ld-plugin/pr24406-1.c: Correct buffer size to read
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4 51#include "observable.h"
268a13a5 52#include "gdbsupport/vec.h"
692465f1 53#include "stack.h"
268a13a5 54#include "gdbsupport/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
268a13a5
TT
63#include "gdbsupport/function-view.h"
64#include "gdbsupport/byte-vector.h"
4de283e4 65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
a121b7c1 149static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 150 int, int);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 191
d2e4a39e 192static int equiv_types (struct type *, struct type *);
14f9c5c9 193
d2e4a39e 194static int is_name_suffix (const char *);
14f9c5c9 195
73589123
PH
196static int advance_wild_match (const char **, const char *, int);
197
b5ec771e 198static bool wild_match (const char *name, const char *patn);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
108d56a4 211static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
0d5cff50 217static int find_struct_field (const char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2 219
d12307c1 220static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 221 struct value **, int, const char *,
2a612529 222 struct type *, int);
4c4b4cd2 223
4c4b4cd2
PH
224static int ada_is_direct_array_type (struct type *);
225
72d5681a
PH
226static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
714e53ab 228
52ce6436
PH
229static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
233 struct expression *,
234 int *, enum noside);
52ce6436
PH
235
236static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
852dff6c
JB
260
261static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
262
263static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
4c4b4cd2
PH
266\f
267
ee01b665
JB
268/* The result of a symbol lookup to be stored in our symbol cache. */
269
270struct cache_entry
271{
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
fe978cb0 275 domain_enum domain;
ee01b665
JB
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284};
285
286/* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295#define HASH_SIZE 1009
296
297struct ada_symbol_cache
298{
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304};
305
306static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 307
4c4b4cd2 308/* Maximum-sized dynamic type. */
14f9c5c9
AS
309static unsigned int varsize_limit;
310
67cb5b2d 311static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
312#ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314#else
14f9c5c9 315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 316#endif
14f9c5c9 317
4c4b4cd2 318/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 319static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 320 = "__gnat_ada_main_program_name";
14f9c5c9 321
4c4b4cd2
PH
322/* Limit on the number of warnings to raise per expression evaluation. */
323static int warning_limit = 2;
324
325/* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327static int warnings_issued = 0;
328
329static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331};
332
333static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335};
336
c6044dd1
JB
337/* Maintenance-related settings for this module. */
338
339static struct cmd_list_element *maint_set_ada_cmdlist;
340static struct cmd_list_element *maint_show_ada_cmdlist;
341
342/* Implement the "maintenance set ada" (prefix) command. */
343
344static void
981a3fb3 345maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 346{
635c7e8a
TT
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
c6044dd1
JB
349}
350
351/* Implement the "maintenance show ada" (prefix) command. */
352
353static void
981a3fb3 354maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
355{
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357}
358
359/* The "maintenance ada set/show ignore-descriptive-type" value. */
360
491144b5 361static bool ada_ignore_descriptive_types_p = false;
c6044dd1 362
e802dbe0
JB
363 /* Inferior-specific data. */
364
365/* Per-inferior data for this module. */
366
367struct ada_inferior_data
368{
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
f37b313d 373 struct type *tsd_type = nullptr;
3eecfa55
JB
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
f37b313d 378 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
379};
380
381/* Our key to this module's inferior data. */
f37b313d 382static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
383
384/* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392static struct ada_inferior_data *
393get_ada_inferior_data (struct inferior *inf)
394{
395 struct ada_inferior_data *data;
396
f37b313d 397 data = ada_inferior_data.get (inf);
e802dbe0 398 if (data == NULL)
f37b313d 399 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
400
401 return data;
402}
403
404/* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407static void
408ada_inferior_exit (struct inferior *inf)
409{
f37b313d 410 ada_inferior_data.clear (inf);
e802dbe0
JB
411}
412
ee01b665
JB
413
414 /* program-space-specific data. */
415
416/* This module's per-program-space data. */
417struct ada_pspace_data
418{
f37b313d
TT
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
ee01b665 425 /* The Ada symbol cache. */
f37b313d 426 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
427};
428
429/* Key to our per-program-space data. */
f37b313d 430static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
431
432/* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437static struct ada_pspace_data *
438get_ada_pspace_data (struct program_space *pspace)
439{
440 struct ada_pspace_data *data;
441
f37b313d 442 data = ada_pspace_data_handle.get (pspace);
ee01b665 443 if (data == NULL)
f37b313d 444 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
445
446 return data;
447}
448
4c4b4cd2
PH
449 /* Utilities */
450
720d1a40 451/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 452 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478static struct type *
479ada_typedef_target_type (struct type *type)
480{
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484}
485
41d27058
JB
486/* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490static const char *
491ada_unqualified_name (const char *decoded_name)
492{
2b0f535a
JB
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
41d27058
JB
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509}
510
39e7af3e 511/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 512
39e7af3e 513static std::string
41d27058
JB
514add_angle_brackets (const char *str)
515{
39e7af3e 516 return string_printf ("<%s>", str);
41d27058 517}
96d887e8 518
67cb5b2d 519static const char *
4c4b4cd2
PH
520ada_get_gdb_completer_word_break_characters (void)
521{
522 return ada_completer_word_break_characters;
523}
524
e79af960
JB
525/* Print an array element index using the Ada syntax. */
526
527static void
528ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 529 const struct value_print_options *options)
e79af960 530{
79a45b7d 531 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
532 fprintf_filtered (stream, " => ");
533}
534
e2b7af72
JB
535/* la_watch_location_expression for Ada. */
536
537gdb::unique_xmalloc_ptr<char>
538ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539{
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544}
545
f27cf670 546/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 548 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 549
f27cf670
AS
550void *
551grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 552{
d2e4a39e
AS
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
4c4b4cd2 557 *size = min_size;
f27cf670 558 vect = xrealloc (vect, *size * element_size);
d2e4a39e 559 }
f27cf670 560 return vect;
14f9c5c9
AS
561}
562
563/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 564 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
565
566static int
ebf56fd3 567field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
568{
569 int len = strlen (target);
5b4ee69b 570
d2e4a39e 571 return
4c4b4cd2
PH
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
61012eef 574 || (startswith (field_name + len, "___")
76a01679
JB
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
14f9c5c9
AS
577}
578
579
872c8b51
JB
580/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
587
588int
589ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591{
592 int fieldno;
872c8b51
JB
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
597 return fieldno;
598
599 if (!maybe_missing)
323e0a4a 600 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 601 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
602
603 return -1;
604}
605
606/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
607
608int
d2e4a39e 609ada_name_prefix_len (const char *name)
14f9c5c9
AS
610{
611 if (name == NULL)
612 return 0;
d2e4a39e 613 else
14f9c5c9 614 {
d2e4a39e 615 const char *p = strstr (name, "___");
5b4ee69b 616
14f9c5c9 617 if (p == NULL)
4c4b4cd2 618 return strlen (name);
14f9c5c9 619 else
4c4b4cd2 620 return p - name;
14f9c5c9
AS
621 }
622}
623
4c4b4cd2
PH
624/* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
14f9c5c9 627static int
d2e4a39e 628is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
629{
630 int len1, len2;
5b4ee69b 631
14f9c5c9
AS
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
4c4b4cd2 636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
637}
638
4c4b4cd2
PH
639/* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
14f9c5c9 641
d2e4a39e 642static struct value *
4c4b4cd2 643coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 644{
61ee279c 645 type = ada_check_typedef (type);
df407dfe 646 if (value_type (val) == type)
4c4b4cd2 647 return val;
d2e4a39e 648 else
14f9c5c9 649 {
4c4b4cd2
PH
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
c1b5a1a6 654 ada_ensure_varsize_limit (type);
4c4b4cd2 655
41e8491f
JK
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
9a0dc9e3 662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 663 }
74bcbdf3 664 set_value_component_location (result, val);
9bbda503
AC
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
14f9c5c9
AS
669 return result;
670 }
671}
672
fc1a4b47
AC
673static const gdb_byte *
674cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
675{
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680}
681
682static CORE_ADDR
ebf56fd3 683cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
684{
685 if (address == 0)
686 return 0;
d2e4a39e 687 else
14f9c5c9
AS
688 return address + offset;
689}
690
4c4b4cd2
PH
691/* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
a2249542 695
77109804
AC
696/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
a0b31db1 698static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 699
14f9c5c9 700static void
a2249542 701lim_warning (const char *format, ...)
14f9c5c9 702{
a2249542 703 va_list args;
a2249542 704
5b4ee69b 705 va_start (args, format);
4c4b4cd2
PH
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
a2249542
MK
708 vwarning (format, args);
709
710 va_end (args);
4c4b4cd2
PH
711}
712
714e53ab
PH
713/* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
c1b5a1a6
JB
717void
718ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
719{
720 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 721 error (_("object size is larger than varsize-limit"));
714e53ab
PH
722}
723
0963b4bd 724/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 725static LONGEST
c3e5cd34 726max_of_size (int size)
4c4b4cd2 727{
76a01679 728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 729
76a01679 730 return top_bit | (top_bit - 1);
4c4b4cd2
PH
731}
732
0963b4bd 733/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 734static LONGEST
c3e5cd34 735min_of_size (int size)
4c4b4cd2 736{
c3e5cd34 737 return -max_of_size (size) - 1;
4c4b4cd2
PH
738}
739
0963b4bd 740/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 741static ULONGEST
c3e5cd34 742umax_of_size (int size)
4c4b4cd2 743{
76a01679 744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 745
76a01679 746 return top_bit | (top_bit - 1);
4c4b4cd2
PH
747}
748
0963b4bd 749/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
750static LONGEST
751max_of_type (struct type *t)
4c4b4cd2 752{
c3e5cd34
PH
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757}
758
0963b4bd 759/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
760static LONGEST
761min_of_type (struct type *t)
762{
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
767}
768
769/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
770LONGEST
771ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 772{
c3345124 773 type = resolve_dynamic_type (type, NULL, 0);
76a01679 774 switch (TYPE_CODE (type))
4c4b4cd2
PH
775 {
776 case TYPE_CODE_RANGE:
690cc4eb 777 return TYPE_HIGH_BOUND (type);
4c4b4cd2 778 case TYPE_CODE_ENUM:
14e75d8e 779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
76a01679 783 case TYPE_CODE_INT:
690cc4eb 784 return max_of_type (type);
4c4b4cd2 785 default:
43bbcdc2 786 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
787 }
788}
789
14e75d8e 790/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_LOW_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return min_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
808 }
809}
810
811/* The identity on non-range types. For range types, the underlying
76a01679 812 non-range scalar type. */
4c4b4cd2
PH
813
814static struct type *
18af8284 815get_base_type (struct type *type)
4c4b4cd2
PH
816{
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
76a01679
JB
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
4c4b4cd2
PH
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
14f9c5c9 824}
41246937
JB
825
826/* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831struct value *
832ada_get_decoded_value (struct value *value)
833{
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849}
850
851/* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856struct type *
857ada_get_decoded_type (struct type *type)
858{
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863}
864
4c4b4cd2 865\f
76a01679 866
4c4b4cd2 867 /* Language Selection */
14f9c5c9
AS
868
869/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 870 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 871
14f9c5c9 872enum language
ccefe4c4 873ada_update_initial_language (enum language lang)
14f9c5c9 874{
cafb3438 875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 876 return language_ada;
14f9c5c9
AS
877
878 return lang;
879}
96d887e8
PH
880
881/* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885char *
886ada_main_name (void)
887{
3b7344d5 888 struct bound_minimal_symbol msym;
e83e4e24 889 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 890
96d887e8
PH
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
3b7344d5 898 if (msym.minsym != NULL)
96d887e8 899 {
f9bc20b9
JB
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
77e371c0 903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 904 if (main_program_name_addr == 0)
323e0a4a 905 error (_("Invalid address for Ada main program name."));
96d887e8 906
f9bc20b9
JB
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
e83e4e24 912 return main_program_name.get ();
96d887e8
PH
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917}
14f9c5c9 918\f
4c4b4cd2 919 /* Symbols */
d2e4a39e 920
4c4b4cd2
PH
921/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
14f9c5c9 923
d2e4a39e
AS
924const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
14f9c5c9
AS
947};
948
b5ec771e
PA
949/* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
4c4b4cd2 953
b5ec771e
PA
954static char *
955ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 956{
4c4b4cd2
PH
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
d2e4a39e 959 const char *p;
14f9c5c9 960 int k;
d2e4a39e 961
4c4b4cd2 962 if (decoded == NULL)
14f9c5c9
AS
963 return NULL;
964
4c4b4cd2
PH
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
14f9c5c9
AS
967
968 k = 0;
4c4b4cd2 969 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 970 {
cdc7bb92 971 if (*p == '.')
4c4b4cd2
PH
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
14f9c5c9 976 else if (*p == '"')
4c4b4cd2
PH
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
1265e4aa 981 mapping->encoded != NULL
61012eef 982 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
983 ;
984 if (mapping->encoded == NULL)
b5ec771e
PA
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
4c4b4cd2
PH
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
d2e4a39e 995 else
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
14f9c5c9
AS
1000 }
1001
4c4b4cd2
PH
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
14f9c5c9
AS
1004}
1005
b5ec771e
PA
1006/* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009char *
1010ada_encode (const char *decoded)
1011{
1012 return ada_encode_1 (decoded, true);
1013}
1014
14f9c5c9 1015/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
d2e4a39e
AS
1019char *
1020ada_fold_name (const char *name)
14f9c5c9 1021{
d2e4a39e 1022 static char *fold_buffer = NULL;
14f9c5c9
AS
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
d2e4a39e 1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1027
1028 if (name[0] == '\'')
1029 {
d2e4a39e
AS
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1032 }
1033 else
1034 {
1035 int i;
5b4ee69b 1036
14f9c5c9 1037 for (i = 0; i <= len; i += 1)
4c4b4cd2 1038 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1039 }
1040
1041 return fold_buffer;
1042}
1043
529cad9c
PH
1044/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046static int
1047is_lower_alphanum (const char c)
1048{
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050}
1051
c90092fe
JB
1052/* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
29480c32
JB
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
c90092fe 1059
29480c32
JB
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064static void
1065ada_remove_trailing_digits (const char *encoded, int *len)
1066{
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
5b4ee69b 1070
29480c32
JB
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
61012eef 1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1078 *len = i - 2;
61012eef 1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1080 *len = i - 1;
1081 }
1082}
1083
1084/* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087static void
1088ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089{
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
0963b4bd 1095 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104}
1105
1106/* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
14f9c5c9 1109
4c4b4cd2 1110 The resulting string is valid until the next call of ada_decode.
29480c32 1111 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1112 is returned. */
1113
1114const char *
1115ada_decode (const char *encoded)
14f9c5c9
AS
1116{
1117 int i, j;
1118 int len0;
d2e4a39e 1119 const char *p;
4c4b4cd2 1120 char *decoded;
14f9c5c9 1121 int at_start_name;
4c4b4cd2
PH
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
d2e4a39e 1124
0d81f350
JG
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
29480c32
JB
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
61012eef 1133 if (startswith (encoded, "_ada_"))
4c4b4cd2 1134 encoded += 5;
14f9c5c9 1135
29480c32
JB
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
4c4b4cd2 1139 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1140 goto Suppress;
1141
4c4b4cd2 1142 len0 = strlen (encoded);
4c4b4cd2 1143
29480c32
JB
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1146
4c4b4cd2
PH
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1153 {
1154 if (p[3] == 'X')
4c4b4cd2 1155 len0 = p - encoded;
14f9c5c9 1156 else
4c4b4cd2 1157 goto Suppress;
14f9c5c9 1158 }
4c4b4cd2 1159
29480c32
JB
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
61012eef 1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1165 len0 -= 3;
76a01679 1166
a10967fa
JB
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
61012eef 1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1172 len0 -= 2;
1173
29480c32
JB
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
61012eef 1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1178 len0 -= 1;
1179
4c4b4cd2 1180 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1181
4c4b4cd2
PH
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
14f9c5c9 1184
29480c32
JB
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
4c4b4cd2 1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1188 {
4c4b4cd2
PH
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
d2e4a39e 1197 }
14f9c5c9 1198
29480c32
JB
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
4c4b4cd2
PH
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
14f9c5c9
AS
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
29480c32 1208 /* Is this a symbol function? */
4c4b4cd2
PH
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
5b4ee69b 1212
4c4b4cd2
PH
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
14f9c5c9
AS
1230 at_start_name = 0;
1231
529cad9c
PH
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
61012eef 1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1236 i += 2;
529cad9c 1237
29480c32
JB
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
529cad9c
PH
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1260 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
4c4b4cd2
PH
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
29480c32
JB
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
4c4b4cd2
PH
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
cdc7bb92 1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1325 {
29480c32 1326 /* Replace '__' by '.'. */
4c4b4cd2
PH
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
14f9c5c9 1332 else
4c4b4cd2 1333 {
29480c32
JB
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
4c4b4cd2
PH
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
14f9c5c9 1340 }
4c4b4cd2 1341 decoded[j] = '\000';
14f9c5c9 1342
29480c32
JB
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
4c4b4cd2
PH
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1348 goto Suppress;
1349
4c4b4cd2
PH
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
14f9c5c9
AS
1354
1355Suppress:
4c4b4cd2
PH
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
14f9c5c9 1360 else
88c15c34 1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1362 return decoded;
1363
1364}
1365
1366/* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371static struct htab *decoded_names_store;
1372
1373/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1378 GSYMBOL).
4c4b4cd2
PH
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1381 when a decoded name is cached in it. */
4c4b4cd2 1382
45e6c716 1383const char *
f85f34ed 1384ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1385{
f85f34ed
TT
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
615b3f62 1388 &gsymbol->language_specific.demangled_name;
5b4ee69b 1389
f85f34ed 1390 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1393 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1394
f85f34ed 1395 gsymbol->ada_mangled = 1;
5b4ee69b 1396
f85f34ed 1397 if (obstack != NULL)
021887d8 1398 *resultp = obstack_strdup (obstack, decoded);
f85f34ed 1399 else
76a01679 1400 {
f85f34ed
TT
1401 /* Sometimes, we can't find a corresponding objfile, in
1402 which case, we put the result on the heap. Since we only
1403 decode when needed, we hope this usually does not cause a
1404 significant memory leak (FIXME). */
1405
76a01679
JB
1406 char **slot = (char **) htab_find_slot (decoded_names_store,
1407 decoded, INSERT);
5b4ee69b 1408
76a01679
JB
1409 if (*slot == NULL)
1410 *slot = xstrdup (decoded);
1411 *resultp = *slot;
1412 }
4c4b4cd2 1413 }
14f9c5c9 1414
4c4b4cd2
PH
1415 return *resultp;
1416}
76a01679 1417
2c0b251b 1418static char *
76a01679 1419ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1420{
1421 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1422}
1423
8b302db8
TT
1424/* Implement la_sniff_from_mangled_name for Ada. */
1425
1426static int
1427ada_sniff_from_mangled_name (const char *mangled, char **out)
1428{
1429 const char *demangled = ada_decode (mangled);
1430
1431 *out = NULL;
1432
1433 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1434 {
1435 /* Set the gsymbol language to Ada, but still return 0.
1436 Two reasons for that:
1437
1438 1. For Ada, we prefer computing the symbol's decoded name
1439 on the fly rather than pre-compute it, in order to save
1440 memory (Ada projects are typically very large).
1441
1442 2. There are some areas in the definition of the GNAT
1443 encoding where, with a bit of bad luck, we might be able
1444 to decode a non-Ada symbol, generating an incorrect
1445 demangled name (Eg: names ending with "TB" for instance
1446 are identified as task bodies and so stripped from
1447 the decoded name returned).
1448
1449 Returning 1, here, but not setting *DEMANGLED, helps us get a
1450 little bit of the best of both worlds. Because we're last,
1451 we should not affect any of the other languages that were
1452 able to demangle the symbol before us; we get to correctly
1453 tag Ada symbols as such; and even if we incorrectly tagged a
1454 non-Ada symbol, which should be rare, any routing through the
1455 Ada language should be transparent (Ada tries to behave much
1456 like C/C++ with non-Ada symbols). */
1457 return 1;
1458 }
1459
1460 return 0;
1461}
1462
14f9c5c9 1463\f
d2e4a39e 1464
4c4b4cd2 1465 /* Arrays */
14f9c5c9 1466
28c85d6c
JB
1467/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1468 generated by the GNAT compiler to describe the index type used
1469 for each dimension of an array, check whether it follows the latest
1470 known encoding. If not, fix it up to conform to the latest encoding.
1471 Otherwise, do nothing. This function also does nothing if
1472 INDEX_DESC_TYPE is NULL.
1473
1474 The GNAT encoding used to describle the array index type evolved a bit.
1475 Initially, the information would be provided through the name of each
1476 field of the structure type only, while the type of these fields was
1477 described as unspecified and irrelevant. The debugger was then expected
1478 to perform a global type lookup using the name of that field in order
1479 to get access to the full index type description. Because these global
1480 lookups can be very expensive, the encoding was later enhanced to make
1481 the global lookup unnecessary by defining the field type as being
1482 the full index type description.
1483
1484 The purpose of this routine is to allow us to support older versions
1485 of the compiler by detecting the use of the older encoding, and by
1486 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1487 we essentially replace each field's meaningless type by the associated
1488 index subtype). */
1489
1490void
1491ada_fixup_array_indexes_type (struct type *index_desc_type)
1492{
1493 int i;
1494
1495 if (index_desc_type == NULL)
1496 return;
1497 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1498
1499 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1500 to check one field only, no need to check them all). If not, return
1501 now.
1502
1503 If our INDEX_DESC_TYPE was generated using the older encoding,
1504 the field type should be a meaningless integer type whose name
1505 is not equal to the field name. */
1506 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1507 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1508 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1509 return;
1510
1511 /* Fixup each field of INDEX_DESC_TYPE. */
1512 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1513 {
0d5cff50 1514 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1515 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1516
1517 if (raw_type)
1518 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1519 }
1520}
1521
4c4b4cd2 1522/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1523
a121b7c1 1524static const char *bound_name[] = {
d2e4a39e 1525 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1526 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1527};
1528
1529/* Maximum number of array dimensions we are prepared to handle. */
1530
4c4b4cd2 1531#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1532
14f9c5c9 1533
4c4b4cd2
PH
1534/* The desc_* routines return primitive portions of array descriptors
1535 (fat pointers). */
14f9c5c9
AS
1536
1537/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1538 level of indirection, if needed. */
1539
d2e4a39e
AS
1540static struct type *
1541desc_base_type (struct type *type)
14f9c5c9
AS
1542{
1543 if (type == NULL)
1544 return NULL;
61ee279c 1545 type = ada_check_typedef (type);
720d1a40
JB
1546 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1547 type = ada_typedef_target_type (type);
1548
1265e4aa
JB
1549 if (type != NULL
1550 && (TYPE_CODE (type) == TYPE_CODE_PTR
1551 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1552 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1553 else
1554 return type;
1555}
1556
4c4b4cd2
PH
1557/* True iff TYPE indicates a "thin" array pointer type. */
1558
14f9c5c9 1559static int
d2e4a39e 1560is_thin_pntr (struct type *type)
14f9c5c9 1561{
d2e4a39e 1562 return
14f9c5c9
AS
1563 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1564 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1565}
1566
4c4b4cd2
PH
1567/* The descriptor type for thin pointer type TYPE. */
1568
d2e4a39e
AS
1569static struct type *
1570thin_descriptor_type (struct type *type)
14f9c5c9 1571{
d2e4a39e 1572 struct type *base_type = desc_base_type (type);
5b4ee69b 1573
14f9c5c9
AS
1574 if (base_type == NULL)
1575 return NULL;
1576 if (is_suffix (ada_type_name (base_type), "___XVE"))
1577 return base_type;
d2e4a39e 1578 else
14f9c5c9 1579 {
d2e4a39e 1580 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1581
14f9c5c9 1582 if (alt_type == NULL)
4c4b4cd2 1583 return base_type;
14f9c5c9 1584 else
4c4b4cd2 1585 return alt_type;
14f9c5c9
AS
1586 }
1587}
1588
4c4b4cd2
PH
1589/* A pointer to the array data for thin-pointer value VAL. */
1590
d2e4a39e
AS
1591static struct value *
1592thin_data_pntr (struct value *val)
14f9c5c9 1593{
828292f2 1594 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1595 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1596
556bdfd4
UW
1597 data_type = lookup_pointer_type (data_type);
1598
14f9c5c9 1599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1600 return value_cast (data_type, value_copy (val));
d2e4a39e 1601 else
42ae5230 1602 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1603}
1604
4c4b4cd2
PH
1605/* True iff TYPE indicates a "thick" array pointer type. */
1606
14f9c5c9 1607static int
d2e4a39e 1608is_thick_pntr (struct type *type)
14f9c5c9
AS
1609{
1610 type = desc_base_type (type);
1611 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1612 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1613}
1614
4c4b4cd2
PH
1615/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1617
d2e4a39e
AS
1618static struct type *
1619desc_bounds_type (struct type *type)
14f9c5c9 1620{
d2e4a39e 1621 struct type *r;
14f9c5c9
AS
1622
1623 type = desc_base_type (type);
1624
1625 if (type == NULL)
1626 return NULL;
1627 else if (is_thin_pntr (type))
1628 {
1629 type = thin_descriptor_type (type);
1630 if (type == NULL)
4c4b4cd2 1631 return NULL;
14f9c5c9
AS
1632 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1633 if (r != NULL)
61ee279c 1634 return ada_check_typedef (r);
14f9c5c9
AS
1635 }
1636 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1637 {
1638 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1639 if (r != NULL)
61ee279c 1640 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1641 }
1642 return NULL;
1643}
1644
1645/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1646 one, a pointer to its bounds data. Otherwise NULL. */
1647
d2e4a39e
AS
1648static struct value *
1649desc_bounds (struct value *arr)
14f9c5c9 1650{
df407dfe 1651 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1652
d2e4a39e 1653 if (is_thin_pntr (type))
14f9c5c9 1654 {
d2e4a39e 1655 struct type *bounds_type =
4c4b4cd2 1656 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1657 LONGEST addr;
1658
4cdfadb1 1659 if (bounds_type == NULL)
323e0a4a 1660 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1661
1662 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1663 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1664 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1666 addr = value_as_long (arr);
d2e4a39e 1667 else
42ae5230 1668 addr = value_address (arr);
14f9c5c9 1669
d2e4a39e 1670 return
4c4b4cd2
PH
1671 value_from_longest (lookup_pointer_type (bounds_type),
1672 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1673 }
1674
1675 else if (is_thick_pntr (type))
05e522ef
JB
1676 {
1677 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1678 _("Bad GNAT array descriptor"));
1679 struct type *p_bounds_type = value_type (p_bounds);
1680
1681 if (p_bounds_type
1682 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1683 {
1684 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1685
1686 if (TYPE_STUB (target_type))
1687 p_bounds = value_cast (lookup_pointer_type
1688 (ada_check_typedef (target_type)),
1689 p_bounds);
1690 }
1691 else
1692 error (_("Bad GNAT array descriptor"));
1693
1694 return p_bounds;
1695 }
14f9c5c9
AS
1696 else
1697 return NULL;
1698}
1699
4c4b4cd2
PH
1700/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 position of the field containing the address of the bounds data. */
1702
14f9c5c9 1703static int
d2e4a39e 1704fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1705{
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1707}
1708
1709/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1710 size of the field containing the address of the bounds data. */
1711
14f9c5c9 1712static int
d2e4a39e 1713fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1714{
1715 type = desc_base_type (type);
1716
d2e4a39e 1717 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1718 return TYPE_FIELD_BITSIZE (type, 1);
1719 else
61ee279c 1720 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1721}
1722
4c4b4cd2 1723/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1724 pointer to one, the type of its array data (a array-with-no-bounds type);
1725 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1726 data. */
4c4b4cd2 1727
d2e4a39e 1728static struct type *
556bdfd4 1729desc_data_target_type (struct type *type)
14f9c5c9
AS
1730{
1731 type = desc_base_type (type);
1732
4c4b4cd2 1733 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1734 if (is_thin_pntr (type))
556bdfd4 1735 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1736 else if (is_thick_pntr (type))
556bdfd4
UW
1737 {
1738 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1739
1740 if (data_type
1741 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1742 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1743 }
1744
1745 return NULL;
14f9c5c9
AS
1746}
1747
1748/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1749 its array data. */
4c4b4cd2 1750
d2e4a39e
AS
1751static struct value *
1752desc_data (struct value *arr)
14f9c5c9 1753{
df407dfe 1754 struct type *type = value_type (arr);
5b4ee69b 1755
14f9c5c9
AS
1756 if (is_thin_pntr (type))
1757 return thin_data_pntr (arr);
1758 else if (is_thick_pntr (type))
d2e4a39e 1759 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1760 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1761 else
1762 return NULL;
1763}
1764
1765
1766/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1767 position of the field containing the address of the data. */
1768
14f9c5c9 1769static int
d2e4a39e 1770fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1771{
1772 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1773}
1774
1775/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1776 size of the field containing the address of the data. */
1777
14f9c5c9 1778static int
d2e4a39e 1779fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1780{
1781 type = desc_base_type (type);
1782
1783 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1784 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1785 else
14f9c5c9
AS
1786 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1787}
1788
4c4b4cd2 1789/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1790 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
d2e4a39e
AS
1793static struct value *
1794desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1795{
d2e4a39e 1796 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1797 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1798}
1799
1800/* If BOUNDS is an array-bounds structure type, return the bit position
1801 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
14f9c5c9 1804static int
d2e4a39e 1805desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1806{
d2e4a39e 1807 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1808}
1809
1810/* If BOUNDS is an array-bounds structure type, return the bit field size
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
76a01679 1814static int
d2e4a39e 1815desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1816{
1817 type = desc_base_type (type);
1818
d2e4a39e
AS
1819 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1820 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1821 else
1822 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1823}
1824
1825/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1826 Ith bound (numbering from 1). Otherwise, NULL. */
1827
d2e4a39e
AS
1828static struct type *
1829desc_index_type (struct type *type, int i)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
1833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1834 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1835 else
14f9c5c9
AS
1836 return NULL;
1837}
1838
4c4b4cd2
PH
1839/* The number of index positions in the array-bounds type TYPE.
1840 Return 0 if TYPE is NULL. */
1841
14f9c5c9 1842static int
d2e4a39e 1843desc_arity (struct type *type)
14f9c5c9
AS
1844{
1845 type = desc_base_type (type);
1846
1847 if (type != NULL)
1848 return TYPE_NFIELDS (type) / 2;
1849 return 0;
1850}
1851
4c4b4cd2
PH
1852/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1853 an array descriptor type (representing an unconstrained array
1854 type). */
1855
76a01679
JB
1856static int
1857ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1858{
1859 if (type == NULL)
1860 return 0;
61ee279c 1861 type = ada_check_typedef (type);
4c4b4cd2 1862 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1863 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1864}
1865
52ce6436 1866/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1867 * to one. */
52ce6436 1868
2c0b251b 1869static int
52ce6436
PH
1870ada_is_array_type (struct type *type)
1871{
1872 while (type != NULL
1873 && (TYPE_CODE (type) == TYPE_CODE_PTR
1874 || TYPE_CODE (type) == TYPE_CODE_REF))
1875 type = TYPE_TARGET_TYPE (type);
1876 return ada_is_direct_array_type (type);
1877}
1878
4c4b4cd2 1879/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1880
14f9c5c9 1881int
4c4b4cd2 1882ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1883{
1884 if (type == NULL)
1885 return 0;
61ee279c 1886 type = ada_check_typedef (type);
14f9c5c9 1887 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1888 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1889 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1890 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1891}
1892
4c4b4cd2
PH
1893/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1894
14f9c5c9 1895int
4c4b4cd2 1896ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1897{
556bdfd4 1898 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1899
1900 if (type == NULL)
1901 return 0;
61ee279c 1902 type = ada_check_typedef (type);
556bdfd4
UW
1903 return (data_type != NULL
1904 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1905 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1906}
1907
1908/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1909 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1910 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1911 is still needed. */
1912
14f9c5c9 1913int
ebf56fd3 1914ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1915{
d2e4a39e 1916 return
14f9c5c9
AS
1917 type != NULL
1918 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1919 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1920 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1921 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1922}
1923
1924
4c4b4cd2 1925/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1926 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1927 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1928 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1929 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1930 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1931 a descriptor. */
d2e4a39e
AS
1932struct type *
1933ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1934{
ad82864c
JB
1935 if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1937
df407dfe
AC
1938 if (!ada_is_array_descriptor_type (value_type (arr)))
1939 return value_type (arr);
d2e4a39e
AS
1940
1941 if (!bounds)
ad82864c
JB
1942 {
1943 struct type *array_type =
1944 ada_check_typedef (desc_data_target_type (value_type (arr)));
1945
1946 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1947 TYPE_FIELD_BITSIZE (array_type, 0) =
1948 decode_packed_array_bitsize (value_type (arr));
1949
1950 return array_type;
1951 }
14f9c5c9
AS
1952 else
1953 {
d2e4a39e 1954 struct type *elt_type;
14f9c5c9 1955 int arity;
d2e4a39e 1956 struct value *descriptor;
14f9c5c9 1957
df407dfe
AC
1958 elt_type = ada_array_element_type (value_type (arr), -1);
1959 arity = ada_array_arity (value_type (arr));
14f9c5c9 1960
d2e4a39e 1961 if (elt_type == NULL || arity == 0)
df407dfe 1962 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1963
1964 descriptor = desc_bounds (arr);
d2e4a39e 1965 if (value_as_long (descriptor) == 0)
4c4b4cd2 1966 return NULL;
d2e4a39e 1967 while (arity > 0)
4c4b4cd2 1968 {
e9bb382b
UW
1969 struct type *range_type = alloc_type_copy (value_type (arr));
1970 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1971 struct value *low = desc_one_bound (descriptor, arity, 0);
1972 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1973
5b4ee69b 1974 arity -= 1;
0c9c3474
SA
1975 create_static_range_type (range_type, value_type (low),
1976 longest_to_int (value_as_long (low)),
1977 longest_to_int (value_as_long (high)));
4c4b4cd2 1978 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1979
1980 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1981 {
1982 /* We need to store the element packed bitsize, as well as
1983 recompute the array size, because it was previously
1984 computed based on the unpacked element size. */
1985 LONGEST lo = value_as_long (low);
1986 LONGEST hi = value_as_long (high);
1987
1988 TYPE_FIELD_BITSIZE (elt_type, 0) =
1989 decode_packed_array_bitsize (value_type (arr));
1990 /* If the array has no element, then the size is already
1991 zero, and does not need to be recomputed. */
1992 if (lo < hi)
1993 {
1994 int array_bitsize =
1995 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1996
1997 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1998 }
1999 }
4c4b4cd2 2000 }
14f9c5c9
AS
2001
2002 return lookup_pointer_type (elt_type);
2003 }
2004}
2005
2006/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2007 Otherwise, returns either a standard GDB array with bounds set
2008 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2009 GDB array. Returns NULL if ARR is a null fat pointer. */
2010
d2e4a39e
AS
2011struct value *
2012ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2013{
df407dfe 2014 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2015 {
d2e4a39e 2016 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2017
14f9c5c9 2018 if (arrType == NULL)
4c4b4cd2 2019 return NULL;
14f9c5c9
AS
2020 return value_cast (arrType, value_copy (desc_data (arr)));
2021 }
ad82864c
JB
2022 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2023 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2024 else
2025 return arr;
2026}
2027
2028/* If ARR does not represent an array, returns ARR unchanged.
2029 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2030 be ARR itself if it already is in the proper form). */
2031
720d1a40 2032struct value *
d2e4a39e 2033ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2034{
df407dfe 2035 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2036 {
d2e4a39e 2037 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2038
14f9c5c9 2039 if (arrVal == NULL)
323e0a4a 2040 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2041 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2042 return value_ind (arrVal);
2043 }
ad82864c
JB
2044 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2045 return decode_constrained_packed_array (arr);
d2e4a39e 2046 else
14f9c5c9
AS
2047 return arr;
2048}
2049
2050/* If TYPE represents a GNAT array type, return it translated to an
2051 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2052 packing). For other types, is the identity. */
2053
d2e4a39e
AS
2054struct type *
2055ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2056{
ad82864c
JB
2057 if (ada_is_constrained_packed_array_type (type))
2058 return decode_constrained_packed_array_type (type);
17280b9f
UW
2059
2060 if (ada_is_array_descriptor_type (type))
556bdfd4 2061 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2062
2063 return type;
14f9c5c9
AS
2064}
2065
4c4b4cd2
PH
2066/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2067
ad82864c
JB
2068static int
2069ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2070{
2071 if (type == NULL)
2072 return 0;
4c4b4cd2 2073 type = desc_base_type (type);
61ee279c 2074 type = ada_check_typedef (type);
d2e4a39e 2075 return
14f9c5c9
AS
2076 ada_type_name (type) != NULL
2077 && strstr (ada_type_name (type), "___XP") != NULL;
2078}
2079
ad82864c
JB
2080/* Non-zero iff TYPE represents a standard GNAT constrained
2081 packed-array type. */
2082
2083int
2084ada_is_constrained_packed_array_type (struct type *type)
2085{
2086 return ada_is_packed_array_type (type)
2087 && !ada_is_array_descriptor_type (type);
2088}
2089
2090/* Non-zero iff TYPE represents an array descriptor for a
2091 unconstrained packed-array type. */
2092
2093static int
2094ada_is_unconstrained_packed_array_type (struct type *type)
2095{
2096 return ada_is_packed_array_type (type)
2097 && ada_is_array_descriptor_type (type);
2098}
2099
2100/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2101 return the size of its elements in bits. */
2102
2103static long
2104decode_packed_array_bitsize (struct type *type)
2105{
0d5cff50
DE
2106 const char *raw_name;
2107 const char *tail;
ad82864c
JB
2108 long bits;
2109
720d1a40
JB
2110 /* Access to arrays implemented as fat pointers are encoded as a typedef
2111 of the fat pointer type. We need the name of the fat pointer type
2112 to do the decoding, so strip the typedef layer. */
2113 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2114 type = ada_typedef_target_type (type);
2115
2116 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2117 if (!raw_name)
2118 raw_name = ada_type_name (desc_base_type (type));
2119
2120 if (!raw_name)
2121 return 0;
2122
2123 tail = strstr (raw_name, "___XP");
720d1a40 2124 gdb_assert (tail != NULL);
ad82864c
JB
2125
2126 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2127 {
2128 lim_warning
2129 (_("could not understand bit size information on packed array"));
2130 return 0;
2131 }
2132
2133 return bits;
2134}
2135
14f9c5c9
AS
2136/* Given that TYPE is a standard GDB array type with all bounds filled
2137 in, and that the element size of its ultimate scalar constituents
2138 (that is, either its elements, or, if it is an array of arrays, its
2139 elements' elements, etc.) is *ELT_BITS, return an identical type,
2140 but with the bit sizes of its elements (and those of any
2141 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2142 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2143 in bits.
2144
2145 Note that, for arrays whose index type has an XA encoding where
2146 a bound references a record discriminant, getting that discriminant,
2147 and therefore the actual value of that bound, is not possible
2148 because none of the given parameters gives us access to the record.
2149 This function assumes that it is OK in the context where it is being
2150 used to return an array whose bounds are still dynamic and where
2151 the length is arbitrary. */
4c4b4cd2 2152
d2e4a39e 2153static struct type *
ad82864c 2154constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2155{
d2e4a39e
AS
2156 struct type *new_elt_type;
2157 struct type *new_type;
99b1c762
JB
2158 struct type *index_type_desc;
2159 struct type *index_type;
14f9c5c9
AS
2160 LONGEST low_bound, high_bound;
2161
61ee279c 2162 type = ada_check_typedef (type);
14f9c5c9
AS
2163 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2164 return type;
2165
99b1c762
JB
2166 index_type_desc = ada_find_parallel_type (type, "___XA");
2167 if (index_type_desc)
2168 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2169 NULL);
2170 else
2171 index_type = TYPE_INDEX_TYPE (type);
2172
e9bb382b 2173 new_type = alloc_type_copy (type);
ad82864c
JB
2174 new_elt_type =
2175 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2176 elt_bits);
99b1c762 2177 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2178 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2179 TYPE_NAME (new_type) = ada_type_name (type);
2180
4a46959e
JB
2181 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2182 && is_dynamic_type (check_typedef (index_type)))
2183 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2187 else
14f9c5c9
AS
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2190 TYPE_LENGTH (new_type) =
4c4b4cd2 2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2192 }
2193
876cecd0 2194 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2195 return new_type;
2196}
2197
ad82864c
JB
2198/* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2200
d2e4a39e 2201static struct type *
ad82864c 2202decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2203{
0d5cff50 2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2205 char *name;
0d5cff50 2206 const char *tail;
d2e4a39e 2207 struct type *shadow_type;
14f9c5c9 2208 long bits;
14f9c5c9 2209
727e3d2e
JB
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2218 type = desc_base_type (type);
2219
14f9c5c9
AS
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
b4ba55a1
JB
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
14f9c5c9 2226 {
323e0a4a 2227 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2228 return NULL;
2229 }
f168693b 2230 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
0963b4bd
MS
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
14f9c5c9
AS
2236 return NULL;
2237 }
d2e4a39e 2238
ad82864c
JB
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2241}
2242
ad82864c
JB
2243/* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
4c4b4cd2 2247 type length is set appropriately. */
14f9c5c9 2248
d2e4a39e 2249static struct value *
ad82864c 2250decode_constrained_packed_array (struct value *arr)
14f9c5c9 2251{
4c4b4cd2 2252 struct type *type;
14f9c5c9 2253
11aa919a
PMR
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
828292f2 2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2263 arr = value_ind (arr);
4c4b4cd2 2264
ad82864c 2265 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2266 if (type == NULL)
2267 {
323e0a4a 2268 error (_("can't unpack array"));
14f9c5c9
AS
2269 return NULL;
2270 }
61ee279c 2271
50810684 2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2273 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
df407dfe 2282 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
df407dfe 2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
4c4b4cd2 2297 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2298}
2299
2300
2301/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2302 given in IND. ARR must be a simple array. */
14f9c5c9 2303
d2e4a39e
AS
2304static struct value *
2305value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2306{
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
d2e4a39e
AS
2310 struct type *elt_type;
2311 struct value *v;
14f9c5c9
AS
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
df407dfe 2315 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2316 for (i = 0; i < arity; i += 1)
14f9c5c9 2317 {
d2e4a39e 2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
0963b4bd
MS
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
14f9c5c9 2323 else
4c4b4cd2
PH
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
323e0a4a 2331 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2332 lowerbound = upperbound = 0;
2333 }
2334
3cb382c9 2335 idx = pos_atr (ind[i]);
4c4b4cd2 2336 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
4c4b4cd2
PH
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2342 }
14f9c5c9
AS
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2348 bits, elt_type);
14f9c5c9
AS
2349 return v;
2350}
2351
4c4b4cd2 2352/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2353
2354static int
d2e4a39e 2355has_negatives (struct type *type)
14f9c5c9 2356{
d2e4a39e
AS
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
4e962e74 2364 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2365 }
14f9c5c9 2366}
d2e4a39e 2367
f93fca70 2368/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2369 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2370 the unpacked buffer.
