CHAR_BIT);
7996 field_address = cond_offset_target (field_address,
7997 off / TARGET_CHAR_BIT);
7998
7999 /* Get the fixed type of the field. Note that, in this case,
8000 we do not want to get the real type out of the tag: if
8001 the current field is the parent part of a tagged record,
8002 we will get the tag of the object. Clearly wrong: the real
8003 type of the parent is not the real type of the child. We
8004 would end up in an infinite loop. */
8005 field_type = ada_get_base_type (field_type);
8006 field_type = ada_to_fixed_type (field_type, field_valaddr,
8007 field_address, dval, 0);
27f2a97b
JB
8008 /* If the field size is already larger than the maximum
8009 object size, then the record itself will necessarily
8010 be larger than the maximum object size. We need to make
8011 this check now, because the size might be so ridiculously
8012 large (due to an uninitialized variable in the inferior)
8013 that it would cause an overflow when adding it to the
8014 record size. */
c1b5a1a6 8015 ada_ensure_varsize_limit (field_type);
284614f0
JB
8016
8017 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8018 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8019 /* The multiplication can potentially overflow. But because
8020 the field length has been size-checked just above, and
8021 assuming that the maximum size is a reasonable value,
8022 an overflow should not happen in practice. So rather than
8023 adding overflow recovery code to this already complex code,
8024 we just assume that it's not going to happen. */
d94e4f4f 8025 fld_bit_len =
4c4b4cd2
PH
8026 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8027 }
14f9c5c9 8028 else
4c4b4cd2 8029 {
5ded5331
JB
8030 /* Note: If this field's type is a typedef, it is important
8031 to preserve the typedef layer.
8032
8033 Otherwise, we might be transforming a typedef to a fat
8034 pointer (encoding a pointer to an unconstrained array),
8035 into a basic fat pointer (encoding an unconstrained
8036 array). As both types are implemented using the same
8037 structure, the typedef is the only clue which allows us
8038 to distinguish between the two options. Stripping it
8039 would prevent us from printing this field appropriately. */
8040 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8041 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8042 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8043 fld_bit_len =
4c4b4cd2
PH
8044 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8045 else
5ded5331
JB
8046 {
8047 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8048
8049 /* We need to be careful of typedefs when computing
8050 the length of our field. If this is a typedef,
8051 get the length of the target type, not the length
8052 of the typedef. */
8053 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8054 field_type = ada_typedef_target_type (field_type);
8055
8056 fld_bit_len =
8057 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8058 }
4c4b4cd2 8059 }
14f9c5c9 8060 if (off + fld_bit_len > bit_len)
4c4b4cd2 8061 bit_len = off + fld_bit_len;
d94e4f4f 8062 off += fld_bit_len;
4c4b4cd2
PH
8063 TYPE_LENGTH (rtype) =
8064 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8065 }
4c4b4cd2
PH
8066
8067 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8068 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8069 the record. This can happen in the presence of representation
8070 clauses. */
8071 if (variant_field >= 0)
8072 {
8073 struct type *branch_type;
8074
8075 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8076
8077 if (dval0 == NULL)
9f1f738a 8078 {
012370f6
TT
8079 /* Using plain value_from_contents_and_address here causes
8080 problems because we will end up trying to resolve a type
8081 that is currently being constructed. */
8082 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8083 address);
9f1f738a
SA
8084 rtype = value_type (dval);
8085 }
4c4b4cd2
PH
8086 else
8087 dval = dval0;
8088
8089 branch_type =
8090 to_fixed_variant_branch_type
8091 (TYPE_FIELD_TYPE (type, variant_field),
8092 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8093 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8094 if (branch_type == NULL)
8095 {
8096 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8097 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8098 TYPE_NFIELDS (rtype) -= 1;
8099 }
8100 else
8101 {
8102 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8103 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8104 fld_bit_len =
8105 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8106 TARGET_CHAR_BIT;
8107 if (off + fld_bit_len > bit_len)
8108 bit_len = off + fld_bit_len;
8109 TYPE_LENGTH (rtype) =
8110 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8111 }
8112 }
8113
714e53ab
PH
8114 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8115 should contain the alignment of that record, which should be a strictly
8116 positive value. If null or negative, then something is wrong, most
8117 probably in the debug info. In that case, we don't round up the size
0963b4bd 8118 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8119 the current RTYPE length might be good enough for our purposes. */
8120 if (TYPE_LENGTH (type) <= 0)
8121 {
323e0a4a
AC
8122 if (TYPE_NAME (rtype))
8123 warning (_("Invalid type size for `%s' detected: %d."),
8124 TYPE_NAME (rtype), TYPE_LENGTH (type));
8125 else
8126 warning (_("Invalid type size for <unnamed> detected: %d."),
8127 TYPE_LENGTH (type));
714e53ab
PH
8128 }
8129 else
8130 {
8131 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8132 TYPE_LENGTH (type));
8133 }
14f9c5c9
AS
8134
8135 value_free_to_mark (mark);
d2e4a39e 8136 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8137 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8138 return rtype;
8139}
8140
4c4b4cd2
PH
8141/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8142 of 1. */
14f9c5c9 8143
d2e4a39e 8144static struct type *
fc1a4b47 8145template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8146 CORE_ADDR address, struct value *dval0)
8147{
8148 return ada_template_to_fixed_record_type_1 (type, valaddr,
8149 address, dval0, 1);
8150}
8151
8152/* An ordinary record type in which ___XVL-convention fields and
8153 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8154 static approximations, containing all possible fields. Uses
8155 no runtime values. Useless for use in values, but that's OK,
8156 since the results are used only for type determinations. Works on both
8157 structs and unions. Representation note: to save space, we memorize
8158 the result of this function in the TYPE_TARGET_TYPE of the
8159 template type. */
8160
8161static struct type *
8162template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8163{
8164 struct type *type;
8165 int nfields;
8166 int f;
8167
4c4b4cd2
PH
8168 if (TYPE_TARGET_TYPE (type0) != NULL)
8169 return TYPE_TARGET_TYPE (type0);
8170
8171 nfields = TYPE_NFIELDS (type0);
8172 type = type0;
14f9c5c9
AS
8173
8174 for (f = 0; f < nfields; f += 1)
8175 {
61ee279c 8176 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8177 struct type *new_type;
14f9c5c9 8178
4c4b4cd2
PH
8179 if (is_dynamic_field (type0, f))
8180 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8181 else
f192137b 8182 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8183 if (type == type0 && new_type != field_type)
8184 {
e9bb382b 8185 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8186 TYPE_CODE (type) = TYPE_CODE (type0);
8187 INIT_CPLUS_SPECIFIC (type);
8188 TYPE_NFIELDS (type) = nfields;
8189 TYPE_FIELDS (type) = (struct field *)
8190 TYPE_ALLOC (type, nfields * sizeof (struct field));
8191 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8192 sizeof (struct field) * nfields);
8193 TYPE_NAME (type) = ada_type_name (type0);
8194 TYPE_TAG_NAME (type) = NULL;
876cecd0 8195 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8196 TYPE_LENGTH (type) = 0;
8197 }
8198 TYPE_FIELD_TYPE (type, f) = new_type;
8199 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8200 }
14f9c5c9
AS
8201 return type;
8202}
8203
4c4b4cd2 8204/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8205 whose address in memory is ADDRESS, returns a revision of TYPE,
8206 which should be a non-dynamic-sized record, in which the variant
8207 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8208 for discriminant values in DVAL0, which can be NULL if the record
8209 contains the necessary discriminant values. */
8210
d2e4a39e 8211static struct type *
fc1a4b47 8212to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8213 CORE_ADDR address, struct value *dval0)
14f9c5c9 8214{
d2e4a39e 8215 struct value *mark = value_mark ();
4c4b4cd2 8216 struct value *dval;
d2e4a39e 8217 struct type *rtype;
14f9c5c9
AS
8218 struct type *branch_type;
8219 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8220 int variant_field = variant_field_index (type);
14f9c5c9 8221
4c4b4cd2 8222 if (variant_field == -1)
14f9c5c9
AS
8223 return type;
8224
4c4b4cd2 8225 if (dval0 == NULL)
9f1f738a
SA
8226 {
8227 dval = value_from_contents_and_address (type, valaddr, address);
8228 type = value_type (dval);
8229 }
4c4b4cd2
PH
8230 else
8231 dval = dval0;
8232
e9bb382b 8233 rtype = alloc_type_copy (type);
14f9c5c9 8234 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8235 INIT_CPLUS_SPECIFIC (rtype);
8236 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8237 TYPE_FIELDS (rtype) =
8238 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8239 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8240 sizeof (struct field) * nfields);
14f9c5c9
AS
8241 TYPE_NAME (rtype) = ada_type_name (type);
8242 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8243 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8244 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8245
4c4b4cd2
PH
8246 branch_type = to_fixed_variant_branch_type
8247 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8248 cond_offset_host (valaddr,
4c4b4cd2
PH
8249 TYPE_FIELD_BITPOS (type, variant_field)
8250 / TARGET_CHAR_BIT),
d2e4a39e 8251 cond_offset_target (address,
4c4b4cd2
PH
8252 TYPE_FIELD_BITPOS (type, variant_field)
8253 / TARGET_CHAR_BIT), dval);
d2e4a39e 8254 if (branch_type == NULL)
14f9c5c9 8255 {
4c4b4cd2 8256 int f;
5b4ee69b 8257
4c4b4cd2
PH
8258 for (f = variant_field + 1; f < nfields; f += 1)
8259 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8260 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8261 }
8262 else
8263 {
4c4b4cd2
PH
8264 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8265 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8266 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8267 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8268 }
4c4b4cd2 8269 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8270
4c4b4cd2 8271 value_free_to_mark (mark);
14f9c5c9
AS
8272 return rtype;
8273}
8274
8275/* An ordinary record type (with fixed-length fields) that describes
8276 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8277 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8278 should be in DVAL, a record value; it may be NULL if the object
8279 at ADDR itself contains any necessary discriminant values.
8280 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8281 values from the record are needed. Except in the case that DVAL,
8282 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8283 unchecked) is replaced by a particular branch of the variant.
8284
8285 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8286 is questionable and may be removed. It can arise during the
8287 processing of an unconstrained-array-of-record type where all the
8288 variant branches have exactly the same size. This is because in
8289 such cases, the compiler does not bother to use the XVS convention
8290 when encoding the record. I am currently dubious of this
8291 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8292
d2e4a39e 8293static struct type *
fc1a4b47 8294to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8295 CORE_ADDR address, struct value *dval)
14f9c5c9 8296{
d2e4a39e 8297 struct type *templ_type;
14f9c5c9 8298
876cecd0 8299 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8300 return type0;
8301
d2e4a39e 8302 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8303
8304 if (templ_type != NULL)
8305 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8306 else if (variant_field_index (type0) >= 0)
8307 {
8308 if (dval == NULL && valaddr == NULL && address == 0)
8309 return type0;
8310 return to_record_with_fixed_variant_part (type0, valaddr, address,
8311 dval);
8312 }
14f9c5c9
AS
8313 else
8314 {
876cecd0 8315 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8316 return type0;
8317 }
8318
8319}
8320
8321/* An ordinary record type (with fixed-length fields) that describes
8322 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8323 union type. Any necessary discriminants' values should be in DVAL,
8324 a record value. That is, this routine selects the appropriate
8325 branch of the union at ADDR according to the discriminant value
b1f33ddd 8326 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8327 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8328
d2e4a39e 8329static struct type *
fc1a4b47 8330to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8331 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8332{
8333 int which;
d2e4a39e
AS
8334 struct type *templ_type;
8335 struct type *var_type;
14f9c5c9
AS
8336
8337 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8338 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8339 else
14f9c5c9
AS
8340 var_type = var_type0;
8341
8342 templ_type = ada_find_parallel_type (var_type, "___XVU");
8343
8344 if (templ_type != NULL)
8345 var_type = templ_type;
8346
b1f33ddd
JB
8347 if (is_unchecked_variant (var_type, value_type (dval)))
8348 return var_type0;
d2e4a39e
AS
8349 which =
8350 ada_which_variant_applies (var_type,
0fd88904 8351 value_type (dval), value_contents (dval));
14f9c5c9
AS
8352
8353 if (which < 0)
e9bb382b 8354 return empty_record (var_type);
14f9c5c9 8355 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8356 return to_fixed_record_type
d2e4a39e
AS
8357 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8358 valaddr, address, dval);
4c4b4cd2 8359 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8360 return
8361 to_fixed_record_type
8362 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8363 else
8364 return TYPE_FIELD_TYPE (var_type, which);
8365}
8366
8908fca5
JB
8367/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8368 ENCODING_TYPE, a type following the GNAT conventions for discrete
8369 type encodings, only carries redundant information. */
8370
8371static int
8372ada_is_redundant_range_encoding (struct type *range_type,
8373 struct type *encoding_type)
8374{
8375 struct type *fixed_range_type;
8376 char *bounds_str;
8377 int n;
8378 LONGEST lo, hi;
8379
8380 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8381
005e2509
JB
8382 if (TYPE_CODE (get_base_type (range_type))
8383 != TYPE_CODE (get_base_type (encoding_type)))
8384 {
8385 /* The compiler probably used a simple base type to describe
8386 the range type instead of the range's actual base type,
8387 expecting us to get the real base type from the encoding
8388 anyway. In this situation, the encoding cannot be ignored
8389 as redundant. */
8390 return 0;
8391 }
8392
8908fca5
JB
8393 if (is_dynamic_type (range_type))
8394 return 0;
8395
8396 if (TYPE_NAME (encoding_type) == NULL)
8397 return 0;
8398
8399 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8400 if (bounds_str == NULL)
8401 return 0;
8402
8403 n = 8; /* Skip "___XDLU_". */
8404 if (!ada_scan_number (bounds_str, n, &lo, &n))
8405 return 0;
8406 if (TYPE_LOW_BOUND (range_type) != lo)
8407 return 0;
8408
8409 n += 2; /* Skip the "__" separator between the two bounds. */
8410 if (!ada_scan_number (bounds_str, n, &hi, &n))
8411 return 0;
8412 if (TYPE_HIGH_BOUND (range_type) != hi)
8413 return 0;
8414
8415 return 1;
8416}
8417
8418/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8419 a type following the GNAT encoding for describing array type
8420 indices, only carries redundant information. */
8421
8422static int
8423ada_is_redundant_index_type_desc (struct type *array_type,
8424 struct type *desc_type)
8425{
8426 struct type *this_layer = check_typedef (array_type);
8427 int i;
8428
8429 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8430 {
8431 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8432 TYPE_FIELD_TYPE (desc_type, i)))
8433 return 0;
8434 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8435 }
8436
8437 return 1;
8438}
8439
14f9c5c9
AS
8440/* Assuming that TYPE0 is an array type describing the type of a value
8441 at ADDR, and that DVAL describes a record containing any
8442 discriminants used in TYPE0, returns a type for the value that
8443 contains no dynamic components (that is, no components whose sizes
8444 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8445 true, gives an error message if the resulting type's size is over
4c4b4cd2 8446 varsize_limit. */
14f9c5c9 8447
d2e4a39e
AS
8448static struct type *
8449to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8450 int ignore_too_big)
14f9c5c9 8451{
d2e4a39e
AS
8452 struct type *index_type_desc;
8453 struct type *result;
ad82864c 8454 int constrained_packed_array_p;
14f9c5c9 8455
b0dd7688 8456 type0 = ada_check_typedef (type0);
284614f0 8457 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8458 return type0;
14f9c5c9 8459
ad82864c
JB
8460 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8461 if (constrained_packed_array_p)
8462 type0 = decode_constrained_packed_array_type (type0);
284614f0 8463
14f9c5c9 8464 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8465 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8466 if (index_type_desc != NULL
8467 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8468 {
8469 /* Ignore this ___XA parallel type, as it does not bring any
8470 useful information. This allows us to avoid creating fixed
8471 versions of the array's index types, which would be identical
8472 to the original ones. This, in turn, can also help avoid
8473 the creation of fixed versions of the array itself. */
8474 index_type_desc = NULL;
8475 }
8476
14f9c5c9
AS
8477 if (index_type_desc == NULL)
8478 {
61ee279c 8479 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8480
14f9c5c9 8481 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8482 depend on the contents of the array in properly constructed
8483 debugging data. */
529cad9c
PH
8484 /* Create a fixed version of the array element type.
8485 We're not providing the address of an element here,
e1d5a0d2 8486 and thus the actual object value cannot be inspected to do
529cad9c
PH
8487 the conversion. This should not be a problem, since arrays of
8488 unconstrained objects are not allowed. In particular, all
8489 the elements of an array of a tagged type should all be of
8490 the same type specified in the debugging info. No need to
8491 consult the object tag. */
1ed6ede0 8492 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8493
284614f0
JB
8494 /* Make sure we always create a new array type when dealing with
8495 packed array types, since we're going to fix-up the array
8496 type length and element bitsize a little further down. */
ad82864c 8497 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8498 result = type0;
14f9c5c9 8499 else
e9bb382b 8500 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8501 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8502 }
8503 else
8504 {
8505 int i;
8506 struct type *elt_type0;
8507
8508 elt_type0 = type0;
8509 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8510 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8511
8512 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8513 depend on the contents of the array in properly constructed
8514 debugging data. */
529cad9c
PH
8515 /* Create a fixed version of the array element type.
8516 We're not providing the address of an element here,
e1d5a0d2 8517 and thus the actual object value cannot be inspected to do
529cad9c
PH
8518 the conversion. This should not be a problem, since arrays of
8519 unconstrained objects are not allowed. In particular, all
8520 the elements of an array of a tagged type should all be of
8521 the same type specified in the debugging info. No need to
8522 consult the object tag. */
1ed6ede0
JB
8523 result =
8524 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8525
8526 elt_type0 = type0;
14f9c5c9 8527 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8528 {
8529 struct type *range_type =
28c85d6c 8530 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8531
e9bb382b 8532 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8533 result, range_type);
1ce677a4 8534 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8535 }
d2e4a39e 8536 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8537 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8538 }
8539
2e6fda7d
JB
8540 /* We want to preserve the type name. This can be useful when
8541 trying to get the type name of a value that has already been
8542 printed (for instance, if the user did "print VAR; whatis $". */
8543 TYPE_NAME (result) = TYPE_NAME (type0);
8544
ad82864c 8545 if (constrained_packed_array_p)
284614f0
JB
8546 {
8547 /* So far, the resulting type has been created as if the original
8548 type was a regular (non-packed) array type. As a result, the
8549 bitsize of the array elements needs to be set again, and the array
8550 length needs to be recomputed based on that bitsize. */
8551 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8552 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8553
8554 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8555 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8556 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8557 TYPE_LENGTH (result)++;
8558 }
8559
876cecd0 8560 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8561 return result;
d2e4a39e 8562}
14f9c5c9
AS
8563
8564
8565/* A standard type (containing no dynamically sized components)
8566 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8567 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8568 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8569 ADDRESS or in VALADDR contains these discriminants.
8570
1ed6ede0
JB
8571 If CHECK_TAG is not null, in the case of tagged types, this function
8572 attempts to locate the object's tag and use it to compute the actual
8573 type. However, when ADDRESS is null, we cannot use it to determine the
8574 location of the tag, and therefore compute the tagged type's actual type.
8575 So we return the tagged type without consulting the tag. */
529cad9c 8576
f192137b
JB
8577static struct type *
8578ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8579 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8580{
61ee279c 8581 type = ada_check_typedef (type);
d2e4a39e
AS
8582 switch (TYPE_CODE (type))
8583 {
8584 default:
14f9c5c9 8585 return type;
d2e4a39e 8586 case TYPE_CODE_STRUCT:
4c4b4cd2 8587 {
76a01679 8588 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8589 struct type *fixed_record_type =
8590 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8591
529cad9c
PH
8592 /* If STATIC_TYPE is a tagged type and we know the object's address,
8593 then we can determine its tag, and compute the object's actual
0963b4bd 8594 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8595 type (the parent part of the record may have dynamic fields
8596 and the way the location of _tag is expressed may depend on
8597 them). */
529cad9c 8598
1ed6ede0 8599 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8600 {
b50d69b5
JG
8601 struct value *tag =
8602 value_tag_from_contents_and_address
8603 (fixed_record_type,
8604 valaddr,
8605 address);
8606 struct type *real_type = type_from_tag (tag);
8607 struct value *obj =
8608 value_from_contents_and_address (fixed_record_type,
8609 valaddr,
8610 address);
9f1f738a 8611 fixed_record_type = value_type (obj);
76a01679 8612 if (real_type != NULL)
b50d69b5
JG
8613 return to_fixed_record_type
8614 (real_type, NULL,
8615 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8616 }
4af88198
JB
8617
8618 /* Check to see if there is a parallel ___XVZ variable.
8619 If there is, then it provides the actual size of our type. */
8620 else if (ada_type_name (fixed_record_type) != NULL)
8621 {
0d5cff50 8622 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8623 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8624 int xvz_found = 0;
8625 LONGEST size;
8626
88c15c34 8627 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8628 size = get_int_var_value (xvz_name, &xvz_found);
8629 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8630 {
8631 fixed_record_type = copy_type (fixed_record_type);
8632 TYPE_LENGTH (fixed_record_type) = size;
8633
8634 /* The FIXED_RECORD_TYPE may have be a stub. We have
8635 observed this when the debugging info is STABS, and
8636 apparently it is something that is hard to fix.
8637
8638 In practice, we don't need the actual type definition
8639 at all, because the presence of the XVZ variable allows us
8640 to assume that there must be a XVS type as well, which we
8641 should be able to use later, when we need the actual type
8642 definition.
8643
8644 In the meantime, pretend that the "fixed" type we are
8645 returning is NOT a stub, because this can cause trouble
8646 when using this type to create new types targeting it.
8647 Indeed, the associated creation routines often check
8648 whether the target type is a stub and will try to replace
0963b4bd 8649 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8650 might cause the new type to have the wrong size too.
8651 Consider the case of an array, for instance, where the size
8652 of the array is computed from the number of elements in
8653 our array multiplied by the size of its element. */
8654 TYPE_STUB (fixed_record_type) = 0;
8655 }
8656 }
1ed6ede0 8657 return fixed_record_type;
4c4b4cd2 8658 }
d2e4a39e 8659 case TYPE_CODE_ARRAY:
4c4b4cd2 8660 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8661 case TYPE_CODE_UNION:
8662 if (dval == NULL)
4c4b4cd2 8663 return type;
d2e4a39e 8664 else
4c4b4cd2 8665 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8666 }
14f9c5c9
AS
8667}
8668
f192137b
JB
8669/* The same as ada_to_fixed_type_1, except that it preserves the type
8670 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8671
8672 The typedef layer needs be preserved in order to differentiate between
8673 arrays and array pointers when both types are implemented using the same
8674 fat pointer. In the array pointer case, the pointer is encoded as
8675 a typedef of the pointer type. For instance, considering:
8676
8677 type String_Access is access String;
8678 S1 : String_Access := null;
8679
8680 To the debugger, S1 is defined as a typedef of type String. But
8681 to the user, it is a pointer. So if the user tries to print S1,
8682 we should not dereference the array, but print the array address
8683 instead.
8684
8685 If we didn't preserve the typedef layer, we would lose the fact that
8686 the type is to be presented as a pointer (needs de-reference before
8687 being printed). And we would also use the source-level type name. */
f192137b
JB
8688
8689struct type *
8690ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8691 CORE_ADDR address, struct value *dval, int check_tag)
8692
8693{
8694 struct type *fixed_type =
8695 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8696
96dbd2c1
JB
8697 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8698 then preserve the typedef layer.
