Avoid use of sprintf in gdb/utils.c:make_hex_string
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab
PH
234
235static void check_size (const struct type *);
52ce6436
PH
236
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
270\f
271
ee01b665
JB
272/* The result of a symbol lookup to be stored in our symbol cache. */
273
274struct cache_entry
275{
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288};
289
290/* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299#define HASH_SIZE 1009
300
301struct ada_symbol_cache
302{
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308};
309
310static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 311
4c4b4cd2 312/* Maximum-sized dynamic type. */
14f9c5c9
AS
313static unsigned int varsize_limit;
314
4c4b4cd2
PH
315/* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317static char *ada_completer_word_break_characters =
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
14f9c5c9 321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 322#endif
14f9c5c9 323
4c4b4cd2 324/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 326 = "__gnat_ada_main_program_name";
14f9c5c9 327
4c4b4cd2
PH
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
343/* Space for allocating results of ada_lookup_symbol_list. */
344static struct obstack symbol_list_obstack;
345
c6044dd1
JB
346/* Maintenance-related settings for this module. */
347
348static struct cmd_list_element *maint_set_ada_cmdlist;
349static struct cmd_list_element *maint_show_ada_cmdlist;
350
351/* Implement the "maintenance set ada" (prefix) command. */
352
353static void
354maint_set_ada_cmd (char *args, int from_tty)
355{
635c7e8a
TT
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
c6044dd1
JB
358}
359
360/* Implement the "maintenance show ada" (prefix) command. */
361
362static void
363maint_show_ada_cmd (char *args, int from_tty)
364{
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366}
367
368/* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370static int ada_ignore_descriptive_types_p = 0;
371
e802dbe0
JB
372 /* Inferior-specific data. */
373
374/* Per-inferior data for this module. */
375
376struct ada_inferior_data
377{
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
3eecfa55
JB
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
e802dbe0
JB
388};
389
390/* Our key to this module's inferior data. */
391static const struct inferior_data *ada_inferior_data;
392
393/* A cleanup routine for our inferior data. */
394static void
395ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396{
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402}
403
404/* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412static struct ada_inferior_data *
413get_ada_inferior_data (struct inferior *inf)
414{
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
41bf6aca 420 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425}
426
427/* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430static void
431ada_inferior_exit (struct inferior *inf)
432{
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435}
436
ee01b665
JB
437
438 /* program-space-specific data. */
439
440/* This module's per-program-space data. */
441struct ada_pspace_data
442{
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445};
446
447/* Key to our per-program-space data. */
448static const struct program_space_data *ada_pspace_data_handle;
449
450/* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455static struct ada_pspace_data *
456get_ada_pspace_data (struct program_space *pspace)
457{
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
544/* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547static char *
548add_angle_brackets (const char *str)
549{
550 static char *result = NULL;
551
552 xfree (result);
88c15c34 553 result = xstrprintf ("<%s>", str);
41d27058
JB
554 return result;
555}
96d887e8 556
4c4b4cd2
PH
557static char *
558ada_get_gdb_completer_word_break_characters (void)
559{
560 return ada_completer_word_break_characters;
561}
562
e79af960
JB
563/* Print an array element index using the Ada syntax. */
564
565static void
566ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 567 const struct value_print_options *options)
e79af960 568{
79a45b7d 569 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
570 fprintf_filtered (stream, " => ");
571}
572
f27cf670 573/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 575 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 576
f27cf670
AS
577void *
578grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 579{
d2e4a39e
AS
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
4c4b4cd2 584 *size = min_size;
f27cf670 585 vect = xrealloc (vect, *size * element_size);
d2e4a39e 586 }
f27cf670 587 return vect;
14f9c5c9
AS
588}
589
590/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 591 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
592
593static int
ebf56fd3 594field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
595{
596 int len = strlen (target);
5b4ee69b 597
d2e4a39e 598 return
4c4b4cd2
PH
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
14f9c5c9
AS
604}
605
606
872c8b51
JB
607/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
614
615int
616ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618{
619 int fieldno;
872c8b51
JB
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
624 return fieldno;
625
626 if (!maybe_missing)
323e0a4a 627 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 628 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
629
630 return -1;
631}
632
633/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
634
635int
d2e4a39e 636ada_name_prefix_len (const char *name)
14f9c5c9
AS
637{
638 if (name == NULL)
639 return 0;
d2e4a39e 640 else
14f9c5c9 641 {
d2e4a39e 642 const char *p = strstr (name, "___");
5b4ee69b 643
14f9c5c9 644 if (p == NULL)
4c4b4cd2 645 return strlen (name);
14f9c5c9 646 else
4c4b4cd2 647 return p - name;
14f9c5c9
AS
648 }
649}
650
4c4b4cd2
PH
651/* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
14f9c5c9 654static int
d2e4a39e 655is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
656{
657 int len1, len2;
5b4ee69b 658
14f9c5c9
AS
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
4c4b4cd2 663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
664}
665
4c4b4cd2
PH
666/* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
14f9c5c9 668
d2e4a39e 669static struct value *
4c4b4cd2 670coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 671{
61ee279c 672 type = ada_check_typedef (type);
df407dfe 673 if (value_type (val) == type)
4c4b4cd2 674 return val;
d2e4a39e 675 else
14f9c5c9 676 {
4c4b4cd2
PH
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
714e53ab 681 check_size (type);
4c4b4cd2 682
41e8491f
JK
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
9a0dc9e3 689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 690 }
74bcbdf3 691 set_value_component_location (result, val);
9bbda503
AC
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
42ae5230 694 set_value_address (result, value_address (val));
14f9c5c9
AS
695 return result;
696 }
697}
698
fc1a4b47
AC
699static const gdb_byte *
700cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
701{
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706}
707
708static CORE_ADDR
ebf56fd3 709cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
710{
711 if (address == 0)
712 return 0;
d2e4a39e 713 else
14f9c5c9
AS
714 return address + offset;
715}
716
4c4b4cd2
PH
717/* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
a2249542 721
77109804
AC
722/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
a0b31db1 724static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 725
14f9c5c9 726static void
a2249542 727lim_warning (const char *format, ...)
14f9c5c9 728{
a2249542 729 va_list args;
a2249542 730
5b4ee69b 731 va_start (args, format);
4c4b4cd2
PH
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
a2249542
MK
734 vwarning (format, args);
735
736 va_end (args);
4c4b4cd2
PH
737}
738
714e53ab
PH
739/* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743static void
744check_size (const struct type *type)
745{
746 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 747 error (_("object size is larger than varsize-limit"));
714e53ab
PH
748}
749
0963b4bd 750/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 751static LONGEST
c3e5cd34 752max_of_size (int size)
4c4b4cd2 753{
76a01679 754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 755
76a01679 756 return top_bit | (top_bit - 1);
4c4b4cd2
PH
757}
758
0963b4bd 759/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 760static LONGEST
c3e5cd34 761min_of_size (int size)
4c4b4cd2 762{
c3e5cd34 763 return -max_of_size (size) - 1;
4c4b4cd2
PH
764}
765
0963b4bd 766/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 767static ULONGEST
c3e5cd34 768umax_of_size (int size)
4c4b4cd2 769{
76a01679 770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 771
76a01679 772 return top_bit | (top_bit - 1);
4c4b4cd2
PH
773}
774
0963b4bd 775/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
776static LONGEST
777max_of_type (struct type *t)
4c4b4cd2 778{
c3e5cd34
PH
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783}
784
0963b4bd 785/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
786static LONGEST
787min_of_type (struct type *t)
788{
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
793}
794
795/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
796LONGEST
797ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 798{
8739bc53 799 type = resolve_dynamic_type (type, 0);
76a01679 800 switch (TYPE_CODE (type))
4c4b4cd2
PH
801 {
802 case TYPE_CODE_RANGE:
690cc4eb 803 return TYPE_HIGH_BOUND (type);
4c4b4cd2 804 case TYPE_CODE_ENUM:
14e75d8e 805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
76a01679 809 case TYPE_CODE_INT:
690cc4eb 810 return max_of_type (type);
4c4b4cd2 811 default:
43bbcdc2 812 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
813 }
814}
815
14e75d8e 816/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
817LONGEST
818ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 819{
8739bc53 820 type = resolve_dynamic_type (type, 0);
76a01679 821 switch (TYPE_CODE (type))
4c4b4cd2
PH
822 {
823 case TYPE_CODE_RANGE:
690cc4eb 824 return TYPE_LOW_BOUND (type);
4c4b4cd2 825 case TYPE_CODE_ENUM:
14e75d8e 826 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
76a01679 830 case TYPE_CODE_INT:
690cc4eb 831 return min_of_type (type);
4c4b4cd2 832 default:
43bbcdc2 833 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
834 }
835}
836
837/* The identity on non-range types. For range types, the underlying
76a01679 838 non-range scalar type. */
4c4b4cd2
PH
839
840static struct type *
18af8284 841get_base_type (struct type *type)
4c4b4cd2
PH
842{
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
76a01679
JB
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
4c4b4cd2
PH
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
14f9c5c9 850}
41246937
JB
851
852/* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857struct value *
858ada_get_decoded_value (struct value *value)
859{
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875}
876
877/* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882struct type *
883ada_get_decoded_type (struct type *type)
884{
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889}
890
4c4b4cd2 891\f
76a01679 892
4c4b4cd2 893 /* Language Selection */
14f9c5c9
AS
894
895/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 896 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 897
14f9c5c9 898enum language
ccefe4c4 899ada_update_initial_language (enum language lang)
14f9c5c9 900{
d2e4a39e 901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 902 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 903 return language_ada;
14f9c5c9
AS
904
905 return lang;
906}
96d887e8
PH
907
908/* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912char *
913ada_main_name (void)
914{
3b7344d5 915 struct bound_minimal_symbol msym;
f9bc20b9 916 static char *main_program_name = NULL;
6c038f32 917
96d887e8
PH
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
3b7344d5 925 if (msym.minsym != NULL)
96d887e8 926 {
f9bc20b9
JB
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
77e371c0 930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 931 if (main_program_name_addr == 0)
323e0a4a 932 error (_("Invalid address for Ada main program name."));
96d887e8 933
f9bc20b9
JB
934 xfree (main_program_name);
935 target_read_string (main_program_name_addr, &main_program_name,
936 1024, &err_code);
937
938 if (err_code != 0)
939 return NULL;
96d887e8
PH
940 return main_program_name;
941 }
942
943 /* The main procedure doesn't seem to be in Ada. */
944 return NULL;
945}
14f9c5c9 946\f
4c4b4cd2 947 /* Symbols */
d2e4a39e 948
4c4b4cd2
PH
949/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
950 of NULLs. */
14f9c5c9 951
d2e4a39e
AS
952const struct ada_opname_map ada_opname_table[] = {
953 {"Oadd", "\"+\"", BINOP_ADD},
954 {"Osubtract", "\"-\"", BINOP_SUB},
955 {"Omultiply", "\"*\"", BINOP_MUL},
956 {"Odivide", "\"/\"", BINOP_DIV},
957 {"Omod", "\"mod\"", BINOP_MOD},
958 {"Orem", "\"rem\"", BINOP_REM},
959 {"Oexpon", "\"**\"", BINOP_EXP},
960 {"Olt", "\"<\"", BINOP_LESS},
961 {"Ole", "\"<=\"", BINOP_LEQ},
962 {"Ogt", "\">\"", BINOP_GTR},
963 {"Oge", "\">=\"", BINOP_GEQ},
964 {"Oeq", "\"=\"", BINOP_EQUAL},
965 {"One", "\"/=\"", BINOP_NOTEQUAL},
966 {"Oand", "\"and\"", BINOP_BITWISE_AND},
967 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
968 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
969 {"Oconcat", "\"&\"", BINOP_CONCAT},
970 {"Oabs", "\"abs\"", UNOP_ABS},
971 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
972 {"Oadd", "\"+\"", UNOP_PLUS},
973 {"Osubtract", "\"-\"", UNOP_NEG},
974 {NULL, NULL}
14f9c5c9
AS
975};
976
4c4b4cd2
PH
977/* The "encoded" form of DECODED, according to GNAT conventions.
978 The result is valid until the next call to ada_encode. */
979
14f9c5c9 980char *
4c4b4cd2 981ada_encode (const char *decoded)
14f9c5c9 982{
4c4b4cd2
PH
983 static char *encoding_buffer = NULL;
984 static size_t encoding_buffer_size = 0;
d2e4a39e 985 const char *p;
14f9c5c9 986 int k;
d2e4a39e 987
4c4b4cd2 988 if (decoded == NULL)
14f9c5c9
AS
989 return NULL;
990
4c4b4cd2
PH
991 GROW_VECT (encoding_buffer, encoding_buffer_size,
992 2 * strlen (decoded) + 10);
14f9c5c9
AS
993
994 k = 0;
4c4b4cd2 995 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 996 {
cdc7bb92 997 if (*p == '.')
4c4b4cd2
PH
998 {
999 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1000 k += 2;
1001 }
14f9c5c9 1002 else if (*p == '"')
4c4b4cd2
PH
1003 {
1004 const struct ada_opname_map *mapping;
1005
1006 for (mapping = ada_opname_table;
1265e4aa
JB
1007 mapping->encoded != NULL
1008 && strncmp (mapping->decoded, p,
1009 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1010 ;
1011 if (mapping->encoded == NULL)
323e0a4a 1012 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
d2e4a39e 1017 else
4c4b4cd2
PH
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
14f9c5c9
AS
1022 }
1023
4c4b4cd2
PH
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
14f9c5c9
AS
1026}
1027
1028/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1029 quotes, unfolded, but with the quotes stripped away. Result good
1030 to next call. */
1031
d2e4a39e
AS
1032char *
1033ada_fold_name (const char *name)
14f9c5c9 1034{
d2e4a39e 1035 static char *fold_buffer = NULL;
14f9c5c9
AS
1036 static size_t fold_buffer_size = 0;
1037
1038 int len = strlen (name);
d2e4a39e 1039 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1040
1041 if (name[0] == '\'')
1042 {
d2e4a39e
AS
1043 strncpy (fold_buffer, name + 1, len - 2);
1044 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1045 }
1046 else
1047 {
1048 int i;
5b4ee69b 1049
14f9c5c9 1050 for (i = 0; i <= len; i += 1)
4c4b4cd2 1051 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1052 }
1053
1054 return fold_buffer;
1055}
1056
529cad9c
PH
1057/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1058
1059static int
1060is_lower_alphanum (const char c)
1061{
1062 return (isdigit (c) || (isalpha (c) && islower (c)));
1063}
1064
c90092fe
JB
1065/* ENCODED is the linkage name of a symbol and LEN contains its length.
1066 This function saves in LEN the length of that same symbol name but
1067 without either of these suffixes:
29480c32
JB
1068 . .{DIGIT}+
1069 . ${DIGIT}+
1070 . ___{DIGIT}+
1071 . __{DIGIT}+.
c90092fe 1072
29480c32
JB
1073 These are suffixes introduced by the compiler for entities such as
1074 nested subprogram for instance, in order to avoid name clashes.
1075 They do not serve any purpose for the debugger. */
1076
1077static void
1078ada_remove_trailing_digits (const char *encoded, int *len)
1079{
1080 if (*len > 1 && isdigit (encoded[*len - 1]))
1081 {
1082 int i = *len - 2;
5b4ee69b 1083
29480c32
JB
1084 while (i > 0 && isdigit (encoded[i]))
1085 i--;
1086 if (i >= 0 && encoded[i] == '.')
1087 *len = i;
1088 else if (i >= 0 && encoded[i] == '$')
1089 *len = i;
1090 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1091 *len = i - 2;
1092 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1093 *len = i - 1;
1094 }
1095}
1096
1097/* Remove the suffix introduced by the compiler for protected object
1098 subprograms. */
1099
1100static void
1101ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1102{
1103 /* Remove trailing N. */
1104
1105 /* Protected entry subprograms are broken into two
1106 separate subprograms: The first one is unprotected, and has
1107 a 'N' suffix; the second is the protected version, and has
0963b4bd 1108 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1109 the protection. Since the P subprograms are internally generated,
1110 we leave these names undecoded, giving the user a clue that this
1111 entity is internal. */
1112
1113 if (*len > 1
1114 && encoded[*len - 1] == 'N'
1115 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1116 *len = *len - 1;
1117}
1118
69fadcdf
JB
1119/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1120
1121static void
1122ada_remove_Xbn_suffix (const char *encoded, int *len)
1123{
1124 int i = *len - 1;
1125
1126 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1127 i--;
1128
1129 if (encoded[i] != 'X')
1130 return;
1131
1132 if (i == 0)
1133 return;
1134
1135 if (isalnum (encoded[i-1]))
1136 *len = i;
1137}
1138
29480c32
JB
1139/* If ENCODED follows the GNAT entity encoding conventions, then return
1140 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1141 replaced by ENCODED.
14f9c5c9 1142
4c4b4cd2 1143 The resulting string is valid until the next call of ada_decode.
29480c32 1144 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1145 is returned. */
1146
1147const char *
1148ada_decode (const char *encoded)
14f9c5c9
AS
1149{
1150 int i, j;
1151 int len0;
d2e4a39e 1152 const char *p;
4c4b4cd2 1153 char *decoded;
14f9c5c9 1154 int at_start_name;
4c4b4cd2
PH
1155 static char *decoding_buffer = NULL;
1156 static size_t decoding_buffer_size = 0;
d2e4a39e 1157
29480c32
JB
1158 /* The name of the Ada main procedure starts with "_ada_".
1159 This prefix is not part of the decoded name, so skip this part
1160 if we see this prefix. */
4c4b4cd2
PH
1161 if (strncmp (encoded, "_ada_", 5) == 0)
1162 encoded += 5;
14f9c5c9 1163
29480c32
JB
1164 /* If the name starts with '_', then it is not a properly encoded
1165 name, so do not attempt to decode it. Similarly, if the name
1166 starts with '<', the name should not be decoded. */
4c4b4cd2 1167 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1168 goto Suppress;
1169
4c4b4cd2 1170 len0 = strlen (encoded);
4c4b4cd2 1171
29480c32
JB
1172 ada_remove_trailing_digits (encoded, &len0);
1173 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1174
4c4b4cd2
PH
1175 /* Remove the ___X.* suffix if present. Do not forget to verify that
1176 the suffix is located before the current "end" of ENCODED. We want
1177 to avoid re-matching parts of ENCODED that have previously been
1178 marked as discarded (by decrementing LEN0). */
1179 p = strstr (encoded, "___");
1180 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1181 {
1182 if (p[3] == 'X')
4c4b4cd2 1183 len0 = p - encoded;
14f9c5c9 1184 else
4c4b4cd2 1185 goto Suppress;
14f9c5c9 1186 }
4c4b4cd2 1187
29480c32
JB
1188 /* Remove any trailing TKB suffix. It tells us that this symbol
1189 is for the body of a task, but that information does not actually
1190 appear in the decoded name. */
1191
4c4b4cd2 1192 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1193 len0 -= 3;
76a01679 1194
a10967fa
JB
1195 /* Remove any trailing TB suffix. The TB suffix is slightly different
1196 from the TKB suffix because it is used for non-anonymous task
1197 bodies. */
1198
1199 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1200 len0 -= 2;
1201
29480c32
JB
1202 /* Remove trailing "B" suffixes. */
1203 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1204
4c4b4cd2 1205 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1206 len0 -= 1;
1207
4c4b4cd2 1208 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1209
4c4b4cd2
PH
1210 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1211 decoded = decoding_buffer;
14f9c5c9 1212
29480c32
JB
1213 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1214
4c4b4cd2 1215 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1216 {
4c4b4cd2
PH
1217 i = len0 - 2;
1218 while ((i >= 0 && isdigit (encoded[i]))
1219 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1220 i -= 1;
1221 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1222 len0 = i - 1;
1223 else if (encoded[i] == '$')
1224 len0 = i;
d2e4a39e 1225 }
14f9c5c9 1226
29480c32
JB
1227 /* The first few characters that are not alphabetic are not part
1228 of any encoding we use, so we can copy them over verbatim. */
1229
4c4b4cd2
PH
1230 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1231 decoded[j] = encoded[i];
14f9c5c9
AS
1232
1233 at_start_name = 1;
1234 while (i < len0)
1235 {
29480c32 1236 /* Is this a symbol function? */
4c4b4cd2
PH
1237 if (at_start_name && encoded[i] == 'O')
1238 {
1239 int k;
5b4ee69b 1240
4c4b4cd2
PH
1241 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1242 {
1243 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1244 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1245 op_len - 1) == 0)
1246 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1247 {
1248 strcpy (decoded + j, ada_opname_table[k].decoded);
1249 at_start_name = 0;
1250 i += op_len;
1251 j += strlen (ada_opname_table[k].decoded);
1252 break;
1253 }
1254 }
1255 if (ada_opname_table[k].encoded != NULL)
1256 continue;
1257 }
14f9c5c9
AS
1258 at_start_name = 0;
1259
529cad9c
PH
1260 /* Replace "TK__" with "__", which will eventually be translated
1261 into "." (just below). */
1262
4c4b4cd2
PH
1263 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1264 i += 2;
529cad9c 1265
29480c32
JB
1266 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1267 be translated into "." (just below). These are internal names
1268 generated for anonymous blocks inside which our symbol is nested. */
1269
1270 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1271 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1272 && isdigit (encoded [i+4]))
1273 {
1274 int k = i + 5;
1275
1276 while (k < len0 && isdigit (encoded[k]))
1277 k++; /* Skip any extra digit. */
1278
1279 /* Double-check that the "__B_{DIGITS}+" sequence we found
1280 is indeed followed by "__". */
1281 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1282 i = k;
1283 }
1284
529cad9c
PH
1285 /* Remove _E{DIGITS}+[sb] */
1286
1287 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1288 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1289 one implements the actual entry code, and has a suffix following
1290 the convention above; the second one implements the barrier and
1291 uses the same convention as above, except that the 'E' is replaced
1292 by a 'B'.
1293
1294 Just as above, we do not decode the name of barrier functions
1295 to give the user a clue that the code he is debugging has been
1296 internally generated. */
1297
1298 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1299 && isdigit (encoded[i+2]))
1300 {
1301 int k = i + 3;
1302
1303 while (k < len0 && isdigit (encoded[k]))
1304 k++;
1305
1306 if (k < len0
1307 && (encoded[k] == 'b' || encoded[k] == 's'))
1308 {
1309 k++;
1310 /* Just as an extra precaution, make sure that if this
1311 suffix is followed by anything else, it is a '_'.
1312 Otherwise, we matched this sequence by accident. */
1313 if (k == len0
1314 || (k < len0 && encoded[k] == '_'))
1315 i = k;
1316 }
1317 }
1318
1319 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1320 the GNAT front-end in protected object subprograms. */
1321
1322 if (i < len0 + 3
1323 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1324 {
1325 /* Backtrack a bit up until we reach either the begining of
1326 the encoded name, or "__". Make sure that we only find
1327 digits or lowercase characters. */
1328 const char *ptr = encoded + i - 1;
1329
1330 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1331 ptr--;
1332 if (ptr < encoded
1333 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1334 i++;
1335 }
1336
4c4b4cd2
PH
1337 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1338 {
29480c32
JB
1339 /* This is a X[bn]* sequence not separated from the previous
1340 part of the name with a non-alpha-numeric character (in other
1341 words, immediately following an alpha-numeric character), then
1342 verify that it is placed at the end of the encoded name. If
1343 not, then the encoding is not valid and we should abort the
1344 decoding. Otherwise, just skip it, it is used in body-nested
1345 package names. */
4c4b4cd2
PH
1346 do
1347 i += 1;
1348 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1349 if (i < len0)
1350 goto Suppress;
1351 }
cdc7bb92 1352 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1353 {
29480c32 1354 /* Replace '__' by '.'. */
4c4b4cd2
PH
1355 decoded[j] = '.';
1356 at_start_name = 1;
1357 i += 2;
1358 j += 1;
1359 }
14f9c5c9 1360 else
4c4b4cd2 1361 {
29480c32
JB
1362 /* It's a character part of the decoded name, so just copy it
1363 over. */
4c4b4cd2
PH
1364 decoded[j] = encoded[i];
1365 i += 1;
1366 j += 1;
1367 }
14f9c5c9 1368 }
4c4b4cd2 1369 decoded[j] = '\000';
14f9c5c9 1370
29480c32
JB
1371 /* Decoded names should never contain any uppercase character.
1372 Double-check this, and abort the decoding if we find one. */
1373
4c4b4cd2
PH
1374 for (i = 0; decoded[i] != '\0'; i += 1)
1375 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1376 goto Suppress;
1377
4c4b4cd2
PH
1378 if (strcmp (decoded, encoded) == 0)
1379 return encoded;
1380 else
1381 return decoded;
14f9c5c9
AS
1382
1383Suppress:
4c4b4cd2
PH
1384 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1385 decoded = decoding_buffer;
1386 if (encoded[0] == '<')
1387 strcpy (decoded, encoded);
14f9c5c9 1388 else
88c15c34 1389 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1390 return decoded;
1391
1392}
1393
1394/* Table for keeping permanent unique copies of decoded names. Once
1395 allocated, names in this table are never released. While this is a
1396 storage leak, it should not be significant unless there are massive
1397 changes in the set of decoded names in successive versions of a
1398 symbol table loaded during a single session. */
1399static struct htab *decoded_names_store;
1400
1401/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1402 in the language-specific part of GSYMBOL, if it has not been
1403 previously computed. Tries to save the decoded name in the same
1404 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1405 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1406 GSYMBOL).
4c4b4cd2
PH
1407 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1408 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1409 when a decoded name is cached in it. */
4c4b4cd2 1410
45e6c716 1411const char *
f85f34ed 1412ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1413{
f85f34ed
TT
1414 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1415 const char **resultp =
1416 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1417
f85f34ed 1418 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1419 {
1420 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1421 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1422
f85f34ed 1423 gsymbol->ada_mangled = 1;
5b4ee69b 1424
f85f34ed
TT
1425 if (obstack != NULL)
1426 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1427 else
76a01679 1428 {
f85f34ed
TT
1429 /* Sometimes, we can't find a corresponding objfile, in
1430 which case, we put the result on the heap. Since we only
1431 decode when needed, we hope this usually does not cause a
1432 significant memory leak (FIXME). */
1433
76a01679
JB
1434 char **slot = (char **) htab_find_slot (decoded_names_store,
1435 decoded, INSERT);
5b4ee69b 1436
76a01679
JB
1437 if (*slot == NULL)
1438 *slot = xstrdup (decoded);
1439 *resultp = *slot;
1440 }
4c4b4cd2 1441 }
14f9c5c9 1442
4c4b4cd2
PH
1443 return *resultp;
1444}
76a01679 1445
2c0b251b 1446static char *
76a01679 1447ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1448{
1449 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1450}
1451
1452/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1453 suffixes that encode debugging information or leading _ada_ on
1454 SYM_NAME (see is_name_suffix commentary for the debugging
1455 information that is ignored). If WILD, then NAME need only match a
1456 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1457 either argument is NULL. */
14f9c5c9 1458
2c0b251b 1459static int
40658b94 1460match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1461{
1462 if (sym_name == NULL || name == NULL)
1463 return 0;
1464 else if (wild)
73589123 1465 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1466 else
1467 {
1468 int len_name = strlen (name);
5b4ee69b 1469
4c4b4cd2
PH
1470 return (strncmp (sym_name, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name))
1472 || (strncmp (sym_name, "_ada_", 5) == 0
1473 && strncmp (sym_name + 5, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1475 }
14f9c5c9 1476}
14f9c5c9 1477\f
d2e4a39e 1478
4c4b4cd2 1479 /* Arrays */
14f9c5c9 1480
28c85d6c
JB
1481/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1482 generated by the GNAT compiler to describe the index type used
1483 for each dimension of an array, check whether it follows the latest
1484 known encoding. If not, fix it up to conform to the latest encoding.
1485 Otherwise, do nothing. This function also does nothing if
1486 INDEX_DESC_TYPE is NULL.
1487
1488 The GNAT encoding used to describle the array index type evolved a bit.
1489 Initially, the information would be provided through the name of each
1490 field of the structure type only, while the type of these fields was
1491 described as unspecified and irrelevant. The debugger was then expected
1492 to perform a global type lookup using the name of that field in order
1493 to get access to the full index type description. Because these global
1494 lookups can be very expensive, the encoding was later enhanced to make
1495 the global lookup unnecessary by defining the field type as being
1496 the full index type description.
1497
1498 The purpose of this routine is to allow us to support older versions
1499 of the compiler by detecting the use of the older encoding, and by
1500 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1501 we essentially replace each field's meaningless type by the associated
1502 index subtype). */
1503
1504void
1505ada_fixup_array_indexes_type (struct type *index_desc_type)
1506{
1507 int i;
1508
1509 if (index_desc_type == NULL)
1510 return;
1511 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1512
1513 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1514 to check one field only, no need to check them all). If not, return
1515 now.
1516
1517 If our INDEX_DESC_TYPE was generated using the older encoding,
1518 the field type should be a meaningless integer type whose name
1519 is not equal to the field name. */
1520 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1521 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1522 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1523 return;
1524
1525 /* Fixup each field of INDEX_DESC_TYPE. */
1526 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1527 {
0d5cff50 1528 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1529 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1530
1531 if (raw_type)
1532 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1533 }
1534}
1535
4c4b4cd2 1536/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1537
d2e4a39e
AS
1538static char *bound_name[] = {
1539 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1540 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1541};
1542
1543/* Maximum number of array dimensions we are prepared to handle. */
1544
4c4b4cd2 1545#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1546
14f9c5c9 1547
4c4b4cd2
PH
1548/* The desc_* routines return primitive portions of array descriptors
1549 (fat pointers). */
14f9c5c9
AS
1550
1551/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1552 level of indirection, if needed. */
1553
d2e4a39e
AS
1554static struct type *
1555desc_base_type (struct type *type)
14f9c5c9
AS
1556{
1557 if (type == NULL)
1558 return NULL;
61ee279c 1559 type = ada_check_typedef (type);
720d1a40
JB
1560 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1561 type = ada_typedef_target_type (type);
1562
1265e4aa
JB
1563 if (type != NULL
1564 && (TYPE_CODE (type) == TYPE_CODE_PTR
1565 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1566 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1567 else
1568 return type;
1569}
1570
4c4b4cd2
PH
1571/* True iff TYPE indicates a "thin" array pointer type. */
1572
14f9c5c9 1573static int
d2e4a39e 1574is_thin_pntr (struct type *type)
14f9c5c9 1575{
d2e4a39e 1576 return
14f9c5c9
AS
1577 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1578 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1579}
1580
4c4b4cd2
PH
1581/* The descriptor type for thin pointer type TYPE. */
1582
d2e4a39e
AS
1583static struct type *
1584thin_descriptor_type (struct type *type)
14f9c5c9 1585{
d2e4a39e 1586 struct type *base_type = desc_base_type (type);
5b4ee69b 1587
14f9c5c9
AS
1588 if (base_type == NULL)
1589 return NULL;
1590 if (is_suffix (ada_type_name (base_type), "___XVE"))
1591 return base_type;
d2e4a39e 1592 else
14f9c5c9 1593 {
d2e4a39e 1594 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1595
14f9c5c9 1596 if (alt_type == NULL)
4c4b4cd2 1597 return base_type;
14f9c5c9 1598 else
4c4b4cd2 1599 return alt_type;
14f9c5c9
AS
1600 }
1601}
1602
4c4b4cd2
PH
1603/* A pointer to the array data for thin-pointer value VAL. */
1604
d2e4a39e
AS
1605static struct value *
1606thin_data_pntr (struct value *val)
14f9c5c9 1607{
828292f2 1608 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1609 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1610
556bdfd4
UW
1611 data_type = lookup_pointer_type (data_type);
1612
14f9c5c9 1613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1614 return value_cast (data_type, value_copy (val));
d2e4a39e 1615 else
42ae5230 1616 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1617}
1618
4c4b4cd2
PH
1619/* True iff TYPE indicates a "thick" array pointer type. */
1620
14f9c5c9 1621static int
d2e4a39e 1622is_thick_pntr (struct type *type)
14f9c5c9
AS
1623{
1624 type = desc_base_type (type);
1625 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1626 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1627}
1628
4c4b4cd2
PH
1629/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1630 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1631
d2e4a39e
AS
1632static struct type *
1633desc_bounds_type (struct type *type)
14f9c5c9 1634{
d2e4a39e 1635 struct type *r;
14f9c5c9
AS
1636
1637 type = desc_base_type (type);
1638
1639 if (type == NULL)
1640 return NULL;
1641 else if (is_thin_pntr (type))
1642 {
1643 type = thin_descriptor_type (type);
1644 if (type == NULL)
4c4b4cd2 1645 return NULL;
14f9c5c9
AS
1646 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1647 if (r != NULL)
61ee279c 1648 return ada_check_typedef (r);
14f9c5c9
AS
1649 }
1650 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1651 {
1652 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1653 if (r != NULL)
61ee279c 1654 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1655 }
1656 return NULL;
1657}
1658
1659/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1660 one, a pointer to its bounds data. Otherwise NULL. */
1661
d2e4a39e
AS
1662static struct value *
1663desc_bounds (struct value *arr)
14f9c5c9 1664{
df407dfe 1665 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1666
d2e4a39e 1667 if (is_thin_pntr (type))
14f9c5c9 1668 {
d2e4a39e 1669 struct type *bounds_type =
4c4b4cd2 1670 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1671 LONGEST addr;
1672
4cdfadb1 1673 if (bounds_type == NULL)
323e0a4a 1674 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1675
1676 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1677 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1678 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1679 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1680 addr = value_as_long (arr);
d2e4a39e 1681 else
42ae5230 1682 addr = value_address (arr);
14f9c5c9 1683
d2e4a39e 1684 return
4c4b4cd2
PH
1685 value_from_longest (lookup_pointer_type (bounds_type),
1686 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1687 }
1688
1689 else if (is_thick_pntr (type))
05e522ef
JB
1690 {
1691 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1692 _("Bad GNAT array descriptor"));
1693 struct type *p_bounds_type = value_type (p_bounds);
1694
1695 if (p_bounds_type
1696 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1697 {
1698 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1699
1700 if (TYPE_STUB (target_type))
1701 p_bounds = value_cast (lookup_pointer_type
1702 (ada_check_typedef (target_type)),
1703 p_bounds);
1704 }
1705 else
1706 error (_("Bad GNAT array descriptor"));
1707
1708 return p_bounds;
1709 }
14f9c5c9
AS
1710 else
1711 return NULL;
1712}
1713
4c4b4cd2
PH
1714/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1715 position of the field containing the address of the bounds data. */
1716
14f9c5c9 1717static int
d2e4a39e 1718fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1719{
1720 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1721}
1722
1723/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1724 size of the field containing the address of the bounds data. */
1725
14f9c5c9 1726static int
d2e4a39e 1727fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1728{
1729 type = desc_base_type (type);
1730
d2e4a39e 1731 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1732 return TYPE_FIELD_BITSIZE (type, 1);
1733 else
61ee279c 1734 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1735}
1736
4c4b4cd2 1737/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1738 pointer to one, the type of its array data (a array-with-no-bounds type);
1739 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1740 data. */
4c4b4cd2 1741
d2e4a39e 1742static struct type *
556bdfd4 1743desc_data_target_type (struct type *type)
14f9c5c9
AS
1744{
1745 type = desc_base_type (type);
1746
4c4b4cd2 1747 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1748 if (is_thin_pntr (type))
556bdfd4 1749 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1750 else if (is_thick_pntr (type))
556bdfd4
UW
1751 {
1752 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1753
1754 if (data_type
1755 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1756 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1757 }
1758
1759 return NULL;
14f9c5c9
AS
1760}
1761
1762/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1763 its array data. */
4c4b4cd2 1764
d2e4a39e
AS
1765static struct value *
1766desc_data (struct value *arr)
14f9c5c9 1767{
df407dfe 1768 struct type *type = value_type (arr);
5b4ee69b 1769
14f9c5c9
AS
1770 if (is_thin_pntr (type))
1771 return thin_data_pntr (arr);
1772 else if (is_thick_pntr (type))
d2e4a39e 1773 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1774 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1775 else
1776 return NULL;
1777}
1778
1779
1780/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1781 position of the field containing the address of the data. */
1782
14f9c5c9 1783static int
d2e4a39e 1784fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1785{
1786 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1787}
1788
1789/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1790 size of the field containing the address of the data. */
1791
14f9c5c9 1792static int
d2e4a39e 1793fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1794{
1795 type = desc_base_type (type);
1796
1797 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1798 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1799 else
14f9c5c9
AS
1800 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1801}
1802
4c4b4cd2 1803/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1804 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1805 bound, if WHICH is 1. The first bound is I=1. */
1806
d2e4a39e
AS
1807static struct value *
1808desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1809{
d2e4a39e 1810 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1811 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1812}
1813
1814/* If BOUNDS is an array-bounds structure type, return the bit position
1815 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1816 bound, if WHICH is 1. The first bound is I=1. */
1817
14f9c5c9 1818static int
d2e4a39e 1819desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1820{
d2e4a39e 1821 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1822}
1823
1824/* If BOUNDS is an array-bounds structure type, return the bit field size
1825 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1826 bound, if WHICH is 1. The first bound is I=1. */
1827
76a01679 1828static int
d2e4a39e 1829desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
d2e4a39e
AS
1833 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1835 else
1836 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1837}
1838
1839/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1840 Ith bound (numbering from 1). Otherwise, NULL. */
1841
d2e4a39e
AS
1842static struct type *
1843desc_index_type (struct type *type, int i)
14f9c5c9
AS
1844{
1845 type = desc_base_type (type);
1846
1847 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1848 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1849 else
14f9c5c9
AS
1850 return NULL;
1851}
1852
4c4b4cd2
PH
1853/* The number of index positions in the array-bounds type TYPE.
1854 Return 0 if TYPE is NULL. */
1855
14f9c5c9 1856static int
d2e4a39e 1857desc_arity (struct type *type)
14f9c5c9
AS
1858{
1859 type = desc_base_type (type);
1860
1861 if (type != NULL)
1862 return TYPE_NFIELDS (type) / 2;
1863 return 0;
1864}
1865
4c4b4cd2
PH
1866/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1867 an array descriptor type (representing an unconstrained array
1868 type). */
1869
76a01679
JB
1870static int
1871ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1872{
1873 if (type == NULL)
1874 return 0;
61ee279c 1875 type = ada_check_typedef (type);
4c4b4cd2 1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1877 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1878}
1879
52ce6436 1880/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1881 * to one. */
52ce6436 1882
2c0b251b 1883static int
52ce6436
PH
1884ada_is_array_type (struct type *type)
1885{
1886 while (type != NULL
1887 && (TYPE_CODE (type) == TYPE_CODE_PTR
1888 || TYPE_CODE (type) == TYPE_CODE_REF))
1889 type = TYPE_TARGET_TYPE (type);
1890 return ada_is_direct_array_type (type);
1891}
1892
4c4b4cd2 1893/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1894
14f9c5c9 1895int
4c4b4cd2 1896ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1897{
1898 if (type == NULL)
1899 return 0;
61ee279c 1900 type = ada_check_typedef (type);
14f9c5c9 1901 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1902 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1903 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1904 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1905}
1906
4c4b4cd2
PH
1907/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1908
14f9c5c9 1909int
4c4b4cd2 1910ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1911{
556bdfd4 1912 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1913
1914 if (type == NULL)
1915 return 0;
61ee279c 1916 type = ada_check_typedef (type);
556bdfd4
UW
1917 return (data_type != NULL
1918 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1919 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1920}
1921
1922/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1923 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1924 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1925 is still needed. */
1926
14f9c5c9 1927int
ebf56fd3 1928ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1929{
d2e4a39e 1930 return
14f9c5c9
AS
1931 type != NULL
1932 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1933 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1934 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1935 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1936}
1937
1938
4c4b4cd2 1939/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1940 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1941 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1942 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1943 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1944 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1945 a descriptor. */
d2e4a39e
AS
1946struct type *
1947ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1948{
ad82864c
JB
1949 if (ada_is_constrained_packed_array_type (value_type (arr)))
1950 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1951
df407dfe
AC
1952 if (!ada_is_array_descriptor_type (value_type (arr)))
1953 return value_type (arr);
d2e4a39e
AS
1954
1955 if (!bounds)
ad82864c
JB
1956 {
1957 struct type *array_type =
1958 ada_check_typedef (desc_data_target_type (value_type (arr)));
1959
1960 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1961 TYPE_FIELD_BITSIZE (array_type, 0) =
1962 decode_packed_array_bitsize (value_type (arr));
1963
1964 return array_type;
1965 }
14f9c5c9
AS
1966 else
1967 {
d2e4a39e 1968 struct type *elt_type;
14f9c5c9 1969 int arity;
d2e4a39e 1970 struct value *descriptor;
14f9c5c9 1971
df407dfe
AC
1972 elt_type = ada_array_element_type (value_type (arr), -1);
1973 arity = ada_array_arity (value_type (arr));
14f9c5c9 1974
d2e4a39e 1975 if (elt_type == NULL || arity == 0)
df407dfe 1976 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1977
1978 descriptor = desc_bounds (arr);
d2e4a39e 1979 if (value_as_long (descriptor) == 0)
4c4b4cd2 1980 return NULL;
d2e4a39e 1981 while (arity > 0)
4c4b4cd2 1982 {
e9bb382b
UW
1983 struct type *range_type = alloc_type_copy (value_type (arr));
1984 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1985 struct value *low = desc_one_bound (descriptor, arity, 0);
1986 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1987
5b4ee69b 1988 arity -= 1;
0c9c3474
SA
1989 create_static_range_type (range_type, value_type (low),
1990 longest_to_int (value_as_long (low)),
1991 longest_to_int (value_as_long (high)));
4c4b4cd2 1992 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1993
1994 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1995 {
1996 /* We need to store the element packed bitsize, as well as
1997 recompute the array size, because it was previously
1998 computed based on the unpacked element size. */
1999 LONGEST lo = value_as_long (low);
2000 LONGEST hi = value_as_long (high);
2001
2002 TYPE_FIELD_BITSIZE (elt_type, 0) =
2003 decode_packed_array_bitsize (value_type (arr));
2004 /* If the array has no element, then the size is already
2005 zero, and does not need to be recomputed. */
2006 if (lo < hi)
2007 {
2008 int array_bitsize =
2009 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2010
2011 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2012 }
2013 }
4c4b4cd2 2014 }
14f9c5c9
AS
2015
2016 return lookup_pointer_type (elt_type);
2017 }
2018}
2019
2020/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2021 Otherwise, returns either a standard GDB array with bounds set
2022 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2023 GDB array. Returns NULL if ARR is a null fat pointer. */
2024
d2e4a39e
AS
2025struct value *
2026ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2027{
df407dfe 2028 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2029 {
d2e4a39e 2030 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2031
14f9c5c9 2032 if (arrType == NULL)
4c4b4cd2 2033 return NULL;
14f9c5c9
AS
2034 return value_cast (arrType, value_copy (desc_data (arr)));
2035 }
ad82864c
JB
2036 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2037 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2038 else
2039 return arr;
2040}
2041
2042/* If ARR does not represent an array, returns ARR unchanged.
2043 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2044 be ARR itself if it already is in the proper form). */
2045
720d1a40 2046struct value *
d2e4a39e 2047ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2048{
df407dfe 2049 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2050 {
d2e4a39e 2051 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2052
14f9c5c9 2053 if (arrVal == NULL)
323e0a4a 2054 error (_("Bounds unavailable for null array pointer."));
529cad9c 2055 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2056 return value_ind (arrVal);
2057 }
ad82864c
JB
2058 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2059 return decode_constrained_packed_array (arr);
d2e4a39e 2060 else
14f9c5c9
AS
2061 return arr;
2062}
2063
2064/* If TYPE represents a GNAT array type, return it translated to an
2065 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2066 packing). For other types, is the identity. */
2067
d2e4a39e
AS
2068struct type *
2069ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2070{
ad82864c
JB
2071 if (ada_is_constrained_packed_array_type (type))
2072 return decode_constrained_packed_array_type (type);
17280b9f
UW
2073
2074 if (ada_is_array_descriptor_type (type))
556bdfd4 2075 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2076
2077 return type;
14f9c5c9
AS
2078}
2079
4c4b4cd2
PH
2080/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2081
ad82864c
JB
2082static int
2083ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2084{
2085 if (type == NULL)
2086 return 0;
4c4b4cd2 2087 type = desc_base_type (type);
61ee279c 2088 type = ada_check_typedef (type);
d2e4a39e 2089 return
14f9c5c9
AS
2090 ada_type_name (type) != NULL
2091 && strstr (ada_type_name (type), "___XP") != NULL;
2092}
2093
ad82864c
JB
2094/* Non-zero iff TYPE represents a standard GNAT constrained
2095 packed-array type. */
2096
2097int
2098ada_is_constrained_packed_array_type (struct type *type)
2099{
2100 return ada_is_packed_array_type (type)
2101 && !ada_is_array_descriptor_type (type);
2102}
2103
2104/* Non-zero iff TYPE represents an array descriptor for a
2105 unconstrained packed-array type. */
2106
2107static int
2108ada_is_unconstrained_packed_array_type (struct type *type)
2109{
2110 return ada_is_packed_array_type (type)
2111 && ada_is_array_descriptor_type (type);
2112}
2113
2114/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2115 return the size of its elements in bits. */
2116
2117static long
2118decode_packed_array_bitsize (struct type *type)
2119{
0d5cff50
DE
2120 const char *raw_name;
2121 const char *tail;
ad82864c
JB
2122 long bits;
2123
720d1a40
JB
2124 /* Access to arrays implemented as fat pointers are encoded as a typedef
2125 of the fat pointer type. We need the name of the fat pointer type
2126 to do the decoding, so strip the typedef layer. */
2127 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2128 type = ada_typedef_target_type (type);
2129
2130 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2131 if (!raw_name)
2132 raw_name = ada_type_name (desc_base_type (type));
2133
2134 if (!raw_name)
2135 return 0;
2136
2137 tail = strstr (raw_name, "___XP");
720d1a40 2138 gdb_assert (tail != NULL);
ad82864c
JB
2139
2140 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2141 {
2142 lim_warning
2143 (_("could not understand bit size information on packed array"));
2144 return 0;
2145 }
2146
2147 return bits;
2148}
2149
14f9c5c9
AS
2150/* Given that TYPE is a standard GDB array type with all bounds filled
2151 in, and that the element size of its ultimate scalar constituents
2152 (that is, either its elements, or, if it is an array of arrays, its
2153 elements' elements, etc.) is *ELT_BITS, return an identical type,
2154 but with the bit sizes of its elements (and those of any
2155 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2156 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2157 in bits.
2158
2159 Note that, for arrays whose index type has an XA encoding where
2160 a bound references a record discriminant, getting that discriminant,
2161 and therefore the actual value of that bound, is not possible
2162 because none of the given parameters gives us access to the record.
2163 This function assumes that it is OK in the context where it is being
2164 used to return an array whose bounds are still dynamic and where
2165 the length is arbitrary. */
4c4b4cd2 2166
d2e4a39e 2167static struct type *
ad82864c 2168constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2169{
d2e4a39e
AS
2170 struct type *new_elt_type;
2171 struct type *new_type;
99b1c762
JB
2172 struct type *index_type_desc;
2173 struct type *index_type;
14f9c5c9
AS
2174 LONGEST low_bound, high_bound;
2175
61ee279c 2176 type = ada_check_typedef (type);
14f9c5c9
AS
2177 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2178 return type;
2179
99b1c762
JB
2180 index_type_desc = ada_find_parallel_type (type, "___XA");
2181 if (index_type_desc)
2182 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2183 NULL);
2184 else
2185 index_type = TYPE_INDEX_TYPE (type);
2186
e9bb382b 2187 new_type = alloc_type_copy (type);
ad82864c
JB
2188 new_elt_type =
2189 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2190 elt_bits);
99b1c762 2191 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2192 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2193 TYPE_NAME (new_type) = ada_type_name (type);
2194
4a46959e
JB
2195 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2196 && is_dynamic_type (check_typedef (index_type)))
2197 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2198 low_bound = high_bound = 0;
2199 if (high_bound < low_bound)
2200 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2201 else
14f9c5c9
AS
2202 {
2203 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2204 TYPE_LENGTH (new_type) =
4c4b4cd2 2205 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2206 }
2207
876cecd0 2208 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2209 return new_type;
2210}
2211
ad82864c
JB
2212/* The array type encoded by TYPE, where
2213 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2214
d2e4a39e 2215static struct type *
ad82864c 2216decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2217{
0d5cff50 2218 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2219 char *name;
0d5cff50 2220 const char *tail;
d2e4a39e 2221 struct type *shadow_type;
14f9c5c9 2222 long bits;
14f9c5c9 2223
727e3d2e
JB
2224 if (!raw_name)
2225 raw_name = ada_type_name (desc_base_type (type));
2226
2227 if (!raw_name)
2228 return NULL;
2229
2230 name = (char *) alloca (strlen (raw_name) + 1);
2231 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2232 type = desc_base_type (type);
2233
14f9c5c9
AS
2234 memcpy (name, raw_name, tail - raw_name);
2235 name[tail - raw_name] = '\000';
2236
b4ba55a1
JB
2237 shadow_type = ada_find_parallel_type_with_name (type, name);
2238
2239 if (shadow_type == NULL)
14f9c5c9 2240 {
323e0a4a 2241 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2242 return NULL;
2243 }
cb249c71 2244 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2245
2246 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2247 {
0963b4bd
MS
2248 lim_warning (_("could not understand bounds "
2249 "information on packed array"));
14f9c5c9
AS
2250 return NULL;
2251 }
d2e4a39e 2252
ad82864c
JB
2253 bits = decode_packed_array_bitsize (type);
2254 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2255}
2256
ad82864c
JB
2257/* Given that ARR is a struct value *indicating a GNAT constrained packed
2258 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2259 standard GDB array type except that the BITSIZEs of the array
2260 target types are set to the number of bits in each element, and the
4c4b4cd2 2261 type length is set appropriately. */
14f9c5c9 2262
d2e4a39e 2263static struct value *
ad82864c 2264decode_constrained_packed_array (struct value *arr)
14f9c5c9 2265{
4c4b4cd2 2266 struct type *type;
14f9c5c9 2267
11aa919a
PMR
2268 /* If our value is a pointer, then dereference it. Likewise if
2269 the value is a reference. Make sure that this operation does not
2270 cause the target type to be fixed, as this would indirectly cause
2271 this array to be decoded. The rest of the routine assumes that
2272 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2273 and "value_ind" routines to perform the dereferencing, as opposed
2274 to using "ada_coerce_ref" or "ada_value_ind". */
2275 arr = coerce_ref (arr);
828292f2 2276 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2277 arr = value_ind (arr);
4c4b4cd2 2278
ad82864c 2279 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2280 if (type == NULL)
2281 {
323e0a4a 2282 error (_("can't unpack array"));
14f9c5c9
AS
2283 return NULL;
2284 }
61ee279c 2285
50810684 2286 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2287 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2288 {
2289 /* This is a (right-justified) modular type representing a packed
2290 array with no wrapper. In order to interpret the value through
2291 the (left-justified) packed array type we just built, we must
2292 first left-justify it. */
2293 int bit_size, bit_pos;
2294 ULONGEST mod;
2295
df407dfe 2296 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2297 bit_size = 0;
2298 while (mod > 0)
2299 {
2300 bit_size += 1;
2301 mod >>= 1;
2302 }
df407dfe 2303 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2304 arr = ada_value_primitive_packed_val (arr, NULL,
2305 bit_pos / HOST_CHAR_BIT,
2306 bit_pos % HOST_CHAR_BIT,
2307 bit_size,
2308 type);
2309 }
2310
4c4b4cd2 2311 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2312}
2313
2314
2315/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2316 given in IND. ARR must be a simple array. */
14f9c5c9 2317
d2e4a39e
AS
2318static struct value *
2319value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2320{
2321 int i;
2322 int bits, elt_off, bit_off;
2323 long elt_total_bit_offset;
d2e4a39e
AS
2324 struct type *elt_type;
2325 struct value *v;
14f9c5c9
AS
2326
2327 bits = 0;
2328 elt_total_bit_offset = 0;
df407dfe 2329 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2330 for (i = 0; i < arity; i += 1)
14f9c5c9 2331 {
d2e4a39e 2332 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2333 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2334 error
0963b4bd
MS
2335 (_("attempt to do packed indexing of "
2336 "something other than a packed array"));
14f9c5c9 2337 else
4c4b4cd2
PH
2338 {
2339 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2340 LONGEST lowerbound, upperbound;
2341 LONGEST idx;
2342
2343 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2344 {
323e0a4a 2345 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2346 lowerbound = upperbound = 0;
2347 }
2348
3cb382c9 2349 idx = pos_atr (ind[i]);
4c4b4cd2 2350 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2351 lim_warning (_("packed array index %ld out of bounds"),
2352 (long) idx);
4c4b4cd2
PH
2353 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2354 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2355 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2356 }
14f9c5c9
AS
2357 }
2358 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2359 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2360
2361 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2362 bits, elt_type);
14f9c5c9
AS
2363 return v;
2364}
2365
4c4b4cd2 2366/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2367
2368static int
d2e4a39e 2369has_negatives (struct type *type)
14f9c5c9 2370{
d2e4a39e
AS
2371 switch (TYPE_CODE (type))
2372 {
2373 default:
2374 return 0;
2375 case TYPE_CODE_INT:
2376 return !TYPE_UNSIGNED (type);
2377 case TYPE_CODE_RANGE:
2378 return TYPE_LOW_BOUND (type) < 0;
2379 }
14f9c5c9 2380}
d2e4a39e 2381
14f9c5c9
AS
2382
2383/* Create a new value of type TYPE from the contents of OBJ starting
2384 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2385 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2386 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2387 VALADDR is ignored unless OBJ is NULL, in which case,
2388 VALADDR+OFFSET must address the start of storage containing the
2389 packed value. The value returned in this case is never an lval.