14f9c5c9 2371
5b639dea
JB
2372 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2373 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2374
f93fca70
JB
2375 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2376 zero otherwise.
14f9c5c9 2377
f93fca70 2378 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2379
f93fca70
JB
2380 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2381
2382static void
2383ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2384 gdb_byte *unpacked, int unpacked_len,
2385 int is_big_endian, int is_signed_type,
2386 int is_scalar)
2387{
a1c95e6b
JB
2388 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2389 int src_idx; /* Index into the source area */
2390 int src_bytes_left; /* Number of source bytes left to process. */
2391 int srcBitsLeft; /* Number of source bits left to move */
2392 int unusedLS; /* Number of bits in next significant
2393 byte of source that are unused */
2394
a1c95e6b
JB
2395 int unpacked_idx; /* Index into the unpacked buffer */
2396 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2397
4c4b4cd2 2398 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2399 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2400 unsigned char sign;
a1c95e6b 2401
4c4b4cd2
PH
2402 /* Transmit bytes from least to most significant; delta is the direction
2403 the indices move. */
f93fca70 2404 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2405
5b639dea
JB
2406 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2407 bits from SRC. .*/
2408 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2409 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2410 bit_size, unpacked_len);
2411
14f9c5c9 2412 srcBitsLeft = bit_size;
086ca51f 2413 src_bytes_left = src_len;
f93fca70 2414 unpacked_bytes_left = unpacked_len;
14f9c5c9 2415 sign = 0;
f93fca70
JB
2416
2417 if (is_big_endian)
14f9c5c9 2418 {
086ca51f 2419 src_idx = src_len - 1;
f93fca70
JB
2420 if (is_signed_type
2421 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2422 sign = ~0;
d2e4a39e
AS
2423
2424 unusedLS =
4c4b4cd2
PH
2425 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2426 % HOST_CHAR_BIT;
14f9c5c9 2427
f93fca70
JB
2428 if (is_scalar)
2429 {
2430 accumSize = 0;
2431 unpacked_idx = unpacked_len - 1;
2432 }
2433 else
2434 {
4c4b4cd2
PH
2435 /* Non-scalar values must be aligned at a byte boundary... */
2436 accumSize =
2437 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2438 /* ... And are placed at the beginning (most-significant) bytes
2439 of the target. */
086ca51f
JB
2440 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2441 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2442 }
14f9c5c9 2443 }
d2e4a39e 2444 else
14f9c5c9
AS
2445 {
2446 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2447
086ca51f 2448 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2449 unusedLS = bit_offset;
2450 accumSize = 0;
2451
f93fca70 2452 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2453 sign = ~0;
14f9c5c9 2454 }
d2e4a39e 2455
14f9c5c9 2456 accum = 0;
086ca51f 2457 while (src_bytes_left > 0)
14f9c5c9
AS
2458 {
2459 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2460 part of the value. */
d2e4a39e 2461 unsigned int unusedMSMask =
4c4b4cd2
PH
2462 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2463 1;
2464 /* Sign-extend bits for this byte. */
14f9c5c9 2465 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2466
d2e4a39e 2467 accum |=
086ca51f 2468 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2469 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2470 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2471 {
db297a65 2472 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2473 accumSize -= HOST_CHAR_BIT;
2474 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2475 unpacked_bytes_left -= 1;
2476 unpacked_idx += delta;
4c4b4cd2 2477 }
14f9c5c9
AS
2478 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2479 unusedLS = 0;
086ca51f
JB
2480 src_bytes_left -= 1;
2481 src_idx += delta;
14f9c5c9 2482 }
086ca51f 2483 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2484 {
2485 accum |= sign << accumSize;
db297a65 2486 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2487 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2488 if (accumSize < 0)
2489 accumSize = 0;
14f9c5c9 2490 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2491 unpacked_bytes_left -= 1;
2492 unpacked_idx += delta;
14f9c5c9 2493 }
f93fca70
JB
2494}
2495
2496/* Create a new value of type TYPE from the contents of OBJ starting
2497 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2498 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2499 assigning through the result will set the field fetched from.
2500 VALADDR is ignored unless OBJ is NULL, in which case,
2501 VALADDR+OFFSET must address the start of storage containing the
2502 packed value. The value returned in this case is never an lval.
2503 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2504
2505struct value *
2506ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2507 long offset, int bit_offset, int bit_size,
2508 struct type *type)
2509{
2510 struct value *v;
bfb1c796 2511 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2512 gdb_byte *unpacked;
220475ed 2513 const int is_scalar = is_scalar_type (type);
d0a9e810 2514 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2515 gdb::byte_vector staging;
f93fca70
JB
2516
2517 type = ada_check_typedef (type);
2518
d0a9e810 2519 if (obj == NULL)
bfb1c796 2520 src = valaddr + offset;
d0a9e810 2521 else
bfb1c796 2522 src = value_contents (obj) + offset;
d0a9e810
JB
2523
2524 if (is_dynamic_type (type))
2525 {
2526 /* The length of TYPE might by dynamic, so we need to resolve
2527 TYPE in order to know its actual size, which we then use
2528 to create the contents buffer of the value we return.
2529 The difficulty is that the data containing our object is
2530 packed, and therefore maybe not at a byte boundary. So, what
2531 we do, is unpack the data into a byte-aligned buffer, and then
2532 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2533 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2534 staging.resize (staging_len);
d0a9e810
JB
2535
2536 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2537 staging.data (), staging.size (),
d0a9e810
JB
2538 is_big_endian, has_negatives (type),
2539 is_scalar);
d5722aa2 2540 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2541 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2542 {
2543 /* This happens when the length of the object is dynamic,
2544 and is actually smaller than the space reserved for it.
2545 For instance, in an array of variant records, the bit_size
2546 we're given is the array stride, which is constant and
2547 normally equal to the maximum size of its element.
2548 But, in reality, each element only actually spans a portion
2549 of that stride. */
2550 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2551 }
d0a9e810
JB
2552 }
2553
f93fca70
JB
2554 if (obj == NULL)
2555 {
2556 v = allocate_value (type);
bfb1c796 2557 src = valaddr + offset;
f93fca70
JB
2558 }
2559 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2560 {
0cafa88c 2561 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2562 gdb_byte *buf;
0cafa88c 2563
f93fca70 2564 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2565 buf = (gdb_byte *) alloca (src_len);
2566 read_memory (value_address (v), buf, src_len);
2567 src = buf;
f93fca70
JB
2568 }
2569 else
2570 {
2571 v = allocate_value (type);
bfb1c796 2572 src = value_contents (obj) + offset;
f93fca70
JB
2573 }
2574
2575 if (obj != NULL)
2576 {
2577 long new_offset = offset;
2578
2579 set_value_component_location (v, obj);
2580 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2581 set_value_bitsize (v, bit_size);
2582 if (value_bitpos (v) >= HOST_CHAR_BIT)
2583 {
2584 ++new_offset;
2585 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2586 }
2587 set_value_offset (v, new_offset);
2588
2589 /* Also set the parent value. This is needed when trying to
2590 assign a new value (in inferior memory). */
2591 set_value_parent (v, obj);
2592 }
2593 else
2594 set_value_bitsize (v, bit_size);
bfb1c796 2595 unpacked = value_contents_writeable (v);
f93fca70
JB
2596
2597 if (bit_size == 0)
2598 {
2599 memset (unpacked, 0, TYPE_LENGTH (type));
2600 return v;
2601 }
2602
d5722aa2 2603 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2604 {
d0a9e810
JB
2605 /* Small short-cut: If we've unpacked the data into a buffer
2606 of the same size as TYPE's length, then we can reuse that,
2607 instead of doing the unpacking again. */
d5722aa2 2608 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2609 }
d0a9e810
JB
2610 else
2611 ada_unpack_from_contents (src, bit_offset, bit_size,
2612 unpacked, TYPE_LENGTH (type),
2613 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2614
14f9c5c9
AS
2615 return v;
2616}
d2e4a39e 2617
14f9c5c9
AS
2618/* Store the contents of FROMVAL into the location of TOVAL.
2619 Return a new value with the location of TOVAL and contents of
2620 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2621 floating-point or non-scalar types. */
14f9c5c9 2622
d2e4a39e
AS
2623static struct value *
2624ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2625{
df407dfe
AC
2626 struct type *type = value_type (toval);
2627 int bits = value_bitsize (toval);
14f9c5c9 2628
52ce6436
PH
2629 toval = ada_coerce_ref (toval);
2630 fromval = ada_coerce_ref (fromval);
2631
2632 if (ada_is_direct_array_type (value_type (toval)))
2633 toval = ada_coerce_to_simple_array (toval);
2634 if (ada_is_direct_array_type (value_type (fromval)))
2635 fromval = ada_coerce_to_simple_array (fromval);
2636
88e3b34b 2637 if (!deprecated_value_modifiable (toval))
323e0a4a 2638 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2639
d2e4a39e 2640 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2641 && bits > 0
d2e4a39e 2642 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2643 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2644 {
df407dfe
AC
2645 int len = (value_bitpos (toval)
2646 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2647 int from_size;
224c3ddb 2648 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2649 struct value *val;
42ae5230 2650 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2651
2652 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2653 fromval = value_cast (type, fromval);
14f9c5c9 2654
52ce6436 2655 read_memory (to_addr, buffer, len);
aced2898
PH
2656 from_size = value_bitsize (fromval);
2657 if (from_size == 0)
2658 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2659
2660 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2661 ULONGEST from_offset = 0;
2662 if (is_big_endian && is_scalar_type (value_type (fromval)))
2663 from_offset = from_size - bits;
2664 copy_bitwise (buffer, value_bitpos (toval),
2665 value_contents (fromval), from_offset,
2666 bits, is_big_endian);
972daa01 2667 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2668
14f9c5c9 2669 val = value_copy (toval);
0fd88904 2670 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2671 TYPE_LENGTH (type));
04624583 2672 deprecated_set_value_type (val, type);
d2e4a39e 2673
14f9c5c9
AS
2674 return val;
2675 }
2676
2677 return value_assign (toval, fromval);
2678}
2679
2680
7c512744
JB
2681/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2682 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2683 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2684 COMPONENT, and not the inferior's memory. The current contents
2685 of COMPONENT are ignored.
2686
2687 Although not part of the initial design, this function also works
2688 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2689 had a null address, and COMPONENT had an address which is equal to
2690 its offset inside CONTAINER. */
2691
52ce6436
PH
2692static void
2693value_assign_to_component (struct value *container, struct value *component,
2694 struct value *val)
2695{
2696 LONGEST offset_in_container =
42ae5230 2697 (LONGEST) (value_address (component) - value_address (container));
7c512744 2698 int bit_offset_in_container =
52ce6436
PH
2699 value_bitpos (component) - value_bitpos (container);
2700 int bits;
7c512744 2701
52ce6436
PH
2702 val = value_cast (value_type (component), val);
2703
2704 if (value_bitsize (component) == 0)
2705 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2706 else
2707 bits = value_bitsize (component);
2708
50810684 2709 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2710 {
2711 int src_offset;
2712
2713 if (is_scalar_type (check_typedef (value_type (component))))
2714 src_offset
2715 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2716 else
2717 src_offset = 0;
a99bc3d2
JB
2718 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2719 value_bitpos (container) + bit_offset_in_container,
2720 value_contents (val), src_offset, bits, 1);
2a62dfa9 2721 }
52ce6436 2722 else
a99bc3d2
JB
2723 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val), 0, bits, 0);
7c512744
JB
2726}
2727
736ade86
XR
2728/* Determine if TYPE is an access to an unconstrained array. */
2729
d91e9ea8 2730bool
736ade86
XR
2731ada_is_access_to_unconstrained_array (struct type *type)
2732{
2733 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2734 && is_thick_pntr (ada_typedef_target_type (type)));
2735}
2736
4c4b4cd2
PH
2737/* The value of the element of array ARR at the ARITY indices given in IND.
2738 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2739 thereto. */
2740
d2e4a39e
AS
2741struct value *
2742ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2743{
2744 int k;
d2e4a39e
AS
2745 struct value *elt;
2746 struct type *elt_type;
14f9c5c9
AS
2747
2748 elt = ada_coerce_to_simple_array (arr);
2749
df407dfe 2750 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2751 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2752 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2753 return value_subscript_packed (elt, arity, ind);
2754
2755 for (k = 0; k < arity; k += 1)
2756 {
b9c50e9a
XR
2757 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2758
14f9c5c9 2759 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2760 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2761
2497b498 2762 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2763
2764 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2765 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2766 {
2767 /* The element is a typedef to an unconstrained array,
2768 except that the value_subscript call stripped the
2769 typedef layer. The typedef layer is GNAT's way to
2770 specify that the element is, at the source level, an
2771 access to the unconstrained array, rather than the
2772 unconstrained array. So, we need to restore that
2773 typedef layer, which we can do by forcing the element's
2774 type back to its original type. Otherwise, the returned
2775 value is going to be printed as the array, rather
2776 than as an access. Another symptom of the same issue
2777 would be that an expression trying to dereference the
2778 element would also be improperly rejected. */
2779 deprecated_set_value_type (elt, saved_elt_type);
2780 }
2781
2782 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2783 }
b9c50e9a 2784
14f9c5c9
AS
2785 return elt;
2786}
2787
deede10c
JB
2788/* Assuming ARR is a pointer to a GDB array, the value of the element
2789 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2790 Does not read the entire array into memory.
2791
2792 Note: Unlike what one would expect, this function is used instead of
2793 ada_value_subscript for basically all non-packed array types. The reason
2794 for this is that a side effect of doing our own pointer arithmetics instead
2795 of relying on value_subscript is that there is no implicit typedef peeling.
2796 This is important for arrays of array accesses, where it allows us to
2797 preserve the fact that the array's element is an array access, where the
2798 access part os encoded in a typedef layer. */
14f9c5c9 2799
2c0b251b 2800static struct value *
deede10c 2801ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2802{
2803 int k;
919e6dbe 2804 struct value *array_ind = ada_value_ind (arr);
deede10c 2805 struct type *type
919e6dbe
PMR
2806 = check_typedef (value_enclosing_type (array_ind));
2807
2808 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2809 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2810 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2811
2812 for (k = 0; k < arity; k += 1)
2813 {
2814 LONGEST lwb, upb;
aa715135 2815 struct value *lwb_value;
14f9c5c9
AS
2816
2817 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2818 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2819 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2820 value_copy (arr));
14f9c5c9 2821 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2822 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2823 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2824 type = TYPE_TARGET_TYPE (type);
2825 }
2826
2827 return value_ind (arr);
2828}
2829
0b5d8877 2830/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2831 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2832 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2833 this array is LOW, as per Ada rules. */
0b5d8877 2834static struct value *
f5938064
JG
2835ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2836 int low, int high)
0b5d8877 2837{
b0dd7688 2838 struct type *type0 = ada_check_typedef (type);
aa715135 2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2840 struct type *index_type
aa715135 2841 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2842 struct type *slice_type = create_array_type_with_stride
2843 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2844 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2845 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2846 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2847 LONGEST base_low_pos, low_pos;
2848 CORE_ADDR base;
2849
2850 if (!discrete_position (base_index_type, low, &low_pos)
2851 || !discrete_position (base_index_type, base_low, &base_low_pos))
2852 {
2853 warning (_("unable to get positions in slice, use bounds instead"));
2854 low_pos = low;
2855 base_low_pos = base_low;
2856 }
5b4ee69b 2857
aa715135
JG
2858 base = value_as_address (array_ptr)
2859 + ((low_pos - base_low_pos)
2860 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2861 return value_at_lazy (slice_type, base);
0b5d8877
PH
2862}
2863
2864
2865static struct value *
2866ada_value_slice (struct value *array, int low, int high)
2867{
b0dd7688 2868 struct type *type = ada_check_typedef (value_type (array));
aa715135 2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2870 struct type *index_type
2871 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2875 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2876 LONGEST low_pos, high_pos;
5b4ee69b 2877
aa715135
JG
2878 if (!discrete_position (base_index_type, low, &low_pos)
2879 || !discrete_position (base_index_type, high, &high_pos))
2880 {
2881 warning (_("unable to get positions in slice, use bounds instead"));
2882 low_pos = low;
2883 high_pos = high;
2884 }
2885
2886 return value_cast (slice_type,
2887 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2888}
2889
14f9c5c9
AS
2890/* If type is a record type in the form of a standard GNAT array
2891 descriptor, returns the number of dimensions for type. If arr is a
2892 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2893 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2894
2895int
d2e4a39e 2896ada_array_arity (struct type *type)
14f9c5c9
AS
2897{
2898 int arity;
2899
2900 if (type == NULL)
2901 return 0;
2902
2903 type = desc_base_type (type);
2904
2905 arity = 0;
d2e4a39e 2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2907 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2908 else
2909 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2910 {
4c4b4cd2 2911 arity += 1;
61ee279c 2912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2913 }
d2e4a39e 2914
14f9c5c9
AS
2915 return arity;
2916}
2917
2918/* If TYPE is a record type in the form of a standard GNAT array
2919 descriptor or a simple array type, returns the element type for
2920 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2921 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2922
d2e4a39e
AS
2923struct type *
2924ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2925{
2926 type = desc_base_type (type);
2927
d2e4a39e 2928 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2929 {
2930 int k;
d2e4a39e 2931 struct type *p_array_type;
14f9c5c9 2932
556bdfd4 2933 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2934
2935 k = ada_array_arity (type);
2936 if (k == 0)
4c4b4cd2 2937 return NULL;
d2e4a39e 2938
4c4b4cd2 2939 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2940 if (nindices >= 0 && k > nindices)
4c4b4cd2 2941 k = nindices;
d2e4a39e 2942 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2943 {
61ee279c 2944 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2945 k -= 1;
2946 }
14f9c5c9
AS
2947 return p_array_type;
2948 }
2949 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2950 {
2951 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2952 {
2953 type = TYPE_TARGET_TYPE (type);
2954 nindices -= 1;
2955 }
14f9c5c9
AS
2956 return type;
2957 }
2958
2959 return NULL;
2960}
2961
4c4b4cd2 2962/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2963 Does not examine memory. Throws an error if N is invalid or TYPE
2964 is not an array type. NAME is the name of the Ada attribute being
2965 evaluated ('range, 'first, 'last, or 'length); it is used in building
2966 the error message. */
14f9c5c9 2967
1eea4ebd
UW
2968static struct type *
2969ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2970{
4c4b4cd2
PH
2971 struct type *result_type;
2972
14f9c5c9
AS
2973 type = desc_base_type (type);
2974
1eea4ebd
UW
2975 if (n < 0 || n > ada_array_arity (type))
2976 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2977
4c4b4cd2 2978 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2979 {
2980 int i;
2981
2982 for (i = 1; i < n; i += 1)
4c4b4cd2 2983 type = TYPE_TARGET_TYPE (type);
262452ec 2984 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2985 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2986 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2987 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2988 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2989 result_type = NULL;
14f9c5c9 2990 }
d2e4a39e 2991 else
1eea4ebd
UW
2992 {
2993 result_type = desc_index_type (desc_bounds_type (type), n);
2994 if (result_type == NULL)
2995 error (_("attempt to take bound of something that is not an array"));
2996 }
2997
2998 return result_type;
14f9c5c9
AS
2999}
3000
3001/* Given that arr is an array type, returns the lower bound of the
3002 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3003 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3004 array-descriptor type. It works for other arrays with bounds supplied
3005 by run-time quantities other than discriminants. */
14f9c5c9 3006
abb68b3e 3007static LONGEST
fb5e3d5c 3008ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3009{
8a48ac95 3010 struct type *type, *index_type_desc, *index_type;
1ce677a4 3011 int i;
262452ec
JK
3012
3013 gdb_assert (which == 0 || which == 1);
14f9c5c9 3014
ad82864c
JB
3015 if (ada_is_constrained_packed_array_type (arr_type))
3016 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3017
4c4b4cd2 3018 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3019 return (LONGEST) - which;
14f9c5c9
AS
3020
3021 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3022 type = TYPE_TARGET_TYPE (arr_type);
3023 else
3024 type = arr_type;
3025
bafffb51
JB
3026 if (TYPE_FIXED_INSTANCE (type))
3027 {
3028 /* The array has already been fixed, so we do not need to
3029 check the parallel ___XA type again. That encoding has
3030 already been applied, so ignore it now. */
3031 index_type_desc = NULL;
3032 }
3033 else
3034 {
3035 index_type_desc = ada_find_parallel_type (type, "___XA");
3036 ada_fixup_array_indexes_type (index_type_desc);
3037 }
3038
262452ec 3039 if (index_type_desc != NULL)
28c85d6c
JB
3040 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3041 NULL);
262452ec 3042 else
8a48ac95
JB
3043 {
3044 struct type *elt_type = check_typedef (type);
3045
3046 for (i = 1; i < n; i++)
3047 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3048
3049 index_type = TYPE_INDEX_TYPE (elt_type);
3050 }
262452ec 3051
43bbcdc2
PH
3052 return
3053 (LONGEST) (which == 0
3054 ? ada_discrete_type_low_bound (index_type)
3055 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3056}
3057
3058/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3059 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3060 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3061 supplied by run-time quantities other than discriminants. */
14f9c5c9 3062
1eea4ebd 3063static LONGEST
4dc81987 3064ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3065{
eb479039
JB
3066 struct type *arr_type;
3067
3068 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3069 arr = value_ind (arr);
3070 arr_type = value_enclosing_type (arr);
14f9c5c9 3071
ad82864c
JB
3072 if (ada_is_constrained_packed_array_type (arr_type))
3073 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3074 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3075 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3076 else
1eea4ebd 3077 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3078}
3079
3080/* Given that arr is an array value, returns the length of the
3081 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3082 supplied by run-time quantities other than discriminants.
3083 Does not work for arrays indexed by enumeration types with representation
3084 clauses at the moment. */
14f9c5c9 3085
1eea4ebd 3086static LONGEST
d2e4a39e 3087ada_array_length (struct value *arr, int n)
14f9c5c9 3088{
aa715135
JG
3089 struct type *arr_type, *index_type;
3090 int low, high;
eb479039
JB
3091
3092 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3093 arr = value_ind (arr);
3094 arr_type = value_enclosing_type (arr);
14f9c5c9 3095
ad82864c
JB
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3098
4c4b4cd2 3099 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3100 {
3101 low = ada_array_bound_from_type (arr_type, n, 0);
3102 high = ada_array_bound_from_type (arr_type, n, 1);
3103 }
14f9c5c9 3104 else
aa715135
JG
3105 {
3106 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3107 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3108 }
3109
f168693b 3110 arr_type = check_typedef (arr_type);
7150d33c 3111 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3112 if (index_type != NULL)
3113 {
3114 struct type *base_type;
3115 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3116 base_type = TYPE_TARGET_TYPE (index_type);
3117 else
3118 base_type = index_type;
3119
3120 low = pos_atr (value_from_longest (base_type, low));
3121 high = pos_atr (value_from_longest (base_type, high));
3122 }
3123 return high - low + 1;
4c4b4cd2
PH
3124}
3125
bff8c71f
TT
3126/* An array whose type is that of ARR_TYPE (an array type), with
3127 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3128 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3129
3130static struct value *
bff8c71f 3131empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3132{
b0dd7688 3133 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3134 struct type *index_type
3135 = create_static_range_type
bff8c71f
TT
3136 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3137 high < low ? low - 1 : high);
b0dd7688 3138 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3139
0b5d8877 3140 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3141}
14f9c5c9 3142\f
d2e4a39e 3143
4c4b4cd2 3144 /* Name resolution */
14f9c5c9 3145
4c4b4cd2
PH
3146/* The "decoded" name for the user-definable Ada operator corresponding
3147 to OP. */
14f9c5c9 3148
d2e4a39e 3149static const char *
4c4b4cd2 3150ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3151{
3152 int i;
3153
4c4b4cd2 3154 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3155 {
3156 if (ada_opname_table[i].op == op)
4c4b4cd2 3157 return ada_opname_table[i].decoded;
14f9c5c9 3158 }
323e0a4a 3159 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3160}
3161
3162
4c4b4cd2
PH
3163/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3164 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3165 undefined namespace) and converts operators that are
3166 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3167 non-null, it provides a preferred result type [at the moment, only
3168 type void has any effect---causing procedures to be preferred over
3169 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3170 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3171
4c4b4cd2 3172static void
699bd4cf
TT
3173resolve (expression_up *expp, int void_context_p, int parse_completion,
3174 innermost_block_tracker *tracker)
14f9c5c9 3175{
30b15541
UW
3176 struct type *context_type = NULL;
3177 int pc = 0;
3178
3179 if (void_context_p)
3180 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3181
699bd4cf 3182 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3183}
3184
4c4b4cd2
PH
3185/* Resolve the operator of the subexpression beginning at
3186 position *POS of *EXPP. "Resolving" consists of replacing
3187 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3188 with their resolutions, replacing built-in operators with
3189 function calls to user-defined operators, where appropriate, and,
3190 when DEPROCEDURE_P is non-zero, converting function-valued variables
3191 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3192 are as in ada_resolve, above. */
14f9c5c9 3193
d2e4a39e 3194static struct value *
e9d9f57e 3195resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3196 struct type *context_type, int parse_completion,
3197 innermost_block_tracker *tracker)
14f9c5c9
AS
3198{
3199 int pc = *pos;
3200 int i;
4c4b4cd2 3201 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3202 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3203 struct value **argvec; /* Vector of operand types (alloca'ed). */
3204 int nargs; /* Number of operands. */
52ce6436 3205 int oplen;
14f9c5c9
AS
3206
3207 argvec = NULL;
3208 nargs = 0;
e9d9f57e 3209 exp = expp->get ();
14f9c5c9 3210
52ce6436
PH
3211 /* Pass one: resolve operands, saving their types and updating *pos,
3212 if needed. */
14f9c5c9
AS
3213 switch (op)
3214 {
4c4b4cd2
PH
3215 case OP_FUNCALL:
3216 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3218 *pos += 7;
4c4b4cd2
PH
3219 else
3220 {
3221 *pos += 3;
699bd4cf 3222 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3223 }
3224 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3225 break;
3226
14f9c5c9 3227 case UNOP_ADDR:
4c4b4cd2 3228 *pos += 1;
699bd4cf 3229 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3230 break;
3231
52ce6436
PH
3232 case UNOP_QUAL:
3233 *pos += 3;
2a612529 3234 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3235 parse_completion, tracker);
4c4b4cd2
PH
3236 break;
3237
52ce6436 3238 case OP_ATR_MODULUS:
4c4b4cd2
PH
3239 case OP_ATR_SIZE:
3240 case OP_ATR_TAG:
4c4b4cd2
PH
3241 case OP_ATR_FIRST:
3242 case OP_ATR_LAST:
3243 case OP_ATR_LENGTH:
3244 case OP_ATR_POS:
3245 case OP_ATR_VAL:
4c4b4cd2
PH
3246 case OP_ATR_MIN:
3247 case OP_ATR_MAX:
52ce6436
PH
3248 case TERNOP_IN_RANGE:
3249 case BINOP_IN_BOUNDS:
3250 case UNOP_IN_RANGE:
3251 case OP_AGGREGATE:
3252 case OP_OTHERS:
3253 case OP_CHOICES:
3254 case OP_POSITIONAL:
3255 case OP_DISCRETE_RANGE:
3256 case OP_NAME:
3257 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3258 *pos += oplen;
14f9c5c9
AS
3259 break;
3260
3261 case BINOP_ASSIGN:
3262 {
4c4b4cd2
PH
3263 struct value *arg1;
3264
3265 *pos += 1;
699bd4cf 3266 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3267 if (arg1 == NULL)
699bd4cf 3268 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3269 else
699bd4cf
TT
3270 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3271 tracker);
4c4b4cd2 3272 break;
14f9c5c9
AS
3273 }
3274
4c4b4cd2 3275 case UNOP_CAST:
4c4b4cd2
PH
3276 *pos += 3;
3277 nargs = 1;
3278 break;
14f9c5c9 3279
4c4b4cd2
PH
3280 case BINOP_ADD:
3281 case BINOP_SUB:
3282 case BINOP_MUL:
3283 case BINOP_DIV:
3284 case BINOP_REM:
3285 case BINOP_MOD:
3286 case BINOP_EXP:
3287 case BINOP_CONCAT:
3288 case BINOP_LOGICAL_AND:
3289 case BINOP_LOGICAL_OR:
3290 case BINOP_BITWISE_AND:
3291 case BINOP_BITWISE_IOR:
3292 case BINOP_BITWISE_XOR:
14f9c5c9 3293
4c4b4cd2
PH
3294 case BINOP_EQUAL:
3295 case BINOP_NOTEQUAL:
3296 case BINOP_LESS:
3297 case BINOP_GTR:
3298 case BINOP_LEQ:
3299 case BINOP_GEQ:
14f9c5c9 3300
4c4b4cd2
PH
3301 case BINOP_REPEAT:
3302 case BINOP_SUBSCRIPT:
3303 case BINOP_COMMA:
40c8aaa9
JB
3304 *pos += 1;
3305 nargs = 2;
3306 break;
14f9c5c9 3307
4c4b4cd2
PH
3308 case UNOP_NEG:
3309 case UNOP_PLUS:
3310 case UNOP_LOGICAL_NOT:
3311 case UNOP_ABS:
3312 case UNOP_IND:
3313 *pos += 1;
3314 nargs = 1;
3315 break;
14f9c5c9 3316
4c4b4cd2 3317 case OP_LONG:
edd079d9 3318 case OP_FLOAT:
4c4b4cd2 3319 case OP_VAR_VALUE:
74ea4be4 3320 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3321 *pos += 4;
3322 break;
14f9c5c9 3323
4c4b4cd2
PH
3324 case OP_TYPE:
3325 case OP_BOOL:
3326 case OP_LAST:
4c4b4cd2
PH
3327 case OP_INTERNALVAR:
3328 *pos += 3;
3329 break;
14f9c5c9 3330
4c4b4cd2
PH
3331 case UNOP_MEMVAL:
3332 *pos += 3;
3333 nargs = 1;
3334 break;
3335
67f3407f
DJ
3336 case OP_REGISTER:
3337 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3338 break;
3339
4c4b4cd2
PH
3340 case STRUCTOP_STRUCT:
3341 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3342 nargs = 1;
3343 break;
3344
4c4b4cd2 3345 case TERNOP_SLICE:
4c4b4cd2
PH
3346 *pos += 1;
3347 nargs = 3;
3348 break;
3349
52ce6436 3350 case OP_STRING:
14f9c5c9 3351 break;
4c4b4cd2
PH
3352
3353 default:
323e0a4a 3354 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3355 }
3356
8d749320 3357 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3358 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3359 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3360 tracker);
4c4b4cd2 3361 argvec[i] = NULL;
e9d9f57e 3362 exp = expp->get ();
4c4b4cd2
PH
3363
3364 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3365 switch (op)
3366 {
3367 default:
3368 break;
3369
14f9c5c9 3370 case OP_VAR_VALUE:
4c4b4cd2 3371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3372 {
54d343a2 3373 std::vector<struct block_symbol> candidates;
76a01679
JB
3374 int n_candidates;
3375
3376 n_candidates =
3377 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3378 (exp->elts[pc + 2].symbol),
3379 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3380 &candidates);
76a01679
JB
3381
3382 if (n_candidates > 1)
3383 {
3384 /* Types tend to get re-introduced locally, so if there
3385 are any local symbols that are not types, first filter
3386 out all types. */
3387 int j;
3388 for (j = 0; j < n_candidates; j += 1)
d12307c1 3389 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3390 {
3391 case LOC_REGISTER:
3392 case LOC_ARG:
3393 case LOC_REF_ARG:
76a01679
JB
3394 case LOC_REGPARM_ADDR:
3395 case LOC_LOCAL:
76a01679 3396 case LOC_COMPUTED:
76a01679
JB
3397 goto FoundNonType;
3398 default:
3399 break;
3400 }
3401 FoundNonType:
3402 if (j < n_candidates)
3403 {
3404 j = 0;
3405 while (j < n_candidates)
3406 {
d12307c1 3407 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3408 {
3409 candidates[j] = candidates[n_candidates - 1];
3410 n_candidates -= 1;
3411 }
3412 else
3413 j += 1;
3414 }
3415 }
3416 }
3417
3418 if (n_candidates == 0)
323e0a4a 3419 error (_("No definition found for %s"),
76a01679
JB
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 else if (n_candidates == 1)
3422 i = 0;
3423 else if (deprocedure_p
54d343a2 3424 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3425 {
06d5cf63 3426 i = ada_resolve_function
54d343a2 3427 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3428 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3429 context_type, parse_completion);
76a01679 3430 if (i < 0)
323e0a4a 3431 error (_("Could not find a match for %s"),
76a01679
JB
3432 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3433 }
3434 else
3435 {
323e0a4a 3436 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3437 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3438 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3439 i = 0;
3440 }
3441
3442 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3443 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3444 tracker->update (candidates[i]);
76a01679
JB
3445 }
3446
3447 if (deprocedure_p
3448 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3449 == TYPE_CODE_FUNC))
3450 {
424da6cf 3451 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3452 exp->elts[pc + 2].symbol,
3453 exp->elts[pc + 1].block);
e9d9f57e 3454 exp = expp->get ();
76a01679 3455 }
14f9c5c9
AS
3456 break;
3457
3458 case OP_FUNCALL:
3459 {
4c4b4cd2 3460 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3461 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3462 {
54d343a2 3463 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3464 int n_candidates;
3465
3466 n_candidates =
76a01679
JB
3467 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3468 (exp->elts[pc + 5].symbol),
3469 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3470 &candidates);
ec6a20c2 3471
4c4b4cd2
PH
3472 if (n_candidates == 1)
3473 i = 0;
3474 else
3475 {
06d5cf63 3476 i = ada_resolve_function
54d343a2 3477 (candidates.data (), n_candidates,
06d5cf63
JB
3478 argvec, nargs,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3480 context_type, parse_completion);
4c4b4cd2 3481 if (i < 0)
323e0a4a 3482 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3484 }
3485
3486 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3487 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3488 tracker->update (candidates[i]);
4c4b4cd2 3489 }
14f9c5c9
AS
3490 }
3491 break;
3492 case BINOP_ADD:
3493 case BINOP_SUB:
3494 case BINOP_MUL:
3495 case BINOP_DIV:
3496 case BINOP_REM:
3497 case BINOP_MOD:
3498 case BINOP_CONCAT:
3499 case BINOP_BITWISE_AND:
3500 case BINOP_BITWISE_IOR:
3501 case BINOP_BITWISE_XOR:
3502 case BINOP_EQUAL:
3503 case BINOP_NOTEQUAL:
3504 case BINOP_LESS:
3505 case BINOP_GTR:
3506 case BINOP_LEQ:
3507 case BINOP_GEQ:
3508 case BINOP_EXP:
3509 case UNOP_NEG:
3510 case UNOP_PLUS:
3511 case UNOP_LOGICAL_NOT:
3512 case UNOP_ABS:
3513 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3514 {
54d343a2 3515 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3516 int n_candidates;
3517
3518 n_candidates =
b5ec771e 3519 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3520 NULL, VAR_DOMAIN,
4eeaa230 3521 &candidates);
ec6a20c2 3522
54d343a2 3523 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3524 nargs, ada_decoded_op_name (op), NULL,
3525 parse_completion);
4c4b4cd2
PH
3526 if (i < 0)
3527 break;
3528
d12307c1
PMR
3529 replace_operator_with_call (expp, pc, nargs, 1,
3530 candidates[i].symbol,
3531 candidates[i].block);
e9d9f57e 3532 exp = expp->get ();
4c4b4cd2 3533 }
14f9c5c9 3534 break;
4c4b4cd2
PH
3535
3536 case OP_TYPE:
b3dbf008 3537 case OP_REGISTER:
4c4b4cd2 3538 return NULL;
14f9c5c9
AS
3539 }
3540
3541 *pos = pc;
ced9779b
JB
3542 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3543 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3544 exp->elts[pc + 1].objfile,
3545 exp->elts[pc + 2].msymbol);
3546 else
3547 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3548}
3549
3550/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3551 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3552 a non-pointer. */
14f9c5c9 3553/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3554 liberal. */
14f9c5c9
AS
3555
3556static int
4dc81987 3557ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3558{
61ee279c
PH
3559 ftype = ada_check_typedef (ftype);
3560 atype = ada_check_typedef (atype);
14f9c5c9
AS
3561
3562 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3563 ftype = TYPE_TARGET_TYPE (ftype);
3564 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3565 atype = TYPE_TARGET_TYPE (atype);
3566
d2e4a39e 3567 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3568 {
3569 default:
5b3d5b7d 3570 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3571 case TYPE_CODE_PTR:
3572 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3573 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3574 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3575 else
1265e4aa
JB
3576 return (may_deref
3577 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_RANGE:
3581 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_ENUM:
3585 case TYPE_CODE_RANGE:
3586 return 1;
3587 default:
3588 return 0;
3589 }
14f9c5c9
AS
3590
3591 case TYPE_CODE_ARRAY:
d2e4a39e 3592 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3593 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3594
3595 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3596 if (ada_is_array_descriptor_type (ftype))
3597 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3598 || ada_is_array_descriptor_type (atype));
14f9c5c9 3599 else
4c4b4cd2
PH
3600 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3601 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3602
3603 case TYPE_CODE_UNION:
3604 case TYPE_CODE_FLT:
3605 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3606 }
3607}
3608
3609/* Return non-zero if the formals of FUNC "sufficiently match" the
3610 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3611 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3612 argument function. */
14f9c5c9
AS
3613
3614static int
d2e4a39e 3615ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3616{
3617 int i;
d2e4a39e 3618 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3619
1265e4aa
JB
3620 if (SYMBOL_CLASS (func) == LOC_CONST
3621 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3622 return (n_actuals == 0);
3623 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3624 return 0;
3625
3626 if (TYPE_NFIELDS (func_type) != n_actuals)
3627 return 0;
3628
3629 for (i = 0; i < n_actuals; i += 1)
3630 {
4c4b4cd2 3631 if (actuals[i] == NULL)
76a01679
JB
3632 return 0;
3633 else
3634 {
5b4ee69b
MS
3635 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3636 i));
df407dfe 3637 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3638
76a01679
JB
3639 if (!ada_type_match (ftype, atype, 1))
3640 return 0;
3641 }
14f9c5c9
AS
3642 }
3643 return 1;
3644}
3645
3646/* False iff function type FUNC_TYPE definitely does not produce a value
3647 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3648 FUNC_TYPE is not a valid function type with a non-null return type
3649 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3650
3651static int
d2e4a39e 3652return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3653{
d2e4a39e 3654 struct type *return_type;
14f9c5c9
AS
3655
3656 if (func_type == NULL)
3657 return 1;
3658
4c4b4cd2 3659 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3660 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3661 else
18af8284 3662 return_type = get_base_type (func_type);
14f9c5c9
AS
3663 if (return_type == NULL)
3664 return 1;
3665
18af8284 3666 context_type = get_base_type (context_type);
14f9c5c9
AS
3667
3668 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3669 return context_type == NULL || return_type == context_type;
3670 else if (context_type == NULL)
3671 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3672 else
3673 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3674}
3675
3676
4c4b4cd2 3677/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3678 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3679 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3680 that returns that type, then eliminate matches that don't. If
3681 CONTEXT_TYPE is void and there is at least one match that does not
3682 return void, eliminate all matches that do.
3683
14f9c5c9
AS
3684 Asks the user if there is more than one match remaining. Returns -1
3685 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3686 solely for messages. May re-arrange and modify SYMS in
3687 the process; the index returned is for the modified vector. */
14f9c5c9 3688
4c4b4cd2 3689static int
d12307c1 3690ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3691 int nsyms, struct value **args, int nargs,
2a612529
TT
3692 const char *name, struct type *context_type,
3693 int parse_completion)
14f9c5c9 3694{
30b15541 3695 int fallback;
14f9c5c9 3696 int k;
4c4b4cd2 3697 int m; /* Number of hits */
14f9c5c9 3698
d2e4a39e 3699 m = 0;
30b15541
UW
3700 /* In the first pass of the loop, we only accept functions matching
3701 context_type. If none are found, we add a second pass of the loop
3702 where every function is accepted. */
3703 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3704 {
3705 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3706 {
d12307c1 3707 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3708
d12307c1 3709 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3710 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3711 {
3712 syms[m] = syms[k];
3713 m += 1;
3714 }
3715 }
14f9c5c9
AS
3716 }
3717
dc5c8746
PMR
3718 /* If we got multiple matches, ask the user which one to use. Don't do this
3719 interactive thing during completion, though, as the purpose of the
3720 completion is providing a list of all possible matches. Prompting the
3721 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3722 if (m == 0)
3723 return -1;
dc5c8746 3724 else if (m > 1 && !parse_completion)
14f9c5c9 3725 {
323e0a4a 3726 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3727 user_select_syms (syms, m, 1);
14f9c5c9
AS
3728 return 0;
3729 }
3730 return 0;
3731}
3732
4c4b4cd2
PH
3733/* Returns true (non-zero) iff decoded name N0 should appear before N1
3734 in a listing of choices during disambiguation (see sort_choices, below).