8699
8700 Implementation note: We can only check the main-type portion of
8701 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8702 from TYPE now returns a type that has the same instance flags
8703 as TYPE. For instance, if TYPE is a "typedef const", and its
8704 target type is a "struct", then the typedef elimination will return
8705 a "const" version of the target type. See check_typedef for more
8706 details about how the typedef layer elimination is done.
8707
8708 brobecker/2010-11-19: It seems to me that the only case where it is
8709 useful to preserve the typedef layer is when dealing with fat pointers.
8710 Perhaps, we could add a check for that and preserve the typedef layer
8711 only in that situation. But this seems unecessary so far, probably
8712 because we call check_typedef/ada_check_typedef pretty much everywhere.
8713 */
f192137b 8714 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8715 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8716 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8717 return type;
8718
8719 return fixed_type;
8720}
8721
14f9c5c9 8722/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8723 TYPE0, but based on no runtime data. */
14f9c5c9 8724
d2e4a39e
AS
8725static struct type *
8726to_static_fixed_type (struct type *type0)
14f9c5c9 8727{
d2e4a39e 8728 struct type *type;
14f9c5c9
AS
8729
8730 if (type0 == NULL)
8731 return NULL;
8732
876cecd0 8733 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8734 return type0;
8735
61ee279c 8736 type0 = ada_check_typedef (type0);
d2e4a39e 8737
14f9c5c9
AS
8738 switch (TYPE_CODE (type0))
8739 {
8740 default:
8741 return type0;
8742 case TYPE_CODE_STRUCT:
8743 type = dynamic_template_type (type0);
d2e4a39e 8744 if (type != NULL)
4c4b4cd2
PH
8745 return template_to_static_fixed_type (type);
8746 else
8747 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8748 case TYPE_CODE_UNION:
8749 type = ada_find_parallel_type (type0, "___XVU");
8750 if (type != NULL)
4c4b4cd2
PH
8751 return template_to_static_fixed_type (type);
8752 else
8753 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8754 }
8755}
8756
4c4b4cd2
PH
8757/* A static approximation of TYPE with all type wrappers removed. */
8758
d2e4a39e
AS
8759static struct type *
8760static_unwrap_type (struct type *type)
14f9c5c9
AS
8761{
8762 if (ada_is_aligner_type (type))
8763 {
61ee279c 8764 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8765 if (ada_type_name (type1) == NULL)
4c4b4cd2 8766 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8767
8768 return static_unwrap_type (type1);
8769 }
d2e4a39e 8770 else
14f9c5c9 8771 {
d2e4a39e 8772 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8773
d2e4a39e 8774 if (raw_real_type == type)
4c4b4cd2 8775 return type;
14f9c5c9 8776 else
4c4b4cd2 8777 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8778 }
8779}
8780
8781/* In some cases, incomplete and private types require
4c4b4cd2 8782 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8783 type Foo;
8784 type FooP is access Foo;
8785 V: FooP;
8786 type Foo is array ...;
4c4b4cd2 8787 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8788 cross-references to such types, we instead substitute for FooP a
8789 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8790 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8791
8792/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8793 exists, otherwise TYPE. */
8794
d2e4a39e 8795struct type *
61ee279c 8796ada_check_typedef (struct type *type)
14f9c5c9 8797{
727e3d2e
JB
8798 if (type == NULL)
8799 return NULL;
8800
720d1a40
JB
8801 /* If our type is a typedef type of a fat pointer, then we're done.
8802 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8803 what allows us to distinguish between fat pointers that represent
8804 array types, and fat pointers that represent array access types
8805 (in both cases, the compiler implements them as fat pointers). */
8806 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8807 && is_thick_pntr (ada_typedef_target_type (type)))
8808 return type;
8809
14f9c5c9
AS
8810 CHECK_TYPEDEF (type);
8811 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8812 || !TYPE_STUB (type)
14f9c5c9
AS
8813 || TYPE_TAG_NAME (type) == NULL)
8814 return type;
d2e4a39e 8815 else
14f9c5c9 8816 {
0d5cff50 8817 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8818 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8819
05e522ef
JB
8820 if (type1 == NULL)
8821 return type;
8822
8823 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8824 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8825 types, only for the typedef-to-array types). If that's the case,
8826 strip the typedef layer. */
8827 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8828 type1 = ada_check_typedef (type1);
8829
8830 return type1;
14f9c5c9
AS
8831 }
8832}
8833
8834/* A value representing the data at VALADDR/ADDRESS as described by
8835 type TYPE0, but with a standard (static-sized) type that correctly
8836 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8837 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8838 creation of struct values]. */
14f9c5c9 8839
4c4b4cd2
PH
8840static struct value *
8841ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8842 struct value *val0)
14f9c5c9 8843{
1ed6ede0 8844 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8845
14f9c5c9
AS
8846 if (type == type0 && val0 != NULL)
8847 return val0;
d2e4a39e 8848 else
4c4b4cd2
PH
8849 return value_from_contents_and_address (type, 0, address);
8850}
8851
8852/* A value representing VAL, but with a standard (static-sized) type
8853 that correctly describes it. Does not necessarily create a new
8854 value. */
8855
0c3acc09 8856struct value *
4c4b4cd2
PH
8857ada_to_fixed_value (struct value *val)
8858{
c48db5ca
JB
8859 val = unwrap_value (val);
8860 val = ada_to_fixed_value_create (value_type (val),
8861 value_address (val),
8862 val);
8863 return val;
14f9c5c9 8864}
d2e4a39e 8865\f
14f9c5c9 8866
14f9c5c9
AS
8867/* Attributes */
8868
4c4b4cd2
PH
8869/* Table mapping attribute numbers to names.
8870 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8871
d2e4a39e 8872static const char *attribute_names[] = {
14f9c5c9
AS
8873 "<?>",
8874
d2e4a39e 8875 "first",
14f9c5c9
AS
8876 "last",
8877 "length",
8878 "image",
14f9c5c9
AS
8879 "max",
8880 "min",
4c4b4cd2
PH
8881 "modulus",
8882 "pos",
8883 "size",
8884 "tag",
14f9c5c9 8885 "val",
14f9c5c9
AS
8886 0
8887};
8888
d2e4a39e 8889const char *
4c4b4cd2 8890ada_attribute_name (enum exp_opcode n)
14f9c5c9 8891{
4c4b4cd2
PH
8892 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8893 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8894 else
8895 return attribute_names[0];
8896}
8897
4c4b4cd2 8898/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8899
4c4b4cd2
PH
8900static LONGEST
8901pos_atr (struct value *arg)
14f9c5c9 8902{
24209737
PH
8903 struct value *val = coerce_ref (arg);
8904 struct type *type = value_type (val);
14f9c5c9 8905
d2e4a39e 8906 if (!discrete_type_p (type))
323e0a4a 8907 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8908
8909 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8910 {
8911 int i;
24209737 8912 LONGEST v = value_as_long (val);
14f9c5c9 8913
d2e4a39e 8914 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8915 {
14e75d8e 8916 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8917 return i;
8918 }
323e0a4a 8919 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8920 }
8921 else
24209737 8922 return value_as_long (val);
4c4b4cd2
PH
8923}
8924
8925static struct value *
3cb382c9 8926value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8927{
3cb382c9 8928 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8929}
8930
4c4b4cd2 8931/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8932
d2e4a39e
AS
8933static struct value *
8934value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8935{
d2e4a39e 8936 if (!discrete_type_p (type))
323e0a4a 8937 error (_("'VAL only defined on discrete types"));
df407dfe 8938 if (!integer_type_p (value_type (arg)))
323e0a4a 8939 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8940
8941 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8942 {
8943 long pos = value_as_long (arg);
5b4ee69b 8944
14f9c5c9 8945 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8946 error (_("argument to 'VAL out of range"));
14e75d8e 8947 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8948 }
8949 else
8950 return value_from_longest (type, value_as_long (arg));
8951}
14f9c5c9 8952\f
d2e4a39e 8953
4c4b4cd2 8954 /* Evaluation */
14f9c5c9 8955
4c4b4cd2
PH
8956/* True if TYPE appears to be an Ada character type.
8957 [At the moment, this is true only for Character and Wide_Character;
8958 It is a heuristic test that could stand improvement]. */
14f9c5c9 8959
d2e4a39e
AS
8960int
8961ada_is_character_type (struct type *type)
14f9c5c9 8962{
7b9f71f2
JB
8963 const char *name;
8964
8965 /* If the type code says it's a character, then assume it really is,
8966 and don't check any further. */
8967 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8968 return 1;
8969
8970 /* Otherwise, assume it's a character type iff it is a discrete type
8971 with a known character type name. */
8972 name = ada_type_name (type);
8973 return (name != NULL
8974 && (TYPE_CODE (type) == TYPE_CODE_INT
8975 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8976 && (strcmp (name, "character") == 0
8977 || strcmp (name, "wide_character") == 0
5a517ebd 8978 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8979 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8980}
8981
4c4b4cd2 8982/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8983
8984int
ebf56fd3 8985ada_is_string_type (struct type *type)
14f9c5c9 8986{
61ee279c 8987 type = ada_check_typedef (type);
d2e4a39e 8988 if (type != NULL
14f9c5c9 8989 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8990 && (ada_is_simple_array_type (type)
8991 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8992 && ada_array_arity (type) == 1)
8993 {
8994 struct type *elttype = ada_array_element_type (type, 1);
8995
8996 return ada_is_character_type (elttype);
8997 }
d2e4a39e 8998 else
14f9c5c9
AS
8999 return 0;
9000}
9001
5bf03f13
JB
9002/* The compiler sometimes provides a parallel XVS type for a given
9003 PAD type. Normally, it is safe to follow the PAD type directly,
9004 but older versions of the compiler have a bug that causes the offset
9005 of its "F" field to be wrong. Following that field in that case
9006 would lead to incorrect results, but this can be worked around
9007 by ignoring the PAD type and using the associated XVS type instead.
9008
9009 Set to True if the debugger should trust the contents of PAD types.
9010 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9011static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9012
9013/* True if TYPE is a struct type introduced by the compiler to force the
9014 alignment of a value. Such types have a single field with a
4c4b4cd2 9015 distinctive name. */
14f9c5c9
AS
9016
9017int
ebf56fd3 9018ada_is_aligner_type (struct type *type)
14f9c5c9 9019{
61ee279c 9020 type = ada_check_typedef (type);
714e53ab 9021
5bf03f13 9022 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9023 return 0;
9024
14f9c5c9 9025 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9026 && TYPE_NFIELDS (type) == 1
9027 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9028}
9029
9030/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9031 the parallel type. */
14f9c5c9 9032
d2e4a39e
AS
9033struct type *
9034ada_get_base_type (struct type *raw_type)
14f9c5c9 9035{
d2e4a39e
AS
9036 struct type *real_type_namer;
9037 struct type *raw_real_type;
14f9c5c9
AS
9038
9039 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9040 return raw_type;
9041
284614f0
JB
9042 if (ada_is_aligner_type (raw_type))
9043 /* The encoding specifies that we should always use the aligner type.
9044 So, even if this aligner type has an associated XVS type, we should
9045 simply ignore it.
9046
9047 According to the compiler gurus, an XVS type parallel to an aligner
9048 type may exist because of a stabs limitation. In stabs, aligner
9049 types are empty because the field has a variable-sized type, and
9050 thus cannot actually be used as an aligner type. As a result,
9051 we need the associated parallel XVS type to decode the type.
9052 Since the policy in the compiler is to not change the internal
9053 representation based on the debugging info format, we sometimes
9054 end up having a redundant XVS type parallel to the aligner type. */
9055 return raw_type;
9056
14f9c5c9 9057 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9058 if (real_type_namer == NULL
14f9c5c9
AS
9059 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9060 || TYPE_NFIELDS (real_type_namer) != 1)
9061 return raw_type;
9062
f80d3ff2
JB
9063 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9064 {
9065 /* This is an older encoding form where the base type needs to be
9066 looked up by name. We prefer the newer enconding because it is
9067 more efficient. */
9068 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9069 if (raw_real_type == NULL)
9070 return raw_type;
9071 else
9072 return raw_real_type;
9073 }
9074
9075 /* The field in our XVS type is a reference to the base type. */
9076 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9077}
14f9c5c9 9078
4c4b4cd2 9079/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9080
d2e4a39e
AS
9081struct type *
9082ada_aligned_type (struct type *type)
14f9c5c9
AS
9083{
9084 if (ada_is_aligner_type (type))
9085 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9086 else
9087 return ada_get_base_type (type);
9088}
9089
9090
9091/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9092 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9093
fc1a4b47
AC
9094const gdb_byte *
9095ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9096{
d2e4a39e 9097 if (ada_is_aligner_type (type))
14f9c5c9 9098 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9099 valaddr +
9100 TYPE_FIELD_BITPOS (type,
9101 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9102 else
9103 return valaddr;
9104}
9105
4c4b4cd2
PH
9106
9107
14f9c5c9 9108/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9109 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9110const char *
9111ada_enum_name (const char *name)
14f9c5c9 9112{
4c4b4cd2
PH
9113 static char *result;
9114 static size_t result_len = 0;
d2e4a39e 9115 char *tmp;
14f9c5c9 9116
4c4b4cd2
PH
9117 /* First, unqualify the enumeration name:
9118 1. Search for the last '.' character. If we find one, then skip
177b42fe 9119 all the preceding characters, the unqualified name starts
76a01679 9120 right after that dot.
4c4b4cd2 9121 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9122 translates dots into "__". Search forward for double underscores,
9123 but stop searching when we hit an overloading suffix, which is
9124 of the form "__" followed by digits. */
4c4b4cd2 9125
c3e5cd34
PH
9126 tmp = strrchr (name, '.');
9127 if (tmp != NULL)
4c4b4cd2
PH
9128 name = tmp + 1;
9129 else
14f9c5c9 9130 {
4c4b4cd2
PH
9131 while ((tmp = strstr (name, "__")) != NULL)
9132 {
9133 if (isdigit (tmp[2]))
9134 break;
9135 else
9136 name = tmp + 2;
9137 }
14f9c5c9
AS
9138 }
9139
9140 if (name[0] == 'Q')
9141 {
14f9c5c9 9142 int v;
5b4ee69b 9143
14f9c5c9 9144 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9145 {
9146 if (sscanf (name + 2, "%x", &v) != 1)
9147 return name;
9148 }
14f9c5c9 9149 else
4c4b4cd2 9150 return name;
14f9c5c9 9151
4c4b4cd2 9152 GROW_VECT (result, result_len, 16);
14f9c5c9 9153 if (isascii (v) && isprint (v))
88c15c34 9154 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9155 else if (name[1] == 'U')
88c15c34 9156 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9157 else
88c15c34 9158 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9159
9160 return result;
9161 }
d2e4a39e 9162 else
4c4b4cd2 9163 {
c3e5cd34
PH
9164 tmp = strstr (name, "__");
9165 if (tmp == NULL)
9166 tmp = strstr (name, "$");
9167 if (tmp != NULL)
4c4b4cd2
PH
9168 {
9169 GROW_VECT (result, result_len, tmp - name + 1);
9170 strncpy (result, name, tmp - name);
9171 result[tmp - name] = '\0';
9172 return result;
9173 }
9174
9175 return name;
9176 }
14f9c5c9
AS
9177}
9178
14f9c5c9
AS
9179/* Evaluate the subexpression of EXP starting at *POS as for
9180 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9181 expression. */
14f9c5c9 9182
d2e4a39e
AS
9183static struct value *
9184evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9185{
4b27a620 9186 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9187}
9188
9189/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9190 value it wraps. */
14f9c5c9 9191
d2e4a39e
AS
9192static struct value *
9193unwrap_value (struct value *val)
14f9c5c9 9194{
df407dfe 9195 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9196
14f9c5c9
AS
9197 if (ada_is_aligner_type (type))
9198 {
de4d072f 9199 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9200 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9201
14f9c5c9 9202 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9203 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9204
9205 return unwrap_value (v);
9206 }
d2e4a39e 9207 else
14f9c5c9 9208 {
d2e4a39e 9209 struct type *raw_real_type =
61ee279c 9210 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9211
5bf03f13
JB
9212 /* If there is no parallel XVS or XVE type, then the value is
9213 already unwrapped. Return it without further modification. */
9214 if ((type == raw_real_type)
9215 && ada_find_parallel_type (type, "___XVE") == NULL)
9216 return val;
14f9c5c9 9217
d2e4a39e 9218 return
4c4b4cd2
PH
9219 coerce_unspec_val_to_type
9220 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9221 value_address (val),
1ed6ede0 9222 NULL, 1));
14f9c5c9
AS
9223 }
9224}
d2e4a39e
AS
9225
9226static struct value *
9227cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9228{
9229 LONGEST val;
9230
df407dfe 9231 if (type == value_type (arg))
14f9c5c9 9232 return arg;
df407dfe 9233 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9234 val = ada_float_to_fixed (type,
df407dfe 9235 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9236 value_as_long (arg)));
d2e4a39e 9237 else
14f9c5c9 9238 {
a53b7a21 9239 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9240
14f9c5c9
AS
9241 val = ada_float_to_fixed (type, argd);
9242 }
9243
9244 return value_from_longest (type, val);
9245}
9246
d2e4a39e 9247static struct value *
a53b7a21 9248cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9249{
df407dfe 9250 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9251 value_as_long (arg));
5b4ee69b 9252
a53b7a21 9253 return value_from_double (type, val);
14f9c5c9
AS
9254}
9255
d99dcf51
JB
9256/* Given two array types T1 and T2, return nonzero iff both arrays
9257 contain the same number of elements. */
9258
9259static int
9260ada_same_array_size_p (struct type *t1, struct type *t2)
9261{
9262 LONGEST lo1, hi1, lo2, hi2;
9263
9264 /* Get the array bounds in order to verify that the size of
9265 the two arrays match. */
9266 if (!get_array_bounds (t1, &lo1, &hi1)
9267 || !get_array_bounds (t2, &lo2, &hi2))
9268 error (_("unable to determine array bounds"));
9269
9270 /* To make things easier for size comparison, normalize a bit
9271 the case of empty arrays by making sure that the difference
9272 between upper bound and lower bound is always -1. */
9273 if (lo1 > hi1)
9274 hi1 = lo1 - 1;
9275 if (lo2 > hi2)
9276 hi2 = lo2 - 1;
9277
9278 return (hi1 - lo1 == hi2 - lo2);
9279}
9280
9281/* Assuming that VAL is an array of integrals, and TYPE represents
9282 an array with the same number of elements, but with wider integral
9283 elements, return an array "casted" to TYPE. In practice, this
9284 means that the returned array is built by casting each element
9285 of the original array into TYPE's (wider) element type. */
9286
9287static struct value *
9288ada_promote_array_of_integrals (struct type *type, struct value *val)
9289{
9290 struct type *elt_type = TYPE_TARGET_TYPE (type);
9291 LONGEST lo, hi;
9292 struct value *res;
9293 LONGEST i;
9294
9295 /* Verify that both val and type are arrays of scalars, and
9296 that the size of val's elements is smaller than the size
9297 of type's element. */
9298 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9299 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9300 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9301 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9302 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9303 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9304
9305 if (!get_array_bounds (type, &lo, &hi))
9306 error (_("unable to determine array bounds"));
9307
9308 res = allocate_value (type);
9309
9310 /* Promote each array element. */
9311 for (i = 0; i < hi - lo + 1; i++)
9312 {
9313 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9314
9315 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9316 value_contents_all (elt), TYPE_LENGTH (elt_type));
9317 }
9318
9319 return res;
9320}
9321
4c4b4cd2
PH
9322/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9323 return the converted value. */
9324
d2e4a39e
AS
9325static struct value *
9326coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9327{
df407dfe 9328 struct type *type2 = value_type (val);
5b4ee69b 9329
14f9c5c9
AS
9330 if (type == type2)
9331 return val;
9332
61ee279c
PH
9333 type2 = ada_check_typedef (type2);
9334 type = ada_check_typedef (type);
14f9c5c9 9335
d2e4a39e
AS
9336 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9337 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9338 {
9339 val = ada_value_ind (val);
df407dfe 9340 type2 = value_type (val);
14f9c5c9
AS
9341 }
9342
d2e4a39e 9343 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9344 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9345 {
d99dcf51
JB
9346 if (!ada_same_array_size_p (type, type2))
9347 error (_("cannot assign arrays of different length"));
9348
9349 if (is_integral_type (TYPE_TARGET_TYPE (type))
9350 && is_integral_type (TYPE_TARGET_TYPE (type2))
9351 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9352 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9353 {
9354 /* Allow implicit promotion of the array elements to
9355 a wider type. */
9356 return ada_promote_array_of_integrals (type, val);
9357 }
9358
9359 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9360 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9361 error (_("Incompatible types in assignment"));
04624583 9362 deprecated_set_value_type (val, type);
14f9c5c9 9363 }
d2e4a39e 9364 return val;
14f9c5c9
AS
9365}
9366
4c4b4cd2
PH
9367static struct value *
9368ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9369{
9370 struct value *val;
9371 struct type *type1, *type2;
9372 LONGEST v, v1, v2;
9373
994b9211
AC
9374 arg1 = coerce_ref (arg1);
9375 arg2 = coerce_ref (arg2);
18af8284
JB
9376 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9377 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9378
76a01679
JB
9379 if (TYPE_CODE (type1) != TYPE_CODE_INT
9380 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9381 return value_binop (arg1, arg2, op);
9382
76a01679 9383 switch (op)
4c4b4cd2
PH
9384 {
9385 case BINOP_MOD:
9386 case BINOP_DIV:
9387 case BINOP_REM:
9388 break;
9389 default:
9390 return value_binop (arg1, arg2, op);
9391 }
9392
9393 v2 = value_as_long (arg2);
9394 if (v2 == 0)
323e0a4a 9395 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9396
9397 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9398 return value_binop (arg1, arg2, op);
9399
9400 v1 = value_as_long (arg1);
9401 switch (op)
9402 {
9403 case BINOP_DIV:
9404 v = v1 / v2;
76a01679
JB
9405 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9406 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9407 break;
9408 case BINOP_REM:
9409 v = v1 % v2;
76a01679
JB
9410 if (v * v1 < 0)
9411 v -= v2;
4c4b4cd2
PH
9412 break;
9413 default:
9414 /* Should not reach this point. */
9415 v = 0;
9416 }
9417
9418 val = allocate_value (type1);
990a07ab 9419 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9420 TYPE_LENGTH (value_type (val)),
9421 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9422 return val;
9423}
9424
9425static int
9426ada_value_equal (struct value *arg1, struct value *arg2)
9427{
df407dfe
AC
9428 if (ada_is_direct_array_type (value_type (arg1))
9429 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9430 {
f58b38bf
JB
9431 /* Automatically dereference any array reference before
9432 we attempt to perform the comparison. */
9433 arg1 = ada_coerce_ref (arg1);
9434 arg2 = ada_coerce_ref (arg2);
9435
4c4b4cd2
PH
9436 arg1 = ada_coerce_to_simple_array (arg1);
9437 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9438 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9439 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9440 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9441 /* FIXME: The following works only for types whose
76a01679
JB
9442 representations use all bits (no padding or undefined bits)
9443 and do not have user-defined equality. */
9444 return
df407dfe 9445 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9446 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9447 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9448 }
9449 return value_equal (arg1, arg2);
9450}
9451
52ce6436