2390 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2391
d2e4a39e 2392struct value *
fc1a4b47 2393ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2394 long offset, int bit_offset, int bit_size,
4c4b4cd2 2395 struct type *type)
14f9c5c9 2396{
d2e4a39e 2397 struct value *v;
4c4b4cd2
PH
2398 int src, /* Index into the source area */
2399 targ, /* Index into the target area */
2400 srcBitsLeft, /* Number of source bits left to move */
2401 nsrc, ntarg, /* Number of source and target bytes */
2402 unusedLS, /* Number of bits in next significant
2403 byte of source that are unused */
2404 accumSize; /* Number of meaningful bits in accum */
2405 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2406 unsigned char *unpacked;
4c4b4cd2 2407 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2408 unsigned char sign;
2409 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2410 /* Transmit bytes from least to most significant; delta is the direction
2411 the indices move. */
50810684 2412 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2413
61ee279c 2414 type = ada_check_typedef (type);
14f9c5c9
AS
2415
2416 if (obj == NULL)
2417 {
2418 v = allocate_value (type);
d2e4a39e 2419 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2420 }
9214ee5f 2421 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2422 {
53ba8333 2423 v = value_at (type, value_address (obj));
9f1f738a 2424 type = value_type (v);
d2e4a39e 2425 bytes = (unsigned char *) alloca (len);
53ba8333 2426 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2427 }
d2e4a39e 2428 else
14f9c5c9
AS
2429 {
2430 v = allocate_value (type);
0fd88904 2431 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2432 }
d2e4a39e
AS
2433
2434 if (obj != NULL)
14f9c5c9 2435 {
53ba8333 2436 long new_offset = offset;
5b4ee69b 2437
74bcbdf3 2438 set_value_component_location (v, obj);
9bbda503
AC
2439 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2440 set_value_bitsize (v, bit_size);
df407dfe 2441 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2442 {
53ba8333 2443 ++new_offset;
9bbda503 2444 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2445 }
53ba8333
JB
2446 set_value_offset (v, new_offset);
2447
2448 /* Also set the parent value. This is needed when trying to
2449 assign a new value (in inferior memory). */
2450 set_value_parent (v, obj);
14f9c5c9
AS
2451 }
2452 else
9bbda503 2453 set_value_bitsize (v, bit_size);
0fd88904 2454 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2455
2456 srcBitsLeft = bit_size;
2457 nsrc = len;
2458 ntarg = TYPE_LENGTH (type);
2459 sign = 0;
2460 if (bit_size == 0)
2461 {
2462 memset (unpacked, 0, TYPE_LENGTH (type));
2463 return v;
2464 }
50810684 2465 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2466 {
d2e4a39e 2467 src = len - 1;
1265e4aa
JB
2468 if (has_negatives (type)
2469 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2470 sign = ~0;
d2e4a39e
AS
2471
2472 unusedLS =
4c4b4cd2
PH
2473 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2474 % HOST_CHAR_BIT;
14f9c5c9
AS
2475
2476 switch (TYPE_CODE (type))
4c4b4cd2
PH
2477 {
2478 case TYPE_CODE_ARRAY:
2479 case TYPE_CODE_UNION:
2480 case TYPE_CODE_STRUCT:
2481 /* Non-scalar values must be aligned at a byte boundary... */
2482 accumSize =
2483 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2484 /* ... And are placed at the beginning (most-significant) bytes
2485 of the target. */
529cad9c 2486 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2487 ntarg = targ + 1;
4c4b4cd2
PH
2488 break;
2489 default:
2490 accumSize = 0;
2491 targ = TYPE_LENGTH (type) - 1;
2492 break;
2493 }
14f9c5c9 2494 }
d2e4a39e 2495 else
14f9c5c9
AS
2496 {
2497 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2498
2499 src = targ = 0;
2500 unusedLS = bit_offset;
2501 accumSize = 0;
2502
d2e4a39e 2503 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2504 sign = ~0;
14f9c5c9 2505 }
d2e4a39e 2506
14f9c5c9
AS
2507 accum = 0;
2508 while (nsrc > 0)
2509 {
2510 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2511 part of the value. */
d2e4a39e 2512 unsigned int unusedMSMask =
4c4b4cd2
PH
2513 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2514 1;
2515 /* Sign-extend bits for this byte. */
14f9c5c9 2516 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2517
d2e4a39e 2518 accum |=
4c4b4cd2 2519 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2520 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2521 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2522 {
2523 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2524 accumSize -= HOST_CHAR_BIT;
2525 accum >>= HOST_CHAR_BIT;
2526 ntarg -= 1;
2527 targ += delta;
2528 }
14f9c5c9
AS
2529 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2530 unusedLS = 0;
2531 nsrc -= 1;
2532 src += delta;
2533 }
2534 while (ntarg > 0)
2535 {
2536 accum |= sign << accumSize;
2537 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2538 accumSize -= HOST_CHAR_BIT;
2539 accum >>= HOST_CHAR_BIT;
2540 ntarg -= 1;
2541 targ += delta;
2542 }
2543
2544 return v;
2545}
d2e4a39e 2546
14f9c5c9
AS
2547/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2548 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2549 not overlap. */
14f9c5c9 2550static void
fc1a4b47 2551move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2552 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2553{
2554 unsigned int accum, mask;
2555 int accum_bits, chunk_size;
2556
2557 target += targ_offset / HOST_CHAR_BIT;
2558 targ_offset %= HOST_CHAR_BIT;
2559 source += src_offset / HOST_CHAR_BIT;
2560 src_offset %= HOST_CHAR_BIT;
50810684 2561 if (bits_big_endian_p)
14f9c5c9
AS
2562 {
2563 accum = (unsigned char) *source;
2564 source += 1;
2565 accum_bits = HOST_CHAR_BIT - src_offset;
2566
d2e4a39e 2567 while (n > 0)
4c4b4cd2
PH
2568 {
2569 int unused_right;
5b4ee69b 2570
4c4b4cd2
PH
2571 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2572 accum_bits += HOST_CHAR_BIT;
2573 source += 1;
2574 chunk_size = HOST_CHAR_BIT - targ_offset;
2575 if (chunk_size > n)
2576 chunk_size = n;
2577 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2578 mask = ((1 << chunk_size) - 1) << unused_right;
2579 *target =
2580 (*target & ~mask)
2581 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2582 n -= chunk_size;
2583 accum_bits -= chunk_size;
2584 target += 1;
2585 targ_offset = 0;
2586 }
14f9c5c9
AS
2587 }
2588 else
2589 {
2590 accum = (unsigned char) *source >> src_offset;
2591 source += 1;
2592 accum_bits = HOST_CHAR_BIT - src_offset;
2593
d2e4a39e 2594 while (n > 0)
4c4b4cd2
PH
2595 {
2596 accum = accum + ((unsigned char) *source << accum_bits);
2597 accum_bits += HOST_CHAR_BIT;
2598 source += 1;
2599 chunk_size = HOST_CHAR_BIT - targ_offset;
2600 if (chunk_size > n)
2601 chunk_size = n;
2602 mask = ((1 << chunk_size) - 1) << targ_offset;
2603 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2604 n -= chunk_size;
2605 accum_bits -= chunk_size;
2606 accum >>= chunk_size;
2607 target += 1;
2608 targ_offset = 0;
2609 }
14f9c5c9
AS
2610 }
2611}
2612
14f9c5c9
AS
2613/* Store the contents of FROMVAL into the location of TOVAL.
2614 Return a new value with the location of TOVAL and contents of
2615 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2616 floating-point or non-scalar types. */
14f9c5c9 2617
d2e4a39e
AS
2618static struct value *
2619ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2620{
df407dfe
AC
2621 struct type *type = value_type (toval);
2622 int bits = value_bitsize (toval);
14f9c5c9 2623
52ce6436
PH
2624 toval = ada_coerce_ref (toval);
2625 fromval = ada_coerce_ref (fromval);
2626
2627 if (ada_is_direct_array_type (value_type (toval)))
2628 toval = ada_coerce_to_simple_array (toval);
2629 if (ada_is_direct_array_type (value_type (fromval)))
2630 fromval = ada_coerce_to_simple_array (fromval);
2631
88e3b34b 2632 if (!deprecated_value_modifiable (toval))
323e0a4a 2633 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2634
d2e4a39e 2635 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2636 && bits > 0
d2e4a39e 2637 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2638 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2639 {
df407dfe
AC
2640 int len = (value_bitpos (toval)
2641 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2642 int from_size;
948f8e3d 2643 gdb_byte *buffer = alloca (len);
d2e4a39e 2644 struct value *val;
42ae5230 2645 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2646
2647 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2648 fromval = value_cast (type, fromval);
14f9c5c9 2649
52ce6436 2650 read_memory (to_addr, buffer, len);
aced2898
PH
2651 from_size = value_bitsize (fromval);
2652 if (from_size == 0)
2653 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2654 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2655 move_bits (buffer, value_bitpos (toval),
50810684 2656 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2657 else
50810684
UW
2658 move_bits (buffer, value_bitpos (toval),
2659 value_contents (fromval), 0, bits, 0);
972daa01 2660 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2661
14f9c5c9 2662 val = value_copy (toval);
0fd88904 2663 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2664 TYPE_LENGTH (type));
04624583 2665 deprecated_set_value_type (val, type);
d2e4a39e 2666
14f9c5c9
AS
2667 return val;
2668 }
2669
2670 return value_assign (toval, fromval);
2671}
2672
2673
52ce6436
PH
2674/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2675 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2676 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2677 * COMPONENT, and not the inferior's memory. The current contents
2678 * of COMPONENT are ignored. */
2679static void
2680value_assign_to_component (struct value *container, struct value *component,
2681 struct value *val)
2682{
2683 LONGEST offset_in_container =
42ae5230 2684 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2685 int bit_offset_in_container =
2686 value_bitpos (component) - value_bitpos (container);
2687 int bits;
2688
2689 val = value_cast (value_type (component), val);
2690
2691 if (value_bitsize (component) == 0)
2692 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2693 else
2694 bits = value_bitsize (component);
2695
50810684 2696 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2697 move_bits (value_contents_writeable (container) + offset_in_container,
2698 value_bitpos (container) + bit_offset_in_container,
2699 value_contents (val),
2700 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2701 bits, 1);
52ce6436
PH
2702 else
2703 move_bits (value_contents_writeable (container) + offset_in_container,
2704 value_bitpos (container) + bit_offset_in_container,
50810684 2705 value_contents (val), 0, bits, 0);
52ce6436
PH
2706}
2707
4c4b4cd2
PH
2708/* The value of the element of array ARR at the ARITY indices given in IND.
2709 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2710 thereto. */
2711
d2e4a39e
AS
2712struct value *
2713ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2714{
2715 int k;
d2e4a39e
AS
2716 struct value *elt;
2717 struct type *elt_type;
14f9c5c9
AS
2718
2719 elt = ada_coerce_to_simple_array (arr);
2720
df407dfe 2721 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2722 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2723 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2724 return value_subscript_packed (elt, arity, ind);
2725
2726 for (k = 0; k < arity; k += 1)
2727 {
2728 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2729 error (_("too many subscripts (%d expected)"), k);
2497b498 2730 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2731 }
2732 return elt;
2733}
2734
deede10c
JB
2735/* Assuming ARR is a pointer to a GDB array, the value of the element
2736 of *ARR at the ARITY indices given in IND.
2737 Does not read the entire array into memory. */
14f9c5c9 2738
2c0b251b 2739static struct value *
deede10c 2740ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2741{
2742 int k;
deede10c
JB
2743 struct type *type
2744 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2745
2746 for (k = 0; k < arity; k += 1)
2747 {
2748 LONGEST lwb, upb;
14f9c5c9
AS
2749
2750 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2751 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2752 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2753 value_copy (arr));
14f9c5c9 2754 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2755 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2756 type = TYPE_TARGET_TYPE (type);
2757 }
2758
2759 return value_ind (arr);
2760}
2761
0b5d8877 2762/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2763 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2764 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2765 per Ada rules. */
0b5d8877 2766static struct value *
f5938064
JG
2767ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2768 int low, int high)
0b5d8877 2769{
b0dd7688 2770 struct type *type0 = ada_check_typedef (type);
6c038f32 2771 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2772 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2773 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2774 struct type *index_type
2775 = create_static_range_type (NULL,
2776 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2777 low, high);
6c038f32 2778 struct type *slice_type =
b0dd7688 2779 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2780
f5938064 2781 return value_at_lazy (slice_type, base);
0b5d8877
PH
2782}
2783
2784
2785static struct value *
2786ada_value_slice (struct value *array, int low, int high)
2787{
b0dd7688 2788 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2789 struct type *index_type
2790 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2791 struct type *slice_type =
0b5d8877 2792 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2793
6c038f32 2794 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2795}
2796
14f9c5c9
AS
2797/* If type is a record type in the form of a standard GNAT array
2798 descriptor, returns the number of dimensions for type. If arr is a
2799 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2800 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2801
2802int
d2e4a39e 2803ada_array_arity (struct type *type)
14f9c5c9
AS
2804{
2805 int arity;
2806
2807 if (type == NULL)
2808 return 0;
2809
2810 type = desc_base_type (type);
2811
2812 arity = 0;
d2e4a39e 2813 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2814 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2815 else
2816 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2817 {
4c4b4cd2 2818 arity += 1;
61ee279c 2819 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2820 }
d2e4a39e 2821
14f9c5c9
AS
2822 return arity;
2823}
2824
2825/* If TYPE is a record type in the form of a standard GNAT array
2826 descriptor or a simple array type, returns the element type for
2827 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2828 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2829
d2e4a39e
AS
2830struct type *
2831ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2832{
2833 type = desc_base_type (type);
2834
d2e4a39e 2835 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2836 {
2837 int k;
d2e4a39e 2838 struct type *p_array_type;
14f9c5c9 2839
556bdfd4 2840 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2841
2842 k = ada_array_arity (type);
2843 if (k == 0)
4c4b4cd2 2844 return NULL;
d2e4a39e 2845
4c4b4cd2 2846 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2847 if (nindices >= 0 && k > nindices)
4c4b4cd2 2848 k = nindices;
d2e4a39e 2849 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2850 {
61ee279c 2851 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2852 k -= 1;
2853 }
14f9c5c9
AS
2854 return p_array_type;
2855 }
2856 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2857 {
2858 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2859 {
2860 type = TYPE_TARGET_TYPE (type);
2861 nindices -= 1;
2862 }
14f9c5c9
AS
2863 return type;
2864 }
2865
2866 return NULL;
2867}
2868
4c4b4cd2 2869/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2870 Does not examine memory. Throws an error if N is invalid or TYPE
2871 is not an array type. NAME is the name of the Ada attribute being
2872 evaluated ('range, 'first, 'last, or 'length); it is used in building
2873 the error message. */
14f9c5c9 2874
1eea4ebd
UW
2875static struct type *
2876ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2877{
4c4b4cd2
PH
2878 struct type *result_type;
2879
14f9c5c9
AS
2880 type = desc_base_type (type);
2881
1eea4ebd
UW
2882 if (n < 0 || n > ada_array_arity (type))
2883 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2884
4c4b4cd2 2885 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2886 {
2887 int i;
2888
2889 for (i = 1; i < n; i += 1)
4c4b4cd2 2890 type = TYPE_TARGET_TYPE (type);
262452ec 2891 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2892 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2893 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2894 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2895 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2896 result_type = NULL;
14f9c5c9 2897 }
d2e4a39e 2898 else
1eea4ebd
UW
2899 {
2900 result_type = desc_index_type (desc_bounds_type (type), n);
2901 if (result_type == NULL)
2902 error (_("attempt to take bound of something that is not an array"));
2903 }
2904
2905 return result_type;
14f9c5c9
AS
2906}
2907
2908/* Given that arr is an array type, returns the lower bound of the
2909 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2910 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2911 array-descriptor type. It works for other arrays with bounds supplied
2912 by run-time quantities other than discriminants. */
14f9c5c9 2913
abb68b3e 2914static LONGEST
fb5e3d5c 2915ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2916{
8a48ac95 2917 struct type *type, *index_type_desc, *index_type;
1ce677a4 2918 int i;
262452ec
JK
2919
2920 gdb_assert (which == 0 || which == 1);
14f9c5c9 2921
ad82864c
JB
2922 if (ada_is_constrained_packed_array_type (arr_type))
2923 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2924
4c4b4cd2 2925 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2926 return (LONGEST) - which;
14f9c5c9
AS
2927
2928 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2929 type = TYPE_TARGET_TYPE (arr_type);
2930 else
2931 type = arr_type;
2932
2933 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2934 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2935 if (index_type_desc != NULL)
28c85d6c
JB
2936 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2937 NULL);
262452ec 2938 else
8a48ac95
JB
2939 {
2940 struct type *elt_type = check_typedef (type);
2941
2942 for (i = 1; i < n; i++)
2943 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2944
2945 index_type = TYPE_INDEX_TYPE (elt_type);
2946 }
262452ec 2947
43bbcdc2
PH
2948 return
2949 (LONGEST) (which == 0
2950 ? ada_discrete_type_low_bound (index_type)
2951 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2952}
2953
2954/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2955 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2956 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2957 supplied by run-time quantities other than discriminants. */
14f9c5c9 2958
1eea4ebd 2959static LONGEST
4dc81987 2960ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2961{
eb479039
JB
2962 struct type *arr_type;
2963
2964 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2965 arr = value_ind (arr);
2966 arr_type = value_enclosing_type (arr);
14f9c5c9 2967
ad82864c
JB
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2970 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2971 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2972 else
1eea4ebd 2973 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2974}
2975
2976/* Given that arr is an array value, returns the length of the
2977 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2978 supplied by run-time quantities other than discriminants.
2979 Does not work for arrays indexed by enumeration types with representation
2980 clauses at the moment. */
14f9c5c9 2981
1eea4ebd 2982static LONGEST
d2e4a39e 2983ada_array_length (struct value *arr, int n)
14f9c5c9 2984{
eb479039
JB
2985 struct type *arr_type;
2986
2987 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2988 arr = value_ind (arr);
2989 arr_type = value_enclosing_type (arr);
14f9c5c9 2990
ad82864c
JB
2991 if (ada_is_constrained_packed_array_type (arr_type))
2992 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2993
4c4b4cd2 2994 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2995 return (ada_array_bound_from_type (arr_type, n, 1)
2996 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2997 else
1eea4ebd
UW
2998 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2999 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
3000}
3001
3002/* An empty array whose type is that of ARR_TYPE (an array type),
3003 with bounds LOW to LOW-1. */
3004
3005static struct value *
3006empty_array (struct type *arr_type, int low)
3007{
b0dd7688 3008 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3009 struct type *index_type
3010 = create_static_range_type
3011 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3012 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3013
0b5d8877 3014 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3015}
14f9c5c9 3016\f
d2e4a39e 3017
4c4b4cd2 3018 /* Name resolution */
14f9c5c9 3019
4c4b4cd2
PH
3020/* The "decoded" name for the user-definable Ada operator corresponding
3021 to OP. */
14f9c5c9 3022
d2e4a39e 3023static const char *
4c4b4cd2 3024ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3025{
3026 int i;
3027
4c4b4cd2 3028 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3029 {
3030 if (ada_opname_table[i].op == op)
4c4b4cd2 3031 return ada_opname_table[i].decoded;
14f9c5c9 3032 }
323e0a4a 3033 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3034}
3035
3036
4c4b4cd2
PH
3037/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3038 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3039 undefined namespace) and converts operators that are
3040 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3041 non-null, it provides a preferred result type [at the moment, only
3042 type void has any effect---causing procedures to be preferred over
3043 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3044 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3045
4c4b4cd2
PH
3046static void
3047resolve (struct expression **expp, int void_context_p)
14f9c5c9 3048{
30b15541
UW
3049 struct type *context_type = NULL;
3050 int pc = 0;
3051
3052 if (void_context_p)
3053 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3054
3055 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3056}
3057
4c4b4cd2
PH
3058/* Resolve the operator of the subexpression beginning at
3059 position *POS of *EXPP. "Resolving" consists of replacing
3060 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3061 with their resolutions, replacing built-in operators with
3062 function calls to user-defined operators, where appropriate, and,
3063 when DEPROCEDURE_P is non-zero, converting function-valued variables
3064 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3065 are as in ada_resolve, above. */
14f9c5c9 3066
d2e4a39e 3067static struct value *
4c4b4cd2 3068resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3069 struct type *context_type)
14f9c5c9
AS
3070{
3071 int pc = *pos;
3072 int i;
4c4b4cd2 3073 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3074 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3075 struct value **argvec; /* Vector of operand types (alloca'ed). */
3076 int nargs; /* Number of operands. */
52ce6436 3077 int oplen;
14f9c5c9
AS
3078
3079 argvec = NULL;
3080 nargs = 0;
3081 exp = *expp;
3082
52ce6436
PH
3083 /* Pass one: resolve operands, saving their types and updating *pos,
3084 if needed. */
14f9c5c9
AS
3085 switch (op)
3086 {
4c4b4cd2
PH
3087 case OP_FUNCALL:
3088 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3089 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3090 *pos += 7;
4c4b4cd2
PH
3091 else
3092 {
3093 *pos += 3;
3094 resolve_subexp (expp, pos, 0, NULL);
3095 }
3096 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3097 break;
3098
14f9c5c9 3099 case UNOP_ADDR:
4c4b4cd2
PH
3100 *pos += 1;
3101 resolve_subexp (expp, pos, 0, NULL);
3102 break;
3103
52ce6436
PH
3104 case UNOP_QUAL:
3105 *pos += 3;
17466c1a 3106 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3107 break;
3108
52ce6436 3109 case OP_ATR_MODULUS:
4c4b4cd2
PH
3110 case OP_ATR_SIZE:
3111 case OP_ATR_TAG:
4c4b4cd2
PH
3112 case OP_ATR_FIRST:
3113 case OP_ATR_LAST:
3114 case OP_ATR_LENGTH:
3115 case OP_ATR_POS:
3116 case OP_ATR_VAL:
4c4b4cd2
PH
3117 case OP_ATR_MIN:
3118 case OP_ATR_MAX:
52ce6436
PH
3119 case TERNOP_IN_RANGE:
3120 case BINOP_IN_BOUNDS:
3121 case UNOP_IN_RANGE:
3122 case OP_AGGREGATE:
3123 case OP_OTHERS:
3124 case OP_CHOICES:
3125 case OP_POSITIONAL:
3126 case OP_DISCRETE_RANGE:
3127 case OP_NAME:
3128 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3129 *pos += oplen;
14f9c5c9
AS
3130 break;
3131
3132 case BINOP_ASSIGN:
3133 {
4c4b4cd2
PH
3134 struct value *arg1;
3135
3136 *pos += 1;
3137 arg1 = resolve_subexp (expp, pos, 0, NULL);
3138 if (arg1 == NULL)
3139 resolve_subexp (expp, pos, 1, NULL);
3140 else
df407dfe 3141 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3142 break;
14f9c5c9
AS
3143 }
3144
4c4b4cd2 3145 case UNOP_CAST:
4c4b4cd2
PH
3146 *pos += 3;
3147 nargs = 1;
3148 break;
14f9c5c9 3149
4c4b4cd2
PH
3150 case BINOP_ADD:
3151 case BINOP_SUB:
3152 case BINOP_MUL:
3153 case BINOP_DIV:
3154 case BINOP_REM:
3155 case BINOP_MOD:
3156 case BINOP_EXP:
3157 case BINOP_CONCAT:
3158 case BINOP_LOGICAL_AND:
3159 case BINOP_LOGICAL_OR:
3160 case BINOP_BITWISE_AND:
3161 case BINOP_BITWISE_IOR:
3162 case BINOP_BITWISE_XOR:
14f9c5c9 3163
4c4b4cd2
PH
3164 case BINOP_EQUAL:
3165 case BINOP_NOTEQUAL:
3166 case BINOP_LESS:
3167 case BINOP_GTR:
3168 case BINOP_LEQ:
3169 case BINOP_GEQ:
14f9c5c9 3170
4c4b4cd2
PH
3171 case BINOP_REPEAT:
3172 case BINOP_SUBSCRIPT:
3173 case BINOP_COMMA:
40c8aaa9
JB
3174 *pos += 1;
3175 nargs = 2;
3176 break;
14f9c5c9 3177
4c4b4cd2
PH
3178 case UNOP_NEG:
3179 case UNOP_PLUS:
3180 case UNOP_LOGICAL_NOT:
3181 case UNOP_ABS:
3182 case UNOP_IND:
3183 *pos += 1;
3184 nargs = 1;
3185 break;
14f9c5c9 3186
4c4b4cd2
PH
3187 case OP_LONG:
3188 case OP_DOUBLE:
3189 case OP_VAR_VALUE:
3190 *pos += 4;
3191 break;
14f9c5c9 3192
4c4b4cd2
PH
3193 case OP_TYPE:
3194 case OP_BOOL:
3195 case OP_LAST:
4c4b4cd2
PH
3196 case OP_INTERNALVAR:
3197 *pos += 3;
3198 break;
14f9c5c9 3199
4c4b4cd2
PH
3200 case UNOP_MEMVAL:
3201 *pos += 3;
3202 nargs = 1;
3203 break;
3204
67f3407f
DJ
3205 case OP_REGISTER:
3206 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3207 break;
3208
4c4b4cd2
PH
3209 case STRUCTOP_STRUCT:
3210 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3211 nargs = 1;
3212 break;
3213
4c4b4cd2 3214 case TERNOP_SLICE:
4c4b4cd2
PH
3215 *pos += 1;
3216 nargs = 3;
3217 break;
3218
52ce6436 3219 case OP_STRING:
14f9c5c9 3220 break;
4c4b4cd2
PH
3221
3222 default:
323e0a4a 3223 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3224 }
3225
76a01679 3226 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3227 for (i = 0; i < nargs; i += 1)
3228 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3229 argvec[i] = NULL;
3230 exp = *expp;
3231
3232 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3233 switch (op)
3234 {
3235 default:
3236 break;
3237
14f9c5c9 3238 case OP_VAR_VALUE:
4c4b4cd2 3239 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3240 {
3241 struct ada_symbol_info *candidates;
3242 int n_candidates;
3243
3244 n_candidates =
3245 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3246 (exp->elts[pc + 2].symbol),
3247 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3248 &candidates);
76a01679
JB
3249
3250 if (n_candidates > 1)
3251 {
3252 /* Types tend to get re-introduced locally, so if there
3253 are any local symbols that are not types, first filter
3254 out all types. */
3255 int j;
3256 for (j = 0; j < n_candidates; j += 1)
3257 switch (SYMBOL_CLASS (candidates[j].sym))
3258 {
3259 case LOC_REGISTER:
3260 case LOC_ARG:
3261 case LOC_REF_ARG:
76a01679
JB
3262 case LOC_REGPARM_ADDR:
3263 case LOC_LOCAL:
76a01679 3264 case LOC_COMPUTED:
76a01679
JB
3265 goto FoundNonType;
3266 default:
3267 break;
3268 }
3269 FoundNonType:
3270 if (j < n_candidates)
3271 {
3272 j = 0;
3273 while (j < n_candidates)
3274 {
3275 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3276 {
3277 candidates[j] = candidates[n_candidates - 1];
3278 n_candidates -= 1;
3279 }
3280 else
3281 j += 1;
3282 }
3283 }
3284 }
3285
3286 if (n_candidates == 0)
323e0a4a 3287 error (_("No definition found for %s"),
76a01679
JB
3288 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3289 else if (n_candidates == 1)
3290 i = 0;
3291 else if (deprocedure_p
3292 && !is_nonfunction (candidates, n_candidates))
3293 {
06d5cf63
JB
3294 i = ada_resolve_function
3295 (candidates, n_candidates, NULL, 0,
3296 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3297 context_type);
76a01679 3298 if (i < 0)
323e0a4a 3299 error (_("Could not find a match for %s"),
76a01679
JB
3300 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3301 }
3302 else
3303 {
323e0a4a 3304 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3305 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3306 user_select_syms (candidates, n_candidates, 1);
3307 i = 0;
3308 }
3309
3310 exp->elts[pc + 1].block = candidates[i].block;
3311 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3312 if (innermost_block == NULL
3313 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3314 innermost_block = candidates[i].block;
3315 }
3316
3317 if (deprocedure_p
3318 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3319 == TYPE_CODE_FUNC))
3320 {
3321 replace_operator_with_call (expp, pc, 0, 0,
3322 exp->elts[pc + 2].symbol,
3323 exp->elts[pc + 1].block);
3324 exp = *expp;
3325 }
14f9c5c9
AS
3326 break;
3327
3328 case OP_FUNCALL:
3329 {
4c4b4cd2 3330 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3331 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3332 {
3333 struct ada_symbol_info *candidates;
3334 int n_candidates;
3335
3336 n_candidates =
76a01679
JB
3337 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3338 (exp->elts[pc + 5].symbol),
3339 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3340 &candidates);
4c4b4cd2
PH
3341 if (n_candidates == 1)
3342 i = 0;
3343 else
3344 {
06d5cf63
JB
3345 i = ada_resolve_function
3346 (candidates, n_candidates,
3347 argvec, nargs,
3348 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3349 context_type);
4c4b4cd2 3350 if (i < 0)
323e0a4a 3351 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3352 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3353 }
3354
3355 exp->elts[pc + 4].block = candidates[i].block;
3356 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3357 if (innermost_block == NULL
3358 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3359 innermost_block = candidates[i].block;
3360 }
14f9c5c9
AS
3361 }
3362 break;
3363 case BINOP_ADD:
3364 case BINOP_SUB:
3365 case BINOP_MUL:
3366 case BINOP_DIV:
3367 case BINOP_REM:
3368 case BINOP_MOD:
3369 case BINOP_CONCAT:
3370 case BINOP_BITWISE_AND:
3371 case BINOP_BITWISE_IOR:
3372 case BINOP_BITWISE_XOR:
3373 case BINOP_EQUAL:
3374 case BINOP_NOTEQUAL:
3375 case BINOP_LESS:
3376 case BINOP_GTR:
3377 case BINOP_LEQ:
3378 case BINOP_GEQ:
3379 case BINOP_EXP:
3380 case UNOP_NEG:
3381 case UNOP_PLUS:
3382 case UNOP_LOGICAL_NOT:
3383 case UNOP_ABS:
3384 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3385 {
3386 struct ada_symbol_info *candidates;
3387 int n_candidates;
3388
3389 n_candidates =
3390 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3391 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3392 &candidates);
4c4b4cd2 3393 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3394 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3395 if (i < 0)
3396 break;
3397
76a01679
JB
3398 replace_operator_with_call (expp, pc, nargs, 1,
3399 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3400 exp = *expp;
3401 }
14f9c5c9 3402 break;
4c4b4cd2
PH
3403
3404 case OP_TYPE:
b3dbf008 3405 case OP_REGISTER:
4c4b4cd2 3406 return NULL;
14f9c5c9
AS
3407 }
3408
3409 *pos = pc;
3410 return evaluate_subexp_type (exp, pos);
3411}
3412
3413/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3414 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3415 a non-pointer. */
14f9c5c9 3416/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3417 liberal. */
14f9c5c9
AS
3418
3419static int
4dc81987 3420ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3421{
61ee279c
PH
3422 ftype = ada_check_typedef (ftype);
3423 atype = ada_check_typedef (atype);
14f9c5c9
AS
3424
3425 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3426 ftype = TYPE_TARGET_TYPE (ftype);
3427 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3428 atype = TYPE_TARGET_TYPE (atype);
3429
d2e4a39e 3430 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3431 {
3432 default:
5b3d5b7d 3433 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3434 case TYPE_CODE_PTR:
3435 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3436 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3437 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3438 else
1265e4aa
JB
3439 return (may_deref
3440 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3441 case TYPE_CODE_INT:
3442 case TYPE_CODE_ENUM:
3443 case TYPE_CODE_RANGE:
3444 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3445 {
3446 case TYPE_CODE_INT:
3447 case TYPE_CODE_ENUM:
3448 case TYPE_CODE_RANGE:
3449 return 1;
3450 default:
3451 return 0;
3452 }
14f9c5c9
AS
3453
3454 case TYPE_CODE_ARRAY:
d2e4a39e 3455 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3456 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3457
3458 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3459 if (ada_is_array_descriptor_type (ftype))
3460 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3461 || ada_is_array_descriptor_type (atype));
14f9c5c9 3462 else
4c4b4cd2
PH
3463 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3464 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3465
3466 case TYPE_CODE_UNION:
3467 case TYPE_CODE_FLT:
3468 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3469 }
3470}
3471
3472/* Return non-zero if the formals of FUNC "sufficiently match" the
3473 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3474 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3475 argument function. */
14f9c5c9
AS
3476
3477static int
d2e4a39e 3478ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3479{
3480 int i;
d2e4a39e 3481 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3482
1265e4aa
JB
3483 if (SYMBOL_CLASS (func) == LOC_CONST
3484 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3485 return (n_actuals == 0);
3486 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3487 return 0;
3488
3489 if (TYPE_NFIELDS (func_type) != n_actuals)
3490 return 0;
3491
3492 for (i = 0; i < n_actuals; i += 1)
3493 {
4c4b4cd2 3494 if (actuals[i] == NULL)
76a01679
JB
3495 return 0;
3496 else
3497 {
5b4ee69b
MS
3498 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3499 i));
df407dfe 3500 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3501
76a01679
JB
3502 if (!ada_type_match (ftype, atype, 1))
3503 return 0;
3504 }
14f9c5c9
AS
3505 }
3506 return 1;
3507}
3508
3509/* False iff function type FUNC_TYPE definitely does not produce a value
3510 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3511 FUNC_TYPE is not a valid function type with a non-null return type
3512 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3513
3514static int
d2e4a39e 3515return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3516{
d2e4a39e 3517 struct type *return_type;
14f9c5c9
AS
3518
3519 if (func_type == NULL)
3520 return 1;
3521
4c4b4cd2 3522 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3523 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3524 else
18af8284 3525 return_type = get_base_type (func_type);
14f9c5c9
AS
3526 if (return_type == NULL)
3527 return 1;
3528
18af8284 3529 context_type = get_base_type (context_type);
14f9c5c9
AS
3530
3531 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3532 return context_type == NULL || return_type == context_type;
3533 else if (context_type == NULL)
3534 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3535 else
3536 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3537}
3538
3539
4c4b4cd2 3540/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3541 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3542 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3543 that returns that type, then eliminate matches that don't. If
3544 CONTEXT_TYPE is void and there is at least one match that does not
3545 return void, eliminate all matches that do.
3546
14f9c5c9
AS
3547 Asks the user if there is more than one match remaining. Returns -1
3548 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3549 solely for messages. May re-arrange and modify SYMS in
3550 the process; the index returned is for the modified vector. */
14f9c5c9 3551
4c4b4cd2
PH
3552static int
3553ada_resolve_function (struct ada_symbol_info syms[],
3554 int nsyms, struct value **args, int nargs,
3555 const char *name, struct type *context_type)
14f9c5c9 3556{
30b15541 3557 int fallback;
14f9c5c9 3558 int k;
4c4b4cd2 3559 int m; /* Number of hits */
14f9c5c9 3560
d2e4a39e 3561 m = 0;
30b15541
UW
3562 /* In the first pass of the loop, we only accept functions matching
3563 context_type. If none are found, we add a second pass of the loop
3564 where every function is accepted. */
3565 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3566 {
3567 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3568 {
61ee279c 3569 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3570
3571 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3572 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3573 {
3574 syms[m] = syms[k];
3575 m += 1;
3576 }
3577 }
14f9c5c9
AS
3578 }
3579
3580 if (m == 0)
3581 return -1;
3582 else if (m > 1)
3583 {
323e0a4a 3584 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3585 user_select_syms (syms, m, 1);
14f9c5c9
AS
3586 return 0;
3587 }
3588 return 0;
3589}
3590
4c4b4cd2
PH
3591/* Returns true (non-zero) iff decoded name N0 should appear before N1
3592 in a listing of choices during disambiguation (see sort_choices, below).
3593 The idea is that overloadings of a subprogram name from the
3594 same package should sort in their source order. We settle for ordering
3595 such symbols by their trailing number (__N or $N). */
3596
14f9c5c9 3597static int
0d5cff50 3598encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3599{
3600 if (N1 == NULL)
3601 return 0;
3602 else if (N0 == NULL)
3603 return 1;
3604 else
3605 {
3606 int k0, k1;
5b4ee69b 3607
d2e4a39e 3608 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3609 ;
d2e4a39e 3610 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3611 ;
d2e4a39e 3612 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3613 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3614 {
3615 int n0, n1;
5b4ee69b 3616
4c4b4cd2
PH
3617 n0 = k0;
3618 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3619 n0 -= 1;
3620 n1 = k1;
3621 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3622 n1 -= 1;
3623 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3624 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3625 }
14f9c5c9
AS
3626 return (strcmp (N0, N1) < 0);
3627 }
3628}
d2e4a39e 3629
4c4b4cd2
PH
3630/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3631 encoded names. */
3632
d2e4a39e 3633static void
4c4b4cd2 3634sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3635{
4c4b4cd2 3636 int i;
5b4ee69b 3637
d2e4a39e 3638 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3639 {
4c4b4cd2 3640 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3641 int j;
3642
d2e4a39e 3643 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3644 {
3645 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3646 SYMBOL_LINKAGE_NAME (sym.sym)))
3647 break;
3648 syms[j + 1] = syms[j];
3649 }
d2e4a39e 3650 syms[j + 1] = sym;
14f9c5c9
AS
3651 }
3652}
3653
4c4b4cd2
PH
3654/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3655 by asking the user (if necessary), returning the number selected,
3656 and setting the first elements of SYMS items. Error if no symbols
3657 selected. */
14f9c5c9
AS
3658
3659/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3660 to be re-integrated one of these days. */
14f9c5c9
AS
3661
3662int
4c4b4cd2 3663user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3664{
3665 int i;
d2e4a39e 3666 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3667 int n_chosen;
3668 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3669 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3670
3671 if (max_results < 1)
323e0a4a 3672 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3673 if (nsyms <= 1)
3674 return nsyms;
3675
717d2f5a
JB
3676 if (select_mode == multiple_symbols_cancel)
3677 error (_("\
3678canceled because the command is ambiguous\n\
3679See set/show multiple-symbol."));
3680
3681 /* If select_mode is "all", then return all possible symbols.
3682 Only do that if more than one symbol can be selected, of course.
3683 Otherwise, display the menu as usual. */
3684 if (select_mode == multiple_symbols_all && max_results > 1)
3685 return nsyms;
3686
323e0a4a 3687 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3688 if (max_results > 1)
323e0a4a 3689 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3690
4c4b4cd2 3691 sort_choices (syms, nsyms);
14f9c5c9
AS
3692
3693 for (i = 0; i < nsyms; i += 1)
3694 {
4c4b4cd2
PH
3695 if (syms[i].sym == NULL)
3696 continue;
3697
3698 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3699 {
76a01679
JB
3700 struct symtab_and_line sal =
3701 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3702
323e0a4a
AC
3703 if (sal.symtab == NULL)
3704 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3705 i + first_choice,
3706 SYMBOL_PRINT_NAME (syms[i].sym),
3707 sal.line);
3708 else
3709 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3710 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3711 symtab_to_filename_for_display (sal.symtab),
3712 sal.line);
4c4b4cd2
PH
3713 continue;
3714 }
d2e4a39e 3715 else
4c4b4cd2
PH
3716 {
3717 int is_enumeral =
3718 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3719 && SYMBOL_TYPE (syms[i].sym) != NULL
3720 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3721 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3722
3723 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3724 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3727 symtab_to_filename_for_display (symtab),
3728 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3729 else if (is_enumeral
3730 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3731 {
a3f17187 3732 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3733 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3734 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3735 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3736 SYMBOL_PRINT_NAME (syms[i].sym));
3737 }
3738 else if (symtab != NULL)
3739 printf_unfiltered (is_enumeral
323e0a4a
AC
3740 ? _("[%d] %s in %s (enumeral)\n")
3741 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3742 i + first_choice,
3743 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3744 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3745 else
3746 printf_unfiltered (is_enumeral
323e0a4a
AC
3747 ? _("[%d] %s (enumeral)\n")
3748 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3749 i + first_choice,
3750 SYMBOL_PRINT_NAME (syms[i].sym));
3751 }
14f9c5c9 3752 }
d2e4a39e 3753
14f9c5c9 3754 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3755 "overload-choice");
14f9c5c9
AS
3756
3757 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3758 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3759
3760 return n_chosen;
3761}
3762
3763/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3764 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3765 order in CHOICES[0 .. N-1], and return N.
3766
3767 The user types choices as a sequence of numbers on one line
3768 separated by blanks, encoding them as follows:
3769
4c4b4cd2 3770 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3771 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3772 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3773
4c4b4cd2 3774 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3775
3776 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3777 prompts (for use with the -f switch). */
14f9c5c9
AS
3778
3779int
d2e4a39e 3780get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3781 int is_all_choice, char *annotation_suffix)
14f9c5c9 3782{
d2e4a39e 3783 char *args;
0bcd0149 3784 char *prompt;
14f9c5c9
AS
3785 int n_chosen;
3786 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3787
14f9c5c9
AS
3788 prompt = getenv ("PS2");
3789 if (prompt == NULL)
0bcd0149 3790 prompt = "> ";
14f9c5c9 3791
0bcd0149 3792 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3793
14f9c5c9 3794 if (args == NULL)
323e0a4a 3795 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3796
3797 n_chosen = 0;
76a01679 3798
4c4b4cd2
PH
3799 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3800 order, as given in args. Choices are validated. */
14f9c5c9
AS
3801 while (1)
3802 {
d2e4a39e 3803 char *args2;
14f9c5c9
AS
3804 int choice, j;
3805
0fcd72ba 3806 args = skip_spaces (args);
14f9c5c9 3807 if (*args == '\0' && n_chosen == 0)
323e0a4a 3808 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3809 else if (*args == '\0')
4c4b4cd2 3810 break;
14f9c5c9
AS
3811
3812 choice = strtol (args, &args2, 10);
d2e4a39e 3813 if (args == args2 || choice < 0
4c4b4cd2 3814 || choice > n_choices + first_choice - 1)
323e0a4a 3815 error (_("Argument must be choice number"));
14f9c5c9
AS
3816 args = args2;
3817
d2e4a39e 3818 if (choice == 0)
323e0a4a 3819 error (_("cancelled"));
14f9c5c9
AS
3820
3821 if (choice < first_choice)
4c4b4cd2
PH
3822 {
3823 n_chosen = n_choices;
3824 for (j = 0; j < n_choices; j += 1)
3825 choices[j] = j;
3826 break;
3827 }
14f9c5c9
AS
3828 choice -= first_choice;
3829
d2e4a39e 3830 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3831 {
3832 }
14f9c5c9
AS
3833
3834 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3835 {
3836 int k;
5b4ee69b 3837
4c4b4cd2
PH
3838 for (k = n_chosen - 1; k > j; k -= 1)
3839 choices[k + 1] = choices[k];
3840 choices[j + 1] = choice;
3841 n_chosen += 1;
3842 }
14f9c5c9
AS
3843 }
3844
3845 if (n_chosen > max_results)
323e0a4a 3846 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3847
14f9c5c9
AS
3848 return n_chosen;
3849}
3850
4c4b4cd2
PH
3851/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3852 on the function identified by SYM and BLOCK, and taking NARGS
3853 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3854
3855static void
d2e4a39e 3856replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3857 int oplen, struct symbol *sym,
270140bd 3858 const struct block *block)
14f9c5c9
AS
3859{
3860 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3861 symbol, -oplen for operator being replaced). */
d2e4a39e 3862 struct expression *newexp = (struct expression *)
8c1a34e7 3863 xzalloc (sizeof (struct expression)
4c4b4cd2 3864 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3865 struct expression *exp = *expp;
14f9c5c9
AS
3866
3867 newexp->nelts = exp->nelts + 7 - oplen;
3868 newexp->language_defn = exp->language_defn;
3489610d 3869 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3870 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3871 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3872 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3873
3874 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3875 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3876
3877 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3878 newexp->elts[pc + 4].block = block;
3879 newexp->elts[pc + 5].symbol = sym;
3880
3881 *expp = newexp;
aacb1f0a 3882 xfree (exp);
d2e4a39e 3883}
14f9c5c9
AS
3884
3885/* Type-class predicates */
3886
4c4b4cd2
PH
3887/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3888 or FLOAT). */
14f9c5c9
AS
3889
3890static int
d2e4a39e 3891numeric_type_p (struct type *type)
14f9c5c9
AS
3892{
3893 if (type == NULL)
3894 return 0;
d2e4a39e
AS
3895 else
3896 {
3897 switch (TYPE_CODE (type))
4c4b4cd2
PH
3898 {
3899 case TYPE_CODE_INT:
3900 case TYPE_CODE_FLT:
3901 return 1;
3902 case TYPE_CODE_RANGE:
3903 return (type == TYPE_TARGET_TYPE (type)
3904 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3905 default:
3906 return 0;
3907 }
d2e4a39e 3908 }
14f9c5c9
AS
3909}
3910
4c4b4cd2 3911/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3912
3913static int
d2e4a39e 3914integer_type_p (struct type *type)
14f9c5c9
AS
3915{
3916 if (type == NULL)
3917 return 0;
d2e4a39e
AS
3918 else
3919 {
3920 switch (TYPE_CODE (type))
4c4b4cd2
PH
3921 {
3922 case TYPE_CODE_INT:
3923 return 1;
3924 case TYPE_CODE_RANGE:
3925 return (type == TYPE_TARGET_TYPE (type)
3926 || integer_type_p (TYPE_TARGET_TYPE (type)));
3927 default:
3928 return 0;
3929 }
d2e4a39e 3930 }
14f9c5c9
AS
3931}
3932
4c4b4cd2 3933/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3934
3935static int
d2e4a39e 3936scalar_type_p (struct type *type)
14f9c5c9
AS
3937{
3938 if (type == NULL)
3939 return 0;
d2e4a39e
AS
3940 else
3941 {
3942 switch (TYPE_CODE (type))
4c4b4cd2
PH
3943 {
3944 case TYPE_CODE_INT:
3945 case TYPE_CODE_RANGE:
3946 case TYPE_CODE_ENUM:
3947 case TYPE_CODE_FLT:
3948 return 1;
3949 default:
3950 return 0;
3951 }
d2e4a39e 3952 }
14f9c5c9
AS
3953}
3954
4c4b4cd2 3955/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3956
3957static int
d2e4a39e 3958discrete_type_p (struct type *type)
14f9c5c9
AS
3959{
3960 if (type == NULL)
3961 return 0;
d2e4a39e
AS
3962 else
3963 {
3964 switch (TYPE_CODE (type))
4c4b4cd2
PH
3965 {
3966 case TYPE_CODE_INT:
3967 case TYPE_CODE_RANGE:
3968 case TYPE_CODE_ENUM:
872f0337 3969 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3970 return 1;
3971 default:
3972 return 0;
3973 }
d2e4a39e 3974 }
14f9c5c9
AS
3975}
3976
4c4b4cd2
PH
3977/* Returns non-zero if OP with operands in the vector ARGS could be
3978 a user-defined function. Errs on the side of pre-defined operators
3979 (i.e., result 0). */
14f9c5c9
AS
3980
3981static int
d2e4a39e 3982possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3983{
76a01679 3984 struct type *type0 =
df407dfe 3985 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3986 struct type *type1 =
df407dfe 3987 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3988
4c4b4cd2
PH
3989 if (type0 == NULL)
3990 return 0;
3991
14f9c5c9
AS
3992 switch (op)
3993 {
3994 default:
3995 return 0;
3996
3997 case BINOP_ADD:
3998 case BINOP_SUB:
3999 case BINOP_MUL:
4000 case BINOP_DIV:
d2e4a39e 4001 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4002
4003 case BINOP_REM:
4004 case BINOP_MOD:
4005 case BINOP_BITWISE_AND:
4006 case BINOP_BITWISE_IOR:
4007 case BINOP_BITWISE_XOR:
d2e4a39e 4008 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4009
4010 case BINOP_EQUAL:
4011 case BINOP_NOTEQUAL:
4012 case BINOP_LESS:
4013 case BINOP_GTR:
4014 case BINOP_LEQ:
4015 case BINOP_GEQ:
d2e4a39e 4016 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4017
4018 case BINOP_CONCAT:
ee90b9ab 4019 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4020
4021 case BINOP_EXP:
d2e4a39e 4022 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4023
4024 case UNOP_NEG:
4025 case UNOP_PLUS:
4026 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4027 case UNOP_ABS:
4028 return (!numeric_type_p (type0));
14f9c5c9
AS
4029
4030 }
4031}
4032\f
4c4b4cd2 4033 /* Renaming */
14f9c5c9 4034
aeb5907d
JB
4035/* NOTES:
4036
4037 1. In the following, we assume that a renaming type's name may
4038 have an ___XD suffix. It would be nice if this went away at some
4039 point.