3735 The idea is that overloadings of a subprogram name from the
3736 same package should sort in their source order. We settle for ordering
3737 such symbols by their trailing number (__N or $N). */
3738
14f9c5c9 3739static int
0d5cff50 3740encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3741{
3742 if (N1 == NULL)
3743 return 0;
3744 else if (N0 == NULL)
3745 return 1;
3746 else
3747 {
3748 int k0, k1;
5b4ee69b 3749
d2e4a39e 3750 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3751 ;
d2e4a39e 3752 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3753 ;
d2e4a39e 3754 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3755 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3756 {
3757 int n0, n1;
5b4ee69b 3758
4c4b4cd2
PH
3759 n0 = k0;
3760 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3761 n0 -= 1;
3762 n1 = k1;
3763 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3764 n1 -= 1;
3765 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3766 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3767 }
14f9c5c9
AS
3768 return (strcmp (N0, N1) < 0);
3769 }
3770}
d2e4a39e 3771
4c4b4cd2
PH
3772/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3773 encoded names. */
3774
d2e4a39e 3775static void
d12307c1 3776sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3777{
4c4b4cd2 3778 int i;
5b4ee69b 3779
d2e4a39e 3780 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3781 {
d12307c1 3782 struct block_symbol sym = syms[i];
14f9c5c9
AS
3783 int j;
3784
d2e4a39e 3785 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3786 {
d12307c1
PMR
3787 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3788 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3789 break;
3790 syms[j + 1] = syms[j];
3791 }
d2e4a39e 3792 syms[j + 1] = sym;
14f9c5c9
AS
3793 }
3794}
3795
d72413e6
PMR
3796/* Whether GDB should display formals and return types for functions in the
3797 overloads selection menu. */
491144b5 3798static bool print_signatures = true;
d72413e6
PMR
3799
3800/* Print the signature for SYM on STREAM according to the FLAGS options. For
3801 all but functions, the signature is just the name of the symbol. For
3802 functions, this is the name of the function, the list of types for formals
3803 and the return type (if any). */
3804
3805static void
3806ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3807 const struct type_print_options *flags)
3808{
3809 struct type *type = SYMBOL_TYPE (sym);
3810
3811 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3812 if (!print_signatures
3813 || type == NULL
3814 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3815 return;
3816
3817 if (TYPE_NFIELDS (type) > 0)
3818 {
3819 int i;
3820
3821 fprintf_filtered (stream, " (");
3822 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3823 {
3824 if (i > 0)
3825 fprintf_filtered (stream, "; ");
3826 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3827 flags);
3828 }
3829 fprintf_filtered (stream, ")");
3830 }
3831 if (TYPE_TARGET_TYPE (type) != NULL
3832 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3833 {
3834 fprintf_filtered (stream, " return ");
3835 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3836 }
3837}
3838
4c4b4cd2
PH
3839/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3840 by asking the user (if necessary), returning the number selected,
3841 and setting the first elements of SYMS items. Error if no symbols
3842 selected. */
14f9c5c9
AS
3843
3844/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3845 to be re-integrated one of these days. */
14f9c5c9
AS
3846
3847int
d12307c1 3848user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3849{
3850 int i;
8d749320 3851 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3852 int n_chosen;
3853 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3854 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3855
3856 if (max_results < 1)
323e0a4a 3857 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3858 if (nsyms <= 1)
3859 return nsyms;
3860
717d2f5a
JB
3861 if (select_mode == multiple_symbols_cancel)
3862 error (_("\
3863canceled because the command is ambiguous\n\
3864See set/show multiple-symbol."));
a0087920 3865
717d2f5a
JB
3866 /* If select_mode is "all", then return all possible symbols.
3867 Only do that if more than one symbol can be selected, of course.
3868 Otherwise, display the menu as usual. */
3869 if (select_mode == multiple_symbols_all && max_results > 1)
3870 return nsyms;
3871
a0087920 3872 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3873 if (max_results > 1)
a0087920 3874 printf_filtered (_("[1] all\n"));
14f9c5c9 3875
4c4b4cd2 3876 sort_choices (syms, nsyms);
14f9c5c9
AS
3877
3878 for (i = 0; i < nsyms; i += 1)
3879 {
d12307c1 3880 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3881 continue;
3882
d12307c1 3883 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3884 {
76a01679 3885 struct symtab_and_line sal =
d12307c1 3886 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3887
a0087920 3888 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3889 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3890 &type_print_raw_options);
323e0a4a 3891 if (sal.symtab == NULL)
a0087920
TT
3892 printf_filtered (_(" at <no source file available>:%d\n"),
3893 sal.line);
323e0a4a 3894 else
a0087920
TT
3895 printf_filtered (_(" at %s:%d\n"),
3896 symtab_to_filename_for_display (sal.symtab),
3897 sal.line);
4c4b4cd2
PH
3898 continue;
3899 }
d2e4a39e 3900 else
4c4b4cd2
PH
3901 {
3902 int is_enumeral =
d12307c1
PMR
3903 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3904 && SYMBOL_TYPE (syms[i].symbol) != NULL
3905 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3906 struct symtab *symtab = NULL;
3907
d12307c1
PMR
3908 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3909 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3910
d12307c1 3911 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3912 {
a0087920 3913 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3914 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3915 &type_print_raw_options);
a0087920
TT
3916 printf_filtered (_(" at %s:%d\n"),
3917 symtab_to_filename_for_display (symtab),
3918 SYMBOL_LINE (syms[i].symbol));
d72413e6 3919 }
76a01679 3920 else if (is_enumeral
d12307c1 3921 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3922 {
a0087920 3923 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3924 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3925 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3926 printf_filtered (_("'(%s) (enumeral)\n"),
3927 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3928 }
d72413e6
PMR
3929 else
3930 {
a0087920 3931 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934
3935 if (symtab != NULL)
a0087920
TT
3936 printf_filtered (is_enumeral
3937 ? _(" in %s (enumeral)\n")
3938 : _(" at %s:?\n"),
3939 symtab_to_filename_for_display (symtab));
d72413e6 3940 else
a0087920
TT
3941 printf_filtered (is_enumeral
3942 ? _(" (enumeral)\n")
3943 : _(" at ?\n"));
d72413e6 3944 }
4c4b4cd2 3945 }
14f9c5c9 3946 }
d2e4a39e 3947
14f9c5c9 3948 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3949 "overload-choice");
14f9c5c9
AS
3950
3951 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3952 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3953
3954 return n_chosen;
3955}
3956
3957/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3958 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3959 order in CHOICES[0 .. N-1], and return N.
3960
3961 The user types choices as a sequence of numbers on one line
3962 separated by blanks, encoding them as follows:
3963
4c4b4cd2 3964 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3965 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3966 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3967
4c4b4cd2 3968 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3969
3970 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3971 prompts (for use with the -f switch). */
14f9c5c9
AS
3972
3973int
d2e4a39e 3974get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3975 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3976{
d2e4a39e 3977 char *args;
a121b7c1 3978 const char *prompt;
14f9c5c9
AS
3979 int n_chosen;
3980 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3981
14f9c5c9
AS
3982 prompt = getenv ("PS2");
3983 if (prompt == NULL)
0bcd0149 3984 prompt = "> ";
14f9c5c9 3985
89fbedf3 3986 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3987
14f9c5c9 3988 if (args == NULL)
323e0a4a 3989 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3990
3991 n_chosen = 0;
76a01679 3992
4c4b4cd2
PH
3993 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3994 order, as given in args. Choices are validated. */
14f9c5c9
AS
3995 while (1)
3996 {
d2e4a39e 3997 char *args2;
14f9c5c9
AS
3998 int choice, j;
3999
0fcd72ba 4000 args = skip_spaces (args);
14f9c5c9 4001 if (*args == '\0' && n_chosen == 0)
323e0a4a 4002 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4003 else if (*args == '\0')
4c4b4cd2 4004 break;
14f9c5c9
AS
4005
4006 choice = strtol (args, &args2, 10);
d2e4a39e 4007 if (args == args2 || choice < 0
4c4b4cd2 4008 || choice > n_choices + first_choice - 1)
323e0a4a 4009 error (_("Argument must be choice number"));
14f9c5c9
AS
4010 args = args2;
4011
d2e4a39e 4012 if (choice == 0)
323e0a4a 4013 error (_("cancelled"));
14f9c5c9
AS
4014
4015 if (choice < first_choice)
4c4b4cd2
PH
4016 {
4017 n_chosen = n_choices;
4018 for (j = 0; j < n_choices; j += 1)
4019 choices[j] = j;
4020 break;
4021 }
14f9c5c9
AS
4022 choice -= first_choice;
4023
d2e4a39e 4024 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4025 {
4026 }
14f9c5c9
AS
4027
4028 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4029 {
4030 int k;
5b4ee69b 4031
4c4b4cd2
PH
4032 for (k = n_chosen - 1; k > j; k -= 1)
4033 choices[k + 1] = choices[k];
4034 choices[j + 1] = choice;
4035 n_chosen += 1;
4036 }
14f9c5c9
AS
4037 }
4038
4039 if (n_chosen > max_results)
323e0a4a 4040 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4041
14f9c5c9
AS
4042 return n_chosen;
4043}
4044
4c4b4cd2
PH
4045/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4046 on the function identified by SYM and BLOCK, and taking NARGS
4047 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4048
4049static void
e9d9f57e 4050replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4051 int oplen, struct symbol *sym,
270140bd 4052 const struct block *block)
14f9c5c9
AS
4053{
4054 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4055 symbol, -oplen for operator being replaced). */
d2e4a39e 4056 struct expression *newexp = (struct expression *)
8c1a34e7 4057 xzalloc (sizeof (struct expression)
4c4b4cd2 4058 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4059 struct expression *exp = expp->get ();
14f9c5c9
AS
4060
4061 newexp->nelts = exp->nelts + 7 - oplen;
4062 newexp->language_defn = exp->language_defn;
3489610d 4063 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4064 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4065 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4066 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4067
4068 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4069 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4070
4071 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4072 newexp->elts[pc + 4].block = block;
4073 newexp->elts[pc + 5].symbol = sym;
4074
e9d9f57e 4075 expp->reset (newexp);
d2e4a39e 4076}
14f9c5c9
AS
4077
4078/* Type-class predicates */
4079
4c4b4cd2
PH
4080/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4081 or FLOAT). */
14f9c5c9
AS
4082
4083static int
d2e4a39e 4084numeric_type_p (struct type *type)
14f9c5c9
AS
4085{
4086 if (type == NULL)
4087 return 0;
d2e4a39e
AS
4088 else
4089 {
4090 switch (TYPE_CODE (type))
4c4b4cd2
PH
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 case TYPE_CODE_RANGE:
4096 return (type == TYPE_TARGET_TYPE (type)
4097 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4098 default:
4099 return 0;
4100 }
d2e4a39e 4101 }
14f9c5c9
AS
4102}
4103
4c4b4cd2 4104/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4105
4106static int
d2e4a39e 4107integer_type_p (struct type *type)
14f9c5c9
AS
4108{
4109 if (type == NULL)
4110 return 0;
d2e4a39e
AS
4111 else
4112 {
4113 switch (TYPE_CODE (type))
4c4b4cd2
PH
4114 {
4115 case TYPE_CODE_INT:
4116 return 1;
4117 case TYPE_CODE_RANGE:
4118 return (type == TYPE_TARGET_TYPE (type)
4119 || integer_type_p (TYPE_TARGET_TYPE (type)));
4120 default:
4121 return 0;
4122 }
d2e4a39e 4123 }
14f9c5c9
AS
4124}
4125
4c4b4cd2 4126/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4127
4128static int
d2e4a39e 4129scalar_type_p (struct type *type)
14f9c5c9
AS
4130{
4131 if (type == NULL)
4132 return 0;
d2e4a39e
AS
4133 else
4134 {
4135 switch (TYPE_CODE (type))
4c4b4cd2
PH
4136 {
4137 case TYPE_CODE_INT:
4138 case TYPE_CODE_RANGE:
4139 case TYPE_CODE_ENUM:
4140 case TYPE_CODE_FLT:
4141 return 1;
4142 default:
4143 return 0;
4144 }
d2e4a39e 4145 }
14f9c5c9
AS
4146}
4147
4c4b4cd2 4148/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4149
4150static int
d2e4a39e 4151discrete_type_p (struct type *type)
14f9c5c9
AS
4152{
4153 if (type == NULL)
4154 return 0;
d2e4a39e
AS
4155 else
4156 {
4157 switch (TYPE_CODE (type))
4c4b4cd2
PH
4158 {
4159 case TYPE_CODE_INT:
4160 case TYPE_CODE_RANGE:
4161 case TYPE_CODE_ENUM:
872f0337 4162 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4163 return 1;
4164 default:
4165 return 0;
4166 }
d2e4a39e 4167 }
14f9c5c9
AS
4168}
4169
4c4b4cd2
PH
4170/* Returns non-zero if OP with operands in the vector ARGS could be
4171 a user-defined function. Errs on the side of pre-defined operators
4172 (i.e., result 0). */
14f9c5c9
AS
4173
4174static int
d2e4a39e 4175possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4176{
76a01679 4177 struct type *type0 =
df407dfe 4178 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4179 struct type *type1 =
df407dfe 4180 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4181
4c4b4cd2
PH
4182 if (type0 == NULL)
4183 return 0;
4184
14f9c5c9
AS
4185 switch (op)
4186 {
4187 default:
4188 return 0;
4189
4190 case BINOP_ADD:
4191 case BINOP_SUB:
4192 case BINOP_MUL:
4193 case BINOP_DIV:
d2e4a39e 4194 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4195
4196 case BINOP_REM:
4197 case BINOP_MOD:
4198 case BINOP_BITWISE_AND:
4199 case BINOP_BITWISE_IOR:
4200 case BINOP_BITWISE_XOR:
d2e4a39e 4201 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4202
4203 case BINOP_EQUAL:
4204 case BINOP_NOTEQUAL:
4205 case BINOP_LESS:
4206 case BINOP_GTR:
4207 case BINOP_LEQ:
4208 case BINOP_GEQ:
d2e4a39e 4209 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4210
4211 case BINOP_CONCAT:
ee90b9ab 4212 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4213
4214 case BINOP_EXP:
d2e4a39e 4215 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4216
4217 case UNOP_NEG:
4218 case UNOP_PLUS:
4219 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4220 case UNOP_ABS:
4221 return (!numeric_type_p (type0));
14f9c5c9
AS
4222
4223 }
4224}
4225\f
4c4b4cd2 4226 /* Renaming */
14f9c5c9 4227
aeb5907d
JB
4228/* NOTES:
4229
4230 1. In the following, we assume that a renaming type's name may
4231 have an ___XD suffix. It would be nice if this went away at some
4232 point.
4233 2. We handle both the (old) purely type-based representation of
4234 renamings and the (new) variable-based encoding. At some point,
4235 it is devoutly to be hoped that the former goes away
4236 (FIXME: hilfinger-2007-07-09).
4237 3. Subprogram renamings are not implemented, although the XRS
4238 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4239
4240/* If SYM encodes a renaming,
4241
4242 <renaming> renames <renamed entity>,
4243
4244 sets *LEN to the length of the renamed entity's name,
4245 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4246 the string describing the subcomponent selected from the renamed
0963b4bd 4247 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4248 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4249 are undefined). Otherwise, returns a value indicating the category
4250 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4251 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4252 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4253 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4254 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4255 may be NULL, in which case they are not assigned.
4256
4257 [Currently, however, GCC does not generate subprogram renamings.] */
4258
4259enum ada_renaming_category
4260ada_parse_renaming (struct symbol *sym,
4261 const char **renamed_entity, int *len,
4262 const char **renaming_expr)
4263{
4264 enum ada_renaming_category kind;
4265 const char *info;
4266 const char *suffix;
4267
4268 if (sym == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (SYMBOL_CLASS (sym))
14f9c5c9 4271 {
aeb5907d
JB
4272 default:
4273 return ADA_NOT_RENAMING;
aeb5907d
JB
4274 case LOC_LOCAL:
4275 case LOC_STATIC:
4276 case LOC_COMPUTED:
4277 case LOC_OPTIMIZED_OUT:
4278 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4279 if (info == NULL)
4280 return ADA_NOT_RENAMING;
4281 switch (info[5])
4282 {
4283 case '_':
4284 kind = ADA_OBJECT_RENAMING;
4285 info += 6;
4286 break;
4287 case 'E':
4288 kind = ADA_EXCEPTION_RENAMING;
4289 info += 7;
4290 break;
4291 case 'P':
4292 kind = ADA_PACKAGE_RENAMING;
4293 info += 7;
4294 break;
4295 case 'S':
4296 kind = ADA_SUBPROGRAM_RENAMING;
4297 info += 7;
4298 break;
4299 default:
4300 return ADA_NOT_RENAMING;
4301 }
14f9c5c9 4302 }
4c4b4cd2 4303
aeb5907d
JB
4304 if (renamed_entity != NULL)
4305 *renamed_entity = info;
4306 suffix = strstr (info, "___XE");
4307 if (suffix == NULL || suffix == info)
4308 return ADA_NOT_RENAMING;
4309 if (len != NULL)
4310 *len = strlen (info) - strlen (suffix);
4311 suffix += 5;
4312 if (renaming_expr != NULL)
4313 *renaming_expr = suffix;
4314 return kind;
4315}
4316
a5ee536b
JB
4317/* Compute the value of the given RENAMING_SYM, which is expected to
4318 be a symbol encoding a renaming expression. BLOCK is the block
4319 used to evaluate the renaming. */
52ce6436 4320
a5ee536b
JB
4321static struct value *
4322ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4323 const struct block *block)
a5ee536b 4324{
bbc13ae3 4325 const char *sym_name;
a5ee536b 4326
bbc13ae3 4327 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4328 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4329 return evaluate_expression (expr.get ());
a5ee536b 4330}
14f9c5c9 4331\f
d2e4a39e 4332
4c4b4cd2 4333 /* Evaluation: Function Calls */
14f9c5c9 4334
4c4b4cd2 4335/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4336 lvalues, and otherwise has the side-effect of allocating memory
4337 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4338
d2e4a39e 4339static struct value *
40bc484c 4340ensure_lval (struct value *val)
14f9c5c9 4341{
40bc484c
JB
4342 if (VALUE_LVAL (val) == not_lval
4343 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4344 {
df407dfe 4345 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4346 const CORE_ADDR addr =
4347 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4348
a84a8a0d 4349 VALUE_LVAL (val) = lval_memory;
1a088441 4350 set_value_address (val, addr);
40bc484c 4351 write_memory (addr, value_contents (val), len);
c3e5cd34 4352 }
14f9c5c9
AS
4353
4354 return val;
4355}
4356
4357/* Return the value ACTUAL, converted to be an appropriate value for a
4358 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4359 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4360 values not residing in memory, updating it as needed. */
14f9c5c9 4361
a93c0eb6 4362struct value *
40bc484c 4363ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4364{
df407dfe 4365 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4366 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4367 struct type *formal_target =
4368 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4369 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4370 struct type *actual_target =
4371 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4372 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4373
4c4b4cd2 4374 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4375 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4376 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4377 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4378 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4379 {
a84a8a0d 4380 struct value *result;
5b4ee69b 4381
14f9c5c9 4382 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4383 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4384 result = desc_data (actual);
cb923fcc 4385 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4386 {
4387 if (VALUE_LVAL (actual) != lval_memory)
4388 {
4389 struct value *val;
5b4ee69b 4390
df407dfe 4391 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4392 val = allocate_value (actual_type);
990a07ab 4393 memcpy ((char *) value_contents_raw (val),
0fd88904 4394 (char *) value_contents (actual),
4c4b4cd2 4395 TYPE_LENGTH (actual_type));
40bc484c 4396 actual = ensure_lval (val);
4c4b4cd2 4397 }
a84a8a0d 4398 result = value_addr (actual);
4c4b4cd2 4399 }
a84a8a0d
JB
4400 else
4401 return actual;
b1af9e97 4402 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4403 }
4404 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4405 return ada_value_ind (actual);
8344af1e
JB
4406 else if (ada_is_aligner_type (formal_type))
4407 {
4408 /* We need to turn this parameter into an aligner type
4409 as well. */
4410 struct value *aligner = allocate_value (formal_type);
4411 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4412
4413 value_assign_to_component (aligner, component, actual);
4414 return aligner;
4415 }
14f9c5c9
AS
4416
4417 return actual;
4418}
4419
438c98a1
JB
4420/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4421 type TYPE. This is usually an inefficient no-op except on some targets
4422 (such as AVR) where the representation of a pointer and an address
4423 differs. */
4424
4425static CORE_ADDR
4426value_pointer (struct value *value, struct type *type)
4427{
4428 struct gdbarch *gdbarch = get_type_arch (type);
4429 unsigned len = TYPE_LENGTH (type);
224c3ddb 4430 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4431 CORE_ADDR addr;
4432
4433 addr = value_address (value);
4434 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4435 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4436 return addr;
4437}
4438
14f9c5c9 4439
4c4b4cd2
PH
4440/* Push a descriptor of type TYPE for array value ARR on the stack at
4441 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4442 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4443 to-descriptor type rather than a descriptor type), a struct value *
4444 representing a pointer to this descriptor. */
14f9c5c9 4445
d2e4a39e 4446static struct value *
40bc484c 4447make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4448{
d2e4a39e
AS
4449 struct type *bounds_type = desc_bounds_type (type);
4450 struct type *desc_type = desc_base_type (type);
4451 struct value *descriptor = allocate_value (desc_type);
4452 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4453 int i;
d2e4a39e 4454
0963b4bd
MS
4455 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4456 i > 0; i -= 1)
14f9c5c9 4457 {
19f220c3
JK
4458 modify_field (value_type (bounds), value_contents_writeable (bounds),
4459 ada_array_bound (arr, i, 0),
4460 desc_bound_bitpos (bounds_type, i, 0),
4461 desc_bound_bitsize (bounds_type, i, 0));
4462 modify_field (value_type (bounds), value_contents_writeable (bounds),
4463 ada_array_bound (arr, i, 1),
4464 desc_bound_bitpos (bounds_type, i, 1),
4465 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4466 }
d2e4a39e 4467
40bc484c 4468 bounds = ensure_lval (bounds);
d2e4a39e 4469
19f220c3
JK
4470 modify_field (value_type (descriptor),
4471 value_contents_writeable (descriptor),
4472 value_pointer (ensure_lval (arr),
4473 TYPE_FIELD_TYPE (desc_type, 0)),
4474 fat_pntr_data_bitpos (desc_type),
4475 fat_pntr_data_bitsize (desc_type));
4476
4477 modify_field (value_type (descriptor),
4478 value_contents_writeable (descriptor),
4479 value_pointer (bounds,
4480 TYPE_FIELD_TYPE (desc_type, 1)),
4481 fat_pntr_bounds_bitpos (desc_type),
4482 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4483
40bc484c 4484 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4485
4486 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4487 return value_addr (descriptor);
4488 else
4489 return descriptor;
4490}
14f9c5c9 4491\f
3d9434b5
JB
4492 /* Symbol Cache Module */
4493
3d9434b5 4494/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4495 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4496 on the type of entity being printed, the cache can make it as much
4497 as an order of magnitude faster than without it.
4498
4499 The descriptive type DWARF extension has significantly reduced
4500 the need for this cache, at least when DWARF is being used. However,
4501 even in this case, some expensive name-based symbol searches are still
4502 sometimes necessary - to find an XVZ variable, mostly. */
4503
ee01b665 4504/* Initialize the contents of SYM_CACHE. */
3d9434b5 4505
ee01b665
JB
4506static void
4507ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4508{
4509 obstack_init (&sym_cache->cache_space);
4510 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4511}
3d9434b5 4512
ee01b665
JB
4513/* Free the memory used by SYM_CACHE. */
4514
4515static void
4516ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4517{
ee01b665
JB
4518 obstack_free (&sym_cache->cache_space, NULL);
4519 xfree (sym_cache);
4520}
3d9434b5 4521
ee01b665
JB
4522/* Return the symbol cache associated to the given program space PSPACE.
4523 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4524
ee01b665
JB
4525static struct ada_symbol_cache *
4526ada_get_symbol_cache (struct program_space *pspace)
4527{
4528 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4529
66c168ae 4530 if (pspace_data->sym_cache == NULL)
ee01b665 4531 {
66c168ae
JB
4532 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4533 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4534 }
4535
66c168ae 4536 return pspace_data->sym_cache;
ee01b665 4537}
3d9434b5
JB
4538
4539/* Clear all entries from the symbol cache. */
4540
4541static void
4542ada_clear_symbol_cache (void)
4543{
ee01b665
JB
4544 struct ada_symbol_cache *sym_cache
4545 = ada_get_symbol_cache (current_program_space);
4546
4547 obstack_free (&sym_cache->cache_space, NULL);
4548 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4549}
4550
fe978cb0 4551/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4552 Return it if found, or NULL otherwise. */
4553
4554static struct cache_entry **
fe978cb0 4555find_entry (const char *name, domain_enum domain)
3d9434b5 4556{
ee01b665
JB
4557 struct ada_symbol_cache *sym_cache
4558 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4559 int h = msymbol_hash (name) % HASH_SIZE;
4560 struct cache_entry **e;
4561
ee01b665 4562 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4563 {
fe978cb0 4564 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4565 return e;
4566 }
4567 return NULL;
4568}
4569
fe978cb0 4570/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4571 Return 1 if found, 0 otherwise.
4572
4573 If an entry was found and SYM is not NULL, set *SYM to the entry's
4574 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4575
96d887e8 4576static int
fe978cb0 4577lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4578 struct symbol **sym, const struct block **block)
96d887e8 4579{
fe978cb0 4580 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4581
4582 if (e == NULL)
4583 return 0;
4584 if (sym != NULL)
4585 *sym = (*e)->sym;
4586 if (block != NULL)
4587 *block = (*e)->block;
4588 return 1;
96d887e8
PH
4589}
4590
3d9434b5 4591/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4592 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4593
96d887e8 4594static void
fe978cb0 4595cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4596 const struct block *block)
96d887e8 4597{
ee01b665
JB
4598 struct ada_symbol_cache *sym_cache
4599 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4600 int h;
4601 char *copy;
4602 struct cache_entry *e;
4603
1994afbf
DE
4604 /* Symbols for builtin types don't have a block.
4605 For now don't cache such symbols. */
4606 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4607 return;
4608
3d9434b5
JB
4609 /* If the symbol is a local symbol, then do not cache it, as a search
4610 for that symbol depends on the context. To determine whether
4611 the symbol is local or not, we check the block where we found it
4612 against the global and static blocks of its associated symtab. */
4613 if (sym
08be3fe3 4614 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4615 GLOBAL_BLOCK) != block
08be3fe3 4616 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4617 STATIC_BLOCK) != block)
3d9434b5
JB
4618 return;
4619
4620 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4621 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4622 e->next = sym_cache->root[h];
4623 sym_cache->root[h] = e;
224c3ddb
SM
4624 e->name = copy
4625 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4626 strcpy (copy, name);
4627 e->sym = sym;
fe978cb0 4628 e->domain = domain;
3d9434b5 4629 e->block = block;
96d887e8 4630}
4c4b4cd2
PH
4631\f
4632 /* Symbol Lookup */
4633
b5ec771e
PA
4634/* Return the symbol name match type that should be used used when
4635 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4636
4637 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4638 for Ada lookups. */
c0431670 4639
b5ec771e
PA
4640static symbol_name_match_type
4641name_match_type_from_name (const char *lookup_name)
c0431670 4642{
b5ec771e
PA
4643 return (strstr (lookup_name, "__") == NULL
4644 ? symbol_name_match_type::WILD
4645 : symbol_name_match_type::FULL);
c0431670
JB
4646}
4647
4c4b4cd2
PH
4648/* Return the result of a standard (literal, C-like) lookup of NAME in
4649 given DOMAIN, visible from lexical block BLOCK. */
4650
4651static struct symbol *
4652standard_lookup (const char *name, const struct block *block,
4653 domain_enum domain)
4654{
acbd605d 4655 /* Initialize it just to avoid a GCC false warning. */
6640a367 4656 struct block_symbol sym = {};
4c4b4cd2 4657
d12307c1
PMR
4658 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4659 return sym.symbol;
a2cd4f14 4660 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4661 cache_symbol (name, domain, sym.symbol, sym.block);
4662 return sym.symbol;
4c4b4cd2
PH
4663}
4664
4665
4666/* Non-zero iff there is at least one non-function/non-enumeral symbol
4667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4668 since they contend in overloading in the same way. */
4669static int
d12307c1 4670is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4671{
4672 int i;
4673
4674 for (i = 0; i < n; i += 1)
d12307c1
PMR
4675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4677 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4678 return 1;
4679
4680 return 0;
4681}
4682
4683/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4684 struct types. Otherwise, they may not. */
14f9c5c9
AS
4685
4686static int
d2e4a39e 4687equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4688{
d2e4a39e 4689 if (type0 == type1)
14f9c5c9 4690 return 1;
d2e4a39e 4691 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4692 || TYPE_CODE (type0) != TYPE_CODE (type1))
4693 return 0;
d2e4a39e 4694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4698 return 1;
d2e4a39e 4699
14f9c5c9
AS
4700 return 0;
4701}
4702
4703/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4704 no more defined than that of SYM1. */
14f9c5c9
AS
4705
4706static int
d2e4a39e 4707lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4708{
4709 if (sym0 == sym1)
4710 return 1;
176620f1 4711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4713 return 0;
4714
d2e4a39e 4715 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4716 {
4717 case LOC_UNDEF:
4718 return 1;
4719 case LOC_TYPEDEF:
4720 {
4c4b4cd2
PH
4721 struct type *type0 = SYMBOL_TYPE (sym0);
4722 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4723 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4724 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4725 int len0 = strlen (name0);
5b4ee69b 4726
4c4b4cd2
PH
4727 return
4728 TYPE_CODE (type0) == TYPE_CODE (type1)
4729 && (equiv_types (type0, type1)
4730 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4731 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4732 }
4733 case LOC_CONST:
4734 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4735 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4736 default:
4737 return 0;
14f9c5c9
AS
4738 }
4739}
4740
d12307c1 4741/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4743
4744static void
76a01679
JB
4745add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
f0c5f9b2 4747 const struct block *block)
14f9c5c9
AS
4748{
4749 int i;
d12307c1 4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4751
529cad9c
PH
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4c4b4cd2
PH
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
d12307c1 4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4764 return;
d12307c1 4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4766 {
d12307c1 4767 prevDefns[i].symbol = sym;
4c4b4cd2 4768 prevDefns[i].block = block;
4c4b4cd2 4769 return;
76a01679 4770 }
4c4b4cd2
PH
4771 }
4772
4773 {
d12307c1 4774 struct block_symbol info;
4c4b4cd2 4775
d12307c1 4776 info.symbol = sym;
4c4b4cd2 4777 info.block = block;
d12307c1 4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4779 }
4780}
4781
d12307c1
PMR
4782/* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4c4b4cd2 4784
76a01679
JB
4785static int
4786num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4787{
d12307c1 4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4789}
4790
d12307c1
PMR
4791/* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4793
d12307c1 4794static struct block_symbol *
4c4b4cd2
PH
4795defns_collected (struct obstack *obstackp, int finish)
4796{
4797 if (finish)
224c3ddb 4798 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4799 else
d12307c1 4800 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4801}
4802
7c7b6655
TT
4803/* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4c4b4cd2 4808
7c7b6655 4809struct bound_minimal_symbol
96d887e8 4810ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4811{
7c7b6655 4812 struct bound_minimal_symbol result;
4c4b4cd2 4813
7c7b6655
TT
4814 memset (&result, 0, sizeof (result));
4815
b5ec771e
PA
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4821
2030c079 4822 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4823 {
7932255d 4824 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4c4b4cd2 4835
7c7b6655 4836 return result;
96d887e8 4837}
4c4b4cd2 4838
2ff0a947
TT
4839/* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845static std::vector<struct bound_minimal_symbol>
4846ada_lookup_simple_minsyms (const char *name)
4847{
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867}
4868
96d887e8
PH
4869/* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4c4b4cd2 4874
96d887e8
PH
4875static void
4876add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
96d887e8 4879{
96d887e8 4880}
14f9c5c9 4881
96d887e8
PH
4882/* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
14f9c5c9 4884
96d887e8
PH
4885static int
4886is_nondebugging_type (struct type *type)
4887{
0d5cff50 4888 const char *name = ada_type_name (type);
5b4ee69b 4889
96d887e8
PH
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891}
4c4b4cd2 4892
8f17729f
JB
4893/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900static int
4901ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902{
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
0d5cff50
DE
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934}
4935
4936/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956static int
54d343a2 4957symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4958{
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
54d343a2 4969 for (i = 0; i < syms.size (); i++)
d12307c1 4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
54d343a2 4974 for (i = 1; i < syms.size (); i++)
d12307c1 4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4979 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
54d343a2 4987 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4990 return 0;
4991
4992 return 1;
4993}
4994
54d343a2 4995/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
4c4b4cd2 5001
96d887e8 5002static int
54d343a2 5003remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5004{
5005 int i, j;
4c4b4cd2 5006
8f17729f
JB
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
54d343a2
TT
5010 if (syms->size () < 2)
5011 return syms->size ();
8f17729f 5012
96d887e8 5013 i = 0;
54d343a2 5014 while (i < syms->size ())
96d887e8 5015 {
a35ddb44 5016 int remove_p = 0;
339c13b6
JB
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
54d343a2
TT
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5023 {
54d343a2 5024 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5025 {
5026 if (j != i
54d343a2
TT
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5031 remove_p = 1;
339c13b6
JB
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
54d343a2
TT
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5041 {
54d343a2 5042 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5043 {
5044 if (i != j
54d343a2
TT
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5052 remove_p = 1;
4c4b4cd2 5053 }
4c4b4cd2 5054 }
339c13b6 5055
a35ddb44 5056 if (remove_p)
54d343a2 5057 syms->erase (syms->begin () + i);
339c13b6 5058
96d887e8 5059 i += 1;
14f9c5c9 5060 }
8f17729f
JB
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
8f17729f 5076
54d343a2 5077 return syms->size ();
14f9c5c9
AS
5078}
5079
96d887e8
PH
5080/* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
49d83361 5083 defined. */
4c4b4cd2 5084
49d83361 5085static std::string
96d887e8 5086xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5087{
96d887e8 5088 /* The renaming types adhere to the following convention:
0963b4bd 5089 <scope>__<rename>___<XR extension>.
96d887e8
PH
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
76a01679 5092
a737d952 5093 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
14f9c5c9 5096
96d887e8
PH
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5099
96d887e8
PH
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
76a01679 5103
96d887e8 5104 /* Make a copy of scope and return it. */
49d83361 5105 return std::string (name, last);
4c4b4cd2
PH
5106}
5107
96d887e8 5108/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5109
96d887e8
PH
5110static int
5111is_package_name (const char *name)
4c4b4cd2 5112{
96d887e8
PH
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
4c4b4cd2 5118
96d887e8
PH
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
14f9c5c9 5123
96d887e8
PH
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
14f9c5c9 5126
96d887e8 5127 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5128 functions names cannot contain "__" in them. */
96d887e8
PH
5129 if (strstr (name, "__") != NULL)
5130 return 0;
4c4b4cd2 5131
528e1572 5132 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5133
528e1572 5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5135}
14f9c5c9 5136
96d887e8 5137/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5138 not visible from FUNCTION_NAME. */
14f9c5c9 5139
96d887e8 5140static int
0d5cff50 5141old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5142{
aeb5907d
JB
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
49d83361 5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5147
96d887e8 5148 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
14f9c5c9 5151
96d887e8
PH
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
76a01679 5154
96d887e8
PH
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
61012eef 5159 if (startswith (function_name, "_ada_"))
96d887e8 5160 function_name += 5;
f26caa11 5161
49d83361 5162 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5163}
5164
aeb5907d
JB
5165/* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
96d887e8
PH
5170
5171 Rationale:
aeb5907d
JB
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
f26caa11 5184
96d887e8
PH
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
4c4b4cd2 5201
14f9c5c9 5202static int
54d343a2
TT
5203remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
4c4b4cd2
PH
5205{
5206 struct symbol *current_function;
0d5cff50 5207 const char *current_function_name;
4c4b4cd2 5208 int i;
aeb5907d
JB
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
0963b4bd 5213 First, zero out such symbols, then compress. */
aeb5907d 5214 is_new_style_renaming = 0;
54d343a2 5215 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5216 {
54d343a2
TT
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5b4ee69b 5231
aeb5907d 5232 is_new_style_renaming = 1;
54d343a2
TT
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5236 name_len) == 0
54d343a2
TT
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
aeb5907d
JB
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
54d343a2
TT
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
aeb5907d 5247 {
54d343a2 5248 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5249 k += 1;
5250 }
5251 return k;
5252 }
4c4b4cd2
PH
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
76a01679 5256
4c4b4cd2 5257 if (current_block == NULL)
54d343a2 5258 return syms->size ();
76a01679 5259
7f0df278 5260 current_function = block_linkage_function (current_block);
4c4b4cd2 5261 if (current_function == NULL)
54d343a2 5262 return syms->size ();
4c4b4cd2
PH
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
54d343a2 5266 return syms->size ();
4c4b4cd2
PH
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
54d343a2 5273 while (i < syms->size ())
4c4b4cd2 5274 {
54d343a2 5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5276 == ADA_OBJECT_RENAMING
54d343a2
TT
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5280 else
5281 i += 1;
5282 }
5283
54d343a2 5284 return syms->size ();
4c4b4cd2
PH
5285}
5286
339c13b6
JB
5287/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297static void
b5ec771e
PA
5298ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
339c13b6
JB
5301{
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
b5ec771e 5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5321}
5322
ccefe4c4 5323/* An object of this type is used as the user_data argument when
40658b94 5324 calling the map_matching_symbols method. */
ccefe4c4 5325
40658b94 5326struct match_data
ccefe4c4 5327{
40658b94 5328 struct objfile *objfile;
ccefe4c4 5329 struct obstack *obstackp;
40658b94
PH
5330 struct symbol *arg_sym;
5331 int found_sym;
ccefe4c4
TT
5332};
5333
199b4314
TT
5334/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5335 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
ccefe4c4 5342
199b4314
TT
5343static bool
5344aux_add_nonlocal_symbols (struct block_symbol *bsym,
5345 struct match_data *data)
ccefe4c4 5346{
199b4314
TT
5347 const struct block *block = bsym->block;
5348 struct symbol *sym = bsym->symbol;
5349
40658b94
PH
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5362 return true;
40658b94
PH
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
199b4314 5373 return true;
40658b94
PH
5374}
5375
b5ec771e
PA
5376/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5379
5380static int
5381ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
b5ec771e
PA
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
22cee43f
PMR
5385{
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
b5ec771e
PA
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
22cee43f
PMR
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
22cee43f
PMR
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
b5ec771e
PA
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
22cee43f
PMR
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431}
5432
db230ce3
JB
5433/* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5b4ee69b 5435
40658b94 5436static int
db230ce3
JB
5437compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
40658b94
PH
5439{
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
db230ce3
JB
5442 char c1, c2;
5443
40658b94
PH
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
40658b94 5458 break;
db230ce3 5459
40658b94
PH
5460 string1 += 1;
5461 string2 += 1;
5462 }
db230ce3 5463
40658b94
PH
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
052874e8 5471 if (is_name_suffix (string1))
40658b94
PH
5472 return 0;
5473 else
1a1d5513 5474 return 1;
40658b94 5475 }
dbb8534f 5476 /* FALLTHROUGH */
40658b94
PH
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
db230ce3
JB
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
40658b94 5487 }
ccefe4c4
TT
5488}
5489
db230ce3
JB
5490/* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501static int
5502compare_names (const char *string1, const char *string2)
5503{
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516}
5517
b5ec771e
PA
5518/* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521static const char *
5522ada_lookup_name (const lookup_name_info &lookup_name)
5523{
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525}
5526
339c13b6 5527/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
339c13b6
JB
5531
5532static void
b5ec771e
PA
5533add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
339c13b6 5536{
40658b94 5537 struct match_data data;
339c13b6 5538
6475f2fe 5539 memset (&data, 0, sizeof data);
ccefe4c4 5540 data.obstackp = obstackp;
339c13b6 5541
b5ec771e
PA
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
199b4314
TT
5544 auto callback = [&] (struct block_symbol *bsym)
5545 {
5546 return aux_add_nonlocal_symbols (bsym, &data);
5547 };
5548
2030c079 5549 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5550 {
5551 data.objfile = objfile;
5552
b054970d
TT
5553 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5554 domain, global, callback,
5555 (is_wild_match
5556 ? NULL : compare_names));
22cee43f 5557
b669c953 5558 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5559 {
5560 const struct block *global_block
5561 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5562
b5ec771e
PA
5563 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5564 domain))
22cee43f
PMR
5565 data.found_sym = 1;
5566 }
40658b94
PH
5567 }
5568
5569 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5570 {
b5ec771e 5571 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5572 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5573 symbol_name_match_type::FULL);
b5ec771e 5574
2030c079 5575 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5576 {
40658b94 5577 data.objfile = objfile;
b054970d 5578 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5579 domain, global, callback,
b5ec771e 5580 compare_names);
40658b94
PH
5581 }
5582 }
339c13b6
JB
5583}
5584
b5ec771e
PA
5585/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5586 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5587 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5588
22cee43f
PMR
5589 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5590 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5591 is the one match returned (no other matches in that or
d9680e73 5592 enclosing blocks is returned). If there are any matches in or
22cee43f 5593 surrounding BLOCK, then these alone are returned.
4eeaa230 5594
b5ec771e
PA
5595 Names prefixed with "standard__" are handled specially:
5596 "standard__" is first stripped off (by the lookup_name
5597 constructor), and only static and global symbols are searched.