PH
9452/* Total number of component associations in the aggregate starting at
9453 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9454 OP_AGGREGATE. */
52ce6436
PH
9455
9456static int
9457num_component_specs (struct expression *exp, int pc)
9458{
9459 int n, m, i;
5b4ee69b 9460
52ce6436
PH
9461 m = exp->elts[pc + 1].longconst;
9462 pc += 3;
9463 n = 0;
9464 for (i = 0; i < m; i += 1)
9465 {
9466 switch (exp->elts[pc].opcode)
9467 {
9468 default:
9469 n += 1;
9470 break;
9471 case OP_CHOICES:
9472 n += exp->elts[pc + 1].longconst;
9473 break;
9474 }
9475 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9476 }
9477 return n;
9478}
9479
9480/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9481 component of LHS (a simple array or a record), updating *POS past
9482 the expression, assuming that LHS is contained in CONTAINER. Does
9483 not modify the inferior's memory, nor does it modify LHS (unless
9484 LHS == CONTAINER). */
9485
9486static void
9487assign_component (struct value *container, struct value *lhs, LONGEST index,
9488 struct expression *exp, int *pos)
9489{
9490 struct value *mark = value_mark ();
9491 struct value *elt;
5b4ee69b 9492
52ce6436
PH
9493 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9494 {
22601c15
UW
9495 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9496 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9497
52ce6436
PH
9498 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9499 }
9500 else
9501 {
9502 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9503 elt = ada_to_fixed_value (elt);
52ce6436
PH
9504 }
9505
9506 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9507 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9508 else
9509 value_assign_to_component (container, elt,
9510 ada_evaluate_subexp (NULL, exp, pos,
9511 EVAL_NORMAL));
9512
9513 value_free_to_mark (mark);
9514}
9515
9516/* Assuming that LHS represents an lvalue having a record or array
9517 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9518 of that aggregate's value to LHS, advancing *POS past the
9519 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9520 lvalue containing LHS (possibly LHS itself). Does not modify
9521 the inferior's memory, nor does it modify the contents of
0963b4bd 9522 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9523
9524static struct value *
9525assign_aggregate (struct value *container,
9526 struct value *lhs, struct expression *exp,
9527 int *pos, enum noside noside)
9528{
9529 struct type *lhs_type;
9530 int n = exp->elts[*pos+1].longconst;
9531 LONGEST low_index, high_index;
9532 int num_specs;
9533 LONGEST *indices;
9534 int max_indices, num_indices;
52ce6436 9535 int i;
52ce6436
PH
9536
9537 *pos += 3;
9538 if (noside != EVAL_NORMAL)
9539 {
52ce6436
PH
9540 for (i = 0; i < n; i += 1)
9541 ada_evaluate_subexp (NULL, exp, pos, noside);
9542 return container;
9543 }
9544
9545 container = ada_coerce_ref (container);
9546 if (ada_is_direct_array_type (value_type (container)))
9547 container = ada_coerce_to_simple_array (container);
9548 lhs = ada_coerce_ref (lhs);
9549 if (!deprecated_value_modifiable (lhs))
9550 error (_("Left operand of assignment is not a modifiable lvalue."));
9551
9552 lhs_type = value_type (lhs);
9553 if (ada_is_direct_array_type (lhs_type))
9554 {
9555 lhs = ada_coerce_to_simple_array (lhs);
9556 lhs_type = value_type (lhs);
9557 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9558 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9559 }
9560 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9561 {
9562 low_index = 0;
9563 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9564 }
9565 else
9566 error (_("Left-hand side must be array or record."));
9567
9568 num_specs = num_component_specs (exp, *pos - 3);
9569 max_indices = 4 * num_specs + 4;
9570 indices = alloca (max_indices * sizeof (indices[0]));
9571 indices[0] = indices[1] = low_index - 1;
9572 indices[2] = indices[3] = high_index + 1;
9573 num_indices = 4;
9574
9575 for (i = 0; i < n; i += 1)
9576 {
9577 switch (exp->elts[*pos].opcode)
9578 {
1fbf5ada
JB
9579 case OP_CHOICES:
9580 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9581 &num_indices, max_indices,
9582 low_index, high_index);
9583 break;
9584 case OP_POSITIONAL:
9585 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9586 &num_indices, max_indices,
9587 low_index, high_index);
1fbf5ada
JB
9588 break;
9589 case OP_OTHERS:
9590 if (i != n-1)
9591 error (_("Misplaced 'others' clause"));
9592 aggregate_assign_others (container, lhs, exp, pos, indices,
9593 num_indices, low_index, high_index);
9594 break;
9595 default:
9596 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9597 }
9598 }
9599
9600 return container;
9601}
9602
9603/* Assign into the component of LHS indexed by the OP_POSITIONAL
9604 construct at *POS, updating *POS past the construct, given that
9605 the positions are relative to lower bound LOW, where HIGH is the
9606 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9607 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9608 assign_aggregate. */
52ce6436
PH
9609static void
9610aggregate_assign_positional (struct value *container,
9611 struct value *lhs, struct expression *exp,
9612 int *pos, LONGEST *indices, int *num_indices,
9613 int max_indices, LONGEST low, LONGEST high)
9614{
9615 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9616
9617 if (ind - 1 == high)
e1d5a0d2 9618 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9619 if (ind <= high)
9620 {
9621 add_component_interval (ind, ind, indices, num_indices, max_indices);
9622 *pos += 3;
9623 assign_component (container, lhs, ind, exp, pos);
9624 }
9625 else
9626 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9627}
9628
9629/* Assign into the components of LHS indexed by the OP_CHOICES
9630 construct at *POS, updating *POS past the construct, given that
9631 the allowable indices are LOW..HIGH. Record the indices assigned
9632 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9633 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9634static void
9635aggregate_assign_from_choices (struct value *container,
9636 struct value *lhs, struct expression *exp,
9637 int *pos, LONGEST *indices, int *num_indices,
9638 int max_indices, LONGEST low, LONGEST high)
9639{
9640 int j;
9641 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9642 int choice_pos, expr_pc;
9643 int is_array = ada_is_direct_array_type (value_type (lhs));
9644
9645 choice_pos = *pos += 3;
9646
9647 for (j = 0; j < n_choices; j += 1)
9648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9649 expr_pc = *pos;
9650 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9651
9652 for (j = 0; j < n_choices; j += 1)
9653 {
9654 LONGEST lower, upper;
9655 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9656
52ce6436
PH
9657 if (op == OP_DISCRETE_RANGE)
9658 {
9659 choice_pos += 1;
9660 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9661 EVAL_NORMAL));
9662 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9663 EVAL_NORMAL));
9664 }
9665 else if (is_array)
9666 {
9667 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9668 EVAL_NORMAL));
9669 upper = lower;
9670 }
9671 else
9672 {
9673 int ind;
0d5cff50 9674 const char *name;
5b4ee69b 9675
52ce6436
PH
9676 switch (op)
9677 {
9678 case OP_NAME:
9679 name = &exp->elts[choice_pos + 2].string;
9680 break;
9681 case OP_VAR_VALUE:
9682 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9683 break;
9684 default:
9685 error (_("Invalid record component association."));
9686 }
9687 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9688 ind = 0;
9689 if (! find_struct_field (name, value_type (lhs), 0,
9690 NULL, NULL, NULL, NULL, &ind))
9691 error (_("Unknown component name: %s."), name);
9692 lower = upper = ind;
9693 }
9694
9695 if (lower <= upper && (lower < low || upper > high))
9696 error (_("Index in component association out of bounds."));
9697
9698 add_component_interval (lower, upper, indices, num_indices,
9699 max_indices);
9700 while (lower <= upper)
9701 {
9702 int pos1;
5b4ee69b 9703
52ce6436
PH
9704 pos1 = expr_pc;
9705 assign_component (container, lhs, lower, exp, &pos1);
9706 lower += 1;
9707 }
9708 }
9709}
9710
9711/* Assign the value of the expression in the OP_OTHERS construct in
9712 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9713 have not been previously assigned. The index intervals already assigned
9714 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9715 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9716static void
9717aggregate_assign_others (struct value *container,
9718 struct value *lhs, struct expression *exp,
9719 int *pos, LONGEST *indices, int num_indices,
9720 LONGEST low, LONGEST high)
9721{
9722 int i;
5ce64950 9723 int expr_pc = *pos + 1;
52ce6436
PH
9724
9725 for (i = 0; i < num_indices - 2; i += 2)
9726 {
9727 LONGEST ind;
5b4ee69b 9728
52ce6436
PH
9729 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9730 {
5ce64950 9731 int localpos;
5b4ee69b 9732
5ce64950
MS
9733 localpos = expr_pc;
9734 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9735 }
9736 }
9737 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9738}
9739
9740/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9741 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9742 modifying *SIZE as needed. It is an error if *SIZE exceeds
9743 MAX_SIZE. The resulting intervals do not overlap. */
9744static void
9745add_component_interval (LONGEST low, LONGEST high,
9746 LONGEST* indices, int *size, int max_size)
9747{
9748 int i, j;
5b4ee69b 9749
52ce6436
PH
9750 for (i = 0; i < *size; i += 2) {
9751 if (high >= indices[i] && low <= indices[i + 1])
9752 {
9753 int kh;
5b4ee69b 9754
52ce6436
PH
9755 for (kh = i + 2; kh < *size; kh += 2)
9756 if (high < indices[kh])
9757 break;
9758 if (low < indices[i])
9759 indices[i] = low;
9760 indices[i + 1] = indices[kh - 1];
9761 if (high > indices[i + 1])
9762 indices[i + 1] = high;
9763 memcpy (indices + i + 2, indices + kh, *size - kh);
9764 *size -= kh - i - 2;
9765 return;
9766 }
9767 else if (high < indices[i])
9768 break;
9769 }
9770
9771 if (*size == max_size)
9772 error (_("Internal error: miscounted aggregate components."));
9773 *size += 2;
9774 for (j = *size-1; j >= i+2; j -= 1)
9775 indices[j] = indices[j - 2];
9776 indices[i] = low;
9777 indices[i + 1] = high;
9778}
9779
6e48bd2c
JB
9780/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9781 is different. */
9782
9783static struct value *
9784ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9785{
9786 if (type == ada_check_typedef (value_type (arg2)))
9787 return arg2;
9788
9789 if (ada_is_fixed_point_type (type))
9790 return (cast_to_fixed (type, arg2));
9791
9792 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9793 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9794
9795 return value_cast (type, arg2);
9796}
9797
284614f0
JB
9798/* Evaluating Ada expressions, and printing their result.
9799 ------------------------------------------------------
9800
21649b50
JB
9801 1. Introduction:
9802 ----------------
9803
284614f0
JB
9804 We usually evaluate an Ada expression in order to print its value.
9805 We also evaluate an expression in order to print its type, which
9806 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9807 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9808 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9809 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9810 similar.
9811
9812 Evaluating expressions is a little more complicated for Ada entities
9813 than it is for entities in languages such as C. The main reason for
9814 this is that Ada provides types whose definition might be dynamic.
9815 One example of such types is variant records. Or another example
9816 would be an array whose bounds can only be known at run time.
9817
9818 The following description is a general guide as to what should be
9819 done (and what should NOT be done) in order to evaluate an expression
9820 involving such types, and when. This does not cover how the semantic
9821 information is encoded by GNAT as this is covered separatly. For the
9822 document used as the reference for the GNAT encoding, see exp_dbug.ads
9823 in the GNAT sources.
9824
9825 Ideally, we should embed each part of this description next to its
9826 associated code. Unfortunately, the amount of code is so vast right
9827 now that it's hard to see whether the code handling a particular
9828 situation might be duplicated or not. One day, when the code is
9829 cleaned up, this guide might become redundant with the comments
9830 inserted in the code, and we might want to remove it.
9831
21649b50
JB
9832 2. ``Fixing'' an Entity, the Simple Case:
9833 -----------------------------------------
9834
284614f0
JB
9835 When evaluating Ada expressions, the tricky issue is that they may
9836 reference entities whose type contents and size are not statically
9837 known. Consider for instance a variant record:
9838
9839 type Rec (Empty : Boolean := True) is record
9840 case Empty is
9841 when True => null;
9842 when False => Value : Integer;
9843 end case;
9844 end record;
9845 Yes : Rec := (Empty => False, Value => 1);
9846 No : Rec := (empty => True);
9847
9848 The size and contents of that record depends on the value of the
9849 descriminant (Rec.Empty). At this point, neither the debugging
9850 information nor the associated type structure in GDB are able to
9851 express such dynamic types. So what the debugger does is to create
9852 "fixed" versions of the type that applies to the specific object.
9853 We also informally refer to this opperation as "fixing" an object,
9854 which means creating its associated fixed type.
9855
9856 Example: when printing the value of variable "Yes" above, its fixed
9857 type would look like this:
9858
9859 type Rec is record
9860 Empty : Boolean;
9861 Value : Integer;
9862 end record;
9863
9864 On the other hand, if we printed the value of "No", its fixed type
9865 would become:
9866
9867 type Rec is record
9868 Empty : Boolean;
9869 end record;
9870
9871 Things become a little more complicated when trying to fix an entity
9872 with a dynamic type that directly contains another dynamic type,
9873 such as an array of variant records, for instance. There are
9874 two possible cases: Arrays, and records.
9875
21649b50
JB
9876 3. ``Fixing'' Arrays:
9877 ---------------------
9878
9879 The type structure in GDB describes an array in terms of its bounds,
9880 and the type of its elements. By design, all elements in the array
9881 have the same type and we cannot represent an array of variant elements
9882 using the current type structure in GDB. When fixing an array,
9883 we cannot fix the array element, as we would potentially need one
9884 fixed type per element of the array. As a result, the best we can do
9885 when fixing an array is to produce an array whose bounds and size
9886 are correct (allowing us to read it from memory), but without having
9887 touched its element type. Fixing each element will be done later,
9888 when (if) necessary.
9889
9890 Arrays are a little simpler to handle than records, because the same
9891 amount of memory is allocated for each element of the array, even if
1b536f04 9892 the amount of space actually used by each element differs from element
21649b50 9893 to element. Consider for instance the following array of type Rec:
284614f0
JB
9894
9895 type Rec_Array is array (1 .. 2) of Rec;
9896
1b536f04
JB
9897 The actual amount of memory occupied by each element might be different
9898 from element to element, depending on the value of their discriminant.
21649b50 9899 But the amount of space reserved for each element in the array remains
1b536f04 9900 fixed regardless. So we simply need to compute that size using
21649b50
JB
9901 the debugging information available, from which we can then determine
9902 the array size (we multiply the number of elements of the array by
9903 the size of each element).
9904
9905 The simplest case is when we have an array of a constrained element
9906 type. For instance, consider the following type declarations:
9907
9908 type Bounded_String (Max_Size : Integer) is
9909 Length : Integer;
9910 Buffer : String (1 .. Max_Size);
9911 end record;
9912 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9913
9914 In this case, the compiler describes the array as an array of
9915 variable-size elements (identified by its XVS suffix) for which
9916 the size can be read in the parallel XVZ variable.
9917
9918 In the case of an array of an unconstrained element type, the compiler
9919 wraps the array element inside a private PAD type. This type should not
9920 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9921 that we also use the adjective "aligner" in our code to designate
9922 these wrapper types.
9923
1b536f04 9924 In some cases, the size allocated for each element is statically
21649b50
JB
9925 known. In that case, the PAD type already has the correct size,
9926 and the array element should remain unfixed.
9927
9928 But there are cases when this size is not statically known.
9929 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9930
9931 type Dynamic is array (1 .. Five) of Integer;
9932 type Wrapper (Has_Length : Boolean := False) is record
9933 Data : Dynamic;
9934 case Has_Length is
9935 when True => Length : Integer;
9936 when False => null;
9937 end case;
9938 end record;
9939 type Wrapper_Array is array (1 .. 2) of Wrapper;
9940
9941 Hello : Wrapper_Array := (others => (Has_Length => True,
9942 Data => (others => 17),
9943 Length => 1));
9944
9945
9946 The debugging info would describe variable Hello as being an
9947 array of a PAD type. The size of that PAD type is not statically
9948 known, but can be determined using a parallel XVZ variable.
9949 In that case, a copy of the PAD type with the correct size should
9950 be used for the fixed array.
9951
21649b50
JB
9952 3. ``Fixing'' record type objects:
9953 ----------------------------------
9954
9955 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9956 record types. In this case, in order to compute the associated
9957 fixed type, we need to determine the size and offset of each of
9958 its components. This, in turn, requires us to compute the fixed
9959 type of each of these components.
9960
9961 Consider for instance the example:
9962
9963 type Bounded_String (Max_Size : Natural) is record
9964 Str : String (1 .. Max_Size);
9965 Length : Natural;
9966 end record;
9967 My_String : Bounded_String (Max_Size => 10);
9968
9969 In that case, the position of field "Length" depends on the size
9970 of field Str, which itself depends on the value of the Max_Size
21649b50 9971 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9972 we need to fix the type of field Str. Therefore, fixing a variant
9973 record requires us to fix each of its components.
9974
9975 However, if a component does not have a dynamic size, the component
9976 should not be fixed. In particular, fields that use a PAD type
9977 should not fixed. Here is an example where this might happen
9978 (assuming type Rec above):
9979
9980 type Container (Big : Boolean) is record
9981 First : Rec;
9982 After : Integer;
9983 case Big is
9984 when True => Another : Integer;
9985 when False => null;
9986 end case;
9987 end record;
9988 My_Container : Container := (Big => False,
9989 First => (Empty => True),
9990 After => 42);
9991
9992 In that example, the compiler creates a PAD type for component First,
9993 whose size is constant, and then positions the component After just
9994 right after it. The offset of component After is therefore constant
9995 in this case.
9996
9997 The debugger computes the position of each field based on an algorithm
9998 that uses, among other things, the actual position and size of the field
21649b50
JB
9999 preceding it. Let's now imagine that the user is trying to print
10000 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10001 end up computing the offset of field After based on the size of the
10002 fixed version of field First. And since in our example First has
10003 only one actual field, the size of the fixed type is actually smaller
10004 than the amount of space allocated to that field, and thus we would
10005 compute the wrong offset of field After.
10006
21649b50
JB
10007 To make things more complicated, we need to watch out for dynamic
10008 components of variant records (identified by the ___XVL suffix in
10009 the component name). Even if the target type is a PAD type, the size
10010 of that type might not be statically known. So the PAD type needs
10011 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10012 we might end up with the wrong size for our component. This can be
10013 observed with the following type declarations:
284614f0
JB
10014
10015 type Octal is new Integer range 0 .. 7;
10016 type Octal_Array is array (Positive range <>) of Octal;
10017 pragma Pack (Octal_Array);
10018
10019 type Octal_Buffer (Size : Positive) is record
10020 Buffer : Octal_Array (1 .. Size);
10021 Length : Integer;
10022 end record;
10023
10024 In that case, Buffer is a PAD type whose size is unset and needs
10025 to be computed by fixing the unwrapped type.
10026
21649b50
JB
10027 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10028 ----------------------------------------------------------
10029
10030 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10031 thus far, be actually fixed?
10032
10033 The answer is: Only when referencing that element. For instance
10034 when selecting one component of a record, this specific component
10035 should be fixed at that point in time. Or when printing the value
10036 of a record, each component should be fixed before its value gets
10037 printed. Similarly for arrays, the element of the array should be
10038 fixed when printing each element of the array, or when extracting
10039 one element out of that array. On the other hand, fixing should
10040 not be performed on the elements when taking a slice of an array!
10041
10042 Note that one of the side-effects of miscomputing the offset and
10043 size of each field is that we end up also miscomputing the size
10044 of the containing type. This can have adverse results when computing
10045 the value of an entity. GDB fetches the value of an entity based
10046 on the size of its type, and thus a wrong size causes GDB to fetch
10047 the wrong amount of memory. In the case where the computed size is
10048 too small, GDB fetches too little data to print the value of our
10049 entiry. Results in this case as unpredicatble, as we usually read
10050 past the buffer containing the data =:-o. */
10051
10052/* Implement the evaluate_exp routine in the exp_descriptor structure
10053 for the Ada language. */
10054
52ce6436 10055static struct value *
ebf56fd3 10056ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10057 int *pos, enum noside noside)
14f9c5c9
AS
10058{
10059 enum exp_opcode op;
b5385fc0 10060 int tem;
14f9c5c9 10061 int pc;
5ec18f2b 10062 int preeval_pos;
14f9c5c9
AS
10063 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10064 struct type *type;
52ce6436 10065 int nargs, oplen;
d2e4a39e 10066 struct value **argvec;
14f9c5c9 10067
d2e4a39e
AS
10068 pc = *pos;
10069 *pos += 1;
14f9c5c9
AS
10070 op = exp->elts[pc].opcode;
10071
d2e4a39e 10072 switch (op)
14f9c5c9
AS
10073 {
10074 default:
10075 *pos -= 1;
6e48bd2c 10076 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10077
10078 if (noside == EVAL_NORMAL)
10079 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10080
10081 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10082 then we need to perform the conversion manually, because
10083 evaluate_subexp_standard doesn't do it. This conversion is
10084 necessary in Ada because the different kinds of float/fixed
10085 types in Ada have different representations.
10086
10087 Similarly, we need to perform the conversion from OP_LONG
10088 ourselves. */
10089 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10090 arg1 = ada_value_cast (expect_type, arg1, noside);
10091
10092 return arg1;
4c4b4cd2
PH
10093
10094 case OP_STRING:
10095 {
76a01679 10096 struct value *result;
5b4ee69b 10097
76a01679
JB
10098 *pos -= 1;
10099 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10100 /* The result type will have code OP_STRING, bashed there from
10101 OP_ARRAY. Bash it back. */
df407dfe
AC
10102 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10103 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10104 return result;
4c4b4cd2 10105 }
14f9c5c9
AS
10106
10107 case UNOP_CAST:
10108 (*pos) += 2;
10109 type = exp->elts[pc + 1].type;
10110 arg1 = evaluate_subexp (type, exp, pos, noside);
10111 if (noside == EVAL_SKIP)
4c4b4cd2 10112 goto nosideret;
6e48bd2c 10113 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10114 return arg1;
10115
4c4b4cd2
PH
10116 case UNOP_QUAL:
10117 (*pos) += 2;
10118 type = exp->elts[pc + 1].type;
10119 return ada_evaluate_subexp (type, exp, pos, noside);
10120
14f9c5c9
AS
10121 case BINOP_ASSIGN:
10122 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10123 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10124 {
10125 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10126 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10127 return arg1;
10128 return ada_value_assign (arg1, arg1);
10129 }
003f3813
JB
10130 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10131 except if the lhs of our assignment is a convenience variable.