4040 2. We handle both the (old) purely type-based representation of
4041 renamings and the (new) variable-based encoding. At some point,
4042 it is devoutly to be hoped that the former goes away
4043 (FIXME: hilfinger-2007-07-09).
4044 3. Subprogram renamings are not implemented, although the XRS
4045 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4046
4047/* If SYM encodes a renaming,
4048
4049 <renaming> renames <renamed entity>,
4050
4051 sets *LEN to the length of the renamed entity's name,
4052 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4053 the string describing the subcomponent selected from the renamed
0963b4bd 4054 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4055 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4056 are undefined). Otherwise, returns a value indicating the category
4057 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4058 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4059 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4060 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4061 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4062 may be NULL, in which case they are not assigned.
4063
4064 [Currently, however, GCC does not generate subprogram renamings.] */
4065
4066enum ada_renaming_category
4067ada_parse_renaming (struct symbol *sym,
4068 const char **renamed_entity, int *len,
4069 const char **renaming_expr)
4070{
4071 enum ada_renaming_category kind;
4072 const char *info;
4073 const char *suffix;
4074
4075 if (sym == NULL)
4076 return ADA_NOT_RENAMING;
4077 switch (SYMBOL_CLASS (sym))
14f9c5c9 4078 {
aeb5907d
JB
4079 default:
4080 return ADA_NOT_RENAMING;
4081 case LOC_TYPEDEF:
4082 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4083 renamed_entity, len, renaming_expr);
4084 case LOC_LOCAL:
4085 case LOC_STATIC:
4086 case LOC_COMPUTED:
4087 case LOC_OPTIMIZED_OUT:
4088 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4089 if (info == NULL)
4090 return ADA_NOT_RENAMING;
4091 switch (info[5])
4092 {
4093 case '_':
4094 kind = ADA_OBJECT_RENAMING;
4095 info += 6;
4096 break;
4097 case 'E':
4098 kind = ADA_EXCEPTION_RENAMING;
4099 info += 7;
4100 break;
4101 case 'P':
4102 kind = ADA_PACKAGE_RENAMING;
4103 info += 7;
4104 break;
4105 case 'S':
4106 kind = ADA_SUBPROGRAM_RENAMING;
4107 info += 7;
4108 break;
4109 default:
4110 return ADA_NOT_RENAMING;
4111 }
14f9c5c9 4112 }
4c4b4cd2 4113
aeb5907d
JB
4114 if (renamed_entity != NULL)
4115 *renamed_entity = info;
4116 suffix = strstr (info, "___XE");
4117 if (suffix == NULL || suffix == info)
4118 return ADA_NOT_RENAMING;
4119 if (len != NULL)
4120 *len = strlen (info) - strlen (suffix);
4121 suffix += 5;
4122 if (renaming_expr != NULL)
4123 *renaming_expr = suffix;
4124 return kind;
4125}
4126
4127/* Assuming TYPE encodes a renaming according to the old encoding in
4128 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4129 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4130 ADA_NOT_RENAMING otherwise. */
4131static enum ada_renaming_category
4132parse_old_style_renaming (struct type *type,
4133 const char **renamed_entity, int *len,
4134 const char **renaming_expr)
4135{
4136 enum ada_renaming_category kind;
4137 const char *name;
4138 const char *info;
4139 const char *suffix;
14f9c5c9 4140
aeb5907d
JB
4141 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4142 || TYPE_NFIELDS (type) != 1)
4143 return ADA_NOT_RENAMING;
14f9c5c9 4144
aeb5907d
JB
4145 name = type_name_no_tag (type);
4146 if (name == NULL)
4147 return ADA_NOT_RENAMING;
4148
4149 name = strstr (name, "___XR");
4150 if (name == NULL)
4151 return ADA_NOT_RENAMING;
4152 switch (name[5])
4153 {
4154 case '\0':
4155 case '_':
4156 kind = ADA_OBJECT_RENAMING;
4157 break;
4158 case 'E':
4159 kind = ADA_EXCEPTION_RENAMING;
4160 break;
4161 case 'P':
4162 kind = ADA_PACKAGE_RENAMING;
4163 break;
4164 case 'S':
4165 kind = ADA_SUBPROGRAM_RENAMING;
4166 break;
4167 default:
4168 return ADA_NOT_RENAMING;
4169 }
14f9c5c9 4170
aeb5907d
JB
4171 info = TYPE_FIELD_NAME (type, 0);
4172 if (info == NULL)
4173 return ADA_NOT_RENAMING;
4174 if (renamed_entity != NULL)
4175 *renamed_entity = info;
4176 suffix = strstr (info, "___XE");
4177 if (renaming_expr != NULL)
4178 *renaming_expr = suffix + 5;
4179 if (suffix == NULL || suffix == info)
4180 return ADA_NOT_RENAMING;
4181 if (len != NULL)
4182 *len = suffix - info;
4183 return kind;
a5ee536b
JB
4184}
4185
4186/* Compute the value of the given RENAMING_SYM, which is expected to
4187 be a symbol encoding a renaming expression. BLOCK is the block
4188 used to evaluate the renaming. */
52ce6436 4189
a5ee536b
JB
4190static struct value *
4191ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4192 const struct block *block)
a5ee536b 4193{
bbc13ae3 4194 const char *sym_name;
a5ee536b
JB
4195 struct expression *expr;
4196 struct value *value;
4197 struct cleanup *old_chain = NULL;
4198
bbc13ae3 4199 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4200 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4201 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4202 value = evaluate_expression (expr);
4203
4204 do_cleanups (old_chain);
4205 return value;
4206}
14f9c5c9 4207\f
d2e4a39e 4208
4c4b4cd2 4209 /* Evaluation: Function Calls */
14f9c5c9 4210
4c4b4cd2 4211/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4212 lvalues, and otherwise has the side-effect of allocating memory
4213 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4214
d2e4a39e 4215static struct value *
40bc484c 4216ensure_lval (struct value *val)
14f9c5c9 4217{
40bc484c
JB
4218 if (VALUE_LVAL (val) == not_lval
4219 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4220 {
df407dfe 4221 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4222 const CORE_ADDR addr =
4223 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4224
40bc484c 4225 set_value_address (val, addr);
a84a8a0d 4226 VALUE_LVAL (val) = lval_memory;
40bc484c 4227 write_memory (addr, value_contents (val), len);
c3e5cd34 4228 }
14f9c5c9
AS
4229
4230 return val;
4231}
4232
4233/* Return the value ACTUAL, converted to be an appropriate value for a
4234 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4235 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4236 values not residing in memory, updating it as needed. */
14f9c5c9 4237
a93c0eb6 4238struct value *
40bc484c 4239ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4240{
df407dfe 4241 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4242 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4243 struct type *formal_target =
4244 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4245 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4246 struct type *actual_target =
4247 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4248 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4249
4c4b4cd2 4250 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4251 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4252 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4253 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4254 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4255 {
a84a8a0d 4256 struct value *result;
5b4ee69b 4257
14f9c5c9 4258 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4259 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4260 result = desc_data (actual);
14f9c5c9 4261 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4262 {
4263 if (VALUE_LVAL (actual) != lval_memory)
4264 {
4265 struct value *val;
5b4ee69b 4266
df407dfe 4267 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4268 val = allocate_value (actual_type);
990a07ab 4269 memcpy ((char *) value_contents_raw (val),
0fd88904 4270 (char *) value_contents (actual),
4c4b4cd2 4271 TYPE_LENGTH (actual_type));
40bc484c 4272 actual = ensure_lval (val);
4c4b4cd2 4273 }
a84a8a0d 4274 result = value_addr (actual);
4c4b4cd2 4275 }
a84a8a0d
JB
4276 else
4277 return actual;
b1af9e97 4278 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4279 }
4280 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4281 return ada_value_ind (actual);
4282
4283 return actual;
4284}
4285
438c98a1
JB
4286/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4287 type TYPE. This is usually an inefficient no-op except on some targets
4288 (such as AVR) where the representation of a pointer and an address
4289 differs. */
4290
4291static CORE_ADDR
4292value_pointer (struct value *value, struct type *type)
4293{
4294 struct gdbarch *gdbarch = get_type_arch (type);
4295 unsigned len = TYPE_LENGTH (type);
4296 gdb_byte *buf = alloca (len);
4297 CORE_ADDR addr;
4298
4299 addr = value_address (value);
4300 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4301 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4302 return addr;
4303}
4304
14f9c5c9 4305
4c4b4cd2
PH
4306/* Push a descriptor of type TYPE for array value ARR on the stack at
4307 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4308 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4309 to-descriptor type rather than a descriptor type), a struct value *
4310 representing a pointer to this descriptor. */
14f9c5c9 4311
d2e4a39e 4312static struct value *
40bc484c 4313make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4314{
d2e4a39e
AS
4315 struct type *bounds_type = desc_bounds_type (type);
4316 struct type *desc_type = desc_base_type (type);
4317 struct value *descriptor = allocate_value (desc_type);
4318 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4319 int i;
d2e4a39e 4320
0963b4bd
MS
4321 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4322 i > 0; i -= 1)
14f9c5c9 4323 {
19f220c3
JK
4324 modify_field (value_type (bounds), value_contents_writeable (bounds),
4325 ada_array_bound (arr, i, 0),
4326 desc_bound_bitpos (bounds_type, i, 0),
4327 desc_bound_bitsize (bounds_type, i, 0));
4328 modify_field (value_type (bounds), value_contents_writeable (bounds),
4329 ada_array_bound (arr, i, 1),
4330 desc_bound_bitpos (bounds_type, i, 1),
4331 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4332 }
d2e4a39e 4333
40bc484c 4334 bounds = ensure_lval (bounds);
d2e4a39e 4335
19f220c3
JK
4336 modify_field (value_type (descriptor),
4337 value_contents_writeable (descriptor),
4338 value_pointer (ensure_lval (arr),
4339 TYPE_FIELD_TYPE (desc_type, 0)),
4340 fat_pntr_data_bitpos (desc_type),
4341 fat_pntr_data_bitsize (desc_type));
4342
4343 modify_field (value_type (descriptor),
4344 value_contents_writeable (descriptor),
4345 value_pointer (bounds,
4346 TYPE_FIELD_TYPE (desc_type, 1)),
4347 fat_pntr_bounds_bitpos (desc_type),
4348 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4349
40bc484c 4350 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4351
4352 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4353 return value_addr (descriptor);
4354 else
4355 return descriptor;
4356}
14f9c5c9 4357\f
3d9434b5
JB
4358 /* Symbol Cache Module */
4359
3d9434b5 4360/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4361 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4362 on the type of entity being printed, the cache can make it as much
4363 as an order of magnitude faster than without it.
4364
4365 The descriptive type DWARF extension has significantly reduced
4366 the need for this cache, at least when DWARF is being used. However,
4367 even in this case, some expensive name-based symbol searches are still
4368 sometimes necessary - to find an XVZ variable, mostly. */
4369
ee01b665 4370/* Initialize the contents of SYM_CACHE. */
3d9434b5 4371
ee01b665
JB
4372static void
4373ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4374{
4375 obstack_init (&sym_cache->cache_space);
4376 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4377}
3d9434b5 4378
ee01b665
JB
4379/* Free the memory used by SYM_CACHE. */
4380
4381static void
4382ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4383{
ee01b665
JB
4384 obstack_free (&sym_cache->cache_space, NULL);
4385 xfree (sym_cache);
4386}
3d9434b5 4387
ee01b665
JB
4388/* Return the symbol cache associated to the given program space PSPACE.
4389 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4390
ee01b665
JB
4391static struct ada_symbol_cache *
4392ada_get_symbol_cache (struct program_space *pspace)
4393{
4394 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4395 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4396
4397 if (sym_cache == NULL)
4398 {
4399 sym_cache = XCNEW (struct ada_symbol_cache);
4400 ada_init_symbol_cache (sym_cache);
4401 }
4402
4403 return sym_cache;
4404}
3d9434b5
JB
4405
4406/* Clear all entries from the symbol cache. */
4407
4408static void
4409ada_clear_symbol_cache (void)
4410{
ee01b665
JB
4411 struct ada_symbol_cache *sym_cache
4412 = ada_get_symbol_cache (current_program_space);
4413
4414 obstack_free (&sym_cache->cache_space, NULL);
4415 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4416}
4417
4418/* Search our cache for an entry matching NAME and NAMESPACE.
4419 Return it if found, or NULL otherwise. */
4420
4421static struct cache_entry **
4422find_entry (const char *name, domain_enum namespace)
4423{
ee01b665
JB
4424 struct ada_symbol_cache *sym_cache
4425 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4426 int h = msymbol_hash (name) % HASH_SIZE;
4427 struct cache_entry **e;
4428
ee01b665 4429 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4430 {
4431 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4432 return e;
4433 }
4434 return NULL;
4435}
4436
4437/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4438 Return 1 if found, 0 otherwise.
4439
4440 If an entry was found and SYM is not NULL, set *SYM to the entry's
4441 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4442
96d887e8
PH
4443static int
4444lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4445 struct symbol **sym, const struct block **block)
96d887e8 4446{
3d9434b5
JB
4447 struct cache_entry **e = find_entry (name, namespace);
4448
4449 if (e == NULL)
4450 return 0;
4451 if (sym != NULL)
4452 *sym = (*e)->sym;
4453 if (block != NULL)
4454 *block = (*e)->block;
4455 return 1;
96d887e8
PH
4456}
4457
3d9434b5
JB
4458/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4459 in domain NAMESPACE, save this result in our symbol cache. */
4460
96d887e8
PH
4461static void
4462cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4463 const struct block *block)
96d887e8 4464{
ee01b665
JB
4465 struct ada_symbol_cache *sym_cache
4466 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4467 int h;
4468 char *copy;
4469 struct cache_entry *e;
4470
4471 /* If the symbol is a local symbol, then do not cache it, as a search
4472 for that symbol depends on the context. To determine whether
4473 the symbol is local or not, we check the block where we found it
4474 against the global and static blocks of its associated symtab. */
4475 if (sym
439247b6
DE
4476 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4477 GLOBAL_BLOCK) != block
4478 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4479 STATIC_BLOCK) != block)
3d9434b5
JB
4480 return;
4481
4482 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4483 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4484 sizeof (*e));
4485 e->next = sym_cache->root[h];
4486 sym_cache->root[h] = e;
4487 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4488 strcpy (copy, name);
4489 e->sym = sym;
4490 e->namespace = namespace;
4491 e->block = block;
96d887e8 4492}
4c4b4cd2
PH
4493\f
4494 /* Symbol Lookup */
4495
c0431670
JB
4496/* Return nonzero if wild matching should be used when searching for
4497 all symbols matching LOOKUP_NAME.
4498
4499 LOOKUP_NAME is expected to be a symbol name after transformation
4500 for Ada lookups (see ada_name_for_lookup). */
4501
4502static int
4503should_use_wild_match (const char *lookup_name)
4504{
4505 return (strstr (lookup_name, "__") == NULL);
4506}
4507
4c4b4cd2
PH
4508/* Return the result of a standard (literal, C-like) lookup of NAME in
4509 given DOMAIN, visible from lexical block BLOCK. */
4510
4511static struct symbol *
4512standard_lookup (const char *name, const struct block *block,
4513 domain_enum domain)
4514{
acbd605d
MGD
4515 /* Initialize it just to avoid a GCC false warning. */
4516 struct symbol *sym = NULL;
4c4b4cd2 4517
2570f2b7 4518 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4519 return sym;
2570f2b7
UW
4520 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4521 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4522 return sym;
4523}
4524
4525
4526/* Non-zero iff there is at least one non-function/non-enumeral symbol
4527 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4528 since they contend in overloading in the same way. */
4529static int
4530is_nonfunction (struct ada_symbol_info syms[], int n)
4531{
4532 int i;
4533
4534 for (i = 0; i < n; i += 1)
4535 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4536 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4537 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4538 return 1;
4539
4540 return 0;
4541}
4542
4543/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4544 struct types. Otherwise, they may not. */
14f9c5c9
AS
4545
4546static int
d2e4a39e 4547equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4548{
d2e4a39e 4549 if (type0 == type1)
14f9c5c9 4550 return 1;
d2e4a39e 4551 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4552 || TYPE_CODE (type0) != TYPE_CODE (type1))
4553 return 0;
d2e4a39e 4554 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4555 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4556 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4557 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4558 return 1;
d2e4a39e 4559
14f9c5c9
AS
4560 return 0;
4561}
4562
4563/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4564 no more defined than that of SYM1. */
14f9c5c9
AS
4565
4566static int
d2e4a39e 4567lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4568{
4569 if (sym0 == sym1)
4570 return 1;
176620f1 4571 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4572 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4573 return 0;
4574
d2e4a39e 4575 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4576 {
4577 case LOC_UNDEF:
4578 return 1;
4579 case LOC_TYPEDEF:
4580 {
4c4b4cd2
PH
4581 struct type *type0 = SYMBOL_TYPE (sym0);
4582 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4583 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4584 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4585 int len0 = strlen (name0);
5b4ee69b 4586
4c4b4cd2
PH
4587 return
4588 TYPE_CODE (type0) == TYPE_CODE (type1)
4589 && (equiv_types (type0, type1)
4590 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4591 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4592 }
4593 case LOC_CONST:
4594 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4595 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4596 default:
4597 return 0;
14f9c5c9
AS
4598 }
4599}
4600
4c4b4cd2
PH
4601/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4602 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4603
4604static void
76a01679
JB
4605add_defn_to_vec (struct obstack *obstackp,
4606 struct symbol *sym,
f0c5f9b2 4607 const struct block *block)
14f9c5c9
AS
4608{
4609 int i;
4c4b4cd2 4610 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4611
529cad9c
PH
4612 /* Do not try to complete stub types, as the debugger is probably
4613 already scanning all symbols matching a certain name at the
4614 time when this function is called. Trying to replace the stub
4615 type by its associated full type will cause us to restart a scan
4616 which may lead to an infinite recursion. Instead, the client
4617 collecting the matching symbols will end up collecting several
4618 matches, with at least one of them complete. It can then filter
4619 out the stub ones if needed. */
4620
4c4b4cd2
PH
4621 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4622 {
4623 if (lesseq_defined_than (sym, prevDefns[i].sym))
4624 return;
4625 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4626 {
4627 prevDefns[i].sym = sym;
4628 prevDefns[i].block = block;
4c4b4cd2 4629 return;
76a01679 4630 }
4c4b4cd2
PH
4631 }
4632
4633 {
4634 struct ada_symbol_info info;
4635
4636 info.sym = sym;
4637 info.block = block;
4c4b4cd2
PH
4638 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4639 }
4640}
4641
4642/* Number of ada_symbol_info structures currently collected in
4643 current vector in *OBSTACKP. */
4644
76a01679
JB
4645static int
4646num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4647{
4648 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4649}
4650
4651/* Vector of ada_symbol_info structures currently collected in current
4652 vector in *OBSTACKP. If FINISH, close off the vector and return
4653 its final address. */
4654
76a01679 4655static struct ada_symbol_info *
4c4b4cd2
PH
4656defns_collected (struct obstack *obstackp, int finish)
4657{
4658 if (finish)
4659 return obstack_finish (obstackp);
4660 else
4661 return (struct ada_symbol_info *) obstack_base (obstackp);
4662}
4663
7c7b6655
TT
4664/* Return a bound minimal symbol matching NAME according to Ada
4665 decoding rules. Returns an invalid symbol if there is no such
4666 minimal symbol. Names prefixed with "standard__" are handled
4667 specially: "standard__" is first stripped off, and only static and
4668 global symbols are searched. */
4c4b4cd2 4669
7c7b6655 4670struct bound_minimal_symbol
96d887e8 4671ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4672{
7c7b6655 4673 struct bound_minimal_symbol result;
4c4b4cd2 4674 struct objfile *objfile;
96d887e8 4675 struct minimal_symbol *msymbol;
dc4024cd 4676 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4677
7c7b6655
TT
4678 memset (&result, 0, sizeof (result));
4679
c0431670
JB
4680 /* Special case: If the user specifies a symbol name inside package
4681 Standard, do a non-wild matching of the symbol name without
4682 the "standard__" prefix. This was primarily introduced in order
4683 to allow the user to specifically access the standard exceptions
4684 using, for instance, Standard.Constraint_Error when Constraint_Error
4685 is ambiguous (due to the user defining its own Constraint_Error
4686 entity inside its program). */
96d887e8 4687 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4688 name += sizeof ("standard__") - 1;
4c4b4cd2 4689
96d887e8
PH
4690 ALL_MSYMBOLS (objfile, msymbol)
4691 {
efd66ac6 4692 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4693 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4694 {
4695 result.minsym = msymbol;
4696 result.objfile = objfile;
4697 break;
4698 }
96d887e8 4699 }
4c4b4cd2 4700
7c7b6655 4701 return result;
96d887e8 4702}
4c4b4cd2 4703
96d887e8
PH
4704/* For all subprograms that statically enclose the subprogram of the
4705 selected frame, add symbols matching identifier NAME in DOMAIN
4706 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4707 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4708 with a wildcard prefix. */
4c4b4cd2 4709
96d887e8
PH
4710static void
4711add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4712 const char *name, domain_enum namespace,
48b78332 4713 int wild_match_p)
96d887e8 4714{
96d887e8 4715}
14f9c5c9 4716
96d887e8
PH
4717/* True if TYPE is definitely an artificial type supplied to a symbol
4718 for which no debugging information was given in the symbol file. */
14f9c5c9 4719
96d887e8
PH
4720static int
4721is_nondebugging_type (struct type *type)
4722{
0d5cff50 4723 const char *name = ada_type_name (type);
5b4ee69b 4724
96d887e8
PH
4725 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4726}
4c4b4cd2 4727
8f17729f
JB
4728/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4729 that are deemed "identical" for practical purposes.
4730
4731 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4732 types and that their number of enumerals is identical (in other
4733 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4734
4735static int
4736ada_identical_enum_types_p (struct type *type1, struct type *type2)
4737{
4738 int i;
4739
4740 /* The heuristic we use here is fairly conservative. We consider
4741 that 2 enumerate types are identical if they have the same
4742 number of enumerals and that all enumerals have the same
4743 underlying value and name. */
4744
4745 /* All enums in the type should have an identical underlying value. */
4746 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4747 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4748 return 0;
4749
4750 /* All enumerals should also have the same name (modulo any numerical
4751 suffix). */
4752 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4753 {
0d5cff50
DE
4754 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4755 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4756 int len_1 = strlen (name_1);
4757 int len_2 = strlen (name_2);
4758
4759 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4760 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4761 if (len_1 != len_2
4762 || strncmp (TYPE_FIELD_NAME (type1, i),
4763 TYPE_FIELD_NAME (type2, i),
4764 len_1) != 0)
4765 return 0;
4766 }
4767
4768 return 1;
4769}
4770
4771/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4772 that are deemed "identical" for practical purposes. Sometimes,
4773 enumerals are not strictly identical, but their types are so similar
4774 that they can be considered identical.
4775
4776 For instance, consider the following code:
4777
4778 type Color is (Black, Red, Green, Blue, White);
4779 type RGB_Color is new Color range Red .. Blue;
4780
4781 Type RGB_Color is a subrange of an implicit type which is a copy
4782 of type Color. If we call that implicit type RGB_ColorB ("B" is
4783 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4784 As a result, when an expression references any of the enumeral
4785 by name (Eg. "print green"), the expression is technically
4786 ambiguous and the user should be asked to disambiguate. But
4787 doing so would only hinder the user, since it wouldn't matter
4788 what choice he makes, the outcome would always be the same.
4789 So, for practical purposes, we consider them as the same. */
4790
4791static int
4792symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4793{
4794 int i;
4795
4796 /* Before performing a thorough comparison check of each type,
4797 we perform a series of inexpensive checks. We expect that these
4798 checks will quickly fail in the vast majority of cases, and thus
4799 help prevent the unnecessary use of a more expensive comparison.
4800 Said comparison also expects us to make some of these checks
4801 (see ada_identical_enum_types_p). */
4802
4803 /* Quick check: All symbols should have an enum type. */
4804 for (i = 0; i < nsyms; i++)
4805 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4806 return 0;
4807
4808 /* Quick check: They should all have the same value. */
4809 for (i = 1; i < nsyms; i++)
4810 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4811 return 0;
4812
4813 /* Quick check: They should all have the same number of enumerals. */
4814 for (i = 1; i < nsyms; i++)
4815 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4816 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4817 return 0;
4818
4819 /* All the sanity checks passed, so we might have a set of
4820 identical enumeration types. Perform a more complete
4821 comparison of the type of each symbol. */
4822 for (i = 1; i < nsyms; i++)
4823 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4824 SYMBOL_TYPE (syms[0].sym)))
4825 return 0;
4826
4827 return 1;
4828}
4829
96d887e8
PH
4830/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4831 duplicate other symbols in the list (The only case I know of where
4832 this happens is when object files containing stabs-in-ecoff are
4833 linked with files containing ordinary ecoff debugging symbols (or no
4834 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4835 Returns the number of items in the modified list. */
4c4b4cd2 4836
96d887e8
PH
4837static int
4838remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4839{
4840 int i, j;
4c4b4cd2 4841
8f17729f
JB
4842 /* We should never be called with less than 2 symbols, as there
4843 cannot be any extra symbol in that case. But it's easy to
4844 handle, since we have nothing to do in that case. */
4845 if (nsyms < 2)
4846 return nsyms;
4847
96d887e8
PH
4848 i = 0;
4849 while (i < nsyms)
4850 {
a35ddb44 4851 int remove_p = 0;
339c13b6
JB
4852
4853 /* If two symbols have the same name and one of them is a stub type,
4854 the get rid of the stub. */
4855
4856 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4857 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4858 {
4859 for (j = 0; j < nsyms; j++)
4860 {
4861 if (j != i
4862 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4863 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4864 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4865 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4866 remove_p = 1;
339c13b6
JB
4867 }
4868 }
4869
4870 /* Two symbols with the same name, same class and same address
4871 should be identical. */
4872
4873 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4874 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4875 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4876 {
4877 for (j = 0; j < nsyms; j += 1)
4878 {
4879 if (i != j
4880 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4881 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4882 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4883 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4884 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4885 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4886 remove_p = 1;
4c4b4cd2 4887 }
4c4b4cd2 4888 }
339c13b6 4889
a35ddb44 4890 if (remove_p)
339c13b6
JB
4891 {
4892 for (j = i + 1; j < nsyms; j += 1)
4893 syms[j - 1] = syms[j];
4894 nsyms -= 1;
4895 }
4896
96d887e8 4897 i += 1;
14f9c5c9 4898 }
8f17729f
JB
4899
4900 /* If all the remaining symbols are identical enumerals, then
4901 just keep the first one and discard the rest.
4902
4903 Unlike what we did previously, we do not discard any entry
4904 unless they are ALL identical. This is because the symbol
4905 comparison is not a strict comparison, but rather a practical
4906 comparison. If all symbols are considered identical, then
4907 we can just go ahead and use the first one and discard the rest.
4908 But if we cannot reduce the list to a single element, we have
4909 to ask the user to disambiguate anyways. And if we have to
4910 present a multiple-choice menu, it's less confusing if the list
4911 isn't missing some choices that were identical and yet distinct. */
4912 if (symbols_are_identical_enums (syms, nsyms))
4913 nsyms = 1;
4914
96d887e8 4915 return nsyms;
14f9c5c9
AS
4916}
4917
96d887e8
PH
4918/* Given a type that corresponds to a renaming entity, use the type name
4919 to extract the scope (package name or function name, fully qualified,
4920 and following the GNAT encoding convention) where this renaming has been
4921 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4922
96d887e8
PH
4923static char *
4924xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4925{
96d887e8 4926 /* The renaming types adhere to the following convention:
0963b4bd 4927 <scope>__<rename>___<XR extension>.
96d887e8
PH
4928 So, to extract the scope, we search for the "___XR" extension,
4929 and then backtrack until we find the first "__". */
76a01679 4930
96d887e8
PH
4931 const char *name = type_name_no_tag (renaming_type);
4932 char *suffix = strstr (name, "___XR");
4933 char *last;
4934 int scope_len;
4935 char *scope;
14f9c5c9 4936
96d887e8
PH
4937 /* Now, backtrack a bit until we find the first "__". Start looking
4938 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4939
96d887e8
PH
4940 for (last = suffix - 3; last > name; last--)
4941 if (last[0] == '_' && last[1] == '_')
4942 break;
76a01679 4943
96d887e8 4944 /* Make a copy of scope and return it. */
14f9c5c9 4945
96d887e8
PH
4946 scope_len = last - name;
4947 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4948
96d887e8
PH
4949 strncpy (scope, name, scope_len);
4950 scope[scope_len] = '\0';
4c4b4cd2 4951
96d887e8 4952 return scope;
4c4b4cd2
PH
4953}
4954
96d887e8 4955/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4956
96d887e8
PH
4957static int
4958is_package_name (const char *name)
4c4b4cd2 4959{
96d887e8
PH
4960 /* Here, We take advantage of the fact that no symbols are generated
4961 for packages, while symbols are generated for each function.
4962 So the condition for NAME represent a package becomes equivalent
4963 to NAME not existing in our list of symbols. There is only one
4964 small complication with library-level functions (see below). */
4c4b4cd2 4965
96d887e8 4966 char *fun_name;
76a01679 4967
96d887e8
PH
4968 /* If it is a function that has not been defined at library level,
4969 then we should be able to look it up in the symbols. */
4970 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4971 return 0;
14f9c5c9 4972
96d887e8
PH
4973 /* Library-level function names start with "_ada_". See if function
4974 "_ada_" followed by NAME can be found. */
14f9c5c9 4975
96d887e8 4976 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4977 functions names cannot contain "__" in them. */
96d887e8
PH
4978 if (strstr (name, "__") != NULL)
4979 return 0;
4c4b4cd2 4980
b435e160 4981 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4982
96d887e8
PH
4983 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4984}
14f9c5c9 4985
96d887e8 4986/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4987 not visible from FUNCTION_NAME. */
14f9c5c9 4988
96d887e8 4989static int
0d5cff50 4990old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4991{
aeb5907d 4992 char *scope;
1509e573 4993 struct cleanup *old_chain;
aeb5907d
JB
4994
4995 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4996 return 0;
4997
4998 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4999 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5000
96d887e8
PH
5001 /* If the rename has been defined in a package, then it is visible. */
5002 if (is_package_name (scope))
1509e573
JB
5003 {
5004 do_cleanups (old_chain);
5005 return 0;
5006 }
14f9c5c9 5007
96d887e8
PH
5008 /* Check that the rename is in the current function scope by checking
5009 that its name starts with SCOPE. */
76a01679 5010
96d887e8
PH
5011 /* If the function name starts with "_ada_", it means that it is
5012 a library-level function. Strip this prefix before doing the
5013 comparison, as the encoding for the renaming does not contain
5014 this prefix. */
5015 if (strncmp (function_name, "_ada_", 5) == 0)
5016 function_name += 5;
f26caa11 5017
1509e573
JB
5018 {
5019 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5020
5021 do_cleanups (old_chain);
5022 return is_invisible;
5023 }
f26caa11
PH
5024}
5025
aeb5907d
JB
5026/* Remove entries from SYMS that corresponds to a renaming entity that
5027 is not visible from the function associated with CURRENT_BLOCK or
5028 that is superfluous due to the presence of more specific renaming
5029 information. Places surviving symbols in the initial entries of
5030 SYMS and returns the number of surviving symbols.
96d887e8
PH
5031
5032 Rationale:
aeb5907d
JB
5033 First, in cases where an object renaming is implemented as a
5034 reference variable, GNAT may produce both the actual reference
5035 variable and the renaming encoding. In this case, we discard the
5036 latter.
5037
5038 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5039 entity. Unfortunately, STABS currently does not support the definition
5040 of types that are local to a given lexical block, so all renamings types
5041 are emitted at library level. As a consequence, if an application
5042 contains two renaming entities using the same name, and a user tries to
5043 print the value of one of these entities, the result of the ada symbol
5044 lookup will also contain the wrong renaming type.
f26caa11 5045
96d887e8
PH
5046 This function partially covers for this limitation by attempting to
5047 remove from the SYMS list renaming symbols that should be visible
5048 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5049 method with the current information available. The implementation
5050 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5051
5052 - When the user tries to print a rename in a function while there
5053 is another rename entity defined in a package: Normally, the
5054 rename in the function has precedence over the rename in the
5055 package, so the latter should be removed from the list. This is
5056 currently not the case.
5057
5058 - This function will incorrectly remove valid renames if
5059 the CURRENT_BLOCK corresponds to a function which symbol name
5060 has been changed by an "Export" pragma. As a consequence,
5061 the user will be unable to print such rename entities. */
4c4b4cd2 5062
14f9c5c9 5063static int
aeb5907d
JB
5064remove_irrelevant_renamings (struct ada_symbol_info *syms,
5065 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5066{
5067 struct symbol *current_function;
0d5cff50 5068 const char *current_function_name;
4c4b4cd2 5069 int i;
aeb5907d
JB
5070 int is_new_style_renaming;
5071
5072 /* If there is both a renaming foo___XR... encoded as a variable and
5073 a simple variable foo in the same block, discard the latter.
0963b4bd 5074 First, zero out such symbols, then compress. */
aeb5907d
JB
5075 is_new_style_renaming = 0;
5076 for (i = 0; i < nsyms; i += 1)
5077 {
5078 struct symbol *sym = syms[i].sym;
270140bd 5079 const struct block *block = syms[i].block;
aeb5907d
JB
5080 const char *name;
5081 const char *suffix;
5082
5083 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5084 continue;
5085 name = SYMBOL_LINKAGE_NAME (sym);
5086 suffix = strstr (name, "___XR");
5087
5088 if (suffix != NULL)
5089 {
5090 int name_len = suffix - name;
5091 int j;
5b4ee69b 5092
aeb5907d
JB
5093 is_new_style_renaming = 1;
5094 for (j = 0; j < nsyms; j += 1)
5095 if (i != j && syms[j].sym != NULL
5096 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5097 name_len) == 0
5098 && block == syms[j].block)
5099 syms[j].sym = NULL;
5100 }
5101 }
5102 if (is_new_style_renaming)
5103 {
5104 int j, k;
5105
5106 for (j = k = 0; j < nsyms; j += 1)
5107 if (syms[j].sym != NULL)
5108 {
5109 syms[k] = syms[j];
5110 k += 1;
5111 }
5112 return k;
5113 }
4c4b4cd2
PH
5114
5115 /* Extract the function name associated to CURRENT_BLOCK.
5116 Abort if unable to do so. */
76a01679 5117
4c4b4cd2
PH
5118 if (current_block == NULL)
5119 return nsyms;
76a01679 5120
7f0df278 5121 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5122 if (current_function == NULL)
5123 return nsyms;
5124
5125 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5126 if (current_function_name == NULL)
5127 return nsyms;
5128
5129 /* Check each of the symbols, and remove it from the list if it is
5130 a type corresponding to a renaming that is out of the scope of
5131 the current block. */
5132
5133 i = 0;
5134 while (i < nsyms)
5135 {
aeb5907d
JB
5136 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5137 == ADA_OBJECT_RENAMING
5138 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5139 {
5140 int j;
5b4ee69b 5141
aeb5907d 5142 for (j = i + 1; j < nsyms; j += 1)
76a01679 5143 syms[j - 1] = syms[j];
4c4b4cd2
PH
5144 nsyms -= 1;
5145 }
5146 else
5147 i += 1;
5148 }
5149
5150 return nsyms;
5151}
5152
339c13b6
JB
5153/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5154 whose name and domain match NAME and DOMAIN respectively.
5155 If no match was found, then extend the search to "enclosing"
5156 routines (in other words, if we're inside a nested function,
5157 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5158 If WILD_MATCH_P is nonzero, perform the naming matching in
5159 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5160
5161 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5162
5163static void
5164ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5165 const struct block *block, domain_enum domain,
d0a8ab18 5166 int wild_match_p)
339c13b6
JB
5167{
5168 int block_depth = 0;
5169
5170 while (block != NULL)
5171 {
5172 block_depth += 1;
d0a8ab18
JB
5173 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5174 wild_match_p);
339c13b6
JB
5175
5176 /* If we found a non-function match, assume that's the one. */
5177 if (is_nonfunction (defns_collected (obstackp, 0),
5178 num_defns_collected (obstackp)))
5179 return;
5180
5181 block = BLOCK_SUPERBLOCK (block);
5182 }
5183
5184 /* If no luck so far, try to find NAME as a local symbol in some lexically
5185 enclosing subprogram. */
5186 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5187 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5188}
5189
ccefe4c4 5190/* An object of this type is used as the user_data argument when
40658b94 5191 calling the map_matching_symbols method. */
ccefe4c4 5192
40658b94 5193struct match_data
ccefe4c4 5194{
40658b94 5195 struct objfile *objfile;
ccefe4c4 5196 struct obstack *obstackp;
40658b94
PH
5197 struct symbol *arg_sym;
5198 int found_sym;
ccefe4c4
TT
5199};
5200
40658b94
PH
5201/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5202 to a list of symbols. DATA0 is a pointer to a struct match_data *
5203 containing the obstack that collects the symbol list, the file that SYM
5204 must come from, a flag indicating whether a non-argument symbol has
5205 been found in the current block, and the last argument symbol
5206 passed in SYM within the current block (if any). When SYM is null,
5207 marking the end of a block, the argument symbol is added if no
5208 other has been found. */
ccefe4c4 5209
40658b94
PH
5210static int
5211aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5212{
40658b94
PH
5213 struct match_data *data = (struct match_data *) data0;
5214
5215 if (sym == NULL)
5216 {
5217 if (!data->found_sym && data->arg_sym != NULL)
5218 add_defn_to_vec (data->obstackp,
5219 fixup_symbol_section (data->arg_sym, data->objfile),
5220 block);
5221 data->found_sym = 0;
5222 data->arg_sym = NULL;
5223 }
5224 else
5225 {
5226 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5227 return 0;
5228 else if (SYMBOL_IS_ARGUMENT (sym))
5229 data->arg_sym = sym;
5230 else
5231 {
5232 data->found_sym = 1;
5233 add_defn_to_vec (data->obstackp,
5234 fixup_symbol_section (sym, data->objfile),
5235 block);
5236 }
5237 }
5238 return 0;
5239}
5240
db230ce3
JB
5241/* Implements compare_names, but only applying the comparision using
5242 the given CASING. */
5b4ee69b 5243
40658b94 5244static int
db230ce3
JB
5245compare_names_with_case (const char *string1, const char *string2,
5246 enum case_sensitivity casing)
40658b94
PH
5247{
5248 while (*string1 != '\0' && *string2 != '\0')
5249 {
db230ce3
JB
5250 char c1, c2;
5251
40658b94
PH
5252 if (isspace (*string1) || isspace (*string2))
5253 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5254
5255 if (casing == case_sensitive_off)
5256 {
5257 c1 = tolower (*string1);
5258 c2 = tolower (*string2);
5259 }
5260 else
5261 {
5262 c1 = *string1;
5263 c2 = *string2;
5264 }
5265 if (c1 != c2)
40658b94 5266 break;
db230ce3 5267
40658b94
PH
5268 string1 += 1;
5269 string2 += 1;
5270 }
db230ce3 5271
40658b94
PH
5272 switch (*string1)
5273 {
5274 case '(':
5275 return strcmp_iw_ordered (string1, string2);
5276 case '_':
5277 if (*string2 == '\0')
5278 {
052874e8 5279 if (is_name_suffix (string1))
40658b94
PH
5280 return 0;
5281 else
1a1d5513 5282 return 1;
40658b94 5283 }
dbb8534f 5284 /* FALLTHROUGH */
40658b94
PH
5285 default:
5286 if (*string2 == '(')
5287 return strcmp_iw_ordered (string1, string2);
5288 else
db230ce3
JB
5289 {
5290 if (casing == case_sensitive_off)
5291 return tolower (*string1) - tolower (*string2);
5292 else
5293 return *string1 - *string2;
5294 }
40658b94 5295 }
ccefe4c4
TT
5296}
5297
db230ce3
JB
5298/* Compare STRING1 to STRING2, with results as for strcmp.
5299 Compatible with strcmp_iw_ordered in that...
5300
5301 strcmp_iw_ordered (STRING1, STRING2) <= 0
5302
5303 ... implies...
5304
5305 compare_names (STRING1, STRING2) <= 0
5306
5307 (they may differ as to what symbols compare equal). */
5308
5309static int
5310compare_names (const char *string1, const char *string2)
5311{
5312 int result;
5313
5314 /* Similar to what strcmp_iw_ordered does, we need to perform
5315 a case-insensitive comparison first, and only resort to
5316 a second, case-sensitive, comparison if the first one was
5317 not sufficient to differentiate the two strings. */
5318
5319 result = compare_names_with_case (string1, string2, case_sensitive_off);
5320 if (result == 0)
5321 result = compare_names_with_case (string1, string2, case_sensitive_on);
5322
5323 return result;
5324}
5325
339c13b6
JB
5326/* Add to OBSTACKP all non-local symbols whose name and domain match
5327 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5328 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5329
5330static void
40658b94
PH
5331add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5332 domain_enum domain, int global,
5333 int is_wild_match)
339c13b6
JB
5334{
5335 struct objfile *objfile;
40658b94 5336 struct match_data data;
339c13b6 5337
6475f2fe 5338 memset (&data, 0, sizeof data);
ccefe4c4 5339 data.obstackp = obstackp;
339c13b6 5340
ccefe4c4 5341 ALL_OBJFILES (objfile)
40658b94
PH
5342 {
5343 data.objfile = objfile;
5344
5345 if (is_wild_match)
4186eb54
KS
5346 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5347 aux_add_nonlocal_symbols, &data,
5348 wild_match, NULL);
40658b94 5349 else
4186eb54
KS
5350 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5351 aux_add_nonlocal_symbols, &data,
5352 full_match, compare_names);
40658b94
PH
5353 }
5354
5355 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5356 {
5357 ALL_OBJFILES (objfile)
5358 {
5359 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5360 strcpy (name1, "_ada_");
5361 strcpy (name1 + sizeof ("_ada_") - 1, name);
5362 data.objfile = objfile;
ade7ed9e
DE
5363 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5364 global,
0963b4bd
MS
5365 aux_add_nonlocal_symbols,
5366 &data,
40658b94
PH
5367 full_match, compare_names);
5368 }
5369 }
339c13b6
JB
5370}
5371
4eeaa230
DE
5372/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5373 non-zero, enclosing scope and in global scopes, returning the number of
5374 matches.
9f88c959 5375 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5376 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5377 any) in which they were found. This vector is transient---good only to
5378 the next call of ada_lookup_symbol_list.
5379
5380 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5381 symbol match within the nest of blocks whose innermost member is BLOCK0,
5382 is the one match returned (no other matches in that or
d9680e73 5383 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5384 surrounding BLOCK0, then these alone are returned.
5385
9f88c959 5386 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5387 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5388
4eeaa230
DE
5389static int
5390ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5391 domain_enum namespace,
5392 struct ada_symbol_info **results,
5393 int full_search)
14f9c5c9
AS
5394{
5395 struct symbol *sym;
f0c5f9b2 5396 const struct block *block;
4c4b4cd2 5397 const char *name;
82ccd55e 5398 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5399 int cacheIfUnique;
4c4b4cd2 5400 int ndefns;
14f9c5c9 5401
4c4b4cd2
PH
5402 obstack_free (&symbol_list_obstack, NULL);
5403 obstack_init (&symbol_list_obstack);
14f9c5c9 5404
14f9c5c9
AS
5405 cacheIfUnique = 0;
5406
5407 /* Search specified block and its superiors. */
5408
4c4b4cd2 5409 name = name0;
f0c5f9b2 5410 block = block0;
339c13b6
JB
5411
5412 /* Special case: If the user specifies a symbol name inside package
5413 Standard, do a non-wild matching of the symbol name without
5414 the "standard__" prefix. This was primarily introduced in order
5415 to allow the user to specifically access the standard exceptions
5416 using, for instance, Standard.Constraint_Error when Constraint_Error
5417 is ambiguous (due to the user defining its own Constraint_Error
5418 entity inside its program). */
4c4b4cd2
PH
5419 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5420 {
4c4b4cd2
PH
5421 block = NULL;
5422 name = name0 + sizeof ("standard__") - 1;
5423 }
5424
339c13b6 5425 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5426
4eeaa230
DE
5427 if (block != NULL)
5428 {
5429 if (full_search)
5430 {
5431 ada_add_local_symbols (&symbol_list_obstack, name, block,
5432 namespace, wild_match_p);
5433 }
5434 else
5435 {
5436 /* In the !full_search case we're are being called by
5437 ada_iterate_over_symbols, and we don't want to search
5438 superblocks. */
5439 ada_add_block_symbols (&symbol_list_obstack, block, name,
5440 namespace, NULL, wild_match_p);
5441 }
5442 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5443 goto done;
5444 }
d2e4a39e 5445
339c13b6
JB
5446 /* No non-global symbols found. Check our cache to see if we have
5447 already performed this search before. If we have, then return
5448 the same result. */
5449
14f9c5c9 5450 cacheIfUnique = 1;
2570f2b7 5451 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5452 {
5453 if (sym != NULL)
2570f2b7 5454 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5455 goto done;
5456 }
14f9c5c9 5457
339c13b6
JB
5458 /* Search symbols from all global blocks. */
5459
40658b94 5460 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5461 wild_match_p);
d2e4a39e 5462
4c4b4cd2 5463 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5464 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5465
4c4b4cd2 5466 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5467 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5468 wild_match_p);
14f9c5c9 5469
4c4b4cd2
PH
5470done:
5471 ndefns = num_defns_collected (&symbol_list_obstack);
5472 *results = defns_collected (&symbol_list_obstack, 1);
5473
5474 ndefns = remove_extra_symbols (*results, ndefns);
5475
2ad01556 5476 if (ndefns == 0 && full_search)
2570f2b7 5477 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5478
2ad01556 5479 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5480 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5481
aeb5907d 5482 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5483
14f9c5c9
AS
5484 return ndefns;
5485}
5486
4eeaa230
DE
5487/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5488 in global scopes, returning the number of matches, and setting *RESULTS
5489 to a vector of (SYM,BLOCK) tuples.
5490 See ada_lookup_symbol_list_worker for further details. */
5491
5492int
5493ada_lookup_symbol_list (const char *name0, const struct block *block0,
5494 domain_enum domain, struct ada_symbol_info **results)
5495{
5496 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5497}
5498
5499/* Implementation of the la_iterate_over_symbols method. */
5500
5501static void
5502ada_iterate_over_symbols (const struct block *block,
5503 const char *name, domain_enum domain,
5504 symbol_found_callback_ftype *callback,
5505 void *data)
5506{
5507 int ndefs, i;
5508 struct ada_symbol_info *results;
5509
5510 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5511 for (i = 0; i < ndefs; ++i)
5512 {
5513 if (! (*callback) (results[i].sym, data))
5514 break;
5515 }
5516}
5517
f8eba3c6
TT
5518/* If NAME is the name of an entity, return a string that should
5519 be used to look that entity up in Ada units. This string should
5520 be deallocated after use using xfree.
5521
5522 NAME can have any form that the "break" or "print" commands might
5523 recognize. In other words, it does not have to be the "natural"
5524 name, or the "encoded" name. */
5525
5526char *
5527ada_name_for_lookup (const char *name)
5528{
5529 char *canon;
5530 int nlen = strlen (name);
5531
5532 if (name[0] == '<' && name[nlen - 1] == '>')
5533 {
5534 canon = xmalloc (nlen - 1);
5535 memcpy (canon, name + 1, nlen - 2);
5536 canon[nlen - 2] = '\0';
5537 }
5538 else
5539 canon = xstrdup (ada_encode (ada_fold_name (name)));
5540 return canon;
5541}
5542
4e5c77fe
JB
5543/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5544 to 1, but choosing the first symbol found if there are multiple
5545 choices.
5546
5e2336be
JB
5547 The result is stored in *INFO, which must be non-NULL.
5548 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5549
5550void
5551ada_lookup_encoded_symbol (const char *name, const struct block *block,
5552 domain_enum namespace,
5e2336be 5553 struct ada_symbol_info *info)
14f9c5c9 5554{
4c4b4cd2 5555 struct ada_symbol_info *candidates;
14f9c5c9
AS
5556 int n_candidates;
5557
5e2336be
JB
5558 gdb_assert (info != NULL);
5559 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5560
4eeaa230 5561 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5562 if (n_candidates == 0)
4e5c77fe 5563 return;
4c4b4cd2 5564
5e2336be
JB
5565 *info = candidates[0];
5566 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5567}
aeb5907d
JB
5568
5569/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5570 scope and in global scopes, or NULL if none. NAME is folded and
5571 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5572 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5573 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5574
aeb5907d
JB
5575struct symbol *
5576ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5577 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5578{
5e2336be 5579 struct ada_symbol_info info;
4e5c77fe 5580
aeb5907d
JB
5581 if (is_a_field_of_this != NULL)
5582 *is_a_field_of_this = 0;
5583
4e5c77fe 5584 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5585 block0, namespace, &info);
5586 return info.sym;
4c4b4cd2 5587}
14f9c5c9 5588
4c4b4cd2
PH
5589static struct symbol *
5590ada_lookup_symbol_nonlocal (const char *name,
76a01679 5591 const struct block *block,
21b556f4 5592 const domain_enum domain)
4c4b4cd2 5593{
94af9270 5594 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5595}
5596
5597
4c4b4cd2
PH
5598/* True iff STR is a possible encoded suffix of a normal Ada name
5599 that is to be ignored for matching purposes. Suffixes of parallel
5600 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5601 are given by any of the regular expressions:
4c4b4cd2 5602
babe1480
JB
5603 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5604 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5605 TKB [subprogram suffix for task bodies]
babe1480 5606 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5607 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5608
5609 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5610 match is performed. This sequence is used to differentiate homonyms,
5611 is an optional part of a valid name suffix. */
4c4b4cd2 5612
14f9c5c9 5613static int
d2e4a39e 5614is_name_suffix (const char *str)
14f9c5c9
AS
5615{
5616 int k;
4c4b4cd2
PH
5617 const char *matching;
5618 const int len = strlen (str);
5619
babe1480
JB
5620 /* Skip optional leading __[0-9]+. */
5621
4c4b4cd2
PH
5622 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5623 {
babe1480
JB
5624 str += 3;
5625 while (isdigit (str[0]))
5626 str += 1;
4c4b4cd2 5627 }
babe1480
JB
5628
5629 /* [.$][0-9]+ */
4c4b4cd2 5630
babe1480 5631 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5632 {
babe1480 5633 matching = str + 1;
4c4b4cd2
PH
5634 while (isdigit (matching[0]))
5635 matching += 1;
5636 if (matching[0] == '\0')
5637 return 1;
5638 }
5639
5640 /* ___[0-9]+ */
babe1480 5641
4c4b4cd2
PH
5642 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5643 {
5644 matching = str + 3;
5645 while (isdigit (matching[0]))
5646 matching += 1;
5647 if (matching[0] == '\0')
5648 return 1;
5649 }
5650
9ac7f98e
JB
5651 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5652
5653 if (strcmp (str, "TKB") == 0)
5654 return 1;
5655
529cad9c
PH
5656#if 0
5657 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5658 with a N at the end. Unfortunately, the compiler uses the same
5659 convention for other internal types it creates. So treating
529cad9c 5660 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5661 some regressions. For instance, consider the case of an enumerated
5662 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5663 name ends with N.