14f9c5c9 5598
22cee43f
PMR
5599 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5600 to lookup global symbols. */
5601
5602static void
5603ada_add_all_symbols (struct obstack *obstackp,
5604 const struct block *block,
b5ec771e 5605 const lookup_name_info &lookup_name,
22cee43f
PMR
5606 domain_enum domain,
5607 int full_search,
5608 int *made_global_lookup_p)
14f9c5c9
AS
5609{
5610 struct symbol *sym;
14f9c5c9 5611
22cee43f
PMR
5612 if (made_global_lookup_p)
5613 *made_global_lookup_p = 0;
339c13b6
JB
5614
5615 /* Special case: If the user specifies a symbol name inside package
5616 Standard, do a non-wild matching of the symbol name without
5617 the "standard__" prefix. This was primarily introduced in order
5618 to allow the user to specifically access the standard exceptions
5619 using, for instance, Standard.Constraint_Error when Constraint_Error
5620 is ambiguous (due to the user defining its own Constraint_Error
5621 entity inside its program). */
b5ec771e
PA
5622 if (lookup_name.ada ().standard_p ())
5623 block = NULL;
4c4b4cd2 5624
339c13b6 5625 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5626
4eeaa230
DE
5627 if (block != NULL)
5628 {
5629 if (full_search)
b5ec771e 5630 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5631 else
5632 {
5633 /* In the !full_search case we're are being called by
5634 ada_iterate_over_symbols, and we don't want to search
5635 superblocks. */
b5ec771e 5636 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5637 }
22cee43f
PMR
5638 if (num_defns_collected (obstackp) > 0 || !full_search)
5639 return;
4eeaa230 5640 }
d2e4a39e 5641
339c13b6
JB
5642 /* No non-global symbols found. Check our cache to see if we have
5643 already performed this search before. If we have, then return
5644 the same result. */
5645
b5ec771e
PA
5646 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5647 domain, &sym, &block))
4c4b4cd2
PH
5648 {
5649 if (sym != NULL)
b5ec771e 5650 add_defn_to_vec (obstackp, sym, block);
22cee43f 5651 return;
4c4b4cd2 5652 }
14f9c5c9 5653
22cee43f
PMR
5654 if (made_global_lookup_p)
5655 *made_global_lookup_p = 1;
b1eedac9 5656
339c13b6
JB
5657 /* Search symbols from all global blocks. */
5658
b5ec771e 5659 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5660
4c4b4cd2 5661 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5662 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5663
22cee43f 5664 if (num_defns_collected (obstackp) == 0)
b5ec771e 5665 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5666}
5667
b5ec771e
PA
5668/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5669 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5670 matches.
54d343a2
TT
5671 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5672 found and the blocks and symbol tables (if any) in which they were
5673 found.
22cee43f
PMR
5674
5675 When full_search is non-zero, any non-function/non-enumeral
5676 symbol match within the nest of blocks whose innermost member is BLOCK,
5677 is the one match returned (no other matches in that or
5678 enclosing blocks is returned). If there are any matches in or
5679 surrounding BLOCK, then these alone are returned.
5680
5681 Names prefixed with "standard__" are handled specially: "standard__"
5682 is first stripped off, and only static and global symbols are searched. */
5683
5684static int
b5ec771e
PA
5685ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5686 const struct block *block,
22cee43f 5687 domain_enum domain,
54d343a2 5688 std::vector<struct block_symbol> *results,
22cee43f
PMR
5689 int full_search)
5690{
22cee43f
PMR
5691 int syms_from_global_search;
5692 int ndefns;
ec6a20c2 5693 auto_obstack obstack;
22cee43f 5694
ec6a20c2 5695 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5696 domain, full_search, &syms_from_global_search);
14f9c5c9 5697
ec6a20c2
JB
5698 ndefns = num_defns_collected (&obstack);
5699
54d343a2
TT
5700 struct block_symbol *base = defns_collected (&obstack, 1);
5701 for (int i = 0; i < ndefns; ++i)
5702 results->push_back (base[i]);
4c4b4cd2 5703
54d343a2 5704 ndefns = remove_extra_symbols (results);
4c4b4cd2 5705
b1eedac9 5706 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5707 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5708
b1eedac9 5709 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5710 cache_symbol (ada_lookup_name (lookup_name), domain,
5711 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5712
54d343a2 5713 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5714
14f9c5c9
AS
5715 return ndefns;
5716}
5717
b5ec771e 5718/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5719 in global scopes, returning the number of matches, and filling *RESULTS
5720 with (SYM,BLOCK) tuples.
ec6a20c2 5721
4eeaa230
DE
5722 See ada_lookup_symbol_list_worker for further details. */
5723
5724int
b5ec771e 5725ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5726 domain_enum domain,
5727 std::vector<struct block_symbol> *results)
4eeaa230 5728{
b5ec771e
PA
5729 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5730 lookup_name_info lookup_name (name, name_match_type);
5731
5732 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5733}
5734
5735/* Implementation of the la_iterate_over_symbols method. */
5736
6969f124 5737static bool
14bc53a8 5738ada_iterate_over_symbols
b5ec771e
PA
5739 (const struct block *block, const lookup_name_info &name,
5740 domain_enum domain,
14bc53a8 5741 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5742{
5743 int ndefs, i;
54d343a2 5744 std::vector<struct block_symbol> results;
4eeaa230
DE
5745
5746 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5747
4eeaa230
DE
5748 for (i = 0; i < ndefs; ++i)
5749 {
7e41c8db 5750 if (!callback (&results[i]))
6969f124 5751 return false;
4eeaa230 5752 }
6969f124
TT
5753
5754 return true;
4eeaa230
DE
5755}
5756
4e5c77fe
JB
5757/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5758 to 1, but choosing the first symbol found if there are multiple
5759 choices.
5760
5e2336be
JB
5761 The result is stored in *INFO, which must be non-NULL.
5762 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5763
5764void
5765ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5766 domain_enum domain,
d12307c1 5767 struct block_symbol *info)
14f9c5c9 5768{
b5ec771e
PA
5769 /* Since we already have an encoded name, wrap it in '<>' to force a
5770 verbatim match. Otherwise, if the name happens to not look like
5771 an encoded name (because it doesn't include a "__"),
5772 ada_lookup_name_info would re-encode/fold it again, and that
5773 would e.g., incorrectly lowercase object renaming names like
5774 "R28b" -> "r28b". */
5775 std::string verbatim = std::string ("<") + name + '>';
5776
5e2336be 5777 gdb_assert (info != NULL);
65392b3e 5778 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5779}
aeb5907d
JB
5780
5781/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5782 scope and in global scopes, or NULL if none. NAME is folded and
5783 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5784 choosing the first symbol if there are multiple choices. */
4e5c77fe 5785
d12307c1 5786struct block_symbol
aeb5907d 5787ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5788 domain_enum domain)
aeb5907d 5789{
54d343a2 5790 std::vector<struct block_symbol> candidates;
f98fc17b 5791 int n_candidates;
f98fc17b
PA
5792
5793 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5794
5795 if (n_candidates == 0)
54d343a2 5796 return {};
f98fc17b
PA
5797
5798 block_symbol info = candidates[0];
5799 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5800 return info;
4c4b4cd2 5801}
14f9c5c9 5802
d12307c1 5803static struct block_symbol
f606139a
DE
5804ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5805 const char *name,
76a01679 5806 const struct block *block,
21b556f4 5807 const domain_enum domain)
4c4b4cd2 5808{
d12307c1 5809 struct block_symbol sym;
04dccad0 5810
65392b3e 5811 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5812 if (sym.symbol != NULL)
04dccad0
JB
5813 return sym;
5814
5815 /* If we haven't found a match at this point, try the primitive
5816 types. In other languages, this search is performed before
5817 searching for global symbols in order to short-circuit that
5818 global-symbol search if it happens that the name corresponds
5819 to a primitive type. But we cannot do the same in Ada, because
5820 it is perfectly legitimate for a program to declare a type which
5821 has the same name as a standard type. If looking up a type in
5822 that situation, we have traditionally ignored the primitive type
5823 in favor of user-defined types. This is why, unlike most other
5824 languages, we search the primitive types this late and only after
5825 having searched the global symbols without success. */
5826
5827 if (domain == VAR_DOMAIN)
5828 {
5829 struct gdbarch *gdbarch;
5830
5831 if (block == NULL)
5832 gdbarch = target_gdbarch ();
5833 else
5834 gdbarch = block_gdbarch (block);
d12307c1
PMR
5835 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5836 if (sym.symbol != NULL)
04dccad0
JB
5837 return sym;
5838 }
5839
6640a367 5840 return {};
14f9c5c9
AS
5841}
5842
5843
4c4b4cd2
PH
5844/* True iff STR is a possible encoded suffix of a normal Ada name
5845 that is to be ignored for matching purposes. Suffixes of parallel
5846 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5847 are given by any of the regular expressions:
4c4b4cd2 5848
babe1480
JB
5849 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5850 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5851 TKB [subprogram suffix for task bodies]
babe1480 5852 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5853 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5854
5855 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5856 match is performed. This sequence is used to differentiate homonyms,
5857 is an optional part of a valid name suffix. */
4c4b4cd2 5858
14f9c5c9 5859static int
d2e4a39e 5860is_name_suffix (const char *str)
14f9c5c9
AS
5861{
5862 int k;
4c4b4cd2
PH
5863 const char *matching;
5864 const int len = strlen (str);
5865
babe1480
JB
5866 /* Skip optional leading __[0-9]+. */
5867
4c4b4cd2
PH
5868 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5869 {
babe1480
JB
5870 str += 3;
5871 while (isdigit (str[0]))
5872 str += 1;
4c4b4cd2 5873 }
babe1480
JB
5874
5875 /* [.$][0-9]+ */
4c4b4cd2 5876
babe1480 5877 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5878 {
babe1480 5879 matching = str + 1;
4c4b4cd2
PH
5880 while (isdigit (matching[0]))
5881 matching += 1;
5882 if (matching[0] == '\0')
5883 return 1;
5884 }
5885
5886 /* ___[0-9]+ */
babe1480 5887
4c4b4cd2
PH
5888 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5889 {
5890 matching = str + 3;
5891 while (isdigit (matching[0]))
5892 matching += 1;
5893 if (matching[0] == '\0')
5894 return 1;
5895 }
5896
9ac7f98e
JB
5897 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5898
5899 if (strcmp (str, "TKB") == 0)
5900 return 1;
5901
529cad9c
PH
5902#if 0
5903 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5904 with a N at the end. Unfortunately, the compiler uses the same
5905 convention for other internal types it creates. So treating
529cad9c 5906 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5907 some regressions. For instance, consider the case of an enumerated
5908 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5909 name ends with N.
5910 Having a single character like this as a suffix carrying some
0963b4bd 5911 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5912 to be something like "_N" instead. In the meantime, do not do
5913 the following check. */
5914 /* Protected Object Subprograms */
5915 if (len == 1 && str [0] == 'N')
5916 return 1;
5917#endif
5918
5919 /* _E[0-9]+[bs]$ */
5920 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5921 {
5922 matching = str + 3;
5923 while (isdigit (matching[0]))
5924 matching += 1;
5925 if ((matching[0] == 'b' || matching[0] == 's')
5926 && matching [1] == '\0')
5927 return 1;
5928 }
5929
4c4b4cd2
PH
5930 /* ??? We should not modify STR directly, as we are doing below. This
5931 is fine in this case, but may become problematic later if we find
5932 that this alternative did not work, and want to try matching
5933 another one from the begining of STR. Since we modified it, we
5934 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5935 if (str[0] == 'X')
5936 {
5937 str += 1;
d2e4a39e 5938 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5939 {
5940 if (str[0] != 'n' && str[0] != 'b')
5941 return 0;
5942 str += 1;
5943 }
14f9c5c9 5944 }
babe1480 5945
14f9c5c9
AS
5946 if (str[0] == '\000')
5947 return 1;
babe1480 5948
d2e4a39e 5949 if (str[0] == '_')
14f9c5c9
AS
5950 {
5951 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5952 return 0;
d2e4a39e 5953 if (str[2] == '_')
4c4b4cd2 5954 {
61ee279c
PH
5955 if (strcmp (str + 3, "JM") == 0)
5956 return 1;
5957 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5958 the LJM suffix in favor of the JM one. But we will
5959 still accept LJM as a valid suffix for a reasonable
5960 amount of time, just to allow ourselves to debug programs
5961 compiled using an older version of GNAT. */
4c4b4cd2
PH
5962 if (strcmp (str + 3, "LJM") == 0)
5963 return 1;
5964 if (str[3] != 'X')
5965 return 0;
1265e4aa
JB
5966 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5967 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5968 return 1;
5969 if (str[4] == 'R' && str[5] != 'T')
5970 return 1;
5971 return 0;
5972 }
5973 if (!isdigit (str[2]))
5974 return 0;
5975 for (k = 3; str[k] != '\0'; k += 1)
5976 if (!isdigit (str[k]) && str[k] != '_')
5977 return 0;
14f9c5c9
AS
5978 return 1;
5979 }
4c4b4cd2 5980 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5981 {
4c4b4cd2
PH
5982 for (k = 2; str[k] != '\0'; k += 1)
5983 if (!isdigit (str[k]) && str[k] != '_')
5984 return 0;
14f9c5c9
AS
5985 return 1;
5986 }
5987 return 0;
5988}
d2e4a39e 5989
aeb5907d
JB
5990/* Return non-zero if the string starting at NAME and ending before
5991 NAME_END contains no capital letters. */
529cad9c
PH
5992
5993static int
5994is_valid_name_for_wild_match (const char *name0)
5995{
5996 const char *decoded_name = ada_decode (name0);
5997 int i;
5998
5823c3ef
JB
5999 /* If the decoded name starts with an angle bracket, it means that
6000 NAME0 does not follow the GNAT encoding format. It should then
6001 not be allowed as a possible wild match. */
6002 if (decoded_name[0] == '<')
6003 return 0;
6004
529cad9c
PH
6005 for (i=0; decoded_name[i] != '\0'; i++)
6006 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6007 return 0;
6008
6009 return 1;
6010}
6011
73589123
PH
6012/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6013 that could start a simple name. Assumes that *NAMEP points into
6014 the string beginning at NAME0. */
4c4b4cd2 6015
14f9c5c9 6016static int
73589123 6017advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6018{
73589123 6019 const char *name = *namep;
5b4ee69b 6020
5823c3ef 6021 while (1)
14f9c5c9 6022 {
aa27d0b3 6023 int t0, t1;
73589123
PH
6024
6025 t0 = *name;
6026 if (t0 == '_')
6027 {
6028 t1 = name[1];
6029 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6030 {
6031 name += 1;
61012eef 6032 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6033 break;
6034 else
6035 name += 1;
6036 }
aa27d0b3
JB
6037 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6038 || name[2] == target0))
73589123
PH
6039 {
6040 name += 2;
6041 break;
6042 }
6043 else
6044 return 0;
6045 }
6046 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6047 name += 1;
6048 else
5823c3ef 6049 return 0;
73589123
PH
6050 }
6051
6052 *namep = name;
6053 return 1;
6054}
6055
b5ec771e
PA
6056/* Return true iff NAME encodes a name of the form prefix.PATN.
6057 Ignores any informational suffixes of NAME (i.e., for which
6058 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6059 simple name. */
73589123 6060
b5ec771e 6061static bool
73589123
PH
6062wild_match (const char *name, const char *patn)
6063{
22e048c9 6064 const char *p;
73589123
PH
6065 const char *name0 = name;
6066
6067 while (1)
6068 {
6069 const char *match = name;
6070
6071 if (*name == *patn)
6072 {
6073 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6074 if (*p != *name)
6075 break;
6076 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6077 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6078
6079 if (name[-1] == '_')
6080 name -= 1;
6081 }
6082 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6083 return false;
96d887e8 6084 }
96d887e8
PH
6085}
6086
b5ec771e
PA
6087/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6088 any trailing suffixes that encode debugging information or leading
6089 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6090 information that is ignored). */
40658b94 6091
b5ec771e 6092static bool
c4d840bd
PH
6093full_match (const char *sym_name, const char *search_name)
6094{
b5ec771e
PA
6095 size_t search_name_len = strlen (search_name);
6096
6097 if (strncmp (sym_name, search_name, search_name_len) == 0
6098 && is_name_suffix (sym_name + search_name_len))
6099 return true;
6100
6101 if (startswith (sym_name, "_ada_")
6102 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6103 && is_name_suffix (sym_name + search_name_len + 5))
6104 return true;
c4d840bd 6105
b5ec771e
PA
6106 return false;
6107}
c4d840bd 6108
b5ec771e
PA
6109/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6110 *defn_symbols, updating the list of symbols in OBSTACKP (if
6111 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6112
6113static void
6114ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6115 const struct block *block,
6116 const lookup_name_info &lookup_name,
6117 domain_enum domain, struct objfile *objfile)
96d887e8 6118{
8157b174 6119 struct block_iterator iter;
96d887e8
PH
6120 /* A matching argument symbol, if any. */
6121 struct symbol *arg_sym;
6122 /* Set true when we find a matching non-argument symbol. */
6123 int found_sym;
6124 struct symbol *sym;
6125
6126 arg_sym = NULL;
6127 found_sym = 0;
b5ec771e
PA
6128 for (sym = block_iter_match_first (block, lookup_name, &iter);
6129 sym != NULL;
6130 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6131 {
b5ec771e
PA
6132 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6133 SYMBOL_DOMAIN (sym), domain))
6134 {
6135 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6136 {
6137 if (SYMBOL_IS_ARGUMENT (sym))
6138 arg_sym = sym;
6139 else
6140 {
6141 found_sym = 1;
6142 add_defn_to_vec (obstackp,
6143 fixup_symbol_section (sym, objfile),
6144 block);
6145 }
6146 }
6147 }
96d887e8
PH
6148 }
6149
22cee43f
PMR
6150 /* Handle renamings. */
6151
b5ec771e 6152 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6153 found_sym = 1;
6154
96d887e8
PH
6155 if (!found_sym && arg_sym != NULL)
6156 {
76a01679
JB
6157 add_defn_to_vec (obstackp,
6158 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6159 block);
96d887e8
PH
6160 }
6161
b5ec771e 6162 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6163 {
6164 arg_sym = NULL;
6165 found_sym = 0;
b5ec771e
PA
6166 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6167 const char *name = ada_lookup_name.c_str ();
6168 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6169
6170 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6171 {
4186eb54
KS
6172 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6173 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6174 {
6175 int cmp;
6176
6177 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6178 if (cmp == 0)
6179 {
61012eef 6180 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6181 if (cmp == 0)
6182 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6183 name_len);
6184 }
6185
6186 if (cmp == 0
6187 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6188 {
2a2d4dc3
AS
6189 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6190 {
6191 if (SYMBOL_IS_ARGUMENT (sym))
6192 arg_sym = sym;
6193 else
6194 {
6195 found_sym = 1;
6196 add_defn_to_vec (obstackp,
6197 fixup_symbol_section (sym, objfile),
6198 block);
6199 }
6200 }
76a01679
JB
6201 }
6202 }
76a01679 6203 }
96d887e8
PH
6204
6205 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6206 They aren't parameters, right? */
6207 if (!found_sym && arg_sym != NULL)
6208 {
6209 add_defn_to_vec (obstackp,
76a01679 6210 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6211 block);
96d887e8
PH
6212 }
6213 }
6214}
6215\f
41d27058
JB
6216
6217 /* Symbol Completion */
6218
b5ec771e 6219/* See symtab.h. */
41d27058 6220
b5ec771e
PA
6221bool
6222ada_lookup_name_info::matches
6223 (const char *sym_name,
6224 symbol_name_match_type match_type,
a207cff2 6225 completion_match_result *comp_match_res) const
41d27058 6226{
b5ec771e
PA
6227 bool match = false;
6228 const char *text = m_encoded_name.c_str ();
6229 size_t text_len = m_encoded_name.size ();
41d27058
JB
6230
6231 /* First, test against the fully qualified name of the symbol. */
6232
6233 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6234 match = true;
41d27058 6235
b5ec771e 6236 if (match && !m_encoded_p)
41d27058
JB
6237 {
6238 /* One needed check before declaring a positive match is to verify
6239 that iff we are doing a verbatim match, the decoded version
6240 of the symbol name starts with '<'. Otherwise, this symbol name
6241 is not a suitable completion. */
6242 const char *sym_name_copy = sym_name;
b5ec771e 6243 bool has_angle_bracket;
41d27058
JB
6244
6245 sym_name = ada_decode (sym_name);
6246 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6247 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6248 sym_name = sym_name_copy;
6249 }
6250
b5ec771e 6251 if (match && !m_verbatim_p)
41d27058
JB
6252 {
6253 /* When doing non-verbatim match, another check that needs to
6254 be done is to verify that the potentially matching symbol name
6255 does not include capital letters, because the ada-mode would
6256 not be able to understand these symbol names without the
6257 angle bracket notation. */
6258 const char *tmp;
6259
6260 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6261 if (*tmp != '\0')
b5ec771e 6262 match = false;
41d27058
JB
6263 }
6264
6265 /* Second: Try wild matching... */
6266
b5ec771e 6267 if (!match && m_wild_match_p)
41d27058
JB
6268 {
6269 /* Since we are doing wild matching, this means that TEXT
6270 may represent an unqualified symbol name. We therefore must
6271 also compare TEXT against the unqualified name of the symbol. */
6272 sym_name = ada_unqualified_name (ada_decode (sym_name));
6273
6274 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6275 match = true;
41d27058
JB
6276 }
6277
b5ec771e 6278 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6279
6280 if (!match)
b5ec771e 6281 return false;
41d27058 6282
a207cff2 6283 if (comp_match_res != NULL)
b5ec771e 6284 {
a207cff2 6285 std::string &match_str = comp_match_res->match.storage ();
41d27058 6286
b5ec771e 6287 if (!m_encoded_p)
a207cff2 6288 match_str = ada_decode (sym_name);
b5ec771e
PA
6289 else
6290 {
6291 if (m_verbatim_p)
6292 match_str = add_angle_brackets (sym_name);
6293 else
6294 match_str = sym_name;
41d27058 6295
b5ec771e 6296 }
a207cff2
PA
6297
6298 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6299 }
6300
b5ec771e 6301 return true;
41d27058
JB
6302}
6303
b5ec771e 6304/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6305 WORD is the entire command on which completion is made. */
41d27058 6306
eb3ff9a5
PA
6307static void
6308ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6309 complete_symbol_mode mode,
b5ec771e
PA
6310 symbol_name_match_type name_match_type,
6311 const char *text, const char *word,
eb3ff9a5 6312 enum type_code code)
41d27058 6313{
41d27058 6314 struct symbol *sym;
3977b71f 6315 const struct block *b, *surrounding_static_block = 0;
8157b174 6316 struct block_iterator iter;
41d27058 6317
2f68a895
TT
6318 gdb_assert (code == TYPE_CODE_UNDEF);
6319
1b026119 6320 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6321
6322 /* First, look at the partial symtab symbols. */
14bc53a8 6323 expand_symtabs_matching (NULL,
b5ec771e
PA
6324 lookup_name,
6325 NULL,
14bc53a8
PA
6326 NULL,
6327 ALL_DOMAIN);
41d27058
JB
6328
6329 /* At this point scan through the misc symbol vectors and add each
6330 symbol you find to the list. Eventually we want to ignore
6331 anything that isn't a text symbol (everything else will be
6332 handled by the psymtab code above). */
6333
2030c079 6334 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6335 {
7932255d 6336 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6337 {
6338 QUIT;
6339
6340 if (completion_skip_symbol (mode, msymbol))
6341 continue;
6342
6343 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6344
6345 /* Ada minimal symbols won't have their language set to Ada. If
6346 we let completion_list_add_name compare using the
6347 default/C-like matcher, then when completing e.g., symbols in a
6348 package named "pck", we'd match internal Ada symbols like
6349 "pckS", which are invalid in an Ada expression, unless you wrap
6350 them in '<' '>' to request a verbatim match.
6351
6352 Unfortunately, some Ada encoded names successfully demangle as
6353 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6354 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6355 with the wrong language set. Paper over that issue here. */
6356 if (symbol_language == language_auto
6357 || symbol_language == language_cplus)
6358 symbol_language = language_ada;
6359
6360 completion_list_add_name (tracker,
6361 symbol_language,
6362 MSYMBOL_LINKAGE_NAME (msymbol),
6363 lookup_name, text, word);
6364 }
6365 }
41d27058
JB
6366
6367 /* Search upwards from currently selected frame (so that we can
6368 complete on local vars. */
6369
6370 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6371 {
6372 if (!BLOCK_SUPERBLOCK (b))
6373 surrounding_static_block = b; /* For elmin of dups */
6374
6375 ALL_BLOCK_SYMBOLS (b, iter, sym)
6376 {
f9d67a22
PA
6377 if (completion_skip_symbol (mode, sym))
6378 continue;
6379
b5ec771e
PA
6380 completion_list_add_name (tracker,
6381 SYMBOL_LANGUAGE (sym),
6382 SYMBOL_LINKAGE_NAME (sym),
1b026119 6383 lookup_name, text, word);
41d27058
JB
6384 }
6385 }
6386
6387 /* Go through the symtabs and check the externs and statics for
43f3e411 6388 symbols which match. */
41d27058 6389
2030c079 6390 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6391 {
b669c953 6392 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6393 {
6394 QUIT;
6395 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6396 ALL_BLOCK_SYMBOLS (b, iter, sym)
6397 {
6398 if (completion_skip_symbol (mode, sym))
6399 continue;
f9d67a22 6400
d8aeb77f
TT
6401 completion_list_add_name (tracker,
6402 SYMBOL_LANGUAGE (sym),
6403 SYMBOL_LINKAGE_NAME (sym),
6404 lookup_name, text, word);
6405 }
6406 }
41d27058 6407 }
41d27058 6408
2030c079 6409 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6410 {
b669c953 6411 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6412 {
6413 QUIT;
6414 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6415 /* Don't do this block twice. */
6416 if (b == surrounding_static_block)
6417 continue;
6418 ALL_BLOCK_SYMBOLS (b, iter, sym)
6419 {
6420 if (completion_skip_symbol (mode, sym))
6421 continue;
f9d67a22 6422
d8aeb77f
TT
6423 completion_list_add_name (tracker,
6424 SYMBOL_LANGUAGE (sym),
6425 SYMBOL_LINKAGE_NAME (sym),
6426 lookup_name, text, word);
6427 }
6428 }
41d27058 6429 }
41d27058
JB
6430}
6431
963a6417 6432 /* Field Access */
96d887e8 6433
73fb9985
JB
6434/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6435 for tagged types. */
6436
6437static int
6438ada_is_dispatch_table_ptr_type (struct type *type)
6439{
0d5cff50 6440 const char *name;
73fb9985
JB
6441
6442 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6443 return 0;
6444
6445 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6446 if (name == NULL)
6447 return 0;
6448
6449 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6450}
6451
ac4a2da4
JG
6452/* Return non-zero if TYPE is an interface tag. */
6453
6454static int
6455ada_is_interface_tag (struct type *type)
6456{
6457 const char *name = TYPE_NAME (type);
6458
6459 if (name == NULL)
6460 return 0;
6461
6462 return (strcmp (name, "ada__tags__interface_tag") == 0);
6463}
6464
963a6417
PH
6465/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6466 to be invisible to users. */
96d887e8 6467
963a6417
PH
6468int
6469ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6470{
963a6417
PH
6471 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6472 return 1;
ffde82bf 6473
73fb9985
JB
6474 /* Check the name of that field. */
6475 {
6476 const char *name = TYPE_FIELD_NAME (type, field_num);
6477
6478 /* Anonymous field names should not be printed.
6479 brobecker/2007-02-20: I don't think this can actually happen
6480 but we don't want to print the value of annonymous fields anyway. */
6481 if (name == NULL)
6482 return 1;
6483
ffde82bf
JB
6484 /* Normally, fields whose name start with an underscore ("_")
6485 are fields that have been internally generated by the compiler,
6486 and thus should not be printed. The "_parent" field is special,
6487 however: This is a field internally generated by the compiler
6488 for tagged types, and it contains the components inherited from
6489 the parent type. This field should not be printed as is, but
6490 should not be ignored either. */
61012eef 6491 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6492 return 1;
6493 }
6494
ac4a2da4
JG
6495 /* If this is the dispatch table of a tagged type or an interface tag,
6496 then ignore. */
73fb9985 6497 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6498 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6499 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6500 return 1;
6501
6502 /* Not a special field, so it should not be ignored. */
6503 return 0;
963a6417 6504}
96d887e8 6505
963a6417 6506/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6507 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6508
963a6417
PH
6509int
6510ada_is_tagged_type (struct type *type, int refok)
6511{
988f6b3d 6512 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6513}
96d887e8 6514
963a6417 6515/* True iff TYPE represents the type of X'Tag */
96d887e8 6516
963a6417
PH
6517int
6518ada_is_tag_type (struct type *type)
6519{
460efde1
JB
6520 type = ada_check_typedef (type);
6521
963a6417
PH
6522 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6523 return 0;
6524 else
96d887e8 6525 {
963a6417 6526 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6527
963a6417
PH
6528 return (name != NULL
6529 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6530 }
96d887e8
PH
6531}
6532
963a6417 6533/* The type of the tag on VAL. */
76a01679 6534
963a6417
PH
6535struct type *
6536ada_tag_type (struct value *val)
96d887e8 6537{
988f6b3d 6538 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6539}
96d887e8 6540
b50d69b5
JG
6541/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6542 retired at Ada 05). */
6543
6544static int
6545is_ada95_tag (struct value *tag)
6546{
6547 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6548}
6549
963a6417 6550/* The value of the tag on VAL. */
96d887e8 6551
963a6417
PH
6552struct value *
6553ada_value_tag (struct value *val)
6554{
03ee6b2e 6555 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6556}
6557
963a6417
PH
6558/* The value of the tag on the object of type TYPE whose contents are
6559 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6560 ADDRESS. */
96d887e8 6561
963a6417 6562static struct value *
10a2c479 6563value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6564 const gdb_byte *valaddr,
963a6417 6565 CORE_ADDR address)
96d887e8 6566{
b5385fc0 6567 int tag_byte_offset;
963a6417 6568 struct type *tag_type;
5b4ee69b 6569
963a6417 6570 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6571 NULL, NULL, NULL))
96d887e8 6572 {
fc1a4b47 6573 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6574 ? NULL
6575 : valaddr + tag_byte_offset);
963a6417 6576 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6577
963a6417 6578 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6579 }
963a6417
PH
6580 return NULL;
6581}
96d887e8 6582
963a6417
PH
6583static struct type *
6584type_from_tag (struct value *tag)
6585{
6586 const char *type_name = ada_tag_name (tag);
5b4ee69b 6587
963a6417
PH
6588 if (type_name != NULL)
6589 return ada_find_any_type (ada_encode (type_name));
6590 return NULL;
6591}
96d887e8 6592
b50d69b5
JG
6593/* Given a value OBJ of a tagged type, return a value of this
6594 type at the base address of the object. The base address, as
6595 defined in Ada.Tags, it is the address of the primary tag of
6596 the object, and therefore where the field values of its full
6597 view can be fetched. */
6598
6599struct value *
6600ada_tag_value_at_base_address (struct value *obj)
6601{
b50d69b5
JG
6602 struct value *val;
6603 LONGEST offset_to_top = 0;
6604 struct type *ptr_type, *obj_type;
6605 struct value *tag;
6606 CORE_ADDR base_address;
6607
6608 obj_type = value_type (obj);
6609
6610 /* It is the responsability of the caller to deref pointers. */
6611
6612 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6613 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6614 return obj;
6615
6616 tag = ada_value_tag (obj);
6617 if (!tag)
6618 return obj;
6619
6620 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6621
6622 if (is_ada95_tag (tag))
6623 return obj;
6624
08f49010
XR
6625 ptr_type = language_lookup_primitive_type
6626 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6627 ptr_type = lookup_pointer_type (ptr_type);
6628 val = value_cast (ptr_type, tag);
6629 if (!val)
6630 return obj;
6631
6632 /* It is perfectly possible that an exception be raised while
6633 trying to determine the base address, just like for the tag;
6634 see ada_tag_name for more details. We do not print the error
6635 message for the same reason. */
6636
a70b8144 6637 try
b50d69b5
JG
6638 {
6639 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6640 }
6641
230d2906 6642 catch (const gdb_exception_error &e)
492d29ea
PA
6643 {
6644 return obj;
6645 }
b50d69b5
JG
6646
6647 /* If offset is null, nothing to do. */
6648
6649 if (offset_to_top == 0)
6650 return obj;
6651
6652 /* -1 is a special case in Ada.Tags; however, what should be done
6653 is not quite clear from the documentation. So do nothing for
6654 now. */
6655
6656 if (offset_to_top == -1)
6657 return obj;
6658
08f49010
XR
6659 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6660 from the base address. This was however incompatible with
6661 C++ dispatch table: C++ uses a *negative* value to *add*
6662 to the base address. Ada's convention has therefore been
6663 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6664 use the same convention. Here, we support both cases by
6665 checking the sign of OFFSET_TO_TOP. */
6666
6667 if (offset_to_top > 0)
6668 offset_to_top = -offset_to_top;
6669
6670 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6671 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6672
6673 /* Make sure that we have a proper tag at the new address.
6674 Otherwise, offset_to_top is bogus (which can happen when
6675 the object is not initialized yet). */
6676
6677 if (!tag)
6678 return obj;
6679
6680 obj_type = type_from_tag (tag);
6681
6682 if (!obj_type)
6683 return obj;
6684
6685 return value_from_contents_and_address (obj_type, NULL, base_address);
6686}
6687
1b611343
JB
6688/* Return the "ada__tags__type_specific_data" type. */
6689
6690static struct type *
6691ada_get_tsd_type (struct inferior *inf)
963a6417 6692{
1b611343 6693 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6694
1b611343
JB
6695 if (data->tsd_type == 0)
6696 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6697 return data->tsd_type;
6698}
529cad9c 6699
1b611343
JB
6700/* Return the TSD (type-specific data) associated to the given TAG.
6701 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6702
1b611343 6703 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6704
1b611343
JB
6705static struct value *
6706ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6707{
4c4b4cd2 6708 struct value *val;
1b611343 6709 struct type *type;
5b4ee69b 6710
1b611343
JB
6711 /* First option: The TSD is simply stored as a field of our TAG.
6712 Only older versions of GNAT would use this format, but we have
6713 to test it first, because there are no visible markers for
6714 the current approach except the absence of that field. */
529cad9c 6715
1b611343
JB
6716 val = ada_value_struct_elt (tag, "tsd", 1);
6717 if (val)
6718 return val;
e802dbe0 6719
1b611343
JB
6720 /* Try the second representation for the dispatch table (in which
6721 there is no explicit 'tsd' field in the referent of the tag pointer,
6722 and instead the tsd pointer is stored just before the dispatch
6723 table. */
e802dbe0 6724
1b611343
JB
6725 type = ada_get_tsd_type (current_inferior());
6726 if (type == NULL)
6727 return NULL;
6728 type = lookup_pointer_type (lookup_pointer_type (type));
6729 val = value_cast (type, tag);
6730 if (val == NULL)
6731 return NULL;
6732 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6733}
6734
1b611343
JB
6735/* Given the TSD of a tag (type-specific data), return a string
6736 containing the name of the associated type.
6737
6738 The returned value is good until the next call. May return NULL
6739 if we are unable to determine the tag name. */
6740
6741static char *
6742ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6743{
529cad9c
PH
6744 static char name[1024];
6745 char *p;
1b611343 6746 struct value *val;
529cad9c 6747
1b611343 6748 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6749 if (val == NULL)
1b611343 6750 return NULL;
4c4b4cd2
PH
6751 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6752 for (p = name; *p != '\0'; p += 1)
6753 if (isalpha (*p))
6754 *p = tolower (*p);
1b611343 6755 return name;
4c4b4cd2
PH
6756}
6757
6758/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6759 a C string.
6760
6761 Return NULL if the TAG is not an Ada tag, or if we were unable to
6762 determine the name of that tag. The result is good until the next
6763 call. */
4c4b4cd2
PH
6764
6765const char *
6766ada_tag_name (struct value *tag)
6767{
1b611343 6768 char *name = NULL;
5b4ee69b 6769
df407dfe 6770 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6771 return NULL;
1b611343
JB
6772
6773 /* It is perfectly possible that an exception be raised while trying
6774 to determine the TAG's name, even under normal circumstances:
6775 The associated variable may be uninitialized or corrupted, for
6776 instance. We do not let any exception propagate past this point.
6777 instead we return NULL.
6778
6779 We also do not print the error message either (which often is very
6780 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6781 the caller print a more meaningful message if necessary. */
a70b8144 6782 try
1b611343
JB
6783 {
6784 struct value *tsd = ada_get_tsd_from_tag (tag);
6785
6786 if (tsd != NULL)
6787 name = ada_tag_name_from_tsd (tsd);
6788 }
230d2906 6789 catch (const gdb_exception_error &e)
492d29ea
PA
6790 {
6791 }
1b611343
JB
6792
6793 return name;
4c4b4cd2
PH
6794}
6795
6796/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6797
d2e4a39e 6798struct type *
ebf56fd3 6799ada_parent_type (struct type *type)
14f9c5c9
AS
6800{
6801 int i;
6802
61ee279c 6803 type = ada_check_typedef (type);
14f9c5c9
AS
6804
6805 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6806 return NULL;
6807
6808 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6809 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6810 {
6811 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6812
6813 /* If the _parent field is a pointer, then dereference it. */
6814 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6815 parent_type = TYPE_TARGET_TYPE (parent_type);
6816 /* If there is a parallel XVS type, get the actual base type. */
6817 parent_type = ada_get_base_type (parent_type);
6818
6819 return ada_check_typedef (parent_type);
6820 }
14f9c5c9
AS
6821
6822 return NULL;
6823}
6824
4c4b4cd2
PH
6825/* True iff field number FIELD_NUM of structure type TYPE contains the
6826 parent-type (inherited) fields of a derived type. Assumes TYPE is
6827 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6828
6829int
ebf56fd3 6830ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6831{
61ee279c 6832 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6833
4c4b4cd2 6834 return (name != NULL
61012eef
GB
6835 && (startswith (name, "PARENT")
6836 || startswith (name, "_parent")));
14f9c5c9
AS
6837}
6838
4c4b4cd2 6839/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6840 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6841 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6842 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6843 structures. */
14f9c5c9
AS
6844
6845int
ebf56fd3 6846ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6847{
d2e4a39e 6848 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6849
dddc0e16
JB
6850 if (name != NULL && strcmp (name, "RETVAL") == 0)
6851 {
6852 /* This happens in functions with "out" or "in out" parameters
6853 which are passed by copy. For such functions, GNAT describes
6854 the function's return type as being a struct where the return
6855 value is in a field called RETVAL, and where the other "out"
6856 or "in out" parameters are fields of that struct. This is not
6857 a wrapper. */
6858 return 0;
6859 }
6860
d2e4a39e 6861 return (name != NULL
61012eef 6862 && (startswith (name, "PARENT")
4c4b4cd2 6863 || strcmp (name, "REP") == 0
61012eef 6864 || startswith (name, "_parent")
4c4b4cd2 6865 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6866}
6867
4c4b4cd2
PH
6868/* True iff field number FIELD_NUM of structure or union type TYPE
6869 is a variant wrapper. Assumes TYPE is a structure type with at least
6870 FIELD_NUM+1 fields. */
14f9c5c9
AS
6871
6872int
ebf56fd3 6873ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6874{
8ecb59f8
TT
6875 /* Only Ada types are eligible. */
6876 if (!ADA_TYPE_P (type))
6877 return 0;
6878
d2e4a39e 6879 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6880
14f9c5c9 6881 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6882 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6883 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6884 == TYPE_CODE_UNION)));
14f9c5c9
AS
6885}
6886
6887/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6888 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6889 returns the type of the controlling discriminant for the variant.
6890 May return NULL if the type could not be found. */
14f9c5c9 6891
d2e4a39e 6892struct type *
ebf56fd3 6893ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6894{
a121b7c1 6895 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6896
988f6b3d 6897 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6898}
6899
4c4b4cd2 6900/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6901 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6902 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6903
6904int
ebf56fd3 6905ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6906{
d2e4a39e 6907 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6908
14f9c5c9
AS
6909 return (name != NULL && name[0] == 'O');
6910}
6911
6912/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6913 returns the name of the discriminant controlling the variant.
6914 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6915
a121b7c1 6916const char *
ebf56fd3 6917ada_variant_discrim_name (struct type *type0)
14f9c5c9 6918{
d2e4a39e 6919 static char *result = NULL;
14f9c5c9 6920 static size_t result_len = 0;
d2e4a39e
AS
6921 struct type *type;
6922 const char *name;
6923 const char *discrim_end;
6924 const char *discrim_start;
14f9c5c9
AS
6925
6926 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6927 type = TYPE_TARGET_TYPE (type0);
6928 else
6929 type = type0;
6930
6931 name = ada_type_name (type);
6932
6933 if (name == NULL || name[0] == '\000')
6934 return "";
6935
6936 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6937 discrim_end -= 1)
6938 {
61012eef 6939 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6940 break;
14f9c5c9
AS
6941 }
6942 if (discrim_end == name)
6943 return "";
6944
d2e4a39e 6945 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6946 discrim_start -= 1)
6947 {
d2e4a39e 6948 if (discrim_start == name + 1)
4c4b4cd2 6949 return "";
76a01679 6950 if ((discrim_start > name + 3
61012eef 6951 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6952 || discrim_start[-1] == '.')
6953 break;
14f9c5c9
AS
6954 }
6955
6956 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6957 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6958 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6959 return result;
6960}
6961
4c4b4cd2
PH
6962/* Scan STR for a subtype-encoded number, beginning at position K.
6963 Put the position of the character just past the number scanned in
6964 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6965 Return 1 if there was a valid number at the given position, and 0
6966 otherwise. A "subtype-encoded" number consists of the absolute value
6967 in decimal, followed by the letter 'm' to indicate a negative number.