10132 In the case of assigning to a convenience variable, the lhs
10133 should be exactly the result of the evaluation of the rhs. */
10134 type = value_type (arg1);
10135 if (VALUE_LVAL (arg1) == lval_internalvar)
10136 type = NULL;
10137 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10138 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10139 return arg1;
df407dfe
AC
10140 if (ada_is_fixed_point_type (value_type (arg1)))
10141 arg2 = cast_to_fixed (value_type (arg1), arg2);
10142 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10143 error
323e0a4a 10144 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10145 else
df407dfe 10146 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10147 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10148
10149 case BINOP_ADD:
10150 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10151 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10152 if (noside == EVAL_SKIP)
4c4b4cd2 10153 goto nosideret;
2ac8a782
JB
10154 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10155 return (value_from_longest
10156 (value_type (arg1),
10157 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10158 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10159 return (value_from_longest
10160 (value_type (arg2),
10161 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10162 if ((ada_is_fixed_point_type (value_type (arg1))
10163 || ada_is_fixed_point_type (value_type (arg2)))
10164 && value_type (arg1) != value_type (arg2))
323e0a4a 10165 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10166 /* Do the addition, and cast the result to the type of the first
10167 argument. We cannot cast the result to a reference type, so if
10168 ARG1 is a reference type, find its underlying type. */
10169 type = value_type (arg1);
10170 while (TYPE_CODE (type) == TYPE_CODE_REF)
10171 type = TYPE_TARGET_TYPE (type);
f44316fa 10172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10173 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10174
10175 case BINOP_SUB:
10176 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10177 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10178 if (noside == EVAL_SKIP)
4c4b4cd2 10179 goto nosideret;
2ac8a782
JB
10180 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10181 return (value_from_longest
10182 (value_type (arg1),
10183 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10184 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10185 return (value_from_longest
10186 (value_type (arg2),
10187 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10188 if ((ada_is_fixed_point_type (value_type (arg1))
10189 || ada_is_fixed_point_type (value_type (arg2)))
10190 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10191 error (_("Operands of fixed-point subtraction "
10192 "must have the same type"));
b7789565
JB
10193 /* Do the substraction, and cast the result to the type of the first
10194 argument. We cannot cast the result to a reference type, so if
10195 ARG1 is a reference type, find its underlying type. */
10196 type = value_type (arg1);
10197 while (TYPE_CODE (type) == TYPE_CODE_REF)
10198 type = TYPE_TARGET_TYPE (type);
f44316fa 10199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10200 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10201
10202 case BINOP_MUL:
10203 case BINOP_DIV:
e1578042
JB
10204 case BINOP_REM:
10205 case BINOP_MOD:
14f9c5c9
AS
10206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10207 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10208 if (noside == EVAL_SKIP)
4c4b4cd2 10209 goto nosideret;
e1578042 10210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10211 {
10212 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10213 return value_zero (value_type (arg1), not_lval);
10214 }
14f9c5c9 10215 else
4c4b4cd2 10216 {
a53b7a21 10217 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10218 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10219 arg1 = cast_from_fixed (type, arg1);
df407dfe 10220 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10221 arg2 = cast_from_fixed (type, arg2);
f44316fa 10222 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10223 return ada_value_binop (arg1, arg2, op);
10224 }
10225
4c4b4cd2
PH
10226 case BINOP_EQUAL:
10227 case BINOP_NOTEQUAL:
14f9c5c9 10228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10229 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10230 if (noside == EVAL_SKIP)
76a01679 10231 goto nosideret;
4c4b4cd2 10232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10233 tem = 0;
4c4b4cd2 10234 else
f44316fa
UW
10235 {
10236 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10237 tem = ada_value_equal (arg1, arg2);
10238 }
4c4b4cd2 10239 if (op == BINOP_NOTEQUAL)
76a01679 10240 tem = !tem;
fbb06eb1
UW
10241 type = language_bool_type (exp->language_defn, exp->gdbarch);
10242 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10243
10244 case UNOP_NEG:
10245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10246 if (noside == EVAL_SKIP)
10247 goto nosideret;
df407dfe
AC
10248 else if (ada_is_fixed_point_type (value_type (arg1)))
10249 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10250 else
f44316fa
UW
10251 {
10252 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10253 return value_neg (arg1);
10254 }
4c4b4cd2 10255
2330c6c6
JB
10256 case BINOP_LOGICAL_AND:
10257 case BINOP_LOGICAL_OR:
10258 case UNOP_LOGICAL_NOT:
000d5124
JB
10259 {
10260 struct value *val;
10261
10262 *pos -= 1;
10263 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10264 type = language_bool_type (exp->language_defn, exp->gdbarch);
10265 return value_cast (type, val);
000d5124 10266 }
2330c6c6
JB
10267
10268 case BINOP_BITWISE_AND:
10269 case BINOP_BITWISE_IOR:
10270 case BINOP_BITWISE_XOR:
000d5124
JB
10271 {
10272 struct value *val;
10273
10274 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10275 *pos = pc;
10276 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10277
10278 return value_cast (value_type (arg1), val);
10279 }
2330c6c6 10280
14f9c5c9
AS
10281 case OP_VAR_VALUE:
10282 *pos -= 1;
6799def4 10283
14f9c5c9 10284 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10285 {
10286 *pos += 4;
10287 goto nosideret;
10288 }
da5c522f
JB
10289
10290 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10291 /* Only encountered when an unresolved symbol occurs in a
10292 context other than a function call, in which case, it is
52ce6436 10293 invalid. */
323e0a4a 10294 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10295 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10296
10297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10298 {
0c1f74cf 10299 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10300 /* Check to see if this is a tagged type. We also need to handle
10301 the case where the type is a reference to a tagged type, but
10302 we have to be careful to exclude pointers to tagged types.
10303 The latter should be shown as usual (as a pointer), whereas
10304 a reference should mostly be transparent to the user. */
10305 if (ada_is_tagged_type (type, 0)
023db19c 10306 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10307 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10308 {
10309 /* Tagged types are a little special in the fact that the real
10310 type is dynamic and can only be determined by inspecting the
10311 object's tag. This means that we need to get the object's
10312 value first (EVAL_NORMAL) and then extract the actual object
10313 type from its tag.
10314
10315 Note that we cannot skip the final step where we extract
10316 the object type from its tag, because the EVAL_NORMAL phase
10317 results in dynamic components being resolved into fixed ones.
10318 This can cause problems when trying to print the type
10319 description of tagged types whose parent has a dynamic size:
10320 We use the type name of the "_parent" component in order
10321 to print the name of the ancestor type in the type description.
10322 If that component had a dynamic size, the resolution into
10323 a fixed type would result in the loss of that type name,
10324 thus preventing us from printing the name of the ancestor
10325 type in the type description. */
10326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10327
10328 if (TYPE_CODE (type) != TYPE_CODE_REF)
10329 {
10330 struct type *actual_type;
10331
10332 actual_type = type_from_tag (ada_value_tag (arg1));
10333 if (actual_type == NULL)
10334 /* If, for some reason, we were unable to determine
10335 the actual type from the tag, then use the static
10336 approximation that we just computed as a fallback.
10337 This can happen if the debugging information is
10338 incomplete, for instance. */
10339 actual_type = type;
10340 return value_zero (actual_type, not_lval);
10341 }
10342 else
10343 {
10344 /* In the case of a ref, ada_coerce_ref takes care
10345 of determining the actual type. But the evaluation
10346 should return a ref as it should be valid to ask
10347 for its address; so rebuild a ref after coerce. */
10348 arg1 = ada_coerce_ref (arg1);
10349 return value_ref (arg1);
10350 }
10351 }
0c1f74cf 10352
84754697
JB
10353 /* Records and unions for which GNAT encodings have been
10354 generated need to be statically fixed as well.
10355 Otherwise, non-static fixing produces a type where
10356 all dynamic properties are removed, which prevents "ptype"
10357 from being able to completely describe the type.
10358 For instance, a case statement in a variant record would be
10359 replaced by the relevant components based on the actual
10360 value of the discriminants. */
10361 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10362 && dynamic_template_type (type) != NULL)
10363 || (TYPE_CODE (type) == TYPE_CODE_UNION
10364 && ada_find_parallel_type (type, "___XVU") != NULL))
10365 {
10366 *pos += 4;
10367 return value_zero (to_static_fixed_type (type), not_lval);
10368 }
4c4b4cd2 10369 }
da5c522f
JB
10370
10371 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10372 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10373
10374 case OP_FUNCALL:
10375 (*pos) += 2;
10376
10377 /* Allocate arg vector, including space for the function to be
10378 called in argvec[0] and a terminating NULL. */
10379 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10380 argvec =
10381 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10382
10383 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10384 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10385 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10386 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10387 else
10388 {
10389 for (tem = 0; tem <= nargs; tem += 1)
10390 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10391 argvec[tem] = 0;
10392
10393 if (noside == EVAL_SKIP)
10394 goto nosideret;
10395 }
10396
ad82864c
JB
10397 if (ada_is_constrained_packed_array_type
10398 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10399 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10400 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10401 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10402 /* This is a packed array that has already been fixed, and
10403 therefore already coerced to a simple array. Nothing further
10404 to do. */
10405 ;
df407dfe
AC
10406 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10407 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10408 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10409 argvec[0] = value_addr (argvec[0]);
10410
df407dfe 10411 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10412
10413 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10414 them. So, if this is an array typedef (encoding use for array
10415 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10416 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10417 type = ada_typedef_target_type (type);
10418
4c4b4cd2
PH
10419 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10420 {
61ee279c 10421 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10422 {
10423 case TYPE_CODE_FUNC:
61ee279c 10424 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10425 break;
10426 case TYPE_CODE_ARRAY:
10427 break;
10428 case TYPE_CODE_STRUCT:
10429 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10430 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10431 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10432 break;
10433 default:
323e0a4a 10434 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10435 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10436 break;
10437 }
10438 }
10439
10440 switch (TYPE_CODE (type))
10441 {
10442 case TYPE_CODE_FUNC:
10443 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10444 {
10445 struct type *rtype = TYPE_TARGET_TYPE (type);
10446
10447 if (TYPE_GNU_IFUNC (type))
10448 return allocate_value (TYPE_TARGET_TYPE (rtype));
10449 return allocate_value (rtype);
10450 }
4c4b4cd2 10451 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10452 case TYPE_CODE_INTERNAL_FUNCTION:
10453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10454 /* We don't know anything about what the internal
10455 function might return, but we have to return
10456 something. */
10457 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10458 not_lval);
10459 else
10460 return call_internal_function (exp->gdbarch, exp->language_defn,
10461 argvec[0], nargs, argvec + 1);
10462
4c4b4cd2
PH
10463 case TYPE_CODE_STRUCT:
10464 {
10465 int arity;
10466
4c4b4cd2
PH
10467 arity = ada_array_arity (type);
10468 type = ada_array_element_type (type, nargs);
10469 if (type == NULL)
323e0a4a 10470 error (_("cannot subscript or call a record"));
4c4b4cd2 10471 if (arity != nargs)
323e0a4a 10472 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10473 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10474 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10475 return
10476 unwrap_value (ada_value_subscript
10477 (argvec[0], nargs, argvec + 1));
10478 }
10479 case TYPE_CODE_ARRAY:
10480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10481 {
10482 type = ada_array_element_type (type, nargs);
10483 if (type == NULL)
323e0a4a 10484 error (_("element type of array unknown"));
4c4b4cd2 10485 else
0a07e705 10486 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10487 }
10488 return
10489 unwrap_value (ada_value_subscript
10490 (ada_coerce_to_simple_array (argvec[0]),
10491 nargs, argvec + 1));
10492 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10493 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10494 {
deede10c 10495 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10496 type = ada_array_element_type (type, nargs);
10497 if (type == NULL)
323e0a4a 10498 error (_("element type of array unknown"));
4c4b4cd2 10499 else
0a07e705 10500 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10501 }
10502 return
deede10c
JB
10503 unwrap_value (ada_value_ptr_subscript (argvec[0],
10504 nargs, argvec + 1));
4c4b4cd2
PH
10505
10506 default:
e1d5a0d2
PH
10507 error (_("Attempt to index or call something other than an "
10508 "array or function"));
4c4b4cd2
PH
10509 }
10510
10511 case TERNOP_SLICE:
10512 {
10513 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10514 struct value *low_bound_val =
10515 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10516 struct value *high_bound_val =
10517 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10518 LONGEST low_bound;
10519 LONGEST high_bound;
5b4ee69b 10520
994b9211
AC
10521 low_bound_val = coerce_ref (low_bound_val);
10522 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10523 low_bound = pos_atr (low_bound_val);
10524 high_bound = pos_atr (high_bound_val);
963a6417 10525
4c4b4cd2
PH
10526 if (noside == EVAL_SKIP)
10527 goto nosideret;
10528
4c4b4cd2
PH
10529 /* If this is a reference to an aligner type, then remove all
10530 the aligners. */
df407dfe
AC
10531 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10532 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10533 TYPE_TARGET_TYPE (value_type (array)) =
10534 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10535
ad82864c 10536 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10537 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10538
10539 /* If this is a reference to an array or an array lvalue,
10540 convert to a pointer. */
df407dfe
AC
10541 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10542 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10543 && VALUE_LVAL (array) == lval_memory))
10544 array = value_addr (array);
10545
1265e4aa 10546 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10547 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10548 (value_type (array))))
0b5d8877 10549 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10550
10551 array = ada_coerce_to_simple_array_ptr (array);
10552
714e53ab
PH
10553 /* If we have more than one level of pointer indirection,
10554 dereference the value until we get only one level. */
df407dfe
AC
10555 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10556 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10557 == TYPE_CODE_PTR))
10558 array = value_ind (array);
10559
10560 /* Make sure we really do have an array type before going further,
10561 to avoid a SEGV when trying to get the index type or the target
10562 type later down the road if the debug info generated by
10563 the compiler is incorrect or incomplete. */
df407dfe 10564 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10565 error (_("cannot take slice of non-array"));
714e53ab 10566
828292f2
JB
10567 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10568 == TYPE_CODE_PTR)
4c4b4cd2 10569 {
828292f2
JB
10570 struct type *type0 = ada_check_typedef (value_type (array));
10571
0b5d8877 10572 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10573 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10574 else
10575 {
10576 struct type *arr_type0 =
828292f2 10577 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10578
f5938064
JG
10579 return ada_value_slice_from_ptr (array, arr_type0,
10580 longest_to_int (low_bound),
10581 longest_to_int (high_bound));
4c4b4cd2
PH
10582 }
10583 }
10584 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10585 return array;
10586 else if (high_bound < low_bound)
df407dfe 10587 return empty_array (value_type (array), low_bound);
4c4b4cd2 10588 else
529cad9c
PH
10589 return ada_value_slice (array, longest_to_int (low_bound),
10590 longest_to_int (high_bound));
4c4b4cd2 10591 }
14f9c5c9 10592
4c4b4cd2
PH
10593 case UNOP_IN_RANGE:
10594 (*pos) += 2;
10595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10596 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10597
14f9c5c9 10598 if (noside == EVAL_SKIP)
4c4b4cd2 10599 goto nosideret;
14f9c5c9 10600
4c4b4cd2
PH
10601 switch (TYPE_CODE (type))
10602 {
10603 default:
e1d5a0d2
PH
10604 lim_warning (_("Membership test incompletely implemented; "
10605 "always returns true"));
fbb06eb1
UW
10606 type = language_bool_type (exp->language_defn, exp->gdbarch);
10607 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10608
10609 case TYPE_CODE_RANGE:
030b4912
UW
10610 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10611 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10612 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10613 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10614 type = language_bool_type (exp->language_defn, exp->gdbarch);
10615 return
10616 value_from_longest (type,
4c4b4cd2
PH
10617 (value_less (arg1, arg3)
10618 || value_equal (arg1, arg3))
10619 && (value_less (arg2, arg1)
10620 || value_equal (arg2, arg1)));
10621 }
10622
10623 case BINOP_IN_BOUNDS:
14f9c5c9 10624 (*pos) += 2;
4c4b4cd2
PH
10625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10626 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10627
4c4b4cd2
PH
10628 if (noside == EVAL_SKIP)
10629 goto nosideret;
14f9c5c9 10630
4c4b4cd2 10631 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10632 {
10633 type = language_bool_type (exp->language_defn, exp->gdbarch);
10634 return value_zero (type, not_lval);
10635 }
14f9c5c9 10636
4c4b4cd2 10637 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10638
1eea4ebd
UW
10639 type = ada_index_type (value_type (arg2), tem, "range");
10640 if (!type)
10641 type = value_type (arg1);
14f9c5c9 10642
1eea4ebd
UW
10643 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10644 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10645
f44316fa
UW
10646 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10647 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10648 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10649 return
fbb06eb1 10650 value_from_longest (type,
4c4b4cd2
PH
10651 (value_less (arg1, arg3)
10652 || value_equal (arg1, arg3))
10653 && (value_less (arg2, arg1)
10654 || value_equal (arg2, arg1)));
10655
10656 case TERNOP_IN_RANGE:
10657 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10658 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10659 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10660
10661 if (noside == EVAL_SKIP)
10662 goto nosideret;
10663
f44316fa
UW
10664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10665 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10666 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10667 return
fbb06eb1 10668 value_from_longest (type,
4c4b4cd2
PH
10669 (value_less (arg1, arg3)
10670 || value_equal (arg1, arg3))
10671 && (value_less (arg2, arg1)
10672 || value_equal (arg2, arg1)));
10673
10674 case OP_ATR_FIRST:
10675 case OP_ATR_LAST:
10676 case OP_ATR_LENGTH:
10677 {
76a01679 10678 struct type *type_arg;
5b4ee69b 10679
76a01679
JB
10680 if (exp->elts[*pos].opcode == OP_TYPE)
10681 {
10682 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10683 arg1 = NULL;
5bc23cb3 10684 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10685 }
10686 else
10687 {
10688 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10689 type_arg = NULL;
10690 }
10691
10692 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10693 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10694 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10695 *pos += 4;
10696
10697 if (noside == EVAL_SKIP)
10698 goto nosideret;
10699
10700 if (type_arg == NULL)
10701 {
10702 arg1 = ada_coerce_ref (arg1);
10703
ad82864c 10704 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10705 arg1 = ada_coerce_to_simple_array (arg1);
10706
aa4fb036 10707 if (op == OP_ATR_LENGTH)
1eea4ebd 10708 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10709 else
10710 {
10711 type = ada_index_type (value_type (arg1), tem,
10712 ada_attribute_name (op));
10713 if (type == NULL)
10714 type = builtin_type (exp->gdbarch)->builtin_int;
10715 }
76a01679
JB
10716
10717 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10718 return allocate_value (type);
76a01679
JB
10719
10720 switch (op)
10721 {
10722 default: /* Should never happen. */
323e0a4a 10723 error (_("unexpected attribute encountered"));
76a01679 10724 case OP_ATR_FIRST:
1eea4ebd
UW
10725 return value_from_longest
10726 (type, ada_array_bound (arg1, tem, 0));
76a01679 10727 case OP_ATR_LAST:
1eea4ebd
UW
10728 return value_from_longest
10729 (type, ada_array_bound (arg1, tem, 1));
76a01679 10730 case OP_ATR_LENGTH:
1eea4ebd
UW
10731 return value_from_longest
10732 (type, ada_array_length (arg1, tem));
76a01679
JB
10733 }
10734 }
10735 else if (discrete_type_p (type_arg))
10736 {
10737 struct type *range_type;
0d5cff50 10738 const char *name = ada_type_name (type_arg);
5b4ee69b 10739
76a01679
JB
10740 range_type = NULL;
10741 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10742 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10743 if (range_type == NULL)
10744 range_type = type_arg;
10745 switch (op)
10746 {
10747 default:
323e0a4a 10748 error (_("unexpected attribute encountered"));
76a01679 10749 case OP_ATR_FIRST:
690cc4eb 10750 return value_from_longest
43bbcdc2 10751 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10752 case OP_ATR_LAST:
690cc4eb 10753 return value_from_longest
43bbcdc2 10754 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10755 case OP_ATR_LENGTH:
323e0a4a 10756 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10757 }
10758 }
10759 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10760 error (_("unimplemented type attribute"));
76a01679
JB
10761 else
10762 {
10763 LONGEST low, high;
10764
ad82864c
JB
10765 if (ada_is_constrained_packed_array_type (type_arg))
10766 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10767
aa4fb036 10768 if (op == OP_ATR_LENGTH)
1eea4ebd 10769 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10770 else
10771 {
10772 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10773 if (type == NULL)
10774 type = builtin_type (exp->gdbarch)->builtin_int;
10775 }
1eea4ebd 10776
76a01679
JB
10777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10778 return allocate_value (type);
10779
10780 switch (op)
10781 {
10782 default:
323e0a4a 10783 error (_("unexpected attribute encountered"));
76a01679 10784 case OP_ATR_FIRST:
1eea4ebd 10785 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10786 return value_from_longest (type, low);
10787 case OP_ATR_LAST:
1eea4ebd 10788 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10789 return value_from_longest (type, high);
10790 case OP_ATR_LENGTH:
1eea4ebd
UW
10791 low = ada_array_bound_from_type (type_arg, tem, 0);
10792 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10793 return value_from_longest (type, high - low + 1);
10794 }
10795 }
14f9c5c9
AS
10796 }
10797
4c4b4cd2
PH
10798 case OP_ATR_TAG:
10799 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10800 if (noside == EVAL_SKIP)
76a01679 10801 goto nosideret;
4c4b4cd2
PH
10802
10803 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10804 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10805
10806 return ada_value_tag (arg1);
10807
10808 case OP_ATR_MIN:
10809 case OP_ATR_MAX:
10810 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10811 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10812 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10813 if (noside == EVAL_SKIP)
76a01679 10814 goto nosideret;
d2e4a39e 10815 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10816 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10817 else
f44316fa
UW
10818 {
10819 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10820 return value_binop (arg1, arg2,
10821 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10822 }
14f9c5c9 10823
4c4b4cd2
PH
10824 case OP_ATR_MODULUS:
10825 {
31dedfee 10826 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10827
5b4ee69b 10828 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10829 if (noside == EVAL_SKIP)
10830 goto nosideret;
4c4b4cd2 10831
76a01679 10832 if (!ada_is_modular_type (type_arg))
323e0a4a 10833 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10834
76a01679
JB
10835 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10836 ada_modulus (type_arg));
4c4b4cd2
PH
10837 }
10838
10839
10840 case OP_ATR_POS:
10841 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10842 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10843 if (noside == EVAL_SKIP)
76a01679 10844 goto nosideret;
3cb382c9
UW
10845 type = builtin_type (exp->gdbarch)->builtin_int;
10846 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10847 return value_zero (type, not_lval);
14f9c5c9 10848 else
3cb382c9 10849 return value_pos_atr (type, arg1);
14f9c5c9 10850
4c4b4cd2
PH
10851 case OP_ATR_SIZE:
10852 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10853 type = value_type (arg1);
10854
10855 /* If the argument is a reference, then dereference its type, since
10856 the user is really asking for the size of the actual object,
10857 not the size of the pointer. */
10858 if (TYPE_CODE (type) == TYPE_CODE_REF)
10859 type = TYPE_TARGET_TYPE (type);
10860
4c4b4cd2 10861 if (noside == EVAL_SKIP)
76a01679 10862 goto nosideret;
4c4b4cd2 10863 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10864 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10865 else
22601c15 10866 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10867 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10868
10869 case OP_ATR_VAL:
10870 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10871 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10872 type = exp->elts[pc + 2].type;
14f9c5c9 10873 if (noside == EVAL_SKIP)
76a01679 10874 goto nosideret;
4c4b4cd2 10875 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10876 return value_zero (type, not_lval);
4c4b4cd2 10877 else
76a01679 10878 return value_val_atr (type, arg1);
4c4b4cd2
PH
10879
10880 case BINOP_EXP:
10881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883 if (noside == EVAL_SKIP)
10884 goto nosideret;
10885 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10886 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10887 else
f44316fa
UW
10888 {
10889 /* For integer exponentiation operations,
10890 only promote the first argument. */
10891 if (is_integral_type (value_type (arg2)))
10892 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10893 else
10894 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10895
10896 return value_binop (arg1, arg2, op);
10897 }
4c4b4cd2
PH
10898
10899 case UNOP_PLUS:
10900 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10901 if (noside == EVAL_SKIP)
10902 goto nosideret;
10903 else
10904 return arg1;
10905
10906 case UNOP_ABS:
10907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10908 if (noside == EVAL_SKIP)
10909 goto nosideret;
f44316fa 10910 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10911 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10912 return value_neg (arg1);
14f9c5c9 10913 else
4c4b4cd2 10914 return arg1;
14f9c5c9
AS
10915
10916 case UNOP_IND:
5ec18f2b 10917 preeval_pos = *pos;
6b0d7253 10918 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10919 if (noside == EVAL_SKIP)
4c4b4cd2 10920 goto nosideret;
df407dfe 10921 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10923 {
10924 if (ada_is_array_descriptor_type (type))
10925 /* GDB allows dereferencing GNAT array descriptors. */
10926 {
10927 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10928
4c4b4cd2 10929 if (arrType == NULL)
323e0a4a 10930 error (_("Attempt to dereference null array pointer."));
00a4c844 10931 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10932 }
10933 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10934 || TYPE_CODE (type) == TYPE_CODE_REF
10935 /* In C you can dereference an array to get the 1st elt. */
10936 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10937 {
5ec18f2b
JG
10938 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10939 only be determined by inspecting the object's tag.