5664 Having a single character like this as a suffix carrying some
0963b4bd 5665 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5666 to be something like "_N" instead. In the meantime, do not do
5667 the following check. */
5668 /* Protected Object Subprograms */
5669 if (len == 1 && str [0] == 'N')
5670 return 1;
5671#endif
5672
5673 /* _E[0-9]+[bs]$ */
5674 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5675 {
5676 matching = str + 3;
5677 while (isdigit (matching[0]))
5678 matching += 1;
5679 if ((matching[0] == 'b' || matching[0] == 's')
5680 && matching [1] == '\0')
5681 return 1;
5682 }
5683
4c4b4cd2
PH
5684 /* ??? We should not modify STR directly, as we are doing below. This
5685 is fine in this case, but may become problematic later if we find
5686 that this alternative did not work, and want to try matching
5687 another one from the begining of STR. Since we modified it, we
5688 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5689 if (str[0] == 'X')
5690 {
5691 str += 1;
d2e4a39e 5692 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5693 {
5694 if (str[0] != 'n' && str[0] != 'b')
5695 return 0;
5696 str += 1;
5697 }
14f9c5c9 5698 }
babe1480 5699
14f9c5c9
AS
5700 if (str[0] == '\000')
5701 return 1;
babe1480 5702
d2e4a39e 5703 if (str[0] == '_')
14f9c5c9
AS
5704 {
5705 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5706 return 0;
d2e4a39e 5707 if (str[2] == '_')
4c4b4cd2 5708 {
61ee279c
PH
5709 if (strcmp (str + 3, "JM") == 0)
5710 return 1;
5711 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5712 the LJM suffix in favor of the JM one. But we will
5713 still accept LJM as a valid suffix for a reasonable
5714 amount of time, just to allow ourselves to debug programs
5715 compiled using an older version of GNAT. */
4c4b4cd2
PH
5716 if (strcmp (str + 3, "LJM") == 0)
5717 return 1;
5718 if (str[3] != 'X')
5719 return 0;
1265e4aa
JB
5720 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5721 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5722 return 1;
5723 if (str[4] == 'R' && str[5] != 'T')
5724 return 1;
5725 return 0;
5726 }
5727 if (!isdigit (str[2]))
5728 return 0;
5729 for (k = 3; str[k] != '\0'; k += 1)
5730 if (!isdigit (str[k]) && str[k] != '_')
5731 return 0;
14f9c5c9
AS
5732 return 1;
5733 }
4c4b4cd2 5734 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5735 {
4c4b4cd2
PH
5736 for (k = 2; str[k] != '\0'; k += 1)
5737 if (!isdigit (str[k]) && str[k] != '_')
5738 return 0;
14f9c5c9
AS
5739 return 1;
5740 }
5741 return 0;
5742}
d2e4a39e 5743
aeb5907d
JB
5744/* Return non-zero if the string starting at NAME and ending before
5745 NAME_END contains no capital letters. */
529cad9c
PH
5746
5747static int
5748is_valid_name_for_wild_match (const char *name0)
5749{
5750 const char *decoded_name = ada_decode (name0);
5751 int i;
5752
5823c3ef
JB
5753 /* If the decoded name starts with an angle bracket, it means that
5754 NAME0 does not follow the GNAT encoding format. It should then
5755 not be allowed as a possible wild match. */
5756 if (decoded_name[0] == '<')
5757 return 0;
5758
529cad9c
PH
5759 for (i=0; decoded_name[i] != '\0'; i++)
5760 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5761 return 0;
5762
5763 return 1;
5764}
5765
73589123
PH
5766/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5767 that could start a simple name. Assumes that *NAMEP points into
5768 the string beginning at NAME0. */
4c4b4cd2 5769
14f9c5c9 5770static int
73589123 5771advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5772{
73589123 5773 const char *name = *namep;
5b4ee69b 5774
5823c3ef 5775 while (1)
14f9c5c9 5776 {
aa27d0b3 5777 int t0, t1;
73589123
PH
5778
5779 t0 = *name;
5780 if (t0 == '_')
5781 {
5782 t1 = name[1];
5783 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5784 {
5785 name += 1;
5786 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5787 break;
5788 else
5789 name += 1;
5790 }
aa27d0b3
JB
5791 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5792 || name[2] == target0))
73589123
PH
5793 {
5794 name += 2;
5795 break;
5796 }
5797 else
5798 return 0;
5799 }
5800 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5801 name += 1;
5802 else
5823c3ef 5803 return 0;
73589123
PH
5804 }
5805
5806 *namep = name;
5807 return 1;
5808}
5809
5810/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5811 informational suffixes of NAME (i.e., for which is_name_suffix is
5812 true). Assumes that PATN is a lower-cased Ada simple name. */
5813
5814static int
5815wild_match (const char *name, const char *patn)
5816{
22e048c9 5817 const char *p;
73589123
PH
5818 const char *name0 = name;
5819
5820 while (1)
5821 {
5822 const char *match = name;
5823
5824 if (*name == *patn)
5825 {
5826 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5827 if (*p != *name)
5828 break;
5829 if (*p == '\0' && is_name_suffix (name))
5830 return match != name0 && !is_valid_name_for_wild_match (name0);
5831
5832 if (name[-1] == '_')
5833 name -= 1;
5834 }
5835 if (!advance_wild_match (&name, name0, *patn))
5836 return 1;
96d887e8 5837 }
96d887e8
PH
5838}
5839
40658b94
PH
5840/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5841 informational suffix. */
5842
c4d840bd
PH
5843static int
5844full_match (const char *sym_name, const char *search_name)
5845{
40658b94 5846 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5847}
5848
5849
96d887e8
PH
5850/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5851 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5852 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5853 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5854
5855static void
5856ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5857 const struct block *block, const char *name,
96d887e8 5858 domain_enum domain, struct objfile *objfile,
2570f2b7 5859 int wild)
96d887e8 5860{
8157b174 5861 struct block_iterator iter;
96d887e8
PH
5862 int name_len = strlen (name);
5863 /* A matching argument symbol, if any. */
5864 struct symbol *arg_sym;
5865 /* Set true when we find a matching non-argument symbol. */
5866 int found_sym;
5867 struct symbol *sym;
5868
5869 arg_sym = NULL;
5870 found_sym = 0;
5871 if (wild)
5872 {
8157b174
TT
5873 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5874 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5875 {
4186eb54
KS
5876 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5877 SYMBOL_DOMAIN (sym), domain)
73589123 5878 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5879 {
2a2d4dc3
AS
5880 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5881 continue;
5882 else if (SYMBOL_IS_ARGUMENT (sym))
5883 arg_sym = sym;
5884 else
5885 {
76a01679
JB
5886 found_sym = 1;
5887 add_defn_to_vec (obstackp,
5888 fixup_symbol_section (sym, objfile),
2570f2b7 5889 block);
76a01679
JB
5890 }
5891 }
5892 }
96d887e8
PH
5893 }
5894 else
5895 {
8157b174
TT
5896 for (sym = block_iter_match_first (block, name, full_match, &iter);
5897 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5898 {
4186eb54
KS
5899 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5900 SYMBOL_DOMAIN (sym), domain))
76a01679 5901 {
c4d840bd
PH
5902 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5903 {
5904 if (SYMBOL_IS_ARGUMENT (sym))
5905 arg_sym = sym;
5906 else
2a2d4dc3 5907 {
c4d840bd
PH
5908 found_sym = 1;
5909 add_defn_to_vec (obstackp,
5910 fixup_symbol_section (sym, objfile),
5911 block);
2a2d4dc3 5912 }
c4d840bd 5913 }
76a01679
JB
5914 }
5915 }
96d887e8
PH
5916 }
5917
5918 if (!found_sym && arg_sym != NULL)
5919 {
76a01679
JB
5920 add_defn_to_vec (obstackp,
5921 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5922 block);
96d887e8
PH
5923 }
5924
5925 if (!wild)
5926 {
5927 arg_sym = NULL;
5928 found_sym = 0;
5929
5930 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5931 {
4186eb54
KS
5932 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5933 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5934 {
5935 int cmp;
5936
5937 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5938 if (cmp == 0)
5939 {
5940 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5941 if (cmp == 0)
5942 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5943 name_len);
5944 }
5945
5946 if (cmp == 0
5947 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5948 {
2a2d4dc3
AS
5949 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5950 {
5951 if (SYMBOL_IS_ARGUMENT (sym))
5952 arg_sym = sym;
5953 else
5954 {
5955 found_sym = 1;
5956 add_defn_to_vec (obstackp,
5957 fixup_symbol_section (sym, objfile),
5958 block);
5959 }
5960 }
76a01679
JB
5961 }
5962 }
76a01679 5963 }
96d887e8
PH
5964
5965 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5966 They aren't parameters, right? */
5967 if (!found_sym && arg_sym != NULL)
5968 {
5969 add_defn_to_vec (obstackp,
76a01679 5970 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5971 block);
96d887e8
PH
5972 }
5973 }
5974}
5975\f
41d27058
JB
5976
5977 /* Symbol Completion */
5978
5979/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5980 name in a form that's appropriate for the completion. The result
5981 does not need to be deallocated, but is only good until the next call.
5982
5983 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5984 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5985 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5986 in its encoded form. */
5987
5988static const char *
5989symbol_completion_match (const char *sym_name,
5990 const char *text, int text_len,
6ea35997 5991 int wild_match_p, int encoded_p)
41d27058 5992{
41d27058
JB
5993 const int verbatim_match = (text[0] == '<');
5994 int match = 0;
5995
5996 if (verbatim_match)
5997 {
5998 /* Strip the leading angle bracket. */
5999 text = text + 1;
6000 text_len--;
6001 }
6002
6003 /* First, test against the fully qualified name of the symbol. */
6004
6005 if (strncmp (sym_name, text, text_len) == 0)
6006 match = 1;
6007
6ea35997 6008 if (match && !encoded_p)
41d27058
JB
6009 {
6010 /* One needed check before declaring a positive match is to verify
6011 that iff we are doing a verbatim match, the decoded version
6012 of the symbol name starts with '<'. Otherwise, this symbol name
6013 is not a suitable completion. */
6014 const char *sym_name_copy = sym_name;
6015 int has_angle_bracket;
6016
6017 sym_name = ada_decode (sym_name);
6018 has_angle_bracket = (sym_name[0] == '<');
6019 match = (has_angle_bracket == verbatim_match);
6020 sym_name = sym_name_copy;
6021 }
6022
6023 if (match && !verbatim_match)
6024 {
6025 /* When doing non-verbatim match, another check that needs to
6026 be done is to verify that the potentially matching symbol name
6027 does not include capital letters, because the ada-mode would
6028 not be able to understand these symbol names without the
6029 angle bracket notation. */
6030 const char *tmp;
6031
6032 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6033 if (*tmp != '\0')
6034 match = 0;
6035 }
6036
6037 /* Second: Try wild matching... */
6038
e701b3c0 6039 if (!match && wild_match_p)
41d27058
JB
6040 {
6041 /* Since we are doing wild matching, this means that TEXT
6042 may represent an unqualified symbol name. We therefore must
6043 also compare TEXT against the unqualified name of the symbol. */
6044 sym_name = ada_unqualified_name (ada_decode (sym_name));
6045
6046 if (strncmp (sym_name, text, text_len) == 0)
6047 match = 1;
6048 }
6049
6050 /* Finally: If we found a mach, prepare the result to return. */
6051
6052 if (!match)
6053 return NULL;
6054
6055 if (verbatim_match)
6056 sym_name = add_angle_brackets (sym_name);
6057
6ea35997 6058 if (!encoded_p)
41d27058
JB
6059 sym_name = ada_decode (sym_name);
6060
6061 return sym_name;
6062}
6063
6064/* A companion function to ada_make_symbol_completion_list().
6065 Check if SYM_NAME represents a symbol which name would be suitable
6066 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6067 it is appended at the end of the given string vector SV.
6068
6069 ORIG_TEXT is the string original string from the user command
6070 that needs to be completed. WORD is the entire command on which
6071 completion should be performed. These two parameters are used to
6072 determine which part of the symbol name should be added to the
6073 completion vector.
c0af1706 6074 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6075 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6076 encoded formed (in which case the completion should also be
6077 encoded). */
6078
6079static void
d6565258 6080symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6081 const char *sym_name,
6082 const char *text, int text_len,
6083 const char *orig_text, const char *word,
cb8e9b97 6084 int wild_match_p, int encoded_p)
41d27058
JB
6085{
6086 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6087 wild_match_p, encoded_p);
41d27058
JB
6088 char *completion;
6089
6090 if (match == NULL)
6091 return;
6092
6093 /* We found a match, so add the appropriate completion to the given
6094 string vector. */
6095
6096 if (word == orig_text)
6097 {
6098 completion = xmalloc (strlen (match) + 5);
6099 strcpy (completion, match);
6100 }
6101 else if (word > orig_text)
6102 {
6103 /* Return some portion of sym_name. */
6104 completion = xmalloc (strlen (match) + 5);
6105 strcpy (completion, match + (word - orig_text));
6106 }
6107 else
6108 {
6109 /* Return some of ORIG_TEXT plus sym_name. */
6110 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6111 strncpy (completion, word, orig_text - word);
6112 completion[orig_text - word] = '\0';
6113 strcat (completion, match);
6114 }
6115
d6565258 6116 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6117}
6118
ccefe4c4 6119/* An object of this type is passed as the user_data argument to the
bb4142cf 6120 expand_symtabs_matching method. */
ccefe4c4
TT
6121struct add_partial_datum
6122{
6123 VEC(char_ptr) **completions;
6f937416 6124 const char *text;
ccefe4c4 6125 int text_len;
6f937416
PA
6126 const char *text0;
6127 const char *word;
ccefe4c4
TT
6128 int wild_match;
6129 int encoded;
6130};
6131
bb4142cf
DE
6132/* A callback for expand_symtabs_matching. */
6133
7b08b9eb 6134static int
bb4142cf 6135ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6136{
6137 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6138
6139 return symbol_completion_match (name, data->text, data->text_len,
6140 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6141}
6142
49c4e619
TT
6143/* Return a list of possible symbol names completing TEXT0. WORD is
6144 the entire command on which completion is made. */
41d27058 6145
49c4e619 6146static VEC (char_ptr) *
6f937416
PA
6147ada_make_symbol_completion_list (const char *text0, const char *word,
6148 enum type_code code)
41d27058
JB
6149{
6150 char *text;
6151 int text_len;
b1ed564a
JB
6152 int wild_match_p;
6153 int encoded_p;
2ba95b9b 6154 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6155 struct symbol *sym;
43f3e411 6156 struct compunit_symtab *s;
41d27058
JB
6157 struct minimal_symbol *msymbol;
6158 struct objfile *objfile;
3977b71f 6159 const struct block *b, *surrounding_static_block = 0;
41d27058 6160 int i;
8157b174 6161 struct block_iterator iter;
b8fea896 6162 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6163
2f68a895
TT
6164 gdb_assert (code == TYPE_CODE_UNDEF);
6165
41d27058
JB
6166 if (text0[0] == '<')
6167 {
6168 text = xstrdup (text0);
6169 make_cleanup (xfree, text);
6170 text_len = strlen (text);
b1ed564a
JB
6171 wild_match_p = 0;
6172 encoded_p = 1;
41d27058
JB
6173 }
6174 else
6175 {
6176 text = xstrdup (ada_encode (text0));
6177 make_cleanup (xfree, text);
6178 text_len = strlen (text);
6179 for (i = 0; i < text_len; i++)
6180 text[i] = tolower (text[i]);
6181
b1ed564a 6182 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6183 /* If the name contains a ".", then the user is entering a fully
6184 qualified entity name, and the match must not be done in wild
6185 mode. Similarly, if the user wants to complete what looks like
6186 an encoded name, the match must not be done in wild mode. */
b1ed564a 6187 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6188 }
6189
6190 /* First, look at the partial symtab symbols. */
41d27058 6191 {
ccefe4c4
TT
6192 struct add_partial_datum data;
6193
6194 data.completions = &completions;
6195 data.text = text;
6196 data.text_len = text_len;
6197 data.text0 = text0;
6198 data.word = word;
b1ed564a
JB
6199 data.wild_match = wild_match_p;
6200 data.encoded = encoded_p;
bb4142cf
DE
6201 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6202 &data);
41d27058
JB
6203 }
6204
6205 /* At this point scan through the misc symbol vectors and add each
6206 symbol you find to the list. Eventually we want to ignore
6207 anything that isn't a text symbol (everything else will be
6208 handled by the psymtab code above). */
6209
6210 ALL_MSYMBOLS (objfile, msymbol)
6211 {
6212 QUIT;
efd66ac6 6213 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6214 text, text_len, text0, word, wild_match_p,
6215 encoded_p);
41d27058
JB
6216 }
6217
6218 /* Search upwards from currently selected frame (so that we can
6219 complete on local vars. */
6220
6221 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6222 {
6223 if (!BLOCK_SUPERBLOCK (b))
6224 surrounding_static_block = b; /* For elmin of dups */
6225
6226 ALL_BLOCK_SYMBOLS (b, iter, sym)
6227 {
d6565258 6228 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6229 text, text_len, text0, word,
b1ed564a 6230 wild_match_p, encoded_p);
41d27058
JB
6231 }
6232 }
6233
6234 /* Go through the symtabs and check the externs and statics for
43f3e411 6235 symbols which match. */
41d27058 6236
43f3e411 6237 ALL_COMPUNITS (objfile, s)
41d27058
JB
6238 {
6239 QUIT;
43f3e411 6240 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6241 ALL_BLOCK_SYMBOLS (b, iter, sym)
6242 {
d6565258 6243 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6244 text, text_len, text0, word,
b1ed564a 6245 wild_match_p, encoded_p);
41d27058
JB
6246 }
6247 }
6248
43f3e411 6249 ALL_COMPUNITS (objfile, s)
41d27058
JB
6250 {
6251 QUIT;
43f3e411 6252 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6253 /* Don't do this block twice. */
6254 if (b == surrounding_static_block)
6255 continue;
6256 ALL_BLOCK_SYMBOLS (b, iter, sym)
6257 {
d6565258 6258 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6259 text, text_len, text0, word,
b1ed564a 6260 wild_match_p, encoded_p);
41d27058
JB
6261 }
6262 }
6263
b8fea896 6264 do_cleanups (old_chain);
49c4e619 6265 return completions;
41d27058
JB
6266}
6267
963a6417 6268 /* Field Access */
96d887e8 6269
73fb9985
JB
6270/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6271 for tagged types. */
6272
6273static int
6274ada_is_dispatch_table_ptr_type (struct type *type)
6275{
0d5cff50 6276 const char *name;
73fb9985
JB
6277
6278 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6279 return 0;
6280
6281 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6282 if (name == NULL)
6283 return 0;
6284
6285 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6286}
6287
ac4a2da4
JG
6288/* Return non-zero if TYPE is an interface tag. */
6289
6290static int
6291ada_is_interface_tag (struct type *type)
6292{
6293 const char *name = TYPE_NAME (type);
6294
6295 if (name == NULL)
6296 return 0;
6297
6298 return (strcmp (name, "ada__tags__interface_tag") == 0);
6299}
6300
963a6417
PH
6301/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6302 to be invisible to users. */
96d887e8 6303
963a6417
PH
6304int
6305ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6306{
963a6417
PH
6307 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6308 return 1;
ffde82bf 6309
73fb9985
JB
6310 /* Check the name of that field. */
6311 {
6312 const char *name = TYPE_FIELD_NAME (type, field_num);
6313
6314 /* Anonymous field names should not be printed.
6315 brobecker/2007-02-20: I don't think this can actually happen
6316 but we don't want to print the value of annonymous fields anyway. */
6317 if (name == NULL)
6318 return 1;
6319
ffde82bf
JB
6320 /* Normally, fields whose name start with an underscore ("_")
6321 are fields that have been internally generated by the compiler,
6322 and thus should not be printed. The "_parent" field is special,
6323 however: This is a field internally generated by the compiler
6324 for tagged types, and it contains the components inherited from
6325 the parent type. This field should not be printed as is, but
6326 should not be ignored either. */
73fb9985
JB
6327 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6328 return 1;
6329 }
6330
ac4a2da4
JG
6331 /* If this is the dispatch table of a tagged type or an interface tag,
6332 then ignore. */
73fb9985 6333 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6334 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6335 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6336 return 1;
6337
6338 /* Not a special field, so it should not be ignored. */
6339 return 0;
963a6417 6340}
96d887e8 6341
963a6417 6342/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6343 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6344
963a6417
PH
6345int
6346ada_is_tagged_type (struct type *type, int refok)
6347{
6348 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6349}
96d887e8 6350
963a6417 6351/* True iff TYPE represents the type of X'Tag */
96d887e8 6352
963a6417
PH
6353int
6354ada_is_tag_type (struct type *type)
6355{
6356 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6357 return 0;
6358 else
96d887e8 6359 {
963a6417 6360 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6361
963a6417
PH
6362 return (name != NULL
6363 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6364 }
96d887e8
PH
6365}
6366
963a6417 6367/* The type of the tag on VAL. */
76a01679 6368
963a6417
PH
6369struct type *
6370ada_tag_type (struct value *val)
96d887e8 6371{
df407dfe 6372 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6373}
96d887e8 6374
b50d69b5
JG
6375/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6376 retired at Ada 05). */
6377
6378static int
6379is_ada95_tag (struct value *tag)
6380{
6381 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6382}
6383
963a6417 6384/* The value of the tag on VAL. */
96d887e8 6385
963a6417
PH
6386struct value *
6387ada_value_tag (struct value *val)
6388{
03ee6b2e 6389 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6390}
6391
963a6417
PH
6392/* The value of the tag on the object of type TYPE whose contents are
6393 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6394 ADDRESS. */
96d887e8 6395
963a6417 6396static struct value *
10a2c479 6397value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6398 const gdb_byte *valaddr,
963a6417 6399 CORE_ADDR address)
96d887e8 6400{
b5385fc0 6401 int tag_byte_offset;
963a6417 6402 struct type *tag_type;
5b4ee69b 6403
963a6417 6404 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6405 NULL, NULL, NULL))
96d887e8 6406 {
fc1a4b47 6407 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6408 ? NULL
6409 : valaddr + tag_byte_offset);
963a6417 6410 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6411
963a6417 6412 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6413 }
963a6417
PH
6414 return NULL;
6415}
96d887e8 6416
963a6417
PH
6417static struct type *
6418type_from_tag (struct value *tag)
6419{
6420 const char *type_name = ada_tag_name (tag);
5b4ee69b 6421
963a6417
PH
6422 if (type_name != NULL)
6423 return ada_find_any_type (ada_encode (type_name));
6424 return NULL;
6425}
96d887e8 6426
b50d69b5
JG
6427/* Given a value OBJ of a tagged type, return a value of this
6428 type at the base address of the object. The base address, as
6429 defined in Ada.Tags, it is the address of the primary tag of
6430 the object, and therefore where the field values of its full
6431 view can be fetched. */
6432
6433struct value *
6434ada_tag_value_at_base_address (struct value *obj)
6435{
6436 volatile struct gdb_exception e;
6437 struct value *val;
6438 LONGEST offset_to_top = 0;
6439 struct type *ptr_type, *obj_type;
6440 struct value *tag;
6441 CORE_ADDR base_address;
6442
6443 obj_type = value_type (obj);
6444
6445 /* It is the responsability of the caller to deref pointers. */
6446
6447 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6448 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6449 return obj;
6450
6451 tag = ada_value_tag (obj);
6452 if (!tag)
6453 return obj;
6454
6455 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6456
6457 if (is_ada95_tag (tag))
6458 return obj;
6459
6460 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6461 ptr_type = lookup_pointer_type (ptr_type);
6462 val = value_cast (ptr_type, tag);
6463 if (!val)
6464 return obj;
6465
6466 /* It is perfectly possible that an exception be raised while
6467 trying to determine the base address, just like for the tag;
6468 see ada_tag_name for more details. We do not print the error
6469 message for the same reason. */
6470
6471 TRY_CATCH (e, RETURN_MASK_ERROR)
6472 {
6473 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6474 }
6475
6476 if (e.reason < 0)
6477 return obj;
6478
6479 /* If offset is null, nothing to do. */
6480
6481 if (offset_to_top == 0)
6482 return obj;
6483
6484 /* -1 is a special case in Ada.Tags; however, what should be done
6485 is not quite clear from the documentation. So do nothing for
6486 now. */
6487
6488 if (offset_to_top == -1)
6489 return obj;
6490
6491 base_address = value_address (obj) - offset_to_top;
6492 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6493
6494 /* Make sure that we have a proper tag at the new address.
6495 Otherwise, offset_to_top is bogus (which can happen when
6496 the object is not initialized yet). */
6497
6498 if (!tag)
6499 return obj;
6500
6501 obj_type = type_from_tag (tag);
6502
6503 if (!obj_type)
6504 return obj;
6505
6506 return value_from_contents_and_address (obj_type, NULL, base_address);
6507}
6508
1b611343
JB
6509/* Return the "ada__tags__type_specific_data" type. */
6510
6511static struct type *
6512ada_get_tsd_type (struct inferior *inf)
963a6417 6513{
1b611343 6514 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6515
1b611343
JB
6516 if (data->tsd_type == 0)
6517 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6518 return data->tsd_type;
6519}
529cad9c 6520
1b611343
JB
6521/* Return the TSD (type-specific data) associated to the given TAG.
6522 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6523
1b611343 6524 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6525
1b611343
JB
6526static struct value *
6527ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6528{
4c4b4cd2 6529 struct value *val;
1b611343 6530 struct type *type;
5b4ee69b 6531
1b611343
JB
6532 /* First option: The TSD is simply stored as a field of our TAG.
6533 Only older versions of GNAT would use this format, but we have
6534 to test it first, because there are no visible markers for
6535 the current approach except the absence of that field. */
529cad9c 6536
1b611343
JB
6537 val = ada_value_struct_elt (tag, "tsd", 1);
6538 if (val)
6539 return val;
e802dbe0 6540
1b611343
JB
6541 /* Try the second representation for the dispatch table (in which
6542 there is no explicit 'tsd' field in the referent of the tag pointer,
6543 and instead the tsd pointer is stored just before the dispatch
6544 table. */
e802dbe0 6545
1b611343
JB
6546 type = ada_get_tsd_type (current_inferior());
6547 if (type == NULL)
6548 return NULL;
6549 type = lookup_pointer_type (lookup_pointer_type (type));
6550 val = value_cast (type, tag);
6551 if (val == NULL)
6552 return NULL;
6553 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6554}
6555
1b611343
JB
6556/* Given the TSD of a tag (type-specific data), return a string
6557 containing the name of the associated type.
6558
6559 The returned value is good until the next call. May return NULL
6560 if we are unable to determine the tag name. */
6561
6562static char *
6563ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6564{
529cad9c
PH
6565 static char name[1024];
6566 char *p;
1b611343 6567 struct value *val;
529cad9c 6568
1b611343 6569 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6570 if (val == NULL)
1b611343 6571 return NULL;
4c4b4cd2
PH
6572 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6573 for (p = name; *p != '\0'; p += 1)
6574 if (isalpha (*p))
6575 *p = tolower (*p);
1b611343 6576 return name;
4c4b4cd2
PH
6577}
6578
6579/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6580 a C string.
6581
6582 Return NULL if the TAG is not an Ada tag, or if we were unable to
6583 determine the name of that tag. The result is good until the next
6584 call. */
4c4b4cd2
PH
6585
6586const char *
6587ada_tag_name (struct value *tag)
6588{
1b611343
JB
6589 volatile struct gdb_exception e;
6590 char *name = NULL;
5b4ee69b 6591
df407dfe 6592 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6593 return NULL;
1b611343
JB
6594
6595 /* It is perfectly possible that an exception be raised while trying
6596 to determine the TAG's name, even under normal circumstances:
6597 The associated variable may be uninitialized or corrupted, for
6598 instance. We do not let any exception propagate past this point.
6599 instead we return NULL.
6600
6601 We also do not print the error message either (which often is very
6602 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6603 the caller print a more meaningful message if necessary. */
6604 TRY_CATCH (e, RETURN_MASK_ERROR)
6605 {
6606 struct value *tsd = ada_get_tsd_from_tag (tag);
6607
6608 if (tsd != NULL)
6609 name = ada_tag_name_from_tsd (tsd);
6610 }
6611
6612 return name;
4c4b4cd2
PH
6613}
6614
6615/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6616
d2e4a39e 6617struct type *
ebf56fd3 6618ada_parent_type (struct type *type)
14f9c5c9
AS
6619{
6620 int i;
6621
61ee279c 6622 type = ada_check_typedef (type);
14f9c5c9
AS
6623
6624 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6625 return NULL;
6626
6627 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6628 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6629 {
6630 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6631
6632 /* If the _parent field is a pointer, then dereference it. */
6633 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6634 parent_type = TYPE_TARGET_TYPE (parent_type);
6635 /* If there is a parallel XVS type, get the actual base type. */
6636 parent_type = ada_get_base_type (parent_type);
6637
6638 return ada_check_typedef (parent_type);
6639 }
14f9c5c9
AS
6640
6641 return NULL;
6642}
6643
4c4b4cd2
PH
6644/* True iff field number FIELD_NUM of structure type TYPE contains the
6645 parent-type (inherited) fields of a derived type. Assumes TYPE is
6646 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6647
6648int
ebf56fd3 6649ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6650{
61ee279c 6651 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6652
4c4b4cd2
PH
6653 return (name != NULL
6654 && (strncmp (name, "PARENT", 6) == 0
6655 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6656}
6657
4c4b4cd2 6658/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6659 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6660 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6661 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6662 structures. */
14f9c5c9
AS
6663
6664int
ebf56fd3 6665ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6666{
d2e4a39e 6667 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6668
d2e4a39e 6669 return (name != NULL
4c4b4cd2
PH
6670 && (strncmp (name, "PARENT", 6) == 0
6671 || strcmp (name, "REP") == 0
6672 || strncmp (name, "_parent", 7) == 0
6673 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6674}
6675
4c4b4cd2
PH
6676/* True iff field number FIELD_NUM of structure or union type TYPE
6677 is a variant wrapper. Assumes TYPE is a structure type with at least
6678 FIELD_NUM+1 fields. */
14f9c5c9
AS
6679
6680int
ebf56fd3 6681ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6682{
d2e4a39e 6683 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6684
14f9c5c9 6685 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6686 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6687 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6688 == TYPE_CODE_UNION)));
14f9c5c9
AS
6689}
6690
6691/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6692 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6693 returns the type of the controlling discriminant for the variant.
6694 May return NULL if the type could not be found. */
14f9c5c9 6695
d2e4a39e 6696struct type *
ebf56fd3 6697ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6698{
d2e4a39e 6699 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6700
7c964f07 6701 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6702}
6703
4c4b4cd2 6704/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6705 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6706 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6707
6708int
ebf56fd3 6709ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6710{
d2e4a39e 6711 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6712
14f9c5c9
AS
6713 return (name != NULL && name[0] == 'O');
6714}
6715
6716/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6717 returns the name of the discriminant controlling the variant.
6718 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6719
d2e4a39e 6720char *
ebf56fd3 6721ada_variant_discrim_name (struct type *type0)
14f9c5c9 6722{
d2e4a39e 6723 static char *result = NULL;
14f9c5c9 6724 static size_t result_len = 0;
d2e4a39e
AS
6725 struct type *type;
6726 const char *name;
6727 const char *discrim_end;
6728 const char *discrim_start;
14f9c5c9
AS
6729
6730 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6731 type = TYPE_TARGET_TYPE (type0);
6732 else
6733 type = type0;
6734
6735 name = ada_type_name (type);
6736
6737 if (name == NULL || name[0] == '\000')
6738 return "";
6739
6740 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6741 discrim_end -= 1)
6742 {
4c4b4cd2
PH
6743 if (strncmp (discrim_end, "___XVN", 6) == 0)
6744 break;
14f9c5c9
AS
6745 }
6746 if (discrim_end == name)
6747 return "";
6748
d2e4a39e 6749 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6750 discrim_start -= 1)
6751 {
d2e4a39e 6752 if (discrim_start == name + 1)
4c4b4cd2 6753 return "";
76a01679 6754 if ((discrim_start > name + 3
4c4b4cd2
PH
6755 && strncmp (discrim_start - 3, "___", 3) == 0)
6756 || discrim_start[-1] == '.')
6757 break;
14f9c5c9
AS
6758 }
6759
6760 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6761 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6762 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6763 return result;
6764}
6765
4c4b4cd2
PH
6766/* Scan STR for a subtype-encoded number, beginning at position K.
6767 Put the position of the character just past the number scanned in
6768 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6769 Return 1 if there was a valid number at the given position, and 0
6770 otherwise. A "subtype-encoded" number consists of the absolute value
6771 in decimal, followed by the letter 'm' to indicate a negative number.
6772 Assumes 0m does not occur. */
14f9c5c9
AS
6773
6774int
d2e4a39e 6775ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6776{
6777 ULONGEST RU;
6778
d2e4a39e 6779 if (!isdigit (str[k]))
14f9c5c9
AS
6780 return 0;
6781
4c4b4cd2 6782 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6783 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6784 LONGEST. */
14f9c5c9
AS
6785 RU = 0;
6786 while (isdigit (str[k]))
6787 {
d2e4a39e 6788 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6789 k += 1;
6790 }
6791
d2e4a39e 6792 if (str[k] == 'm')
14f9c5c9
AS
6793 {
6794 if (R != NULL)
4c4b4cd2 6795 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6796 k += 1;
6797 }
6798 else if (R != NULL)
6799 *R = (LONGEST) RU;
6800
4c4b4cd2 6801 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6802 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6803 number representable as a LONGEST (although either would probably work
6804 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6805 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6806
6807 if (new_k != NULL)
6808 *new_k = k;
6809 return 1;
6810}
6811
4c4b4cd2
PH
6812/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6813 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6814 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6815
d2e4a39e 6816int
ebf56fd3 6817ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6818{
d2e4a39e 6819 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6820 int p;
6821
6822 p = 0;
6823 while (1)
6824 {
d2e4a39e 6825 switch (name[p])
4c4b4cd2
PH
6826 {
6827 case '\0':
6828 return 0;
6829 case 'S':
6830 {
6831 LONGEST W;
5b4ee69b 6832
4c4b4cd2
PH
6833 if (!ada_scan_number (name, p + 1, &W, &p))
6834 return 0;
6835 if (val == W)
6836 return 1;
6837 break;
6838 }
6839 case 'R':
6840 {
6841 LONGEST L, U;
5b4ee69b 6842
4c4b4cd2
PH
6843 if (!ada_scan_number (name, p + 1, &L, &p)
6844 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6845 return 0;
6846 if (val >= L && val <= U)
6847 return 1;
6848 break;
6849 }
6850 case 'O':
6851 return 1;
6852 default:
6853 return 0;
6854 }
6855 }
6856}
6857
0963b4bd 6858/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6859
6860/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6861 ARG_TYPE, extract and return the value of one of its (non-static)
6862 fields. FIELDNO says which field. Differs from value_primitive_field
6863 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6864
4c4b4cd2 6865static struct value *
d2e4a39e 6866ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6867 struct type *arg_type)
14f9c5c9 6868{
14f9c5c9
AS
6869 struct type *type;
6870
61ee279c 6871 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6872 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6873
4c4b4cd2 6874 /* Handle packed fields. */
14f9c5c9
AS
6875
6876 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6877 {
6878 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6879 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6880
0fd88904 6881 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6882 offset + bit_pos / 8,
6883 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6884 }
6885 else
6886 return value_primitive_field (arg1, offset, fieldno, arg_type);
6887}
6888
52ce6436
PH
6889/* Find field with name NAME in object of type TYPE. If found,
6890 set the following for each argument that is non-null:
6891 - *FIELD_TYPE_P to the field's type;
6892 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6893 an object of that type;
6894 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6895 - *BIT_SIZE_P to its size in bits if the field is packed, and
6896 0 otherwise;
6897 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6898 fields up to but not including the desired field, or by the total
6899 number of fields if not found. A NULL value of NAME never
6900 matches; the function just counts visible fields in this case.
6901
0963b4bd 6902 Returns 1 if found, 0 otherwise. */
52ce6436 6903
4c4b4cd2 6904static int
0d5cff50 6905find_struct_field (const char *name, struct type *type, int offset,
76a01679 6906 struct type **field_type_p,
52ce6436
PH
6907 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6908 int *index_p)
4c4b4cd2
PH
6909{
6910 int i;
6911
61ee279c 6912 type = ada_check_typedef (type);
76a01679 6913
52ce6436
PH
6914 if (field_type_p != NULL)
6915 *field_type_p = NULL;
6916 if (byte_offset_p != NULL)
d5d6fca5 6917 *byte_offset_p = 0;
52ce6436
PH
6918 if (bit_offset_p != NULL)
6919 *bit_offset_p = 0;
6920 if (bit_size_p != NULL)
6921 *bit_size_p = 0;
6922
6923 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6924 {
6925 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6926 int fld_offset = offset + bit_pos / 8;
0d5cff50 6927 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6928
4c4b4cd2
PH
6929 if (t_field_name == NULL)
6930 continue;
6931
52ce6436 6932 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6933 {
6934 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6935
52ce6436
PH
6936 if (field_type_p != NULL)
6937 *field_type_p = TYPE_FIELD_TYPE (type, i);
6938 if (byte_offset_p != NULL)
6939 *byte_offset_p = fld_offset;
6940 if (bit_offset_p != NULL)
6941 *bit_offset_p = bit_pos % 8;
6942 if (bit_size_p != NULL)
6943 *bit_size_p = bit_size;
76a01679
JB
6944 return 1;
6945 }
4c4b4cd2
PH
6946 else if (ada_is_wrapper_field (type, i))
6947 {
52ce6436
PH
6948 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6949 field_type_p, byte_offset_p, bit_offset_p,
6950 bit_size_p, index_p))
76a01679
JB
6951 return 1;
6952 }
4c4b4cd2
PH
6953 else if (ada_is_variant_part (type, i))
6954 {
52ce6436
PH
6955 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6956 fixed type?? */
4c4b4cd2 6957 int j;
52ce6436
PH
6958 struct type *field_type
6959 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6960
52ce6436 6961 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6962 {
76a01679
JB
6963 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6964 fld_offset
6965 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6966 field_type_p, byte_offset_p,
52ce6436 6967 bit_offset_p, bit_size_p, index_p))
76a01679 6968 return 1;
4c4b4cd2
PH
6969 }
6970 }
52ce6436
PH
6971 else if (index_p != NULL)
6972 *index_p += 1;
4c4b4cd2
PH
6973 }
6974 return 0;
6975}
6976
0963b4bd 6977/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6978
52ce6436
PH
6979static int
6980num_visible_fields (struct type *type)
6981{
6982 int n;
5b4ee69b 6983
52ce6436
PH
6984 n = 0;
6985 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6986 return n;
6987}
14f9c5c9 6988
4c4b4cd2 6989/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6990 and search in it assuming it has (class) type TYPE.
6991 If found, return value, else return NULL.
6992
4c4b4cd2 6993 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6994
4c4b4cd2 6995static struct value *
d2e4a39e 6996ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6997 struct type *type)
14f9c5c9
AS
6998{
6999 int i;
14f9c5c9 7000
5b4ee69b 7001 type = ada_check_typedef (type);
52ce6436 7002 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7003 {
0d5cff50 7004 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7005
7006 if (t_field_name == NULL)
4c4b4cd2 7007 continue;
14f9c5c9
AS
7008
7009 else if (field_name_match (t_field_name, name))
4c4b4cd2 7010 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7011
7012 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7013 {
0963b4bd 7014 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7015 ada_search_struct_field (name, arg,
7016 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7017 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7018
4c4b4cd2
PH
7019 if (v != NULL)
7020 return v;
7021 }
14f9c5c9
AS
7022
7023 else if (ada_is_variant_part (type, i))
4c4b4cd2 7024 {
0963b4bd 7025 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7026 int j;
5b4ee69b
MS
7027 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7028 i));
4c4b4cd2
PH
7029 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7030
52ce6436 7031 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7032 {
0963b4bd
MS
7033 struct value *v = ada_search_struct_field /* Force line
7034 break. */
06d5cf63
JB
7035 (name, arg,
7036 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7037 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7038
4c4b4cd2
PH
7039 if (v != NULL)
7040 return v;
7041 }
7042 }
14f9c5c9
AS
7043 }
7044 return NULL;
7045}
d2e4a39e 7046
52ce6436
PH
7047static struct value *ada_index_struct_field_1 (int *, struct value *,
7048 int, struct type *);
7049
7050
7051/* Return field #INDEX in ARG, where the index is that returned by
7052 * find_struct_field through its INDEX_P argument. Adjust the address
7053 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7054 * If found, return value, else return NULL. */
52ce6436
PH
7055
7056static struct value *
7057ada_index_struct_field (int index, struct value *arg, int offset,
7058 struct type *type)
7059{
7060 return ada_index_struct_field_1 (&index, arg, offset, type);
7061}
7062
7063
7064/* Auxiliary function for ada_index_struct_field. Like
7065 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7066 * *INDEX_P. */
52ce6436
PH
7067
7068static struct value *
7069ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7070 struct type *type)
7071{
7072 int i;
7073 type = ada_check_typedef (type);
7074
7075 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7076 {
7077 if (TYPE_FIELD_NAME (type, i) == NULL)
7078 continue;
7079 else if (ada_is_wrapper_field (type, i))
7080 {
0963b4bd 7081 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7082 ada_index_struct_field_1 (index_p, arg,
7083 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7084 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7085
52ce6436
PH
7086 if (v != NULL)
7087 return v;
7088 }
7089
7090 else if (ada_is_variant_part (type, i))
7091 {
7092 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7093 find_struct_field. */
52ce6436
PH
7094 error (_("Cannot assign this kind of variant record"));
7095 }
7096 else if (*index_p == 0)
7097 return ada_value_primitive_field (arg, offset, i, type);
7098 else
7099 *index_p -= 1;
7100 }
7101 return NULL;
7102}
7103
4c4b4cd2
PH
7104/* Given ARG, a value of type (pointer or reference to a)*
7105 structure/union, extract the component named NAME from the ultimate
7106 target structure/union and return it as a value with its
f5938064 7107 appropriate type.
14f9c5c9 7108
4c4b4cd2
PH
7109 The routine searches for NAME among all members of the structure itself
7110 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7111 (e.g., '_parent').
7112
03ee6b2e
PH
7113 If NO_ERR, then simply return NULL in case of error, rather than
7114 calling error. */
14f9c5c9 7115
d2e4a39e 7116struct value *
03ee6b2e 7117ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7118{
4c4b4cd2 7119 struct type *t, *t1;
d2e4a39e 7120 struct value *v;
14f9c5c9 7121
4c4b4cd2 7122 v = NULL;
df407dfe 7123 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7124 if (TYPE_CODE (t) == TYPE_CODE_REF)
7125 {
7126 t1 = TYPE_TARGET_TYPE (t);
7127 if (t1 == NULL)
03ee6b2e 7128 goto BadValue;
61ee279c 7129 t1 = ada_check_typedef (t1);
4c4b4cd2 7130 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7131 {
994b9211 7132 arg = coerce_ref (arg);
76a01679
JB
7133 t = t1;
7134 }
4c4b4cd2 7135 }
14f9c5c9 7136
4c4b4cd2
PH
7137 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7138 {
7139 t1 = TYPE_TARGET_TYPE (t);
7140 if (t1 == NULL)
03ee6b2e 7141 goto BadValue;
61ee279c 7142 t1 = ada_check_typedef (t1);
4c4b4cd2 7143 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7144 {
7145 arg = value_ind (arg);
7146 t = t1;
7147 }
4c4b4cd2 7148 else
76a01679 7149 break;
4c4b4cd2 7150 }
14f9c5c9 7151
4c4b4cd2 7152 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7153 goto BadValue;
14f9c5c9 7154
4c4b4cd2
PH
7155 if (t1 == t)
7156 v = ada_search_struct_field (name, arg, 0, t);
7157 else
7158 {
7159 int bit_offset, bit_size, byte_offset;
7160 struct type *field_type;
7161 CORE_ADDR address;
7162
76a01679 7163 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7164 address = value_address (ada_value_ind (arg));
4c4b4cd2 7165 else
b50d69b5 7166 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7167
1ed6ede0 7168 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7169 if (find_struct_field (name, t1, 0,
7170 &field_type, &byte_offset, &bit_offset,
52ce6436 7171 &bit_size, NULL))
76a01679
JB
7172 {
7173 if (bit_size != 0)
7174 {
714e53ab
PH
7175 if (TYPE_CODE (t) == TYPE_CODE_REF)
7176 arg = ada_coerce_ref (arg);
7177 else
7178 arg = ada_value_ind (arg);
76a01679
JB
7179 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7180 bit_offset, bit_size,
7181 field_type);
7182 }
7183 else
f5938064 7184 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7185 }
7186 }
7187
03ee6b2e
PH
7188 if (v != NULL || no_err)
7189 return v;
7190 else
323e0a4a 7191 error (_("There is no member named %s."), name);
14f9c5c9 7192
03ee6b2e
PH
7193 BadValue:
7194 if (no_err)
7195 return NULL;
7196 else
0963b4bd
MS
7197 error (_("Attempt to extract a component of "
7198 "a value that is not a record."));
14f9c5c9
AS
7199}
7200
7201/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7202 If DISPP is non-null, add its byte displacement from the beginning of a
7203 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7204 work for packed fields).
7205
7206 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7207 followed by "___".
14f9c5c9 7208
0963b4bd 7209 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7210 be a (pointer or reference)+ to a struct or union, and the
7211 ultimate target type will be searched.
14f9c5c9
AS
7212
7213 Looks recursively into variant clauses and parent types.
7214
4c4b4cd2
PH
7215 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7216 TYPE is not a type of the right kind. */
14f9c5c9 7217
4c4b4cd2 7218static struct type *
76a01679
JB
7219ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7220 int noerr, int *dispp)
14f9c5c9
AS
7221{
7222 int i;
7223
7224 if (name == NULL)
7225 goto BadName;
7226
76a01679 7227 if (refok && type != NULL)
4c4b4cd2
PH
7228 while (1)
7229 {
61ee279c 7230 type = ada_check_typedef (type);
76a01679
JB
7231 if (TYPE_CODE (type) != TYPE_CODE_PTR
7232 && TYPE_CODE (type) != TYPE_CODE_REF)
7233 break;
7234 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7235 }
14f9c5c9 7236
76a01679 7237 if (type == NULL
1265e4aa
JB
7238 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7239 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7240 {
4c4b4cd2 7241 if (noerr)
76a01679 7242 return NULL;
4c4b4cd2 7243 else
76a01679
JB
7244 {
7245 target_terminal_ours ();
7246 gdb_flush (gdb_stdout);
323e0a4a
AC
7247 if (type == NULL)
7248 error (_("Type (null) is not a structure or union type"));
7249 else
7250 {
7251 /* XXX: type_sprint */
7252 fprintf_unfiltered (gdb_stderr, _("Type "));
7253 type_print (type, "", gdb_stderr, -1);
7254 error (_(" is not a structure or union type"));
7255 }
76a01679 7256 }
14f9c5c9
AS
7257 }
7258
7259 type = to_static_fixed_type (type);
7260
7261 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7262 {
0d5cff50 7263 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7264 struct type *t;
7265 int disp;
d2e4a39e 7266
14f9c5c9 7267 if (t_field_name == NULL)
4c4b4cd2 7268 continue;
14f9c5c9
AS
7269
7270 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7271 {
7272 if (dispp != NULL)
7273 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7274 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7275 }
14f9c5c9
AS
7276
7277 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7278 {
7279 disp = 0;
7280 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7281 0, 1, &disp);
7282 if (t != NULL)
7283 {
7284 if (dispp != NULL)
7285 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7286 return t;
7287 }
7288 }
14f9c5c9
AS
7289
7290 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7291 {
7292 int j;
5b4ee69b
MS
7293 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7294 i));
4c4b4cd2
PH
7295
7296 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7297 {
b1f33ddd
JB
7298 /* FIXME pnh 2008/01/26: We check for a field that is
7299 NOT wrapped in a struct, since the compiler sometimes
7300 generates these for unchecked variant types. Revisit
0963b4bd 7301 if the compiler changes this practice. */
0d5cff50 7302 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7303 disp = 0;
b1f33ddd
JB
7304 if (v_field_name != NULL
7305 && field_name_match (v_field_name, name))
7306 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7307 else
0963b4bd
MS
7308 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7309 j),
b1f33ddd
JB
7310 name, 0, 1, &disp);
7311
4c4b4cd2
PH
7312 if (t != NULL)
7313 {
7314 if (dispp != NULL)
7315 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7316 return t;
7317 }
7318 }
7319 }
14f9c5c9
AS
7320
7321 }
7322
7323BadName:
d2e4a39e 7324 if (!noerr)
14f9c5c9
AS
7325 {
7326 target_terminal_ours ();
7327 gdb_flush (gdb_stdout);
323e0a4a
AC
7328 if (name == NULL)
7329 {
7330 /* XXX: type_sprint */
7331 fprintf_unfiltered (gdb_stderr, _("Type "));
7332 type_print (type, "", gdb_stderr, -1);
7333 error (_(" has no component named <null>"));
7334 }
7335 else
7336 {
7337 /* XXX: type_sprint */
7338 fprintf_unfiltered (gdb_stderr, _("Type "));
7339 type_print (type, "", gdb_stderr, -1);
7340 error (_(" has no component named %s"), name);
7341 }
14f9c5c9
AS
7342 }
7343
7344 return NULL;
7345}
7346
b1f33ddd
JB
7347/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7348 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7349 represents an unchecked union (that is, the variant part of a
0963b4bd 7350 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7351
7352static int
7353is_unchecked_variant (struct type *var_type, struct type *outer_type)
7354{
7355 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7356
b1f33ddd
JB
7357 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7358 == NULL);
7359}
7360
7361
14f9c5c9
AS
7362/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7363 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7364 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7365 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7366
d2e4a39e 7367int
ebf56fd3 7368ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7369 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7370{
7371 int others_clause;
7372 int i;
d2e4a39e 7373 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7374 struct value *outer;
7375 struct value *discrim;
14f9c5c9
AS
7376 LONGEST discrim_val;
7377
012370f6
TT
7378 /* Using plain value_from_contents_and_address here causes problems
7379 because we will end up trying to resolve a type that is currently
7380 being constructed. */
7381 outer = value_from_contents_and_address_unresolved (outer_type,
7382 outer_valaddr, 0);
0c281816
JB
7383 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7384 if (discrim == NULL)
14f9c5c9 7385 return -1;
0c281816 7386 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7387
7388 others_clause = -1;
7389 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7390 {
7391 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7392 others_clause = i;
14f9c5c9 7393 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7394 return i;
14f9c5c9
AS
7395 }
7396
7397 return others_clause;
7398}
d2e4a39e 7399\f
14f9c5c9
AS
7400
7401
4c4b4cd2 7402 /* Dynamic-Sized Records */
14f9c5c9
AS
7403
7404/* Strategy: The type ostensibly attached to a value with dynamic size
7405 (i.e., a size that is not statically recorded in the debugging
7406 data) does not accurately reflect the size or layout of the value.