6968 Assumes 0m does not occur. */
14f9c5c9
AS
6969
6970int
d2e4a39e 6971ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6972{
6973 ULONGEST RU;
6974
d2e4a39e 6975 if (!isdigit (str[k]))
14f9c5c9
AS
6976 return 0;
6977
4c4b4cd2 6978 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6979 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6980 LONGEST. */
14f9c5c9
AS
6981 RU = 0;
6982 while (isdigit (str[k]))
6983 {
d2e4a39e 6984 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6985 k += 1;
6986 }
6987
d2e4a39e 6988 if (str[k] == 'm')
14f9c5c9
AS
6989 {
6990 if (R != NULL)
4c4b4cd2 6991 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6992 k += 1;
6993 }
6994 else if (R != NULL)
6995 *R = (LONGEST) RU;
6996
4c4b4cd2 6997 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6998 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6999 number representable as a LONGEST (although either would probably work
7000 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7001 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7002
7003 if (new_k != NULL)
7004 *new_k = k;
7005 return 1;
7006}
7007
4c4b4cd2
PH
7008/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7009 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7010 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7011
d2e4a39e 7012int
ebf56fd3 7013ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7014{
d2e4a39e 7015 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7016 int p;
7017
7018 p = 0;
7019 while (1)
7020 {
d2e4a39e 7021 switch (name[p])
4c4b4cd2
PH
7022 {
7023 case '\0':
7024 return 0;
7025 case 'S':
7026 {
7027 LONGEST W;
5b4ee69b 7028
4c4b4cd2
PH
7029 if (!ada_scan_number (name, p + 1, &W, &p))
7030 return 0;
7031 if (val == W)
7032 return 1;
7033 break;
7034 }
7035 case 'R':
7036 {
7037 LONGEST L, U;
5b4ee69b 7038
4c4b4cd2
PH
7039 if (!ada_scan_number (name, p + 1, &L, &p)
7040 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7041 return 0;
7042 if (val >= L && val <= U)
7043 return 1;
7044 break;
7045 }
7046 case 'O':
7047 return 1;
7048 default:
7049 return 0;
7050 }
7051 }
7052}
7053
0963b4bd 7054/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7055
7056/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7057 ARG_TYPE, extract and return the value of one of its (non-static)
7058 fields. FIELDNO says which field. Differs from value_primitive_field
7059 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7060
4c4b4cd2 7061static struct value *
d2e4a39e 7062ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7063 struct type *arg_type)
14f9c5c9 7064{
14f9c5c9
AS
7065 struct type *type;
7066
61ee279c 7067 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7068 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7069
4504bbde
TT
7070 /* Handle packed fields. It might be that the field is not packed
7071 relative to its containing structure, but the structure itself is
7072 packed; in this case we must take the bit-field path. */
7073 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7074 {
7075 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7076 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7077
0fd88904 7078 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7079 offset + bit_pos / 8,
7080 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7081 }
7082 else
7083 return value_primitive_field (arg1, offset, fieldno, arg_type);
7084}
7085
52ce6436
PH
7086/* Find field with name NAME in object of type TYPE. If found,
7087 set the following for each argument that is non-null:
7088 - *FIELD_TYPE_P to the field's type;
7089 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7090 an object of that type;
7091 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7092 - *BIT_SIZE_P to its size in bits if the field is packed, and
7093 0 otherwise;
7094 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7095 fields up to but not including the desired field, or by the total
7096 number of fields if not found. A NULL value of NAME never
7097 matches; the function just counts visible fields in this case.
7098
828d5846
XR
7099 Notice that we need to handle when a tagged record hierarchy
7100 has some components with the same name, like in this scenario:
7101
7102 type Top_T is tagged record
7103 N : Integer := 1;
7104 U : Integer := 974;
7105 A : Integer := 48;
7106 end record;
7107
7108 type Middle_T is new Top.Top_T with record
7109 N : Character := 'a';
7110 C : Integer := 3;
7111 end record;
7112
7113 type Bottom_T is new Middle.Middle_T with record
7114 N : Float := 4.0;
7115 C : Character := '5';
7116 X : Integer := 6;
7117 A : Character := 'J';
7118 end record;
7119
7120 Let's say we now have a variable declared and initialized as follow:
7121
7122 TC : Top_A := new Bottom_T;
7123
7124 And then we use this variable to call this function
7125
7126 procedure Assign (Obj: in out Top_T; TV : Integer);
7127
7128 as follow:
7129
7130 Assign (Top_T (B), 12);
7131
7132 Now, we're in the debugger, and we're inside that procedure
7133 then and we want to print the value of obj.c:
7134
7135 Usually, the tagged record or one of the parent type owns the
7136 component to print and there's no issue but in this particular
7137 case, what does it mean to ask for Obj.C? Since the actual
7138 type for object is type Bottom_T, it could mean two things: type
7139 component C from the Middle_T view, but also component C from
7140 Bottom_T. So in that "undefined" case, when the component is
7141 not found in the non-resolved type (which includes all the
7142 components of the parent type), then resolve it and see if we
7143 get better luck once expanded.
7144
7145 In the case of homonyms in the derived tagged type, we don't
7146 guaranty anything, and pick the one that's easiest for us
7147 to program.
7148
0963b4bd 7149 Returns 1 if found, 0 otherwise. */
52ce6436 7150
4c4b4cd2 7151static int
0d5cff50 7152find_struct_field (const char *name, struct type *type, int offset,
76a01679 7153 struct type **field_type_p,
52ce6436
PH
7154 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7155 int *index_p)
4c4b4cd2
PH
7156{
7157 int i;
828d5846 7158 int parent_offset = -1;
4c4b4cd2 7159
61ee279c 7160 type = ada_check_typedef (type);
76a01679 7161
52ce6436
PH
7162 if (field_type_p != NULL)
7163 *field_type_p = NULL;
7164 if (byte_offset_p != NULL)
d5d6fca5 7165 *byte_offset_p = 0;
52ce6436
PH
7166 if (bit_offset_p != NULL)
7167 *bit_offset_p = 0;
7168 if (bit_size_p != NULL)
7169 *bit_size_p = 0;
7170
7171 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7172 {
7173 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7174 int fld_offset = offset + bit_pos / 8;
0d5cff50 7175 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7176
4c4b4cd2
PH
7177 if (t_field_name == NULL)
7178 continue;
7179
828d5846
XR
7180 else if (ada_is_parent_field (type, i))
7181 {
7182 /* This is a field pointing us to the parent type of a tagged
7183 type. As hinted in this function's documentation, we give
7184 preference to fields in the current record first, so what
7185 we do here is just record the index of this field before
7186 we skip it. If it turns out we couldn't find our field
7187 in the current record, then we'll get back to it and search
7188 inside it whether the field might exist in the parent. */
7189
7190 parent_offset = i;
7191 continue;
7192 }
7193
52ce6436 7194 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7195 {
7196 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7197
52ce6436
PH
7198 if (field_type_p != NULL)
7199 *field_type_p = TYPE_FIELD_TYPE (type, i);
7200 if (byte_offset_p != NULL)
7201 *byte_offset_p = fld_offset;
7202 if (bit_offset_p != NULL)
7203 *bit_offset_p = bit_pos % 8;
7204 if (bit_size_p != NULL)
7205 *bit_size_p = bit_size;
76a01679
JB
7206 return 1;
7207 }
4c4b4cd2
PH
7208 else if (ada_is_wrapper_field (type, i))
7209 {
52ce6436
PH
7210 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7211 field_type_p, byte_offset_p, bit_offset_p,
7212 bit_size_p, index_p))
76a01679
JB
7213 return 1;
7214 }
4c4b4cd2
PH
7215 else if (ada_is_variant_part (type, i))
7216 {
52ce6436
PH
7217 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7218 fixed type?? */
4c4b4cd2 7219 int j;
52ce6436
PH
7220 struct type *field_type
7221 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7222
52ce6436 7223 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7224 {
76a01679
JB
7225 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7226 fld_offset
7227 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7228 field_type_p, byte_offset_p,
52ce6436 7229 bit_offset_p, bit_size_p, index_p))
76a01679 7230 return 1;
4c4b4cd2
PH
7231 }
7232 }
52ce6436
PH
7233 else if (index_p != NULL)
7234 *index_p += 1;
4c4b4cd2 7235 }
828d5846
XR
7236
7237 /* Field not found so far. If this is a tagged type which
7238 has a parent, try finding that field in the parent now. */
7239
7240 if (parent_offset != -1)
7241 {
7242 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7243 int fld_offset = offset + bit_pos / 8;
7244
7245 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7246 fld_offset, field_type_p, byte_offset_p,
7247 bit_offset_p, bit_size_p, index_p))
7248 return 1;
7249 }
7250
4c4b4cd2
PH
7251 return 0;
7252}
7253
0963b4bd 7254/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7255
52ce6436
PH
7256static int
7257num_visible_fields (struct type *type)
7258{
7259 int n;
5b4ee69b 7260
52ce6436
PH
7261 n = 0;
7262 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7263 return n;
7264}
14f9c5c9 7265
4c4b4cd2 7266/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7267 and search in it assuming it has (class) type TYPE.
7268 If found, return value, else return NULL.
7269
828d5846
XR
7270 Searches recursively through wrapper fields (e.g., '_parent').
7271
7272 In the case of homonyms in the tagged types, please refer to the
7273 long explanation in find_struct_field's function documentation. */
14f9c5c9 7274
4c4b4cd2 7275static struct value *
108d56a4 7276ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7277 struct type *type)
14f9c5c9
AS
7278{
7279 int i;
828d5846 7280 int parent_offset = -1;
14f9c5c9 7281
5b4ee69b 7282 type = ada_check_typedef (type);
52ce6436 7283 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7284 {
0d5cff50 7285 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7286
7287 if (t_field_name == NULL)
4c4b4cd2 7288 continue;
14f9c5c9 7289
828d5846
XR
7290 else if (ada_is_parent_field (type, i))
7291 {
7292 /* This is a field pointing us to the parent type of a tagged
7293 type. As hinted in this function's documentation, we give
7294 preference to fields in the current record first, so what
7295 we do here is just record the index of this field before
7296 we skip it. If it turns out we couldn't find our field
7297 in the current record, then we'll get back to it and search
7298 inside it whether the field might exist in the parent. */
7299
7300 parent_offset = i;
7301 continue;
7302 }
7303
14f9c5c9 7304 else if (field_name_match (t_field_name, name))
4c4b4cd2 7305 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7306
7307 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7308 {
0963b4bd 7309 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7310 ada_search_struct_field (name, arg,
7311 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7312 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7313
4c4b4cd2
PH
7314 if (v != NULL)
7315 return v;
7316 }
14f9c5c9
AS
7317
7318 else if (ada_is_variant_part (type, i))
4c4b4cd2 7319 {
0963b4bd 7320 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7321 int j;
5b4ee69b
MS
7322 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7323 i));
4c4b4cd2
PH
7324 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7325
52ce6436 7326 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7327 {
0963b4bd
MS
7328 struct value *v = ada_search_struct_field /* Force line
7329 break. */
06d5cf63
JB
7330 (name, arg,
7331 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7332 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7333
4c4b4cd2
PH
7334 if (v != NULL)
7335 return v;
7336 }
7337 }
14f9c5c9 7338 }
828d5846
XR
7339
7340 /* Field not found so far. If this is a tagged type which
7341 has a parent, try finding that field in the parent now. */
7342
7343 if (parent_offset != -1)
7344 {
7345 struct value *v = ada_search_struct_field (
7346 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7347 TYPE_FIELD_TYPE (type, parent_offset));
7348
7349 if (v != NULL)
7350 return v;
7351 }
7352
14f9c5c9
AS
7353 return NULL;
7354}
d2e4a39e 7355
52ce6436
PH
7356static struct value *ada_index_struct_field_1 (int *, struct value *,
7357 int, struct type *);
7358
7359
7360/* Return field #INDEX in ARG, where the index is that returned by
7361 * find_struct_field through its INDEX_P argument. Adjust the address
7362 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7363 * If found, return value, else return NULL. */
52ce6436
PH
7364
7365static struct value *
7366ada_index_struct_field (int index, struct value *arg, int offset,
7367 struct type *type)
7368{
7369 return ada_index_struct_field_1 (&index, arg, offset, type);
7370}
7371
7372
7373/* Auxiliary function for ada_index_struct_field. Like
7374 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7375 * *INDEX_P. */
52ce6436
PH
7376
7377static struct value *
7378ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7379 struct type *type)
7380{
7381 int i;
7382 type = ada_check_typedef (type);
7383
7384 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7385 {
7386 if (TYPE_FIELD_NAME (type, i) == NULL)
7387 continue;
7388 else if (ada_is_wrapper_field (type, i))
7389 {
0963b4bd 7390 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7391 ada_index_struct_field_1 (index_p, arg,
7392 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7393 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7394
52ce6436
PH
7395 if (v != NULL)
7396 return v;
7397 }
7398
7399 else if (ada_is_variant_part (type, i))
7400 {
7401 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7402 find_struct_field. */
52ce6436
PH
7403 error (_("Cannot assign this kind of variant record"));
7404 }
7405 else if (*index_p == 0)
7406 return ada_value_primitive_field (arg, offset, i, type);
7407 else
7408 *index_p -= 1;
7409 }
7410 return NULL;
7411}
7412
4c4b4cd2
PH
7413/* Given ARG, a value of type (pointer or reference to a)*
7414 structure/union, extract the component named NAME from the ultimate
7415 target structure/union and return it as a value with its
f5938064 7416 appropriate type.
14f9c5c9 7417
4c4b4cd2
PH
7418 The routine searches for NAME among all members of the structure itself
7419 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7420 (e.g., '_parent').
7421
03ee6b2e
PH
7422 If NO_ERR, then simply return NULL in case of error, rather than
7423 calling error. */
14f9c5c9 7424
d2e4a39e 7425struct value *
a121b7c1 7426ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7427{
4c4b4cd2 7428 struct type *t, *t1;
d2e4a39e 7429 struct value *v;
1f5d1570 7430 int check_tag;
14f9c5c9 7431
4c4b4cd2 7432 v = NULL;
df407dfe 7433 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7434 if (TYPE_CODE (t) == TYPE_CODE_REF)
7435 {
7436 t1 = TYPE_TARGET_TYPE (t);
7437 if (t1 == NULL)
03ee6b2e 7438 goto BadValue;
61ee279c 7439 t1 = ada_check_typedef (t1);
4c4b4cd2 7440 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7441 {
994b9211 7442 arg = coerce_ref (arg);
76a01679
JB
7443 t = t1;
7444 }
4c4b4cd2 7445 }
14f9c5c9 7446
4c4b4cd2
PH
7447 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7448 {
7449 t1 = TYPE_TARGET_TYPE (t);
7450 if (t1 == NULL)
03ee6b2e 7451 goto BadValue;
61ee279c 7452 t1 = ada_check_typedef (t1);
4c4b4cd2 7453 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7454 {
7455 arg = value_ind (arg);
7456 t = t1;
7457 }
4c4b4cd2 7458 else
76a01679 7459 break;
4c4b4cd2 7460 }
14f9c5c9 7461
4c4b4cd2 7462 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7463 goto BadValue;
14f9c5c9 7464
4c4b4cd2
PH
7465 if (t1 == t)
7466 v = ada_search_struct_field (name, arg, 0, t);
7467 else
7468 {
7469 int bit_offset, bit_size, byte_offset;
7470 struct type *field_type;
7471 CORE_ADDR address;
7472
76a01679 7473 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7474 address = value_address (ada_value_ind (arg));
4c4b4cd2 7475 else
b50d69b5 7476 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7477
828d5846
XR
7478 /* Check to see if this is a tagged type. We also need to handle
7479 the case where the type is a reference to a tagged type, but
7480 we have to be careful to exclude pointers to tagged types.
7481 The latter should be shown as usual (as a pointer), whereas
7482 a reference should mostly be transparent to the user. */
7483
7484 if (ada_is_tagged_type (t1, 0)
7485 || (TYPE_CODE (t1) == TYPE_CODE_REF
7486 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7487 {
7488 /* We first try to find the searched field in the current type.
7489 If not found then let's look in the fixed type. */
7490
7491 if (!find_struct_field (name, t1, 0,
7492 &field_type, &byte_offset, &bit_offset,
7493 &bit_size, NULL))
1f5d1570
JG
7494 check_tag = 1;
7495 else
7496 check_tag = 0;
828d5846
XR
7497 }
7498 else
1f5d1570
JG
7499 check_tag = 0;
7500
7501 /* Convert to fixed type in all cases, so that we have proper
7502 offsets to each field in unconstrained record types. */
7503 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7504 address, NULL, check_tag);
828d5846 7505
76a01679
JB
7506 if (find_struct_field (name, t1, 0,
7507 &field_type, &byte_offset, &bit_offset,
52ce6436 7508 &bit_size, NULL))
76a01679
JB
7509 {
7510 if (bit_size != 0)
7511 {
714e53ab
PH
7512 if (TYPE_CODE (t) == TYPE_CODE_REF)
7513 arg = ada_coerce_ref (arg);
7514 else
7515 arg = ada_value_ind (arg);
76a01679
JB
7516 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7517 bit_offset, bit_size,
7518 field_type);
7519 }
7520 else
f5938064 7521 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7522 }
7523 }
7524
03ee6b2e
PH
7525 if (v != NULL || no_err)
7526 return v;
7527 else
323e0a4a 7528 error (_("There is no member named %s."), name);
14f9c5c9 7529
03ee6b2e
PH
7530 BadValue:
7531 if (no_err)
7532 return NULL;
7533 else
0963b4bd
MS
7534 error (_("Attempt to extract a component of "
7535 "a value that is not a record."));
14f9c5c9
AS
7536}
7537
3b4de39c 7538/* Return a string representation of type TYPE. */
99bbb428 7539
3b4de39c 7540static std::string
99bbb428
PA
7541type_as_string (struct type *type)
7542{
d7e74731 7543 string_file tmp_stream;
99bbb428 7544
d7e74731 7545 type_print (type, "", &tmp_stream, -1);
99bbb428 7546
d7e74731 7547 return std::move (tmp_stream.string ());
99bbb428
PA
7548}
7549
14f9c5c9 7550/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7551 If DISPP is non-null, add its byte displacement from the beginning of a
7552 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7553 work for packed fields).
7554
7555 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7556 followed by "___".
14f9c5c9 7557
0963b4bd 7558 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7559 be a (pointer or reference)+ to a struct or union, and the
7560 ultimate target type will be searched.
14f9c5c9
AS
7561
7562 Looks recursively into variant clauses and parent types.
7563
828d5846
XR
7564 In the case of homonyms in the tagged types, please refer to the
7565 long explanation in find_struct_field's function documentation.
7566
4c4b4cd2
PH
7567 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7568 TYPE is not a type of the right kind. */
14f9c5c9 7569
4c4b4cd2 7570static struct type *
a121b7c1 7571ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7572 int noerr)
14f9c5c9
AS
7573{
7574 int i;
828d5846 7575 int parent_offset = -1;
14f9c5c9
AS
7576
7577 if (name == NULL)
7578 goto BadName;
7579
76a01679 7580 if (refok && type != NULL)
4c4b4cd2
PH
7581 while (1)
7582 {
61ee279c 7583 type = ada_check_typedef (type);
76a01679
JB
7584 if (TYPE_CODE (type) != TYPE_CODE_PTR
7585 && TYPE_CODE (type) != TYPE_CODE_REF)
7586 break;
7587 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7588 }
14f9c5c9 7589
76a01679 7590 if (type == NULL
1265e4aa
JB
7591 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7592 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7593 {
4c4b4cd2 7594 if (noerr)
76a01679 7595 return NULL;
99bbb428 7596
3b4de39c
PA
7597 error (_("Type %s is not a structure or union type"),
7598 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7599 }
7600
7601 type = to_static_fixed_type (type);
7602
7603 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7604 {
0d5cff50 7605 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7606 struct type *t;
d2e4a39e 7607
14f9c5c9 7608 if (t_field_name == NULL)
4c4b4cd2 7609 continue;
14f9c5c9 7610
828d5846
XR
7611 else if (ada_is_parent_field (type, i))
7612 {
7613 /* This is a field pointing us to the parent type of a tagged
7614 type. As hinted in this function's documentation, we give
7615 preference to fields in the current record first, so what
7616 we do here is just record the index of this field before
7617 we skip it. If it turns out we couldn't find our field
7618 in the current record, then we'll get back to it and search
7619 inside it whether the field might exist in the parent. */
7620
7621 parent_offset = i;
7622 continue;
7623 }
7624
14f9c5c9 7625 else if (field_name_match (t_field_name, name))
988f6b3d 7626 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7627
7628 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7629 {
4c4b4cd2 7630 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7631 0, 1);
4c4b4cd2 7632 if (t != NULL)
988f6b3d 7633 return t;
4c4b4cd2 7634 }
14f9c5c9
AS
7635
7636 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7637 {
7638 int j;
5b4ee69b
MS
7639 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7640 i));
4c4b4cd2
PH
7641
7642 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7643 {
b1f33ddd
JB
7644 /* FIXME pnh 2008/01/26: We check for a field that is
7645 NOT wrapped in a struct, since the compiler sometimes
7646 generates these for unchecked variant types. Revisit
0963b4bd 7647 if the compiler changes this practice. */
0d5cff50 7648 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7649
b1f33ddd
JB
7650 if (v_field_name != NULL
7651 && field_name_match (v_field_name, name))
460efde1 7652 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7653 else
0963b4bd
MS
7654 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7655 j),
988f6b3d 7656 name, 0, 1);
b1f33ddd 7657
4c4b4cd2 7658 if (t != NULL)
988f6b3d 7659 return t;
4c4b4cd2
PH
7660 }
7661 }
14f9c5c9
AS
7662
7663 }
7664
828d5846
XR
7665 /* Field not found so far. If this is a tagged type which
7666 has a parent, try finding that field in the parent now. */
7667
7668 if (parent_offset != -1)
7669 {
7670 struct type *t;
7671
7672 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7673 name, 0, 1);
7674 if (t != NULL)
7675 return t;
7676 }
7677
14f9c5c9 7678BadName:
d2e4a39e 7679 if (!noerr)
14f9c5c9 7680 {
2b2798cc 7681 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7682
7683 error (_("Type %s has no component named %s"),
3b4de39c 7684 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7685 }
7686
7687 return NULL;
7688}
7689
b1f33ddd
JB
7690/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7691 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7692 represents an unchecked union (that is, the variant part of a
0963b4bd 7693 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7694
7695static int
7696is_unchecked_variant (struct type *var_type, struct type *outer_type)
7697{
a121b7c1 7698 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7699
988f6b3d 7700 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7701}
7702
7703
14f9c5c9
AS
7704/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7705 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7706 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7707 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7708
d2e4a39e 7709int
ebf56fd3 7710ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7711 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7712{
7713 int others_clause;
7714 int i;
a121b7c1 7715 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7716 struct value *outer;
7717 struct value *discrim;
14f9c5c9
AS
7718 LONGEST discrim_val;
7719
012370f6
TT
7720 /* Using plain value_from_contents_and_address here causes problems
7721 because we will end up trying to resolve a type that is currently
7722 being constructed. */
7723 outer = value_from_contents_and_address_unresolved (outer_type,
7724 outer_valaddr, 0);
0c281816
JB
7725 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7726 if (discrim == NULL)
14f9c5c9 7727 return -1;
0c281816 7728 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7729
7730 others_clause = -1;
7731 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7732 {
7733 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7734 others_clause = i;
14f9c5c9 7735 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7736 return i;
14f9c5c9
AS
7737 }
7738
7739 return others_clause;
7740}
d2e4a39e 7741\f
14f9c5c9
AS
7742
7743
4c4b4cd2 7744 /* Dynamic-Sized Records */
14f9c5c9
AS
7745
7746/* Strategy: The type ostensibly attached to a value with dynamic size
7747 (i.e., a size that is not statically recorded in the debugging
7748 data) does not accurately reflect the size or layout of the value.
7749 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7750 conventional types that are constructed on the fly. */
14f9c5c9
AS
7751
7752/* There is a subtle and tricky problem here. In general, we cannot
7753 determine the size of dynamic records without its data. However,
7754 the 'struct value' data structure, which GDB uses to represent
7755 quantities in the inferior process (the target), requires the size
7756 of the type at the time of its allocation in order to reserve space
7757 for GDB's internal copy of the data. That's why the
7758 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7759 rather than struct value*s.
14f9c5c9
AS
7760
7761 However, GDB's internal history variables ($1, $2, etc.) are
7762 struct value*s containing internal copies of the data that are not, in
7763 general, the same as the data at their corresponding addresses in
7764 the target. Fortunately, the types we give to these values are all
7765 conventional, fixed-size types (as per the strategy described
7766 above), so that we don't usually have to perform the
7767 'to_fixed_xxx_type' conversions to look at their values.
7768 Unfortunately, there is one exception: if one of the internal
7769 history variables is an array whose elements are unconstrained
7770 records, then we will need to create distinct fixed types for each
7771 element selected. */
7772
7773/* The upshot of all of this is that many routines take a (type, host
7774 address, target address) triple as arguments to represent a value.
7775 The host address, if non-null, is supposed to contain an internal
7776 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7777 target at the target address. */
14f9c5c9
AS
7778
7779/* Assuming that VAL0 represents a pointer value, the result of
7780 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7781 dynamic-sized types. */
14f9c5c9 7782
d2e4a39e
AS
7783struct value *
7784ada_value_ind (struct value *val0)
14f9c5c9 7785{
c48db5ca 7786 struct value *val = value_ind (val0);
5b4ee69b 7787
b50d69b5
JG
7788 if (ada_is_tagged_type (value_type (val), 0))
7789 val = ada_tag_value_at_base_address (val);
7790
4c4b4cd2 7791 return ada_to_fixed_value (val);
14f9c5c9
AS
7792}
7793
7794/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7795 qualifiers on VAL0. */
7796
d2e4a39e
AS
7797static struct value *
7798ada_coerce_ref (struct value *val0)
7799{
df407dfe 7800 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7801 {
7802 struct value *val = val0;
5b4ee69b 7803
994b9211 7804 val = coerce_ref (val);
b50d69b5
JG
7805
7806 if (ada_is_tagged_type (value_type (val), 0))
7807 val = ada_tag_value_at_base_address (val);
7808
4c4b4cd2 7809 return ada_to_fixed_value (val);
d2e4a39e
AS
7810 }
7811 else
14f9c5c9
AS
7812 return val0;
7813}
7814
7815/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7816 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7817
7818static unsigned int
ebf56fd3 7819align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7820{
7821 return (off + alignment - 1) & ~(alignment - 1);
7822}
7823
4c4b4cd2 7824/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7825
7826static unsigned int
ebf56fd3 7827field_alignment (struct type *type, int f)
14f9c5c9 7828{
d2e4a39e 7829 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7830 int len;
14f9c5c9
AS
7831 int align_offset;
7832
64a1bf19
JB
7833 /* The field name should never be null, unless the debugging information
7834 is somehow malformed. In this case, we assume the field does not
7835 require any alignment. */
7836 if (name == NULL)
7837 return 1;
7838
7839 len = strlen (name);
7840
4c4b4cd2
PH
7841 if (!isdigit (name[len - 1]))
7842 return 1;
14f9c5c9 7843
d2e4a39e 7844 if (isdigit (name[len - 2]))
14f9c5c9
AS
7845 align_offset = len - 2;
7846 else
7847 align_offset = len - 1;
7848
61012eef 7849 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7850 return TARGET_CHAR_BIT;
7851
4c4b4cd2
PH
7852 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7853}
7854
852dff6c 7855/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7856
852dff6c
JB
7857static struct symbol *
7858ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7859{
7860 struct symbol *sym;
7861
7862 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7863 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7864 return sym;
7865
4186eb54
KS
7866 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7867 return sym;
14f9c5c9
AS
7868}
7869
dddfab26
UW
7870/* Find a type named NAME. Ignores ambiguity. This routine will look
7871 solely for types defined by debug info, it will not search the GDB
7872 primitive types. */
4c4b4cd2 7873
852dff6c 7874static struct type *
ebf56fd3 7875ada_find_any_type (const char *name)
14f9c5c9 7876{
852dff6c 7877 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7878
14f9c5c9 7879 if (sym != NULL)
dddfab26 7880 return SYMBOL_TYPE (sym);
14f9c5c9 7881
dddfab26 7882 return NULL;
14f9c5c9
AS
7883}
7884
739593e0
JB
7885/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7886 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7887 symbol, in which case it is returned. Otherwise, this looks for
7888 symbols whose name is that of NAME_SYM suffixed with "___XR".
7889 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7890
c0e70c62
TT
7891static bool
7892ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7893{
739593e0 7894 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7895 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7896}
7897
14f9c5c9 7898/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7899 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7900 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7901 otherwise return 0. */
7902
14f9c5c9 7903int
d2e4a39e 7904ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7905{
7906 if (type1 == NULL)
7907 return 1;
7908 else if (type0 == NULL)
7909 return 0;
7910 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7911 return 1;
7912 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7913 return 0;
4c4b4cd2
PH
7914 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7915 return 1;
ad82864c 7916 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7917 return 1;
4c4b4cd2
PH
7918 else if (ada_is_array_descriptor_type (type0)
7919 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7920 return 1;
aeb5907d
JB
7921 else
7922 {
a737d952
TT
7923 const char *type0_name = TYPE_NAME (type0);
7924 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7925
7926 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7927 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7928 return 1;
7929 }
14f9c5c9
AS
7930 return 0;
7931}
7932
e86ca25f
TT
7933/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7934 null. */
4c4b4cd2 7935
0d5cff50 7936const char *
d2e4a39e 7937ada_type_name (struct type *type)
14f9c5c9 7938{
d2e4a39e 7939 if (type == NULL)
14f9c5c9 7940 return NULL;
e86ca25f 7941 return TYPE_NAME (type);
14f9c5c9
AS
7942}
7943
b4ba55a1
JB
7944/* Search the list of "descriptive" types associated to TYPE for a type
7945 whose name is NAME. */
7946
7947static struct type *
7948find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7949{
931e5bc3 7950 struct type *result, *tmp;
b4ba55a1 7951
c6044dd1
JB
7952 if (ada_ignore_descriptive_types_p)
7953 return NULL;
7954
b4ba55a1
JB
7955 /* If there no descriptive-type info, then there is no parallel type
7956 to be found. */
7957 if (!HAVE_GNAT_AUX_INFO (type))
7958 return NULL;
7959
7960 result = TYPE_DESCRIPTIVE_TYPE (type);
7961 while (result != NULL)
7962 {
0d5cff50 7963 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7964
7965 if (result_name == NULL)
7966 {
7967 warning (_("unexpected null name on descriptive type"));
7968 return NULL;
7969 }
7970
7971 /* If the names match, stop. */
7972 if (strcmp (result_name, name) == 0)
7973 break;
7974
7975 /* Otherwise, look at the next item on the list, if any. */
7976 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7977 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7978 else
7979 tmp = NULL;
7980
7981 /* If not found either, try after having resolved the typedef. */
7982 if (tmp != NULL)
7983 result = tmp;
b4ba55a1 7984 else
931e5bc3 7985 {
f168693b 7986 result = check_typedef (result);
931e5bc3
JG
7987 if (HAVE_GNAT_AUX_INFO (result))
7988 result = TYPE_DESCRIPTIVE_TYPE (result);
7989 else
7990 result = NULL;
7991 }
b4ba55a1
JB
7992 }
7993
7994 /* If we didn't find a match, see whether this is a packed array. With
7995 older compilers, the descriptive type information is either absent or
7996 irrelevant when it comes to packed arrays so the above lookup fails.
7997 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7998 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7999 return ada_find_any_type (name);
8000
8001 return result;
8002}
8003
8004/* Find a parallel type to TYPE with the specified NAME, using the
8005 descriptive type taken from the debugging information, if available,
8006 and otherwise using the (slower) name-based method. */
8007
8008static struct type *
8009ada_find_parallel_type_with_name (struct type *type, const char *name)
8010{
8011 struct type *result = NULL;
8012
8013 if (HAVE_GNAT_AUX_INFO (type))
8014 result = find_parallel_type_by_descriptive_type (type, name);
8015 else
8016 result = ada_find_any_type (name);
8017
8018 return result;
8019}
8020
8021/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8022 SUFFIX to the name of TYPE. */
14f9c5c9 8023
d2e4a39e 8024struct type *
ebf56fd3 8025ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8026{
0d5cff50 8027 char *name;
fe978cb0 8028 const char *type_name = ada_type_name (type);
14f9c5c9 8029 int len;
d2e4a39e 8030
fe978cb0 8031 if (type_name == NULL)
14f9c5c9
AS
8032 return NULL;
8033
fe978cb0 8034 len = strlen (type_name);
14f9c5c9 8035
b4ba55a1 8036 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8037
fe978cb0 8038 strcpy (name, type_name);
14f9c5c9
AS
8039 strcpy (name + len, suffix);
8040
b4ba55a1 8041 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8042}
8043
14f9c5c9 8044/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8045 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8046
d2e4a39e
AS
8047static struct type *
8048dynamic_template_type (struct type *type)
14f9c5c9 8049{
61ee279c 8050 type = ada_check_typedef (type);
14f9c5c9
AS
8051
8052 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8053 || ada_type_name (type) == NULL)
14f9c5c9 8054 return NULL;
d2e4a39e 8055 else
14f9c5c9
AS
8056 {
8057 int len = strlen (ada_type_name (type));
5b4ee69b 8058
4c4b4cd2
PH
8059 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8060 return type;
14f9c5c9 8061 else
4c4b4cd2 8062 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8063 }
8064}
8065
8066/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8067 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8068
d2e4a39e
AS
8069static int
8070is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8071{
8072 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8073
d2e4a39e 8074 return name != NULL
14f9c5c9
AS
8075 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8076 && strstr (name, "___XVL") != NULL;
8077}
8078
4c4b4cd2
PH
8079/* The index of the variant field of TYPE, or -1 if TYPE does not
8080 represent a variant record type. */
14f9c5c9 8081
d2e4a39e 8082static int
4c4b4cd2 8083variant_field_index (struct type *type)
14f9c5c9
AS
8084{
8085 int f;
8086
4c4b4cd2
PH
8087 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8088 return -1;
8089
8090 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8091 {
8092 if (ada_is_variant_part (type, f))
8093 return f;
8094 }
8095 return -1;
14f9c5c9
AS
8096}
8097
4c4b4cd2
PH
8098/* A record type with no fields. */
8099
d2e4a39e 8100static struct type *
fe978cb0 8101empty_record (struct type *templ)
14f9c5c9 8102{
fe978cb0 8103 struct type *type = alloc_type_copy (templ);
5b4ee69b 8104
14f9c5c9
AS
8105 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8106 TYPE_NFIELDS (type) = 0;
8107 TYPE_FIELDS (type) = NULL;
8ecb59f8 8108 INIT_NONE_SPECIFIC (type);
14f9c5c9 8109 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8110 TYPE_LENGTH (type) = 0;
8111 return type;
8112}
8113
8114/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8115 the value of type TYPE at VALADDR or ADDRESS (see comments at
8116 the beginning of this section) VAL according to GNAT conventions.
8117 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8118 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8119 an outer-level type (i.e., as opposed to a branch of a variant.) A
8120 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8121 of the variant.
14f9c5c9 8122
4c4b4cd2
PH
8123 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8124 length are not statically known are discarded. As a consequence,
8125 VALADDR, ADDRESS and DVAL0 are ignored.
8126
8127 NOTE: Limitations: For now, we assume that dynamic fields and
8128 variants occupy whole numbers of bytes. However, they need not be
8129 byte-aligned. */
8130
8131struct type *
10a2c479 8132ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8133 const gdb_byte *valaddr,
4c4b4cd2
PH
8134 CORE_ADDR address, struct value *dval0,
8135 int keep_dynamic_fields)
14f9c5c9 8136{
d2e4a39e
AS
8137 struct value *mark = value_mark ();
8138 struct value *dval;
8139 struct type *rtype;
14f9c5c9 8140 int nfields, bit_len;
4c4b4cd2 8141 int variant_field;
14f9c5c9 8142 long off;
d94e4f4f 8143 int fld_bit_len;
14f9c5c9
AS
8144 int f;
8145
4c4b4cd2
PH
8146 /* Compute the number of fields in this record type that are going
8147 to be processed: unless keep_dynamic_fields, this includes only
8148 fields whose position and length are static will be processed. */
8149 if (keep_dynamic_fields)
8150 nfields = TYPE_NFIELDS (type);
8151 else
8152 {
8153 nfields = 0;
76a01679 8154 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8155 && !ada_is_variant_part (type, nfields)
8156 && !is_dynamic_field (type, nfields))
8157 nfields++;
8158 }
8159
e9bb382b 8160 rtype = alloc_type_copy (type);
14f9c5c9 8161 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8162 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8163 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8164 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8165 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8166 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8167 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8168 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8169
d2e4a39e
AS
8170 off = 0;
8171 bit_len = 0;
4c4b4cd2
PH
8172 variant_field = -1;
8173
14f9c5c9
AS
8174 for (f = 0; f < nfields; f += 1)
8175 {
6c038f32
PH
8176 off = align_value (off, field_alignment (type, f))
8177 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8178 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8179 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8180
d2e4a39e 8181 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8182 {
8183 variant_field = f;
d94e4f4f 8184 fld_bit_len = 0;
4c4b4cd2 8185 }
14f9c5c9 8186 else if (is_dynamic_field (type, f))
4c4b4cd2 8187 {
284614f0
JB
8188 const gdb_byte *field_valaddr = valaddr;
8189 CORE_ADDR field_address = address;
8190 struct type *field_type =
8191 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8192
4c4b4cd2 8193 if (dval0 == NULL)
b5304971
JG
8194 {
8195 /* rtype's length is computed based on the run-time
8196 value of discriminants. If the discriminants are not
8197 initialized, the type size may be completely bogus and
0963b4bd 8198 GDB may fail to allocate a value for it. So check the
b5304971 8199 size first before creating the value. */
c1b5a1a6 8200 ada_ensure_varsize_limit (rtype);
012370f6
TT
8201 /* Using plain value_from_contents_and_address here
8202 causes problems because we will end up trying to
8203 resolve a type that is currently being
8204 constructed. */
8205 dval = value_from_contents_and_address_unresolved (rtype,
8206 valaddr,
8207 address);
9f1f738a 8208 rtype = value_type (dval);
b5304971 8209 }
4c4b4cd2
PH
8210 else
8211 dval = dval0;
8212
284614f0
JB
8213 /* If the type referenced by this field is an aligner type, we need
8214 to unwrap that aligner type, because its size might not be set.
8215 Keeping the aligner type would cause us to compute the wrong
8216 size for this field, impacting the offset of the all the fields
8217 that follow this one. */
8218 if (ada_is_aligner_type (field_type))
8219 {
8220 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8221
8222 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8223 field_address = cond_offset_target (field_address, field_offset);
8224 field_type = ada_aligned_type (field_type);
8225 }
8226
8227 field_valaddr = cond_offset_host (field_valaddr,
8228 off / TARGET_CHAR_BIT);
8229 field_address = cond_offset_target (field_address,
8230 off / TARGET_CHAR_BIT);
8231
8232 /* Get the fixed type of the field. Note that, in this case,
8233 we do not want to get the real type out of the tag: if
8234 the current field is the parent part of a tagged record,
8235 we will get the tag of the object. Clearly wrong: the real
8236 type of the parent is not the real type of the child. We
8237 would end up in an infinite loop. */
8238 field_type = ada_get_base_type (field_type);
8239 field_type = ada_to_fixed_type (field_type, field_valaddr,
8240 field_address, dval, 0);
27f2a97b
JB
8241 /* If the field size is already larger than the maximum
8242 object size, then the record itself will necessarily
8243 be larger than the maximum object size. We need to make
8244 this check now, because the size might be so ridiculously
8245 large (due to an uninitialized variable in the inferior)
8246 that it would cause an overflow when adding it to the
8247 record size. */
c1b5a1a6 8248 ada_ensure_varsize_limit (field_type);
284614f0
JB
8249
8250 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8251 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8252 /* The multiplication can potentially overflow. But because
8253 the field length has been size-checked just above, and
8254 assuming that the maximum size is a reasonable value,
8255 an overflow should not happen in practice. So rather than
8256 adding overflow recovery code to this already complex code,
8257 we just assume that it's not going to happen. */
d94e4f4f 8258 fld_bit_len =
4c4b4cd2
PH
8259 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8260 }
14f9c5c9 8261 else
4c4b4cd2 8262 {
5ded5331
JB
8263 /* Note: If this field's type is a typedef, it is important
8264 to preserve the typedef layer.