10940 This means that we need to evaluate completely the
10941 expression in order to get its type. */
10942
023db19c
JB
10943 if ((TYPE_CODE (type) == TYPE_CODE_REF
10944 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10945 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10946 {
10947 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10948 EVAL_NORMAL);
10949 type = value_type (ada_value_ind (arg1));
10950 }
10951 else
10952 {
10953 type = to_static_fixed_type
10954 (ada_aligned_type
10955 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10956 }
c1b5a1a6 10957 ada_ensure_varsize_limit (type);
714e53ab
PH
10958 return value_zero (type, lval_memory);
10959 }
4c4b4cd2 10960 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10961 {
10962 /* GDB allows dereferencing an int. */
10963 if (expect_type == NULL)
10964 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10965 lval_memory);
10966 else
10967 {
10968 expect_type =
10969 to_static_fixed_type (ada_aligned_type (expect_type));
10970 return value_zero (expect_type, lval_memory);
10971 }
10972 }
4c4b4cd2 10973 else
323e0a4a 10974 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10975 }
0963b4bd 10976 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10977 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10978
96967637
JB
10979 if (TYPE_CODE (type) == TYPE_CODE_INT)
10980 /* GDB allows dereferencing an int. If we were given
10981 the expect_type, then use that as the target type.
10982 Otherwise, assume that the target type is an int. */
10983 {
10984 if (expect_type != NULL)
10985 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10986 arg1));
10987 else
10988 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10989 (CORE_ADDR) value_as_address (arg1));
10990 }
6b0d7253 10991
4c4b4cd2
PH
10992 if (ada_is_array_descriptor_type (type))
10993 /* GDB allows dereferencing GNAT array descriptors. */
10994 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10995 else
4c4b4cd2 10996 return ada_value_ind (arg1);
14f9c5c9
AS
10997
10998 case STRUCTOP_STRUCT:
10999 tem = longest_to_int (exp->elts[pc + 1].longconst);
11000 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11001 preeval_pos = *pos;
14f9c5c9
AS
11002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11003 if (noside == EVAL_SKIP)
4c4b4cd2 11004 goto nosideret;
14f9c5c9 11005 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11006 {
df407dfe 11007 struct type *type1 = value_type (arg1);
5b4ee69b 11008
76a01679
JB
11009 if (ada_is_tagged_type (type1, 1))
11010 {
11011 type = ada_lookup_struct_elt_type (type1,
11012 &exp->elts[pc + 2].string,
11013 1, 1, NULL);
5ec18f2b
JG
11014
11015 /* If the field is not found, check if it exists in the
11016 extension of this object's type. This means that we
11017 need to evaluate completely the expression. */
11018
76a01679 11019 if (type == NULL)
5ec18f2b
JG
11020 {
11021 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11022 EVAL_NORMAL);
11023 arg1 = ada_value_struct_elt (arg1,
11024 &exp->elts[pc + 2].string,
11025 0);
11026 arg1 = unwrap_value (arg1);
11027 type = value_type (ada_to_fixed_value (arg1));
11028 }
76a01679
JB
11029 }
11030 else
11031 type =
11032 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11033 0, NULL);
11034
11035 return value_zero (ada_aligned_type (type), lval_memory);
11036 }
14f9c5c9 11037 else
284614f0
JB
11038 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11039 arg1 = unwrap_value (arg1);
11040 return ada_to_fixed_value (arg1);
11041
14f9c5c9 11042 case OP_TYPE:
4c4b4cd2
PH
11043 /* The value is not supposed to be used. This is here to make it
11044 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11045 (*pos) += 2;
11046 if (noside == EVAL_SKIP)
4c4b4cd2 11047 goto nosideret;
14f9c5c9 11048 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11049 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11050 else
323e0a4a 11051 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11052
11053 case OP_AGGREGATE:
11054 case OP_CHOICES:
11055 case OP_OTHERS:
11056 case OP_DISCRETE_RANGE:
11057 case OP_POSITIONAL:
11058 case OP_NAME:
11059 if (noside == EVAL_NORMAL)
11060 switch (op)
11061 {
11062 case OP_NAME:
11063 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11064 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11065 case OP_AGGREGATE:
11066 error (_("Aggregates only allowed on the right of an assignment"));
11067 default:
0963b4bd
MS
11068 internal_error (__FILE__, __LINE__,
11069 _("aggregate apparently mangled"));
52ce6436
PH
11070 }
11071
11072 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11073 *pos += oplen - 1;
11074 for (tem = 0; tem < nargs; tem += 1)
11075 ada_evaluate_subexp (NULL, exp, pos, noside);
11076 goto nosideret;
14f9c5c9
AS
11077 }
11078
11079nosideret:
22601c15 11080 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11081}
14f9c5c9 11082\f
d2e4a39e 11083
4c4b4cd2 11084 /* Fixed point */
14f9c5c9
AS
11085
11086/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11087 type name that encodes the 'small and 'delta information.
4c4b4cd2 11088 Otherwise, return NULL. */
14f9c5c9 11089
d2e4a39e 11090static const char *
ebf56fd3 11091fixed_type_info (struct type *type)
14f9c5c9 11092{
d2e4a39e 11093 const char *name = ada_type_name (type);
14f9c5c9
AS
11094 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11095
d2e4a39e
AS
11096 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11097 {
14f9c5c9 11098 const char *tail = strstr (name, "___XF_");
5b4ee69b 11099
14f9c5c9 11100 if (tail == NULL)
4c4b4cd2 11101 return NULL;
d2e4a39e 11102 else
4c4b4cd2 11103 return tail + 5;
14f9c5c9
AS
11104 }
11105 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11106 return fixed_type_info (TYPE_TARGET_TYPE (type));
11107 else
11108 return NULL;
11109}
11110
4c4b4cd2 11111/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11112
11113int
ebf56fd3 11114ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11115{
11116 return fixed_type_info (type) != NULL;
11117}
11118
4c4b4cd2
PH
11119/* Return non-zero iff TYPE represents a System.Address type. */
11120
11121int
11122ada_is_system_address_type (struct type *type)
11123{
11124 return (TYPE_NAME (type)
11125 && strcmp (TYPE_NAME (type), "system__address") == 0);
11126}
11127
14f9c5c9
AS
11128/* Assuming that TYPE is the representation of an Ada fixed-point
11129 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11130 delta cannot be determined. */
14f9c5c9
AS
11131
11132DOUBLEST
ebf56fd3 11133ada_delta (struct type *type)
14f9c5c9
AS
11134{
11135 const char *encoding = fixed_type_info (type);
facc390f 11136 DOUBLEST num, den;
14f9c5c9 11137
facc390f
JB
11138 /* Strictly speaking, num and den are encoded as integer. However,
11139 they may not fit into a long, and they will have to be converted
11140 to DOUBLEST anyway. So scan them as DOUBLEST. */
11141 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11142 &num, &den) < 2)
14f9c5c9 11143 return -1.0;
d2e4a39e 11144 else
facc390f 11145 return num / den;
14f9c5c9
AS
11146}
11147
11148/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11149 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11150
11151static DOUBLEST
ebf56fd3 11152scaling_factor (struct type *type)
14f9c5c9
AS
11153{
11154 const char *encoding = fixed_type_info (type);
facc390f 11155 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11156 int n;
d2e4a39e 11157
facc390f
JB
11158 /* Strictly speaking, num's and den's are encoded as integer. However,
11159 they may not fit into a long, and they will have to be converted
11160 to DOUBLEST anyway. So scan them as DOUBLEST. */
11161 n = sscanf (encoding,
11162 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11163 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11164 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11165
11166 if (n < 2)
11167 return 1.0;
11168 else if (n == 4)
facc390f 11169 return num1 / den1;
d2e4a39e 11170 else
facc390f 11171 return num0 / den0;
14f9c5c9
AS
11172}
11173
11174
11175/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11176 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11177
11178DOUBLEST
ebf56fd3 11179ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11180{
d2e4a39e 11181 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11182}
11183
4c4b4cd2
PH
11184/* The representation of a fixed-point value of type TYPE
11185 corresponding to the value X. */
14f9c5c9
AS
11186
11187LONGEST
ebf56fd3 11188ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11189{
11190 return (LONGEST) (x / scaling_factor (type) + 0.5);
11191}
11192
14f9c5c9 11193\f
d2e4a39e 11194
4c4b4cd2 11195 /* Range types */
14f9c5c9
AS
11196
11197/* Scan STR beginning at position K for a discriminant name, and
11198 return the value of that discriminant field of DVAL in *PX. If
11199 PNEW_K is not null, put the position of the character beyond the
11200 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11201 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11202
11203static int
07d8f827 11204scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11205 int *pnew_k)
14f9c5c9
AS
11206{
11207 static char *bound_buffer = NULL;
11208 static size_t bound_buffer_len = 0;
11209 char *bound;
11210 char *pend;
d2e4a39e 11211 struct value *bound_val;
14f9c5c9
AS
11212
11213 if (dval == NULL || str == NULL || str[k] == '\0')
11214 return 0;
11215
d2e4a39e 11216 pend = strstr (str + k, "__");
14f9c5c9
AS
11217 if (pend == NULL)
11218 {
d2e4a39e 11219 bound = str + k;
14f9c5c9
AS
11220 k += strlen (bound);
11221 }
d2e4a39e 11222 else
14f9c5c9 11223 {
d2e4a39e 11224 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11225 bound = bound_buffer;
d2e4a39e
AS
11226 strncpy (bound_buffer, str + k, pend - (str + k));
11227 bound[pend - (str + k)] = '\0';
11228 k = pend - str;
14f9c5c9 11229 }
d2e4a39e 11230
df407dfe 11231 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11232 if (bound_val == NULL)
11233 return 0;
11234
11235 *px = value_as_long (bound_val);
11236 if (pnew_k != NULL)
11237 *pnew_k = k;
11238 return 1;
11239}
11240
11241/* Value of variable named NAME in the current environment. If
11242 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11243 otherwise causes an error with message ERR_MSG. */
11244
d2e4a39e
AS
11245static struct value *
11246get_var_value (char *name, char *err_msg)
14f9c5c9 11247{
4c4b4cd2 11248 struct ada_symbol_info *syms;
14f9c5c9
AS
11249 int nsyms;
11250
4c4b4cd2 11251 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11252 &syms);
14f9c5c9
AS
11253
11254 if (nsyms != 1)
11255 {
11256 if (err_msg == NULL)
4c4b4cd2 11257 return 0;
14f9c5c9 11258 else
8a3fe4f8 11259 error (("%s"), err_msg);
14f9c5c9
AS
11260 }
11261
4c4b4cd2 11262 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11263}
d2e4a39e 11264
14f9c5c9 11265/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11266 no such variable found, returns 0, and sets *FLAG to 0. If
11267 successful, sets *FLAG to 1. */
11268
14f9c5c9 11269LONGEST
4c4b4cd2 11270get_int_var_value (char *name, int *flag)
14f9c5c9 11271{
4c4b4cd2 11272 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11273
14f9c5c9
AS
11274 if (var_val == 0)
11275 {
11276 if (flag != NULL)
4c4b4cd2 11277 *flag = 0;
14f9c5c9
AS
11278 return 0;
11279 }
11280 else
11281 {
11282 if (flag != NULL)
4c4b4cd2 11283 *flag = 1;
14f9c5c9
AS
11284 return value_as_long (var_val);
11285 }
11286}
d2e4a39e 11287
14f9c5c9
AS
11288
11289/* Return a range type whose base type is that of the range type named
11290 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11291 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11292 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11293 corresponding range type from debug information; fall back to using it
11294 if symbol lookup fails. If a new type must be created, allocate it
11295 like ORIG_TYPE was. The bounds information, in general, is encoded
11296 in NAME, the base type given in the named range type. */
14f9c5c9 11297
d2e4a39e 11298static struct type *
28c85d6c 11299to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11300{
0d5cff50 11301 const char *name;
14f9c5c9 11302 struct type *base_type;
d2e4a39e 11303 char *subtype_info;
14f9c5c9 11304
28c85d6c
JB
11305 gdb_assert (raw_type != NULL);
11306 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11307
1ce677a4 11308 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11309 base_type = TYPE_TARGET_TYPE (raw_type);
11310 else
11311 base_type = raw_type;
11312
28c85d6c 11313 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11314 subtype_info = strstr (name, "___XD");
11315 if (subtype_info == NULL)
690cc4eb 11316 {
43bbcdc2
PH
11317 LONGEST L = ada_discrete_type_low_bound (raw_type);
11318 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11319
690cc4eb
PH
11320 if (L < INT_MIN || U > INT_MAX)
11321 return raw_type;
11322 else
0c9c3474
SA
11323 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11324 L, U);
690cc4eb 11325 }
14f9c5c9
AS
11326 else
11327 {
11328 static char *name_buf = NULL;
11329 static size_t name_len = 0;
11330 int prefix_len = subtype_info - name;
11331 LONGEST L, U;
11332 struct type *type;
11333 char *bounds_str;
11334 int n;
11335
11336 GROW_VECT (name_buf, name_len, prefix_len + 5);
11337 strncpy (name_buf, name, prefix_len);
11338 name_buf[prefix_len] = '\0';
11339
11340 subtype_info += 5;
11341 bounds_str = strchr (subtype_info, '_');
11342 n = 1;
11343
d2e4a39e 11344 if (*subtype_info == 'L')
4c4b4cd2
PH
11345 {
11346 if (!ada_scan_number (bounds_str, n, &L, &n)
11347 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11348 return raw_type;
11349 if (bounds_str[n] == '_')
11350 n += 2;
0963b4bd 11351 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11352 n += 1;
11353 subtype_info += 1;
11354 }
d2e4a39e 11355 else
4c4b4cd2
PH
11356 {
11357 int ok;
5b4ee69b 11358
4c4b4cd2
PH
11359 strcpy (name_buf + prefix_len, "___L");
11360 L = get_int_var_value (name_buf, &ok);
11361 if (!ok)
11362 {
323e0a4a 11363 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11364 L = 1;
11365 }
11366 }
14f9c5c9 11367
d2e4a39e 11368 if (*subtype_info == 'U')
4c4b4cd2
PH
11369 {
11370 if (!ada_scan_number (bounds_str, n, &U, &n)
11371 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11372 return raw_type;
11373 }
d2e4a39e 11374 else
4c4b4cd2
PH
11375 {
11376 int ok;
5b4ee69b 11377
4c4b4cd2
PH
11378 strcpy (name_buf + prefix_len, "___U");
11379 U = get_int_var_value (name_buf, &ok);
11380 if (!ok)
11381 {
323e0a4a 11382 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11383 U = L;
11384 }
11385 }
14f9c5c9 11386
0c9c3474
SA
11387 type = create_static_range_type (alloc_type_copy (raw_type),
11388 base_type, L, U);
d2e4a39e 11389 TYPE_NAME (type) = name;
14f9c5c9
AS
11390 return type;
11391 }
11392}
11393
4c4b4cd2
PH
11394/* True iff NAME is the name of a range type. */
11395
14f9c5c9 11396int
d2e4a39e 11397ada_is_range_type_name (const char *name)
14f9c5c9
AS
11398{
11399 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11400}
14f9c5c9 11401\f
d2e4a39e 11402
4c4b4cd2
PH
11403 /* Modular types */
11404
11405/* True iff TYPE is an Ada modular type. */
14f9c5c9 11406
14f9c5c9 11407int
d2e4a39e 11408ada_is_modular_type (struct type *type)
14f9c5c9 11409{
18af8284 11410 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11411
11412 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11413 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11414 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11415}
11416
4c4b4cd2
PH
11417/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11418
61ee279c 11419ULONGEST
0056e4d5 11420ada_modulus (struct type *type)
14f9c5c9 11421{
43bbcdc2 11422 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11423}
d2e4a39e 11424\f
f7f9143b
JB
11425
11426/* Ada exception catchpoint support:
11427 ---------------------------------
11428
11429 We support 3 kinds of exception catchpoints:
11430 . catchpoints on Ada exceptions
11431 . catchpoints on unhandled Ada exceptions
11432 . catchpoints on failed assertions
11433
11434 Exceptions raised during failed assertions, or unhandled exceptions
11435 could perfectly be caught with the general catchpoint on Ada exceptions.
11436 However, we can easily differentiate these two special cases, and having
11437 the option to distinguish these two cases from the rest can be useful
11438 to zero-in on certain situations.
11439
11440 Exception catchpoints are a specialized form of breakpoint,
11441 since they rely on inserting breakpoints inside known routines
11442 of the GNAT runtime. The implementation therefore uses a standard
11443 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11444 of breakpoint_ops.
11445
0259addd
JB
11446 Support in the runtime for exception catchpoints have been changed
11447 a few times already, and these changes affect the implementation
11448 of these catchpoints. In order to be able to support several
11449 variants of the runtime, we use a sniffer that will determine
28010a5d 11450 the runtime variant used by the program being debugged. */
f7f9143b 11451
82eacd52
JB
11452/* Ada's standard exceptions.
11453
11454 The Ada 83 standard also defined Numeric_Error. But there so many
11455 situations where it was unclear from the Ada 83 Reference Manual
11456 (RM) whether Constraint_Error or Numeric_Error should be raised,
11457 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11458 Interpretation saying that anytime the RM says that Numeric_Error
11459 should be raised, the implementation may raise Constraint_Error.
11460 Ada 95 went one step further and pretty much removed Numeric_Error
11461 from the list of standard exceptions (it made it a renaming of
11462 Constraint_Error, to help preserve compatibility when compiling
11463 an Ada83 compiler). As such, we do not include Numeric_Error from
11464 this list of standard exceptions. */
3d0b0fa3
JB
11465
11466static char *standard_exc[] = {
11467 "constraint_error",
11468 "program_error",
11469 "storage_error",
11470 "tasking_error"
11471};
11472
0259addd
JB
11473typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11474
11475/* A structure that describes how to support exception catchpoints
11476 for a given executable. */
11477
11478struct exception_support_info
11479{
11480 /* The name of the symbol to break on in order to insert
11481 a catchpoint on exceptions. */
11482 const char *catch_exception_sym;
11483
11484 /* The name of the symbol to break on in order to insert
11485 a catchpoint on unhandled exceptions. */
11486 const char *catch_exception_unhandled_sym;
11487
11488 /* The name of the symbol to break on in order to insert
11489 a catchpoint on failed assertions. */
11490 const char *catch_assert_sym;
11491
11492 /* Assuming that the inferior just triggered an unhandled exception
11493 catchpoint, this function is responsible for returning the address
11494 in inferior memory where the name of that exception is stored.
11495 Return zero if the address could not be computed. */
11496 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11497};
11498
11499static CORE_ADDR ada_unhandled_exception_name_addr (void);
11500static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11501
11502/* The following exception support info structure describes how to
11503 implement exception catchpoints with the latest version of the
11504 Ada runtime (as of 2007-03-06). */
11505
11506static const struct exception_support_info default_exception_support_info =
11507{
11508 "__gnat_debug_raise_exception", /* catch_exception_sym */
11509 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11510 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11511 ada_unhandled_exception_name_addr
11512};
11513
11514/* The following exception support info structure describes how to
11515 implement exception catchpoints with a slightly older version
11516 of the Ada runtime. */
11517
11518static const struct exception_support_info exception_support_info_fallback =
11519{
11520 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11521 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11522 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11523 ada_unhandled_exception_name_addr_from_raise
11524};
11525
f17011e0
JB
11526/* Return nonzero if we can detect the exception support routines
11527 described in EINFO.
11528
11529 This function errors out if an abnormal situation is detected
11530 (for instance, if we find the exception support routines, but
11531 that support is found to be incomplete). */
11532
11533static int
11534ada_has_this_exception_support (const struct exception_support_info *einfo)
11535{
11536 struct symbol *sym;
11537
11538 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11539 that should be compiled with debugging information. As a result, we
11540 expect to find that symbol in the symtabs. */
11541
11542 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11543 if (sym == NULL)
a6af7abe
JB
11544 {
11545 /* Perhaps we did not find our symbol because the Ada runtime was
11546 compiled without debugging info, or simply stripped of it.
11547 It happens on some GNU/Linux distributions for instance, where
11548 users have to install a separate debug package in order to get
11549 the runtime's debugging info. In that situation, let the user
11550 know why we cannot insert an Ada exception catchpoint.
11551
11552 Note: Just for the purpose of inserting our Ada exception
11553 catchpoint, we could rely purely on the associated minimal symbol.
11554 But we would be operating in degraded mode anyway, since we are
11555 still lacking the debugging info needed later on to extract
11556 the name of the exception being raised (this name is printed in
11557 the catchpoint message, and is also used when trying to catch
11558 a specific exception). We do not handle this case for now. */
3b7344d5 11559 struct bound_minimal_symbol msym
1c8e84b0
JB
11560 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11561
3b7344d5 11562 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11563 error (_("Your Ada runtime appears to be missing some debugging "
11564 "information.\nCannot insert Ada exception catchpoint "
11565 "in this configuration."));
11566
11567 return 0;
11568 }
f17011e0
JB
11569
11570 /* Make sure that the symbol we found corresponds to a function. */
11571
11572 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11573 error (_("Symbol \"%s\" is not a function (class = %d)"),
11574 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11575
11576 return 1;
11577}
11578
0259addd
JB
11579/* Inspect the Ada runtime and determine which exception info structure
11580 should be used to provide support for exception catchpoints.