7407 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7408 conventional types that are constructed on the fly. */
14f9c5c9
AS
7409
7410/* There is a subtle and tricky problem here. In general, we cannot
7411 determine the size of dynamic records without its data. However,
7412 the 'struct value' data structure, which GDB uses to represent
7413 quantities in the inferior process (the target), requires the size
7414 of the type at the time of its allocation in order to reserve space
7415 for GDB's internal copy of the data. That's why the
7416 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7417 rather than struct value*s.
14f9c5c9
AS
7418
7419 However, GDB's internal history variables ($1, $2, etc.) are
7420 struct value*s containing internal copies of the data that are not, in
7421 general, the same as the data at their corresponding addresses in
7422 the target. Fortunately, the types we give to these values are all
7423 conventional, fixed-size types (as per the strategy described
7424 above), so that we don't usually have to perform the
7425 'to_fixed_xxx_type' conversions to look at their values.
7426 Unfortunately, there is one exception: if one of the internal
7427 history variables is an array whose elements are unconstrained
7428 records, then we will need to create distinct fixed types for each
7429 element selected. */
7430
7431/* The upshot of all of this is that many routines take a (type, host
7432 address, target address) triple as arguments to represent a value.
7433 The host address, if non-null, is supposed to contain an internal
7434 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7435 target at the target address. */
14f9c5c9
AS
7436
7437/* Assuming that VAL0 represents a pointer value, the result of
7438 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7439 dynamic-sized types. */
14f9c5c9 7440
d2e4a39e
AS
7441struct value *
7442ada_value_ind (struct value *val0)
14f9c5c9 7443{
c48db5ca 7444 struct value *val = value_ind (val0);
5b4ee69b 7445
b50d69b5
JG
7446 if (ada_is_tagged_type (value_type (val), 0))
7447 val = ada_tag_value_at_base_address (val);
7448
4c4b4cd2 7449 return ada_to_fixed_value (val);
14f9c5c9
AS
7450}
7451
7452/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7453 qualifiers on VAL0. */
7454
d2e4a39e
AS
7455static struct value *
7456ada_coerce_ref (struct value *val0)
7457{
df407dfe 7458 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7459 {
7460 struct value *val = val0;
5b4ee69b 7461
994b9211 7462 val = coerce_ref (val);
b50d69b5
JG
7463
7464 if (ada_is_tagged_type (value_type (val), 0))
7465 val = ada_tag_value_at_base_address (val);
7466
4c4b4cd2 7467 return ada_to_fixed_value (val);
d2e4a39e
AS
7468 }
7469 else
14f9c5c9
AS
7470 return val0;
7471}
7472
7473/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7474 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7475
7476static unsigned int
ebf56fd3 7477align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7478{
7479 return (off + alignment - 1) & ~(alignment - 1);
7480}
7481
4c4b4cd2 7482/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7483
7484static unsigned int
ebf56fd3 7485field_alignment (struct type *type, int f)
14f9c5c9 7486{
d2e4a39e 7487 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7488 int len;
14f9c5c9
AS
7489 int align_offset;
7490
64a1bf19
JB
7491 /* The field name should never be null, unless the debugging information
7492 is somehow malformed. In this case, we assume the field does not
7493 require any alignment. */
7494 if (name == NULL)
7495 return 1;
7496
7497 len = strlen (name);
7498
4c4b4cd2
PH
7499 if (!isdigit (name[len - 1]))
7500 return 1;
14f9c5c9 7501
d2e4a39e 7502 if (isdigit (name[len - 2]))
14f9c5c9
AS
7503 align_offset = len - 2;
7504 else
7505 align_offset = len - 1;
7506
4c4b4cd2 7507 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7508 return TARGET_CHAR_BIT;
7509
4c4b4cd2
PH
7510 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7511}
7512
852dff6c 7513/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7514
852dff6c
JB
7515static struct symbol *
7516ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7517{
7518 struct symbol *sym;
7519
7520 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7521 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7522 return sym;
7523
4186eb54
KS
7524 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7525 return sym;
14f9c5c9
AS
7526}
7527
dddfab26
UW
7528/* Find a type named NAME. Ignores ambiguity. This routine will look
7529 solely for types defined by debug info, it will not search the GDB
7530 primitive types. */
4c4b4cd2 7531
852dff6c 7532static struct type *
ebf56fd3 7533ada_find_any_type (const char *name)
14f9c5c9 7534{
852dff6c 7535 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7536
14f9c5c9 7537 if (sym != NULL)
dddfab26 7538 return SYMBOL_TYPE (sym);
14f9c5c9 7539
dddfab26 7540 return NULL;
14f9c5c9
AS
7541}
7542
739593e0
JB
7543/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7544 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7545 symbol, in which case it is returned. Otherwise, this looks for
7546 symbols whose name is that of NAME_SYM suffixed with "___XR".
7547 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7548
7549struct symbol *
270140bd 7550ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7551{
739593e0 7552 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7553 struct symbol *sym;
7554
739593e0
JB
7555 if (strstr (name, "___XR") != NULL)
7556 return name_sym;
7557
aeb5907d
JB
7558 sym = find_old_style_renaming_symbol (name, block);
7559
7560 if (sym != NULL)
7561 return sym;
7562
0963b4bd 7563 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7564 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7565 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7566 return sym;
7567 else
7568 return NULL;
7569}
7570
7571static struct symbol *
270140bd 7572find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7573{
7f0df278 7574 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7575 char *rename;
7576
7577 if (function_sym != NULL)
7578 {
7579 /* If the symbol is defined inside a function, NAME is not fully
7580 qualified. This means we need to prepend the function name
7581 as well as adding the ``___XR'' suffix to build the name of
7582 the associated renaming symbol. */
0d5cff50 7583 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7584 /* Function names sometimes contain suffixes used
7585 for instance to qualify nested subprograms. When building
7586 the XR type name, we need to make sure that this suffix is
7587 not included. So do not include any suffix in the function
7588 name length below. */
69fadcdf 7589 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7590 const int rename_len = function_name_len + 2 /* "__" */
7591 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7592
529cad9c 7593 /* Strip the suffix if necessary. */
69fadcdf
JB
7594 ada_remove_trailing_digits (function_name, &function_name_len);
7595 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7596 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7597
4c4b4cd2
PH
7598 /* Library-level functions are a special case, as GNAT adds
7599 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7600 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7601 have this prefix, so we need to skip this prefix if present. */
7602 if (function_name_len > 5 /* "_ada_" */
7603 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7604 {
7605 function_name += 5;
7606 function_name_len -= 5;
7607 }
4c4b4cd2
PH
7608
7609 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7610 strncpy (rename, function_name, function_name_len);
7611 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7612 "__%s___XR", name);
4c4b4cd2
PH
7613 }
7614 else
7615 {
7616 const int rename_len = strlen (name) + 6;
5b4ee69b 7617
4c4b4cd2 7618 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7619 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7620 }
7621
852dff6c 7622 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7623}
7624
14f9c5c9 7625/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7626 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7627 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7628 otherwise return 0. */
7629
14f9c5c9 7630int
d2e4a39e 7631ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7632{
7633 if (type1 == NULL)
7634 return 1;
7635 else if (type0 == NULL)
7636 return 0;
7637 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7638 return 1;
7639 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7640 return 0;
4c4b4cd2
PH
7641 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7642 return 1;
ad82864c 7643 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7644 return 1;
4c4b4cd2
PH
7645 else if (ada_is_array_descriptor_type (type0)
7646 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7647 return 1;
aeb5907d
JB
7648 else
7649 {
7650 const char *type0_name = type_name_no_tag (type0);
7651 const char *type1_name = type_name_no_tag (type1);
7652
7653 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7654 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7655 return 1;
7656 }
14f9c5c9
AS
7657 return 0;
7658}
7659
7660/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7661 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7662
0d5cff50 7663const char *
d2e4a39e 7664ada_type_name (struct type *type)
14f9c5c9 7665{
d2e4a39e 7666 if (type == NULL)
14f9c5c9
AS
7667 return NULL;
7668 else if (TYPE_NAME (type) != NULL)
7669 return TYPE_NAME (type);
7670 else
7671 return TYPE_TAG_NAME (type);
7672}
7673
b4ba55a1
JB
7674/* Search the list of "descriptive" types associated to TYPE for a type
7675 whose name is NAME. */
7676
7677static struct type *
7678find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7679{
7680 struct type *result;
7681
c6044dd1
JB
7682 if (ada_ignore_descriptive_types_p)
7683 return NULL;
7684
b4ba55a1
JB
7685 /* If there no descriptive-type info, then there is no parallel type
7686 to be found. */
7687 if (!HAVE_GNAT_AUX_INFO (type))
7688 return NULL;
7689
7690 result = TYPE_DESCRIPTIVE_TYPE (type);
7691 while (result != NULL)
7692 {
0d5cff50 7693 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7694
7695 if (result_name == NULL)
7696 {
7697 warning (_("unexpected null name on descriptive type"));
7698 return NULL;
7699 }
7700
7701 /* If the names match, stop. */
7702 if (strcmp (result_name, name) == 0)
7703 break;
7704
7705 /* Otherwise, look at the next item on the list, if any. */
7706 if (HAVE_GNAT_AUX_INFO (result))
7707 result = TYPE_DESCRIPTIVE_TYPE (result);
7708 else
7709 result = NULL;
7710 }
7711
7712 /* If we didn't find a match, see whether this is a packed array. With
7713 older compilers, the descriptive type information is either absent or
7714 irrelevant when it comes to packed arrays so the above lookup fails.
7715 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7716 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7717 return ada_find_any_type (name);
7718
7719 return result;
7720}
7721
7722/* Find a parallel type to TYPE with the specified NAME, using the
7723 descriptive type taken from the debugging information, if available,
7724 and otherwise using the (slower) name-based method. */
7725
7726static struct type *
7727ada_find_parallel_type_with_name (struct type *type, const char *name)
7728{
7729 struct type *result = NULL;
7730
7731 if (HAVE_GNAT_AUX_INFO (type))
7732 result = find_parallel_type_by_descriptive_type (type, name);
7733 else
7734 result = ada_find_any_type (name);
7735
7736 return result;
7737}
7738
7739/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7740 SUFFIX to the name of TYPE. */
14f9c5c9 7741
d2e4a39e 7742struct type *
ebf56fd3 7743ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7744{
0d5cff50
DE
7745 char *name;
7746 const char *typename = ada_type_name (type);
14f9c5c9 7747 int len;
d2e4a39e 7748
14f9c5c9
AS
7749 if (typename == NULL)
7750 return NULL;
7751
7752 len = strlen (typename);
7753
b4ba55a1 7754 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7755
7756 strcpy (name, typename);
7757 strcpy (name + len, suffix);
7758
b4ba55a1 7759 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7760}
7761
14f9c5c9 7762/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7763 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7764
d2e4a39e
AS
7765static struct type *
7766dynamic_template_type (struct type *type)
14f9c5c9 7767{
61ee279c 7768 type = ada_check_typedef (type);
14f9c5c9
AS
7769
7770 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7771 || ada_type_name (type) == NULL)
14f9c5c9 7772 return NULL;
d2e4a39e 7773 else
14f9c5c9
AS
7774 {
7775 int len = strlen (ada_type_name (type));
5b4ee69b 7776
4c4b4cd2
PH
7777 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7778 return type;
14f9c5c9 7779 else
4c4b4cd2 7780 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7781 }
7782}
7783
7784/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7785 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7786
d2e4a39e
AS
7787static int
7788is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7789{
7790 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7791
d2e4a39e 7792 return name != NULL
14f9c5c9
AS
7793 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7794 && strstr (name, "___XVL") != NULL;
7795}
7796
4c4b4cd2
PH
7797/* The index of the variant field of TYPE, or -1 if TYPE does not
7798 represent a variant record type. */
14f9c5c9 7799
d2e4a39e 7800static int
4c4b4cd2 7801variant_field_index (struct type *type)
14f9c5c9
AS
7802{
7803 int f;
7804
4c4b4cd2
PH
7805 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7806 return -1;
7807
7808 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7809 {
7810 if (ada_is_variant_part (type, f))
7811 return f;
7812 }
7813 return -1;
14f9c5c9
AS
7814}
7815
4c4b4cd2
PH
7816/* A record type with no fields. */
7817
d2e4a39e 7818static struct type *
e9bb382b 7819empty_record (struct type *template)
14f9c5c9 7820{
e9bb382b 7821 struct type *type = alloc_type_copy (template);
5b4ee69b 7822
14f9c5c9
AS
7823 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7824 TYPE_NFIELDS (type) = 0;
7825 TYPE_FIELDS (type) = NULL;
b1f33ddd 7826 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7827 TYPE_NAME (type) = "<empty>";
7828 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7829 TYPE_LENGTH (type) = 0;
7830 return type;
7831}
7832
7833/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7834 the value of type TYPE at VALADDR or ADDRESS (see comments at
7835 the beginning of this section) VAL according to GNAT conventions.
7836 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7837 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7838 an outer-level type (i.e., as opposed to a branch of a variant.) A
7839 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7840 of the variant.
14f9c5c9 7841
4c4b4cd2
PH
7842 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7843 length are not statically known are discarded. As a consequence,
7844 VALADDR, ADDRESS and DVAL0 are ignored.
7845
7846 NOTE: Limitations: For now, we assume that dynamic fields and
7847 variants occupy whole numbers of bytes. However, they need not be
7848 byte-aligned. */
7849
7850struct type *
10a2c479 7851ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7852 const gdb_byte *valaddr,
4c4b4cd2
PH
7853 CORE_ADDR address, struct value *dval0,
7854 int keep_dynamic_fields)
14f9c5c9 7855{
d2e4a39e
AS
7856 struct value *mark = value_mark ();
7857 struct value *dval;
7858 struct type *rtype;
14f9c5c9 7859 int nfields, bit_len;
4c4b4cd2 7860 int variant_field;
14f9c5c9 7861 long off;
d94e4f4f 7862 int fld_bit_len;
14f9c5c9
AS
7863 int f;
7864
4c4b4cd2
PH
7865 /* Compute the number of fields in this record type that are going
7866 to be processed: unless keep_dynamic_fields, this includes only
7867 fields whose position and length are static will be processed. */
7868 if (keep_dynamic_fields)
7869 nfields = TYPE_NFIELDS (type);
7870 else
7871 {
7872 nfields = 0;
76a01679 7873 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7874 && !ada_is_variant_part (type, nfields)
7875 && !is_dynamic_field (type, nfields))
7876 nfields++;
7877 }
7878
e9bb382b 7879 rtype = alloc_type_copy (type);
14f9c5c9
AS
7880 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7881 INIT_CPLUS_SPECIFIC (rtype);
7882 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7883 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7884 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7885 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7886 TYPE_NAME (rtype) = ada_type_name (type);
7887 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7888 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7889
d2e4a39e
AS
7890 off = 0;
7891 bit_len = 0;
4c4b4cd2
PH
7892 variant_field = -1;
7893
14f9c5c9
AS
7894 for (f = 0; f < nfields; f += 1)
7895 {
6c038f32
PH
7896 off = align_value (off, field_alignment (type, f))
7897 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7898 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7899 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7900
d2e4a39e 7901 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7902 {
7903 variant_field = f;
d94e4f4f 7904 fld_bit_len = 0;
4c4b4cd2 7905 }
14f9c5c9 7906 else if (is_dynamic_field (type, f))
4c4b4cd2 7907 {
284614f0
JB
7908 const gdb_byte *field_valaddr = valaddr;
7909 CORE_ADDR field_address = address;
7910 struct type *field_type =
7911 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7912
4c4b4cd2 7913 if (dval0 == NULL)
b5304971
JG
7914 {
7915 /* rtype's length is computed based on the run-time
7916 value of discriminants. If the discriminants are not
7917 initialized, the type size may be completely bogus and
0963b4bd 7918 GDB may fail to allocate a value for it. So check the
b5304971
JG
7919 size first before creating the value. */
7920 check_size (rtype);
012370f6
TT
7921 /* Using plain value_from_contents_and_address here
7922 causes problems because we will end up trying to
7923 resolve a type that is currently being
7924 constructed. */
7925 dval = value_from_contents_and_address_unresolved (rtype,
7926 valaddr,
7927 address);
9f1f738a 7928 rtype = value_type (dval);
b5304971 7929 }
4c4b4cd2
PH
7930 else
7931 dval = dval0;
7932
284614f0
JB
7933 /* If the type referenced by this field is an aligner type, we need
7934 to unwrap that aligner type, because its size might not be set.
7935 Keeping the aligner type would cause us to compute the wrong
7936 size for this field, impacting the offset of the all the fields
7937 that follow this one. */
7938 if (ada_is_aligner_type (field_type))
7939 {
7940 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7941
7942 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7943 field_address = cond_offset_target (field_address, field_offset);
7944 field_type = ada_aligned_type (field_type);
7945 }
7946
7947 field_valaddr = cond_offset_host (field_valaddr,
7948 off / TARGET_CHAR_BIT);
7949 field_address = cond_offset_target (field_address,
7950 off / TARGET_CHAR_BIT);
7951
7952 /* Get the fixed type of the field. Note that, in this case,
7953 we do not want to get the real type out of the tag: if
7954 the current field is the parent part of a tagged record,
7955 we will get the tag of the object. Clearly wrong: the real
7956 type of the parent is not the real type of the child. We
7957 would end up in an infinite loop. */
7958 field_type = ada_get_base_type (field_type);
7959 field_type = ada_to_fixed_type (field_type, field_valaddr,
7960 field_address, dval, 0);
27f2a97b
JB
7961 /* If the field size is already larger than the maximum
7962 object size, then the record itself will necessarily
7963 be larger than the maximum object size. We need to make
7964 this check now, because the size might be so ridiculously
7965 large (due to an uninitialized variable in the inferior)
7966 that it would cause an overflow when adding it to the
7967 record size. */
7968 check_size (field_type);
284614f0
JB
7969
7970 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7971 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7972 /* The multiplication can potentially overflow. But because
7973 the field length has been size-checked just above, and
7974 assuming that the maximum size is a reasonable value,
7975 an overflow should not happen in practice. So rather than
7976 adding overflow recovery code to this already complex code,
7977 we just assume that it's not going to happen. */
d94e4f4f 7978 fld_bit_len =
4c4b4cd2
PH
7979 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7980 }
14f9c5c9 7981 else
4c4b4cd2 7982 {
5ded5331
JB
7983 /* Note: If this field's type is a typedef, it is important
7984 to preserve the typedef layer.
7985
7986 Otherwise, we might be transforming a typedef to a fat
7987 pointer (encoding a pointer to an unconstrained array),
7988 into a basic fat pointer (encoding an unconstrained
7989 array). As both types are implemented using the same
7990 structure, the typedef is the only clue which allows us
7991 to distinguish between the two options. Stripping it
7992 would prevent us from printing this field appropriately. */
7993 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7994 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7995 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7996 fld_bit_len =
4c4b4cd2
PH
7997 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7998 else
5ded5331
JB
7999 {
8000 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8001
8002 /* We need to be careful of typedefs when computing
8003 the length of our field. If this is a typedef,
8004 get the length of the target type, not the length
8005 of the typedef. */
8006 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8007 field_type = ada_typedef_target_type (field_type);
8008
8009 fld_bit_len =
8010 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8011 }
4c4b4cd2 8012 }
14f9c5c9 8013 if (off + fld_bit_len > bit_len)
4c4b4cd2 8014 bit_len = off + fld_bit_len;
d94e4f4f 8015 off += fld_bit_len;
4c4b4cd2
PH
8016 TYPE_LENGTH (rtype) =
8017 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8018 }
4c4b4cd2
PH
8019
8020 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8021 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8022 the record. This can happen in the presence of representation
8023 clauses. */
8024 if (variant_field >= 0)
8025 {
8026 struct type *branch_type;
8027
8028 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8029
8030 if (dval0 == NULL)
9f1f738a 8031 {
012370f6
TT
8032 /* Using plain value_from_contents_and_address here causes
8033 problems because we will end up trying to resolve a type
8034 that is currently being constructed. */
8035 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8036 address);
9f1f738a
SA
8037 rtype = value_type (dval);
8038 }
4c4b4cd2
PH
8039 else
8040 dval = dval0;
8041
8042 branch_type =
8043 to_fixed_variant_branch_type
8044 (TYPE_FIELD_TYPE (type, variant_field),
8045 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8046 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8047 if (branch_type == NULL)
8048 {
8049 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8050 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8051 TYPE_NFIELDS (rtype) -= 1;
8052 }
8053 else
8054 {
8055 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8056 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8057 fld_bit_len =
8058 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8059 TARGET_CHAR_BIT;
8060 if (off + fld_bit_len > bit_len)
8061 bit_len = off + fld_bit_len;
8062 TYPE_LENGTH (rtype) =
8063 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8064 }
8065 }
8066
714e53ab
PH
8067 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8068 should contain the alignment of that record, which should be a strictly
8069 positive value. If null or negative, then something is wrong, most
8070 probably in the debug info. In that case, we don't round up the size
0963b4bd 8071 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8072 the current RTYPE length might be good enough for our purposes. */
8073 if (TYPE_LENGTH (type) <= 0)
8074 {
323e0a4a
AC
8075 if (TYPE_NAME (rtype))
8076 warning (_("Invalid type size for `%s' detected: %d."),
8077 TYPE_NAME (rtype), TYPE_LENGTH (type));
8078 else
8079 warning (_("Invalid type size for <unnamed> detected: %d."),
8080 TYPE_LENGTH (type));
714e53ab
PH
8081 }
8082 else
8083 {
8084 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8085 TYPE_LENGTH (type));
8086 }
14f9c5c9
AS
8087
8088 value_free_to_mark (mark);
d2e4a39e 8089 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8090 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8091 return rtype;
8092}
8093
4c4b4cd2
PH
8094/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8095 of 1. */
14f9c5c9 8096
d2e4a39e 8097static struct type *
fc1a4b47 8098template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8099 CORE_ADDR address, struct value *dval0)
8100{
8101 return ada_template_to_fixed_record_type_1 (type, valaddr,
8102 address, dval0, 1);
8103}
8104
8105/* An ordinary record type in which ___XVL-convention fields and
8106 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8107 static approximations, containing all possible fields. Uses
8108 no runtime values. Useless for use in values, but that's OK,
8109 since the results are used only for type determinations. Works on both
8110 structs and unions. Representation note: to save space, we memorize
8111 the result of this function in the TYPE_TARGET_TYPE of the
8112 template type. */
8113
8114static struct type *
8115template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8116{
8117 struct type *type;
8118 int nfields;
8119 int f;
8120
4c4b4cd2
PH
8121 if (TYPE_TARGET_TYPE (type0) != NULL)
8122 return TYPE_TARGET_TYPE (type0);
8123
8124 nfields = TYPE_NFIELDS (type0);
8125 type = type0;
14f9c5c9
AS
8126
8127 for (f = 0; f < nfields; f += 1)
8128 {
61ee279c 8129 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8130 struct type *new_type;
14f9c5c9 8131
4c4b4cd2
PH
8132 if (is_dynamic_field (type0, f))
8133 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8134 else
f192137b 8135 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8136 if (type == type0 && new_type != field_type)
8137 {
e9bb382b 8138 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8139 TYPE_CODE (type) = TYPE_CODE (type0);
8140 INIT_CPLUS_SPECIFIC (type);
8141 TYPE_NFIELDS (type) = nfields;
8142 TYPE_FIELDS (type) = (struct field *)
8143 TYPE_ALLOC (type, nfields * sizeof (struct field));
8144 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8145 sizeof (struct field) * nfields);
8146 TYPE_NAME (type) = ada_type_name (type0);
8147 TYPE_TAG_NAME (type) = NULL;
876cecd0 8148 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8149 TYPE_LENGTH (type) = 0;
8150 }
8151 TYPE_FIELD_TYPE (type, f) = new_type;
8152 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8153 }
14f9c5c9
AS
8154 return type;
8155}
8156
4c4b4cd2 8157/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8158 whose address in memory is ADDRESS, returns a revision of TYPE,
8159 which should be a non-dynamic-sized record, in which the variant
8160 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8161 for discriminant values in DVAL0, which can be NULL if the record
8162 contains the necessary discriminant values. */
8163
d2e4a39e 8164static struct type *
fc1a4b47 8165to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8166 CORE_ADDR address, struct value *dval0)
14f9c5c9 8167{
d2e4a39e 8168 struct value *mark = value_mark ();
4c4b4cd2 8169 struct value *dval;
d2e4a39e 8170 struct type *rtype;
14f9c5c9
AS
8171 struct type *branch_type;
8172 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8173 int variant_field = variant_field_index (type);
14f9c5c9 8174
4c4b4cd2 8175 if (variant_field == -1)
14f9c5c9
AS
8176 return type;
8177
4c4b4cd2 8178 if (dval0 == NULL)
9f1f738a
SA
8179 {
8180 dval = value_from_contents_and_address (type, valaddr, address);
8181 type = value_type (dval);
8182 }
4c4b4cd2
PH
8183 else
8184 dval = dval0;
8185
e9bb382b 8186 rtype = alloc_type_copy (type);
14f9c5c9 8187 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8188 INIT_CPLUS_SPECIFIC (rtype);
8189 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8190 TYPE_FIELDS (rtype) =
8191 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8192 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8193 sizeof (struct field) * nfields);
14f9c5c9
AS
8194 TYPE_NAME (rtype) = ada_type_name (type);
8195 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8196 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8197 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8198
4c4b4cd2
PH
8199 branch_type = to_fixed_variant_branch_type
8200 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8201 cond_offset_host (valaddr,
4c4b4cd2
PH
8202 TYPE_FIELD_BITPOS (type, variant_field)
8203 / TARGET_CHAR_BIT),
d2e4a39e 8204 cond_offset_target (address,
4c4b4cd2
PH
8205 TYPE_FIELD_BITPOS (type, variant_field)
8206 / TARGET_CHAR_BIT), dval);
d2e4a39e 8207 if (branch_type == NULL)
14f9c5c9 8208 {
4c4b4cd2 8209 int f;
5b4ee69b 8210
4c4b4cd2
PH
8211 for (f = variant_field + 1; f < nfields; f += 1)
8212 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8213 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8214 }
8215 else
8216 {
4c4b4cd2
PH
8217 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8218 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8219 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8220 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8221 }
4c4b4cd2 8222 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8223
4c4b4cd2 8224 value_free_to_mark (mark);
14f9c5c9
AS
8225 return rtype;
8226}
8227
8228/* An ordinary record type (with fixed-length fields) that describes
8229 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8230 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8231 should be in DVAL, a record value; it may be NULL if the object
8232 at ADDR itself contains any necessary discriminant values.
8233 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8234 values from the record are needed. Except in the case that DVAL,
8235 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8236 unchecked) is replaced by a particular branch of the variant.
8237
8238 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8239 is questionable and may be removed. It can arise during the
8240 processing of an unconstrained-array-of-record type where all the
8241 variant branches have exactly the same size. This is because in
8242 such cases, the compiler does not bother to use the XVS convention
8243 when encoding the record. I am currently dubious of this
8244 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8245
d2e4a39e 8246static struct type *
fc1a4b47 8247to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8248 CORE_ADDR address, struct value *dval)
14f9c5c9 8249{
d2e4a39e 8250 struct type *templ_type;
14f9c5c9 8251
876cecd0 8252 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8253 return type0;
8254
d2e4a39e 8255 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8256
8257 if (templ_type != NULL)
8258 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8259 else if (variant_field_index (type0) >= 0)
8260 {
8261 if (dval == NULL && valaddr == NULL && address == 0)
8262 return type0;
8263 return to_record_with_fixed_variant_part (type0, valaddr, address,
8264 dval);
8265 }
14f9c5c9
AS
8266 else
8267 {
876cecd0 8268 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8269 return type0;
8270 }
8271
8272}
8273
8274/* An ordinary record type (with fixed-length fields) that describes
8275 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8276 union type. Any necessary discriminants' values should be in DVAL,
8277 a record value. That is, this routine selects the appropriate
8278 branch of the union at ADDR according to the discriminant value
b1f33ddd 8279 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8280 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8281
d2e4a39e 8282static struct type *
fc1a4b47 8283to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8284 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8285{
8286 int which;
d2e4a39e
AS
8287 struct type *templ_type;
8288 struct type *var_type;
14f9c5c9
AS
8289
8290 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8291 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8292 else
14f9c5c9
AS
8293 var_type = var_type0;
8294
8295 templ_type = ada_find_parallel_type (var_type, "___XVU");
8296
8297 if (templ_type != NULL)
8298 var_type = templ_type;
8299
b1f33ddd
JB
8300 if (is_unchecked_variant (var_type, value_type (dval)))
8301 return var_type0;
d2e4a39e
AS
8302 which =
8303 ada_which_variant_applies (var_type,
0fd88904 8304 value_type (dval), value_contents (dval));
14f9c5c9
AS
8305
8306 if (which < 0)
e9bb382b 8307 return empty_record (var_type);
14f9c5c9 8308 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8309 return to_fixed_record_type
d2e4a39e
AS
8310 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8311 valaddr, address, dval);
4c4b4cd2 8312 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8313 return
8314 to_fixed_record_type
8315 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8316 else
8317 return TYPE_FIELD_TYPE (var_type, which);
8318}
8319
8908fca5
JB
8320/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8321 ENCODING_TYPE, a type following the GNAT conventions for discrete
8322 type encodings, only carries redundant information. */
8323
8324static int
8325ada_is_redundant_range_encoding (struct type *range_type,
8326 struct type *encoding_type)
8327{
8328 struct type *fixed_range_type;
8329 char *bounds_str;
8330 int n;
8331 LONGEST lo, hi;
8332
8333 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8334
005e2509
JB
8335 if (TYPE_CODE (get_base_type (range_type))
8336 != TYPE_CODE (get_base_type (encoding_type)))
8337 {
8338 /* The compiler probably used a simple base type to describe
8339 the range type instead of the range's actual base type,
8340 expecting us to get the real base type from the encoding
8341 anyway. In this situation, the encoding cannot be ignored
8342 as redundant. */
8343 return 0;
8344 }
8345
8908fca5
JB
8346 if (is_dynamic_type (range_type))
8347 return 0;
8348
8349 if (TYPE_NAME (encoding_type) == NULL)
8350 return 0;
8351
8352 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8353 if (bounds_str == NULL)
8354 return 0;
8355
8356 n = 8; /* Skip "___XDLU_". */
8357 if (!ada_scan_number (bounds_str, n, &lo, &n))
8358 return 0;
8359 if (TYPE_LOW_BOUND (range_type) != lo)
8360 return 0;
8361
8362 n += 2; /* Skip the "__" separator between the two bounds. */
8363 if (!ada_scan_number (bounds_str, n, &hi, &n))
8364 return 0;
8365 if (TYPE_HIGH_BOUND (range_type) != hi)
8366 return 0;
8367
8368 return 1;
8369}
8370
8371/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8372 a type following the GNAT encoding for describing array type
8373 indices, only carries redundant information. */
8374
8375static int
8376ada_is_redundant_index_type_desc (struct type *array_type,
8377 struct type *desc_type)
8378{
8379 struct type *this_layer = check_typedef (array_type);
8380 int i;
8381
8382 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8383 {
8384 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8385 TYPE_FIELD_TYPE (desc_type, i)))
8386 return 0;
8387 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8388 }
8389
8390 return 1;
8391}
8392
14f9c5c9
AS
8393/* Assuming that TYPE0 is an array type describing the type of a value
8394 at ADDR, and that DVAL describes a record containing any
8395 discriminants used in TYPE0, returns a type for the value that
8396 contains no dynamic components (that is, no components whose sizes
8397 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8398 true, gives an error message if the resulting type's size is over
4c4b4cd2 8399 varsize_limit. */
14f9c5c9 8400
d2e4a39e
AS
8401static struct type *
8402to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8403 int ignore_too_big)
14f9c5c9 8404{
d2e4a39e
AS
8405 struct type *index_type_desc;
8406 struct type *result;
ad82864c 8407 int constrained_packed_array_p;
14f9c5c9 8408
b0dd7688 8409 type0 = ada_check_typedef (type0);
284614f0 8410 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8411 return type0;
14f9c5c9 8412
ad82864c
JB
8413 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8414 if (constrained_packed_array_p)
8415 type0 = decode_constrained_packed_array_type (type0);
284614f0 8416
14f9c5c9 8417 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8418 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8419 if (index_type_desc != NULL
8420 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8421 {
8422 /* Ignore this ___XA parallel type, as it does not bring any
8423 useful information. This allows us to avoid creating fixed
8424 versions of the array's index types, which would be identical
8425 to the original ones. This, in turn, can also help avoid
8426 the creation of fixed versions of the array itself. */
8427 index_type_desc = NULL;
8428 }
8429
14f9c5c9
AS
8430 if (index_type_desc == NULL)
8431 {
61ee279c 8432 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8433
14f9c5c9 8434 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8435 depend on the contents of the array in properly constructed
8436 debugging data. */
529cad9c
PH
8437 /* Create a fixed version of the array element type.
8438 We're not providing the address of an element here,
e1d5a0d2 8439 and thus the actual object value cannot be inspected to do
529cad9c
PH
8440 the conversion. This should not be a problem, since arrays of
8441 unconstrained objects are not allowed. In particular, all
8442 the elements of an array of a tagged type should all be of
8443 the same type specified in the debugging info. No need to
8444 consult the object tag. */
1ed6ede0 8445 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8446
284614f0
JB
8447 /* Make sure we always create a new array type when dealing with
8448 packed array types, since we're going to fix-up the array
8449 type length and element bitsize a little further down. */
ad82864c 8450 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8451 result = type0;
14f9c5c9 8452 else
e9bb382b 8453 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8454 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8455 }
8456 else
8457 {
8458 int i;
8459 struct type *elt_type0;
8460
8461 elt_type0 = type0;
8462 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8463 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8464
8465 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8466 depend on the contents of the array in properly constructed
8467 debugging data. */
529cad9c
PH
8468 /* Create a fixed version of the array element type.
8469 We're not providing the address of an element here,
e1d5a0d2 8470 and thus the actual object value cannot be inspected to do
529cad9c
PH
8471 the conversion. This should not be a problem, since arrays of
8472 unconstrained objects are not allowed. In particular, all
8473 the elements of an array of a tagged type should all be of
8474 the same type specified in the debugging info. No need to
8475 consult the object tag. */
1ed6ede0
JB
8476 result =
8477 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8478
8479 elt_type0 = type0;
14f9c5c9 8480 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8481 {
8482 struct type *range_type =
28c85d6c 8483 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8484
e9bb382b 8485 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8486 result, range_type);
1ce677a4 8487 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8488 }
d2e4a39e 8489 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8490 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8491 }
8492
2e6fda7d
JB
8493 /* We want to preserve the type name. This can be useful when
8494 trying to get the type name of a value that has already been
8495 printed (for instance, if the user did "print VAR; whatis $". */
8496 TYPE_NAME (result) = TYPE_NAME (type0);
8497
ad82864c 8498 if (constrained_packed_array_p)
284614f0
JB
8499 {
8500 /* So far, the resulting type has been created as if the original
8501 type was a regular (non-packed) array type. As a result, the
8502 bitsize of the array elements needs to be set again, and the array
8503 length needs to be recomputed based on that bitsize. */
8504 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8505 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8506
8507 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8508 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8509 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8510 TYPE_LENGTH (result)++;
8511 }
8512
876cecd0 8513 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8514 return result;
d2e4a39e 8515}
14f9c5c9
AS
8516
8517
8518/* A standard type (containing no dynamically sized components)
8519 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8520 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8521 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8522 ADDRESS or in VALADDR contains these discriminants.
8523
1ed6ede0
JB
8524 If CHECK_TAG is not null, in the case of tagged types, this function
8525 attempts to locate the object's tag and use it to compute the actual
8526 type. However, when ADDRESS is null, we cannot use it to determine the
8527 location of the tag, and therefore compute the tagged type's actual type.
8528 So we return the tagged type without consulting the tag. */
529cad9c 8529
f192137b
JB
8530static struct type *
8531ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8532 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8533{
61ee279c 8534 type = ada_check_typedef (type);
d2e4a39e
AS
8535 switch (TYPE_CODE (type))
8536 {
8537 default:
14f9c5c9 8538 return type;
d2e4a39e 8539 case TYPE_CODE_STRUCT:
4c4b4cd2 8540 {
76a01679 8541 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8542 struct type *fixed_record_type =
8543 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8544
529cad9c
PH
8545 /* If STATIC_TYPE is a tagged type and we know the object's address,
8546 then we can determine its tag, and compute the object's actual
0963b4bd 8547 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8548 type (the parent part of the record may have dynamic fields
8549 and the way the location of _tag is expressed may depend on
8550 them). */
529cad9c 8551
1ed6ede0 8552 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8553 {
b50d69b5
JG
8554 struct value *tag =
8555 value_tag_from_contents_and_address
8556 (fixed_record_type,
8557 valaddr,
8558 address);
8559 struct type *real_type = type_from_tag (tag);
8560 struct value *obj =
8561 value_from_contents_and_address (fixed_record_type,
8562 valaddr,
8563 address);
9f1f738a 8564 fixed_record_type = value_type (obj);
76a01679 8565 if (real_type != NULL)
b50d69b5
JG
8566 return to_fixed_record_type
8567 (real_type, NULL,
8568 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8569 }
4af88198
JB
8570
8571 /* Check to see if there is a parallel ___XVZ variable.
8572 If there is, then it provides the actual size of our type. */
8573 else if (ada_type_name (fixed_record_type) != NULL)
8574 {
0d5cff50 8575 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8576 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8577 int xvz_found = 0;
8578 LONGEST size;
8579
88c15c34 8580 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8581 size = get_int_var_value (xvz_name, &xvz_found);
8582 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8583 {
8584 fixed_record_type = copy_type (fixed_record_type);
8585 TYPE_LENGTH (fixed_record_type) = size;
8586
8587 /* The FIXED_RECORD_TYPE may have be a stub. We have
8588 observed this when the debugging info is STABS, and
8589 apparently it is something that is hard to fix.
8590
8591 In practice, we don't need the actual type definition
8592 at all, because the presence of the XVZ variable allows us
8593 to assume that there must be a XVS type as well, which we
8594 should be able to use later, when we need the actual type
8595 definition.
8596
8597 In the meantime, pretend that the "fixed" type we are
8598 returning is NOT a stub, because this can cause trouble
8599 when using this type to create new types targeting it.
8600 Indeed, the associated creation routines often check
8601 whether the target type is a stub and will try to replace
0963b4bd 8602 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8603 might cause the new type to have the wrong size too.
8604 Consider the case of an array, for instance, where the size
8605 of the array is computed from the number of elements in
8606 our array multiplied by the size of its element. */
8607 TYPE_STUB (fixed_record_type) = 0;
8608 }
8609 }
1ed6ede0 8610 return fixed_record_type;
4c4b4cd2 8611 }
d2e4a39e 8612 case TYPE_CODE_ARRAY:
4c4b4cd2 8613 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8614 case TYPE_CODE_UNION:
8615 if (dval == NULL)
4c4b4cd2 8616 return type;
d2e4a39e 8617 else
4c4b4cd2 8618 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8619 }
14f9c5c9
AS
8620}
8621
f192137b
JB
8622/* The same as ada_to_fixed_type_1, except that it preserves the type
8623 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8624
8625 The typedef layer needs be preserved in order to differentiate between
8626 arrays and array pointers when both types are implemented using the same
8627 fat pointer. In the array pointer case, the pointer is encoded as
8628 a typedef of the pointer type. For instance, considering:
8629
8630 type String_Access is access String;
8631 S1 : String_Access := null;
8632
8633 To the debugger, S1 is defined as a typedef of type String. But
8634 to the user, it is a pointer. So if the user tries to print S1,
8635 we should not dereference the array, but print the array address
8636 instead.
8637
8638 If we didn't preserve the typedef layer, we would lose the fact that
8639 the type is to be presented as a pointer (needs de-reference before
8640 being printed). And we would also use the source-level type name. */
f192137b
JB
8641
8642struct type *
8643ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8644 CORE_ADDR address, struct value *dval, int check_tag)
8645
8646{
8647 struct type *fixed_type =
8648 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8649
96dbd2c1
JB
8650 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8651 then preserve the typedef layer.
8652
8653 Implementation note: We can only check the main-type portion of
8654 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8655 from TYPE now returns a type that has the same instance flags
8656 as TYPE. For instance, if TYPE is a "typedef const", and its
8657 target type is a "struct", then the typedef elimination will return
8658 a "const" version of the target type. See check_typedef for more
8659 details about how the typedef layer elimination is done.
8660
8661 brobecker/2010-11-19: It seems to me that the only case where it is
8662 useful to preserve the typedef layer is when dealing with fat pointers.
8663 Perhaps, we could add a check for that and preserve the typedef layer
8664 only in that situation. But this seems unecessary so far, probably
8665 because we call check_typedef/ada_check_typedef pretty much everywhere.
8666 */
f192137b 8667 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8668 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8669 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8670 return type;
8671
8672 return fixed_type;
8673}
8674
14f9c5c9 8675/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8676 TYPE0, but based on no runtime data. */
14f9c5c9 8677
d2e4a39e
AS
8678static struct type *
8679to_static_fixed_type (struct type *type0)
14f9c5c9 8680{
d2e4a39e 8681 struct type *type;
14f9c5c9
AS
8682
8683 if (type0 == NULL)
8684 return NULL;
8685
876cecd0 8686 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8687 return type0;
8688
61ee279c 8689 type0 = ada_check_typedef (type0);
d2e4a39e 8690
14f9c5c9
AS
8691 switch (TYPE_CODE (type0))
8692 {
8693 default:
8694 return type0;
8695 case TYPE_CODE_STRUCT:
8696 type = dynamic_template_type (type0);
d2e4a39e 8697 if (type != NULL)
4c4b4cd2
PH
8698 return template_to_static_fixed_type (type);
8699 else
8700 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8701 case TYPE_CODE_UNION:
8702 type = ada_find_parallel_type (type0, "___XVU");
8703 if (type != NULL)
4c4b4cd2
PH
8704 return template_to_static_fixed_type (type);
8705 else
8706 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8707 }
8708}
8709
4c4b4cd2
PH
8710/* A static approximation of TYPE with all type wrappers removed. */
8711
d2e4a39e
AS
8712static struct type *
8713static_unwrap_type (struct type *type)
14f9c5c9
AS
8714{
8715 if (ada_is_aligner_type (type))
8716 {
61ee279c 8717 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8718 if (ada_type_name (type1) == NULL)
4c4b4cd2 8719 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8720
8721 return static_unwrap_type (type1);
8722 }
d2e4a39e 8723 else
14f9c5c9 8724 {
d2e4a39e 8725 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8726
d2e4a39e 8727 if (raw_real_type == type)
4c4b4cd2 8728 return type;
14f9c5c9 8729 else
4c4b4cd2 8730 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8731 }
8732}
8733
8734/* In some cases, incomplete and private types require
4c4b4cd2 8735 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8736 type Foo;
8737 type FooP is access Foo;
8738 V: FooP;
8739 type Foo is array ...;
4c4b4cd2 8740 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8741 cross-references to such types, we instead substitute for FooP a
8742 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8743 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8744
8745/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8746 exists, otherwise TYPE. */
8747
d2e4a39e 8748struct type *
61ee279c 8749ada_check_typedef (struct type *type)
14f9c5c9 8750{
727e3d2e
JB
8751 if (type == NULL)
8752 return NULL;
8753
720d1a40
JB
8754 /* If our type is a typedef type of a fat pointer, then we're done.
8755 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8756 what allows us to distinguish between fat pointers that represent
8757 array types, and fat pointers that represent array access types
8758 (in both cases, the compiler implements them as fat pointers). */
8759 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8760 && is_thick_pntr (ada_typedef_target_type (type)))
8761 return type;
8762
14f9c5c9
AS
8763 CHECK_TYPEDEF (type);
8764 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8765 || !TYPE_STUB (type)
14f9c5c9
AS
8766 || TYPE_TAG_NAME (type) == NULL)
8767 return type;
d2e4a39e 8768 else
14f9c5c9 8769 {
0d5cff50 8770 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8771 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8772
05e522ef
JB
8773 if (type1 == NULL)
8774 return type;
8775
8776 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8777 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8778 types, only for the typedef-to-array types). If that's the case,
8779 strip the typedef layer. */
8780 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8781 type1 = ada_check_typedef (type1);
8782
8783 return type1;
14f9c5c9
AS
8784 }
8785}
8786
8787/* A value representing the data at VALADDR/ADDRESS as described by
8788 type TYPE0, but with a standard (static-sized) type that correctly
8789 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8790 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8791 creation of struct values]. */
14f9c5c9 8792
4c4b4cd2
PH
8793static struct value *
8794ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8795 struct value *val0)
14f9c5c9 8796{
1ed6ede0 8797 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8798
14f9c5c9
AS
8799 if (type == type0 && val0 != NULL)
8800 return val0;
d2e4a39e 8801 else
4c4b4cd2
PH
8802 return value_from_contents_and_address (type, 0, address);
8803}
8804
8805/* A value representing VAL, but with a standard (static-sized) type
8806 that correctly describes it. Does not necessarily create a new
8807 value. */
8808
0c3acc09 8809struct value *
4c4b4cd2
PH
8810ada_to_fixed_value (struct value *val)
8811{
c48db5ca
JB
8812 val = unwrap_value (val);
8813 val = ada_to_fixed_value_create (value_type (val),
8814 value_address (val),
8815 val);
8816 return val;
14f9c5c9 8817}
d2e4a39e 8818\f
14f9c5c9 8819
14f9c5c9
AS
8820/* Attributes */
8821
4c4b4cd2
PH
8822/* Table mapping attribute numbers to names.
8823 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8824
d2e4a39e 8825static const char *attribute_names[] = {
14f9c5c9
AS
8826 "<?>",
8827
d2e4a39e 8828 "first",
14f9c5c9
AS
8829 "last",
8830 "length",
8831 "image",
14f9c5c9
AS
8832 "max",
8833 "min",
4c4b4cd2
PH
8834 "modulus",
8835 "pos",
8836 "size",
8837 "tag",
14f9c5c9 8838 "val",
14f9c5c9
AS
8839 0
8840};
8841
d2e4a39e 8842const char *
4c4b4cd2 8843ada_attribute_name (enum exp_opcode n)
14f9c5c9 8844{
4c4b4cd2
PH
8845 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8846 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8847 else
8848 return attribute_names[0];
8849}
8850
4c4b4cd2 8851/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8852
4c4b4cd2
PH
8853static LONGEST
8854pos_atr (struct value *arg)
14f9c5c9 8855{
24209737
PH
8856 struct value *val = coerce_ref (arg);
8857 struct type *type = value_type (val);
14f9c5c9 8858
d2e4a39e 8859 if (!discrete_type_p (type))
323e0a4a 8860 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8861
8862 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8863 {
8864 int i;
24209737 8865 LONGEST v = value_as_long (val);
14f9c5c9 8866
d2e4a39e 8867 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8868 {
14e75d8e 8869 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8870 return i;
8871 }
323e0a4a 8872 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8873 }
8874 else
24209737 8875 return value_as_long (val);
4c4b4cd2
PH
8876}
8877
8878static struct value *
3cb382c9 8879value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8880{
3cb382c9 8881 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8882}
8883
4c4b4cd2 8884/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8885
d2e4a39e
AS
8886static struct value *
8887value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8888{
d2e4a39e 8889 if (!discrete_type_p (type))
323e0a4a 8890 error (_("'VAL only defined on discrete types"));
df407dfe 8891 if (!integer_type_p (value_type (arg)))
323e0a4a 8892 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8893
8894 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8895 {
8896 long pos = value_as_long (arg);
5b4ee69b 8897
14f9c5c9 8898 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8899 error (_("argument to 'VAL out of range"));
14e75d8e 8900 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8901 }
8902 else
8903 return value_from_longest (type, value_as_long (arg));
8904}
14f9c5c9 8905\f
d2e4a39e 8906
4c4b4cd2 8907 /* Evaluation */
14f9c5c9 8908
4c4b4cd2
PH
8909/* True if TYPE appears to be an Ada character type.
8910 [At the moment, this is true only for Character and Wide_Character;
8911 It is a heuristic test that could stand improvement]. */
14f9c5c9 8912
d2e4a39e
AS
8913int
8914ada_is_character_type (struct type *type)
14f9c5c9 8915{
7b9f71f2
JB
8916 const char *name;
8917
8918 /* If the type code says it's a character, then assume it really is,
8919 and don't check any further. */
8920 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8921 return 1;
8922
8923 /* Otherwise, assume it's a character type iff it is a discrete type
8924 with a known character type name. */
8925 name = ada_type_name (type);
8926 return (name != NULL
8927 && (TYPE_CODE (type) == TYPE_CODE_INT
8928 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8929 && (strcmp (name, "character") == 0
8930 || strcmp (name, "wide_character") == 0
5a517ebd 8931 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8932 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8933}
8934
4c4b4cd2 8935/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8936
8937int
ebf56fd3 8938ada_is_string_type (struct type *type)
14f9c5c9 8939{
61ee279c 8940 type = ada_check_typedef (type);
d2e4a39e 8941 if (type != NULL
14f9c5c9 8942 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8943 && (ada_is_simple_array_type (type)
8944 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8945 && ada_array_arity (type) == 1)
8946 {
8947 struct type *elttype = ada_array_element_type (type, 1);
8948
8949 return ada_is_character_type (elttype);
8950 }
d2e4a39e 8951 else
14f9c5c9
AS
8952 return 0;
8953}
8954
5bf03f13
JB
8955/* The compiler sometimes provides a parallel XVS type for a given
8956 PAD type. Normally, it is safe to follow the PAD type directly,
8957 but older versions of the compiler have a bug that causes the offset
8958 of its "F" field to be wrong. Following that field in that case
8959 would lead to incorrect results, but this can be worked around
8960 by ignoring the PAD type and using the associated XVS type instead.