8265
8266 Otherwise, we might be transforming a typedef to a fat
8267 pointer (encoding a pointer to an unconstrained array),
8268 into a basic fat pointer (encoding an unconstrained
8269 array). As both types are implemented using the same
8270 structure, the typedef is the only clue which allows us
8271 to distinguish between the two options. Stripping it
8272 would prevent us from printing this field appropriately. */
8273 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8274 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8275 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8276 fld_bit_len =
4c4b4cd2
PH
8277 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8278 else
5ded5331
JB
8279 {
8280 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8281
8282 /* We need to be careful of typedefs when computing
8283 the length of our field. If this is a typedef,
8284 get the length of the target type, not the length
8285 of the typedef. */
8286 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8287 field_type = ada_typedef_target_type (field_type);
8288
8289 fld_bit_len =
8290 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8291 }
4c4b4cd2 8292 }
14f9c5c9 8293 if (off + fld_bit_len > bit_len)
4c4b4cd2 8294 bit_len = off + fld_bit_len;
d94e4f4f 8295 off += fld_bit_len;
4c4b4cd2
PH
8296 TYPE_LENGTH (rtype) =
8297 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8298 }
4c4b4cd2
PH
8299
8300 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8301 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8302 the record. This can happen in the presence of representation
8303 clauses. */
8304 if (variant_field >= 0)
8305 {
8306 struct type *branch_type;
8307
8308 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8309
8310 if (dval0 == NULL)
9f1f738a 8311 {
012370f6
TT
8312 /* Using plain value_from_contents_and_address here causes
8313 problems because we will end up trying to resolve a type
8314 that is currently being constructed. */
8315 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8316 address);
9f1f738a
SA
8317 rtype = value_type (dval);
8318 }
4c4b4cd2
PH
8319 else
8320 dval = dval0;
8321
8322 branch_type =
8323 to_fixed_variant_branch_type
8324 (TYPE_FIELD_TYPE (type, variant_field),
8325 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8326 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8327 if (branch_type == NULL)
8328 {
8329 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8330 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8331 TYPE_NFIELDS (rtype) -= 1;
8332 }
8333 else
8334 {
8335 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8336 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8337 fld_bit_len =
8338 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8339 TARGET_CHAR_BIT;
8340 if (off + fld_bit_len > bit_len)
8341 bit_len = off + fld_bit_len;
8342 TYPE_LENGTH (rtype) =
8343 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8344 }
8345 }
8346
714e53ab
PH
8347 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8348 should contain the alignment of that record, which should be a strictly
8349 positive value. If null or negative, then something is wrong, most
8350 probably in the debug info. In that case, we don't round up the size
0963b4bd 8351 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8352 the current RTYPE length might be good enough for our purposes. */
8353 if (TYPE_LENGTH (type) <= 0)
8354 {
323e0a4a 8355 if (TYPE_NAME (rtype))
cc1defb1
KS
8356 warning (_("Invalid type size for `%s' detected: %s."),
8357 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8358 else
cc1defb1
KS
8359 warning (_("Invalid type size for <unnamed> detected: %s."),
8360 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8361 }
8362 else
8363 {
8364 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8365 TYPE_LENGTH (type));
8366 }
14f9c5c9
AS
8367
8368 value_free_to_mark (mark);
d2e4a39e 8369 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8370 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8371 return rtype;
8372}
8373
4c4b4cd2
PH
8374/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8375 of 1. */
14f9c5c9 8376
d2e4a39e 8377static struct type *
fc1a4b47 8378template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8379 CORE_ADDR address, struct value *dval0)
8380{
8381 return ada_template_to_fixed_record_type_1 (type, valaddr,
8382 address, dval0, 1);
8383}
8384
8385/* An ordinary record type in which ___XVL-convention fields and
8386 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8387 static approximations, containing all possible fields. Uses
8388 no runtime values. Useless for use in values, but that's OK,
8389 since the results are used only for type determinations. Works on both
8390 structs and unions. Representation note: to save space, we memorize
8391 the result of this function in the TYPE_TARGET_TYPE of the
8392 template type. */
8393
8394static struct type *
8395template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8396{
8397 struct type *type;
8398 int nfields;
8399 int f;
8400
9e195661
PMR
8401 /* No need no do anything if the input type is already fixed. */
8402 if (TYPE_FIXED_INSTANCE (type0))
8403 return type0;
8404
8405 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8406 if (TYPE_TARGET_TYPE (type0) != NULL)
8407 return TYPE_TARGET_TYPE (type0);
8408
9e195661 8409 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8410 type = type0;
9e195661
PMR
8411 nfields = TYPE_NFIELDS (type0);
8412
8413 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8414 recompute all over next time. */
8415 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8416
8417 for (f = 0; f < nfields; f += 1)
8418 {
460efde1 8419 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8420 struct type *new_type;
14f9c5c9 8421
4c4b4cd2 8422 if (is_dynamic_field (type0, f))
460efde1
JB
8423 {
8424 field_type = ada_check_typedef (field_type);
8425 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8426 }
14f9c5c9 8427 else
f192137b 8428 new_type = static_unwrap_type (field_type);
9e195661
PMR
8429
8430 if (new_type != field_type)
8431 {
8432 /* Clone TYPE0 only the first time we get a new field type. */
8433 if (type == type0)
8434 {
8435 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8436 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8437 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8438 TYPE_NFIELDS (type) = nfields;
8439 TYPE_FIELDS (type) = (struct field *)
8440 TYPE_ALLOC (type, nfields * sizeof (struct field));
8441 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8442 sizeof (struct field) * nfields);
8443 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8444 TYPE_FIXED_INSTANCE (type) = 1;
8445 TYPE_LENGTH (type) = 0;
8446 }
8447 TYPE_FIELD_TYPE (type, f) = new_type;
8448 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8449 }
14f9c5c9 8450 }
9e195661 8451
14f9c5c9
AS
8452 return type;
8453}
8454
4c4b4cd2 8455/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8456 whose address in memory is ADDRESS, returns a revision of TYPE,
8457 which should be a non-dynamic-sized record, in which the variant
8458 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8459 for discriminant values in DVAL0, which can be NULL if the record
8460 contains the necessary discriminant values. */
8461
d2e4a39e 8462static struct type *
fc1a4b47 8463to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8464 CORE_ADDR address, struct value *dval0)
14f9c5c9 8465{
d2e4a39e 8466 struct value *mark = value_mark ();
4c4b4cd2 8467 struct value *dval;
d2e4a39e 8468 struct type *rtype;
14f9c5c9
AS
8469 struct type *branch_type;
8470 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8471 int variant_field = variant_field_index (type);
14f9c5c9 8472
4c4b4cd2 8473 if (variant_field == -1)
14f9c5c9
AS
8474 return type;
8475
4c4b4cd2 8476 if (dval0 == NULL)
9f1f738a
SA
8477 {
8478 dval = value_from_contents_and_address (type, valaddr, address);
8479 type = value_type (dval);
8480 }
4c4b4cd2
PH
8481 else
8482 dval = dval0;
8483
e9bb382b 8484 rtype = alloc_type_copy (type);
14f9c5c9 8485 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8486 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8487 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8488 TYPE_FIELDS (rtype) =
8489 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8490 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8491 sizeof (struct field) * nfields);
14f9c5c9 8492 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8493 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8494 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8495
4c4b4cd2
PH
8496 branch_type = to_fixed_variant_branch_type
8497 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8498 cond_offset_host (valaddr,
4c4b4cd2
PH
8499 TYPE_FIELD_BITPOS (type, variant_field)
8500 / TARGET_CHAR_BIT),
d2e4a39e 8501 cond_offset_target (address,
4c4b4cd2
PH
8502 TYPE_FIELD_BITPOS (type, variant_field)
8503 / TARGET_CHAR_BIT), dval);
d2e4a39e 8504 if (branch_type == NULL)
14f9c5c9 8505 {
4c4b4cd2 8506 int f;
5b4ee69b 8507
4c4b4cd2
PH
8508 for (f = variant_field + 1; f < nfields; f += 1)
8509 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8510 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8511 }
8512 else
8513 {
4c4b4cd2
PH
8514 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8515 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8516 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8517 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8518 }
4c4b4cd2 8519 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8520
4c4b4cd2 8521 value_free_to_mark (mark);
14f9c5c9
AS
8522 return rtype;
8523}
8524
8525/* An ordinary record type (with fixed-length fields) that describes
8526 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8527 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8528 should be in DVAL, a record value; it may be NULL if the object
8529 at ADDR itself contains any necessary discriminant values.
8530 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8531 values from the record are needed. Except in the case that DVAL,
8532 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8533 unchecked) is replaced by a particular branch of the variant.
8534
8535 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8536 is questionable and may be removed. It can arise during the
8537 processing of an unconstrained-array-of-record type where all the
8538 variant branches have exactly the same size. This is because in
8539 such cases, the compiler does not bother to use the XVS convention
8540 when encoding the record. I am currently dubious of this
8541 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8542
d2e4a39e 8543static struct type *
fc1a4b47 8544to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8545 CORE_ADDR address, struct value *dval)
14f9c5c9 8546{
d2e4a39e 8547 struct type *templ_type;
14f9c5c9 8548
876cecd0 8549 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8550 return type0;
8551
d2e4a39e 8552 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8553
8554 if (templ_type != NULL)
8555 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8556 else if (variant_field_index (type0) >= 0)
8557 {
8558 if (dval == NULL && valaddr == NULL && address == 0)
8559 return type0;
8560 return to_record_with_fixed_variant_part (type0, valaddr, address,
8561 dval);
8562 }
14f9c5c9
AS
8563 else
8564 {
876cecd0 8565 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8566 return type0;
8567 }
8568
8569}
8570
8571/* An ordinary record type (with fixed-length fields) that describes
8572 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8573 union type. Any necessary discriminants' values should be in DVAL,
8574 a record value. That is, this routine selects the appropriate
8575 branch of the union at ADDR according to the discriminant value
b1f33ddd 8576 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8577 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8578
d2e4a39e 8579static struct type *
fc1a4b47 8580to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8581 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8582{
8583 int which;
d2e4a39e
AS
8584 struct type *templ_type;
8585 struct type *var_type;
14f9c5c9
AS
8586
8587 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8588 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8589 else
14f9c5c9
AS
8590 var_type = var_type0;
8591
8592 templ_type = ada_find_parallel_type (var_type, "___XVU");
8593
8594 if (templ_type != NULL)
8595 var_type = templ_type;
8596
b1f33ddd
JB
8597 if (is_unchecked_variant (var_type, value_type (dval)))
8598 return var_type0;
d2e4a39e
AS
8599 which =
8600 ada_which_variant_applies (var_type,
0fd88904 8601 value_type (dval), value_contents (dval));
14f9c5c9
AS
8602
8603 if (which < 0)
e9bb382b 8604 return empty_record (var_type);
14f9c5c9 8605 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8606 return to_fixed_record_type
d2e4a39e
AS
8607 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8608 valaddr, address, dval);
4c4b4cd2 8609 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8610 return
8611 to_fixed_record_type
8612 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8613 else
8614 return TYPE_FIELD_TYPE (var_type, which);
8615}
8616
8908fca5
JB
8617/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8618 ENCODING_TYPE, a type following the GNAT conventions for discrete
8619 type encodings, only carries redundant information. */
8620
8621static int
8622ada_is_redundant_range_encoding (struct type *range_type,
8623 struct type *encoding_type)
8624{
108d56a4 8625 const char *bounds_str;
8908fca5
JB
8626 int n;
8627 LONGEST lo, hi;
8628
8629 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8630
005e2509
JB
8631 if (TYPE_CODE (get_base_type (range_type))
8632 != TYPE_CODE (get_base_type (encoding_type)))
8633 {
8634 /* The compiler probably used a simple base type to describe
8635 the range type instead of the range's actual base type,
8636 expecting us to get the real base type from the encoding
8637 anyway. In this situation, the encoding cannot be ignored
8638 as redundant. */
8639 return 0;
8640 }
8641
8908fca5
JB
8642 if (is_dynamic_type (range_type))
8643 return 0;
8644
8645 if (TYPE_NAME (encoding_type) == NULL)
8646 return 0;
8647
8648 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8649 if (bounds_str == NULL)
8650 return 0;
8651
8652 n = 8; /* Skip "___XDLU_". */
8653 if (!ada_scan_number (bounds_str, n, &lo, &n))
8654 return 0;
8655 if (TYPE_LOW_BOUND (range_type) != lo)
8656 return 0;
8657
8658 n += 2; /* Skip the "__" separator between the two bounds. */
8659 if (!ada_scan_number (bounds_str, n, &hi, &n))
8660 return 0;
8661 if (TYPE_HIGH_BOUND (range_type) != hi)
8662 return 0;
8663
8664 return 1;
8665}
8666
8667/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8668 a type following the GNAT encoding for describing array type
8669 indices, only carries redundant information. */
8670
8671static int
8672ada_is_redundant_index_type_desc (struct type *array_type,
8673 struct type *desc_type)
8674{
8675 struct type *this_layer = check_typedef (array_type);
8676 int i;
8677
8678 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8679 {
8680 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8681 TYPE_FIELD_TYPE (desc_type, i)))
8682 return 0;
8683 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8684 }
8685
8686 return 1;
8687}
8688
14f9c5c9
AS
8689/* Assuming that TYPE0 is an array type describing the type of a value
8690 at ADDR, and that DVAL describes a record containing any
8691 discriminants used in TYPE0, returns a type for the value that
8692 contains no dynamic components (that is, no components whose sizes
8693 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8694 true, gives an error message if the resulting type's size is over
4c4b4cd2 8695 varsize_limit. */
14f9c5c9 8696
d2e4a39e
AS
8697static struct type *
8698to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8699 int ignore_too_big)
14f9c5c9 8700{
d2e4a39e
AS
8701 struct type *index_type_desc;
8702 struct type *result;
ad82864c 8703 int constrained_packed_array_p;
931e5bc3 8704 static const char *xa_suffix = "___XA";
14f9c5c9 8705
b0dd7688 8706 type0 = ada_check_typedef (type0);
284614f0 8707 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8708 return type0;
14f9c5c9 8709
ad82864c
JB
8710 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8711 if (constrained_packed_array_p)
8712 type0 = decode_constrained_packed_array_type (type0);
284614f0 8713
931e5bc3
JG
8714 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8715
8716 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8717 encoding suffixed with 'P' may still be generated. If so,
8718 it should be used to find the XA type. */
8719
8720 if (index_type_desc == NULL)
8721 {
1da0522e 8722 const char *type_name = ada_type_name (type0);
931e5bc3 8723
1da0522e 8724 if (type_name != NULL)
931e5bc3 8725 {
1da0522e 8726 const int len = strlen (type_name);
931e5bc3
JG
8727 char *name = (char *) alloca (len + strlen (xa_suffix));
8728
1da0522e 8729 if (type_name[len - 1] == 'P')
931e5bc3 8730 {
1da0522e 8731 strcpy (name, type_name);
931e5bc3
JG
8732 strcpy (name + len - 1, xa_suffix);
8733 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8734 }
8735 }
8736 }
8737
28c85d6c 8738 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8739 if (index_type_desc != NULL
8740 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8741 {
8742 /* Ignore this ___XA parallel type, as it does not bring any
8743 useful information. This allows us to avoid creating fixed
8744 versions of the array's index types, which would be identical
8745 to the original ones. This, in turn, can also help avoid
8746 the creation of fixed versions of the array itself. */
8747 index_type_desc = NULL;
8748 }
8749
14f9c5c9
AS
8750 if (index_type_desc == NULL)
8751 {
61ee279c 8752 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8753
14f9c5c9 8754 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8755 depend on the contents of the array in properly constructed
8756 debugging data. */
529cad9c
PH
8757 /* Create a fixed version of the array element type.
8758 We're not providing the address of an element here,
e1d5a0d2 8759 and thus the actual object value cannot be inspected to do
529cad9c
PH
8760 the conversion. This should not be a problem, since arrays of
8761 unconstrained objects are not allowed. In particular, all
8762 the elements of an array of a tagged type should all be of
8763 the same type specified in the debugging info. No need to
8764 consult the object tag. */
1ed6ede0 8765 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8766
284614f0
JB
8767 /* Make sure we always create a new array type when dealing with
8768 packed array types, since we're going to fix-up the array
8769 type length and element bitsize a little further down. */
ad82864c 8770 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8771 result = type0;
14f9c5c9 8772 else
e9bb382b 8773 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8774 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8775 }
8776 else
8777 {
8778 int i;
8779 struct type *elt_type0;
8780
8781 elt_type0 = type0;
8782 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8783 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8784
8785 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8786 depend on the contents of the array in properly constructed
8787 debugging data. */
529cad9c
PH
8788 /* Create a fixed version of the array element type.
8789 We're not providing the address of an element here,
e1d5a0d2 8790 and thus the actual object value cannot be inspected to do
529cad9c
PH
8791 the conversion. This should not be a problem, since arrays of
8792 unconstrained objects are not allowed. In particular, all
8793 the elements of an array of a tagged type should all be of
8794 the same type specified in the debugging info. No need to
8795 consult the object tag. */
1ed6ede0
JB
8796 result =
8797 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8798
8799 elt_type0 = type0;
14f9c5c9 8800 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8801 {
8802 struct type *range_type =
28c85d6c 8803 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8804
e9bb382b 8805 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8806 result, range_type);
1ce677a4 8807 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8808 }
d2e4a39e 8809 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8810 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8811 }
8812
2e6fda7d
JB
8813 /* We want to preserve the type name. This can be useful when
8814 trying to get the type name of a value that has already been
8815 printed (for instance, if the user did "print VAR; whatis $". */
8816 TYPE_NAME (result) = TYPE_NAME (type0);
8817
ad82864c 8818 if (constrained_packed_array_p)
284614f0
JB
8819 {
8820 /* So far, the resulting type has been created as if the original
8821 type was a regular (non-packed) array type. As a result, the
8822 bitsize of the array elements needs to be set again, and the array
8823 length needs to be recomputed based on that bitsize. */
8824 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8825 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8826
8827 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8828 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8829 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8830 TYPE_LENGTH (result)++;
8831 }
8832
876cecd0 8833 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8834 return result;
d2e4a39e 8835}
14f9c5c9
AS
8836
8837
8838/* A standard type (containing no dynamically sized components)
8839 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8840 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8841 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8842 ADDRESS or in VALADDR contains these discriminants.
8843
1ed6ede0
JB
8844 If CHECK_TAG is not null, in the case of tagged types, this function
8845 attempts to locate the object's tag and use it to compute the actual
8846 type. However, when ADDRESS is null, we cannot use it to determine the
8847 location of the tag, and therefore compute the tagged type's actual type.
8848 So we return the tagged type without consulting the tag. */
529cad9c 8849
f192137b
JB
8850static struct type *
8851ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8852 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8853{
61ee279c 8854 type = ada_check_typedef (type);
8ecb59f8
TT
8855
8856 /* Only un-fixed types need to be handled here. */
8857 if (!HAVE_GNAT_AUX_INFO (type))
8858 return type;
8859
d2e4a39e
AS
8860 switch (TYPE_CODE (type))
8861 {
8862 default:
14f9c5c9 8863 return type;
d2e4a39e 8864 case TYPE_CODE_STRUCT:
4c4b4cd2 8865 {
76a01679 8866 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8867 struct type *fixed_record_type =
8868 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8869
529cad9c
PH
8870 /* If STATIC_TYPE is a tagged type and we know the object's address,
8871 then we can determine its tag, and compute the object's actual
0963b4bd 8872 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8873 type (the parent part of the record may have dynamic fields
8874 and the way the location of _tag is expressed may depend on
8875 them). */
529cad9c 8876
1ed6ede0 8877 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8878 {
b50d69b5
JG
8879 struct value *tag =
8880 value_tag_from_contents_and_address
8881 (fixed_record_type,
8882 valaddr,
8883 address);
8884 struct type *real_type = type_from_tag (tag);
8885 struct value *obj =
8886 value_from_contents_and_address (fixed_record_type,
8887 valaddr,
8888 address);
9f1f738a 8889 fixed_record_type = value_type (obj);
76a01679 8890 if (real_type != NULL)
b50d69b5
JG
8891 return to_fixed_record_type
8892 (real_type, NULL,
8893 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8894 }
4af88198
JB
8895
8896 /* Check to see if there is a parallel ___XVZ variable.
8897 If there is, then it provides the actual size of our type. */
8898 else if (ada_type_name (fixed_record_type) != NULL)
8899 {
0d5cff50 8900 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8901 char *xvz_name
8902 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8903 bool xvz_found = false;
4af88198
JB
8904 LONGEST size;
8905
88c15c34 8906 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8907 try
eccab96d
JB
8908 {
8909 xvz_found = get_int_var_value (xvz_name, size);
8910 }
230d2906 8911 catch (const gdb_exception_error &except)
eccab96d
JB
8912 {
8913 /* We found the variable, but somehow failed to read
8914 its value. Rethrow the same error, but with a little
8915 bit more information, to help the user understand
8916 what went wrong (Eg: the variable might have been
8917 optimized out). */
8918 throw_error (except.error,
8919 _("unable to read value of %s (%s)"),
3d6e9d23 8920 xvz_name, except.what ());
eccab96d 8921 }
eccab96d
JB
8922
8923 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8924 {
8925 fixed_record_type = copy_type (fixed_record_type);
8926 TYPE_LENGTH (fixed_record_type) = size;
8927
8928 /* The FIXED_RECORD_TYPE may have be a stub. We have
8929 observed this when the debugging info is STABS, and
8930 apparently it is something that is hard to fix.
8931
8932 In practice, we don't need the actual type definition
8933 at all, because the presence of the XVZ variable allows us
8934 to assume that there must be a XVS type as well, which we
8935 should be able to use later, when we need the actual type
8936 definition.
8937
8938 In the meantime, pretend that the "fixed" type we are
8939 returning is NOT a stub, because this can cause trouble
8940 when using this type to create new types targeting it.
8941 Indeed, the associated creation routines often check
8942 whether the target type is a stub and will try to replace
0963b4bd 8943 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8944 might cause the new type to have the wrong size too.
8945 Consider the case of an array, for instance, where the size
8946 of the array is computed from the number of elements in
8947 our array multiplied by the size of its element. */
8948 TYPE_STUB (fixed_record_type) = 0;
8949 }
8950 }
1ed6ede0 8951 return fixed_record_type;
4c4b4cd2 8952 }
d2e4a39e 8953 case TYPE_CODE_ARRAY:
4c4b4cd2 8954 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8955 case TYPE_CODE_UNION:
8956 if (dval == NULL)
4c4b4cd2 8957 return type;
d2e4a39e 8958 else
4c4b4cd2 8959 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8960 }
14f9c5c9
AS
8961}
8962
f192137b
JB
8963/* The same as ada_to_fixed_type_1, except that it preserves the type
8964 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8965
8966 The typedef layer needs be preserved in order to differentiate between
8967 arrays and array pointers when both types are implemented using the same
8968 fat pointer. In the array pointer case, the pointer is encoded as
8969 a typedef of the pointer type. For instance, considering:
8970
8971 type String_Access is access String;
8972 S1 : String_Access := null;
8973
8974 To the debugger, S1 is defined as a typedef of type String. But
8975 to the user, it is a pointer. So if the user tries to print S1,
8976 we should not dereference the array, but print the array address
8977 instead.
8978
8979 If we didn't preserve the typedef layer, we would lose the fact that
8980 the type is to be presented as a pointer (needs de-reference before
8981 being printed). And we would also use the source-level type name. */
f192137b
JB
8982
8983struct type *
8984ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8985 CORE_ADDR address, struct value *dval, int check_tag)
8986
8987{
8988 struct type *fixed_type =
8989 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8990
96dbd2c1
JB
8991 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8992 then preserve the typedef layer.
8993
8994 Implementation note: We can only check the main-type portion of
8995 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8996 from TYPE now returns a type that has the same instance flags
8997 as TYPE. For instance, if TYPE is a "typedef const", and its
8998 target type is a "struct", then the typedef elimination will return
8999 a "const" version of the target type. See check_typedef for more
9000 details about how the typedef layer elimination is done.
9001
9002 brobecker/2010-11-19: It seems to me that the only case where it is
9003 useful to preserve the typedef layer is when dealing with fat pointers.
9004 Perhaps, we could add a check for that and preserve the typedef layer
9005 only in that situation. But this seems unecessary so far, probably
9006 because we call check_typedef/ada_check_typedef pretty much everywhere.
9007 */
f192137b 9008 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9009 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9010 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9011 return type;
9012
9013 return fixed_type;
9014}
9015
14f9c5c9 9016/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9017 TYPE0, but based on no runtime data. */
14f9c5c9 9018
d2e4a39e
AS
9019static struct type *
9020to_static_fixed_type (struct type *type0)
14f9c5c9 9021{
d2e4a39e 9022 struct type *type;
14f9c5c9
AS
9023
9024 if (type0 == NULL)
9025 return NULL;
9026
876cecd0 9027 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9028 return type0;
9029
61ee279c 9030 type0 = ada_check_typedef (type0);
d2e4a39e 9031
14f9c5c9
AS
9032 switch (TYPE_CODE (type0))
9033 {
9034 default:
9035 return type0;
9036 case TYPE_CODE_STRUCT:
9037 type = dynamic_template_type (type0);
d2e4a39e 9038 if (type != NULL)
4c4b4cd2
PH
9039 return template_to_static_fixed_type (type);
9040 else
9041 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9042 case TYPE_CODE_UNION:
9043 type = ada_find_parallel_type (type0, "___XVU");
9044 if (type != NULL)
4c4b4cd2
PH
9045 return template_to_static_fixed_type (type);
9046 else
9047 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9048 }
9049}
9050
4c4b4cd2
PH
9051/* A static approximation of TYPE with all type wrappers removed. */
9052
d2e4a39e
AS
9053static struct type *
9054static_unwrap_type (struct type *type)
14f9c5c9
AS
9055{
9056 if (ada_is_aligner_type (type))
9057 {
61ee279c 9058 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9059 if (ada_type_name (type1) == NULL)
4c4b4cd2 9060 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9061
9062 return static_unwrap_type (type1);
9063 }
d2e4a39e 9064 else
14f9c5c9 9065 {
d2e4a39e 9066 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9067
d2e4a39e 9068 if (raw_real_type == type)
4c4b4cd2 9069 return type;
14f9c5c9 9070 else
4c4b4cd2 9071 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9072 }
9073}
9074
9075/* In some cases, incomplete and private types require
4c4b4cd2 9076 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9077 type Foo;
9078 type FooP is access Foo;
9079 V: FooP;
9080 type Foo is array ...;
4c4b4cd2 9081 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9082 cross-references to such types, we instead substitute for FooP a
9083 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9084 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9085
9086/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9087 exists, otherwise TYPE. */
9088
d2e4a39e 9089struct type *
61ee279c 9090ada_check_typedef (struct type *type)
14f9c5c9 9091{
727e3d2e
JB
9092 if (type == NULL)
9093 return NULL;
9094
736ade86
XR
9095 /* If our type is an access to an unconstrained array, which is encoded
9096 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9097 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9098 what allows us to distinguish between fat pointers that represent
9099 array types, and fat pointers that represent array access types
9100 (in both cases, the compiler implements them as fat pointers). */
736ade86 9101 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9102 return type;
9103
f168693b 9104 type = check_typedef (type);
14f9c5c9 9105 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9106 || !TYPE_STUB (type)
e86ca25f 9107 || TYPE_NAME (type) == NULL)
14f9c5c9 9108 return type;
d2e4a39e 9109 else
14f9c5c9 9110 {
e86ca25f 9111 const char *name = TYPE_NAME (type);
d2e4a39e 9112 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9113
05e522ef
JB
9114 if (type1 == NULL)
9115 return type;
9116
9117 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9118 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9119 types, only for the typedef-to-array types). If that's the case,
9120 strip the typedef layer. */
9121 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9122 type1 = ada_check_typedef (type1);
9123
9124 return type1;
14f9c5c9
AS
9125 }
9126}
9127
9128/* A value representing the data at VALADDR/ADDRESS as described by
9129 type TYPE0, but with a standard (static-sized) type that correctly
9130 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9131 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9132 creation of struct values]. */
14f9c5c9 9133
4c4b4cd2
PH
9134static struct value *
9135ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9136 struct value *val0)
14f9c5c9 9137{
1ed6ede0 9138 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9139
14f9c5c9
AS
9140 if (type == type0 && val0 != NULL)
9141 return val0;
cc0e770c
JB
9142
9143 if (VALUE_LVAL (val0) != lval_memory)
9144 {
9145 /* Our value does not live in memory; it could be a convenience
9146 variable, for instance. Create a not_lval value using val0's
9147 contents. */
9148 return value_from_contents (type, value_contents (val0));
9149 }
9150
9151 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9152}
9153
9154/* A value representing VAL, but with a standard (static-sized) type
9155 that correctly describes it. Does not necessarily create a new
9156 value. */
9157
0c3acc09 9158struct value *
4c4b4cd2
PH
9159ada_to_fixed_value (struct value *val)
9160{
c48db5ca 9161 val = unwrap_value (val);
d8ce9127 9162 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9163 return val;
14f9c5c9 9164}
d2e4a39e 9165\f
14f9c5c9 9166
14f9c5c9
AS
9167/* Attributes */
9168
4c4b4cd2
PH
9169/* Table mapping attribute numbers to names.
9170 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9171
d2e4a39e 9172static const char *attribute_names[] = {
14f9c5c9
AS
9173 "<?>",
9174
d2e4a39e 9175 "first",
14f9c5c9
AS
9176 "last",
9177 "length",
9178 "image",
14f9c5c9
AS
9179 "max",
9180 "min",
4c4b4cd2
PH
9181 "modulus",
9182 "pos",
9183 "size",
9184 "tag",
14f9c5c9 9185 "val",
14f9c5c9
AS
9186 0
9187};
9188
d2e4a39e 9189const char *
4c4b4cd2 9190ada_attribute_name (enum exp_opcode n)
14f9c5c9 9191{
4c4b4cd2
PH
9192 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9193 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9194 else
9195 return attribute_names[0];
9196}
9197
4c4b4cd2 9198/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9199
4c4b4cd2
PH
9200static LONGEST
9201pos_atr (struct value *arg)
14f9c5c9 9202{
24209737
PH
9203 struct value *val = coerce_ref (arg);
9204 struct type *type = value_type (val);
aa715135 9205 LONGEST result;
14f9c5c9 9206
d2e4a39e 9207 if (!discrete_type_p (type))
323e0a4a 9208 error (_("'POS only defined on discrete types"));
14f9c5c9 9209
aa715135
JG
9210 if (!discrete_position (type, value_as_long (val), &result))
9211 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9212
aa715135 9213 return result;
4c4b4cd2
PH
9214}
9215
9216static struct value *
3cb382c9 9217value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9218{
3cb382c9 9219 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9220}
9221
4c4b4cd2 9222/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9223
d2e4a39e
AS
9224static struct value *
9225value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9226{
d2e4a39e 9227 if (!discrete_type_p (type))
323e0a4a 9228 error (_("'VAL only defined on discrete types"));
df407dfe 9229 if (!integer_type_p (value_type (arg)))
323e0a4a 9230 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9231
9232 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9233 {
9234 long pos = value_as_long (arg);
5b4ee69b 9235
14f9c5c9 9236 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9237 error (_("argument to 'VAL out of range"));
14e75d8e 9238 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9239 }
9240 else
9241 return value_from_longest (type, value_as_long (arg));
9242}
14f9c5c9 9243\f
d2e4a39e 9244
4c4b4cd2 9245 /* Evaluation */
14f9c5c9 9246
4c4b4cd2
PH
9247/* True if TYPE appears to be an Ada character type.
9248 [At the moment, this is true only for Character and Wide_Character;
9249 It is a heuristic test that could stand improvement]. */
14f9c5c9 9250
fc913e53 9251bool
d2e4a39e 9252ada_is_character_type (struct type *type)
14f9c5c9 9253{
7b9f71f2
JB
9254 const char *name;
9255
9256 /* If the type code says it's a character, then assume it really is,
9257 and don't check any further. */
9258 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9259 return true;
7b9f71f2
JB
9260
9261 /* Otherwise, assume it's a character type iff it is a discrete type
9262 with a known character type name. */
9263 name = ada_type_name (type);
9264 return (name != NULL
9265 && (TYPE_CODE (type) == TYPE_CODE_INT
9266 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9267 && (strcmp (name, "character") == 0
9268 || strcmp (name, "wide_character") == 0
5a517ebd 9269 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9270 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9271}
9272
4c4b4cd2 9273/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9274
fc913e53 9275bool
ebf56fd3 9276ada_is_string_type (struct type *type)
14f9c5c9 9277{
61ee279c 9278 type = ada_check_typedef (type);
d2e4a39e 9279 if (type != NULL
14f9c5c9 9280 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9281 && (ada_is_simple_array_type (type)
9282 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9283 && ada_array_arity (type) == 1)
9284 {
9285 struct type *elttype = ada_array_element_type (type, 1);
9286
9287 return ada_is_character_type (elttype);
9288 }
d2e4a39e 9289 else
fc913e53 9290 return false;
14f9c5c9
AS
9291}
9292
5bf03f13
JB
9293/* The compiler sometimes provides a parallel XVS type for a given
9294 PAD type. Normally, it is safe to follow the PAD type directly,
9295 but older versions of the compiler have a bug that causes the offset
9296 of its "F" field to be wrong. Following that field in that case
9297 would lead to incorrect results, but this can be worked around
9298 by ignoring the PAD type and using the associated XVS type instead.
9299
9300 Set to True if the debugger should trust the contents of PAD types.
9301 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9302static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9303
9304/* True if TYPE is a struct type introduced by the compiler to force the
9305 alignment of a value. Such types have a single field with a
4c4b4cd2 9306 distinctive name. */
14f9c5c9
AS
9307
9308int
ebf56fd3 9309ada_is_aligner_type (struct type *type)
14f9c5c9 9310{
61ee279c 9311 type = ada_check_typedef (type);
714e53ab 9312
5bf03f13 9313 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9314 return 0;
9315
14f9c5c9 9316 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9317 && TYPE_NFIELDS (type) == 1
9318 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9319}
9320
9321/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9322 the parallel type. */
14f9c5c9 9323
d2e4a39e
AS
9324struct type *
9325ada_get_base_type (struct type *raw_type)
14f9c5c9 9326{
d2e4a39e
AS
9327 struct type *real_type_namer;
9328 struct type *raw_real_type;
14f9c5c9
AS
9329
9330 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9331 return raw_type;
9332
284614f0
JB
9333 if (ada_is_aligner_type (raw_type))
9334 /* The encoding specifies that we should always use the aligner type.
9335 So, even if this aligner type has an associated XVS type, we should
9336 simply ignore it.
9337
9338 According to the compiler gurus, an XVS type parallel to an aligner
9339 type may exist because of a stabs limitation. In stabs, aligner
9340 types are empty because the field has a variable-sized type, and
9341 thus cannot actually be used as an aligner type. As a result,
9342 we need the associated parallel XVS type to decode the type.
9343 Since the policy in the compiler is to not change the internal
9344 representation based on the debugging info format, we sometimes
9345 end up having a redundant XVS type parallel to the aligner type. */
9346 return raw_type;
9347
14f9c5c9 9348 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9349 if (real_type_namer == NULL
14f9c5c9
AS
9350 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9351 || TYPE_NFIELDS (real_type_namer) != 1)
9352 return raw_type;
9353
f80d3ff2
JB
9354 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9355 {
9356 /* This is an older encoding form where the base type needs to be
9357 looked up by name. We prefer the newer enconding because it is
9358 more efficient. */
9359 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9360 if (raw_real_type == NULL)
9361 return raw_type;
9362 else
9363 return raw_real_type;
9364 }
9365
9366 /* The field in our XVS type is a reference to the base type. */
9367 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9368}
14f9c5c9 9369
4c4b4cd2 9370/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9371
d2e4a39e
AS
9372struct type *
9373ada_aligned_type (struct type *type)
14f9c5c9
AS
9374{
9375 if (ada_is_aligner_type (type))
9376 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9377 else
9378 return ada_get_base_type (type);
9379}
9380
9381
9382/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9383 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9384
fc1a4b47
AC
9385const gdb_byte *
9386ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9387{
d2e4a39e 9388 if (ada_is_aligner_type (type))
14f9c5c9 9389 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9390 valaddr +
9391 TYPE_FIELD_BITPOS (type,
9392 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9393 else
9394 return valaddr;
9395}
9396
4c4b4cd2
PH
9397
9398
14f9c5c9 9399/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9400 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9401const char *
9402ada_enum_name (const char *name)
14f9c5c9 9403{
4c4b4cd2
PH
9404 static char *result;
9405 static size_t result_len = 0;
e6a959d6 9406 const char *tmp;
14f9c5c9 9407
4c4b4cd2
PH
9408 /* First, unqualify the enumeration name:
9409 1. Search for the last '.' character. If we find one, then skip
177b42fe 9410 all the preceding characters, the unqualified name starts
76a01679 9411 right after that dot.