11581
3eecfa55
JB
11582 This function will always set the per-inferior exception_info,
11583 or raise an error. */
0259addd
JB
11584
11585static void
11586ada_exception_support_info_sniffer (void)
11587{
3eecfa55 11588 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11589
11590 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11591 if (data->exception_info != NULL)
0259addd
JB
11592 return;
11593
11594 /* Check the latest (default) exception support info. */
f17011e0 11595 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11596 {
3eecfa55 11597 data->exception_info = &default_exception_support_info;
0259addd
JB
11598 return;
11599 }
11600
11601 /* Try our fallback exception suport info. */
f17011e0 11602 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11603 {
3eecfa55 11604 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11605 return;
11606 }
11607
11608 /* Sometimes, it is normal for us to not be able to find the routine
11609 we are looking for. This happens when the program is linked with
11610 the shared version of the GNAT runtime, and the program has not been
11611 started yet. Inform the user of these two possible causes if
11612 applicable. */
11613
ccefe4c4 11614 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11615 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11616
11617 /* If the symbol does not exist, then check that the program is
11618 already started, to make sure that shared libraries have been
11619 loaded. If it is not started, this may mean that the symbol is
11620 in a shared library. */
11621
11622 if (ptid_get_pid (inferior_ptid) == 0)
11623 error (_("Unable to insert catchpoint. Try to start the program first."));
11624
11625 /* At this point, we know that we are debugging an Ada program and
11626 that the inferior has been started, but we still are not able to
0963b4bd 11627 find the run-time symbols. That can mean that we are in
0259addd
JB
11628 configurable run time mode, or that a-except as been optimized
11629 out by the linker... In any case, at this point it is not worth
11630 supporting this feature. */
11631
7dda8cff 11632 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11633}
11634
f7f9143b
JB
11635/* True iff FRAME is very likely to be that of a function that is
11636 part of the runtime system. This is all very heuristic, but is
11637 intended to be used as advice as to what frames are uninteresting
11638 to most users. */
11639
11640static int
11641is_known_support_routine (struct frame_info *frame)
11642{
4ed6b5be 11643 struct symtab_and_line sal;
55b87a52 11644 char *func_name;
692465f1 11645 enum language func_lang;
f7f9143b 11646 int i;
f35a17b5 11647 const char *fullname;
f7f9143b 11648
4ed6b5be
JB
11649 /* If this code does not have any debugging information (no symtab),
11650 This cannot be any user code. */
f7f9143b 11651
4ed6b5be 11652 find_frame_sal (frame, &sal);
f7f9143b
JB
11653 if (sal.symtab == NULL)
11654 return 1;
11655
4ed6b5be
JB
11656 /* If there is a symtab, but the associated source file cannot be
11657 located, then assume this is not user code: Selecting a frame
11658 for which we cannot display the code would not be very helpful
11659 for the user. This should also take care of case such as VxWorks
11660 where the kernel has some debugging info provided for a few units. */
f7f9143b 11661
f35a17b5
JK
11662 fullname = symtab_to_fullname (sal.symtab);
11663 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11664 return 1;
11665
4ed6b5be
JB
11666 /* Check the unit filename againt the Ada runtime file naming.
11667 We also check the name of the objfile against the name of some
11668 known system libraries that sometimes come with debugging info
11669 too. */
11670
f7f9143b
JB
11671 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11672 {
11673 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11674 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11675 return 1;
eb822aa6
DE
11676 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11677 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11678 return 1;
f7f9143b
JB
11679 }
11680
4ed6b5be 11681 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11682
e9e07ba6 11683 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11684 if (func_name == NULL)
11685 return 1;
11686
11687 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11688 {
11689 re_comp (known_auxiliary_function_name_patterns[i]);
11690 if (re_exec (func_name))
55b87a52
KS
11691 {
11692 xfree (func_name);
11693 return 1;
11694 }
f7f9143b
JB
11695 }
11696
55b87a52 11697 xfree (func_name);
f7f9143b
JB
11698 return 0;
11699}
11700
11701/* Find the first frame that contains debugging information and that is not
11702 part of the Ada run-time, starting from FI and moving upward. */
11703
0ef643c8 11704void
f7f9143b
JB
11705ada_find_printable_frame (struct frame_info *fi)
11706{
11707 for (; fi != NULL; fi = get_prev_frame (fi))
11708 {
11709 if (!is_known_support_routine (fi))
11710 {
11711 select_frame (fi);
11712 break;
11713 }
11714 }
11715
11716}
11717
11718/* Assuming that the inferior just triggered an unhandled exception
11719 catchpoint, return the address in inferior memory where the name
11720 of the exception is stored.
11721
11722 Return zero if the address could not be computed. */
11723
11724static CORE_ADDR
11725ada_unhandled_exception_name_addr (void)
0259addd
JB
11726{
11727 return parse_and_eval_address ("e.full_name");
11728}
11729
11730/* Same as ada_unhandled_exception_name_addr, except that this function
11731 should be used when the inferior uses an older version of the runtime,
11732 where the exception name needs to be extracted from a specific frame
11733 several frames up in the callstack. */
11734
11735static CORE_ADDR
11736ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11737{
11738 int frame_level;
11739 struct frame_info *fi;
3eecfa55 11740 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11741 struct cleanup *old_chain;
f7f9143b
JB
11742
11743 /* To determine the name of this exception, we need to select
11744 the frame corresponding to RAISE_SYM_NAME. This frame is
11745 at least 3 levels up, so we simply skip the first 3 frames
11746 without checking the name of their associated function. */
11747 fi = get_current_frame ();
11748 for (frame_level = 0; frame_level < 3; frame_level += 1)
11749 if (fi != NULL)
11750 fi = get_prev_frame (fi);
11751
55b87a52 11752 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11753 while (fi != NULL)
11754 {
55b87a52 11755 char *func_name;
692465f1
JB
11756 enum language func_lang;
11757
e9e07ba6 11758 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11759 if (func_name != NULL)
11760 {
11761 make_cleanup (xfree, func_name);
11762
11763 if (strcmp (func_name,
11764 data->exception_info->catch_exception_sym) == 0)
11765 break; /* We found the frame we were looking for... */
11766 fi = get_prev_frame (fi);
11767 }
f7f9143b 11768 }
55b87a52 11769 do_cleanups (old_chain);
f7f9143b
JB
11770
11771 if (fi == NULL)
11772 return 0;
11773
11774 select_frame (fi);
11775 return parse_and_eval_address ("id.full_name");
11776}
11777
11778/* Assuming the inferior just triggered an Ada exception catchpoint
11779 (of any type), return the address in inferior memory where the name
11780 of the exception is stored, if applicable.
11781
11782 Return zero if the address could not be computed, or if not relevant. */
11783
11784static CORE_ADDR
761269c8 11785ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11786 struct breakpoint *b)
11787{
3eecfa55
JB
11788 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11789
f7f9143b
JB
11790 switch (ex)
11791 {
761269c8 11792 case ada_catch_exception:
f7f9143b
JB
11793 return (parse_and_eval_address ("e.full_name"));
11794 break;
11795
761269c8 11796 case ada_catch_exception_unhandled:
3eecfa55 11797 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11798 break;
11799
761269c8 11800 case ada_catch_assert:
f7f9143b
JB
11801 return 0; /* Exception name is not relevant in this case. */
11802 break;
11803
11804 default:
11805 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11806 break;
11807 }
11808
11809 return 0; /* Should never be reached. */
11810}
11811
11812/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11813 any error that ada_exception_name_addr_1 might cause to be thrown.
11814 When an error is intercepted, a warning with the error message is printed,
11815 and zero is returned. */
11816
11817static CORE_ADDR
761269c8 11818ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11819 struct breakpoint *b)
11820{
bfd189b1 11821 volatile struct gdb_exception e;
f7f9143b
JB
11822 CORE_ADDR result = 0;
11823
11824 TRY_CATCH (e, RETURN_MASK_ERROR)
11825 {
11826 result = ada_exception_name_addr_1 (ex, b);
11827 }
11828
11829 if (e.reason < 0)
11830 {
11831 warning (_("failed to get exception name: %s"), e.message);
11832 return 0;
11833 }
11834
11835 return result;
11836}
11837
28010a5d
PA
11838static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11839
11840/* Ada catchpoints.
11841
11842 In the case of catchpoints on Ada exceptions, the catchpoint will
11843 stop the target on every exception the program throws. When a user
11844 specifies the name of a specific exception, we translate this
11845 request into a condition expression (in text form), and then parse
11846 it into an expression stored in each of the catchpoint's locations.
11847 We then use this condition to check whether the exception that was
11848 raised is the one the user is interested in. If not, then the
11849 target is resumed again. We store the name of the requested
11850 exception, in order to be able to re-set the condition expression
11851 when symbols change. */
11852
11853/* An instance of this type is used to represent an Ada catchpoint
11854 breakpoint location. It includes a "struct bp_location" as a kind
11855 of base class; users downcast to "struct bp_location *" when
11856 needed. */
11857
11858struct ada_catchpoint_location
11859{
11860 /* The base class. */
11861 struct bp_location base;
11862
11863 /* The condition that checks whether the exception that was raised
11864 is the specific exception the user specified on catchpoint
11865 creation. */
11866 struct expression *excep_cond_expr;
11867};
11868
11869/* Implement the DTOR method in the bp_location_ops structure for all
11870 Ada exception catchpoint kinds. */
11871
11872static void
11873ada_catchpoint_location_dtor (struct bp_location *bl)
11874{
11875 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11876
11877 xfree (al->excep_cond_expr);
11878}
11879
11880/* The vtable to be used in Ada catchpoint locations. */
11881
11882static const struct bp_location_ops ada_catchpoint_location_ops =
11883{
11884 ada_catchpoint_location_dtor
11885};
11886
11887/* An instance of this type is used to represent an Ada catchpoint.
11888 It includes a "struct breakpoint" as a kind of base class; users
11889 downcast to "struct breakpoint *" when needed. */
11890
11891struct ada_catchpoint
11892{
11893 /* The base class. */
11894 struct breakpoint base;
11895
11896 /* The name of the specific exception the user specified. */
11897 char *excep_string;
11898};
11899
11900/* Parse the exception condition string in the context of each of the
11901 catchpoint's locations, and store them for later evaluation. */
11902
11903static void
11904create_excep_cond_exprs (struct ada_catchpoint *c)
11905{
11906 struct cleanup *old_chain;
11907 struct bp_location *bl;
11908 char *cond_string;
11909
11910 /* Nothing to do if there's no specific exception to catch. */
11911 if (c->excep_string == NULL)
11912 return;
11913
11914 /* Same if there are no locations... */
11915 if (c->base.loc == NULL)
11916 return;
11917
11918 /* Compute the condition expression in text form, from the specific
11919 expection we want to catch. */
11920 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11921 old_chain = make_cleanup (xfree, cond_string);
11922
11923 /* Iterate over all the catchpoint's locations, and parse an
11924 expression for each. */
11925 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11926 {
11927 struct ada_catchpoint_location *ada_loc
11928 = (struct ada_catchpoint_location *) bl;
11929 struct expression *exp = NULL;
11930
11931 if (!bl->shlib_disabled)
11932 {
11933 volatile struct gdb_exception e;
bbc13ae3 11934 const char *s;
28010a5d
PA
11935
11936 s = cond_string;
11937 TRY_CATCH (e, RETURN_MASK_ERROR)
11938 {
1bb9788d
TT
11939 exp = parse_exp_1 (&s, bl->address,
11940 block_for_pc (bl->address), 0);
28010a5d
PA
11941 }
11942 if (e.reason < 0)
849f2b52
JB
11943 {
11944 warning (_("failed to reevaluate internal exception condition "
11945 "for catchpoint %d: %s"),
11946 c->base.number, e.message);
11947 /* There is a bug in GCC on sparc-solaris when building with
11948 optimization which causes EXP to change unexpectedly
11949 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11950 The problem should be fixed starting with GCC 4.9.
11951 In the meantime, work around it by forcing EXP back
11952 to NULL. */
11953 exp = NULL;
11954 }
28010a5d
PA
11955 }
11956
11957 ada_loc->excep_cond_expr = exp;
11958 }
11959
11960 do_cleanups (old_chain);
11961}
11962
11963/* Implement the DTOR method in the breakpoint_ops structure for all
11964 exception catchpoint kinds. */
11965
11966static void
761269c8 11967dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11968{
11969 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11970
11971 xfree (c->excep_string);
348d480f 11972
2060206e 11973 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11974}
11975
11976/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11977 structure for all exception catchpoint kinds. */
11978
11979static struct bp_location *
761269c8 11980allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11981 struct breakpoint *self)
11982{
11983 struct ada_catchpoint_location *loc;
11984
11985 loc = XNEW (struct ada_catchpoint_location);
11986 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11987 loc->excep_cond_expr = NULL;
11988 return &loc->base;
11989}
11990
11991/* Implement the RE_SET method in the breakpoint_ops structure for all
11992 exception catchpoint kinds. */
11993
11994static void
761269c8 11995re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11996{
11997 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11998
11999 /* Call the base class's method. This updates the catchpoint's
12000 locations. */
2060206e 12001 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12002
12003 /* Reparse the exception conditional expressions. One for each
12004 location. */
12005 create_excep_cond_exprs (c);
12006}
12007
12008/* Returns true if we should stop for this breakpoint hit. If the
12009 user specified a specific exception, we only want to cause a stop
12010 if the program thrown that exception. */
12011
12012static int
12013should_stop_exception (const struct bp_location *bl)
12014{
12015 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12016 const struct ada_catchpoint_location *ada_loc
12017 = (const struct ada_catchpoint_location *) bl;
12018 volatile struct gdb_exception ex;
12019 int stop;
12020
12021 /* With no specific exception, should always stop. */
12022 if (c->excep_string == NULL)
12023 return 1;
12024
12025 if (ada_loc->excep_cond_expr == NULL)
12026 {
12027 /* We will have a NULL expression if back when we were creating
12028 the expressions, this location's had failed to parse. */
12029 return 1;
12030 }
12031
12032 stop = 1;
12033 TRY_CATCH (ex, RETURN_MASK_ALL)
12034 {
12035 struct value *mark;
12036
12037 mark = value_mark ();
12038 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12039 value_free_to_mark (mark);
12040 }
12041 if (ex.reason < 0)
12042 exception_fprintf (gdb_stderr, ex,
12043 _("Error in testing exception condition:\n"));
12044 return stop;
12045}
12046
12047/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12048 for all exception catchpoint kinds. */
12049
12050static void
761269c8 12051check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12052{
12053 bs->stop = should_stop_exception (bs->bp_location_at);
12054}
12055
f7f9143b
JB
12056/* Implement the PRINT_IT method in the breakpoint_ops structure
12057 for all exception catchpoint kinds. */
12058
12059static enum print_stop_action
761269c8 12060print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12061{
79a45e25 12062 struct ui_out *uiout = current_uiout;
348d480f
PA
12063 struct breakpoint *b = bs->breakpoint_at;
12064
956a9fb9 12065 annotate_catchpoint (b->number);
f7f9143b 12066
956a9fb9 12067 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12068 {
956a9fb9
JB
12069 ui_out_field_string (uiout, "reason",
12070 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12071 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12072 }
12073
00eb2c4a
JB
12074 ui_out_text (uiout,
12075 b->disposition == disp_del ? "\nTemporary catchpoint "
12076 : "\nCatchpoint ");
956a9fb9
JB
12077 ui_out_field_int (uiout, "bkptno", b->number);
12078 ui_out_text (uiout, ", ");
f7f9143b 12079
f7f9143b
JB
12080 switch (ex)
12081 {
761269c8
JB
12082 case ada_catch_exception:
12083 case ada_catch_exception_unhandled:
956a9fb9
JB
12084 {
12085 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12086 char exception_name[256];
12087
12088 if (addr != 0)
12089 {
c714b426
PA
12090 read_memory (addr, (gdb_byte *) exception_name,
12091 sizeof (exception_name) - 1);
956a9fb9
JB
12092 exception_name [sizeof (exception_name) - 1] = '\0';
12093 }
12094 else
12095 {
12096 /* For some reason, we were unable to read the exception
12097 name. This could happen if the Runtime was compiled
12098 without debugging info, for instance. In that case,
12099 just replace the exception name by the generic string
12100 "exception" - it will read as "an exception" in the
12101 notification we are about to print. */
967cff16 12102 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12103 }
12104 /* In the case of unhandled exception breakpoints, we print
12105 the exception name as "unhandled EXCEPTION_NAME", to make
12106 it clearer to the user which kind of catchpoint just got
12107 hit. We used ui_out_text to make sure that this extra
12108 info does not pollute the exception name in the MI case. */
761269c8 12109 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12110 ui_out_text (uiout, "unhandled ");
12111 ui_out_field_string (uiout, "exception-name", exception_name);
12112 }
12113 break;
761269c8 12114 case ada_catch_assert:
956a9fb9
JB
12115 /* In this case, the name of the exception is not really
12116 important. Just print "failed assertion" to make it clearer
12117 that his program just hit an assertion-failure catchpoint.
12118 We used ui_out_text because this info does not belong in
12119 the MI output. */
12120 ui_out_text (uiout, "failed assertion");
12121 break;
f7f9143b 12122 }
956a9fb9
JB
12123 ui_out_text (uiout, " at ");
12124 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12125
12126 return PRINT_SRC_AND_LOC;
12127}
12128
12129/* Implement the PRINT_ONE method in the breakpoint_ops structure
12130 for all exception catchpoint kinds. */
12131
12132static void
761269c8 12133print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12134 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12135{
79a45e25 12136 struct ui_out *uiout = current_uiout;
28010a5d 12137 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12138 struct value_print_options opts;
12139
12140 get_user_print_options (&opts);
12141 if (opts.addressprint)
f7f9143b
JB
12142 {
12143 annotate_field (4);
5af949e3 12144 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12145 }
12146
12147 annotate_field (5);
a6d9a66e 12148 *last_loc = b->loc;
f7f9143b
JB
12149 switch (ex)
12150 {
761269c8 12151 case ada_catch_exception:
28010a5d 12152 if (c->excep_string != NULL)
f7f9143b 12153 {
28010a5d
PA
12154 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12155
f7f9143b
JB
12156 ui_out_field_string (uiout, "what", msg);
12157 xfree (msg);
12158 }
12159 else
12160 ui_out_field_string (uiout, "what", "all Ada exceptions");
12161
12162 break;
12163
761269c8 12164 case ada_catch_exception_unhandled:
f7f9143b
JB
12165 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12166 break;
12167
761269c8 12168 case ada_catch_assert:
f7f9143b
JB
12169 ui_out_field_string (uiout, "what", "failed Ada assertions");
12170 break;
12171
12172 default:
12173 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12174 break;
12175 }
12176}
12177
12178/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12179 for all exception catchpoint kinds. */
12180
12181static void
761269c8 12182print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12183 struct breakpoint *b)
12184{
28010a5d 12185 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12186 struct ui_out *uiout = current_uiout;
28010a5d 12187
00eb2c4a
JB
12188 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12189 : _("Catchpoint "));
12190 ui_out_field_int (uiout, "bkptno", b->number);
12191 ui_out_text (uiout, ": ");
12192
f7f9143b
JB
12193 switch (ex)
12194 {
761269c8 12195 case ada_catch_exception:
28010a5d 12196 if (c->excep_string != NULL)
00eb2c4a
JB
12197 {
12198 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12199 struct cleanup *old_chain = make_cleanup (xfree, info);
12200
12201 ui_out_text (uiout, info);
12202 do_cleanups (old_chain);
12203 }
f7f9143b 12204 else
00eb2c4a 12205 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12206 break;
12207
761269c8 12208 case ada_catch_exception_unhandled:
00eb2c4a 12209 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12210 break;
12211
761269c8 12212 case ada_catch_assert:
00eb2c4a 12213 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12214 break;
12215
12216 default:
12217 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12218 break;
12219 }
12220}
12221
6149aea9
PA
12222/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12223 for all exception catchpoint kinds. */
12224
12225static void
761269c8 12226print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12227 struct breakpoint *b, struct ui_file *fp)
12228{
28010a5d
PA
12229 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12230
6149aea9
PA
12231 switch (ex)
12232 {
761269c8 12233 case ada_catch_exception:
6149aea9 12234 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12235 if (c->excep_string != NULL)
12236 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12237 break;
12238
761269c8 12239 case ada_catch_exception_unhandled:
78076abc 12240 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12241 break;
12242
761269c8 12243 case ada_catch_assert:
6149aea9
PA
12244 fprintf_filtered (fp, "catch assert");
12245 break;
12246
12247 default:
12248 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12249 }
d9b3f62e 12250 print_recreate_thread (b, fp);
6149aea9
PA
12251}
12252
f7f9143b
JB
12253/* Virtual table for "catch exception" breakpoints. */
12254
28010a5d
PA
12255static void
12256dtor_catch_exception (struct breakpoint *b)
12257{
761269c8 12258 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12259}
12260
12261static struct bp_location *
12262allocate_location_catch_exception (struct breakpoint *self)
12263{
761269c8 12264 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12265}
12266
12267static void
12268re_set_catch_exception (struct breakpoint *b)
12269{
761269c8 12270 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12271}
12272
12273static void
12274check_status_catch_exception (bpstat bs)
12275{
761269c8 12276 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12277}
12278
f7f9143b 12279static enum print_stop_action
348d480f 12280print_it_catch_exception (bpstat bs)
f7f9143b 12281{
761269c8 12282 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12283}
12284
12285static void
a6d9a66e 12286print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12287{
761269c8 12288 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12289}
12290
12291static void
12292print_mention_catch_exception (struct breakpoint *b)
12293{
761269c8 12294 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12295}
12296
6149aea9
PA
12297static void
12298print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12299{
761269c8 12300 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12301}
12302
2060206e 12303static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12304
12305/* Virtual table for "catch exception unhandled" breakpoints. */
12306
28010a5d
PA
12307static void
12308dtor_catch_exception_unhandled (struct breakpoint *b)
12309{
761269c8 12310 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12311}
12312
12313static struct bp_location *
12314allocate_location_catch_exception_unhandled (struct breakpoint *self)
12315{
761269c8 12316 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12317}
12318
12319static void
12320re_set_catch_exception_unhandled (struct breakpoint *b)
12321{
761269c8 12322 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12323}
12324
12325static void
12326check_status_catch_exception_unhandled (bpstat bs)
12327{
761269c8 12328 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12329}
12330
f7f9143b 12331static enum print_stop_action
348d480f 12332print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12333{
761269c8 12334 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12335}
12336
12337static void
a6d9a66e
UW
12338print_one_catch_exception_unhandled (struct breakpoint *b,
12339 struct bp_location **last_loc)
f7f9143b 12340{
761269c8 12341 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12342}
12343
12344static void
12345print_mention_catch_exception_unhandled (struct breakpoint *b)
12346{
761269c8 12347 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12348}
12349
6149aea9
PA
12350static void
12351print_recreate_catch_exception_unhandled (struct breakpoint *b,
12352 struct ui_file *fp)
12353{
761269c8 12354 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12355}
12356
2060206e 12357static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12358
12359/* Virtual table for "catch assert" breakpoints. */
12360
28010a5d
PA
12361static void
12362dtor_catch_assert (struct breakpoint *b)
12363{
761269c8 12364 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12365}
12366
12367static struct bp_location *
12368allocate_location_catch_assert (struct breakpoint *self)
12369{
761269c8 12370 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12371}
12372
12373static void
12374re_set_catch_assert (struct breakpoint *b)
12375{
761269c8 12376 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12377}
12378
12379static void
12380check_status_catch_assert (bpstat bs)
12381{
761269c8 12382 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12383}
12384
f7f9143b 12385static enum print_stop_action
348d480f 12386print_it_catch_assert (bpstat bs)
f7f9143b 12387{
761269c8 12388 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12389}
12390
12391static void
a6d9a66e 12392print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12393{
761269c8 12394 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12395}
12396
12397static void
12398print_mention_catch_assert (struct breakpoint *b)
12399{
761269c8 12400 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12401}
12402
6149aea9
PA
12403static void
12404print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12405{
761269c8 12406 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12407}
12408
2060206e 12409static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12410
f7f9143b
JB
12411/* Return a newly allocated copy of the first space-separated token
12412 in ARGSP, and then adjust ARGSP to point immediately after that
12413 token.