8961
8962 Set to True if the debugger should trust the contents of PAD types.
8963 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8964static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8965
8966/* True if TYPE is a struct type introduced by the compiler to force the
8967 alignment of a value. Such types have a single field with a
4c4b4cd2 8968 distinctive name. */
14f9c5c9
AS
8969
8970int
ebf56fd3 8971ada_is_aligner_type (struct type *type)
14f9c5c9 8972{
61ee279c 8973 type = ada_check_typedef (type);
714e53ab 8974
5bf03f13 8975 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8976 return 0;
8977
14f9c5c9 8978 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8979 && TYPE_NFIELDS (type) == 1
8980 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8981}
8982
8983/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8984 the parallel type. */
14f9c5c9 8985
d2e4a39e
AS
8986struct type *
8987ada_get_base_type (struct type *raw_type)
14f9c5c9 8988{
d2e4a39e
AS
8989 struct type *real_type_namer;
8990 struct type *raw_real_type;
14f9c5c9
AS
8991
8992 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8993 return raw_type;
8994
284614f0
JB
8995 if (ada_is_aligner_type (raw_type))
8996 /* The encoding specifies that we should always use the aligner type.
8997 So, even if this aligner type has an associated XVS type, we should
8998 simply ignore it.
8999
9000 According to the compiler gurus, an XVS type parallel to an aligner
9001 type may exist because of a stabs limitation. In stabs, aligner
9002 types are empty because the field has a variable-sized type, and
9003 thus cannot actually be used as an aligner type. As a result,
9004 we need the associated parallel XVS type to decode the type.
9005 Since the policy in the compiler is to not change the internal
9006 representation based on the debugging info format, we sometimes
9007 end up having a redundant XVS type parallel to the aligner type. */
9008 return raw_type;
9009
14f9c5c9 9010 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9011 if (real_type_namer == NULL
14f9c5c9
AS
9012 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9013 || TYPE_NFIELDS (real_type_namer) != 1)
9014 return raw_type;
9015
f80d3ff2
JB
9016 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9017 {
9018 /* This is an older encoding form where the base type needs to be
9019 looked up by name. We prefer the newer enconding because it is
9020 more efficient. */
9021 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9022 if (raw_real_type == NULL)
9023 return raw_type;
9024 else
9025 return raw_real_type;
9026 }
9027
9028 /* The field in our XVS type is a reference to the base type. */
9029 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9030}
14f9c5c9 9031
4c4b4cd2 9032/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9033
d2e4a39e
AS
9034struct type *
9035ada_aligned_type (struct type *type)
14f9c5c9
AS
9036{
9037 if (ada_is_aligner_type (type))
9038 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9039 else
9040 return ada_get_base_type (type);
9041}
9042
9043
9044/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9045 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9046
fc1a4b47
AC
9047const gdb_byte *
9048ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9049{
d2e4a39e 9050 if (ada_is_aligner_type (type))
14f9c5c9 9051 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9052 valaddr +
9053 TYPE_FIELD_BITPOS (type,
9054 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9055 else
9056 return valaddr;
9057}
9058
4c4b4cd2
PH
9059
9060
14f9c5c9 9061/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9062 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9063const char *
9064ada_enum_name (const char *name)
14f9c5c9 9065{
4c4b4cd2
PH
9066 static char *result;
9067 static size_t result_len = 0;
d2e4a39e 9068 char *tmp;
14f9c5c9 9069
4c4b4cd2
PH
9070 /* First, unqualify the enumeration name:
9071 1. Search for the last '.' character. If we find one, then skip
177b42fe 9072 all the preceding characters, the unqualified name starts
76a01679 9073 right after that dot.
4c4b4cd2 9074 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9075 translates dots into "__". Search forward for double underscores,
9076 but stop searching when we hit an overloading suffix, which is
9077 of the form "__" followed by digits. */
4c4b4cd2 9078
c3e5cd34
PH
9079 tmp = strrchr (name, '.');
9080 if (tmp != NULL)
4c4b4cd2
PH
9081 name = tmp + 1;
9082 else
14f9c5c9 9083 {
4c4b4cd2
PH
9084 while ((tmp = strstr (name, "__")) != NULL)
9085 {
9086 if (isdigit (tmp[2]))
9087 break;
9088 else
9089 name = tmp + 2;
9090 }
14f9c5c9
AS
9091 }
9092
9093 if (name[0] == 'Q')
9094 {
14f9c5c9 9095 int v;
5b4ee69b 9096
14f9c5c9 9097 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9098 {
9099 if (sscanf (name + 2, "%x", &v) != 1)
9100 return name;
9101 }
14f9c5c9 9102 else
4c4b4cd2 9103 return name;
14f9c5c9 9104
4c4b4cd2 9105 GROW_VECT (result, result_len, 16);
14f9c5c9 9106 if (isascii (v) && isprint (v))
88c15c34 9107 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9108 else if (name[1] == 'U')
88c15c34 9109 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9110 else
88c15c34 9111 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9112
9113 return result;
9114 }
d2e4a39e 9115 else
4c4b4cd2 9116 {
c3e5cd34
PH
9117 tmp = strstr (name, "__");
9118 if (tmp == NULL)
9119 tmp = strstr (name, "$");
9120 if (tmp != NULL)
4c4b4cd2
PH
9121 {
9122 GROW_VECT (result, result_len, tmp - name + 1);
9123 strncpy (result, name, tmp - name);
9124 result[tmp - name] = '\0';
9125 return result;
9126 }
9127
9128 return name;
9129 }
14f9c5c9
AS
9130}
9131
14f9c5c9
AS
9132/* Evaluate the subexpression of EXP starting at *POS as for
9133 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9134 expression. */
14f9c5c9 9135
d2e4a39e
AS
9136static struct value *
9137evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9138{
4b27a620 9139 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9140}
9141
9142/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9143 value it wraps. */
14f9c5c9 9144
d2e4a39e
AS
9145static struct value *
9146unwrap_value (struct value *val)
14f9c5c9 9147{
df407dfe 9148 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9149
14f9c5c9
AS
9150 if (ada_is_aligner_type (type))
9151 {
de4d072f 9152 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9153 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9154
14f9c5c9 9155 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9156 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9157
9158 return unwrap_value (v);
9159 }
d2e4a39e 9160 else
14f9c5c9 9161 {
d2e4a39e 9162 struct type *raw_real_type =
61ee279c 9163 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9164
5bf03f13
JB
9165 /* If there is no parallel XVS or XVE type, then the value is
9166 already unwrapped. Return it without further modification. */
9167 if ((type == raw_real_type)
9168 && ada_find_parallel_type (type, "___XVE") == NULL)
9169 return val;
14f9c5c9 9170
d2e4a39e 9171 return
4c4b4cd2
PH
9172 coerce_unspec_val_to_type
9173 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9174 value_address (val),
1ed6ede0 9175 NULL, 1));
14f9c5c9
AS
9176 }
9177}
d2e4a39e
AS
9178
9179static struct value *
9180cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9181{
9182 LONGEST val;
9183
df407dfe 9184 if (type == value_type (arg))
14f9c5c9 9185 return arg;
df407dfe 9186 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9187 val = ada_float_to_fixed (type,
df407dfe 9188 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9189 value_as_long (arg)));
d2e4a39e 9190 else
14f9c5c9 9191 {
a53b7a21 9192 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9193
14f9c5c9
AS
9194 val = ada_float_to_fixed (type, argd);
9195 }
9196
9197 return value_from_longest (type, val);
9198}
9199
d2e4a39e 9200static struct value *
a53b7a21 9201cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9202{
df407dfe 9203 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9204 value_as_long (arg));
5b4ee69b 9205
a53b7a21 9206 return value_from_double (type, val);
14f9c5c9
AS
9207}
9208
d99dcf51
JB
9209/* Given two array types T1 and T2, return nonzero iff both arrays
9210 contain the same number of elements. */
9211
9212static int
9213ada_same_array_size_p (struct type *t1, struct type *t2)
9214{
9215 LONGEST lo1, hi1, lo2, hi2;
9216
9217 /* Get the array bounds in order to verify that the size of
9218 the two arrays match. */
9219 if (!get_array_bounds (t1, &lo1, &hi1)
9220 || !get_array_bounds (t2, &lo2, &hi2))
9221 error (_("unable to determine array bounds"));
9222
9223 /* To make things easier for size comparison, normalize a bit
9224 the case of empty arrays by making sure that the difference
9225 between upper bound and lower bound is always -1. */
9226 if (lo1 > hi1)
9227 hi1 = lo1 - 1;
9228 if (lo2 > hi2)
9229 hi2 = lo2 - 1;
9230
9231 return (hi1 - lo1 == hi2 - lo2);
9232}
9233
9234/* Assuming that VAL is an array of integrals, and TYPE represents
9235 an array with the same number of elements, but with wider integral
9236 elements, return an array "casted" to TYPE. In practice, this
9237 means that the returned array is built by casting each element
9238 of the original array into TYPE's (wider) element type. */
9239
9240static struct value *
9241ada_promote_array_of_integrals (struct type *type, struct value *val)
9242{
9243 struct type *elt_type = TYPE_TARGET_TYPE (type);
9244 LONGEST lo, hi;
9245 struct value *res;
9246 LONGEST i;
9247
9248 /* Verify that both val and type are arrays of scalars, and
9249 that the size of val's elements is smaller than the size
9250 of type's element. */
9251 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9252 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9253 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9254 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9255 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9256 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9257
9258 if (!get_array_bounds (type, &lo, &hi))
9259 error (_("unable to determine array bounds"));
9260
9261 res = allocate_value (type);
9262
9263 /* Promote each array element. */
9264 for (i = 0; i < hi - lo + 1; i++)
9265 {
9266 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9267
9268 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9269 value_contents_all (elt), TYPE_LENGTH (elt_type));
9270 }
9271
9272 return res;
9273}
9274
4c4b4cd2
PH
9275/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9276 return the converted value. */
9277
d2e4a39e
AS
9278static struct value *
9279coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9280{
df407dfe 9281 struct type *type2 = value_type (val);
5b4ee69b 9282
14f9c5c9
AS
9283 if (type == type2)
9284 return val;
9285
61ee279c
PH
9286 type2 = ada_check_typedef (type2);
9287 type = ada_check_typedef (type);
14f9c5c9 9288
d2e4a39e
AS
9289 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9290 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9291 {
9292 val = ada_value_ind (val);
df407dfe 9293 type2 = value_type (val);
14f9c5c9
AS
9294 }
9295
d2e4a39e 9296 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9297 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9298 {
d99dcf51
JB
9299 if (!ada_same_array_size_p (type, type2))
9300 error (_("cannot assign arrays of different length"));
9301
9302 if (is_integral_type (TYPE_TARGET_TYPE (type))
9303 && is_integral_type (TYPE_TARGET_TYPE (type2))
9304 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9305 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9306 {
9307 /* Allow implicit promotion of the array elements to
9308 a wider type. */
9309 return ada_promote_array_of_integrals (type, val);
9310 }
9311
9312 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9313 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9314 error (_("Incompatible types in assignment"));
04624583 9315 deprecated_set_value_type (val, type);
14f9c5c9 9316 }
d2e4a39e 9317 return val;
14f9c5c9
AS
9318}
9319
4c4b4cd2
PH
9320static struct value *
9321ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9322{
9323 struct value *val;
9324 struct type *type1, *type2;
9325 LONGEST v, v1, v2;
9326
994b9211
AC
9327 arg1 = coerce_ref (arg1);
9328 arg2 = coerce_ref (arg2);
18af8284
JB
9329 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9330 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9331
76a01679
JB
9332 if (TYPE_CODE (type1) != TYPE_CODE_INT
9333 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9334 return value_binop (arg1, arg2, op);
9335
76a01679 9336 switch (op)
4c4b4cd2
PH
9337 {
9338 case BINOP_MOD:
9339 case BINOP_DIV:
9340 case BINOP_REM:
9341 break;
9342 default:
9343 return value_binop (arg1, arg2, op);
9344 }
9345
9346 v2 = value_as_long (arg2);
9347 if (v2 == 0)
323e0a4a 9348 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9349
9350 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9351 return value_binop (arg1, arg2, op);
9352
9353 v1 = value_as_long (arg1);
9354 switch (op)
9355 {
9356 case BINOP_DIV:
9357 v = v1 / v2;
76a01679
JB
9358 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9359 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9360 break;
9361 case BINOP_REM:
9362 v = v1 % v2;
76a01679
JB
9363 if (v * v1 < 0)
9364 v -= v2;
4c4b4cd2
PH
9365 break;
9366 default:
9367 /* Should not reach this point. */
9368 v = 0;
9369 }
9370
9371 val = allocate_value (type1);
990a07ab 9372 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9373 TYPE_LENGTH (value_type (val)),
9374 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9375 return val;
9376}
9377
9378static int
9379ada_value_equal (struct value *arg1, struct value *arg2)
9380{
df407dfe
AC
9381 if (ada_is_direct_array_type (value_type (arg1))
9382 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9383 {
f58b38bf
JB
9384 /* Automatically dereference any array reference before
9385 we attempt to perform the comparison. */
9386 arg1 = ada_coerce_ref (arg1);
9387 arg2 = ada_coerce_ref (arg2);
9388
4c4b4cd2
PH
9389 arg1 = ada_coerce_to_simple_array (arg1);
9390 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9391 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9392 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9393 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9394 /* FIXME: The following works only for types whose
76a01679
JB
9395 representations use all bits (no padding or undefined bits)
9396 and do not have user-defined equality. */
9397 return
df407dfe 9398 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9399 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9400 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9401 }
9402 return value_equal (arg1, arg2);
9403}
9404
52ce6436
PH
9405/* Total number of component associations in the aggregate starting at
9406 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9407 OP_AGGREGATE. */
52ce6436
PH
9408
9409static int
9410num_component_specs (struct expression *exp, int pc)
9411{
9412 int n, m, i;
5b4ee69b 9413
52ce6436
PH
9414 m = exp->elts[pc + 1].longconst;
9415 pc += 3;
9416 n = 0;
9417 for (i = 0; i < m; i += 1)
9418 {
9419 switch (exp->elts[pc].opcode)
9420 {
9421 default:
9422 n += 1;
9423 break;
9424 case OP_CHOICES:
9425 n += exp->elts[pc + 1].longconst;
9426 break;
9427 }
9428 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9429 }
9430 return n;
9431}
9432
9433/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9434 component of LHS (a simple array or a record), updating *POS past
9435 the expression, assuming that LHS is contained in CONTAINER. Does
9436 not modify the inferior's memory, nor does it modify LHS (unless
9437 LHS == CONTAINER). */
9438
9439static void
9440assign_component (struct value *container, struct value *lhs, LONGEST index,
9441 struct expression *exp, int *pos)
9442{
9443 struct value *mark = value_mark ();
9444 struct value *elt;
5b4ee69b 9445
52ce6436
PH
9446 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9447 {
22601c15
UW
9448 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9449 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9450
52ce6436
PH
9451 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9452 }
9453 else
9454 {
9455 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9456 elt = ada_to_fixed_value (elt);
52ce6436
PH
9457 }
9458
9459 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9460 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9461 else
9462 value_assign_to_component (container, elt,
9463 ada_evaluate_subexp (NULL, exp, pos,
9464 EVAL_NORMAL));
9465
9466 value_free_to_mark (mark);
9467}
9468
9469/* Assuming that LHS represents an lvalue having a record or array
9470 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9471 of that aggregate's value to LHS, advancing *POS past the
9472 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9473 lvalue containing LHS (possibly LHS itself). Does not modify
9474 the inferior's memory, nor does it modify the contents of
0963b4bd 9475 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9476
9477static struct value *
9478assign_aggregate (struct value *container,
9479 struct value *lhs, struct expression *exp,
9480 int *pos, enum noside noside)
9481{
9482 struct type *lhs_type;
9483 int n = exp->elts[*pos+1].longconst;
9484 LONGEST low_index, high_index;
9485 int num_specs;
9486 LONGEST *indices;
9487 int max_indices, num_indices;
52ce6436 9488 int i;
52ce6436
PH
9489
9490 *pos += 3;
9491 if (noside != EVAL_NORMAL)
9492 {
52ce6436
PH
9493 for (i = 0; i < n; i += 1)
9494 ada_evaluate_subexp (NULL, exp, pos, noside);
9495 return container;
9496 }
9497
9498 container = ada_coerce_ref (container);
9499 if (ada_is_direct_array_type (value_type (container)))
9500 container = ada_coerce_to_simple_array (container);
9501 lhs = ada_coerce_ref (lhs);
9502 if (!deprecated_value_modifiable (lhs))
9503 error (_("Left operand of assignment is not a modifiable lvalue."));
9504
9505 lhs_type = value_type (lhs);
9506 if (ada_is_direct_array_type (lhs_type))
9507 {
9508 lhs = ada_coerce_to_simple_array (lhs);
9509 lhs_type = value_type (lhs);
9510 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9511 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9512 }
9513 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9514 {
9515 low_index = 0;
9516 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9517 }
9518 else
9519 error (_("Left-hand side must be array or record."));
9520
9521 num_specs = num_component_specs (exp, *pos - 3);
9522 max_indices = 4 * num_specs + 4;
9523 indices = alloca (max_indices * sizeof (indices[0]));
9524 indices[0] = indices[1] = low_index - 1;
9525 indices[2] = indices[3] = high_index + 1;
9526 num_indices = 4;
9527
9528 for (i = 0; i < n; i += 1)
9529 {
9530 switch (exp->elts[*pos].opcode)
9531 {
1fbf5ada
JB
9532 case OP_CHOICES:
9533 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9534 &num_indices, max_indices,
9535 low_index, high_index);
9536 break;
9537 case OP_POSITIONAL:
9538 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9539 &num_indices, max_indices,
9540 low_index, high_index);
1fbf5ada
JB
9541 break;
9542 case OP_OTHERS:
9543 if (i != n-1)
9544 error (_("Misplaced 'others' clause"));
9545 aggregate_assign_others (container, lhs, exp, pos, indices,
9546 num_indices, low_index, high_index);
9547 break;
9548 default:
9549 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9550 }
9551 }
9552
9553 return container;
9554}
9555
9556/* Assign into the component of LHS indexed by the OP_POSITIONAL
9557 construct at *POS, updating *POS past the construct, given that
9558 the positions are relative to lower bound LOW, where HIGH is the
9559 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9560 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9561 assign_aggregate. */
52ce6436
PH
9562static void
9563aggregate_assign_positional (struct value *container,
9564 struct value *lhs, struct expression *exp,
9565 int *pos, LONGEST *indices, int *num_indices,
9566 int max_indices, LONGEST low, LONGEST high)
9567{
9568 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9569
9570 if (ind - 1 == high)
e1d5a0d2 9571 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9572 if (ind <= high)
9573 {
9574 add_component_interval (ind, ind, indices, num_indices, max_indices);
9575 *pos += 3;
9576 assign_component (container, lhs, ind, exp, pos);
9577 }
9578 else
9579 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9580}
9581
9582/* Assign into the components of LHS indexed by the OP_CHOICES
9583 construct at *POS, updating *POS past the construct, given that
9584 the allowable indices are LOW..HIGH. Record the indices assigned
9585 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9586 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9587static void
9588aggregate_assign_from_choices (struct value *container,
9589 struct value *lhs, struct expression *exp,
9590 int *pos, LONGEST *indices, int *num_indices,
9591 int max_indices, LONGEST low, LONGEST high)
9592{
9593 int j;
9594 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9595 int choice_pos, expr_pc;
9596 int is_array = ada_is_direct_array_type (value_type (lhs));
9597
9598 choice_pos = *pos += 3;
9599
9600 for (j = 0; j < n_choices; j += 1)
9601 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9602 expr_pc = *pos;
9603 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9604
9605 for (j = 0; j < n_choices; j += 1)
9606 {
9607 LONGEST lower, upper;
9608 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9609
52ce6436
PH
9610 if (op == OP_DISCRETE_RANGE)
9611 {
9612 choice_pos += 1;
9613 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9614 EVAL_NORMAL));
9615 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9616 EVAL_NORMAL));
9617 }
9618 else if (is_array)
9619 {
9620 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9621 EVAL_NORMAL));
9622 upper = lower;
9623 }
9624 else
9625 {
9626 int ind;
0d5cff50 9627 const char *name;
5b4ee69b 9628
52ce6436
PH
9629 switch (op)
9630 {
9631 case OP_NAME:
9632 name = &exp->elts[choice_pos + 2].string;
9633 break;
9634 case OP_VAR_VALUE:
9635 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9636 break;
9637 default:
9638 error (_("Invalid record component association."));
9639 }
9640 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9641 ind = 0;
9642 if (! find_struct_field (name, value_type (lhs), 0,
9643 NULL, NULL, NULL, NULL, &ind))
9644 error (_("Unknown component name: %s."), name);
9645 lower = upper = ind;
9646 }
9647
9648 if (lower <= upper && (lower < low || upper > high))
9649 error (_("Index in component association out of bounds."));
9650
9651 add_component_interval (lower, upper, indices, num_indices,
9652 max_indices);
9653 while (lower <= upper)
9654 {
9655 int pos1;
5b4ee69b 9656
52ce6436
PH
9657 pos1 = expr_pc;
9658 assign_component (container, lhs, lower, exp, &pos1);
9659 lower += 1;
9660 }
9661 }
9662}
9663
9664/* Assign the value of the expression in the OP_OTHERS construct in
9665 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9666 have not been previously assigned. The index intervals already assigned
9667 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9668 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9669static void
9670aggregate_assign_others (struct value *container,
9671 struct value *lhs, struct expression *exp,
9672 int *pos, LONGEST *indices, int num_indices,
9673 LONGEST low, LONGEST high)
9674{
9675 int i;
5ce64950 9676 int expr_pc = *pos + 1;
52ce6436
PH
9677
9678 for (i = 0; i < num_indices - 2; i += 2)
9679 {
9680 LONGEST ind;
5b4ee69b 9681
52ce6436
PH
9682 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9683 {
5ce64950 9684 int localpos;
5b4ee69b 9685
5ce64950
MS
9686 localpos = expr_pc;
9687 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9688 }
9689 }
9690 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9691}
9692
9693/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9694 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9695 modifying *SIZE as needed. It is an error if *SIZE exceeds
9696 MAX_SIZE. The resulting intervals do not overlap. */
9697static void
9698add_component_interval (LONGEST low, LONGEST high,
9699 LONGEST* indices, int *size, int max_size)
9700{
9701 int i, j;
5b4ee69b 9702
52ce6436
PH
9703 for (i = 0; i < *size; i += 2) {
9704 if (high >= indices[i] && low <= indices[i + 1])
9705 {
9706 int kh;
5b4ee69b 9707
52ce6436
PH
9708 for (kh = i + 2; kh < *size; kh += 2)
9709 if (high < indices[kh])
9710 break;
9711 if (low < indices[i])
9712 indices[i] = low;
9713 indices[i + 1] = indices[kh - 1];
9714 if (high > indices[i + 1])
9715 indices[i + 1] = high;
9716 memcpy (indices + i + 2, indices + kh, *size - kh);
9717 *size -= kh - i - 2;
9718 return;
9719 }
9720 else if (high < indices[i])
9721 break;
9722 }
9723
9724 if (*size == max_size)
9725 error (_("Internal error: miscounted aggregate components."));
9726 *size += 2;
9727 for (j = *size-1; j >= i+2; j -= 1)
9728 indices[j] = indices[j - 2];
9729 indices[i] = low;
9730 indices[i + 1] = high;
9731}
9732
6e48bd2c
JB
9733/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9734 is different. */
9735
9736static struct value *
9737ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9738{
9739 if (type == ada_check_typedef (value_type (arg2)))
9740 return arg2;
9741
9742 if (ada_is_fixed_point_type (type))
9743 return (cast_to_fixed (type, arg2));
9744
9745 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9746 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9747
9748 return value_cast (type, arg2);
9749}
9750
284614f0
JB
9751/* Evaluating Ada expressions, and printing their result.
9752 ------------------------------------------------------
9753
21649b50
JB
9754 1. Introduction:
9755 ----------------
9756
284614f0
JB
9757 We usually evaluate an Ada expression in order to print its value.
9758 We also evaluate an expression in order to print its type, which
9759 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9760 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9761 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9762 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9763 similar.
9764
9765 Evaluating expressions is a little more complicated for Ada entities
9766 than it is for entities in languages such as C. The main reason for
9767 this is that Ada provides types whose definition might be dynamic.
9768 One example of such types is variant records. Or another example
9769 would be an array whose bounds can only be known at run time.
9770
9771 The following description is a general guide as to what should be
9772 done (and what should NOT be done) in order to evaluate an expression
9773 involving such types, and when. This does not cover how the semantic
9774 information is encoded by GNAT as this is covered separatly. For the
9775 document used as the reference for the GNAT encoding, see exp_dbug.ads
9776 in the GNAT sources.
9777
9778 Ideally, we should embed each part of this description next to its
9779 associated code. Unfortunately, the amount of code is so vast right
9780 now that it's hard to see whether the code handling a particular
9781 situation might be duplicated or not. One day, when the code is
9782 cleaned up, this guide might become redundant with the comments
9783 inserted in the code, and we might want to remove it.
9784
21649b50
JB
9785 2. ``Fixing'' an Entity, the Simple Case:
9786 -----------------------------------------
9787
284614f0
JB
9788 When evaluating Ada expressions, the tricky issue is that they may
9789 reference entities whose type contents and size are not statically
9790 known. Consider for instance a variant record:
9791
9792 type Rec (Empty : Boolean := True) is record
9793 case Empty is
9794 when True => null;
9795 when False => Value : Integer;
9796 end case;
9797 end record;
9798 Yes : Rec := (Empty => False, Value => 1);
9799 No : Rec := (empty => True);
9800
9801 The size and contents of that record depends on the value of the
9802 descriminant (Rec.Empty). At this point, neither the debugging
9803 information nor the associated type structure in GDB are able to
9804 express such dynamic types. So what the debugger does is to create
9805 "fixed" versions of the type that applies to the specific object.
9806 We also informally refer to this opperation as "fixing" an object,
9807 which means creating its associated fixed type.
9808
9809 Example: when printing the value of variable "Yes" above, its fixed
9810 type would look like this:
9811
9812 type Rec is record
9813 Empty : Boolean;
9814 Value : Integer;
9815 end record;
9816
9817 On the other hand, if we printed the value of "No", its fixed type
9818 would become:
9819
9820 type Rec is record
9821 Empty : Boolean;
9822 end record;
9823
9824 Things become a little more complicated when trying to fix an entity
9825 with a dynamic type that directly contains another dynamic type,
9826 such as an array of variant records, for instance. There are
9827 two possible cases: Arrays, and records.
9828
21649b50
JB
9829 3. ``Fixing'' Arrays:
9830 ---------------------
9831
9832 The type structure in GDB describes an array in terms of its bounds,
9833 and the type of its elements. By design, all elements in the array
9834 have the same type and we cannot represent an array of variant elements
9835 using the current type structure in GDB. When fixing an array,
9836 we cannot fix the array element, as we would potentially need one
9837 fixed type per element of the array. As a result, the best we can do
9838 when fixing an array is to produce an array whose bounds and size
9839 are correct (allowing us to read it from memory), but without having
9840 touched its element type. Fixing each element will be done later,
9841 when (if) necessary.
9842
9843 Arrays are a little simpler to handle than records, because the same
9844 amount of memory is allocated for each element of the array, even if
1b536f04 9845 the amount of space actually used by each element differs from element
21649b50 9846 to element. Consider for instance the following array of type Rec:
284614f0
JB
9847
9848 type Rec_Array is array (1 .. 2) of Rec;
9849
1b536f04
JB
9850 The actual amount of memory occupied by each element might be different
9851 from element to element, depending on the value of their discriminant.
21649b50 9852 But the amount of space reserved for each element in the array remains
1b536f04 9853 fixed regardless. So we simply need to compute that size using
21649b50
JB
9854 the debugging information available, from which we can then determine
9855 the array size (we multiply the number of elements of the array by
9856 the size of each element).
9857
9858 The simplest case is when we have an array of a constrained element
9859 type. For instance, consider the following type declarations:
9860
9861 type Bounded_String (Max_Size : Integer) is
9862 Length : Integer;
9863 Buffer : String (1 .. Max_Size);
9864 end record;
9865 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9866
9867 In this case, the compiler describes the array as an array of
9868 variable-size elements (identified by its XVS suffix) for which
9869 the size can be read in the parallel XVZ variable.
9870
9871 In the case of an array of an unconstrained element type, the compiler
9872 wraps the array element inside a private PAD type. This type should not
9873 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9874 that we also use the adjective "aligner" in our code to designate
9875 these wrapper types.
9876
1b536f04 9877 In some cases, the size allocated for each element is statically
21649b50
JB
9878 known. In that case, the PAD type already has the correct size,
9879 and the array element should remain unfixed.
9880
9881 But there are cases when this size is not statically known.
9882 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9883
9884 type Dynamic is array (1 .. Five) of Integer;
9885 type Wrapper (Has_Length : Boolean := False) is record
9886 Data : Dynamic;
9887 case Has_Length is
9888 when True => Length : Integer;
9889 when False => null;
9890 end case;
9891 end record;
9892 type Wrapper_Array is array (1 .. 2) of Wrapper;
9893
9894 Hello : Wrapper_Array := (others => (Has_Length => True,
9895 Data => (others => 17),
9896 Length => 1));
9897
9898
9899 The debugging info would describe variable Hello as being an
9900 array of a PAD type. The size of that PAD type is not statically
9901 known, but can be determined using a parallel XVZ variable.
9902 In that case, a copy of the PAD type with the correct size should
9903 be used for the fixed array.
9904
21649b50
JB
9905 3. ``Fixing'' record type objects:
9906 ----------------------------------
9907
9908 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9909 record types. In this case, in order to compute the associated
9910 fixed type, we need to determine the size and offset of each of
9911 its components. This, in turn, requires us to compute the fixed
9912 type of each of these components.
9913
9914 Consider for instance the example:
9915
9916 type Bounded_String (Max_Size : Natural) is record
9917 Str : String (1 .. Max_Size);
9918 Length : Natural;
9919 end record;
9920 My_String : Bounded_String (Max_Size => 10);
9921
9922 In that case, the position of field "Length" depends on the size
9923 of field Str, which itself depends on the value of the Max_Size
21649b50 9924 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9925 we need to fix the type of field Str. Therefore, fixing a variant
9926 record requires us to fix each of its components.
9927
9928 However, if a component does not have a dynamic size, the component
9929 should not be fixed. In particular, fields that use a PAD type
9930 should not fixed. Here is an example where this might happen
9931 (assuming type Rec above):
9932
9933 type Container (Big : Boolean) is record
9934 First : Rec;
9935 After : Integer;
9936 case Big is
9937 when True => Another : Integer;
9938 when False => null;
9939 end case;
9940 end record;
9941 My_Container : Container := (Big => False,
9942 First => (Empty => True),
9943 After => 42);
9944
9945 In that example, the compiler creates a PAD type for component First,
9946 whose size is constant, and then positions the component After just
9947 right after it. The offset of component After is therefore constant
9948 in this case.
9949
9950 The debugger computes the position of each field based on an algorithm
9951 that uses, among other things, the actual position and size of the field
21649b50
JB
9952 preceding it. Let's now imagine that the user is trying to print
9953 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9954 end up computing the offset of field After based on the size of the
9955 fixed version of field First. And since in our example First has
9956 only one actual field, the size of the fixed type is actually smaller
9957 than the amount of space allocated to that field, and thus we would
9958 compute the wrong offset of field After.
9959
21649b50
JB
9960 To make things more complicated, we need to watch out for dynamic
9961 components of variant records (identified by the ___XVL suffix in
9962 the component name). Even if the target type is a PAD type, the size
9963 of that type might not be statically known. So the PAD type needs
9964 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9965 we might end up with the wrong size for our component. This can be
9966 observed with the following type declarations:
284614f0
JB
9967
9968 type Octal is new Integer range 0 .. 7;
9969 type Octal_Array is array (Positive range <>) of Octal;
9970 pragma Pack (Octal_Array);
9971
9972 type Octal_Buffer (Size : Positive) is record
9973 Buffer : Octal_Array (1 .. Size);
9974 Length : Integer;
9975 end record;
9976
9977 In that case, Buffer is a PAD type whose size is unset and needs
9978 to be computed by fixing the unwrapped type.
9979
21649b50
JB
9980 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9981 ----------------------------------------------------------
9982
9983 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9984 thus far, be actually fixed?
9985
9986 The answer is: Only when referencing that element. For instance
9987 when selecting one component of a record, this specific component
9988 should be fixed at that point in time. Or when printing the value
9989 of a record, each component should be fixed before its value gets
9990 printed. Similarly for arrays, the element of the array should be
9991 fixed when printing each element of the array, or when extracting
9992 one element out of that array. On the other hand, fixing should
9993 not be performed on the elements when taking a slice of an array!
9994
9995 Note that one of the side-effects of miscomputing the offset and
9996 size of each field is that we end up also miscomputing the size
9997 of the containing type. This can have adverse results when computing
9998 the value of an entity. GDB fetches the value of an entity based
9999 on the size of its type, and thus a wrong size causes GDB to fetch
10000 the wrong amount of memory. In the case where the computed size is
10001 too small, GDB fetches too little data to print the value of our
10002 entiry. Results in this case as unpredicatble, as we usually read
10003 past the buffer containing the data =:-o. */
10004
10005/* Implement the evaluate_exp routine in the exp_descriptor structure
10006 for the Ada language. */
10007
52ce6436 10008static struct value *
ebf56fd3 10009ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10010 int *pos, enum noside noside)
14f9c5c9
AS
10011{
10012 enum exp_opcode op;
b5385fc0 10013 int tem;
14f9c5c9 10014 int pc;
5ec18f2b 10015 int preeval_pos;
14f9c5c9
AS
10016 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10017 struct type *type;
52ce6436 10018 int nargs, oplen;
d2e4a39e 10019 struct value **argvec;
14f9c5c9 10020
d2e4a39e
AS
10021 pc = *pos;
10022 *pos += 1;
14f9c5c9
AS
10023 op = exp->elts[pc].opcode;
10024
d2e4a39e 10025 switch (op)
14f9c5c9
AS
10026 {
10027 default:
10028 *pos -= 1;
6e48bd2c 10029 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10030
10031 if (noside == EVAL_NORMAL)
10032 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10033
10034 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10035 then we need to perform the conversion manually, because
10036 evaluate_subexp_standard doesn't do it. This conversion is
10037 necessary in Ada because the different kinds of float/fixed
10038 types in Ada have different representations.
10039
10040 Similarly, we need to perform the conversion from OP_LONG
10041 ourselves. */
10042 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10043 arg1 = ada_value_cast (expect_type, arg1, noside);
10044
10045 return arg1;
4c4b4cd2
PH
10046
10047 case OP_STRING:
10048 {
76a01679 10049 struct value *result;
5b4ee69b 10050
76a01679
JB
10051 *pos -= 1;
10052 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10053 /* The result type will have code OP_STRING, bashed there from
10054 OP_ARRAY. Bash it back. */
df407dfe
AC
10055 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10056 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10057 return result;
4c4b4cd2 10058 }
14f9c5c9
AS
10059
10060 case UNOP_CAST:
10061 (*pos) += 2;
10062 type = exp->elts[pc + 1].type;
10063 arg1 = evaluate_subexp (type, exp, pos, noside);
10064 if (noside == EVAL_SKIP)
4c4b4cd2 10065 goto nosideret;
6e48bd2c 10066 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10067 return arg1;
10068
4c4b4cd2
PH
10069 case UNOP_QUAL:
10070 (*pos) += 2;
10071 type = exp->elts[pc + 1].type;
10072 return ada_evaluate_subexp (type, exp, pos, noside);
10073
14f9c5c9
AS
10074 case BINOP_ASSIGN:
10075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10076 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10077 {
10078 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10079 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10080 return arg1;
10081 return ada_value_assign (arg1, arg1);
10082 }
003f3813
JB
10083 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10084 except if the lhs of our assignment is a convenience variable.
10085 In the case of assigning to a convenience variable, the lhs
10086 should be exactly the result of the evaluation of the rhs. */
10087 type = value_type (arg1);
10088 if (VALUE_LVAL (arg1) == lval_internalvar)
10089 type = NULL;
10090 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10091 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10092 return arg1;
df407dfe
AC
10093 if (ada_is_fixed_point_type (value_type (arg1)))
10094 arg2 = cast_to_fixed (value_type (arg1), arg2);
10095 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10096 error
323e0a4a 10097 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10098 else
df407dfe 10099 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10100 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10101
10102 case BINOP_ADD:
10103 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10104 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10105 if (noside == EVAL_SKIP)
4c4b4cd2 10106 goto nosideret;
2ac8a782
JB
10107 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10108 return (value_from_longest
10109 (value_type (arg1),
10110 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10111 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10112 return (value_from_longest
10113 (value_type (arg2),
10114 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10115 if ((ada_is_fixed_point_type (value_type (arg1))
10116 || ada_is_fixed_point_type (value_type (arg2)))
10117 && value_type (arg1) != value_type (arg2))
323e0a4a 10118 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10119 /* Do the addition, and cast the result to the type of the first
10120 argument. We cannot cast the result to a reference type, so if
10121 ARG1 is a reference type, find its underlying type. */
10122 type = value_type (arg1);
10123 while (TYPE_CODE (type) == TYPE_CODE_REF)
10124 type = TYPE_TARGET_TYPE (type);
f44316fa 10125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10126 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10127
10128 case BINOP_SUB:
10129 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10130 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10131 if (noside == EVAL_SKIP)
4c4b4cd2 10132 goto nosideret;
2ac8a782
JB
10133 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10134 return (value_from_longest
10135 (value_type (arg1),
10136 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10137 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10138 return (value_from_longest
10139 (value_type (arg2),
10140 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10141 if ((ada_is_fixed_point_type (value_type (arg1))
10142 || ada_is_fixed_point_type (value_type (arg2)))
10143 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10144 error (_("Operands of fixed-point subtraction "
10145 "must have the same type"));
b7789565
JB
10146 /* Do the substraction, and cast the result to the type of the first
10147 argument. We cannot cast the result to a reference type, so if
10148 ARG1 is a reference type, find its underlying type. */
10149 type = value_type (arg1);
10150 while (TYPE_CODE (type) == TYPE_CODE_REF)
10151 type = TYPE_TARGET_TYPE (type);
f44316fa 10152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10153 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10154
10155 case BINOP_MUL:
10156 case BINOP_DIV:
e1578042
JB
10157 case BINOP_REM:
10158 case BINOP_MOD:
14f9c5c9
AS
10159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10160 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10161 if (noside == EVAL_SKIP)
4c4b4cd2 10162 goto nosideret;
e1578042 10163 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10164 {
10165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10166 return value_zero (value_type (arg1), not_lval);
10167 }
14f9c5c9 10168 else
4c4b4cd2 10169 {
a53b7a21 10170 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10171 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10172 arg1 = cast_from_fixed (type, arg1);
df407dfe 10173 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10174 arg2 = cast_from_fixed (type, arg2);
f44316fa 10175 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10176 return ada_value_binop (arg1, arg2, op);
10177 }
10178
4c4b4cd2
PH
10179 case BINOP_EQUAL:
10180 case BINOP_NOTEQUAL:
14f9c5c9 10181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10182 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10183 if (noside == EVAL_SKIP)
76a01679 10184 goto nosideret;
4c4b4cd2 10185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10186 tem = 0;
4c4b4cd2 10187 else
f44316fa
UW
10188 {
10189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10190 tem = ada_value_equal (arg1, arg2);
10191 }
4c4b4cd2 10192 if (op == BINOP_NOTEQUAL)
76a01679 10193 tem = !tem;
fbb06eb1
UW
10194 type = language_bool_type (exp->language_defn, exp->gdbarch);
10195 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10196
10197 case UNOP_NEG:
10198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10199 if (noside == EVAL_SKIP)
10200 goto nosideret;
df407dfe
AC
10201 else if (ada_is_fixed_point_type (value_type (arg1)))
10202 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10203 else
f44316fa
UW
10204 {
10205 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10206 return value_neg (arg1);
10207 }
4c4b4cd2 10208
2330c6c6
JB
10209 case BINOP_LOGICAL_AND:
10210 case BINOP_LOGICAL_OR:
10211 case UNOP_LOGICAL_NOT:
000d5124
JB
10212 {
10213 struct value *val;
10214
10215 *pos -= 1;
10216 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10217 type = language_bool_type (exp->language_defn, exp->gdbarch);
10218 return value_cast (type, val);
000d5124 10219 }
2330c6c6
JB
10220
10221 case BINOP_BITWISE_AND:
10222 case BINOP_BITWISE_IOR:
10223 case BINOP_BITWISE_XOR:
000d5124
JB
10224 {
10225 struct value *val;
10226
10227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10228 *pos = pc;
10229 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10230
10231 return value_cast (value_type (arg1), val);
10232 }
2330c6c6 10233
14f9c5c9
AS
10234 case OP_VAR_VALUE:
10235 *pos -= 1;
6799def4 10236
14f9c5c9 10237 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10238 {
10239 *pos += 4;
10240 goto nosideret;
10241 }
da5c522f
JB
10242
10243 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10244 /* Only encountered when an unresolved symbol occurs in a
10245 context other than a function call, in which case, it is
52ce6436 10246 invalid. */
323e0a4a 10247 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10248 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10249
10250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10251 {
0c1f74cf 10252 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10253 /* Check to see if this is a tagged type. We also need to handle
10254 the case where the type is a reference to a tagged type, but
10255 we have to be careful to exclude pointers to tagged types.
10256 The latter should be shown as usual (as a pointer), whereas
10257 a reference should mostly be transparent to the user. */
10258 if (ada_is_tagged_type (type, 0)
023db19c 10259 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10260 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10261 {
10262 /* Tagged types are a little special in the fact that the real
10263 type is dynamic and can only be determined by inspecting the
10264 object's tag. This means that we need to get the object's
10265 value first (EVAL_NORMAL) and then extract the actual object
10266 type from its tag.
10267
10268 Note that we cannot skip the final step where we extract
10269 the object type from its tag, because the EVAL_NORMAL phase
10270 results in dynamic components being resolved into fixed ones.
10271 This can cause problems when trying to print the type
10272 description of tagged types whose parent has a dynamic size:
10273 We use the type name of the "_parent" component in order
10274 to print the name of the ancestor type in the type description.
10275 If that component had a dynamic size, the resolution into
10276 a fixed type would result in the loss of that type name,
10277 thus preventing us from printing the name of the ancestor
10278 type in the type description. */
10279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10280
10281 if (TYPE_CODE (type) != TYPE_CODE_REF)
10282 {
10283 struct type *actual_type;
10284
10285 actual_type = type_from_tag (ada_value_tag (arg1));
10286 if (actual_type == NULL)
10287 /* If, for some reason, we were unable to determine
10288 the actual type from the tag, then use the static
10289 approximation that we just computed as a fallback.
10290 This can happen if the debugging information is
10291 incomplete, for instance. */
10292 actual_type = type;
10293 return value_zero (actual_type, not_lval);
10294 }
10295 else
10296 {
10297 /* In the case of a ref, ada_coerce_ref takes care
10298 of determining the actual type. But the evaluation
10299 should return a ref as it should be valid to ask
10300 for its address; so rebuild a ref after coerce. */
10301 arg1 = ada_coerce_ref (arg1);
10302 return value_ref (arg1);
10303 }
10304 }
0c1f74cf 10305
84754697
JB
10306 /* Records and unions for which GNAT encodings have been
10307 generated need to be statically fixed as well.
10308 Otherwise, non-static fixing produces a type where
10309 all dynamic properties are removed, which prevents "ptype"
10310 from being able to completely describe the type.