4c4b4cd2 9412 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9413 translates dots into "__". Search forward for double underscores,
9414 but stop searching when we hit an overloading suffix, which is
9415 of the form "__" followed by digits. */
4c4b4cd2 9416
c3e5cd34
PH
9417 tmp = strrchr (name, '.');
9418 if (tmp != NULL)
4c4b4cd2
PH
9419 name = tmp + 1;
9420 else
14f9c5c9 9421 {
4c4b4cd2
PH
9422 while ((tmp = strstr (name, "__")) != NULL)
9423 {
9424 if (isdigit (tmp[2]))
9425 break;
9426 else
9427 name = tmp + 2;
9428 }
14f9c5c9
AS
9429 }
9430
9431 if (name[0] == 'Q')
9432 {
14f9c5c9 9433 int v;
5b4ee69b 9434
14f9c5c9 9435 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9436 {
9437 if (sscanf (name + 2, "%x", &v) != 1)
9438 return name;
9439 }
272560b5
TT
9440 else if (((name[1] >= '0' && name[1] <= '9')
9441 || (name[1] >= 'a' && name[1] <= 'z'))
9442 && name[2] == '\0')
9443 {
9444 GROW_VECT (result, result_len, 4);
9445 xsnprintf (result, result_len, "'%c'", name[1]);
9446 return result;
9447 }
14f9c5c9 9448 else
4c4b4cd2 9449 return name;
14f9c5c9 9450
4c4b4cd2 9451 GROW_VECT (result, result_len, 16);
14f9c5c9 9452 if (isascii (v) && isprint (v))
88c15c34 9453 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9454 else if (name[1] == 'U')
88c15c34 9455 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9456 else
88c15c34 9457 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9458
9459 return result;
9460 }
d2e4a39e 9461 else
4c4b4cd2 9462 {
c3e5cd34
PH
9463 tmp = strstr (name, "__");
9464 if (tmp == NULL)
9465 tmp = strstr (name, "$");
9466 if (tmp != NULL)
4c4b4cd2
PH
9467 {
9468 GROW_VECT (result, result_len, tmp - name + 1);
9469 strncpy (result, name, tmp - name);
9470 result[tmp - name] = '\0';
9471 return result;
9472 }
9473
9474 return name;
9475 }
14f9c5c9
AS
9476}
9477
14f9c5c9
AS
9478/* Evaluate the subexpression of EXP starting at *POS as for
9479 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9480 expression. */
14f9c5c9 9481
d2e4a39e
AS
9482static struct value *
9483evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9484{
4b27a620 9485 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9486}
9487
9488/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9489 value it wraps. */
14f9c5c9 9490
d2e4a39e
AS
9491static struct value *
9492unwrap_value (struct value *val)
14f9c5c9 9493{
df407dfe 9494 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9495
14f9c5c9
AS
9496 if (ada_is_aligner_type (type))
9497 {
de4d072f 9498 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9499 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9500
14f9c5c9 9501 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9502 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9503
9504 return unwrap_value (v);
9505 }
d2e4a39e 9506 else
14f9c5c9 9507 {
d2e4a39e 9508 struct type *raw_real_type =
61ee279c 9509 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9510
5bf03f13
JB
9511 /* If there is no parallel XVS or XVE type, then the value is
9512 already unwrapped. Return it without further modification. */
9513 if ((type == raw_real_type)
9514 && ada_find_parallel_type (type, "___XVE") == NULL)
9515 return val;
14f9c5c9 9516
d2e4a39e 9517 return
4c4b4cd2
PH
9518 coerce_unspec_val_to_type
9519 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9520 value_address (val),
1ed6ede0 9521 NULL, 1));
14f9c5c9
AS
9522 }
9523}
d2e4a39e
AS
9524
9525static struct value *
50eff16b 9526cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9527{
50eff16b
UW
9528 struct value *scale = ada_scaling_factor (value_type (arg));
9529 arg = value_cast (value_type (scale), arg);
14f9c5c9 9530
50eff16b
UW
9531 arg = value_binop (arg, scale, BINOP_MUL);
9532 return value_cast (type, arg);
14f9c5c9
AS
9533}
9534
d2e4a39e 9535static struct value *
50eff16b 9536cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9537{
50eff16b
UW
9538 if (type == value_type (arg))
9539 return arg;
5b4ee69b 9540
50eff16b
UW
9541 struct value *scale = ada_scaling_factor (type);
9542 if (ada_is_fixed_point_type (value_type (arg)))
9543 arg = cast_from_fixed (value_type (scale), arg);
9544 else
9545 arg = value_cast (value_type (scale), arg);
9546
9547 arg = value_binop (arg, scale, BINOP_DIV);
9548 return value_cast (type, arg);
14f9c5c9
AS
9549}
9550
d99dcf51
JB
9551/* Given two array types T1 and T2, return nonzero iff both arrays
9552 contain the same number of elements. */
9553
9554static int
9555ada_same_array_size_p (struct type *t1, struct type *t2)
9556{
9557 LONGEST lo1, hi1, lo2, hi2;
9558
9559 /* Get the array bounds in order to verify that the size of
9560 the two arrays match. */
9561 if (!get_array_bounds (t1, &lo1, &hi1)
9562 || !get_array_bounds (t2, &lo2, &hi2))
9563 error (_("unable to determine array bounds"));
9564
9565 /* To make things easier for size comparison, normalize a bit
9566 the case of empty arrays by making sure that the difference
9567 between upper bound and lower bound is always -1. */
9568 if (lo1 > hi1)
9569 hi1 = lo1 - 1;
9570 if (lo2 > hi2)
9571 hi2 = lo2 - 1;
9572
9573 return (hi1 - lo1 == hi2 - lo2);
9574}
9575
9576/* Assuming that VAL is an array of integrals, and TYPE represents
9577 an array with the same number of elements, but with wider integral
9578 elements, return an array "casted" to TYPE. In practice, this
9579 means that the returned array is built by casting each element
9580 of the original array into TYPE's (wider) element type. */
9581
9582static struct value *
9583ada_promote_array_of_integrals (struct type *type, struct value *val)
9584{
9585 struct type *elt_type = TYPE_TARGET_TYPE (type);
9586 LONGEST lo, hi;
9587 struct value *res;
9588 LONGEST i;
9589
9590 /* Verify that both val and type are arrays of scalars, and
9591 that the size of val's elements is smaller than the size
9592 of type's element. */
9593 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9594 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9595 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9596 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9597 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9598 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9599
9600 if (!get_array_bounds (type, &lo, &hi))
9601 error (_("unable to determine array bounds"));
9602
9603 res = allocate_value (type);
9604
9605 /* Promote each array element. */
9606 for (i = 0; i < hi - lo + 1; i++)
9607 {
9608 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9609
9610 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9611 value_contents_all (elt), TYPE_LENGTH (elt_type));
9612 }
9613
9614 return res;
9615}
9616
4c4b4cd2
PH
9617/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9618 return the converted value. */
9619
d2e4a39e
AS
9620static struct value *
9621coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9622{
df407dfe 9623 struct type *type2 = value_type (val);
5b4ee69b 9624
14f9c5c9
AS
9625 if (type == type2)
9626 return val;
9627
61ee279c
PH
9628 type2 = ada_check_typedef (type2);
9629 type = ada_check_typedef (type);
14f9c5c9 9630
d2e4a39e
AS
9631 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9632 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9633 {
9634 val = ada_value_ind (val);
df407dfe 9635 type2 = value_type (val);
14f9c5c9
AS
9636 }
9637
d2e4a39e 9638 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9639 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9640 {
d99dcf51
JB
9641 if (!ada_same_array_size_p (type, type2))
9642 error (_("cannot assign arrays of different length"));
9643
9644 if (is_integral_type (TYPE_TARGET_TYPE (type))
9645 && is_integral_type (TYPE_TARGET_TYPE (type2))
9646 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9647 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9648 {
9649 /* Allow implicit promotion of the array elements to
9650 a wider type. */
9651 return ada_promote_array_of_integrals (type, val);
9652 }
9653
9654 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9655 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9656 error (_("Incompatible types in assignment"));
04624583 9657 deprecated_set_value_type (val, type);
14f9c5c9 9658 }
d2e4a39e 9659 return val;
14f9c5c9
AS
9660}
9661
4c4b4cd2
PH
9662static struct value *
9663ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9664{
9665 struct value *val;
9666 struct type *type1, *type2;
9667 LONGEST v, v1, v2;
9668
994b9211
AC
9669 arg1 = coerce_ref (arg1);
9670 arg2 = coerce_ref (arg2);
18af8284
JB
9671 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9672 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9673
76a01679
JB
9674 if (TYPE_CODE (type1) != TYPE_CODE_INT
9675 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9676 return value_binop (arg1, arg2, op);
9677
76a01679 9678 switch (op)
4c4b4cd2
PH
9679 {
9680 case BINOP_MOD:
9681 case BINOP_DIV:
9682 case BINOP_REM:
9683 break;
9684 default:
9685 return value_binop (arg1, arg2, op);
9686 }
9687
9688 v2 = value_as_long (arg2);
9689 if (v2 == 0)
323e0a4a 9690 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9691
9692 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9693 return value_binop (arg1, arg2, op);
9694
9695 v1 = value_as_long (arg1);
9696 switch (op)
9697 {
9698 case BINOP_DIV:
9699 v = v1 / v2;
76a01679
JB
9700 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9701 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9702 break;
9703 case BINOP_REM:
9704 v = v1 % v2;
76a01679
JB
9705 if (v * v1 < 0)
9706 v -= v2;
4c4b4cd2
PH
9707 break;
9708 default:
9709 /* Should not reach this point. */
9710 v = 0;
9711 }
9712
9713 val = allocate_value (type1);
990a07ab 9714 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9715 TYPE_LENGTH (value_type (val)),
9716 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9717 return val;
9718}
9719
9720static int
9721ada_value_equal (struct value *arg1, struct value *arg2)
9722{
df407dfe
AC
9723 if (ada_is_direct_array_type (value_type (arg1))
9724 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9725 {
79e8fcaa
JB
9726 struct type *arg1_type, *arg2_type;
9727
f58b38bf
JB
9728 /* Automatically dereference any array reference before
9729 we attempt to perform the comparison. */
9730 arg1 = ada_coerce_ref (arg1);
9731 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9732
4c4b4cd2
PH
9733 arg1 = ada_coerce_to_simple_array (arg1);
9734 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9735
9736 arg1_type = ada_check_typedef (value_type (arg1));
9737 arg2_type = ada_check_typedef (value_type (arg2));
9738
9739 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9740 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9741 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9742 /* FIXME: The following works only for types whose
76a01679
JB
9743 representations use all bits (no padding or undefined bits)
9744 and do not have user-defined equality. */
79e8fcaa
JB
9745 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9746 && memcmp (value_contents (arg1), value_contents (arg2),
9747 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9748 }
9749 return value_equal (arg1, arg2);
9750}
9751
52ce6436
PH
9752/* Total number of component associations in the aggregate starting at
9753 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9754 OP_AGGREGATE. */
52ce6436
PH
9755
9756static int
9757num_component_specs (struct expression *exp, int pc)
9758{
9759 int n, m, i;
5b4ee69b 9760
52ce6436
PH
9761 m = exp->elts[pc + 1].longconst;
9762 pc += 3;
9763 n = 0;
9764 for (i = 0; i < m; i += 1)
9765 {
9766 switch (exp->elts[pc].opcode)
9767 {
9768 default:
9769 n += 1;
9770 break;
9771 case OP_CHOICES:
9772 n += exp->elts[pc + 1].longconst;
9773 break;
9774 }
9775 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9776 }
9777 return n;
9778}
9779
9780/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9781 component of LHS (a simple array or a record), updating *POS past
9782 the expression, assuming that LHS is contained in CONTAINER. Does
9783 not modify the inferior's memory, nor does it modify LHS (unless
9784 LHS == CONTAINER). */
9785
9786static void
9787assign_component (struct value *container, struct value *lhs, LONGEST index,
9788 struct expression *exp, int *pos)
9789{
9790 struct value *mark = value_mark ();
9791 struct value *elt;
0e2da9f0 9792 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9793
0e2da9f0 9794 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9795 {
22601c15
UW
9796 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9797 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9798
52ce6436
PH
9799 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9800 }
9801 else
9802 {
9803 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9804 elt = ada_to_fixed_value (elt);
52ce6436
PH
9805 }
9806
9807 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9808 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9809 else
9810 value_assign_to_component (container, elt,
9811 ada_evaluate_subexp (NULL, exp, pos,
9812 EVAL_NORMAL));
9813
9814 value_free_to_mark (mark);
9815}
9816
9817/* Assuming that LHS represents an lvalue having a record or array
9818 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9819 of that aggregate's value to LHS, advancing *POS past the
9820 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9821 lvalue containing LHS (possibly LHS itself). Does not modify
9822 the inferior's memory, nor does it modify the contents of
0963b4bd 9823 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9824
9825static struct value *
9826assign_aggregate (struct value *container,
9827 struct value *lhs, struct expression *exp,
9828 int *pos, enum noside noside)
9829{
9830 struct type *lhs_type;
9831 int n = exp->elts[*pos+1].longconst;
9832 LONGEST low_index, high_index;
9833 int num_specs;
9834 LONGEST *indices;
9835 int max_indices, num_indices;
52ce6436 9836 int i;
52ce6436
PH
9837
9838 *pos += 3;
9839 if (noside != EVAL_NORMAL)
9840 {
52ce6436
PH
9841 for (i = 0; i < n; i += 1)
9842 ada_evaluate_subexp (NULL, exp, pos, noside);
9843 return container;
9844 }
9845
9846 container = ada_coerce_ref (container);
9847 if (ada_is_direct_array_type (value_type (container)))
9848 container = ada_coerce_to_simple_array (container);
9849 lhs = ada_coerce_ref (lhs);
9850 if (!deprecated_value_modifiable (lhs))
9851 error (_("Left operand of assignment is not a modifiable lvalue."));
9852
0e2da9f0 9853 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9854 if (ada_is_direct_array_type (lhs_type))
9855 {
9856 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9857 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9858 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9859 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9860 }
9861 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9862 {
9863 low_index = 0;
9864 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9865 }
9866 else
9867 error (_("Left-hand side must be array or record."));
9868
9869 num_specs = num_component_specs (exp, *pos - 3);
9870 max_indices = 4 * num_specs + 4;
8d749320 9871 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9872 indices[0] = indices[1] = low_index - 1;
9873 indices[2] = indices[3] = high_index + 1;
9874 num_indices = 4;
9875
9876 for (i = 0; i < n; i += 1)
9877 {
9878 switch (exp->elts[*pos].opcode)
9879 {
1fbf5ada
JB
9880 case OP_CHOICES:
9881 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9882 &num_indices, max_indices,
9883 low_index, high_index);
9884 break;
9885 case OP_POSITIONAL:
9886 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9887 &num_indices, max_indices,
9888 low_index, high_index);
1fbf5ada
JB
9889 break;
9890 case OP_OTHERS:
9891 if (i != n-1)
9892 error (_("Misplaced 'others' clause"));
9893 aggregate_assign_others (container, lhs, exp, pos, indices,
9894 num_indices, low_index, high_index);
9895 break;
9896 default:
9897 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9898 }
9899 }
9900
9901 return container;
9902}
9903
9904/* Assign into the component of LHS indexed by the OP_POSITIONAL
9905 construct at *POS, updating *POS past the construct, given that
9906 the positions are relative to lower bound LOW, where HIGH is the
9907 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9908 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9909 assign_aggregate. */
52ce6436
PH
9910static void
9911aggregate_assign_positional (struct value *container,
9912 struct value *lhs, struct expression *exp,
9913 int *pos, LONGEST *indices, int *num_indices,
9914 int max_indices, LONGEST low, LONGEST high)
9915{
9916 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9917
9918 if (ind - 1 == high)
e1d5a0d2 9919 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9920 if (ind <= high)
9921 {
9922 add_component_interval (ind, ind, indices, num_indices, max_indices);
9923 *pos += 3;
9924 assign_component (container, lhs, ind, exp, pos);
9925 }
9926 else
9927 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9928}
9929
9930/* Assign into the components of LHS indexed by the OP_CHOICES
9931 construct at *POS, updating *POS past the construct, given that
9932 the allowable indices are LOW..HIGH. Record the indices assigned
9933 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9934 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9935static void
9936aggregate_assign_from_choices (struct value *container,
9937 struct value *lhs, struct expression *exp,
9938 int *pos, LONGEST *indices, int *num_indices,
9939 int max_indices, LONGEST low, LONGEST high)
9940{
9941 int j;
9942 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9943 int choice_pos, expr_pc;
9944 int is_array = ada_is_direct_array_type (value_type (lhs));
9945
9946 choice_pos = *pos += 3;
9947
9948 for (j = 0; j < n_choices; j += 1)
9949 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9950 expr_pc = *pos;
9951 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9952
9953 for (j = 0; j < n_choices; j += 1)
9954 {
9955 LONGEST lower, upper;
9956 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9957
52ce6436
PH
9958 if (op == OP_DISCRETE_RANGE)
9959 {
9960 choice_pos += 1;
9961 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9962 EVAL_NORMAL));
9963 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9964 EVAL_NORMAL));
9965 }
9966 else if (is_array)
9967 {
9968 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9969 EVAL_NORMAL));
9970 upper = lower;
9971 }
9972 else
9973 {
9974 int ind;
0d5cff50 9975 const char *name;
5b4ee69b 9976
52ce6436
PH
9977 switch (op)
9978 {
9979 case OP_NAME:
9980 name = &exp->elts[choice_pos + 2].string;
9981 break;
9982 case OP_VAR_VALUE:
9983 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9984 break;
9985 default:
9986 error (_("Invalid record component association."));
9987 }
9988 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9989 ind = 0;
9990 if (! find_struct_field (name, value_type (lhs), 0,
9991 NULL, NULL, NULL, NULL, &ind))
9992 error (_("Unknown component name: %s."), name);
9993 lower = upper = ind;
9994 }
9995
9996 if (lower <= upper && (lower < low || upper > high))
9997 error (_("Index in component association out of bounds."));
9998
9999 add_component_interval (lower, upper, indices, num_indices,
10000 max_indices);
10001 while (lower <= upper)
10002 {
10003 int pos1;
5b4ee69b 10004
52ce6436
PH
10005 pos1 = expr_pc;
10006 assign_component (container, lhs, lower, exp, &pos1);
10007 lower += 1;
10008 }
10009 }
10010}
10011
10012/* Assign the value of the expression in the OP_OTHERS construct in
10013 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10014 have not been previously assigned. The index intervals already assigned
10015 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10016 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10017static void
10018aggregate_assign_others (struct value *container,
10019 struct value *lhs, struct expression *exp,
10020 int *pos, LONGEST *indices, int num_indices,
10021 LONGEST low, LONGEST high)
10022{
10023 int i;
5ce64950 10024 int expr_pc = *pos + 1;
52ce6436
PH
10025
10026 for (i = 0; i < num_indices - 2; i += 2)
10027 {
10028 LONGEST ind;
5b4ee69b 10029
52ce6436
PH
10030 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10031 {
5ce64950 10032 int localpos;
5b4ee69b 10033
5ce64950
MS
10034 localpos = expr_pc;
10035 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10036 }
10037 }
10038 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10039}
10040
10041/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10042 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10043 modifying *SIZE as needed. It is an error if *SIZE exceeds
10044 MAX_SIZE. The resulting intervals do not overlap. */
10045static void
10046add_component_interval (LONGEST low, LONGEST high,
10047 LONGEST* indices, int *size, int max_size)
10048{
10049 int i, j;
5b4ee69b 10050
52ce6436
PH
10051 for (i = 0; i < *size; i += 2) {
10052 if (high >= indices[i] && low <= indices[i + 1])
10053 {
10054 int kh;
5b4ee69b 10055
52ce6436
PH
10056 for (kh = i + 2; kh < *size; kh += 2)
10057 if (high < indices[kh])
10058 break;
10059 if (low < indices[i])
10060 indices[i] = low;
10061 indices[i + 1] = indices[kh - 1];
10062 if (high > indices[i + 1])
10063 indices[i + 1] = high;
10064 memcpy (indices + i + 2, indices + kh, *size - kh);
10065 *size -= kh - i - 2;
10066 return;
10067 }
10068 else if (high < indices[i])
10069 break;
10070 }
10071
10072 if (*size == max_size)
10073 error (_("Internal error: miscounted aggregate components."));
10074 *size += 2;
10075 for (j = *size-1; j >= i+2; j -= 1)
10076 indices[j] = indices[j - 2];
10077 indices[i] = low;
10078 indices[i + 1] = high;
10079}
10080
6e48bd2c
JB
10081/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10082 is different. */
10083
10084static struct value *
b7e22850 10085ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10086{
10087 if (type == ada_check_typedef (value_type (arg2)))
10088 return arg2;
10089
10090 if (ada_is_fixed_point_type (type))
95f39a5b 10091 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10092
10093 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10094 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10095
10096 return value_cast (type, arg2);
10097}
10098
284614f0
JB
10099/* Evaluating Ada expressions, and printing their result.
10100 ------------------------------------------------------
10101
21649b50
JB
10102 1. Introduction:
10103 ----------------
10104
284614f0
JB
10105 We usually evaluate an Ada expression in order to print its value.
10106 We also evaluate an expression in order to print its type, which
10107 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10108 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10109 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10110 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10111 similar.
10112
10113 Evaluating expressions is a little more complicated for Ada entities
10114 than it is for entities in languages such as C. The main reason for
10115 this is that Ada provides types whose definition might be dynamic.
10116 One example of such types is variant records. Or another example
10117 would be an array whose bounds can only be known at run time.
10118
10119 The following description is a general guide as to what should be
10120 done (and what should NOT be done) in order to evaluate an expression
10121 involving such types, and when. This does not cover how the semantic
10122 information is encoded by GNAT as this is covered separatly. For the
10123 document used as the reference for the GNAT encoding, see exp_dbug.ads
10124 in the GNAT sources.
10125
10126 Ideally, we should embed each part of this description next to its
10127 associated code. Unfortunately, the amount of code is so vast right
10128 now that it's hard to see whether the code handling a particular
10129 situation might be duplicated or not. One day, when the code is
10130 cleaned up, this guide might become redundant with the comments
10131 inserted in the code, and we might want to remove it.
10132
21649b50
JB
10133 2. ``Fixing'' an Entity, the Simple Case:
10134 -----------------------------------------
10135
284614f0
JB
10136 When evaluating Ada expressions, the tricky issue is that they may
10137 reference entities whose type contents and size are not statically
10138 known. Consider for instance a variant record:
10139
10140 type Rec (Empty : Boolean := True) is record
10141 case Empty is
10142 when True => null;
10143 when False => Value : Integer;
10144 end case;
10145 end record;
10146 Yes : Rec := (Empty => False, Value => 1);
10147 No : Rec := (empty => True);
10148
10149 The size and contents of that record depends on the value of the
10150 descriminant (Rec.Empty). At this point, neither the debugging
10151 information nor the associated type structure in GDB are able to
10152 express such dynamic types. So what the debugger does is to create
10153 "fixed" versions of the type that applies to the specific object.
10154 We also informally refer to this opperation as "fixing" an object,
10155 which means creating its associated fixed type.
10156
10157 Example: when printing the value of variable "Yes" above, its fixed
10158 type would look like this:
10159
10160 type Rec is record
10161 Empty : Boolean;
10162 Value : Integer;
10163 end record;
10164
10165 On the other hand, if we printed the value of "No", its fixed type
10166 would become:
10167
10168 type Rec is record
10169 Empty : Boolean;
10170 end record;
10171
10172 Things become a little more complicated when trying to fix an entity
10173 with a dynamic type that directly contains another dynamic type,
10174 such as an array of variant records, for instance. There are
10175 two possible cases: Arrays, and records.
10176
21649b50
JB
10177 3. ``Fixing'' Arrays:
10178 ---------------------
10179
10180 The type structure in GDB describes an array in terms of its bounds,
10181 and the type of its elements. By design, all elements in the array
10182 have the same type and we cannot represent an array of variant elements
10183 using the current type structure in GDB. When fixing an array,
10184 we cannot fix the array element, as we would potentially need one
10185 fixed type per element of the array. As a result, the best we can do
10186 when fixing an array is to produce an array whose bounds and size
10187 are correct (allowing us to read it from memory), but without having
10188 touched its element type. Fixing each element will be done later,
10189 when (if) necessary.
10190
10191 Arrays are a little simpler to handle than records, because the same
10192 amount of memory is allocated for each element of the array, even if
1b536f04 10193 the amount of space actually used by each element differs from element
21649b50 10194 to element. Consider for instance the following array of type Rec:
284614f0
JB
10195
10196 type Rec_Array is array (1 .. 2) of Rec;
10197
1b536f04
JB
10198 The actual amount of memory occupied by each element might be different
10199 from element to element, depending on the value of their discriminant.
21649b50 10200 But the amount of space reserved for each element in the array remains
1b536f04 10201 fixed regardless. So we simply need to compute that size using
21649b50
JB
10202 the debugging information available, from which we can then determine
10203 the array size (we multiply the number of elements of the array by
10204 the size of each element).
10205
10206 The simplest case is when we have an array of a constrained element
10207 type. For instance, consider the following type declarations:
10208
10209 type Bounded_String (Max_Size : Integer) is
10210 Length : Integer;
10211 Buffer : String (1 .. Max_Size);
10212 end record;
10213 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10214
10215 In this case, the compiler describes the array as an array of
10216 variable-size elements (identified by its XVS suffix) for which
10217 the size can be read in the parallel XVZ variable.
10218
10219 In the case of an array of an unconstrained element type, the compiler
10220 wraps the array element inside a private PAD type. This type should not
10221 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10222 that we also use the adjective "aligner" in our code to designate
10223 these wrapper types.
10224
1b536f04 10225 In some cases, the size allocated for each element is statically
21649b50
JB
10226 known. In that case, the PAD type already has the correct size,
10227 and the array element should remain unfixed.
10228
10229 But there are cases when this size is not statically known.
10230 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10231
10232 type Dynamic is array (1 .. Five) of Integer;
10233 type Wrapper (Has_Length : Boolean := False) is record
10234 Data : Dynamic;
10235 case Has_Length is
10236 when True => Length : Integer;
10237 when False => null;
10238 end case;
10239 end record;
10240 type Wrapper_Array is array (1 .. 2) of Wrapper;
10241
10242 Hello : Wrapper_Array := (others => (Has_Length => True,
10243 Data => (others => 17),
10244 Length => 1));
10245
10246
10247 The debugging info would describe variable Hello as being an
10248 array of a PAD type. The size of that PAD type is not statically
10249 known, but can be determined using a parallel XVZ variable.
10250 In that case, a copy of the PAD type with the correct size should
10251 be used for the fixed array.
10252
21649b50
JB
10253 3. ``Fixing'' record type objects:
10254 ----------------------------------
10255
10256 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10257 record types. In this case, in order to compute the associated
10258 fixed type, we need to determine the size and offset of each of
10259 its components. This, in turn, requires us to compute the fixed
10260 type of each of these components.
10261
10262 Consider for instance the example:
10263
10264 type Bounded_String (Max_Size : Natural) is record
10265 Str : String (1 .. Max_Size);
10266 Length : Natural;
10267 end record;
10268 My_String : Bounded_String (Max_Size => 10);
10269
10270 In that case, the position of field "Length" depends on the size
10271 of field Str, which itself depends on the value of the Max_Size
21649b50 10272 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10273 we need to fix the type of field Str. Therefore, fixing a variant
10274 record requires us to fix each of its components.
10275
10276 However, if a component does not have a dynamic size, the component
10277 should not be fixed. In particular, fields that use a PAD type
10278 should not fixed. Here is an example where this might happen
10279 (assuming type Rec above):
10280
10281 type Container (Big : Boolean) is record
10282 First : Rec;
10283 After : Integer;
10284 case Big is
10285 when True => Another : Integer;
10286 when False => null;
10287 end case;
10288 end record;
10289 My_Container : Container := (Big => False,
10290 First => (Empty => True),
10291 After => 42);
10292
10293 In that example, the compiler creates a PAD type for component First,
10294 whose size is constant, and then positions the component After just
10295 right after it. The offset of component After is therefore constant
10296 in this case.
10297
10298 The debugger computes the position of each field based on an algorithm
10299 that uses, among other things, the actual position and size of the field
21649b50
JB
10300 preceding it. Let's now imagine that the user is trying to print
10301 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10302 end up computing the offset of field After based on the size of the
10303 fixed version of field First. And since in our example First has
10304 only one actual field, the size of the fixed type is actually smaller
10305 than the amount of space allocated to that field, and thus we would
10306 compute the wrong offset of field After.
10307
21649b50
JB
10308 To make things more complicated, we need to watch out for dynamic
10309 components of variant records (identified by the ___XVL suffix in
10310 the component name). Even if the target type is a PAD type, the size
10311 of that type might not be statically known. So the PAD type needs
10312 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10313 we might end up with the wrong size for our component. This can be
10314 observed with the following type declarations:
284614f0
JB
10315
10316 type Octal is new Integer range 0 .. 7;
10317 type Octal_Array is array (Positive range <>) of Octal;
10318 pragma Pack (Octal_Array);
10319
10320 type Octal_Buffer (Size : Positive) is record
10321 Buffer : Octal_Array (1 .. Size);
10322 Length : Integer;
10323 end record;
10324
10325 In that case, Buffer is a PAD type whose size is unset and needs
10326 to be computed by fixing the unwrapped type.
10327
21649b50
JB
10328 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10329 ----------------------------------------------------------
10330
10331 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10332 thus far, be actually fixed?
10333
10334 The answer is: Only when referencing that element. For instance
10335 when selecting one component of a record, this specific component
10336 should be fixed at that point in time. Or when printing the value
10337 of a record, each component should be fixed before its value gets
10338 printed. Similarly for arrays, the element of the array should be
10339 fixed when printing each element of the array, or when extracting
10340 one element out of that array. On the other hand, fixing should
10341 not be performed on the elements when taking a slice of an array!
10342
31432a67 10343 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10344 size of each field is that we end up also miscomputing the size
10345 of the containing type. This can have adverse results when computing
10346 the value of an entity. GDB fetches the value of an entity based
10347 on the size of its type, and thus a wrong size causes GDB to fetch
10348 the wrong amount of memory. In the case where the computed size is
10349 too small, GDB fetches too little data to print the value of our
31432a67 10350 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10351 past the buffer containing the data =:-o. */
10352
ced9779b
JB
10353/* Evaluate a subexpression of EXP, at index *POS, and return a value
10354 for that subexpression cast to TO_TYPE. Advance *POS over the
10355 subexpression. */
10356
10357static value *
10358ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10359 enum noside noside, struct type *to_type)
10360{
10361 int pc = *pos;
10362
10363 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10364 || exp->elts[pc].opcode == OP_VAR_VALUE)
10365 {
10366 (*pos) += 4;
10367
10368 value *val;
10369 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10370 {
10371 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10372 return value_zero (to_type, not_lval);
10373
10374 val = evaluate_var_msym_value (noside,
10375 exp->elts[pc + 1].objfile,
10376 exp->elts[pc + 2].msymbol);
10377 }
10378 else
10379 val = evaluate_var_value (noside,
10380 exp->elts[pc + 1].block,
10381 exp->elts[pc + 2].symbol);
10382
10383 if (noside == EVAL_SKIP)
10384 return eval_skip_value (exp);
10385
10386 val = ada_value_cast (to_type, val);
10387
10388 /* Follow the Ada language semantics that do not allow taking
10389 an address of the result of a cast (view conversion in Ada). */
10390 if (VALUE_LVAL (val) == lval_memory)
10391 {
10392 if (value_lazy (val))
10393 value_fetch_lazy (val);
10394 VALUE_LVAL (val) = not_lval;
10395 }
10396 return val;
10397 }
10398
10399 value *val = evaluate_subexp (to_type, exp, pos, noside);
10400 if (noside == EVAL_SKIP)
10401 return eval_skip_value (exp);
10402 return ada_value_cast (to_type, val);
10403}
10404
284614f0
JB
10405/* Implement the evaluate_exp routine in the exp_descriptor structure
10406 for the Ada language. */
10407
52ce6436 10408static struct value *
ebf56fd3 10409ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10410 int *pos, enum noside noside)
14f9c5c9
AS
10411{
10412 enum exp_opcode op;
b5385fc0 10413 int tem;
14f9c5c9 10414 int pc;
5ec18f2b 10415 int preeval_pos;
14f9c5c9
AS
10416 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10417 struct type *type;
52ce6436 10418 int nargs, oplen;
d2e4a39e 10419 struct value **argvec;
14f9c5c9 10420
d2e4a39e
AS
10421 pc = *pos;
10422 *pos += 1;
14f9c5c9
AS
10423 op = exp->elts[pc].opcode;
10424
d2e4a39e 10425 switch (op)
14f9c5c9
AS
10426 {
10427 default:
10428 *pos -= 1;
6e48bd2c 10429 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10430
10431 if (noside == EVAL_NORMAL)
10432 arg1 = unwrap_value (arg1);
6e48bd2c 10433
edd079d9 10434 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10435 then we need to perform the conversion manually, because
10436 evaluate_subexp_standard doesn't do it. This conversion is
10437 necessary in Ada because the different kinds of float/fixed
10438 types in Ada have different representations.
10439
10440 Similarly, we need to perform the conversion from OP_LONG
10441 ourselves. */
edd079d9 10442 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10443 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10444
10445 return arg1;
4c4b4cd2
PH
10446
10447 case OP_STRING:
10448 {
76a01679 10449 struct value *result;
5b4ee69b 10450
76a01679
JB
10451 *pos -= 1;
10452 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10453 /* The result type will have code OP_STRING, bashed there from
10454 OP_ARRAY. Bash it back. */
df407dfe
AC
10455 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10456 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10457 return result;
4c4b4cd2 10458 }
14f9c5c9
AS
10459
10460 case UNOP_CAST:
10461 (*pos) += 2;
10462 type = exp->elts[pc + 1].type;
ced9779b 10463 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10464
4c4b4cd2
PH
10465 case UNOP_QUAL:
10466 (*pos) += 2;
10467 type = exp->elts[pc + 1].type;
10468 return ada_evaluate_subexp (type, exp, pos, noside);
10469
14f9c5c9
AS
10470 case BINOP_ASSIGN:
10471 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10472 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10473 {
10474 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10475 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10476 return arg1;
10477 return ada_value_assign (arg1, arg1);
10478 }
003f3813
JB
10479 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10480 except if the lhs of our assignment is a convenience variable.
10481 In the case of assigning to a convenience variable, the lhs
10482 should be exactly the result of the evaluation of the rhs. */
10483 type = value_type (arg1);
10484 if (VALUE_LVAL (arg1) == lval_internalvar)
10485 type = NULL;
10486 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10487 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10488 return arg1;
f411722c
TT
10489 if (VALUE_LVAL (arg1) == lval_internalvar)
10490 {
10491 /* Nothing. */
10492 }
10493 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10494 arg2 = cast_to_fixed (value_type (arg1), arg2);
10495 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10496 error
323e0a4a 10497 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10498 else
df407dfe 10499 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10500 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10501
10502 case BINOP_ADD:
10503 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10504 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10505 if (noside == EVAL_SKIP)
4c4b4cd2 10506 goto nosideret;
2ac8a782
JB
10507 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10508 return (value_from_longest
10509 (value_type (arg1),
10510 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10511 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10512 return (value_from_longest
10513 (value_type (arg2),
10514 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10515 if ((ada_is_fixed_point_type (value_type (arg1))
10516 || ada_is_fixed_point_type (value_type (arg2)))
10517 && value_type (arg1) != value_type (arg2))
323e0a4a 10518 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10519 /* Do the addition, and cast the result to the type of the first
10520 argument. We cannot cast the result to a reference type, so if
10521 ARG1 is a reference type, find its underlying type. */
10522 type = value_type (arg1);
10523 while (TYPE_CODE (type) == TYPE_CODE_REF)
10524 type = TYPE_TARGET_TYPE (type);
f44316fa 10525 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10526 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10527
10528 case BINOP_SUB:
10529 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10530 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10531 if (noside == EVAL_SKIP)
4c4b4cd2 10532 goto nosideret;
2ac8a782
JB
10533 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10534 return (value_from_longest
10535 (value_type (arg1),
10536 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10537 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10538 return (value_from_longest
10539 (value_type (arg2),
10540 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10541 if ((ada_is_fixed_point_type (value_type (arg1))
10542 || ada_is_fixed_point_type (value_type (arg2)))
10543 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10544 error (_("Operands of fixed-point subtraction "
10545 "must have the same type"));
b7789565
JB
10546 /* Do the substraction, and cast the result to the type of the first
10547 argument. We cannot cast the result to a reference type, so if
10548 ARG1 is a reference type, find its underlying type. */
10549 type = value_type (arg1);
10550 while (TYPE_CODE (type) == TYPE_CODE_REF)
10551 type = TYPE_TARGET_TYPE (type);
f44316fa 10552 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10553 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10554
10555 case BINOP_MUL:
10556 case BINOP_DIV:
e1578042
JB
10557 case BINOP_REM:
10558 case BINOP_MOD:
14f9c5c9
AS
10559 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10560 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10561 if (noside == EVAL_SKIP)
4c4b4cd2 10562 goto nosideret;
e1578042 10563 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10564 {
10565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10566 return value_zero (value_type (arg1), not_lval);
10567 }
14f9c5c9 10568 else
4c4b4cd2 10569 {
a53b7a21 10570 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10571 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10572 arg1 = cast_from_fixed (type, arg1);
df407dfe 10573 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10574 arg2 = cast_from_fixed (type, arg2);
f44316fa 10575 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10576 return ada_value_binop (arg1, arg2, op);
10577 }
10578
4c4b4cd2
PH
10579 case BINOP_EQUAL:
10580 case BINOP_NOTEQUAL:
14f9c5c9 10581 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10582 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10583 if (noside == EVAL_SKIP)
76a01679 10584 goto nosideret;
4c4b4cd2 10585 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10586 tem = 0;
4c4b4cd2 10587 else
f44316fa
UW
10588 {
10589 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10590 tem = ada_value_equal (arg1, arg2);
10591 }
4c4b4cd2 10592 if (op == BINOP_NOTEQUAL)
76a01679 10593 tem = !tem;
fbb06eb1
UW
10594 type = language_bool_type (exp->language_defn, exp->gdbarch);
10595 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10596
10597 case UNOP_NEG:
10598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10599 if (noside == EVAL_SKIP)
10600 goto nosideret;
df407dfe
AC
10601 else if (ada_is_fixed_point_type (value_type (arg1)))
10602 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10603 else
f44316fa
UW
10604 {
10605 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10606 return value_neg (arg1);
10607 }
4c4b4cd2 10608
2330c6c6
JB
10609 case BINOP_LOGICAL_AND:
10610 case BINOP_LOGICAL_OR:
10611 case UNOP_LOGICAL_NOT:
000d5124
JB
10612 {
10613 struct value *val;
10614
10615 *pos -= 1;
10616 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10617 type = language_bool_type (exp->language_defn, exp->gdbarch);
10618 return value_cast (type, val);
000d5124 10619 }
2330c6c6
JB
10620
10621 case BINOP_BITWISE_AND:
10622 case BINOP_BITWISE_IOR:
10623 case BINOP_BITWISE_XOR:
000d5124
JB
10624 {
10625 struct value *val;
10626
10627 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10628 *pos = pc;
10629 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10630
10631 return value_cast (value_type (arg1), val);
10632 }
2330c6c6 10633
14f9c5c9
AS
10634 case OP_VAR_VALUE:
10635 *pos -= 1;
6799def4 10636
14f9c5c9 10637 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10638 {
10639 *pos += 4;
10640 goto nosideret;
10641 }
da5c522f
JB
10642
10643 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10644 /* Only encountered when an unresolved symbol occurs in a
10645 context other than a function call, in which case, it is
52ce6436 10646 invalid. */
323e0a4a 10647 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10648 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10649
10650 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10651 {
0c1f74cf 10652 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10653 /* Check to see if this is a tagged type. We also need to handle
10654 the case where the type is a reference to a tagged type, but
10655 we have to be careful to exclude pointers to tagged types.
10656 The latter should be shown as usual (as a pointer), whereas
10657 a reference should mostly be transparent to the user. */
10658 if (ada_is_tagged_type (type, 0)
023db19c 10659 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10660 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10661 {
10662 /* Tagged types are a little special in the fact that the real
10663 type is dynamic and can only be determined by inspecting the
10664 object's tag. This means that we need to get the object's
10665 value first (EVAL_NORMAL) and then extract the actual object
10666 type from its tag.
10667
10668 Note that we cannot skip the final step where we extract
10669 the object type from its tag, because the EVAL_NORMAL phase
10670 results in dynamic components being resolved into fixed ones.
10671 This can cause problems when trying to print the type
10672 description of tagged types whose parent has a dynamic size:
10673 We use the type name of the "_parent" component in order
10674 to print the name of the ancestor type in the type description.
10675 If that component had a dynamic size, the resolution into
10676 a fixed type would result in the loss of that type name,
10677 thus preventing us from printing the name of the ancestor
10678 type in the type description. */
10679 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10680
10681 if (TYPE_CODE (type) != TYPE_CODE_REF)
10682 {
10683 struct type *actual_type;
10684
10685 actual_type = type_from_tag (ada_value_tag (arg1));
10686 if (actual_type == NULL)
10687 /* If, for some reason, we were unable to determine
10688 the actual type from the tag, then use the static
10689 approximation that we just computed as a fallback.
10690 This can happen if the debugging information is
10691 incomplete, for instance. */
10692 actual_type = type;
10693 return value_zero (actual_type, not_lval);
10694 }
10695 else
10696 {
10697 /* In the case of a ref, ada_coerce_ref takes care
10698 of determining the actual type. But the evaluation
10699 should return a ref as it should be valid to ask
10700 for its address; so rebuild a ref after coerce. */
10701 arg1 = ada_coerce_ref (arg1);
a65cfae5 10702 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10703 }
10704 }
0c1f74cf 10705
84754697
JB
10706 /* Records and unions for which GNAT encodings have been
10707 generated need to be statically fixed as well.
10708 Otherwise, non-static fixing produces a type where
10709 all dynamic properties are removed, which prevents "ptype"
10710 from being able to completely describe the type.