12414
12415 Return NULL if ARGPS does not contain any more tokens. */
12416
12417static char *
12418ada_get_next_arg (char **argsp)
12419{
12420 char *args = *argsp;
12421 char *end;
12422 char *result;
12423
0fcd72ba 12424 args = skip_spaces (args);
f7f9143b
JB
12425 if (args[0] == '\0')
12426 return NULL; /* No more arguments. */
12427
12428 /* Find the end of the current argument. */
12429
0fcd72ba 12430 end = skip_to_space (args);
f7f9143b
JB
12431
12432 /* Adjust ARGSP to point to the start of the next argument. */
12433
12434 *argsp = end;
12435
12436 /* Make a copy of the current argument and return it. */
12437
12438 result = xmalloc (end - args + 1);
12439 strncpy (result, args, end - args);
12440 result[end - args] = '\0';
12441
12442 return result;
12443}
12444
12445/* Split the arguments specified in a "catch exception" command.
12446 Set EX to the appropriate catchpoint type.
28010a5d 12447 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12448 specified by the user.
12449 If a condition is found at the end of the arguments, the condition
12450 expression is stored in COND_STRING (memory must be deallocated
12451 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12452
12453static void
12454catch_ada_exception_command_split (char *args,
761269c8 12455 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12456 char **excep_string,
12457 char **cond_string)
f7f9143b
JB
12458{
12459 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12460 char *exception_name;
5845583d 12461 char *cond = NULL;
f7f9143b
JB
12462
12463 exception_name = ada_get_next_arg (&args);
5845583d
JB
12464 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12465 {
12466 /* This is not an exception name; this is the start of a condition
12467 expression for a catchpoint on all exceptions. So, "un-get"
12468 this token, and set exception_name to NULL. */
12469 xfree (exception_name);
12470 exception_name = NULL;
12471 args -= 2;
12472 }
f7f9143b
JB
12473 make_cleanup (xfree, exception_name);
12474
5845583d 12475 /* Check to see if we have a condition. */
f7f9143b 12476
0fcd72ba 12477 args = skip_spaces (args);
5845583d
JB
12478 if (strncmp (args, "if", 2) == 0
12479 && (isspace (args[2]) || args[2] == '\0'))
12480 {
12481 args += 2;
12482 args = skip_spaces (args);
12483
12484 if (args[0] == '\0')
12485 error (_("Condition missing after `if' keyword"));
12486 cond = xstrdup (args);
12487 make_cleanup (xfree, cond);
12488
12489 args += strlen (args);
12490 }
12491
12492 /* Check that we do not have any more arguments. Anything else
12493 is unexpected. */
f7f9143b
JB
12494
12495 if (args[0] != '\0')
12496 error (_("Junk at end of expression"));
12497
12498 discard_cleanups (old_chain);
12499
12500 if (exception_name == NULL)
12501 {
12502 /* Catch all exceptions. */
761269c8 12503 *ex = ada_catch_exception;
28010a5d 12504 *excep_string = NULL;
f7f9143b
JB
12505 }
12506 else if (strcmp (exception_name, "unhandled") == 0)
12507 {
12508 /* Catch unhandled exceptions. */
761269c8 12509 *ex = ada_catch_exception_unhandled;
28010a5d 12510 *excep_string = NULL;
f7f9143b
JB
12511 }
12512 else
12513 {
12514 /* Catch a specific exception. */
761269c8 12515 *ex = ada_catch_exception;
28010a5d 12516 *excep_string = exception_name;
f7f9143b 12517 }
5845583d 12518 *cond_string = cond;
f7f9143b
JB
12519}
12520
12521/* Return the name of the symbol on which we should break in order to
12522 implement a catchpoint of the EX kind. */
12523
12524static const char *
761269c8 12525ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12526{
3eecfa55
JB
12527 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12528
12529 gdb_assert (data->exception_info != NULL);
0259addd 12530
f7f9143b
JB
12531 switch (ex)
12532 {
761269c8 12533 case ada_catch_exception:
3eecfa55 12534 return (data->exception_info->catch_exception_sym);
f7f9143b 12535 break;
761269c8 12536 case ada_catch_exception_unhandled:
3eecfa55 12537 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12538 break;
761269c8 12539 case ada_catch_assert:
3eecfa55 12540 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12541 break;
12542 default:
12543 internal_error (__FILE__, __LINE__,
12544 _("unexpected catchpoint kind (%d)"), ex);
12545 }
12546}
12547
12548/* Return the breakpoint ops "virtual table" used for catchpoints
12549 of the EX kind. */
12550
c0a91b2b 12551static const struct breakpoint_ops *
761269c8 12552ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12553{
12554 switch (ex)
12555 {
761269c8 12556 case ada_catch_exception:
f7f9143b
JB
12557 return (&catch_exception_breakpoint_ops);
12558 break;
761269c8 12559 case ada_catch_exception_unhandled:
f7f9143b
JB
12560 return (&catch_exception_unhandled_breakpoint_ops);
12561 break;
761269c8 12562 case ada_catch_assert:
f7f9143b
JB
12563 return (&catch_assert_breakpoint_ops);
12564 break;
12565 default:
12566 internal_error (__FILE__, __LINE__,
12567 _("unexpected catchpoint kind (%d)"), ex);
12568 }
12569}
12570
12571/* Return the condition that will be used to match the current exception
12572 being raised with the exception that the user wants to catch. This
12573 assumes that this condition is used when the inferior just triggered
12574 an exception catchpoint.
12575
12576 The string returned is a newly allocated string that needs to be
12577 deallocated later. */
12578
12579static char *
28010a5d 12580ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12581{
3d0b0fa3
JB
12582 int i;
12583
0963b4bd 12584 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12585 runtime units that have been compiled without debugging info; if
28010a5d 12586 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12587 exception (e.g. "constraint_error") then, during the evaluation
12588 of the condition expression, the symbol lookup on this name would
0963b4bd 12589 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12590 may then be set only on user-defined exceptions which have the
12591 same not-fully-qualified name (e.g. my_package.constraint_error).
12592
12593 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12594 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12595 exception constraint_error" is rewritten into "catch exception
12596 standard.constraint_error".
12597
12598 If an exception named contraint_error is defined in another package of
12599 the inferior program, then the only way to specify this exception as a
12600 breakpoint condition is to use its fully-qualified named:
12601 e.g. my_package.constraint_error. */
12602
12603 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12604 {
28010a5d 12605 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12606 {
12607 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12608 excep_string);
3d0b0fa3
JB
12609 }
12610 }
28010a5d 12611 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12612}
12613
12614/* Return the symtab_and_line that should be used to insert an exception
12615 catchpoint of the TYPE kind.
12616
28010a5d
PA
12617 EXCEP_STRING should contain the name of a specific exception that
12618 the catchpoint should catch, or NULL otherwise.
f7f9143b 12619
28010a5d
PA
12620 ADDR_STRING returns the name of the function where the real
12621 breakpoint that implements the catchpoints is set, depending on the
12622 type of catchpoint we need to create. */
f7f9143b
JB
12623
12624static struct symtab_and_line
761269c8 12625ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12626 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12627{
12628 const char *sym_name;
12629 struct symbol *sym;
f7f9143b 12630
0259addd
JB
12631 /* First, find out which exception support info to use. */
12632 ada_exception_support_info_sniffer ();
12633
12634 /* Then lookup the function on which we will break in order to catch
f7f9143b 12635 the Ada exceptions requested by the user. */
f7f9143b
JB
12636 sym_name = ada_exception_sym_name (ex);
12637 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12638
f17011e0
JB
12639 /* We can assume that SYM is not NULL at this stage. If the symbol
12640 did not exist, ada_exception_support_info_sniffer would have
12641 raised an exception.
f7f9143b 12642
f17011e0
JB
12643 Also, ada_exception_support_info_sniffer should have already
12644 verified that SYM is a function symbol. */
12645 gdb_assert (sym != NULL);
12646 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12647
12648 /* Set ADDR_STRING. */
f7f9143b
JB
12649 *addr_string = xstrdup (sym_name);
12650
f7f9143b 12651 /* Set OPS. */
4b9eee8c 12652 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12653
f17011e0 12654 return find_function_start_sal (sym, 1);
f7f9143b
JB
12655}
12656
b4a5b78b 12657/* Create an Ada exception catchpoint.
f7f9143b 12658
b4a5b78b 12659 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12660
2df4d1d5
JB
12661 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12662 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12663 of the exception to which this catchpoint applies. When not NULL,
12664 the string must be allocated on the heap, and its deallocation
12665 is no longer the responsibility of the caller.
12666
12667 COND_STRING, if not NULL, is the catchpoint condition. This string
12668 must be allocated on the heap, and its deallocation is no longer
12669 the responsibility of the caller.
f7f9143b 12670
b4a5b78b
JB
12671 TEMPFLAG, if nonzero, means that the underlying breakpoint
12672 should be temporary.
28010a5d 12673
b4a5b78b 12674 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12675
349774ef 12676void
28010a5d 12677create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12678 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12679 char *excep_string,
5845583d 12680 char *cond_string,
28010a5d 12681 int tempflag,
349774ef 12682 int disabled,
28010a5d
PA
12683 int from_tty)
12684{
12685 struct ada_catchpoint *c;
b4a5b78b
JB
12686 char *addr_string = NULL;
12687 const struct breakpoint_ops *ops = NULL;
12688 struct symtab_and_line sal
12689 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12690
12691 c = XNEW (struct ada_catchpoint);
12692 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12693 ops, tempflag, disabled, from_tty);
28010a5d
PA
12694 c->excep_string = excep_string;
12695 create_excep_cond_exprs (c);
5845583d
JB
12696 if (cond_string != NULL)
12697 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12698 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12699}
12700
9ac4176b
PA
12701/* Implement the "catch exception" command. */
12702
12703static void
12704catch_ada_exception_command (char *arg, int from_tty,
12705 struct cmd_list_element *command)
12706{
12707 struct gdbarch *gdbarch = get_current_arch ();
12708 int tempflag;
761269c8 12709 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12710 char *excep_string = NULL;
5845583d 12711 char *cond_string = NULL;
9ac4176b
PA
12712
12713 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12714
12715 if (!arg)
12716 arg = "";
b4a5b78b
JB
12717 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12718 &cond_string);
12719 create_ada_exception_catchpoint (gdbarch, ex_kind,
12720 excep_string, cond_string,
349774ef
JB
12721 tempflag, 1 /* enabled */,
12722 from_tty);
9ac4176b
PA
12723}
12724
b4a5b78b 12725/* Split the arguments specified in a "catch assert" command.
5845583d 12726
b4a5b78b
JB
12727 ARGS contains the command's arguments (or the empty string if
12728 no arguments were passed).
5845583d
JB
12729
12730 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12731 (the memory needs to be deallocated after use). */
5845583d 12732
b4a5b78b
JB
12733static void
12734catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12735{
5845583d 12736 args = skip_spaces (args);
f7f9143b 12737
5845583d
JB
12738 /* Check whether a condition was provided. */
12739 if (strncmp (args, "if", 2) == 0
12740 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12741 {
5845583d 12742 args += 2;
0fcd72ba 12743 args = skip_spaces (args);
5845583d
JB
12744 if (args[0] == '\0')
12745 error (_("condition missing after `if' keyword"));
12746 *cond_string = xstrdup (args);
f7f9143b
JB
12747 }
12748
5845583d
JB
12749 /* Otherwise, there should be no other argument at the end of
12750 the command. */
12751 else if (args[0] != '\0')
12752 error (_("Junk at end of arguments."));
f7f9143b
JB
12753}
12754
9ac4176b
PA
12755/* Implement the "catch assert" command. */
12756
12757static void
12758catch_assert_command (char *arg, int from_tty,
12759 struct cmd_list_element *command)
12760{
12761 struct gdbarch *gdbarch = get_current_arch ();
12762 int tempflag;
5845583d 12763 char *cond_string = NULL;
9ac4176b
PA
12764
12765 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12766
12767 if (!arg)
12768 arg = "";
b4a5b78b 12769 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12770 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12771 NULL, cond_string,
349774ef
JB
12772 tempflag, 1 /* enabled */,
12773 from_tty);
9ac4176b 12774}
778865d3
JB
12775
12776/* Return non-zero if the symbol SYM is an Ada exception object. */
12777
12778static int
12779ada_is_exception_sym (struct symbol *sym)
12780{
12781 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12782
12783 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12784 && SYMBOL_CLASS (sym) != LOC_BLOCK
12785 && SYMBOL_CLASS (sym) != LOC_CONST
12786 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12787 && type_name != NULL && strcmp (type_name, "exception") == 0);
12788}
12789
12790/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12791 Ada exception object. This matches all exceptions except the ones
12792 defined by the Ada language. */
12793
12794static int
12795ada_is_non_standard_exception_sym (struct symbol *sym)
12796{
12797 int i;
12798
12799 if (!ada_is_exception_sym (sym))
12800 return 0;
12801
12802 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12803 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12804 return 0; /* A standard exception. */
12805
12806 /* Numeric_Error is also a standard exception, so exclude it.
12807 See the STANDARD_EXC description for more details as to why
12808 this exception is not listed in that array. */
12809 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12810 return 0;
12811
12812 return 1;
12813}
12814
12815/* A helper function for qsort, comparing two struct ada_exc_info
12816 objects.
12817
12818 The comparison is determined first by exception name, and then
12819 by exception address. */
12820
12821static int
12822compare_ada_exception_info (const void *a, const void *b)
12823{
12824 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12825 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12826 int result;
12827
12828 result = strcmp (exc_a->name, exc_b->name);
12829 if (result != 0)
12830 return result;
12831
12832 if (exc_a->addr < exc_b->addr)
12833 return -1;
12834 if (exc_a->addr > exc_b->addr)
12835 return 1;
12836
12837 return 0;
12838}
12839
12840/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12841 routine, but keeping the first SKIP elements untouched.
12842
12843 All duplicates are also removed. */
12844
12845static void
12846sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12847 int skip)
12848{
12849 struct ada_exc_info *to_sort
12850 = VEC_address (ada_exc_info, *exceptions) + skip;
12851 int to_sort_len
12852 = VEC_length (ada_exc_info, *exceptions) - skip;
12853 int i, j;
12854
12855 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12856 compare_ada_exception_info);
12857
12858 for (i = 1, j = 1; i < to_sort_len; i++)
12859 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12860 to_sort[j++] = to_sort[i];
12861 to_sort_len = j;
12862 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12863}
12864
12865/* A function intended as the "name_matcher" callback in the struct
12866 quick_symbol_functions' expand_symtabs_matching method.
12867
12868 SEARCH_NAME is the symbol's search name.
12869
12870 If USER_DATA is not NULL, it is a pointer to a regext_t object
12871 used to match the symbol (by natural name). Otherwise, when USER_DATA
12872 is null, no filtering is performed, and all symbols are a positive
12873 match. */
12874
12875static int
12876ada_exc_search_name_matches (const char *search_name, void *user_data)
12877{
12878 regex_t *preg = user_data;
12879
12880 if (preg == NULL)
12881 return 1;
12882
12883 /* In Ada, the symbol "search name" is a linkage name, whereas
12884 the regular expression used to do the matching refers to
12885 the natural name. So match against the decoded name. */
12886 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12887}
12888
12889/* Add all exceptions defined by the Ada standard whose name match
12890 a regular expression.
12891
12892 If PREG is not NULL, then this regexp_t object is used to
12893 perform the symbol name matching. Otherwise, no name-based
12894 filtering is performed.
12895
12896 EXCEPTIONS is a vector of exceptions to which matching exceptions
12897 gets pushed. */
12898
12899static void
12900ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12901{
12902 int i;
12903
12904 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12905 {
12906 if (preg == NULL
12907 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12908 {
12909 struct bound_minimal_symbol msymbol
12910 = ada_lookup_simple_minsym (standard_exc[i]);
12911
12912 if (msymbol.minsym != NULL)
12913 {
12914 struct ada_exc_info info
77e371c0 12915 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12916
12917 VEC_safe_push (ada_exc_info, *exceptions, &info);
12918 }
12919 }
12920 }
12921}
12922
12923/* Add all Ada exceptions defined locally and accessible from the given
12924 FRAME.
12925
12926 If PREG is not NULL, then this regexp_t object is used to
12927 perform the symbol name matching. Otherwise, no name-based
12928 filtering is performed.
12929
12930 EXCEPTIONS is a vector of exceptions to which matching exceptions
12931 gets pushed. */
12932
12933static void
12934ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12935 VEC(ada_exc_info) **exceptions)
12936{
3977b71f 12937 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12938
12939 while (block != 0)
12940 {
12941 struct block_iterator iter;
12942 struct symbol *sym;
12943
12944 ALL_BLOCK_SYMBOLS (block, iter, sym)
12945 {
12946 switch (SYMBOL_CLASS (sym))
12947 {
12948 case LOC_TYPEDEF:
12949 case LOC_BLOCK:
12950 case LOC_CONST:
12951 break;
12952 default:
12953 if (ada_is_exception_sym (sym))
12954 {
12955 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12956 SYMBOL_VALUE_ADDRESS (sym)};
12957
12958 VEC_safe_push (ada_exc_info, *exceptions, &info);
12959 }
12960 }
12961 }
12962 if (BLOCK_FUNCTION (block) != NULL)
12963 break;
12964 block = BLOCK_SUPERBLOCK (block);
12965 }
12966}
12967
12968/* Add all exceptions defined globally whose name name match
12969 a regular expression, excluding standard exceptions.
12970
12971 The reason we exclude standard exceptions is that they need
12972 to be handled separately: Standard exceptions are defined inside
12973 a runtime unit which is normally not compiled with debugging info,
12974 and thus usually do not show up in our symbol search. However,
12975 if the unit was in fact built with debugging info, we need to
12976 exclude them because they would duplicate the entry we found
12977 during the special loop that specifically searches for those
12978 standard exceptions.
12979
12980 If PREG is not NULL, then this regexp_t object is used to
12981 perform the symbol name matching. Otherwise, no name-based
12982 filtering is performed.
12983
12984 EXCEPTIONS is a vector of exceptions to which matching exceptions
12985 gets pushed. */
12986
12987static void
12988ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12989{
12990 struct objfile *objfile;
43f3e411 12991 struct compunit_symtab *s;
778865d3 12992
276d885b 12993 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 12994 VARIABLES_DOMAIN, preg);
778865d3 12995
43f3e411 12996 ALL_COMPUNITS (objfile, s)
778865d3 12997 {
43f3e411 12998 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
12999 int i;
13000
13001 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13002 {
13003 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13004 struct block_iterator iter;
13005 struct symbol *sym;
13006
13007 ALL_BLOCK_SYMBOLS (b, iter, sym)
13008 if (ada_is_non_standard_exception_sym (sym)
13009 && (preg == NULL
13010 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13011 0, NULL, 0) == 0))
13012 {
13013 struct ada_exc_info info
13014 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13015
13016 VEC_safe_push (ada_exc_info, *exceptions, &info);
13017 }
13018 }
13019 }
13020}
13021
13022/* Implements ada_exceptions_list with the regular expression passed
13023 as a regex_t, rather than a string.
13024
13025 If not NULL, PREG is used to filter out exceptions whose names
13026 do not match. Otherwise, all exceptions are listed. */
13027
13028static VEC(ada_exc_info) *
13029ada_exceptions_list_1 (regex_t *preg)
13030{
13031 VEC(ada_exc_info) *result = NULL;
13032 struct cleanup *old_chain
13033 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13034 int prev_len;
13035
13036 /* First, list the known standard exceptions. These exceptions
13037 need to be handled separately, as they are usually defined in
13038 runtime units that have been compiled without debugging info. */
13039
13040 ada_add_standard_exceptions (preg, &result);
13041
13042 /* Next, find all exceptions whose scope is local and accessible
13043 from the currently selected frame. */
13044
13045 if (has_stack_frames ())
13046 {
13047 prev_len = VEC_length (ada_exc_info, result);
13048 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13049 &result);
13050 if (VEC_length (ada_exc_info, result) > prev_len)
13051 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13052 }
13053
13054 /* Add all exceptions whose scope is global. */
13055
13056 prev_len = VEC_length (ada_exc_info, result);
13057 ada_add_global_exceptions (preg, &result);
13058 if (VEC_length (ada_exc_info, result) > prev_len)
13059 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13060
13061 discard_cleanups (old_chain);
13062 return result;
13063}
13064
13065/* Return a vector of ada_exc_info.
13066
13067 If REGEXP is NULL, all exceptions are included in the result.
13068 Otherwise, it should contain a valid regular expression,
13069 and only the exceptions whose names match that regular expression
13070 are included in the result.