10311 For instance, a case statement in a variant record would be
10312 replaced by the relevant components based on the actual
10313 value of the discriminants. */
10314 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10315 && dynamic_template_type (type) != NULL)
10316 || (TYPE_CODE (type) == TYPE_CODE_UNION
10317 && ada_find_parallel_type (type, "___XVU") != NULL))
10318 {
10319 *pos += 4;
10320 return value_zero (to_static_fixed_type (type), not_lval);
10321 }
4c4b4cd2 10322 }
da5c522f
JB
10323
10324 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10325 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10326
10327 case OP_FUNCALL:
10328 (*pos) += 2;
10329
10330 /* Allocate arg vector, including space for the function to be
10331 called in argvec[0] and a terminating NULL. */
10332 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10333 argvec =
10334 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10335
10336 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10337 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10338 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10339 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10340 else
10341 {
10342 for (tem = 0; tem <= nargs; tem += 1)
10343 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10344 argvec[tem] = 0;
10345
10346 if (noside == EVAL_SKIP)
10347 goto nosideret;
10348 }
10349
ad82864c
JB
10350 if (ada_is_constrained_packed_array_type
10351 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10352 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10353 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10354 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10355 /* This is a packed array that has already been fixed, and
10356 therefore already coerced to a simple array. Nothing further
10357 to do. */
10358 ;
df407dfe
AC
10359 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10360 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10361 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10362 argvec[0] = value_addr (argvec[0]);
10363
df407dfe 10364 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10365
10366 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10367 them. So, if this is an array typedef (encoding use for array
10368 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10369 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10370 type = ada_typedef_target_type (type);
10371
4c4b4cd2
PH
10372 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10373 {
61ee279c 10374 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10375 {
10376 case TYPE_CODE_FUNC:
61ee279c 10377 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10378 break;
10379 case TYPE_CODE_ARRAY:
10380 break;
10381 case TYPE_CODE_STRUCT:
10382 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10383 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10384 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10385 break;
10386 default:
323e0a4a 10387 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10388 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10389 break;
10390 }
10391 }
10392
10393 switch (TYPE_CODE (type))
10394 {
10395 case TYPE_CODE_FUNC:
10396 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10397 {
10398 struct type *rtype = TYPE_TARGET_TYPE (type);
10399
10400 if (TYPE_GNU_IFUNC (type))
10401 return allocate_value (TYPE_TARGET_TYPE (rtype));
10402 return allocate_value (rtype);
10403 }
4c4b4cd2 10404 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10405 case TYPE_CODE_INTERNAL_FUNCTION:
10406 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10407 /* We don't know anything about what the internal
10408 function might return, but we have to return
10409 something. */
10410 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10411 not_lval);
10412 else
10413 return call_internal_function (exp->gdbarch, exp->language_defn,
10414 argvec[0], nargs, argvec + 1);
10415
4c4b4cd2
PH
10416 case TYPE_CODE_STRUCT:
10417 {
10418 int arity;
10419
4c4b4cd2
PH
10420 arity = ada_array_arity (type);
10421 type = ada_array_element_type (type, nargs);
10422 if (type == NULL)
323e0a4a 10423 error (_("cannot subscript or call a record"));
4c4b4cd2 10424 if (arity != nargs)
323e0a4a 10425 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10426 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10427 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10428 return
10429 unwrap_value (ada_value_subscript
10430 (argvec[0], nargs, argvec + 1));
10431 }
10432 case TYPE_CODE_ARRAY:
10433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10434 {
10435 type = ada_array_element_type (type, nargs);
10436 if (type == NULL)
323e0a4a 10437 error (_("element type of array unknown"));
4c4b4cd2 10438 else
0a07e705 10439 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10440 }
10441 return
10442 unwrap_value (ada_value_subscript
10443 (ada_coerce_to_simple_array (argvec[0]),
10444 nargs, argvec + 1));
10445 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10446 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10447 {
deede10c 10448 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10449 type = ada_array_element_type (type, nargs);
10450 if (type == NULL)
323e0a4a 10451 error (_("element type of array unknown"));
4c4b4cd2 10452 else
0a07e705 10453 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10454 }
10455 return
deede10c
JB
10456 unwrap_value (ada_value_ptr_subscript (argvec[0],
10457 nargs, argvec + 1));
4c4b4cd2
PH
10458
10459 default:
e1d5a0d2
PH
10460 error (_("Attempt to index or call something other than an "
10461 "array or function"));
4c4b4cd2
PH
10462 }
10463
10464 case TERNOP_SLICE:
10465 {
10466 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10467 struct value *low_bound_val =
10468 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10469 struct value *high_bound_val =
10470 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471 LONGEST low_bound;
10472 LONGEST high_bound;
5b4ee69b 10473
994b9211
AC
10474 low_bound_val = coerce_ref (low_bound_val);
10475 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10476 low_bound = pos_atr (low_bound_val);
10477 high_bound = pos_atr (high_bound_val);
963a6417 10478
4c4b4cd2
PH
10479 if (noside == EVAL_SKIP)
10480 goto nosideret;
10481
4c4b4cd2
PH
10482 /* If this is a reference to an aligner type, then remove all
10483 the aligners. */
df407dfe
AC
10484 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10485 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10486 TYPE_TARGET_TYPE (value_type (array)) =
10487 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10488
ad82864c 10489 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10490 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10491
10492 /* If this is a reference to an array or an array lvalue,
10493 convert to a pointer. */
df407dfe
AC
10494 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10495 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10496 && VALUE_LVAL (array) == lval_memory))
10497 array = value_addr (array);
10498
1265e4aa 10499 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10500 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10501 (value_type (array))))
0b5d8877 10502 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10503
10504 array = ada_coerce_to_simple_array_ptr (array);
10505
714e53ab
PH
10506 /* If we have more than one level of pointer indirection,
10507 dereference the value until we get only one level. */
df407dfe
AC
10508 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10509 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10510 == TYPE_CODE_PTR))
10511 array = value_ind (array);
10512
10513 /* Make sure we really do have an array type before going further,
10514 to avoid a SEGV when trying to get the index type or the target
10515 type later down the road if the debug info generated by
10516 the compiler is incorrect or incomplete. */
df407dfe 10517 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10518 error (_("cannot take slice of non-array"));
714e53ab 10519
828292f2
JB
10520 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10521 == TYPE_CODE_PTR)
4c4b4cd2 10522 {
828292f2
JB
10523 struct type *type0 = ada_check_typedef (value_type (array));
10524
0b5d8877 10525 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10526 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10527 else
10528 {
10529 struct type *arr_type0 =
828292f2 10530 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10531
f5938064
JG
10532 return ada_value_slice_from_ptr (array, arr_type0,
10533 longest_to_int (low_bound),
10534 longest_to_int (high_bound));
4c4b4cd2
PH
10535 }
10536 }
10537 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10538 return array;
10539 else if (high_bound < low_bound)
df407dfe 10540 return empty_array (value_type (array), low_bound);
4c4b4cd2 10541 else
529cad9c
PH
10542 return ada_value_slice (array, longest_to_int (low_bound),
10543 longest_to_int (high_bound));
4c4b4cd2 10544 }
14f9c5c9 10545
4c4b4cd2
PH
10546 case UNOP_IN_RANGE:
10547 (*pos) += 2;
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10549 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10550
14f9c5c9 10551 if (noside == EVAL_SKIP)
4c4b4cd2 10552 goto nosideret;
14f9c5c9 10553
4c4b4cd2
PH
10554 switch (TYPE_CODE (type))
10555 {
10556 default:
e1d5a0d2
PH
10557 lim_warning (_("Membership test incompletely implemented; "
10558 "always returns true"));
fbb06eb1
UW
10559 type = language_bool_type (exp->language_defn, exp->gdbarch);
10560 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10561
10562 case TYPE_CODE_RANGE:
030b4912
UW
10563 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10564 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10567 type = language_bool_type (exp->language_defn, exp->gdbarch);
10568 return
10569 value_from_longest (type,
4c4b4cd2
PH
10570 (value_less (arg1, arg3)
10571 || value_equal (arg1, arg3))
10572 && (value_less (arg2, arg1)
10573 || value_equal (arg2, arg1)));
10574 }
10575
10576 case BINOP_IN_BOUNDS:
14f9c5c9 10577 (*pos) += 2;
4c4b4cd2
PH
10578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10579 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10580
4c4b4cd2
PH
10581 if (noside == EVAL_SKIP)
10582 goto nosideret;
14f9c5c9 10583
4c4b4cd2 10584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10585 {
10586 type = language_bool_type (exp->language_defn, exp->gdbarch);
10587 return value_zero (type, not_lval);
10588 }
14f9c5c9 10589
4c4b4cd2 10590 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10591
1eea4ebd
UW
10592 type = ada_index_type (value_type (arg2), tem, "range");
10593 if (!type)
10594 type = value_type (arg1);
14f9c5c9 10595
1eea4ebd
UW
10596 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10597 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10598
f44316fa
UW
10599 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10601 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10602 return
fbb06eb1 10603 value_from_longest (type,
4c4b4cd2
PH
10604 (value_less (arg1, arg3)
10605 || value_equal (arg1, arg3))
10606 && (value_less (arg2, arg1)
10607 || value_equal (arg2, arg1)));
10608
10609 case TERNOP_IN_RANGE:
10610 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10611 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10612 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10613
10614 if (noside == EVAL_SKIP)
10615 goto nosideret;
10616
f44316fa
UW
10617 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10618 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10619 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10620 return
fbb06eb1 10621 value_from_longest (type,
4c4b4cd2
PH
10622 (value_less (arg1, arg3)
10623 || value_equal (arg1, arg3))
10624 && (value_less (arg2, arg1)
10625 || value_equal (arg2, arg1)));
10626
10627 case OP_ATR_FIRST:
10628 case OP_ATR_LAST:
10629 case OP_ATR_LENGTH:
10630 {
76a01679 10631 struct type *type_arg;
5b4ee69b 10632
76a01679
JB
10633 if (exp->elts[*pos].opcode == OP_TYPE)
10634 {
10635 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10636 arg1 = NULL;
5bc23cb3 10637 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10638 }
10639 else
10640 {
10641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 type_arg = NULL;
10643 }
10644
10645 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10646 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10647 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10648 *pos += 4;
10649
10650 if (noside == EVAL_SKIP)
10651 goto nosideret;
10652
10653 if (type_arg == NULL)
10654 {
10655 arg1 = ada_coerce_ref (arg1);
10656
ad82864c 10657 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10658 arg1 = ada_coerce_to_simple_array (arg1);
10659
aa4fb036 10660 if (op == OP_ATR_LENGTH)
1eea4ebd 10661 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10662 else
10663 {
10664 type = ada_index_type (value_type (arg1), tem,
10665 ada_attribute_name (op));
10666 if (type == NULL)
10667 type = builtin_type (exp->gdbarch)->builtin_int;
10668 }
76a01679
JB
10669
10670 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10671 return allocate_value (type);
76a01679
JB
10672
10673 switch (op)
10674 {
10675 default: /* Should never happen. */
323e0a4a 10676 error (_("unexpected attribute encountered"));
76a01679 10677 case OP_ATR_FIRST:
1eea4ebd
UW
10678 return value_from_longest
10679 (type, ada_array_bound (arg1, tem, 0));
76a01679 10680 case OP_ATR_LAST:
1eea4ebd
UW
10681 return value_from_longest
10682 (type, ada_array_bound (arg1, tem, 1));
76a01679 10683 case OP_ATR_LENGTH:
1eea4ebd
UW
10684 return value_from_longest
10685 (type, ada_array_length (arg1, tem));
76a01679
JB
10686 }
10687 }
10688 else if (discrete_type_p (type_arg))
10689 {
10690 struct type *range_type;
0d5cff50 10691 const char *name = ada_type_name (type_arg);
5b4ee69b 10692
76a01679
JB
10693 range_type = NULL;
10694 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10695 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10696 if (range_type == NULL)
10697 range_type = type_arg;
10698 switch (op)
10699 {
10700 default:
323e0a4a 10701 error (_("unexpected attribute encountered"));
76a01679 10702 case OP_ATR_FIRST:
690cc4eb 10703 return value_from_longest
43bbcdc2 10704 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10705 case OP_ATR_LAST:
690cc4eb 10706 return value_from_longest
43bbcdc2 10707 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10708 case OP_ATR_LENGTH:
323e0a4a 10709 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10710 }
10711 }
10712 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10713 error (_("unimplemented type attribute"));
76a01679
JB
10714 else
10715 {
10716 LONGEST low, high;
10717
ad82864c
JB
10718 if (ada_is_constrained_packed_array_type (type_arg))
10719 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10720
aa4fb036 10721 if (op == OP_ATR_LENGTH)
1eea4ebd 10722 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10723 else
10724 {
10725 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10726 if (type == NULL)
10727 type = builtin_type (exp->gdbarch)->builtin_int;
10728 }
1eea4ebd 10729
76a01679
JB
10730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10731 return allocate_value (type);
10732
10733 switch (op)
10734 {
10735 default:
323e0a4a 10736 error (_("unexpected attribute encountered"));
76a01679 10737 case OP_ATR_FIRST:
1eea4ebd 10738 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10739 return value_from_longest (type, low);
10740 case OP_ATR_LAST:
1eea4ebd 10741 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10742 return value_from_longest (type, high);
10743 case OP_ATR_LENGTH:
1eea4ebd
UW
10744 low = ada_array_bound_from_type (type_arg, tem, 0);
10745 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10746 return value_from_longest (type, high - low + 1);
10747 }
10748 }
14f9c5c9
AS
10749 }
10750
4c4b4cd2
PH
10751 case OP_ATR_TAG:
10752 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10753 if (noside == EVAL_SKIP)
76a01679 10754 goto nosideret;
4c4b4cd2
PH
10755
10756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10757 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10758
10759 return ada_value_tag (arg1);
10760
10761 case OP_ATR_MIN:
10762 case OP_ATR_MAX:
10763 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10765 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10766 if (noside == EVAL_SKIP)
76a01679 10767 goto nosideret;
d2e4a39e 10768 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10769 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10770 else
f44316fa
UW
10771 {
10772 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10773 return value_binop (arg1, arg2,
10774 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10775 }
14f9c5c9 10776
4c4b4cd2
PH
10777 case OP_ATR_MODULUS:
10778 {
31dedfee 10779 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10780
5b4ee69b 10781 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10782 if (noside == EVAL_SKIP)
10783 goto nosideret;
4c4b4cd2 10784
76a01679 10785 if (!ada_is_modular_type (type_arg))
323e0a4a 10786 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10787
76a01679
JB
10788 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10789 ada_modulus (type_arg));
4c4b4cd2
PH
10790 }
10791
10792
10793 case OP_ATR_POS:
10794 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10796 if (noside == EVAL_SKIP)
76a01679 10797 goto nosideret;
3cb382c9
UW
10798 type = builtin_type (exp->gdbarch)->builtin_int;
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10800 return value_zero (type, not_lval);
14f9c5c9 10801 else
3cb382c9 10802 return value_pos_atr (type, arg1);
14f9c5c9 10803
4c4b4cd2
PH
10804 case OP_ATR_SIZE:
10805 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10806 type = value_type (arg1);
10807
10808 /* If the argument is a reference, then dereference its type, since
10809 the user is really asking for the size of the actual object,
10810 not the size of the pointer. */
10811 if (TYPE_CODE (type) == TYPE_CODE_REF)
10812 type = TYPE_TARGET_TYPE (type);
10813
4c4b4cd2 10814 if (noside == EVAL_SKIP)
76a01679 10815 goto nosideret;
4c4b4cd2 10816 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10817 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10818 else
22601c15 10819 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10820 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10821
10822 case OP_ATR_VAL:
10823 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10825 type = exp->elts[pc + 2].type;
14f9c5c9 10826 if (noside == EVAL_SKIP)
76a01679 10827 goto nosideret;
4c4b4cd2 10828 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10829 return value_zero (type, not_lval);
4c4b4cd2 10830 else
76a01679 10831 return value_val_atr (type, arg1);
4c4b4cd2
PH
10832
10833 case BINOP_EXP:
10834 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10835 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 if (noside == EVAL_SKIP)
10837 goto nosideret;
10838 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10839 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10840 else
f44316fa
UW
10841 {
10842 /* For integer exponentiation operations,
10843 only promote the first argument. */
10844 if (is_integral_type (value_type (arg2)))
10845 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10846 else
10847 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10848
10849 return value_binop (arg1, arg2, op);
10850 }
4c4b4cd2
PH
10851
10852 case UNOP_PLUS:
10853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10854 if (noside == EVAL_SKIP)
10855 goto nosideret;
10856 else
10857 return arg1;
10858
10859 case UNOP_ABS:
10860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 if (noside == EVAL_SKIP)
10862 goto nosideret;
f44316fa 10863 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10864 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10865 return value_neg (arg1);
14f9c5c9 10866 else
4c4b4cd2 10867 return arg1;
14f9c5c9
AS
10868
10869 case UNOP_IND:
5ec18f2b 10870 preeval_pos = *pos;
6b0d7253 10871 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10872 if (noside == EVAL_SKIP)
4c4b4cd2 10873 goto nosideret;
df407dfe 10874 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10875 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10876 {
10877 if (ada_is_array_descriptor_type (type))
10878 /* GDB allows dereferencing GNAT array descriptors. */
10879 {
10880 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10881
4c4b4cd2 10882 if (arrType == NULL)
323e0a4a 10883 error (_("Attempt to dereference null array pointer."));
00a4c844 10884 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10885 }
10886 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10887 || TYPE_CODE (type) == TYPE_CODE_REF
10888 /* In C you can dereference an array to get the 1st elt. */
10889 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10890 {
5ec18f2b
JG
10891 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10892 only be determined by inspecting the object's tag.
10893 This means that we need to evaluate completely the
10894 expression in order to get its type. */
10895
023db19c
JB
10896 if ((TYPE_CODE (type) == TYPE_CODE_REF
10897 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10898 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10899 {
10900 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10901 EVAL_NORMAL);
10902 type = value_type (ada_value_ind (arg1));
10903 }
10904 else
10905 {
10906 type = to_static_fixed_type
10907 (ada_aligned_type
10908 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10909 }
10910 check_size (type);
714e53ab
PH
10911 return value_zero (type, lval_memory);
10912 }
4c4b4cd2 10913 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10914 {
10915 /* GDB allows dereferencing an int. */
10916 if (expect_type == NULL)
10917 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10918 lval_memory);
10919 else
10920 {
10921 expect_type =
10922 to_static_fixed_type (ada_aligned_type (expect_type));
10923 return value_zero (expect_type, lval_memory);
10924 }
10925 }
4c4b4cd2 10926 else
323e0a4a 10927 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10928 }
0963b4bd 10929 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10930 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10931
96967637
JB
10932 if (TYPE_CODE (type) == TYPE_CODE_INT)
10933 /* GDB allows dereferencing an int. If we were given
10934 the expect_type, then use that as the target type.
10935 Otherwise, assume that the target type is an int. */
10936 {
10937 if (expect_type != NULL)
10938 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10939 arg1));
10940 else
10941 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10942 (CORE_ADDR) value_as_address (arg1));
10943 }
6b0d7253 10944
4c4b4cd2
PH
10945 if (ada_is_array_descriptor_type (type))
10946 /* GDB allows dereferencing GNAT array descriptors. */
10947 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10948 else
4c4b4cd2 10949 return ada_value_ind (arg1);
14f9c5c9
AS
10950
10951 case STRUCTOP_STRUCT:
10952 tem = longest_to_int (exp->elts[pc + 1].longconst);
10953 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10954 preeval_pos = *pos;
14f9c5c9
AS
10955 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10956 if (noside == EVAL_SKIP)
4c4b4cd2 10957 goto nosideret;
14f9c5c9 10958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10959 {
df407dfe 10960 struct type *type1 = value_type (arg1);
5b4ee69b 10961
76a01679
JB
10962 if (ada_is_tagged_type (type1, 1))
10963 {
10964 type = ada_lookup_struct_elt_type (type1,
10965 &exp->elts[pc + 2].string,
10966 1, 1, NULL);
5ec18f2b
JG
10967
10968 /* If the field is not found, check if it exists in the
10969 extension of this object's type. This means that we
10970 need to evaluate completely the expression. */
10971
76a01679 10972 if (type == NULL)
5ec18f2b
JG
10973 {
10974 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10975 EVAL_NORMAL);
10976 arg1 = ada_value_struct_elt (arg1,
10977 &exp->elts[pc + 2].string,
10978 0);
10979 arg1 = unwrap_value (arg1);
10980 type = value_type (ada_to_fixed_value (arg1));
10981 }
76a01679
JB
10982 }
10983 else
10984 type =
10985 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10986 0, NULL);
10987
10988 return value_zero (ada_aligned_type (type), lval_memory);
10989 }
14f9c5c9 10990 else
284614f0
JB
10991 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10992 arg1 = unwrap_value (arg1);
10993 return ada_to_fixed_value (arg1);
10994
14f9c5c9 10995 case OP_TYPE:
4c4b4cd2
PH
10996 /* The value is not supposed to be used. This is here to make it
10997 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10998 (*pos) += 2;
10999 if (noside == EVAL_SKIP)
4c4b4cd2 11000 goto nosideret;
14f9c5c9 11001 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11002 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11003 else
323e0a4a 11004 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11005
11006 case OP_AGGREGATE:
11007 case OP_CHOICES:
11008 case OP_OTHERS:
11009 case OP_DISCRETE_RANGE:
11010 case OP_POSITIONAL:
11011 case OP_NAME:
11012 if (noside == EVAL_NORMAL)
11013 switch (op)
11014 {
11015 case OP_NAME:
11016 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11017 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11018 case OP_AGGREGATE:
11019 error (_("Aggregates only allowed on the right of an assignment"));
11020 default:
0963b4bd
MS
11021 internal_error (__FILE__, __LINE__,
11022 _("aggregate apparently mangled"));
52ce6436
PH
11023 }
11024
11025 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11026 *pos += oplen - 1;
11027 for (tem = 0; tem < nargs; tem += 1)
11028 ada_evaluate_subexp (NULL, exp, pos, noside);
11029 goto nosideret;
14f9c5c9
AS
11030 }
11031
11032nosideret:
22601c15 11033 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11034}
14f9c5c9 11035\f
d2e4a39e 11036
4c4b4cd2 11037 /* Fixed point */
14f9c5c9
AS
11038
11039/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11040 type name that encodes the 'small and 'delta information.
4c4b4cd2 11041 Otherwise, return NULL. */
14f9c5c9 11042
d2e4a39e 11043static const char *
ebf56fd3 11044fixed_type_info (struct type *type)
14f9c5c9 11045{
d2e4a39e 11046 const char *name = ada_type_name (type);
14f9c5c9
AS
11047 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11048
d2e4a39e
AS
11049 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11050 {
14f9c5c9 11051 const char *tail = strstr (name, "___XF_");
5b4ee69b 11052
14f9c5c9 11053 if (tail == NULL)
4c4b4cd2 11054 return NULL;
d2e4a39e 11055 else
4c4b4cd2 11056 return tail + 5;
14f9c5c9
AS
11057 }
11058 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11059 return fixed_type_info (TYPE_TARGET_TYPE (type));
11060 else
11061 return NULL;
11062}
11063
4c4b4cd2 11064/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11065
11066int
ebf56fd3 11067ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11068{
11069 return fixed_type_info (type) != NULL;
11070}
11071
4c4b4cd2
PH
11072/* Return non-zero iff TYPE represents a System.Address type. */
11073
11074int
11075ada_is_system_address_type (struct type *type)
11076{
11077 return (TYPE_NAME (type)
11078 && strcmp (TYPE_NAME (type), "system__address") == 0);
11079}
11080
14f9c5c9
AS
11081/* Assuming that TYPE is the representation of an Ada fixed-point
11082 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11083 delta cannot be determined. */
14f9c5c9
AS
11084
11085DOUBLEST
ebf56fd3 11086ada_delta (struct type *type)
14f9c5c9
AS
11087{
11088 const char *encoding = fixed_type_info (type);
facc390f 11089 DOUBLEST num, den;
14f9c5c9 11090
facc390f
JB
11091 /* Strictly speaking, num and den are encoded as integer. However,
11092 they may not fit into a long, and they will have to be converted
11093 to DOUBLEST anyway. So scan them as DOUBLEST. */
11094 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11095 &num, &den) < 2)
14f9c5c9 11096 return -1.0;
d2e4a39e 11097 else
facc390f 11098 return num / den;
14f9c5c9
AS
11099}
11100
11101/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11102 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11103
11104static DOUBLEST
ebf56fd3 11105scaling_factor (struct type *type)
14f9c5c9
AS
11106{
11107 const char *encoding = fixed_type_info (type);
facc390f 11108 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11109 int n;
d2e4a39e 11110
facc390f
JB
11111 /* Strictly speaking, num's and den's are encoded as integer. However,
11112 they may not fit into a long, and they will have to be converted
11113 to DOUBLEST anyway. So scan them as DOUBLEST. */
11114 n = sscanf (encoding,
11115 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11116 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11117 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11118
11119 if (n < 2)
11120 return 1.0;
11121 else if (n == 4)
facc390f 11122 return num1 / den1;
d2e4a39e 11123 else
facc390f 11124 return num0 / den0;
14f9c5c9
AS
11125}
11126
11127
11128/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11129 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11130
11131DOUBLEST
ebf56fd3 11132ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11133{
d2e4a39e 11134 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11135}
11136
4c4b4cd2
PH
11137/* The representation of a fixed-point value of type TYPE
11138 corresponding to the value X. */
14f9c5c9
AS
11139
11140LONGEST
ebf56fd3 11141ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11142{
11143 return (LONGEST) (x / scaling_factor (type) + 0.5);
11144}
11145
14f9c5c9 11146\f
d2e4a39e 11147
4c4b4cd2 11148 /* Range types */
14f9c5c9
AS
11149
11150/* Scan STR beginning at position K for a discriminant name, and
11151 return the value of that discriminant field of DVAL in *PX. If
11152 PNEW_K is not null, put the position of the character beyond the
11153 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11154 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11155
11156static int
07d8f827 11157scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11158 int *pnew_k)
14f9c5c9
AS
11159{
11160 static char *bound_buffer = NULL;
11161 static size_t bound_buffer_len = 0;
11162 char *bound;
11163 char *pend;
d2e4a39e 11164 struct value *bound_val;
14f9c5c9
AS
11165
11166 if (dval == NULL || str == NULL || str[k] == '\0')
11167 return 0;
11168
d2e4a39e 11169 pend = strstr (str + k, "__");
14f9c5c9
AS
11170 if (pend == NULL)
11171 {
d2e4a39e 11172 bound = str + k;
14f9c5c9
AS
11173 k += strlen (bound);
11174 }
d2e4a39e 11175 else
14f9c5c9 11176 {
d2e4a39e 11177 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11178 bound = bound_buffer;
d2e4a39e
AS
11179 strncpy (bound_buffer, str + k, pend - (str + k));
11180 bound[pend - (str + k)] = '\0';
11181 k = pend - str;
14f9c5c9 11182 }
d2e4a39e 11183
df407dfe 11184 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11185 if (bound_val == NULL)
11186 return 0;
11187
11188 *px = value_as_long (bound_val);
11189 if (pnew_k != NULL)
11190 *pnew_k = k;
11191 return 1;
11192}
11193
11194/* Value of variable named NAME in the current environment. If
11195 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11196 otherwise causes an error with message ERR_MSG. */
11197
d2e4a39e
AS
11198static struct value *
11199get_var_value (char *name, char *err_msg)
14f9c5c9 11200{
4c4b4cd2 11201 struct ada_symbol_info *syms;
14f9c5c9
AS
11202 int nsyms;
11203
4c4b4cd2 11204 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11205 &syms);
14f9c5c9
AS
11206
11207 if (nsyms != 1)
11208 {
11209 if (err_msg == NULL)
4c4b4cd2 11210 return 0;
14f9c5c9 11211 else
8a3fe4f8 11212 error (("%s"), err_msg);
14f9c5c9
AS
11213 }
11214
4c4b4cd2 11215 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11216}
d2e4a39e 11217
14f9c5c9 11218/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11219 no such variable found, returns 0, and sets *FLAG to 0. If
11220 successful, sets *FLAG to 1. */
11221
14f9c5c9 11222LONGEST
4c4b4cd2 11223get_int_var_value (char *name, int *flag)
14f9c5c9 11224{
4c4b4cd2 11225 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11226
14f9c5c9
AS
11227 if (var_val == 0)
11228 {
11229 if (flag != NULL)
4c4b4cd2 11230 *flag = 0;
14f9c5c9
AS
11231 return 0;
11232 }
11233 else
11234 {
11235 if (flag != NULL)
4c4b4cd2 11236 *flag = 1;
14f9c5c9
AS
11237 return value_as_long (var_val);
11238 }
11239}
d2e4a39e 11240
14f9c5c9
AS
11241
11242/* Return a range type whose base type is that of the range type named
11243 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11244 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11245 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11246 corresponding range type from debug information; fall back to using it
11247 if symbol lookup fails. If a new type must be created, allocate it
11248 like ORIG_TYPE was. The bounds information, in general, is encoded
11249 in NAME, the base type given in the named range type. */
14f9c5c9 11250
d2e4a39e 11251static struct type *
28c85d6c 11252to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11253{
0d5cff50 11254 const char *name;
14f9c5c9 11255 struct type *base_type;
d2e4a39e 11256 char *subtype_info;
14f9c5c9 11257
28c85d6c
JB
11258 gdb_assert (raw_type != NULL);
11259 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11260
1ce677a4 11261 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11262 base_type = TYPE_TARGET_TYPE (raw_type);
11263 else
11264 base_type = raw_type;
11265
28c85d6c 11266 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11267 subtype_info = strstr (name, "___XD");
11268 if (subtype_info == NULL)
690cc4eb 11269 {
43bbcdc2
PH
11270 LONGEST L = ada_discrete_type_low_bound (raw_type);
11271 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11272
690cc4eb
PH
11273 if (L < INT_MIN || U > INT_MAX)
11274 return raw_type;
11275 else
0c9c3474
SA
11276 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11277 L, U);
690cc4eb 11278 }
14f9c5c9
AS
11279 else
11280 {
11281 static char *name_buf = NULL;
11282 static size_t name_len = 0;
11283 int prefix_len = subtype_info - name;
11284 LONGEST L, U;
11285 struct type *type;
11286 char *bounds_str;
11287 int n;
11288
11289 GROW_VECT (name_buf, name_len, prefix_len + 5);
11290 strncpy (name_buf, name, prefix_len);
11291 name_buf[prefix_len] = '\0';
11292
11293 subtype_info += 5;
11294 bounds_str = strchr (subtype_info, '_');
11295 n = 1;
11296
d2e4a39e 11297 if (*subtype_info == 'L')
4c4b4cd2
PH
11298 {
11299 if (!ada_scan_number (bounds_str, n, &L, &n)
11300 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11301 return raw_type;
11302 if (bounds_str[n] == '_')
11303 n += 2;
0963b4bd 11304 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11305 n += 1;
11306 subtype_info += 1;
11307 }
d2e4a39e 11308 else
4c4b4cd2
PH
11309 {
11310 int ok;
5b4ee69b 11311
4c4b4cd2
PH
11312 strcpy (name_buf + prefix_len, "___L");
11313 L = get_int_var_value (name_buf, &ok);
11314 if (!ok)
11315 {
323e0a4a 11316 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11317 L = 1;
11318 }
11319 }
14f9c5c9 11320
d2e4a39e 11321 if (*subtype_info == 'U')
4c4b4cd2
PH
11322 {
11323 if (!ada_scan_number (bounds_str, n, &U, &n)
11324 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11325 return raw_type;
11326 }
d2e4a39e 11327 else
4c4b4cd2
PH
11328 {
11329 int ok;
5b4ee69b 11330
4c4b4cd2
PH
11331 strcpy (name_buf + prefix_len, "___U");
11332 U = get_int_var_value (name_buf, &ok);
11333 if (!ok)
11334 {
323e0a4a 11335 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11336 U = L;
11337 }
11338 }
14f9c5c9 11339
0c9c3474
SA
11340 type = create_static_range_type (alloc_type_copy (raw_type),
11341 base_type, L, U);
d2e4a39e 11342 TYPE_NAME (type) = name;
14f9c5c9
AS
11343 return type;
11344 }
11345}
11346
4c4b4cd2
PH
11347/* True iff NAME is the name of a range type. */
11348
14f9c5c9 11349int
d2e4a39e 11350ada_is_range_type_name (const char *name)
14f9c5c9
AS
11351{
11352 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11353}
14f9c5c9 11354\f
d2e4a39e 11355
4c4b4cd2
PH
11356 /* Modular types */
11357
11358/* True iff TYPE is an Ada modular type. */
14f9c5c9 11359
14f9c5c9 11360int
d2e4a39e 11361ada_is_modular_type (struct type *type)
14f9c5c9 11362{
18af8284 11363 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11364
11365 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11366 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11367 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11368}
11369
4c4b4cd2
PH
11370/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11371
61ee279c 11372ULONGEST
0056e4d5 11373ada_modulus (struct type *type)
14f9c5c9 11374{
43bbcdc2 11375 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11376}
d2e4a39e 11377\f
f7f9143b
JB
11378
11379/* Ada exception catchpoint support:
11380 ---------------------------------
11381
11382 We support 3 kinds of exception catchpoints:
11383 . catchpoints on Ada exceptions
11384 . catchpoints on unhandled Ada exceptions
11385 . catchpoints on failed assertions
11386
11387 Exceptions raised during failed assertions, or unhandled exceptions
11388 could perfectly be caught with the general catchpoint on Ada exceptions.
11389 However, we can easily differentiate these two special cases, and having
11390 the option to distinguish these two cases from the rest can be useful
11391 to zero-in on certain situations.
11392
11393 Exception catchpoints are a specialized form of breakpoint,
11394 since they rely on inserting breakpoints inside known routines
11395 of the GNAT runtime. The implementation therefore uses a standard
11396 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11397 of breakpoint_ops.
11398
0259addd
JB
11399 Support in the runtime for exception catchpoints have been changed
11400 a few times already, and these changes affect the implementation
11401 of these catchpoints. In order to be able to support several
11402 variants of the runtime, we use a sniffer that will determine
28010a5d 11403 the runtime variant used by the program being debugged. */
f7f9143b 11404
82eacd52
JB
11405/* Ada's standard exceptions.
11406
11407 The Ada 83 standard also defined Numeric_Error. But there so many
11408 situations where it was unclear from the Ada 83 Reference Manual
11409 (RM) whether Constraint_Error or Numeric_Error should be raised,
11410 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11411 Interpretation saying that anytime the RM says that Numeric_Error
11412 should be raised, the implementation may raise Constraint_Error.
11413 Ada 95 went one step further and pretty much removed Numeric_Error
11414 from the list of standard exceptions (it made it a renaming of
11415 Constraint_Error, to help preserve compatibility when compiling
11416 an Ada83 compiler). As such, we do not include Numeric_Error from
11417 this list of standard exceptions. */
3d0b0fa3
JB
11418
11419static char *standard_exc[] = {
11420 "constraint_error",
11421 "program_error",
11422 "storage_error",
11423 "tasking_error"
11424};
11425
0259addd
JB
11426typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11427
11428/* A structure that describes how to support exception catchpoints
11429 for a given executable. */
11430
11431struct exception_support_info
11432{
11433 /* The name of the symbol to break on in order to insert
11434 a catchpoint on exceptions. */
11435 const char *catch_exception_sym;
11436
11437 /* The name of the symbol to break on in order to insert
11438 a catchpoint on unhandled exceptions. */
11439 const char *catch_exception_unhandled_sym;
11440
11441 /* The name of the symbol to break on in order to insert
11442 a catchpoint on failed assertions. */
11443 const char *catch_assert_sym;
11444
11445 /* Assuming that the inferior just triggered an unhandled exception
11446 catchpoint, this function is responsible for returning the address
11447 in inferior memory where the name of that exception is stored.
11448 Return zero if the address could not be computed. */
11449 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11450};
11451
11452static CORE_ADDR ada_unhandled_exception_name_addr (void);
11453static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11454
11455/* The following exception support info structure describes how to
11456 implement exception catchpoints with the latest version of the
11457 Ada runtime (as of 2007-03-06). */
11458
11459static const struct exception_support_info default_exception_support_info =
11460{
11461 "__gnat_debug_raise_exception", /* catch_exception_sym */
11462 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11463 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11464 ada_unhandled_exception_name_addr
11465};
11466
11467/* The following exception support info structure describes how to
11468 implement exception catchpoints with a slightly older version
11469 of the Ada runtime. */
11470
11471static const struct exception_support_info exception_support_info_fallback =
11472{
11473 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11474 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11475 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11476 ada_unhandled_exception_name_addr_from_raise
11477};
11478
f17011e0
JB
11479/* Return nonzero if we can detect the exception support routines
11480 described in EINFO.
11481
11482 This function errors out if an abnormal situation is detected
11483 (for instance, if we find the exception support routines, but
11484 that support is found to be incomplete). */
11485
11486static int
11487ada_has_this_exception_support (const struct exception_support_info *einfo)
11488{
11489 struct symbol *sym;
11490
11491 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11492 that should be compiled with debugging information. As a result, we
11493 expect to find that symbol in the symtabs. */
11494
11495 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11496 if (sym == NULL)
a6af7abe
JB
11497 {
11498 /* Perhaps we did not find our symbol because the Ada runtime was
11499 compiled without debugging info, or simply stripped of it.
11500 It happens on some GNU/Linux distributions for instance, where
11501 users have to install a separate debug package in order to get
11502 the runtime's debugging info. In that situation, let the user
11503 know why we cannot insert an Ada exception catchpoint.
11504
11505 Note: Just for the purpose of inserting our Ada exception
11506 catchpoint, we could rely purely on the associated minimal symbol.
11507 But we would be operating in degraded mode anyway, since we are
11508 still lacking the debugging info needed later on to extract
11509 the name of the exception being raised (this name is printed in
11510 the catchpoint message, and is also used when trying to catch
11511 a specific exception). We do not handle this case for now. */
3b7344d5 11512 struct bound_minimal_symbol msym
1c8e84b0
JB
11513 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11514
3b7344d5 11515 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11516 error (_("Your Ada runtime appears to be missing some debugging "
11517 "information.\nCannot insert Ada exception catchpoint "
11518 "in this configuration."));
11519
11520 return 0;
11521 }
f17011e0
JB
11522
11523 /* Make sure that the symbol we found corresponds to a function. */
11524
11525 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11526 error (_("Symbol \"%s\" is not a function (class = %d)"),
11527 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11528
11529 return 1;
11530}
11531
0259addd
JB
11532/* Inspect the Ada runtime and determine which exception info structure
11533 should be used to provide support for exception catchpoints.
11534
3eecfa55
JB
11535 This function will always set the per-inferior exception_info,
11536 or raise an error. */
0259addd
JB
11537
11538static void
11539ada_exception_support_info_sniffer (void)
11540{
3eecfa55 11541 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11542
11543 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11544 if (data->exception_info != NULL)
0259addd
JB
11545 return;
11546
11547 /* Check the latest (default) exception support info. */
f17011e0 11548 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11549 {
3eecfa55 11550 data->exception_info = &default_exception_support_info;
0259addd
JB
11551 return;
11552 }
11553
11554 /* Try our fallback exception suport info. */
f17011e0 11555 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11556 {
3eecfa55 11557 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11558 return;
11559 }
11560
11561 /* Sometimes, it is normal for us to not be able to find the routine
11562 we are looking for. This happens when the program is linked with
11563 the shared version of the GNAT runtime, and the program has not been
11564 started yet. Inform the user of these two possible causes if
11565 applicable. */
11566
ccefe4c4 11567 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11568 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11569
11570 /* If the symbol does not exist, then check that the program is
11571 already started, to make sure that shared libraries have been
11572 loaded. If it is not started, this may mean that the symbol is
11573 in a shared library. */
11574
11575 if (ptid_get_pid (inferior_ptid) == 0)
11576 error (_("Unable to insert catchpoint. Try to start the program first."));
11577
11578 /* At this point, we know that we are debugging an Ada program and
11579 that the inferior has been started, but we still are not able to
0963b4bd 11580 find the run-time symbols. That can mean that we are in
0259addd
JB
11581 configurable run time mode, or that a-except as been optimized
11582 out by the linker... In any case, at this point it is not worth
11583 supporting this feature. */
11584
7dda8cff 11585 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11586}
11587
f7f9143b
JB
11588/* True iff FRAME is very likely to be that of a function that is
11589 part of the runtime system. This is all very heuristic, but is
11590 intended to be used as advice as to what frames are uninteresting
11591 to most users. */
11592
11593static int
11594is_known_support_routine (struct frame_info *frame)
11595{
4ed6b5be 11596 struct symtab_and_line sal;
55b87a52 11597 char *func_name;
692465f1 11598 enum language func_lang;
f7f9143b 11599 int i;
f35a17b5 11600 const char *fullname;
f7f9143b 11601
4ed6b5be
JB
11602 /* If this code does not have any debugging information (no symtab),
11603 This cannot be any user code. */
f7f9143b 11604
4ed6b5be 11605 find_frame_sal (frame, &sal);
f7f9143b
JB
11606 if (sal.symtab == NULL)
11607 return 1;
11608
4ed6b5be
JB
11609 /* If there is a symtab, but the associated source file cannot be
11610 located, then assume this is not user code: Selecting a frame
11611 for which we cannot display the code would not be very helpful
11612 for the user. This should also take care of case such as VxWorks
11613 where the kernel has some debugging info provided for a few units. */
f7f9143b 11614
f35a17b5
JK
11615 fullname = symtab_to_fullname (sal.symtab);
11616 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11617 return 1;
11618
4ed6b5be
JB
11619 /* Check the unit filename againt the Ada runtime file naming.
11620 We also check the name of the objfile against the name of some
11621 known system libraries that sometimes come with debugging info
11622 too. */
11623
f7f9143b
JB
11624 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11625 {
11626 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11627 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11628 return 1;
eb822aa6
DE
11629 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11630 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11631 return 1;
f7f9143b
JB
11632 }
11633
4ed6b5be 11634 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11635
e9e07ba6 11636 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11637 if (func_name == NULL)
11638 return 1;
11639
11640 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11641 {
11642 re_comp (known_auxiliary_function_name_patterns[i]);
11643 if (re_exec (func_name))
55b87a52
KS
11644 {
11645 xfree (func_name);
11646 return 1;
11647 }
f7f9143b
JB
11648 }
11649
55b87a52 11650 xfree (func_name);
f7f9143b
JB
11651 return 0;
11652}
11653
11654/* Find the first frame that contains debugging information and that is not
11655 part of the Ada run-time, starting from FI and moving upward. */
11656
0ef643c8 11657void
f7f9143b
JB
11658ada_find_printable_frame (struct frame_info *fi)
11659{
11660 for (; fi != NULL; fi = get_prev_frame (fi))
11661 {
11662 if (!is_known_support_routine (fi))
11663 {
11664 select_frame (fi);
11665 break;
11666 }
11667 }
11668
11669}
11670
11671/* Assuming that the inferior just triggered an unhandled exception
11672 catchpoint, return the address in inferior memory where the name
11673 of the exception is stored.
11674
11675 Return zero if the address could not be computed. */
11676
11677static CORE_ADDR
11678ada_unhandled_exception_name_addr (void)
0259addd
JB
11679{
11680 return parse_and_eval_address ("e.full_name");
11681}
11682
11683/* Same as ada_unhandled_exception_name_addr, except that this function
11684 should be used when the inferior uses an older version of the runtime,
11685 where the exception name needs to be extracted from a specific frame
11686 several frames up in the callstack. */
11687
11688static CORE_ADDR
11689ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11690{
11691 int frame_level;
11692 struct frame_info *fi;
3eecfa55 11693 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11694 struct cleanup *old_chain;
f7f9143b
JB
11695
11696 /* To determine the name of this exception, we need to select
11697 the frame corresponding to RAISE_SYM_NAME. This frame is
11698 at least 3 levels up, so we simply skip the first 3 frames
11699 without checking the name of their associated function. */
11700 fi = get_current_frame ();
11701 for (frame_level = 0; frame_level < 3; frame_level += 1)
11702 if (fi != NULL)
11703 fi = get_prev_frame (fi);
11704
55b87a52 11705 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11706 while (fi != NULL)
11707 {
55b87a52 11708 char *func_name;
692465f1
JB
11709 enum language func_lang;
11710
e9e07ba6 11711 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11712 if (func_name != NULL)
11713 {
11714 make_cleanup (xfree, func_name);
11715
11716 if (strcmp (func_name,
11717 data->exception_info->catch_exception_sym) == 0)
11718 break; /* We found the frame we were looking for... */
11719 fi = get_prev_frame (fi);
11720 }
f7f9143b 11721 }
55b87a52 11722 do_cleanups (old_chain);
f7f9143b
JB
11723
11724 if (fi == NULL)
11725 return 0;
11726
11727 select_frame (fi);
11728 return parse_and_eval_address ("id.full_name");
11729}
11730
11731/* Assuming the inferior just triggered an Ada exception catchpoint
11732 (of any type), return the address in inferior memory where the name
11733 of the exception is stored, if applicable.
11734
11735 Return zero if the address could not be computed, or if not relevant. */
11736
11737static CORE_ADDR
761269c8 11738ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11739 struct breakpoint *b)
11740{
3eecfa55
JB
11741 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11742
f7f9143b
JB
11743 switch (ex)
11744 {
761269c8 11745 case ada_catch_exception:
f7f9143b
JB
11746 return (parse_and_eval_address ("e.full_name"));
11747 break;
11748
761269c8 11749 case ada_catch_exception_unhandled:
3eecfa55 11750 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11751 break;
11752
761269c8 11753 case ada_catch_assert:
f7f9143b
JB
11754 return 0; /* Exception name is not relevant in this case. */
11755 break;
11756
11757 default:
11758 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11759 break;
11760 }
11761
11762 return 0; /* Should never be reached. */
11763}
11764
11765/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11766 any error that ada_exception_name_addr_1 might cause to be thrown.
11767 When an error is intercepted, a warning with the error message is printed,
11768 and zero is returned. */
11769
11770static CORE_ADDR
761269c8 11771ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11772 struct breakpoint *b)
11773{
bfd189b1 11774 volatile struct gdb_exception e;
f7f9143b
JB
11775 CORE_ADDR result = 0;
11776
11777 TRY_CATCH (e, RETURN_MASK_ERROR)
11778 {
11779 result = ada_exception_name_addr_1 (ex, b);
11780 }
11781
11782 if (e.reason < 0)
11783 {
11784 warning (_("failed to get exception name: %s"), e.message);
11785 return 0;
11786 }
11787
11788 return result;
11789}
11790
28010a5d
PA
11791static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11792
11793/* Ada catchpoints.
11794
11795 In the case of catchpoints on Ada exceptions, the catchpoint will
11796 stop the target on every exception the program throws. When a user
11797 specifies the name of a specific exception, we translate this
11798 request into a condition expression (in text form), and then parse
11799 it into an expression stored in each of the catchpoint's locations.
11800 We then use this condition to check whether the exception that was
11801 raised is the one the user is interested in. If not, then the
11802 target is resumed again. We store the name of the requested
11803 exception, in order to be able to re-set the condition expression
11804 when symbols change. */
11805
11806/* An instance of this type is used to represent an Ada catchpoint
11807 breakpoint location. It includes a "struct bp_location" as a kind
11808 of base class; users downcast to "struct bp_location *" when
11809 needed. */
11810
11811struct ada_catchpoint_location
11812{
11813 /* The base class. */
11814 struct bp_location base;
11815
11816 /* The condition that checks whether the exception that was raised
11817 is the specific exception the user specified on catchpoint
11818 creation. */
11819 struct expression *excep_cond_expr;
11820};
11821
11822/* Implement the DTOR method in the bp_location_ops structure for all
11823 Ada exception catchpoint kinds. */
11824
11825static void
11826ada_catchpoint_location_dtor (struct bp_location *bl)
11827{
11828 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11829
11830 xfree (al->excep_cond_expr);
11831}
11832
11833/* The vtable to be used in Ada catchpoint locations. */
11834
11835static const struct bp_location_ops ada_catchpoint_location_ops =
11836{
11837 ada_catchpoint_location_dtor
11838};
11839
11840/* An instance of this type is used to represent an Ada catchpoint.
11841 It includes a "struct breakpoint" as a kind of base class; users
11842 downcast to "struct breakpoint *" when needed. */
11843
11844struct ada_catchpoint
11845{
11846 /* The base class. */
11847 struct breakpoint base;
11848
11849 /* The name of the specific exception the user specified. */
11850 char *excep_string;
11851};
11852
11853/* Parse the exception condition string in the context of each of the
11854 catchpoint's locations, and store them for later evaluation. */
11855
11856static void
11857create_excep_cond_exprs (struct ada_catchpoint *c)
11858{
11859 struct cleanup *old_chain;
11860 struct bp_location *bl;
11861 char *cond_string;
11862
11863 /* Nothing to do if there's no specific exception to catch. */
11864 if (c->excep_string == NULL)
11865 return;
11866
11867 /* Same if there are no locations... */
11868 if (c->base.loc == NULL)
11869 return;
11870
11871 /* Compute the condition expression in text form, from the specific
11872 expection we want to catch. */
11873 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11874 old_chain = make_cleanup (xfree, cond_string);
11875
11876 /* Iterate over all the catchpoint's locations, and parse an
11877 expression for each. */
11878 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11879 {
11880 struct ada_catchpoint_location *ada_loc
11881 = (struct ada_catchpoint_location *) bl;
11882 struct expression *exp = NULL;
11883
11884 if (!bl->shlib_disabled)
11885 {
11886 volatile struct gdb_exception e;
bbc13ae3 11887 const char *s;
28010a5d
PA
11888
11889 s = cond_string;
11890 TRY_CATCH (e, RETURN_MASK_ERROR)
11891 {
1bb9788d
TT
11892 exp = parse_exp_1 (&s, bl->address,
11893 block_for_pc (bl->address), 0);
28010a5d
PA
11894 }
11895 if (e.reason < 0)
849f2b52
JB
11896 {
11897 warning (_("failed to reevaluate internal exception condition "
11898 "for catchpoint %d: %s"),
11899 c->base.number, e.message);
11900 /* There is a bug in GCC on sparc-solaris when building with
11901 optimization which causes EXP to change unexpectedly
11902 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11903 The problem should be fixed starting with GCC 4.9.
11904 In the meantime, work around it by forcing EXP back
11905 to NULL. */
11906 exp = NULL;
11907 }
28010a5d
PA
11908 }
11909
11910 ada_loc->excep_cond_expr = exp;
11911 }
11912
11913 do_cleanups (old_chain);
11914}
11915
11916/* Implement the DTOR method in the breakpoint_ops structure for all
11917 exception catchpoint kinds. */
11918
11919static void
761269c8 11920dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11921{
11922 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11923
11924 xfree (c->excep_string);
348d480f 11925
2060206e 11926 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11927}
11928
11929/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11930 structure for all exception catchpoint kinds. */
11931
11932static struct bp_location *
761269c8 11933allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11934 struct breakpoint *self)
11935{
11936 struct ada_catchpoint_location *loc;
11937
11938 loc = XNEW (struct ada_catchpoint_location);
11939 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11940 loc->excep_cond_expr = NULL;
11941 return &loc->base;
11942}
11943
11944/* Implement the RE_SET method in the breakpoint_ops structure for all
11945 exception catchpoint kinds. */
11946
11947static void
761269c8 11948re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11949{
11950 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11951
11952 /* Call the base class's method. This updates the catchpoint's
11953 locations. */
2060206e 11954 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11955
11956 /* Reparse the exception conditional expressions. One for each
11957 location. */
11958 create_excep_cond_exprs (c);
11959}
11960
11961/* Returns true if we should stop for this breakpoint hit. If the
11962 user specified a specific exception, we only want to cause a stop
11963 if the program thrown that exception. */
11964
11965static int
11966should_stop_exception (const struct bp_location *bl)
11967{
11968 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11969 const struct ada_catchpoint_location *ada_loc
11970 = (const struct ada_catchpoint_location *) bl;
11971 volatile struct gdb_exception ex;
11972 int stop;
11973
11974 /* With no specific exception, should always stop. */
11975 if (c->excep_string == NULL)
11976 return 1;
11977
11978 if (ada_loc->excep_cond_expr == NULL)
11979 {
11980 /* We will have a NULL expression if back when we were creating
11981 the expressions, this location's had failed to parse. */
11982 return 1;
11983 }
11984
11985 stop = 1;
11986 TRY_CATCH (ex, RETURN_MASK_ALL)
11987 {
11988 struct value *mark;
11989
11990 mark = value_mark ();
11991 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11992 value_free_to_mark (mark);
11993 }
11994 if (ex.reason < 0)
11995 exception_fprintf (gdb_stderr, ex,
11996 _("Error in testing exception condition:\n"));
11997 return stop;
11998}
11999
12000/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12001 for all exception catchpoint kinds. */
12002
12003static void
761269c8 12004check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12005{
12006 bs->stop = should_stop_exception (bs->bp_location_at);
12007}
12008
f7f9143b
JB
12009/* Implement the PRINT_IT method in the breakpoint_ops structure
12010 for all exception catchpoint kinds. */
12011
12012static enum print_stop_action
761269c8 12013print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12014{
79a45e25 12015 struct ui_out *uiout = current_uiout;
348d480f
PA
12016 struct breakpoint *b = bs->breakpoint_at;
12017
956a9fb9 12018 annotate_catchpoint (b->number);
f7f9143b 12019
956a9fb9 12020 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12021 {
956a9fb9
JB
12022 ui_out_field_string (uiout, "reason",
12023 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12024 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12025 }
12026
00eb2c4a
JB
12027 ui_out_text (uiout,
12028 b->disposition == disp_del ? "\nTemporary catchpoint "
12029 : "\nCatchpoint ");
956a9fb9
JB
12030 ui_out_field_int (uiout, "bkptno", b->number);
12031 ui_out_text (uiout, ", ");
f7f9143b 12032
f7f9143b
JB
12033 switch (ex)
12034 {
761269c8
JB
12035 case ada_catch_exception:
12036 case ada_catch_exception_unhandled:
956a9fb9
JB
12037 {
12038 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12039 char exception_name[256];
12040
12041 if (addr != 0)
12042 {
c714b426
PA
12043 read_memory (addr, (gdb_byte *) exception_name,
12044 sizeof (exception_name) - 1);
956a9fb9
JB
12045 exception_name [sizeof (exception_name) - 1] = '\0';
12046 }
12047 else
12048 {
12049 /* For some reason, we were unable to read the exception
12050 name. This could happen if the Runtime was compiled
12051 without debugging info, for instance. In that case,
12052 just replace the exception name by the generic string
12053 "exception" - it will read as "an exception" in the
12054 notification we are about to print. */
967cff16 12055 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12056 }
12057 /* In the case of unhandled exception breakpoints, we print
12058 the exception name as "unhandled EXCEPTION_NAME", to make
12059 it clearer to the user which kind of catchpoint just got
12060 hit. We used ui_out_text to make sure that this extra
12061 info does not pollute the exception name in the MI case. */
761269c8 12062 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12063 ui_out_text (uiout, "unhandled ");
12064 ui_out_field_string (uiout, "exception-name", exception_name);
12065 }
12066 break;
761269c8 12067 case ada_catch_assert:
956a9fb9
JB
12068 /* In this case, the name of the exception is not really
12069 important. Just print "failed assertion" to make it clearer
12070 that his program just hit an assertion-failure catchpoint.