13071
13072 The exceptions are sorted in the following order:
13073 - Standard exceptions (defined by the Ada language), in
13074 alphabetical order;
13075 - Exceptions only visible from the current frame, in
13076 alphabetical order;
13077 - Exceptions whose scope is global, in alphabetical order. */
13078
13079VEC(ada_exc_info) *
13080ada_exceptions_list (const char *regexp)
13081{
13082 VEC(ada_exc_info) *result = NULL;
13083 struct cleanup *old_chain = NULL;
13084 regex_t reg;
13085
13086 if (regexp != NULL)
13087 old_chain = compile_rx_or_error (&reg, regexp,
13088 _("invalid regular expression"));
13089
13090 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13091
13092 if (old_chain != NULL)
13093 do_cleanups (old_chain);
13094 return result;
13095}
13096
13097/* Implement the "info exceptions" command. */
13098
13099static void
13100info_exceptions_command (char *regexp, int from_tty)
13101{
13102 VEC(ada_exc_info) *exceptions;
13103 struct cleanup *cleanup;
13104 struct gdbarch *gdbarch = get_current_arch ();
13105 int ix;
13106 struct ada_exc_info *info;
13107
13108 exceptions = ada_exceptions_list (regexp);
13109 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13110
13111 if (regexp != NULL)
13112 printf_filtered
13113 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13114 else
13115 printf_filtered (_("All defined Ada exceptions:\n"));
13116
13117 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13118 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13119
13120 do_cleanups (cleanup);
13121}
13122
4c4b4cd2
PH
13123 /* Operators */
13124/* Information about operators given special treatment in functions
13125 below. */
13126/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13127
13128#define ADA_OPERATORS \
13129 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13130 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13131 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13132 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13133 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13134 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13135 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13136 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13137 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13138 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13139 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13140 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13141 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13142 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13143 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13144 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13145 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13146 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13147 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13148
13149static void
554794dc
SDJ
13150ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13151 int *argsp)
4c4b4cd2
PH
13152{
13153 switch (exp->elts[pc - 1].opcode)
13154 {
76a01679 13155 default:
4c4b4cd2
PH
13156 operator_length_standard (exp, pc, oplenp, argsp);
13157 break;
13158
13159#define OP_DEFN(op, len, args, binop) \
13160 case op: *oplenp = len; *argsp = args; break;
13161 ADA_OPERATORS;
13162#undef OP_DEFN
52ce6436
PH
13163
13164 case OP_AGGREGATE:
13165 *oplenp = 3;
13166 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13167 break;
13168
13169 case OP_CHOICES:
13170 *oplenp = 3;
13171 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13172 break;
4c4b4cd2
PH
13173 }
13174}
13175
c0201579
JK
13176/* Implementation of the exp_descriptor method operator_check. */
13177
13178static int
13179ada_operator_check (struct expression *exp, int pos,
13180 int (*objfile_func) (struct objfile *objfile, void *data),
13181 void *data)
13182{
13183 const union exp_element *const elts = exp->elts;
13184 struct type *type = NULL;
13185
13186 switch (elts[pos].opcode)
13187 {
13188 case UNOP_IN_RANGE:
13189 case UNOP_QUAL:
13190 type = elts[pos + 1].type;
13191 break;
13192
13193 default:
13194 return operator_check_standard (exp, pos, objfile_func, data);
13195 }
13196
13197 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13198
13199 if (type && TYPE_OBJFILE (type)
13200 && (*objfile_func) (TYPE_OBJFILE (type), data))
13201 return 1;
13202
13203 return 0;
13204}
13205
4c4b4cd2
PH
13206static char *
13207ada_op_name (enum exp_opcode opcode)
13208{
13209 switch (opcode)
13210 {
76a01679 13211 default:
4c4b4cd2 13212 return op_name_standard (opcode);
52ce6436 13213
4c4b4cd2
PH
13214#define OP_DEFN(op, len, args, binop) case op: return #op;
13215 ADA_OPERATORS;
13216#undef OP_DEFN
52ce6436
PH
13217
13218 case OP_AGGREGATE:
13219 return "OP_AGGREGATE";
13220 case OP_CHOICES:
13221 return "OP_CHOICES";
13222 case OP_NAME:
13223 return "OP_NAME";
4c4b4cd2
PH
13224 }
13225}
13226
13227/* As for operator_length, but assumes PC is pointing at the first
13228 element of the operator, and gives meaningful results only for the
52ce6436 13229 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13230
13231static void
76a01679
JB
13232ada_forward_operator_length (struct expression *exp, int pc,
13233 int *oplenp, int *argsp)
4c4b4cd2 13234{
76a01679 13235 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13236 {
13237 default:
13238 *oplenp = *argsp = 0;
13239 break;
52ce6436 13240
4c4b4cd2
PH
13241#define OP_DEFN(op, len, args, binop) \
13242 case op: *oplenp = len; *argsp = args; break;
13243 ADA_OPERATORS;
13244#undef OP_DEFN
52ce6436
PH
13245
13246 case OP_AGGREGATE:
13247 *oplenp = 3;
13248 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13249 break;
13250
13251 case OP_CHOICES:
13252 *oplenp = 3;
13253 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13254 break;
13255
13256 case OP_STRING:
13257 case OP_NAME:
13258 {
13259 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13260
52ce6436
PH
13261 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13262 *argsp = 0;
13263 break;
13264 }
4c4b4cd2
PH
13265 }
13266}
13267
13268static int
13269ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13270{
13271 enum exp_opcode op = exp->elts[elt].opcode;
13272 int oplen, nargs;
13273 int pc = elt;
13274 int i;
76a01679 13275
4c4b4cd2
PH
13276 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13277
76a01679 13278 switch (op)
4c4b4cd2 13279 {
76a01679 13280 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13281 case OP_ATR_FIRST:
13282 case OP_ATR_LAST:
13283 case OP_ATR_LENGTH:
13284 case OP_ATR_IMAGE:
13285 case OP_ATR_MAX:
13286 case OP_ATR_MIN:
13287 case OP_ATR_MODULUS:
13288 case OP_ATR_POS:
13289 case OP_ATR_SIZE:
13290 case OP_ATR_TAG:
13291 case OP_ATR_VAL:
13292 break;
13293
13294 case UNOP_IN_RANGE:
13295 case UNOP_QUAL:
323e0a4a
AC
13296 /* XXX: gdb_sprint_host_address, type_sprint */
13297 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13298 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13299 fprintf_filtered (stream, " (");
13300 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13301 fprintf_filtered (stream, ")");
13302 break;
13303 case BINOP_IN_BOUNDS:
52ce6436
PH
13304 fprintf_filtered (stream, " (%d)",
13305 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13306 break;
13307 case TERNOP_IN_RANGE:
13308 break;
13309
52ce6436
PH
13310 case OP_AGGREGATE:
13311 case OP_OTHERS:
13312 case OP_DISCRETE_RANGE:
13313 case OP_POSITIONAL:
13314 case OP_CHOICES:
13315 break;
13316
13317 case OP_NAME:
13318 case OP_STRING:
13319 {
13320 char *name = &exp->elts[elt + 2].string;
13321 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13322
52ce6436
PH
13323 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13324 break;
13325 }
13326
4c4b4cd2
PH
13327 default:
13328 return dump_subexp_body_standard (exp, stream, elt);
13329 }
13330
13331 elt += oplen;
13332 for (i = 0; i < nargs; i += 1)
13333 elt = dump_subexp (exp, stream, elt);
13334
13335 return elt;
13336}
13337
13338/* The Ada extension of print_subexp (q.v.). */
13339
76a01679
JB
13340static void
13341ada_print_subexp (struct expression *exp, int *pos,
13342 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13343{
52ce6436 13344 int oplen, nargs, i;
4c4b4cd2
PH
13345 int pc = *pos;
13346 enum exp_opcode op = exp->elts[pc].opcode;
13347
13348 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13349
52ce6436 13350 *pos += oplen;
4c4b4cd2
PH
13351 switch (op)
13352 {
13353 default:
52ce6436 13354 *pos -= oplen;
4c4b4cd2
PH
13355 print_subexp_standard (exp, pos, stream, prec);
13356 return;
13357
13358 case OP_VAR_VALUE:
4c4b4cd2
PH
13359 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13360 return;
13361
13362 case BINOP_IN_BOUNDS:
323e0a4a 13363 /* XXX: sprint_subexp */
4c4b4cd2 13364 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13365 fputs_filtered (" in ", stream);
4c4b4cd2 13366 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13367 fputs_filtered ("'range", stream);
4c4b4cd2 13368 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13369 fprintf_filtered (stream, "(%ld)",
13370 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13371 return;
13372
13373 case TERNOP_IN_RANGE:
4c4b4cd2 13374 if (prec >= PREC_EQUAL)
76a01679 13375 fputs_filtered ("(", stream);
323e0a4a 13376 /* XXX: sprint_subexp */
4c4b4cd2 13377 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13378 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13379 print_subexp (exp, pos, stream, PREC_EQUAL);
13380 fputs_filtered (" .. ", stream);
13381 print_subexp (exp, pos, stream, PREC_EQUAL);
13382 if (prec >= PREC_EQUAL)
76a01679
JB
13383 fputs_filtered (")", stream);
13384 return;
4c4b4cd2
PH
13385
13386 case OP_ATR_FIRST:
13387 case OP_ATR_LAST:
13388 case OP_ATR_LENGTH:
13389 case OP_ATR_IMAGE:
13390 case OP_ATR_MAX:
13391 case OP_ATR_MIN:
13392 case OP_ATR_MODULUS:
13393 case OP_ATR_POS:
13394 case OP_ATR_SIZE:
13395 case OP_ATR_TAG:
13396 case OP_ATR_VAL:
4c4b4cd2 13397 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13398 {
13399 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13400 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13401 &type_print_raw_options);
76a01679
JB
13402 *pos += 3;
13403 }
4c4b4cd2 13404 else
76a01679 13405 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13406 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13407 if (nargs > 1)
76a01679
JB
13408 {
13409 int tem;
5b4ee69b 13410
76a01679
JB
13411 for (tem = 1; tem < nargs; tem += 1)
13412 {
13413 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13414 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13415 }
13416 fputs_filtered (")", stream);
13417 }
4c4b4cd2 13418 return;
14f9c5c9 13419
4c4b4cd2 13420 case UNOP_QUAL:
4c4b4cd2
PH
13421 type_print (exp->elts[pc + 1].type, "", stream, 0);
13422 fputs_filtered ("'(", stream);
13423 print_subexp (exp, pos, stream, PREC_PREFIX);
13424 fputs_filtered (")", stream);
13425 return;
14f9c5c9 13426
4c4b4cd2 13427 case UNOP_IN_RANGE:
323e0a4a 13428 /* XXX: sprint_subexp */
4c4b4cd2 13429 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13430 fputs_filtered (" in ", stream);
79d43c61
TT
13431 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13432 &type_print_raw_options);
4c4b4cd2 13433 return;
52ce6436
PH
13434
13435 case OP_DISCRETE_RANGE:
13436 print_subexp (exp, pos, stream, PREC_SUFFIX);
13437 fputs_filtered ("..", stream);
13438 print_subexp (exp, pos, stream, PREC_SUFFIX);
13439 return;
13440
13441 case OP_OTHERS:
13442 fputs_filtered ("others => ", stream);
13443 print_subexp (exp, pos, stream, PREC_SUFFIX);
13444 return;
13445
13446 case OP_CHOICES:
13447 for (i = 0; i < nargs-1; i += 1)
13448 {
13449 if (i > 0)
13450 fputs_filtered ("|", stream);
13451 print_subexp (exp, pos, stream, PREC_SUFFIX);
13452 }
13453 fputs_filtered (" => ", stream);
13454 print_subexp (exp, pos, stream, PREC_SUFFIX);
13455 return;
13456
13457 case OP_POSITIONAL:
13458 print_subexp (exp, pos, stream, PREC_SUFFIX);
13459 return;
13460
13461 case OP_AGGREGATE:
13462 fputs_filtered ("(", stream);
13463 for (i = 0; i < nargs; i += 1)
13464 {
13465 if (i > 0)
13466 fputs_filtered (", ", stream);
13467 print_subexp (exp, pos, stream, PREC_SUFFIX);
13468 }
13469 fputs_filtered (")", stream);
13470 return;
4c4b4cd2
PH
13471 }
13472}
14f9c5c9
AS
13473
13474/* Table mapping opcodes into strings for printing operators
13475 and precedences of the operators. */
13476
d2e4a39e
AS
13477static const struct op_print ada_op_print_tab[] = {
13478 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13479 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13480 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13481 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13482 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13483 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13484 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13485 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13486 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13487 {">=", BINOP_GEQ, PREC_ORDER, 0},
13488 {">", BINOP_GTR, PREC_ORDER, 0},
13489 {"<", BINOP_LESS, PREC_ORDER, 0},
13490 {">>", BINOP_RSH, PREC_SHIFT, 0},
13491 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13492 {"+", BINOP_ADD, PREC_ADD, 0},
13493 {"-", BINOP_SUB, PREC_ADD, 0},
13494 {"&", BINOP_CONCAT, PREC_ADD, 0},
13495 {"*", BINOP_MUL, PREC_MUL, 0},
13496 {"/", BINOP_DIV, PREC_MUL, 0},
13497 {"rem", BINOP_REM, PREC_MUL, 0},
13498 {"mod", BINOP_MOD, PREC_MUL, 0},
13499 {"**", BINOP_EXP, PREC_REPEAT, 0},
13500 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13501 {"-", UNOP_NEG, PREC_PREFIX, 0},
13502 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13503 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13504 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13505 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13506 {".all", UNOP_IND, PREC_SUFFIX, 1},
13507 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13508 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13509 {NULL, 0, 0, 0}
14f9c5c9
AS
13510};
13511\f
72d5681a
PH
13512enum ada_primitive_types {
13513 ada_primitive_type_int,
13514 ada_primitive_type_long,
13515 ada_primitive_type_short,
13516 ada_primitive_type_char,
13517 ada_primitive_type_float,
13518 ada_primitive_type_double,
13519 ada_primitive_type_void,
13520 ada_primitive_type_long_long,
13521 ada_primitive_type_long_double,
13522 ada_primitive_type_natural,
13523 ada_primitive_type_positive,
13524 ada_primitive_type_system_address,
13525 nr_ada_primitive_types
13526};
6c038f32
PH
13527
13528static void
d4a9a881 13529ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13530 struct language_arch_info *lai)
13531{
d4a9a881 13532 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13533
72d5681a 13534 lai->primitive_type_vector
d4a9a881 13535 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13536 struct type *);
e9bb382b
UW
13537
13538 lai->primitive_type_vector [ada_primitive_type_int]
13539 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13540 0, "integer");
13541 lai->primitive_type_vector [ada_primitive_type_long]
13542 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13543 0, "long_integer");
13544 lai->primitive_type_vector [ada_primitive_type_short]
13545 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13546 0, "short_integer");
13547 lai->string_char_type
13548 = lai->primitive_type_vector [ada_primitive_type_char]
13549 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13550 lai->primitive_type_vector [ada_primitive_type_float]
13551 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13552 "float", NULL);
13553 lai->primitive_type_vector [ada_primitive_type_double]
13554 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13555 "long_float", NULL);
13556 lai->primitive_type_vector [ada_primitive_type_long_long]
13557 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13558 0, "long_long_integer");
13559 lai->primitive_type_vector [ada_primitive_type_long_double]
13560 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13561 "long_long_float", NULL);
13562 lai->primitive_type_vector [ada_primitive_type_natural]
13563 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13564 0, "natural");
13565 lai->primitive_type_vector [ada_primitive_type_positive]
13566 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13567 0, "positive");
13568 lai->primitive_type_vector [ada_primitive_type_void]
13569 = builtin->builtin_void;
13570
13571 lai->primitive_type_vector [ada_primitive_type_system_address]
13572 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13573 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13574 = "system__address";
fbb06eb1 13575
47e729a8 13576 lai->bool_type_symbol = NULL;
fbb06eb1 13577 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13578}
6c038f32
PH
13579\f
13580 /* Language vector */
13581
13582/* Not really used, but needed in the ada_language_defn. */
13583
13584static void
6c7a06a3 13585emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13586{
6c7a06a3 13587 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13588}
13589
13590static int
410a0ff2 13591parse (struct parser_state *ps)
6c038f32
PH
13592{
13593 warnings_issued = 0;
410a0ff2 13594 return ada_parse (ps);
6c038f32
PH
13595}
13596
13597static const struct exp_descriptor ada_exp_descriptor = {
13598 ada_print_subexp,
13599 ada_operator_length,
c0201579 13600 ada_operator_check,
6c038f32
PH
13601 ada_op_name,
13602 ada_dump_subexp_body,
13603 ada_evaluate_subexp
13604};
13605
1a119f36 13606/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13607 for Ada. */
13608
1a119f36
JB
13609static symbol_name_cmp_ftype
13610ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13611{
13612 if (should_use_wild_match (lookup_name))
13613 return wild_match;
13614 else
13615 return compare_names;
13616}
13617
a5ee536b
JB
13618/* Implement the "la_read_var_value" language_defn method for Ada. */
13619
13620static struct value *
13621ada_read_var_value (struct symbol *var, struct frame_info *frame)
13622{
3977b71f 13623 const struct block *frame_block = NULL;
a5ee536b
JB
13624 struct symbol *renaming_sym = NULL;
13625
13626 /* The only case where default_read_var_value is not sufficient
13627 is when VAR is a renaming... */
13628 if (frame)
13629 frame_block = get_frame_block (frame, NULL);
13630 if (frame_block)
13631 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13632 if (renaming_sym != NULL)
13633 return ada_read_renaming_var_value (renaming_sym, frame_block);
13634
13635 /* This is a typical case where we expect the default_read_var_value
13636 function to work. */
13637 return default_read_var_value (var, frame);
13638}
13639
6c038f32
PH
13640const struct language_defn ada_language_defn = {
13641 "ada", /* Language name */
6abde28f 13642 "Ada",
6c038f32 13643 language_ada,
6c038f32 13644 range_check_off,
6c038f32
PH
13645 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13646 that's not quite what this means. */
6c038f32 13647 array_row_major,
9a044a89 13648 macro_expansion_no,
6c038f32
PH
13649 &ada_exp_descriptor,
13650 parse,
13651 ada_error,
13652 resolve,
13653 ada_printchar, /* Print a character constant */
13654 ada_printstr, /* Function to print string constant */
13655 emit_char, /* Function to print single char (not used) */
6c038f32 13656 ada_print_type, /* Print a type using appropriate syntax */
be942545 13657 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13658 ada_val_print, /* Print a value using appropriate syntax */
13659 ada_value_print, /* Print a top-level value */
a5ee536b 13660 ada_read_var_value, /* la_read_var_value */
6c038f32 13661 NULL, /* Language specific skip_trampoline */
2b2d9e11 13662 NULL, /* name_of_this */
6c038f32
PH
13663 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13664 basic_lookup_transparent_type, /* lookup_transparent_type */
13665 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13666 NULL, /* Language specific
13667 class_name_from_physname */
6c038f32
PH
13668 ada_op_print_tab, /* expression operators for printing */
13669 0, /* c-style arrays */
13670 1, /* String lower bound */
6c038f32 13671 ada_get_gdb_completer_word_break_characters,
41d27058 13672 ada_make_symbol_completion_list,
72d5681a 13673 ada_language_arch_info,
e79af960 13674 ada_print_array_index,
41f1b697 13675 default_pass_by_reference,
ae6a3a4c 13676 c_get_string,
1a119f36 13677 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13678 ada_iterate_over_symbols,
a53b64ea 13679 &ada_varobj_ops,
bb2ec1b3
TT
13680 NULL,
13681 NULL,
6c038f32
PH
13682 LANG_MAGIC
13683};
13684
2c0b251b
PA
13685/* Provide a prototype to silence -Wmissing-prototypes. */
13686extern initialize_file_ftype _initialize_ada_language;
13687
5bf03f13
JB
13688/* Command-list for the "set/show ada" prefix command. */
13689static struct cmd_list_element *set_ada_list;
13690static struct cmd_list_element *show_ada_list;
13691
13692/* Implement the "set ada" prefix command. */
13693
13694static void
13695set_ada_command (char *arg, int from_tty)
13696{
13697 printf_unfiltered (_(\
13698"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13699 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13700}
13701
13702/* Implement the "show ada" prefix command. */
13703
13704static void
13705show_ada_command (char *args, int from_tty)
13706{
13707 cmd_show_list (show_ada_list, from_tty, "");
13708}
13709
2060206e
PA
13710static void
13711initialize_ada_catchpoint_ops (void)
13712{
13713 struct breakpoint_ops *ops;
13714
13715 initialize_breakpoint_ops ();
13716
13717 ops = &catch_exception_breakpoint_ops;
13718 *ops = bkpt_breakpoint_ops;
13719 ops->dtor = dtor_catch_exception;
13720 ops->allocate_location = allocate_location_catch_exception;
13721 ops->re_set = re_set_catch_exception;
13722 ops->check_status = check_status_catch_exception;
13723 ops->print_it = print_it_catch_exception;
13724 ops->print_one = print_one_catch_exception;
13725 ops->print_mention = print_mention_catch_exception;
13726 ops->print_recreate = print_recreate_catch_exception;
13727
13728 ops = &catch_exception_unhandled_breakpoint_ops;
13729 *ops = bkpt_breakpoint_ops;
13730 ops->dtor = dtor_catch_exception_unhandled;
13731 ops->allocate_location = allocate_location_catch_exception_unhandled;
13732 ops->re_set = re_set_catch_exception_unhandled;
13733 ops->check_status = check_status_catch_exception_unhandled;
13734 ops->print_it = print_it_catch_exception_unhandled;
13735 ops->print_one = print_one_catch_exception_unhandled;
13736 ops->print_mention = print_mention_catch_exception_unhandled;
13737 ops->print_recreate = print_recreate_catch_exception_unhandled;
13738
13739 ops = &catch_assert_breakpoint_ops;
13740 *ops = bkpt_breakpoint_ops;
13741 ops->dtor = dtor_catch_assert;
13742 ops->allocate_location = allocate_location_catch_assert;
13743 ops->re_set = re_set_catch_assert;
13744 ops->check_status = check_status_catch_assert;
13745 ops->print_it = print_it_catch_assert;
13746 ops->print_one = print_one_catch_assert;
13747 ops->print_mention = print_mention_catch_assert;
13748 ops->print_recreate = print_recreate_catch_assert;
13749}
13750
3d9434b5
JB
13751/* This module's 'new_objfile' observer. */
13752
13753static void
13754ada_new_objfile_observer (struct objfile *objfile)
13755{
13756 ada_clear_symbol_cache ();
13757}
13758
13759/* This module's 'free_objfile' observer. */
13760
13761static void
13762ada_free_objfile_observer (struct objfile *objfile)
13763{
13764 ada_clear_symbol_cache ();
13765}
13766
d2e4a39e 13767void
6c038f32 13768_initialize_ada_language (void)
14f9c5c9 13769{
6c038f32
PH
13770 add_language (&ada_language_defn);
13771
2060206e
PA
13772 initialize_ada_catchpoint_ops ();
13773
5bf03f13
JB
13774 add_prefix_cmd ("ada", no_class, set_ada_command,
13775 _("Prefix command for changing Ada-specfic settings"),
13776 &set_ada_list, "set ada ", 0, &setlist);
13777
13778 add_prefix_cmd ("ada", no_class, show_ada_command,
13779 _("Generic command for showing Ada-specific settings."),
13780 &show_ada_list, "show ada ", 0, &showlist);
13781
13782 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13783 &trust_pad_over_xvs, _("\
13784Enable or disable an optimization trusting PAD types over XVS types"), _("\
13785Show whether an optimization trusting PAD types over XVS types is activated"),
13786 _("\
13787This is related to the encoding used by the GNAT compiler. The debugger\n\
13788should normally trust the contents of PAD types, but certain older versions\n\
13789of GNAT have a bug that sometimes causes the information in the PAD type\n\
13790to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13791work around this bug. It is always safe to turn this option \"off\", but\n\
13792this incurs a slight performance penalty, so it is recommended to NOT change\n\
13793this option to \"off\" unless necessary."),
13794 NULL, NULL, &set_ada_list, &show_ada_list);
13795
9ac4176b
PA
13796 add_catch_command ("exception", _("\
13797Catch Ada exceptions, when raised.\n\
13798With an argument, catch only exceptions with the given name."),
13799 catch_ada_exception_command,
13800 NULL,
13801 CATCH_PERMANENT,
13802 CATCH_TEMPORARY);
13803 add_catch_command ("assert", _("\
13804Catch failed Ada assertions, when raised.\n\
13805With an argument, catch only exceptions with the given name."),
13806 catch_assert_command,
13807 NULL,
13808 CATCH_PERMANENT,
13809 CATCH_TEMPORARY);
13810
6c038f32 13811 varsize_limit = 65536;
6c038f32 13812
778865d3
JB
13813 add_info ("exceptions", info_exceptions_command,
13814 _("\
13815List all Ada exception names.\n\
13816If a regular expression is passed as an argument, only those matching\n\
13817the regular expression are listed."));
13818
c6044dd1
JB
13819 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13820 _("Set Ada maintenance-related variables."),
13821 &maint_set_ada_cmdlist, "maintenance set ada ",
13822 0/*allow-unknown*/, &maintenance_set_cmdlist);
13823
13824 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13825 _("Show Ada maintenance-related variables"),
13826 &maint_show_ada_cmdlist, "maintenance show ada ",
13827 0/*allow-unknown*/, &maintenance_show_cmdlist);
13828
13829 add_setshow_boolean_cmd
13830 ("ignore-descriptive-types", class_maintenance,
13831 &ada_ignore_descriptive_types_p,
13832 _("Set whether descriptive types generated by GNAT should be ignored."),
13833 _("Show whether descriptive types generated by GNAT should be ignored."),
13834 _("\
13835When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13836DWARF attribute."),
13837 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13838
6c038f32
PH
13839 obstack_init (&symbol_list_obstack);
13840
13841 decoded_names_store = htab_create_alloc
13842 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13843 NULL, xcalloc, xfree);
6b69afc4 13844
3d9434b5
JB
13845 /* The ada-lang observers. */
13846 observer_attach_new_objfile (ada_new_objfile_observer);
13847 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13848 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13849
13850 /* Setup various context-specific data. */
e802dbe0 13851 ada_inferior_data
8e260fc0 13852 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13853 ada_pspace_data_handle
13854 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13855}
This page took 2.807715 seconds and 4 git commands to generate.