12071 We used ui_out_text because this info does not belong in
12072 the MI output. */
12073 ui_out_text (uiout, "failed assertion");
12074 break;
f7f9143b 12075 }
956a9fb9
JB
12076 ui_out_text (uiout, " at ");
12077 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12078
12079 return PRINT_SRC_AND_LOC;
12080}
12081
12082/* Implement the PRINT_ONE method in the breakpoint_ops structure
12083 for all exception catchpoint kinds. */
12084
12085static void
761269c8 12086print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12087 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12088{
79a45e25 12089 struct ui_out *uiout = current_uiout;
28010a5d 12090 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12091 struct value_print_options opts;
12092
12093 get_user_print_options (&opts);
12094 if (opts.addressprint)
f7f9143b
JB
12095 {
12096 annotate_field (4);
5af949e3 12097 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12098 }
12099
12100 annotate_field (5);
a6d9a66e 12101 *last_loc = b->loc;
f7f9143b
JB
12102 switch (ex)
12103 {
761269c8 12104 case ada_catch_exception:
28010a5d 12105 if (c->excep_string != NULL)
f7f9143b 12106 {
28010a5d
PA
12107 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12108
f7f9143b
JB
12109 ui_out_field_string (uiout, "what", msg);
12110 xfree (msg);
12111 }
12112 else
12113 ui_out_field_string (uiout, "what", "all Ada exceptions");
12114
12115 break;
12116
761269c8 12117 case ada_catch_exception_unhandled:
f7f9143b
JB
12118 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12119 break;
12120
761269c8 12121 case ada_catch_assert:
f7f9143b
JB
12122 ui_out_field_string (uiout, "what", "failed Ada assertions");
12123 break;
12124
12125 default:
12126 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12127 break;
12128 }
12129}
12130
12131/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12132 for all exception catchpoint kinds. */
12133
12134static void
761269c8 12135print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12136 struct breakpoint *b)
12137{
28010a5d 12138 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12139 struct ui_out *uiout = current_uiout;
28010a5d 12140
00eb2c4a
JB
12141 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12142 : _("Catchpoint "));
12143 ui_out_field_int (uiout, "bkptno", b->number);
12144 ui_out_text (uiout, ": ");
12145
f7f9143b
JB
12146 switch (ex)
12147 {
761269c8 12148 case ada_catch_exception:
28010a5d 12149 if (c->excep_string != NULL)
00eb2c4a
JB
12150 {
12151 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12152 struct cleanup *old_chain = make_cleanup (xfree, info);
12153
12154 ui_out_text (uiout, info);
12155 do_cleanups (old_chain);
12156 }
f7f9143b 12157 else
00eb2c4a 12158 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12159 break;
12160
761269c8 12161 case ada_catch_exception_unhandled:
00eb2c4a 12162 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12163 break;
12164
761269c8 12165 case ada_catch_assert:
00eb2c4a 12166 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12167 break;
12168
12169 default:
12170 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12171 break;
12172 }
12173}
12174
6149aea9
PA
12175/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12176 for all exception catchpoint kinds. */
12177
12178static void
761269c8 12179print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12180 struct breakpoint *b, struct ui_file *fp)
12181{
28010a5d
PA
12182 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12183
6149aea9
PA
12184 switch (ex)
12185 {
761269c8 12186 case ada_catch_exception:
6149aea9 12187 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12188 if (c->excep_string != NULL)
12189 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12190 break;
12191
761269c8 12192 case ada_catch_exception_unhandled:
78076abc 12193 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12194 break;
12195
761269c8 12196 case ada_catch_assert:
6149aea9
PA
12197 fprintf_filtered (fp, "catch assert");
12198 break;
12199
12200 default:
12201 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12202 }
d9b3f62e 12203 print_recreate_thread (b, fp);
6149aea9
PA
12204}
12205
f7f9143b
JB
12206/* Virtual table for "catch exception" breakpoints. */
12207
28010a5d
PA
12208static void
12209dtor_catch_exception (struct breakpoint *b)
12210{
761269c8 12211 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12212}
12213
12214static struct bp_location *
12215allocate_location_catch_exception (struct breakpoint *self)
12216{
761269c8 12217 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12218}
12219
12220static void
12221re_set_catch_exception (struct breakpoint *b)
12222{
761269c8 12223 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12224}
12225
12226static void
12227check_status_catch_exception (bpstat bs)
12228{
761269c8 12229 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12230}
12231
f7f9143b 12232static enum print_stop_action
348d480f 12233print_it_catch_exception (bpstat bs)
f7f9143b 12234{
761269c8 12235 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12236}
12237
12238static void
a6d9a66e 12239print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12240{
761269c8 12241 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12242}
12243
12244static void
12245print_mention_catch_exception (struct breakpoint *b)
12246{
761269c8 12247 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12248}
12249
6149aea9
PA
12250static void
12251print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12252{
761269c8 12253 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12254}
12255
2060206e 12256static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12257
12258/* Virtual table for "catch exception unhandled" breakpoints. */
12259
28010a5d
PA
12260static void
12261dtor_catch_exception_unhandled (struct breakpoint *b)
12262{
761269c8 12263 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12264}
12265
12266static struct bp_location *
12267allocate_location_catch_exception_unhandled (struct breakpoint *self)
12268{
761269c8 12269 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12270}
12271
12272static void
12273re_set_catch_exception_unhandled (struct breakpoint *b)
12274{
761269c8 12275 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12276}
12277
12278static void
12279check_status_catch_exception_unhandled (bpstat bs)
12280{
761269c8 12281 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12282}
12283
f7f9143b 12284static enum print_stop_action
348d480f 12285print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12286{
761269c8 12287 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12288}
12289
12290static void
a6d9a66e
UW
12291print_one_catch_exception_unhandled (struct breakpoint *b,
12292 struct bp_location **last_loc)
f7f9143b 12293{
761269c8 12294 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12295}
12296
12297static void
12298print_mention_catch_exception_unhandled (struct breakpoint *b)
12299{
761269c8 12300 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12301}
12302
6149aea9
PA
12303static void
12304print_recreate_catch_exception_unhandled (struct breakpoint *b,
12305 struct ui_file *fp)
12306{
761269c8 12307 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12308}
12309
2060206e 12310static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12311
12312/* Virtual table for "catch assert" breakpoints. */
12313
28010a5d
PA
12314static void
12315dtor_catch_assert (struct breakpoint *b)
12316{
761269c8 12317 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12318}
12319
12320static struct bp_location *
12321allocate_location_catch_assert (struct breakpoint *self)
12322{
761269c8 12323 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12324}
12325
12326static void
12327re_set_catch_assert (struct breakpoint *b)
12328{
761269c8 12329 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12330}
12331
12332static void
12333check_status_catch_assert (bpstat bs)
12334{
761269c8 12335 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12336}
12337
f7f9143b 12338static enum print_stop_action
348d480f 12339print_it_catch_assert (bpstat bs)
f7f9143b 12340{
761269c8 12341 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12342}
12343
12344static void
a6d9a66e 12345print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12346{
761269c8 12347 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12348}
12349
12350static void
12351print_mention_catch_assert (struct breakpoint *b)
12352{
761269c8 12353 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12354}
12355
6149aea9
PA
12356static void
12357print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12358{
761269c8 12359 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12360}
12361
2060206e 12362static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12363
f7f9143b
JB
12364/* Return a newly allocated copy of the first space-separated token
12365 in ARGSP, and then adjust ARGSP to point immediately after that
12366 token.
12367
12368 Return NULL if ARGPS does not contain any more tokens. */
12369
12370static char *
12371ada_get_next_arg (char **argsp)
12372{
12373 char *args = *argsp;
12374 char *end;
12375 char *result;
12376
0fcd72ba 12377 args = skip_spaces (args);
f7f9143b
JB
12378 if (args[0] == '\0')
12379 return NULL; /* No more arguments. */
12380
12381 /* Find the end of the current argument. */
12382
0fcd72ba 12383 end = skip_to_space (args);
f7f9143b
JB
12384
12385 /* Adjust ARGSP to point to the start of the next argument. */
12386
12387 *argsp = end;
12388
12389 /* Make a copy of the current argument and return it. */
12390
12391 result = xmalloc (end - args + 1);
12392 strncpy (result, args, end - args);
12393 result[end - args] = '\0';
12394
12395 return result;
12396}
12397
12398/* Split the arguments specified in a "catch exception" command.
12399 Set EX to the appropriate catchpoint type.
28010a5d 12400 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12401 specified by the user.
12402 If a condition is found at the end of the arguments, the condition
12403 expression is stored in COND_STRING (memory must be deallocated
12404 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12405
12406static void
12407catch_ada_exception_command_split (char *args,
761269c8 12408 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12409 char **excep_string,
12410 char **cond_string)
f7f9143b
JB
12411{
12412 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12413 char *exception_name;
5845583d 12414 char *cond = NULL;
f7f9143b
JB
12415
12416 exception_name = ada_get_next_arg (&args);
5845583d
JB
12417 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12418 {
12419 /* This is not an exception name; this is the start of a condition
12420 expression for a catchpoint on all exceptions. So, "un-get"
12421 this token, and set exception_name to NULL. */
12422 xfree (exception_name);
12423 exception_name = NULL;
12424 args -= 2;
12425 }
f7f9143b
JB
12426 make_cleanup (xfree, exception_name);
12427
5845583d 12428 /* Check to see if we have a condition. */
f7f9143b 12429
0fcd72ba 12430 args = skip_spaces (args);
5845583d
JB
12431 if (strncmp (args, "if", 2) == 0
12432 && (isspace (args[2]) || args[2] == '\0'))
12433 {
12434 args += 2;
12435 args = skip_spaces (args);
12436
12437 if (args[0] == '\0')
12438 error (_("Condition missing after `if' keyword"));
12439 cond = xstrdup (args);
12440 make_cleanup (xfree, cond);
12441
12442 args += strlen (args);
12443 }
12444
12445 /* Check that we do not have any more arguments. Anything else
12446 is unexpected. */
f7f9143b
JB
12447
12448 if (args[0] != '\0')
12449 error (_("Junk at end of expression"));
12450
12451 discard_cleanups (old_chain);
12452
12453 if (exception_name == NULL)
12454 {
12455 /* Catch all exceptions. */
761269c8 12456 *ex = ada_catch_exception;
28010a5d 12457 *excep_string = NULL;
f7f9143b
JB
12458 }
12459 else if (strcmp (exception_name, "unhandled") == 0)
12460 {
12461 /* Catch unhandled exceptions. */
761269c8 12462 *ex = ada_catch_exception_unhandled;
28010a5d 12463 *excep_string = NULL;
f7f9143b
JB
12464 }
12465 else
12466 {
12467 /* Catch a specific exception. */
761269c8 12468 *ex = ada_catch_exception;
28010a5d 12469 *excep_string = exception_name;
f7f9143b 12470 }
5845583d 12471 *cond_string = cond;
f7f9143b
JB
12472}
12473
12474/* Return the name of the symbol on which we should break in order to
12475 implement a catchpoint of the EX kind. */
12476
12477static const char *
761269c8 12478ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12479{
3eecfa55
JB
12480 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12481
12482 gdb_assert (data->exception_info != NULL);
0259addd 12483
f7f9143b
JB
12484 switch (ex)
12485 {
761269c8 12486 case ada_catch_exception:
3eecfa55 12487 return (data->exception_info->catch_exception_sym);
f7f9143b 12488 break;
761269c8 12489 case ada_catch_exception_unhandled:
3eecfa55 12490 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12491 break;
761269c8 12492 case ada_catch_assert:
3eecfa55 12493 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12494 break;
12495 default:
12496 internal_error (__FILE__, __LINE__,
12497 _("unexpected catchpoint kind (%d)"), ex);
12498 }
12499}
12500
12501/* Return the breakpoint ops "virtual table" used for catchpoints
12502 of the EX kind. */
12503
c0a91b2b 12504static const struct breakpoint_ops *
761269c8 12505ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12506{
12507 switch (ex)
12508 {
761269c8 12509 case ada_catch_exception:
f7f9143b
JB
12510 return (&catch_exception_breakpoint_ops);
12511 break;
761269c8 12512 case ada_catch_exception_unhandled:
f7f9143b
JB
12513 return (&catch_exception_unhandled_breakpoint_ops);
12514 break;
761269c8 12515 case ada_catch_assert:
f7f9143b
JB
12516 return (&catch_assert_breakpoint_ops);
12517 break;
12518 default:
12519 internal_error (__FILE__, __LINE__,
12520 _("unexpected catchpoint kind (%d)"), ex);
12521 }
12522}
12523
12524/* Return the condition that will be used to match the current exception
12525 being raised with the exception that the user wants to catch. This
12526 assumes that this condition is used when the inferior just triggered
12527 an exception catchpoint.
12528
12529 The string returned is a newly allocated string that needs to be
12530 deallocated later. */
12531
12532static char *
28010a5d 12533ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12534{
3d0b0fa3
JB
12535 int i;
12536
0963b4bd 12537 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12538 runtime units that have been compiled without debugging info; if
28010a5d 12539 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12540 exception (e.g. "constraint_error") then, during the evaluation
12541 of the condition expression, the symbol lookup on this name would
0963b4bd 12542 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12543 may then be set only on user-defined exceptions which have the
12544 same not-fully-qualified name (e.g. my_package.constraint_error).
12545
12546 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12547 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12548 exception constraint_error" is rewritten into "catch exception
12549 standard.constraint_error".
12550
12551 If an exception named contraint_error is defined in another package of
12552 the inferior program, then the only way to specify this exception as a
12553 breakpoint condition is to use its fully-qualified named:
12554 e.g. my_package.constraint_error. */
12555
12556 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12557 {
28010a5d 12558 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12559 {
12560 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12561 excep_string);
3d0b0fa3
JB
12562 }
12563 }
28010a5d 12564 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12565}
12566
12567/* Return the symtab_and_line that should be used to insert an exception
12568 catchpoint of the TYPE kind.
12569
28010a5d
PA
12570 EXCEP_STRING should contain the name of a specific exception that
12571 the catchpoint should catch, or NULL otherwise.
f7f9143b 12572
28010a5d
PA
12573 ADDR_STRING returns the name of the function where the real
12574 breakpoint that implements the catchpoints is set, depending on the
12575 type of catchpoint we need to create. */
f7f9143b
JB
12576
12577static struct symtab_and_line
761269c8 12578ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12579 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12580{
12581 const char *sym_name;
12582 struct symbol *sym;
f7f9143b 12583
0259addd
JB
12584 /* First, find out which exception support info to use. */
12585 ada_exception_support_info_sniffer ();
12586
12587 /* Then lookup the function on which we will break in order to catch
f7f9143b 12588 the Ada exceptions requested by the user. */
f7f9143b
JB
12589 sym_name = ada_exception_sym_name (ex);
12590 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12591
f17011e0
JB
12592 /* We can assume that SYM is not NULL at this stage. If the symbol
12593 did not exist, ada_exception_support_info_sniffer would have
12594 raised an exception.
f7f9143b 12595
f17011e0
JB
12596 Also, ada_exception_support_info_sniffer should have already
12597 verified that SYM is a function symbol. */
12598 gdb_assert (sym != NULL);
12599 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12600
12601 /* Set ADDR_STRING. */
f7f9143b
JB
12602 *addr_string = xstrdup (sym_name);
12603
f7f9143b 12604 /* Set OPS. */
4b9eee8c 12605 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12606
f17011e0 12607 return find_function_start_sal (sym, 1);
f7f9143b
JB
12608}
12609
b4a5b78b 12610/* Create an Ada exception catchpoint.
f7f9143b 12611
b4a5b78b 12612 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12613
2df4d1d5
JB
12614 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12615 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12616 of the exception to which this catchpoint applies. When not NULL,
12617 the string must be allocated on the heap, and its deallocation
12618 is no longer the responsibility of the caller.
12619
12620 COND_STRING, if not NULL, is the catchpoint condition. This string
12621 must be allocated on the heap, and its deallocation is no longer
12622 the responsibility of the caller.
f7f9143b 12623
b4a5b78b
JB
12624 TEMPFLAG, if nonzero, means that the underlying breakpoint
12625 should be temporary.
28010a5d 12626
b4a5b78b 12627 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12628
349774ef 12629void
28010a5d 12630create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12631 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12632 char *excep_string,
5845583d 12633 char *cond_string,
28010a5d 12634 int tempflag,
349774ef 12635 int disabled,
28010a5d
PA
12636 int from_tty)
12637{
12638 struct ada_catchpoint *c;
b4a5b78b
JB
12639 char *addr_string = NULL;
12640 const struct breakpoint_ops *ops = NULL;
12641 struct symtab_and_line sal
12642 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12643
12644 c = XNEW (struct ada_catchpoint);
12645 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12646 ops, tempflag, disabled, from_tty);
28010a5d
PA
12647 c->excep_string = excep_string;
12648 create_excep_cond_exprs (c);
5845583d
JB
12649 if (cond_string != NULL)
12650 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12651 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12652}
12653
9ac4176b
PA
12654/* Implement the "catch exception" command. */
12655
12656static void
12657catch_ada_exception_command (char *arg, int from_tty,
12658 struct cmd_list_element *command)
12659{
12660 struct gdbarch *gdbarch = get_current_arch ();
12661 int tempflag;
761269c8 12662 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12663 char *excep_string = NULL;
5845583d 12664 char *cond_string = NULL;
9ac4176b
PA
12665
12666 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12667
12668 if (!arg)
12669 arg = "";
b4a5b78b
JB
12670 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12671 &cond_string);
12672 create_ada_exception_catchpoint (gdbarch, ex_kind,
12673 excep_string, cond_string,
349774ef
JB
12674 tempflag, 1 /* enabled */,
12675 from_tty);
9ac4176b
PA
12676}
12677
b4a5b78b 12678/* Split the arguments specified in a "catch assert" command.
5845583d 12679
b4a5b78b
JB
12680 ARGS contains the command's arguments (or the empty string if
12681 no arguments were passed).
5845583d
JB
12682
12683 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12684 (the memory needs to be deallocated after use). */
5845583d 12685
b4a5b78b
JB
12686static void
12687catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12688{
5845583d 12689 args = skip_spaces (args);
f7f9143b 12690
5845583d
JB
12691 /* Check whether a condition was provided. */
12692 if (strncmp (args, "if", 2) == 0
12693 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12694 {
5845583d 12695 args += 2;
0fcd72ba 12696 args = skip_spaces (args);
5845583d
JB
12697 if (args[0] == '\0')
12698 error (_("condition missing after `if' keyword"));
12699 *cond_string = xstrdup (args);
f7f9143b
JB
12700 }
12701
5845583d
JB
12702 /* Otherwise, there should be no other argument at the end of
12703 the command. */
12704 else if (args[0] != '\0')
12705 error (_("Junk at end of arguments."));
f7f9143b
JB
12706}
12707
9ac4176b
PA
12708/* Implement the "catch assert" command. */
12709
12710static void
12711catch_assert_command (char *arg, int from_tty,
12712 struct cmd_list_element *command)
12713{
12714 struct gdbarch *gdbarch = get_current_arch ();
12715 int tempflag;
5845583d 12716 char *cond_string = NULL;
9ac4176b
PA
12717
12718 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12719
12720 if (!arg)
12721 arg = "";
b4a5b78b 12722 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12723 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12724 NULL, cond_string,
349774ef
JB
12725 tempflag, 1 /* enabled */,
12726 from_tty);
9ac4176b 12727}
778865d3
JB
12728
12729/* Return non-zero if the symbol SYM is an Ada exception object. */
12730
12731static int
12732ada_is_exception_sym (struct symbol *sym)
12733{
12734 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12735
12736 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12737 && SYMBOL_CLASS (sym) != LOC_BLOCK
12738 && SYMBOL_CLASS (sym) != LOC_CONST
12739 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12740 && type_name != NULL && strcmp (type_name, "exception") == 0);
12741}
12742
12743/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12744 Ada exception object. This matches all exceptions except the ones
12745 defined by the Ada language. */
12746
12747static int
12748ada_is_non_standard_exception_sym (struct symbol *sym)
12749{
12750 int i;
12751
12752 if (!ada_is_exception_sym (sym))
12753 return 0;
12754
12755 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12756 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12757 return 0; /* A standard exception. */
12758
12759 /* Numeric_Error is also a standard exception, so exclude it.
12760 See the STANDARD_EXC description for more details as to why
12761 this exception is not listed in that array. */
12762 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12763 return 0;
12764
12765 return 1;
12766}
12767
12768/* A helper function for qsort, comparing two struct ada_exc_info
12769 objects.
12770
12771 The comparison is determined first by exception name, and then
12772 by exception address. */
12773
12774static int
12775compare_ada_exception_info (const void *a, const void *b)
12776{
12777 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12778 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12779 int result;
12780
12781 result = strcmp (exc_a->name, exc_b->name);
12782 if (result != 0)
12783 return result;
12784
12785 if (exc_a->addr < exc_b->addr)
12786 return -1;
12787 if (exc_a->addr > exc_b->addr)
12788 return 1;
12789
12790 return 0;
12791}
12792
12793/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12794 routine, but keeping the first SKIP elements untouched.
12795
12796 All duplicates are also removed. */
12797
12798static void
12799sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12800 int skip)
12801{
12802 struct ada_exc_info *to_sort
12803 = VEC_address (ada_exc_info, *exceptions) + skip;
12804 int to_sort_len
12805 = VEC_length (ada_exc_info, *exceptions) - skip;
12806 int i, j;
12807
12808 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12809 compare_ada_exception_info);
12810
12811 for (i = 1, j = 1; i < to_sort_len; i++)
12812 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12813 to_sort[j++] = to_sort[i];
12814 to_sort_len = j;
12815 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12816}
12817
12818/* A function intended as the "name_matcher" callback in the struct
12819 quick_symbol_functions' expand_symtabs_matching method.
12820
12821 SEARCH_NAME is the symbol's search name.
12822
12823 If USER_DATA is not NULL, it is a pointer to a regext_t object
12824 used to match the symbol (by natural name). Otherwise, when USER_DATA
12825 is null, no filtering is performed, and all symbols are a positive
12826 match. */
12827
12828static int
12829ada_exc_search_name_matches (const char *search_name, void *user_data)
12830{
12831 regex_t *preg = user_data;
12832
12833 if (preg == NULL)
12834 return 1;
12835
12836 /* In Ada, the symbol "search name" is a linkage name, whereas
12837 the regular expression used to do the matching refers to
12838 the natural name. So match against the decoded name. */
12839 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12840}
12841
12842/* Add all exceptions defined by the Ada standard whose name match
12843 a regular expression.
12844
12845 If PREG is not NULL, then this regexp_t object is used to
12846 perform the symbol name matching. Otherwise, no name-based
12847 filtering is performed.
12848
12849 EXCEPTIONS is a vector of exceptions to which matching exceptions
12850 gets pushed. */
12851
12852static void
12853ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12854{
12855 int i;
12856
12857 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12858 {
12859 if (preg == NULL
12860 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12861 {
12862 struct bound_minimal_symbol msymbol
12863 = ada_lookup_simple_minsym (standard_exc[i]);
12864
12865 if (msymbol.minsym != NULL)
12866 {
12867 struct ada_exc_info info
77e371c0 12868 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12869
12870 VEC_safe_push (ada_exc_info, *exceptions, &info);
12871 }
12872 }
12873 }
12874}
12875
12876/* Add all Ada exceptions defined locally and accessible from the given
12877 FRAME.
12878
12879 If PREG is not NULL, then this regexp_t object is used to
12880 perform the symbol name matching. Otherwise, no name-based
12881 filtering is performed.
12882
12883 EXCEPTIONS is a vector of exceptions to which matching exceptions
12884 gets pushed. */
12885
12886static void
12887ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12888 VEC(ada_exc_info) **exceptions)
12889{
3977b71f 12890 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12891
12892 while (block != 0)
12893 {
12894 struct block_iterator iter;
12895 struct symbol *sym;
12896
12897 ALL_BLOCK_SYMBOLS (block, iter, sym)
12898 {
12899 switch (SYMBOL_CLASS (sym))
12900 {
12901 case LOC_TYPEDEF:
12902 case LOC_BLOCK:
12903 case LOC_CONST:
12904 break;
12905 default:
12906 if (ada_is_exception_sym (sym))
12907 {
12908 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12909 SYMBOL_VALUE_ADDRESS (sym)};
12910
12911 VEC_safe_push (ada_exc_info, *exceptions, &info);
12912 }
12913 }
12914 }
12915 if (BLOCK_FUNCTION (block) != NULL)
12916 break;
12917 block = BLOCK_SUPERBLOCK (block);
12918 }
12919}
12920
12921/* Add all exceptions defined globally whose name name match
12922 a regular expression, excluding standard exceptions.
12923
12924 The reason we exclude standard exceptions is that they need
12925 to be handled separately: Standard exceptions are defined inside
12926 a runtime unit which is normally not compiled with debugging info,
12927 and thus usually do not show up in our symbol search. However,
12928 if the unit was in fact built with debugging info, we need to
12929 exclude them because they would duplicate the entry we found
12930 during the special loop that specifically searches for those
12931 standard exceptions.
12932
12933 If PREG is not NULL, then this regexp_t object is used to
12934 perform the symbol name matching. Otherwise, no name-based
12935 filtering is performed.
12936
12937 EXCEPTIONS is a vector of exceptions to which matching exceptions
12938 gets pushed. */
12939
12940static void
12941ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12942{
12943 struct objfile *objfile;
43f3e411 12944 struct compunit_symtab *s;
778865d3 12945
bb4142cf
DE
12946 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12947 VARIABLES_DOMAIN, preg);
778865d3 12948
43f3e411 12949 ALL_COMPUNITS (objfile, s)
778865d3 12950 {
43f3e411 12951 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
12952 int i;
12953
12954 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12955 {
12956 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12957 struct block_iterator iter;
12958 struct symbol *sym;
12959
12960 ALL_BLOCK_SYMBOLS (b, iter, sym)
12961 if (ada_is_non_standard_exception_sym (sym)
12962 && (preg == NULL
12963 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12964 0, NULL, 0) == 0))
12965 {
12966 struct ada_exc_info info
12967 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12968
12969 VEC_safe_push (ada_exc_info, *exceptions, &info);
12970 }
12971 }
12972 }
12973}
12974
12975/* Implements ada_exceptions_list with the regular expression passed
12976 as a regex_t, rather than a string.
12977
12978 If not NULL, PREG is used to filter out exceptions whose names
12979 do not match. Otherwise, all exceptions are listed. */
12980
12981static VEC(ada_exc_info) *
12982ada_exceptions_list_1 (regex_t *preg)
12983{
12984 VEC(ada_exc_info) *result = NULL;
12985 struct cleanup *old_chain
12986 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12987 int prev_len;
12988
12989 /* First, list the known standard exceptions. These exceptions
12990 need to be handled separately, as they are usually defined in
12991 runtime units that have been compiled without debugging info. */
12992
12993 ada_add_standard_exceptions (preg, &result);
12994
12995 /* Next, find all exceptions whose scope is local and accessible
12996 from the currently selected frame. */
12997
12998 if (has_stack_frames ())
12999 {
13000 prev_len = VEC_length (ada_exc_info, result);
13001 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13002 &result);
13003 if (VEC_length (ada_exc_info, result) > prev_len)
13004 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13005 }
13006
13007 /* Add all exceptions whose scope is global. */
13008
13009 prev_len = VEC_length (ada_exc_info, result);
13010 ada_add_global_exceptions (preg, &result);
13011 if (VEC_length (ada_exc_info, result) > prev_len)
13012 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13013
13014 discard_cleanups (old_chain);
13015 return result;
13016}
13017
13018/* Return a vector of ada_exc_info.
13019
13020 If REGEXP is NULL, all exceptions are included in the result.
13021 Otherwise, it should contain a valid regular expression,
13022 and only the exceptions whose names match that regular expression
13023 are included in the result.
13024
13025 The exceptions are sorted in the following order:
13026 - Standard exceptions (defined by the Ada language), in
13027 alphabetical order;
13028 - Exceptions only visible from the current frame, in
13029 alphabetical order;
13030 - Exceptions whose scope is global, in alphabetical order. */
13031
13032VEC(ada_exc_info) *
13033ada_exceptions_list (const char *regexp)
13034{
13035 VEC(ada_exc_info) *result = NULL;
13036 struct cleanup *old_chain = NULL;
13037 regex_t reg;
13038
13039 if (regexp != NULL)
13040 old_chain = compile_rx_or_error (&reg, regexp,
13041 _("invalid regular expression"));
13042
13043 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13044
13045 if (old_chain != NULL)
13046 do_cleanups (old_chain);
13047 return result;
13048}
13049
13050/* Implement the "info exceptions" command. */
13051
13052static void
13053info_exceptions_command (char *regexp, int from_tty)
13054{
13055 VEC(ada_exc_info) *exceptions;
13056 struct cleanup *cleanup;
13057 struct gdbarch *gdbarch = get_current_arch ();
13058 int ix;
13059 struct ada_exc_info *info;
13060
13061 exceptions = ada_exceptions_list (regexp);
13062 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13063
13064 if (regexp != NULL)
13065 printf_filtered
13066 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13067 else
13068 printf_filtered (_("All defined Ada exceptions:\n"));
13069
13070 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13071 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13072
13073 do_cleanups (cleanup);
13074}
13075
4c4b4cd2
PH
13076 /* Operators */
13077/* Information about operators given special treatment in functions
13078 below. */
13079/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13080
13081#define ADA_OPERATORS \
13082 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13083 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13084 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13085 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13086 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13087 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13088 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13089 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13090 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13091 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13092 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13093 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13094 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13095 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13096 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13097 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13098 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13099 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13100 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13101
13102static void
554794dc
SDJ
13103ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13104 int *argsp)
4c4b4cd2
PH
13105{
13106 switch (exp->elts[pc - 1].opcode)
13107 {
76a01679 13108 default:
4c4b4cd2
PH
13109 operator_length_standard (exp, pc, oplenp, argsp);
13110 break;
13111
13112#define OP_DEFN(op, len, args, binop) \
13113 case op: *oplenp = len; *argsp = args; break;
13114 ADA_OPERATORS;
13115#undef OP_DEFN
52ce6436
PH
13116
13117 case OP_AGGREGATE:
13118 *oplenp = 3;
13119 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13120 break;
13121
13122 case OP_CHOICES:
13123 *oplenp = 3;
13124 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13125 break;
4c4b4cd2
PH
13126 }
13127}
13128
c0201579
JK
13129/* Implementation of the exp_descriptor method operator_check. */
13130
13131static int
13132ada_operator_check (struct expression *exp, int pos,
13133 int (*objfile_func) (struct objfile *objfile, void *data),
13134 void *data)
13135{
13136 const union exp_element *const elts = exp->elts;
13137 struct type *type = NULL;
13138
13139 switch (elts[pos].opcode)
13140 {
13141 case UNOP_IN_RANGE:
13142 case UNOP_QUAL:
13143 type = elts[pos + 1].type;
13144 break;
13145
13146 default:
13147 return operator_check_standard (exp, pos, objfile_func, data);
13148 }
13149
13150 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13151
13152 if (type && TYPE_OBJFILE (type)
13153 && (*objfile_func) (TYPE_OBJFILE (type), data))
13154 return 1;
13155
13156 return 0;
13157}
13158
4c4b4cd2
PH
13159static char *
13160ada_op_name (enum exp_opcode opcode)
13161{
13162 switch (opcode)
13163 {
76a01679 13164 default:
4c4b4cd2 13165 return op_name_standard (opcode);
52ce6436 13166
4c4b4cd2
PH
13167#define OP_DEFN(op, len, args, binop) case op: return #op;
13168 ADA_OPERATORS;
13169#undef OP_DEFN
52ce6436
PH
13170
13171 case OP_AGGREGATE:
13172 return "OP_AGGREGATE";
13173 case OP_CHOICES:
13174 return "OP_CHOICES";
13175 case OP_NAME:
13176 return "OP_NAME";
4c4b4cd2
PH
13177 }
13178}
13179
13180/* As for operator_length, but assumes PC is pointing at the first
13181 element of the operator, and gives meaningful results only for the
52ce6436 13182 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13183
13184static void
76a01679
JB
13185ada_forward_operator_length (struct expression *exp, int pc,
13186 int *oplenp, int *argsp)
4c4b4cd2 13187{
76a01679 13188 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13189 {
13190 default:
13191 *oplenp = *argsp = 0;
13192 break;
52ce6436 13193
4c4b4cd2
PH
13194#define OP_DEFN(op, len, args, binop) \
13195 case op: *oplenp = len; *argsp = args; break;
13196 ADA_OPERATORS;
13197#undef OP_DEFN
52ce6436
PH
13198
13199 case OP_AGGREGATE:
13200 *oplenp = 3;
13201 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13202 break;
13203
13204 case OP_CHOICES:
13205 *oplenp = 3;
13206 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13207 break;
13208
13209 case OP_STRING:
13210 case OP_NAME:
13211 {
13212 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13213
52ce6436
PH
13214 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13215 *argsp = 0;
13216 break;
13217 }
4c4b4cd2
PH
13218 }
13219}
13220
13221static int
13222ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13223{
13224 enum exp_opcode op = exp->elts[elt].opcode;
13225 int oplen, nargs;
13226 int pc = elt;
13227 int i;
76a01679 13228
4c4b4cd2
PH
13229 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13230
76a01679 13231 switch (op)
4c4b4cd2 13232 {
76a01679 13233 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13234 case OP_ATR_FIRST:
13235 case OP_ATR_LAST:
13236 case OP_ATR_LENGTH:
13237 case OP_ATR_IMAGE:
13238 case OP_ATR_MAX:
13239 case OP_ATR_MIN:
13240 case OP_ATR_MODULUS:
13241 case OP_ATR_POS:
13242 case OP_ATR_SIZE:
13243 case OP_ATR_TAG:
13244 case OP_ATR_VAL:
13245 break;
13246
13247 case UNOP_IN_RANGE:
13248 case UNOP_QUAL:
323e0a4a
AC
13249 /* XXX: gdb_sprint_host_address, type_sprint */
13250 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13251 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13252 fprintf_filtered (stream, " (");
13253 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13254 fprintf_filtered (stream, ")");
13255 break;
13256 case BINOP_IN_BOUNDS:
52ce6436
PH
13257 fprintf_filtered (stream, " (%d)",
13258 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13259 break;
13260 case TERNOP_IN_RANGE:
13261 break;
13262
52ce6436
PH
13263 case OP_AGGREGATE:
13264 case OP_OTHERS:
13265 case OP_DISCRETE_RANGE:
13266 case OP_POSITIONAL:
13267 case OP_CHOICES:
13268 break;
13269
13270 case OP_NAME:
13271 case OP_STRING:
13272 {
13273 char *name = &exp->elts[elt + 2].string;
13274 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13275
52ce6436
PH
13276 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13277 break;
13278 }
13279
4c4b4cd2
PH
13280 default:
13281 return dump_subexp_body_standard (exp, stream, elt);
13282 }
13283
13284 elt += oplen;
13285 for (i = 0; i < nargs; i += 1)
13286 elt = dump_subexp (exp, stream, elt);
13287
13288 return elt;
13289}
13290
13291/* The Ada extension of print_subexp (q.v.). */
13292
76a01679
JB
13293static void
13294ada_print_subexp (struct expression *exp, int *pos,
13295 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13296{
52ce6436 13297 int oplen, nargs, i;
4c4b4cd2
PH
13298 int pc = *pos;
13299 enum exp_opcode op = exp->elts[pc].opcode;
13300
13301 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13302
52ce6436 13303 *pos += oplen;
4c4b4cd2
PH
13304 switch (op)
13305 {
13306 default:
52ce6436 13307 *pos -= oplen;
4c4b4cd2
PH
13308 print_subexp_standard (exp, pos, stream, prec);
13309 return;
13310
13311 case OP_VAR_VALUE:
4c4b4cd2
PH
13312 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13313 return;
13314
13315 case BINOP_IN_BOUNDS:
323e0a4a 13316 /* XXX: sprint_subexp */
4c4b4cd2 13317 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13318 fputs_filtered (" in ", stream);
4c4b4cd2 13319 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13320 fputs_filtered ("'range", stream);
4c4b4cd2 13321 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13322 fprintf_filtered (stream, "(%ld)",
13323 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13324 return;
13325
13326 case TERNOP_IN_RANGE:
4c4b4cd2 13327 if (prec >= PREC_EQUAL)
76a01679 13328 fputs_filtered ("(", stream);
323e0a4a 13329 /* XXX: sprint_subexp */
4c4b4cd2 13330 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13331 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13332 print_subexp (exp, pos, stream, PREC_EQUAL);
13333 fputs_filtered (" .. ", stream);
13334 print_subexp (exp, pos, stream, PREC_EQUAL);
13335 if (prec >= PREC_EQUAL)
76a01679
JB
13336 fputs_filtered (")", stream);
13337 return;
4c4b4cd2
PH
13338
13339 case OP_ATR_FIRST:
13340 case OP_ATR_LAST:
13341 case OP_ATR_LENGTH:
13342 case OP_ATR_IMAGE:
13343 case OP_ATR_MAX:
13344 case OP_ATR_MIN:
13345 case OP_ATR_MODULUS:
13346 case OP_ATR_POS:
13347 case OP_ATR_SIZE:
13348 case OP_ATR_TAG:
13349 case OP_ATR_VAL:
4c4b4cd2 13350 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13351 {
13352 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13353 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13354 &type_print_raw_options);
76a01679
JB
13355 *pos += 3;
13356 }
4c4b4cd2 13357 else
76a01679 13358 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13359 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13360 if (nargs > 1)
76a01679
JB
13361 {
13362 int tem;
5b4ee69b 13363
76a01679
JB
13364 for (tem = 1; tem < nargs; tem += 1)
13365 {
13366 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13367 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13368 }
13369 fputs_filtered (")", stream);
13370 }
4c4b4cd2 13371 return;
14f9c5c9 13372
4c4b4cd2 13373 case UNOP_QUAL:
4c4b4cd2
PH
13374 type_print (exp->elts[pc + 1].type, "", stream, 0);
13375 fputs_filtered ("'(", stream);
13376 print_subexp (exp, pos, stream, PREC_PREFIX);
13377 fputs_filtered (")", stream);
13378 return;
14f9c5c9 13379
4c4b4cd2 13380 case UNOP_IN_RANGE:
323e0a4a 13381 /* XXX: sprint_subexp */
4c4b4cd2 13382 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13383 fputs_filtered (" in ", stream);
79d43c61
TT
13384 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13385 &type_print_raw_options);
4c4b4cd2 13386 return;
52ce6436
PH
13387
13388 case OP_DISCRETE_RANGE:
13389 print_subexp (exp, pos, stream, PREC_SUFFIX);
13390 fputs_filtered ("..", stream);
13391 print_subexp (exp, pos, stream, PREC_SUFFIX);
13392 return;
13393
13394 case OP_OTHERS:
13395 fputs_filtered ("others => ", stream);
13396 print_subexp (exp, pos, stream, PREC_SUFFIX);
13397 return;
13398
13399 case OP_CHOICES:
13400 for (i = 0; i < nargs-1; i += 1)
13401 {
13402 if (i > 0)
13403 fputs_filtered ("|", stream);
13404 print_subexp (exp, pos, stream, PREC_SUFFIX);
13405 }
13406 fputs_filtered (" => ", stream);
13407 print_subexp (exp, pos, stream, PREC_SUFFIX);
13408 return;
13409
13410 case OP_POSITIONAL:
13411 print_subexp (exp, pos, stream, PREC_SUFFIX);
13412 return;
13413
13414 case OP_AGGREGATE:
13415 fputs_filtered ("(", stream);
13416 for (i = 0; i < nargs; i += 1)
13417 {
13418 if (i > 0)
13419 fputs_filtered (", ", stream);
13420 print_subexp (exp, pos, stream, PREC_SUFFIX);
13421 }
13422 fputs_filtered (")", stream);
13423 return;
4c4b4cd2
PH
13424 }
13425}
14f9c5c9
AS
13426
13427/* Table mapping opcodes into strings for printing operators
13428 and precedences of the operators. */
13429
d2e4a39e
AS
13430static const struct op_print ada_op_print_tab[] = {
13431 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13432 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13433 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13434 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13435 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13436 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13437 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13438 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13439 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13440 {">=", BINOP_GEQ, PREC_ORDER, 0},
13441 {">", BINOP_GTR, PREC_ORDER, 0},
13442 {"<", BINOP_LESS, PREC_ORDER, 0},
13443 {">>", BINOP_RSH, PREC_SHIFT, 0},
13444 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13445 {"+", BINOP_ADD, PREC_ADD, 0},
13446 {"-", BINOP_SUB, PREC_ADD, 0},
13447 {"&", BINOP_CONCAT, PREC_ADD, 0},
13448 {"*", BINOP_MUL, PREC_MUL, 0},
13449 {"/", BINOP_DIV, PREC_MUL, 0},
13450 {"rem", BINOP_REM, PREC_MUL, 0},
13451 {"mod", BINOP_MOD, PREC_MUL, 0},
13452 {"**", BINOP_EXP, PREC_REPEAT, 0},
13453 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13454 {"-", UNOP_NEG, PREC_PREFIX, 0},
13455 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13456 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13457 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13458 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13459 {".all", UNOP_IND, PREC_SUFFIX, 1},
13460 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13461 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13462 {NULL, 0, 0, 0}
14f9c5c9
AS
13463};
13464\f
72d5681a
PH
13465enum ada_primitive_types {
13466 ada_primitive_type_int,
13467 ada_primitive_type_long,
13468 ada_primitive_type_short,
13469 ada_primitive_type_char,
13470 ada_primitive_type_float,
13471 ada_primitive_type_double,
13472 ada_primitive_type_void,
13473 ada_primitive_type_long_long,
13474 ada_primitive_type_long_double,
13475 ada_primitive_type_natural,
13476 ada_primitive_type_positive,
13477 ada_primitive_type_system_address,
13478 nr_ada_primitive_types
13479};
6c038f32
PH
13480
13481static void
d4a9a881 13482ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13483 struct language_arch_info *lai)
13484{
d4a9a881 13485 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13486
72d5681a 13487 lai->primitive_type_vector
d4a9a881 13488 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13489 struct type *);
e9bb382b
UW
13490
13491 lai->primitive_type_vector [ada_primitive_type_int]
13492 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13493 0, "integer");
13494 lai->primitive_type_vector [ada_primitive_type_long]
13495 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13496 0, "long_integer");
13497 lai->primitive_type_vector [ada_primitive_type_short]
13498 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13499 0, "short_integer");
13500 lai->string_char_type
13501 = lai->primitive_type_vector [ada_primitive_type_char]
13502 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13503 lai->primitive_type_vector [ada_primitive_type_float]
13504 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13505 "float", NULL);
13506 lai->primitive_type_vector [ada_primitive_type_double]
13507 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13508 "long_float", NULL);
13509 lai->primitive_type_vector [ada_primitive_type_long_long]
13510 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13511 0, "long_long_integer");
13512 lai->primitive_type_vector [ada_primitive_type_long_double]
13513 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13514 "long_long_float", NULL);
13515 lai->primitive_type_vector [ada_primitive_type_natural]
13516 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13517 0, "natural");
13518 lai->primitive_type_vector [ada_primitive_type_positive]
13519 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13520 0, "positive");
13521 lai->primitive_type_vector [ada_primitive_type_void]
13522 = builtin->builtin_void;
13523
13524 lai->primitive_type_vector [ada_primitive_type_system_address]
13525 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13526 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13527 = "system__address";
fbb06eb1 13528
47e729a8 13529 lai->bool_type_symbol = NULL;
fbb06eb1 13530 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13531}
6c038f32
PH
13532\f
13533 /* Language vector */
13534
13535/* Not really used, but needed in the ada_language_defn. */
13536
13537static void
6c7a06a3 13538emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13539{
6c7a06a3 13540 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13541}
13542
13543static int
410a0ff2 13544parse (struct parser_state *ps)
6c038f32
PH
13545{
13546 warnings_issued = 0;
410a0ff2 13547 return ada_parse (ps);
6c038f32
PH
13548}
13549
13550static const struct exp_descriptor ada_exp_descriptor = {
13551 ada_print_subexp,
13552 ada_operator_length,
c0201579 13553 ada_operator_check,
6c038f32
PH
13554 ada_op_name,
13555 ada_dump_subexp_body,
13556 ada_evaluate_subexp
13557};
13558
1a119f36 13559/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13560 for Ada. */
13561
1a119f36
JB
13562static symbol_name_cmp_ftype
13563ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13564{
13565 if (should_use_wild_match (lookup_name))
13566 return wild_match;
13567 else
13568 return compare_names;
13569}
13570
a5ee536b
JB
13571/* Implement the "la_read_var_value" language_defn method for Ada. */
13572
13573static struct value *
13574ada_read_var_value (struct symbol *var, struct frame_info *frame)
13575{
3977b71f 13576 const struct block *frame_block = NULL;
a5ee536b
JB
13577 struct symbol *renaming_sym = NULL;
13578
13579 /* The only case where default_read_var_value is not sufficient
13580 is when VAR is a renaming... */
13581 if (frame)
13582 frame_block = get_frame_block (frame, NULL);
13583 if (frame_block)
13584 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13585 if (renaming_sym != NULL)
13586 return ada_read_renaming_var_value (renaming_sym, frame_block);
13587
13588 /* This is a typical case where we expect the default_read_var_value
13589 function to work. */
13590 return default_read_var_value (var, frame);
13591}
13592
6c038f32
PH
13593const struct language_defn ada_language_defn = {
13594 "ada", /* Language name */
6abde28f 13595 "Ada",
6c038f32 13596 language_ada,
6c038f32 13597 range_check_off,
6c038f32
PH
13598 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13599 that's not quite what this means. */
6c038f32 13600 array_row_major,
9a044a89 13601 macro_expansion_no,
6c038f32
PH
13602 &ada_exp_descriptor,
13603 parse,
13604 ada_error,
13605 resolve,
13606 ada_printchar, /* Print a character constant */
13607 ada_printstr, /* Function to print string constant */
13608 emit_char, /* Function to print single char (not used) */
6c038f32 13609 ada_print_type, /* Print a type using appropriate syntax */
be942545 13610 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13611 ada_val_print, /* Print a value using appropriate syntax */
13612 ada_value_print, /* Print a top-level value */
a5ee536b 13613 ada_read_var_value, /* la_read_var_value */
6c038f32 13614 NULL, /* Language specific skip_trampoline */
2b2d9e11 13615 NULL, /* name_of_this */
6c038f32
PH
13616 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13617 basic_lookup_transparent_type, /* lookup_transparent_type */
13618 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13619 NULL, /* Language specific
13620 class_name_from_physname */
6c038f32
PH
13621 ada_op_print_tab, /* expression operators for printing */
13622 0, /* c-style arrays */
13623 1, /* String lower bound */
6c038f32 13624 ada_get_gdb_completer_word_break_characters,
41d27058 13625 ada_make_symbol_completion_list,
72d5681a 13626 ada_language_arch_info,
e79af960 13627 ada_print_array_index,
41f1b697 13628 default_pass_by_reference,
ae6a3a4c 13629 c_get_string,
1a119f36 13630 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13631 ada_iterate_over_symbols,
a53b64ea 13632 &ada_varobj_ops,
bb2ec1b3
TT
13633 NULL,
13634 NULL,
6c038f32
PH
13635 LANG_MAGIC
13636};
13637
2c0b251b
PA
13638/* Provide a prototype to silence -Wmissing-prototypes. */
13639extern initialize_file_ftype _initialize_ada_language;
13640
5bf03f13
JB
13641/* Command-list for the "set/show ada" prefix command. */
13642static struct cmd_list_element *set_ada_list;
13643static struct cmd_list_element *show_ada_list;
13644
13645/* Implement the "set ada" prefix command. */
13646
13647static void
13648set_ada_command (char *arg, int from_tty)
13649{
13650 printf_unfiltered (_(\
13651"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13652 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13653}
13654
13655/* Implement the "show ada" prefix command. */
13656
13657static void
13658show_ada_command (char *args, int from_tty)
13659{
13660 cmd_show_list (show_ada_list, from_tty, "");
13661}
13662
2060206e
PA
13663static void
13664initialize_ada_catchpoint_ops (void)
13665{
13666 struct breakpoint_ops *ops;
13667
13668 initialize_breakpoint_ops ();
13669
13670 ops = &catch_exception_breakpoint_ops;
13671 *ops = bkpt_breakpoint_ops;
13672 ops->dtor = dtor_catch_exception;
13673 ops->allocate_location = allocate_location_catch_exception;
13674 ops->re_set = re_set_catch_exception;
13675 ops->check_status = check_status_catch_exception;
13676 ops->print_it = print_it_catch_exception;
13677 ops->print_one = print_one_catch_exception;
13678 ops->print_mention = print_mention_catch_exception;
13679 ops->print_recreate = print_recreate_catch_exception;
13680
13681 ops = &catch_exception_unhandled_breakpoint_ops;
13682 *ops = bkpt_breakpoint_ops;
13683 ops->dtor = dtor_catch_exception_unhandled;
13684 ops->allocate_location = allocate_location_catch_exception_unhandled;
13685 ops->re_set = re_set_catch_exception_unhandled;
13686 ops->check_status = check_status_catch_exception_unhandled;
13687 ops->print_it = print_it_catch_exception_unhandled;
13688 ops->print_one = print_one_catch_exception_unhandled;
13689 ops->print_mention = print_mention_catch_exception_unhandled;
13690 ops->print_recreate = print_recreate_catch_exception_unhandled;
13691
13692 ops = &catch_assert_breakpoint_ops;
13693 *ops = bkpt_breakpoint_ops;
13694 ops->dtor = dtor_catch_assert;
13695 ops->allocate_location = allocate_location_catch_assert;
13696 ops->re_set = re_set_catch_assert;
13697 ops->check_status = check_status_catch_assert;
13698 ops->print_it = print_it_catch_assert;
13699 ops->print_one = print_one_catch_assert;
13700 ops->print_mention = print_mention_catch_assert;
13701 ops->print_recreate = print_recreate_catch_assert;
13702}
13703
3d9434b5
JB
13704/* This module's 'new_objfile' observer. */
13705
13706static void
13707ada_new_objfile_observer (struct objfile *objfile)
13708{
13709 ada_clear_symbol_cache ();
13710}
13711
13712/* This module's 'free_objfile' observer. */
13713
13714static void
13715ada_free_objfile_observer (struct objfile *objfile)
13716{
13717 ada_clear_symbol_cache ();
13718}
13719
d2e4a39e 13720void
6c038f32 13721_initialize_ada_language (void)
14f9c5c9 13722{
6c038f32
PH
13723 add_language (&ada_language_defn);
13724
2060206e
PA
13725 initialize_ada_catchpoint_ops ();
13726
5bf03f13
JB
13727 add_prefix_cmd ("ada", no_class, set_ada_command,
13728 _("Prefix command for changing Ada-specfic settings"),
13729 &set_ada_list, "set ada ", 0, &setlist);
13730
13731 add_prefix_cmd ("ada", no_class, show_ada_command,
13732 _("Generic command for showing Ada-specific settings."),
13733 &show_ada_list, "show ada ", 0, &showlist);
13734
13735 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13736 &trust_pad_over_xvs, _("\
13737Enable or disable an optimization trusting PAD types over XVS types"), _("\
13738Show whether an optimization trusting PAD types over XVS types is activated"),
13739 _("\
13740This is related to the encoding used by the GNAT compiler. The debugger\n\
13741should normally trust the contents of PAD types, but certain older versions\n\
13742of GNAT have a bug that sometimes causes the information in the PAD type\n\
13743to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13744work around this bug. It is always safe to turn this option \"off\", but\n\
13745this incurs a slight performance penalty, so it is recommended to NOT change\n\
13746this option to \"off\" unless necessary."),
13747 NULL, NULL, &set_ada_list, &show_ada_list);
13748
9ac4176b
PA
13749 add_catch_command ("exception", _("\
13750Catch Ada exceptions, when raised.\n\
13751With an argument, catch only exceptions with the given name."),
13752 catch_ada_exception_command,
13753 NULL,
13754 CATCH_PERMANENT,
13755 CATCH_TEMPORARY);
13756 add_catch_command ("assert", _("\
13757Catch failed Ada assertions, when raised.\n\
13758With an argument, catch only exceptions with the given name."),
13759 catch_assert_command,
13760 NULL,
13761 CATCH_PERMANENT,
13762 CATCH_TEMPORARY);
13763
6c038f32 13764 varsize_limit = 65536;
6c038f32 13765
778865d3
JB
13766 add_info ("exceptions", info_exceptions_command,
13767 _("\
13768List all Ada exception names.\n\
13769If a regular expression is passed as an argument, only those matching\n\
13770the regular expression are listed."));
13771
c6044dd1
JB
13772 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13773 _("Set Ada maintenance-related variables."),
13774 &maint_set_ada_cmdlist, "maintenance set ada ",
13775 0/*allow-unknown*/, &maintenance_set_cmdlist);
13776
13777 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13778 _("Show Ada maintenance-related variables"),
13779 &maint_show_ada_cmdlist, "maintenance show ada ",
13780 0/*allow-unknown*/, &maintenance_show_cmdlist);
13781
13782 add_setshow_boolean_cmd
13783 ("ignore-descriptive-types", class_maintenance,
13784 &ada_ignore_descriptive_types_p,
13785 _("Set whether descriptive types generated by GNAT should be ignored."),
13786 _("Show whether descriptive types generated by GNAT should be ignored."),
13787 _("\
13788When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13789DWARF attribute."),
13790 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13791
6c038f32
PH
13792 obstack_init (&symbol_list_obstack);
13793
13794 decoded_names_store = htab_create_alloc
13795 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13796 NULL, xcalloc, xfree);
6b69afc4 13797
3d9434b5
JB
13798 /* The ada-lang observers. */
13799 observer_attach_new_objfile (ada_new_objfile_observer);
13800 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13801 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13802
13803 /* Setup various context-specific data. */
e802dbe0 13804 ada_inferior_data
8e260fc0 13805 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13806 ada_pspace_data_handle
13807 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13808}
This page took 1.926097 seconds and 4 git commands to generate.