10711 For instance, a case statement in a variant record would be
10712 replaced by the relevant components based on the actual
10713 value of the discriminants. */
10714 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10715 && dynamic_template_type (type) != NULL)
10716 || (TYPE_CODE (type) == TYPE_CODE_UNION
10717 && ada_find_parallel_type (type, "___XVU") != NULL))
10718 {
10719 *pos += 4;
10720 return value_zero (to_static_fixed_type (type), not_lval);
10721 }
4c4b4cd2 10722 }
da5c522f
JB
10723
10724 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10725 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10726
10727 case OP_FUNCALL:
10728 (*pos) += 2;
10729
10730 /* Allocate arg vector, including space for the function to be
10731 called in argvec[0] and a terminating NULL. */
10732 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10733 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10734
10735 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10736 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10737 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10738 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10739 else
10740 {
10741 for (tem = 0; tem <= nargs; tem += 1)
10742 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10743 argvec[tem] = 0;
10744
10745 if (noside == EVAL_SKIP)
10746 goto nosideret;
10747 }
10748
ad82864c
JB
10749 if (ada_is_constrained_packed_array_type
10750 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10751 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10752 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10753 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10754 /* This is a packed array that has already been fixed, and
10755 therefore already coerced to a simple array. Nothing further
10756 to do. */
10757 ;
e6c2c623
PMR
10758 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10759 {
10760 /* Make sure we dereference references so that all the code below
10761 feels like it's really handling the referenced value. Wrapping
10762 types (for alignment) may be there, so make sure we strip them as
10763 well. */
10764 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10765 }
10766 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10767 && VALUE_LVAL (argvec[0]) == lval_memory)
10768 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10769
df407dfe 10770 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10771
10772 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10773 them. So, if this is an array typedef (encoding use for array
10774 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10775 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10776 type = ada_typedef_target_type (type);
10777
4c4b4cd2
PH
10778 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10779 {
61ee279c 10780 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10781 {
10782 case TYPE_CODE_FUNC:
61ee279c 10783 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10784 break;
10785 case TYPE_CODE_ARRAY:
10786 break;
10787 case TYPE_CODE_STRUCT:
10788 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10789 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10790 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10791 break;
10792 default:
323e0a4a 10793 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10794 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10795 break;
10796 }
10797 }
10798
10799 switch (TYPE_CODE (type))
10800 {
10801 case TYPE_CODE_FUNC:
10802 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10803 {
7022349d
PA
10804 if (TYPE_TARGET_TYPE (type) == NULL)
10805 error_call_unknown_return_type (NULL);
10806 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10807 }
e71585ff
PA
10808 return call_function_by_hand (argvec[0], NULL,
10809 gdb::make_array_view (argvec + 1,
10810 nargs));
c8ea1972
PH
10811 case TYPE_CODE_INTERNAL_FUNCTION:
10812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10813 /* We don't know anything about what the internal
10814 function might return, but we have to return
10815 something. */
10816 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10817 not_lval);
10818 else
10819 return call_internal_function (exp->gdbarch, exp->language_defn,
10820 argvec[0], nargs, argvec + 1);
10821
4c4b4cd2
PH
10822 case TYPE_CODE_STRUCT:
10823 {
10824 int arity;
10825
4c4b4cd2
PH
10826 arity = ada_array_arity (type);
10827 type = ada_array_element_type (type, nargs);
10828 if (type == NULL)
323e0a4a 10829 error (_("cannot subscript or call a record"));
4c4b4cd2 10830 if (arity != nargs)
323e0a4a 10831 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10832 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10833 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10834 return
10835 unwrap_value (ada_value_subscript
10836 (argvec[0], nargs, argvec + 1));
10837 }
10838 case TYPE_CODE_ARRAY:
10839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10840 {
10841 type = ada_array_element_type (type, nargs);
10842 if (type == NULL)
323e0a4a 10843 error (_("element type of array unknown"));
4c4b4cd2 10844 else
0a07e705 10845 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10846 }
10847 return
10848 unwrap_value (ada_value_subscript
10849 (ada_coerce_to_simple_array (argvec[0]),
10850 nargs, argvec + 1));
10851 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10852 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10853 {
deede10c 10854 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10855 type = ada_array_element_type (type, nargs);
10856 if (type == NULL)
323e0a4a 10857 error (_("element type of array unknown"));
4c4b4cd2 10858 else
0a07e705 10859 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10860 }
10861 return
deede10c
JB
10862 unwrap_value (ada_value_ptr_subscript (argvec[0],
10863 nargs, argvec + 1));
4c4b4cd2
PH
10864
10865 default:
e1d5a0d2
PH
10866 error (_("Attempt to index or call something other than an "
10867 "array or function"));
4c4b4cd2
PH
10868 }
10869
10870 case TERNOP_SLICE:
10871 {
10872 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10873 struct value *low_bound_val =
10874 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10875 struct value *high_bound_val =
10876 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 LONGEST low_bound;
10878 LONGEST high_bound;
5b4ee69b 10879
994b9211
AC
10880 low_bound_val = coerce_ref (low_bound_val);
10881 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10882 low_bound = value_as_long (low_bound_val);
10883 high_bound = value_as_long (high_bound_val);
963a6417 10884
4c4b4cd2
PH
10885 if (noside == EVAL_SKIP)
10886 goto nosideret;
10887
4c4b4cd2
PH
10888 /* If this is a reference to an aligner type, then remove all
10889 the aligners. */
df407dfe
AC
10890 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10891 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10892 TYPE_TARGET_TYPE (value_type (array)) =
10893 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10894
ad82864c 10895 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10896 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10897
10898 /* If this is a reference to an array or an array lvalue,
10899 convert to a pointer. */
df407dfe
AC
10900 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10901 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10902 && VALUE_LVAL (array) == lval_memory))
10903 array = value_addr (array);
10904
1265e4aa 10905 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10906 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10907 (value_type (array))))
bff8c71f
TT
10908 return empty_array (ada_type_of_array (array, 0), low_bound,
10909 high_bound);
4c4b4cd2
PH
10910
10911 array = ada_coerce_to_simple_array_ptr (array);
10912
714e53ab
PH
10913 /* If we have more than one level of pointer indirection,
10914 dereference the value until we get only one level. */
df407dfe
AC
10915 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10916 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10917 == TYPE_CODE_PTR))
10918 array = value_ind (array);
10919
10920 /* Make sure we really do have an array type before going further,
10921 to avoid a SEGV when trying to get the index type or the target
10922 type later down the road if the debug info generated by
10923 the compiler is incorrect or incomplete. */
df407dfe 10924 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10925 error (_("cannot take slice of non-array"));
714e53ab 10926
828292f2
JB
10927 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10928 == TYPE_CODE_PTR)
4c4b4cd2 10929 {
828292f2
JB
10930 struct type *type0 = ada_check_typedef (value_type (array));
10931
0b5d8877 10932 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10933 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10934 else
10935 {
10936 struct type *arr_type0 =
828292f2 10937 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10938
f5938064
JG
10939 return ada_value_slice_from_ptr (array, arr_type0,
10940 longest_to_int (low_bound),
10941 longest_to_int (high_bound));
4c4b4cd2
PH
10942 }
10943 }
10944 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10945 return array;
10946 else if (high_bound < low_bound)
bff8c71f 10947 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10948 else
529cad9c
PH
10949 return ada_value_slice (array, longest_to_int (low_bound),
10950 longest_to_int (high_bound));
4c4b4cd2 10951 }
14f9c5c9 10952
4c4b4cd2
PH
10953 case UNOP_IN_RANGE:
10954 (*pos) += 2;
10955 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10956 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10957
14f9c5c9 10958 if (noside == EVAL_SKIP)
4c4b4cd2 10959 goto nosideret;
14f9c5c9 10960
4c4b4cd2
PH
10961 switch (TYPE_CODE (type))
10962 {
10963 default:
e1d5a0d2
PH
10964 lim_warning (_("Membership test incompletely implemented; "
10965 "always returns true"));
fbb06eb1
UW
10966 type = language_bool_type (exp->language_defn, exp->gdbarch);
10967 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10968
10969 case TYPE_CODE_RANGE:
030b4912
UW
10970 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10971 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10972 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10973 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10974 type = language_bool_type (exp->language_defn, exp->gdbarch);
10975 return
10976 value_from_longest (type,
4c4b4cd2
PH
10977 (value_less (arg1, arg3)
10978 || value_equal (arg1, arg3))
10979 && (value_less (arg2, arg1)
10980 || value_equal (arg2, arg1)));
10981 }
10982
10983 case BINOP_IN_BOUNDS:
14f9c5c9 10984 (*pos) += 2;
4c4b4cd2
PH
10985 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10986 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10987
4c4b4cd2
PH
10988 if (noside == EVAL_SKIP)
10989 goto nosideret;
14f9c5c9 10990
4c4b4cd2 10991 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10992 {
10993 type = language_bool_type (exp->language_defn, exp->gdbarch);
10994 return value_zero (type, not_lval);
10995 }
14f9c5c9 10996
4c4b4cd2 10997 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10998
1eea4ebd
UW
10999 type = ada_index_type (value_type (arg2), tem, "range");
11000 if (!type)
11001 type = value_type (arg1);
14f9c5c9 11002
1eea4ebd
UW
11003 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11004 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11005
f44316fa
UW
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11008 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11009 return
fbb06eb1 11010 value_from_longest (type,
4c4b4cd2
PH
11011 (value_less (arg1, arg3)
11012 || value_equal (arg1, arg3))
11013 && (value_less (arg2, arg1)
11014 || value_equal (arg2, arg1)));
11015
11016 case TERNOP_IN_RANGE:
11017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11019 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020
11021 if (noside == EVAL_SKIP)
11022 goto nosideret;
11023
f44316fa
UW
11024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11025 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11026 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11027 return
fbb06eb1 11028 value_from_longest (type,
4c4b4cd2
PH
11029 (value_less (arg1, arg3)
11030 || value_equal (arg1, arg3))
11031 && (value_less (arg2, arg1)
11032 || value_equal (arg2, arg1)));
11033
11034 case OP_ATR_FIRST:
11035 case OP_ATR_LAST:
11036 case OP_ATR_LENGTH:
11037 {
76a01679 11038 struct type *type_arg;
5b4ee69b 11039
76a01679
JB
11040 if (exp->elts[*pos].opcode == OP_TYPE)
11041 {
11042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11043 arg1 = NULL;
5bc23cb3 11044 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11045 }
11046 else
11047 {
11048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11049 type_arg = NULL;
11050 }
11051
11052 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11053 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11054 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11055 *pos += 4;
11056
11057 if (noside == EVAL_SKIP)
11058 goto nosideret;
680e1bee
TT
11059 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11060 {
11061 if (type_arg == NULL)
11062 type_arg = value_type (arg1);
76a01679 11063
680e1bee
TT
11064 if (ada_is_constrained_packed_array_type (type_arg))
11065 type_arg = decode_constrained_packed_array_type (type_arg);
11066
11067 if (!discrete_type_p (type_arg))
11068 {
11069 switch (op)
11070 {
11071 default: /* Should never happen. */
11072 error (_("unexpected attribute encountered"));
11073 case OP_ATR_FIRST:
11074 case OP_ATR_LAST:
11075 type_arg = ada_index_type (type_arg, tem,
11076 ada_attribute_name (op));
11077 break;
11078 case OP_ATR_LENGTH:
11079 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11080 break;
11081 }
11082 }
11083
11084 return value_zero (type_arg, not_lval);
11085 }
11086 else if (type_arg == NULL)
76a01679
JB
11087 {
11088 arg1 = ada_coerce_ref (arg1);
11089
ad82864c 11090 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11091 arg1 = ada_coerce_to_simple_array (arg1);
11092
aa4fb036 11093 if (op == OP_ATR_LENGTH)
1eea4ebd 11094 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11095 else
11096 {
11097 type = ada_index_type (value_type (arg1), tem,
11098 ada_attribute_name (op));
11099 if (type == NULL)
11100 type = builtin_type (exp->gdbarch)->builtin_int;
11101 }
76a01679 11102
76a01679
JB
11103 switch (op)
11104 {
11105 default: /* Should never happen. */
323e0a4a 11106 error (_("unexpected attribute encountered"));
76a01679 11107 case OP_ATR_FIRST:
1eea4ebd
UW
11108 return value_from_longest
11109 (type, ada_array_bound (arg1, tem, 0));
76a01679 11110 case OP_ATR_LAST:
1eea4ebd
UW
11111 return value_from_longest
11112 (type, ada_array_bound (arg1, tem, 1));
76a01679 11113 case OP_ATR_LENGTH:
1eea4ebd
UW
11114 return value_from_longest
11115 (type, ada_array_length (arg1, tem));
76a01679
JB
11116 }
11117 }
11118 else if (discrete_type_p (type_arg))
11119 {
11120 struct type *range_type;
0d5cff50 11121 const char *name = ada_type_name (type_arg);
5b4ee69b 11122
76a01679
JB
11123 range_type = NULL;
11124 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11125 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11126 if (range_type == NULL)
11127 range_type = type_arg;
11128 switch (op)
11129 {
11130 default:
323e0a4a 11131 error (_("unexpected attribute encountered"));
76a01679 11132 case OP_ATR_FIRST:
690cc4eb 11133 return value_from_longest
43bbcdc2 11134 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11135 case OP_ATR_LAST:
690cc4eb 11136 return value_from_longest
43bbcdc2 11137 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11138 case OP_ATR_LENGTH:
323e0a4a 11139 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11140 }
11141 }
11142 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11143 error (_("unimplemented type attribute"));
76a01679
JB
11144 else
11145 {
11146 LONGEST low, high;
11147
ad82864c
JB
11148 if (ada_is_constrained_packed_array_type (type_arg))
11149 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11150
aa4fb036 11151 if (op == OP_ATR_LENGTH)
1eea4ebd 11152 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11153 else
11154 {
11155 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11156 if (type == NULL)
11157 type = builtin_type (exp->gdbarch)->builtin_int;
11158 }
1eea4ebd 11159
76a01679
JB
11160 switch (op)
11161 {
11162 default:
323e0a4a 11163 error (_("unexpected attribute encountered"));
76a01679 11164 case OP_ATR_FIRST:
1eea4ebd 11165 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11166 return value_from_longest (type, low);
11167 case OP_ATR_LAST:
1eea4ebd 11168 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11169 return value_from_longest (type, high);
11170 case OP_ATR_LENGTH:
1eea4ebd
UW
11171 low = ada_array_bound_from_type (type_arg, tem, 0);
11172 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11173 return value_from_longest (type, high - low + 1);
11174 }
11175 }
14f9c5c9
AS
11176 }
11177
4c4b4cd2
PH
11178 case OP_ATR_TAG:
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11180 if (noside == EVAL_SKIP)
76a01679 11181 goto nosideret;
4c4b4cd2
PH
11182
11183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11184 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11185
11186 return ada_value_tag (arg1);
11187
11188 case OP_ATR_MIN:
11189 case OP_ATR_MAX:
11190 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 if (noside == EVAL_SKIP)
76a01679 11194 goto nosideret;
d2e4a39e 11195 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11196 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11197 else
f44316fa
UW
11198 {
11199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11200 return value_binop (arg1, arg2,
11201 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11202 }
14f9c5c9 11203
4c4b4cd2
PH
11204 case OP_ATR_MODULUS:
11205 {
31dedfee 11206 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11207
5b4ee69b 11208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11209 if (noside == EVAL_SKIP)
11210 goto nosideret;
4c4b4cd2 11211
76a01679 11212 if (!ada_is_modular_type (type_arg))
323e0a4a 11213 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11214
76a01679
JB
11215 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11216 ada_modulus (type_arg));
4c4b4cd2
PH
11217 }
11218
11219
11220 case OP_ATR_POS:
11221 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11223 if (noside == EVAL_SKIP)
76a01679 11224 goto nosideret;
3cb382c9
UW
11225 type = builtin_type (exp->gdbarch)->builtin_int;
11226 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11227 return value_zero (type, not_lval);
14f9c5c9 11228 else
3cb382c9 11229 return value_pos_atr (type, arg1);
14f9c5c9 11230
4c4b4cd2
PH
11231 case OP_ATR_SIZE:
11232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11233 type = value_type (arg1);
11234
11235 /* If the argument is a reference, then dereference its type, since
11236 the user is really asking for the size of the actual object,
11237 not the size of the pointer. */
11238 if (TYPE_CODE (type) == TYPE_CODE_REF)
11239 type = TYPE_TARGET_TYPE (type);
11240
4c4b4cd2 11241 if (noside == EVAL_SKIP)
76a01679 11242 goto nosideret;
4c4b4cd2 11243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11244 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11245 else
22601c15 11246 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11247 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11248
11249 case OP_ATR_VAL:
11250 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11251 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11252 type = exp->elts[pc + 2].type;
14f9c5c9 11253 if (noside == EVAL_SKIP)
76a01679 11254 goto nosideret;
4c4b4cd2 11255 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11256 return value_zero (type, not_lval);
4c4b4cd2 11257 else
76a01679 11258 return value_val_atr (type, arg1);
4c4b4cd2
PH
11259
11260 case BINOP_EXP:
11261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11262 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11263 if (noside == EVAL_SKIP)
11264 goto nosideret;
11265 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11266 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11267 else
f44316fa
UW
11268 {
11269 /* For integer exponentiation operations,
11270 only promote the first argument. */
11271 if (is_integral_type (value_type (arg2)))
11272 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11273 else
11274 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11275
11276 return value_binop (arg1, arg2, op);
11277 }
4c4b4cd2
PH
11278
11279 case UNOP_PLUS:
11280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11281 if (noside == EVAL_SKIP)
11282 goto nosideret;
11283 else
11284 return arg1;
11285
11286 case UNOP_ABS:
11287 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11288 if (noside == EVAL_SKIP)
11289 goto nosideret;
f44316fa 11290 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11291 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11292 return value_neg (arg1);
14f9c5c9 11293 else
4c4b4cd2 11294 return arg1;
14f9c5c9
AS
11295
11296 case UNOP_IND:
5ec18f2b 11297 preeval_pos = *pos;
6b0d7253 11298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11299 if (noside == EVAL_SKIP)
4c4b4cd2 11300 goto nosideret;
df407dfe 11301 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11303 {
11304 if (ada_is_array_descriptor_type (type))
11305 /* GDB allows dereferencing GNAT array descriptors. */
11306 {
11307 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11308
4c4b4cd2 11309 if (arrType == NULL)
323e0a4a 11310 error (_("Attempt to dereference null array pointer."));
00a4c844 11311 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11312 }
11313 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11314 || TYPE_CODE (type) == TYPE_CODE_REF
11315 /* In C you can dereference an array to get the 1st elt. */
11316 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11317 {
5ec18f2b
JG
11318 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11319 only be determined by inspecting the object's tag.
11320 This means that we need to evaluate completely the
11321 expression in order to get its type. */
11322
023db19c
JB
11323 if ((TYPE_CODE (type) == TYPE_CODE_REF
11324 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11325 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11326 {
11327 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11328 EVAL_NORMAL);
11329 type = value_type (ada_value_ind (arg1));
11330 }
11331 else
11332 {
11333 type = to_static_fixed_type
11334 (ada_aligned_type
11335 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11336 }
c1b5a1a6 11337 ada_ensure_varsize_limit (type);
714e53ab
PH
11338 return value_zero (type, lval_memory);
11339 }
4c4b4cd2 11340 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11341 {
11342 /* GDB allows dereferencing an int. */
11343 if (expect_type == NULL)
11344 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11345 lval_memory);
11346 else
11347 {
11348 expect_type =
11349 to_static_fixed_type (ada_aligned_type (expect_type));
11350 return value_zero (expect_type, lval_memory);
11351 }
11352 }
4c4b4cd2 11353 else
323e0a4a 11354 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11355 }
0963b4bd 11356 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11357 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11358
96967637
JB
11359 if (TYPE_CODE (type) == TYPE_CODE_INT)
11360 /* GDB allows dereferencing an int. If we were given
11361 the expect_type, then use that as the target type.
11362 Otherwise, assume that the target type is an int. */
11363 {
11364 if (expect_type != NULL)
11365 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11366 arg1));
11367 else
11368 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11369 (CORE_ADDR) value_as_address (arg1));
11370 }
6b0d7253 11371
4c4b4cd2
PH
11372 if (ada_is_array_descriptor_type (type))
11373 /* GDB allows dereferencing GNAT array descriptors. */
11374 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11375 else
4c4b4cd2 11376 return ada_value_ind (arg1);
14f9c5c9
AS
11377
11378 case STRUCTOP_STRUCT:
11379 tem = longest_to_int (exp->elts[pc + 1].longconst);
11380 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11381 preeval_pos = *pos;
14f9c5c9
AS
11382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11383 if (noside == EVAL_SKIP)
4c4b4cd2 11384 goto nosideret;
14f9c5c9 11385 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11386 {
df407dfe 11387 struct type *type1 = value_type (arg1);
5b4ee69b 11388
76a01679
JB
11389 if (ada_is_tagged_type (type1, 1))
11390 {
11391 type = ada_lookup_struct_elt_type (type1,
11392 &exp->elts[pc + 2].string,
988f6b3d 11393 1, 1);
5ec18f2b
JG
11394
11395 /* If the field is not found, check if it exists in the
11396 extension of this object's type. This means that we
11397 need to evaluate completely the expression. */
11398
76a01679 11399 if (type == NULL)
5ec18f2b
JG
11400 {
11401 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11402 EVAL_NORMAL);
11403 arg1 = ada_value_struct_elt (arg1,
11404 &exp->elts[pc + 2].string,
11405 0);
11406 arg1 = unwrap_value (arg1);
11407 type = value_type (ada_to_fixed_value (arg1));
11408 }
76a01679
JB
11409 }
11410 else
11411 type =
11412 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11413 0);
76a01679
JB
11414
11415 return value_zero (ada_aligned_type (type), lval_memory);
11416 }
14f9c5c9 11417 else
a579cd9a
MW
11418 {
11419 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11420 arg1 = unwrap_value (arg1);
11421 return ada_to_fixed_value (arg1);
11422 }
284614f0 11423
14f9c5c9 11424 case OP_TYPE:
4c4b4cd2
PH
11425 /* The value is not supposed to be used. This is here to make it
11426 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11427 (*pos) += 2;
11428 if (noside == EVAL_SKIP)
4c4b4cd2 11429 goto nosideret;
14f9c5c9 11430 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11431 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11432 else
323e0a4a 11433 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11434
11435 case OP_AGGREGATE:
11436 case OP_CHOICES:
11437 case OP_OTHERS:
11438 case OP_DISCRETE_RANGE:
11439 case OP_POSITIONAL:
11440 case OP_NAME:
11441 if (noside == EVAL_NORMAL)
11442 switch (op)
11443 {
11444 case OP_NAME:
11445 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11446 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11447 case OP_AGGREGATE:
11448 error (_("Aggregates only allowed on the right of an assignment"));
11449 default:
0963b4bd
MS
11450 internal_error (__FILE__, __LINE__,
11451 _("aggregate apparently mangled"));
52ce6436
PH
11452 }
11453
11454 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11455 *pos += oplen - 1;
11456 for (tem = 0; tem < nargs; tem += 1)
11457 ada_evaluate_subexp (NULL, exp, pos, noside);
11458 goto nosideret;
14f9c5c9
AS
11459 }
11460
11461nosideret:
ced9779b 11462 return eval_skip_value (exp);
14f9c5c9 11463}
14f9c5c9 11464\f
d2e4a39e 11465
4c4b4cd2 11466 /* Fixed point */
14f9c5c9
AS
11467
11468/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11469 type name that encodes the 'small and 'delta information.
4c4b4cd2 11470 Otherwise, return NULL. */
14f9c5c9 11471
d2e4a39e 11472static const char *
ebf56fd3 11473fixed_type_info (struct type *type)
14f9c5c9 11474{
d2e4a39e 11475 const char *name = ada_type_name (type);
14f9c5c9
AS
11476 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11477
d2e4a39e
AS
11478 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11479 {
14f9c5c9 11480 const char *tail = strstr (name, "___XF_");
5b4ee69b 11481
14f9c5c9 11482 if (tail == NULL)
4c4b4cd2 11483 return NULL;
d2e4a39e 11484 else
4c4b4cd2 11485 return tail + 5;
14f9c5c9
AS
11486 }
11487 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11488 return fixed_type_info (TYPE_TARGET_TYPE (type));
11489 else
11490 return NULL;
11491}
11492
4c4b4cd2 11493/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11494
11495int
ebf56fd3 11496ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11497{
11498 return fixed_type_info (type) != NULL;
11499}
11500
4c4b4cd2
PH
11501/* Return non-zero iff TYPE represents a System.Address type. */
11502
11503int
11504ada_is_system_address_type (struct type *type)
11505{
11506 return (TYPE_NAME (type)
11507 && strcmp (TYPE_NAME (type), "system__address") == 0);
11508}
11509
14f9c5c9 11510/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11511 type, return the target floating-point type to be used to represent
11512 of this type during internal computation. */
11513
11514static struct type *
11515ada_scaling_type (struct type *type)
11516{
11517 return builtin_type (get_type_arch (type))->builtin_long_double;
11518}
11519
11520/* Assuming that TYPE is the representation of an Ada fixed-point
11521 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11522 delta cannot be determined. */
14f9c5c9 11523
50eff16b 11524struct value *
ebf56fd3 11525ada_delta (struct type *type)
14f9c5c9
AS
11526{
11527 const char *encoding = fixed_type_info (type);
50eff16b
UW
11528 struct type *scale_type = ada_scaling_type (type);
11529
11530 long long num, den;
11531
11532 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11533 return nullptr;
d2e4a39e 11534 else
50eff16b
UW
11535 return value_binop (value_from_longest (scale_type, num),
11536 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11537}
11538
11539/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11540 factor ('SMALL value) associated with the type. */
14f9c5c9 11541
50eff16b
UW
11542struct value *
11543ada_scaling_factor (struct type *type)
14f9c5c9
AS
11544{
11545 const char *encoding = fixed_type_info (type);
50eff16b
UW
11546 struct type *scale_type = ada_scaling_type (type);
11547
11548 long long num0, den0, num1, den1;
14f9c5c9 11549 int n;
d2e4a39e 11550
50eff16b 11551 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11552 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11553
11554 if (n < 2)
50eff16b 11555 return value_from_longest (scale_type, 1);
14f9c5c9 11556 else if (n == 4)
50eff16b
UW
11557 return value_binop (value_from_longest (scale_type, num1),
11558 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11559 else
50eff16b
UW
11560 return value_binop (value_from_longest (scale_type, num0),
11561 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11562}
11563
14f9c5c9 11564\f
d2e4a39e 11565
4c4b4cd2 11566 /* Range types */
14f9c5c9
AS
11567
11568/* Scan STR beginning at position K for a discriminant name, and
11569 return the value of that discriminant field of DVAL in *PX. If
11570 PNEW_K is not null, put the position of the character beyond the
11571 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11572 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11573
11574static int
108d56a4 11575scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11576 int *pnew_k)
14f9c5c9
AS
11577{
11578 static char *bound_buffer = NULL;
11579 static size_t bound_buffer_len = 0;
5da1a4d3 11580 const char *pstart, *pend, *bound;
d2e4a39e 11581 struct value *bound_val;
14f9c5c9
AS
11582
11583 if (dval == NULL || str == NULL || str[k] == '\0')
11584 return 0;
11585
5da1a4d3
SM
11586 pstart = str + k;
11587 pend = strstr (pstart, "__");
14f9c5c9
AS
11588 if (pend == NULL)
11589 {
5da1a4d3 11590 bound = pstart;
14f9c5c9
AS
11591 k += strlen (bound);
11592 }
d2e4a39e 11593 else
14f9c5c9 11594 {
5da1a4d3
SM
11595 int len = pend - pstart;
11596
11597 /* Strip __ and beyond. */
11598 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11599 strncpy (bound_buffer, pstart, len);
11600 bound_buffer[len] = '\0';
11601
14f9c5c9 11602 bound = bound_buffer;
d2e4a39e 11603 k = pend - str;
14f9c5c9 11604 }
d2e4a39e 11605
df407dfe 11606 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11607 if (bound_val == NULL)
11608 return 0;
11609
11610 *px = value_as_long (bound_val);
11611 if (pnew_k != NULL)
11612 *pnew_k = k;
11613 return 1;
11614}
11615
11616/* Value of variable named NAME in the current environment. If
11617 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11618 otherwise causes an error with message ERR_MSG. */
11619
d2e4a39e 11620static struct value *
edb0c9cb 11621get_var_value (const char *name, const char *err_msg)
14f9c5c9 11622{
b5ec771e 11623 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11624
54d343a2 11625 std::vector<struct block_symbol> syms;
b5ec771e
PA
11626 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11627 get_selected_block (0),
11628 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11629
11630 if (nsyms != 1)
11631 {
11632 if (err_msg == NULL)
4c4b4cd2 11633 return 0;
14f9c5c9 11634 else
8a3fe4f8 11635 error (("%s"), err_msg);
14f9c5c9
AS
11636 }
11637
54d343a2 11638 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11639}
d2e4a39e 11640
edb0c9cb
PA
11641/* Value of integer variable named NAME in the current environment.
11642 If no such variable is found, returns false. Otherwise, sets VALUE
11643 to the variable's value and returns true. */
4c4b4cd2 11644
edb0c9cb
PA
11645bool
11646get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11647{
4c4b4cd2 11648 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11649
14f9c5c9 11650 if (var_val == 0)
edb0c9cb
PA
11651 return false;
11652
11653 value = value_as_long (var_val);
11654 return true;
14f9c5c9 11655}
d2e4a39e 11656
14f9c5c9
AS
11657
11658/* Return a range type whose base type is that of the range type named
11659 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11660 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11661 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11662 corresponding range type from debug information; fall back to using it
11663 if symbol lookup fails. If a new type must be created, allocate it
11664 like ORIG_TYPE was. The bounds information, in general, is encoded
11665 in NAME, the base type given in the named range type. */
14f9c5c9 11666
d2e4a39e 11667static struct type *
28c85d6c 11668to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11669{
0d5cff50 11670 const char *name;
14f9c5c9 11671 struct type *base_type;
108d56a4 11672 const char *subtype_info;
14f9c5c9 11673
28c85d6c
JB
11674 gdb_assert (raw_type != NULL);
11675 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11676
1ce677a4 11677 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11678 base_type = TYPE_TARGET_TYPE (raw_type);
11679 else
11680 base_type = raw_type;
11681
28c85d6c 11682 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11683 subtype_info = strstr (name, "___XD");
11684 if (subtype_info == NULL)
690cc4eb 11685 {
43bbcdc2
PH
11686 LONGEST L = ada_discrete_type_low_bound (raw_type);
11687 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11688
690cc4eb
PH
11689 if (L < INT_MIN || U > INT_MAX)
11690 return raw_type;
11691 else
0c9c3474
SA
11692 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11693 L, U);
690cc4eb 11694 }
14f9c5c9
AS
11695 else
11696 {
11697 static char *name_buf = NULL;
11698 static size_t name_len = 0;
11699 int prefix_len = subtype_info - name;
11700 LONGEST L, U;
11701 struct type *type;
108d56a4 11702 const char *bounds_str;
14f9c5c9
AS
11703 int n;
11704
11705 GROW_VECT (name_buf, name_len, prefix_len + 5);
11706 strncpy (name_buf, name, prefix_len);
11707 name_buf[prefix_len] = '\0';
11708
11709 subtype_info += 5;
11710 bounds_str = strchr (subtype_info, '_');
11711 n = 1;
11712
d2e4a39e 11713 if (*subtype_info == 'L')
4c4b4cd2
PH
11714 {
11715 if (!ada_scan_number (bounds_str, n, &L, &n)
11716 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11717 return raw_type;
11718 if (bounds_str[n] == '_')
11719 n += 2;
0963b4bd 11720 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11721 n += 1;
11722 subtype_info += 1;
11723 }
d2e4a39e 11724 else
4c4b4cd2 11725 {
4c4b4cd2 11726 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11727 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11728 {
323e0a4a 11729 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11730 L = 1;
11731 }
11732 }
14f9c5c9 11733
d2e4a39e 11734 if (*subtype_info == 'U')
4c4b4cd2
PH
11735 {
11736 if (!ada_scan_number (bounds_str, n, &U, &n)
11737 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11738 return raw_type;
11739 }
d2e4a39e 11740 else
4c4b4cd2 11741 {
4c4b4cd2 11742 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11743 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11744 {
323e0a4a 11745 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11746 U = L;
11747 }
11748 }
14f9c5c9 11749
0c9c3474
SA
11750 type = create_static_range_type (alloc_type_copy (raw_type),
11751 base_type, L, U);
f5a91472
JB
11752 /* create_static_range_type alters the resulting type's length
11753 to match the size of the base_type, which is not what we want.
11754 Set it back to the original range type's length. */
11755 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11756 TYPE_NAME (type) = name;
14f9c5c9
AS
11757 return type;
11758 }
11759}
11760
4c4b4cd2
PH
11761/* True iff NAME is the name of a range type. */
11762
14f9c5c9 11763int
d2e4a39e 11764ada_is_range_type_name (const char *name)
14f9c5c9
AS
11765{
11766 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11767}
14f9c5c9 11768\f
d2e4a39e 11769
4c4b4cd2
PH
11770 /* Modular types */
11771
11772/* True iff TYPE is an Ada modular type. */
14f9c5c9 11773
14f9c5c9 11774int
d2e4a39e 11775ada_is_modular_type (struct type *type)
14f9c5c9 11776{
18af8284 11777 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11778
11779 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11780 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11781 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11782}
11783
4c4b4cd2
PH
11784/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11785
61ee279c 11786ULONGEST
0056e4d5 11787ada_modulus (struct type *type)
14f9c5c9 11788{
43bbcdc2 11789 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11790}
d2e4a39e 11791\f
f7f9143b
JB
11792
11793/* Ada exception catchpoint support:
11794 ---------------------------------
11795
11796 We support 3 kinds of exception catchpoints:
11797 . catchpoints on Ada exceptions
11798 . catchpoints on unhandled Ada exceptions
11799 . catchpoints on failed assertions
11800
11801 Exceptions raised during failed assertions, or unhandled exceptions
11802 could perfectly be caught with the general catchpoint on Ada exceptions.
11803 However, we can easily differentiate these two special cases, and having
11804 the option to distinguish these two cases from the rest can be useful
11805 to zero-in on certain situations.
11806
11807 Exception catchpoints are a specialized form of breakpoint,
11808 since they rely on inserting breakpoints inside known routines
11809 of the GNAT runtime. The implementation therefore uses a standard
11810 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11811 of breakpoint_ops.
11812
0259addd
JB
11813 Support in the runtime for exception catchpoints have been changed
11814 a few times already, and these changes affect the implementation
11815 of these catchpoints. In order to be able to support several
11816 variants of the runtime, we use a sniffer that will determine
28010a5d 11817 the runtime variant used by the program being debugged. */
f7f9143b 11818
82eacd52
JB
11819/* Ada's standard exceptions.
11820
11821 The Ada 83 standard also defined Numeric_Error. But there so many
11822 situations where it was unclear from the Ada 83 Reference Manual
11823 (RM) whether Constraint_Error or Numeric_Error should be raised,
11824 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11825 Interpretation saying that anytime the RM says that Numeric_Error
11826 should be raised, the implementation may raise Constraint_Error.
11827 Ada 95 went one step further and pretty much removed Numeric_Error
11828 from the list of standard exceptions (it made it a renaming of
11829 Constraint_Error, to help preserve compatibility when compiling
11830 an Ada83 compiler). As such, we do not include Numeric_Error from
11831 this list of standard exceptions. */
3d0b0fa3 11832
a121b7c1 11833static const char *standard_exc[] = {
3d0b0fa3
JB
11834 "constraint_error",
11835 "program_error",
11836 "storage_error",
11837 "tasking_error"
11838};
11839
0259addd
JB
11840typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11841
11842/* A structure that describes how to support exception catchpoints
11843 for a given executable. */
11844
11845struct exception_support_info
11846{
11847 /* The name of the symbol to break on in order to insert
11848 a catchpoint on exceptions. */
11849 const char *catch_exception_sym;
11850
11851 /* The name of the symbol to break on in order to insert
11852 a catchpoint on unhandled exceptions. */
11853 const char *catch_exception_unhandled_sym;
11854
11855 /* The name of the symbol to break on in order to insert
11856 a catchpoint on failed assertions. */
11857 const char *catch_assert_sym;
11858
9f757bf7
XR
11859 /* The name of the symbol to break on in order to insert
11860 a catchpoint on exception handling. */
11861 const char *catch_handlers_sym;
11862
0259addd
JB
11863 /* Assuming that the inferior just triggered an unhandled exception
11864 catchpoint, this function is responsible for returning the address
11865 in inferior memory where the name of that exception is stored.
11866 Return zero if the address could not be computed. */
11867 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11868};
11869
11870static CORE_ADDR ada_unhandled_exception_name_addr (void);
11871static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11872
11873/* The following exception support info structure describes how to
11874 implement exception catchpoints with the latest version of the
ca683e3a 11875 Ada runtime (as of 2019-08-??). */
0259addd
JB
11876
11877static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11878{
11879 "__gnat_debug_raise_exception", /* catch_exception_sym */
11880 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11881 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11882 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11883 ada_unhandled_exception_name_addr
11884};
11885
11886/* The following exception support info structure describes how to
11887 implement exception catchpoints with an earlier version of the
11888 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11889
11890static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11891{
11892 "__gnat_debug_raise_exception", /* catch_exception_sym */
11893 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11894 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11895 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11896 ada_unhandled_exception_name_addr
11897};
11898
11899/* The following exception support info structure describes how to
11900 implement exception catchpoints with a slightly older version
11901 of the Ada runtime. */
11902
11903static const struct exception_support_info exception_support_info_fallback =
11904{
11905 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11906 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11907 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11908 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11909 ada_unhandled_exception_name_addr_from_raise
11910};
11911
f17011e0
JB
11912/* Return nonzero if we can detect the exception support routines
11913 described in EINFO.
11914
11915 This function errors out if an abnormal situation is detected
11916 (for instance, if we find the exception support routines, but
11917 that support is found to be incomplete). */
11918
11919static int
11920ada_has_this_exception_support (const struct exception_support_info *einfo)
11921{
11922 struct symbol *sym;
11923
11924 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11925 that should be compiled with debugging information. As a result, we
11926 expect to find that symbol in the symtabs. */
11927
11928 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11929 if (sym == NULL)
a6af7abe
JB
11930 {
11931 /* Perhaps we did not find our symbol because the Ada runtime was
11932 compiled without debugging info, or simply stripped of it.
11933 It happens on some GNU/Linux distributions for instance, where
11934 users have to install a separate debug package in order to get
11935 the runtime's debugging info. In that situation, let the user
11936 know why we cannot insert an Ada exception catchpoint.
11937
11938 Note: Just for the purpose of inserting our Ada exception
11939 catchpoint, we could rely purely on the associated minimal symbol.
11940 But we would be operating in degraded mode anyway, since we are
11941 still lacking the debugging info needed later on to extract
11942 the name of the exception being raised (this name is printed in
11943 the catchpoint message, and is also used when trying to catch
11944 a specific exception). We do not handle this case for now. */
3b7344d5 11945 struct bound_minimal_symbol msym
1c8e84b0
JB
11946 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11947
3b7344d5 11948 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11949 error (_("Your Ada runtime appears to be missing some debugging "
11950 "information.\nCannot insert Ada exception catchpoint "
11951 "in this configuration."));
11952
11953 return 0;
11954 }
f17011e0
JB
11955
11956 /* Make sure that the symbol we found corresponds to a function. */
11957
11958 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11959 {
11960 error (_("Symbol \"%s\" is not a function (class = %d)"),
11961 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11962 return 0;
11963 }
11964
11965 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11966 if (sym == NULL)
11967 {
11968 struct bound_minimal_symbol msym
11969 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11970
11971 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11972 error (_("Your Ada runtime appears to be missing some debugging "
11973 "information.\nCannot insert Ada exception catchpoint "
11974 "in this configuration."));
11975
11976 return 0;
11977 }
11978
11979 /* Make sure that the symbol we found corresponds to a function. */
11980
11981 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11982 {
11983 error (_("Symbol \"%s\" is not a function (class = %d)"),
11984 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11985 return 0;
11986 }
f17011e0
JB
11987
11988 return 1;
11989}
11990
0259addd
JB
11991/* Inspect the Ada runtime and determine which exception info structure
11992 should be used to provide support for exception catchpoints.
11993
3eecfa55
JB
11994 This function will always set the per-inferior exception_info,
11995 or raise an error. */
0259addd
JB
11996
11997static void
11998ada_exception_support_info_sniffer (void)
11999{
3eecfa55 12000 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12001
12002 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12003 if (data->exception_info != NULL)
0259addd
JB
12004 return;
12005
12006 /* Check the latest (default) exception support info. */
f17011e0 12007 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12008 {
3eecfa55 12009 data->exception_info = &default_exception_support_info;
0259addd
JB
12010 return;
12011 }
12012
ca683e3a
AO
12013 /* Try the v0 exception suport info. */
12014 if (ada_has_this_exception_support (&exception_support_info_v0))
12015 {
12016 data->exception_info = &exception_support_info_v0;
12017 return;
12018 }
12019
0259addd 12020 /* Try our fallback exception suport info. */
f17011e0 12021 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12022 {
3eecfa55 12023 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12024 return;
12025 }
12026
12027 /* Sometimes, it is normal for us to not be able to find the routine
12028 we are looking for. This happens when the program is linked with
12029 the shared version of the GNAT runtime, and the program has not been
12030 started yet. Inform the user of these two possible causes if
12031 applicable. */
12032
ccefe4c4 12033 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12034 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12035
12036 /* If the symbol does not exist, then check that the program is
12037 already started, to make sure that shared libraries have been
12038 loaded. If it is not started, this may mean that the symbol is
12039 in a shared library. */
12040
e99b03dc 12041 if (inferior_ptid.pid () == 0)
0259addd
JB
12042 error (_("Unable to insert catchpoint. Try to start the program first."));
12043
12044 /* At this point, we know that we are debugging an Ada program and
12045 that the inferior has been started, but we still are not able to
0963b4bd 12046 find the run-time symbols. That can mean that we are in
0259addd
JB
12047 configurable run time mode, or that a-except as been optimized
12048 out by the linker... In any case, at this point it is not worth
12049 supporting this feature. */
12050
7dda8cff 12051 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12052}
12053
f7f9143b
JB
12054/* True iff FRAME is very likely to be that of a function that is
12055 part of the runtime system. This is all very heuristic, but is
12056 intended to be used as advice as to what frames are uninteresting
12057 to most users. */
12058
12059static int
12060is_known_support_routine (struct frame_info *frame)
12061{
692465f1 12062 enum language func_lang;
f7f9143b 12063 int i;
f35a17b5 12064 const char *fullname;
f7f9143b 12065
4ed6b5be
JB
12066 /* If this code does not have any debugging information (no symtab),
12067 This cannot be any user code. */
f7f9143b 12068
51abb421 12069 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12070 if (sal.symtab == NULL)
12071 return 1;
12072
4ed6b5be
JB
12073 /* If there is a symtab, but the associated source file cannot be
12074 located, then assume this is not user code: Selecting a frame
12075 for which we cannot display the code would not be very helpful
12076 for the user. This should also take care of case such as VxWorks
12077 where the kernel has some debugging info provided for a few units. */
f7f9143b 12078
f35a17b5
JK
12079 fullname = symtab_to_fullname (sal.symtab);
12080 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12081 return 1;
12082
4ed6b5be
JB
12083 /* Check the unit filename againt the Ada runtime file naming.
12084 We also check the name of the objfile against the name of some
12085 known system libraries that sometimes come with debugging info
12086 too. */
12087
f7f9143b
JB
12088 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12089 {
12090 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12091 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12092 return 1;
eb822aa6
DE
12093 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12094 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12095 return 1;
f7f9143b
JB
12096 }
12097
4ed6b5be 12098 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12099
c6dc63a1
TT
12100 gdb::unique_xmalloc_ptr<char> func_name
12101 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12102 if (func_name == NULL)
12103 return 1;
12104
12105 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12106 {
12107 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12108 if (re_exec (func_name.get ()))
12109 return 1;
f7f9143b
JB
12110 }
12111
12112 return 0;
12113}
12114
12115/* Find the first frame that contains debugging information and that is not
12116 part of the Ada run-time, starting from FI and moving upward. */
12117
0ef643c8 12118void
f7f9143b
JB
12119ada_find_printable_frame (struct frame_info *fi)
12120{
12121 for (; fi != NULL; fi = get_prev_frame (fi))
12122 {
12123 if (!is_known_support_routine (fi))
12124 {
12125 select_frame (fi);
12126 break;
12127 }
12128 }
12129
12130}
12131
12132/* Assuming that the inferior just triggered an unhandled exception
12133 catchpoint, return the address in inferior memory where the name
12134 of the exception is stored.
12135
12136 Return zero if the address could not be computed. */
12137
12138static CORE_ADDR
12139ada_unhandled_exception_name_addr (void)
0259addd
JB
12140{
12141 return parse_and_eval_address ("e.full_name");
12142}
12143
12144/* Same as ada_unhandled_exception_name_addr, except that this function
12145 should be used when the inferior uses an older version of the runtime,
12146 where the exception name needs to be extracted from a specific frame
12147 several frames up in the callstack. */
12148
12149static CORE_ADDR
12150ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12151{
12152 int frame_level;
12153 struct frame_info *fi;
3eecfa55 12154 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12155
12156 /* To determine the name of this exception, we need to select
12157 the frame corresponding to RAISE_SYM_NAME. This frame is
12158 at least 3 levels up, so we simply skip the first 3 frames
12159 without checking the name of their associated function. */
12160 fi = get_current_frame ();
12161 for (frame_level = 0; frame_level < 3; frame_level += 1)
12162 if (fi != NULL)
12163 fi = get_prev_frame (fi);
12164
12165 while (fi != NULL)
12166 {
692465f1
JB
12167 enum language func_lang;
12168
c6dc63a1
TT
12169 gdb::unique_xmalloc_ptr<char> func_name
12170 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12171 if (func_name != NULL)
12172 {
c6dc63a1 12173 if (strcmp (func_name.get (),
55b87a52
KS
12174 data->exception_info->catch_exception_sym) == 0)
12175 break; /* We found the frame we were looking for... */
55b87a52 12176 }
fb44b1a7 12177 fi = get_prev_frame (fi);
f7f9143b
JB
12178 }
12179
12180 if (fi == NULL)
12181 return 0;
12182
12183 select_frame (fi);
12184 return parse_and_eval_address ("id.full_name");
12185}
12186
12187/* Assuming the inferior just triggered an Ada exception catchpoint
12188 (of any type), return the address in inferior memory where the name
12189 of the exception is stored, if applicable.
12190
45db7c09
PA
12191 Assumes the selected frame is the current frame.
12192
f7f9143b
JB
12193 Return zero if the address could not be computed, or if not relevant. */
12194
12195static CORE_ADDR
761269c8 12196ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12197 struct breakpoint *b)
12198{
3eecfa55
JB
12199 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12200
f7f9143b
JB
12201 switch (ex)
12202 {
761269c8 12203 case ada_catch_exception:
f7f9143b
JB
12204 return (parse_and_eval_address ("e.full_name"));
12205 break;
12206
761269c8 12207 case ada_catch_exception_unhandled:
3eecfa55 12208 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12209 break;
9f757bf7
XR
12210
12211 case ada_catch_handlers:
12212 return 0; /* The runtimes does not provide access to the exception
12213 name. */
12214 break;
12215
761269c8 12216 case ada_catch_assert:
f7f9143b
JB
12217 return 0; /* Exception name is not relevant in this case. */
12218 break;
12219
12220 default:
12221 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12222 break;
12223 }
12224
12225 return 0; /* Should never be reached. */
12226}
12227
e547c119
JB
12228/* Assuming the inferior is stopped at an exception catchpoint,
12229 return the message which was associated to the exception, if
12230 available. Return NULL if the message could not be retrieved.
12231
e547c119
JB
12232 Note: The exception message can be associated to an exception
12233 either through the use of the Raise_Exception function, or
12234 more simply (Ada 2005 and later), via:
12235
12236 raise Exception_Name with "exception message";
12237
12238 */
12239
6f46ac85 12240static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12241ada_exception_message_1 (void)
12242{
12243 struct value *e_msg_val;
e547c119 12244 int e_msg_len;
e547c119
JB
12245
12246 /* For runtimes that support this feature, the exception message
12247 is passed as an unbounded string argument called "message". */
12248 e_msg_val = parse_and_eval ("message");
12249 if (e_msg_val == NULL)
12250 return NULL; /* Exception message not supported. */
12251
12252 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12253 gdb_assert (e_msg_val != NULL);
12254 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12255
12256 /* If the message string is empty, then treat it as if there was
12257 no exception message. */
12258 if (e_msg_len <= 0)
12259 return NULL;
12260
6f46ac85
TT
12261 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12262 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12263 e_msg.get ()[e_msg_len] = '\0';
e547c119 12264
e547c119
JB
12265 return e_msg;
12266}
12267
12268/* Same as ada_exception_message_1, except that all exceptions are
12269 contained here (returning NULL instead). */
12270
6f46ac85 12271static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12272ada_exception_message (void)
12273{
6f46ac85 12274 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12275
a70b8144 12276 try
e547c119
JB
12277 {
12278 e_msg = ada_exception_message_1 ();
12279 }
230d2906 12280 catch (const gdb_exception_error &e)
e547c119 12281 {
6f46ac85 12282 e_msg.reset (nullptr);
e547c119 12283 }
e547c119
JB
12284
12285 return e_msg;
12286}
12287
f7f9143b
JB
12288/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12289 any error that ada_exception_name_addr_1 might cause to be thrown.
12290 When an error is intercepted, a warning with the error message is printed,
12291 and zero is returned. */
12292
12293static CORE_ADDR
761269c8 12294ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12295 struct breakpoint *b)
12296{
f7f9143b
JB
12297 CORE_ADDR result = 0;
12298
a70b8144 12299 try
f7f9143b
JB
12300 {
12301 result = ada_exception_name_addr_1 (ex, b);
12302 }
12303
230d2906 12304 catch (const gdb_exception_error &e)
f7f9143b 12305 {
3d6e9d23 12306 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12307 return 0;
12308 }
12309
12310 return result;
12311}
12312
cb7de75e 12313static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12314 (const char *excep_string,
12315 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12316
12317/* Ada catchpoints.
12318
12319 In the case of catchpoints on Ada exceptions, the catchpoint will
12320 stop the target on every exception the program throws. When a user
12321 specifies the name of a specific exception, we translate this
12322 request into a condition expression (in text form), and then parse
12323 it into an expression stored in each of the catchpoint's locations.
12324 We then use this condition to check whether the exception that was
12325 raised is the one the user is interested in. If not, then the
12326 target is resumed again. We store the name of the requested
12327 exception, in order to be able to re-set the condition expression
12328 when symbols change. */
12329
12330/* An instance of this type is used to represent an Ada catchpoint
5625a286 12331 breakpoint location. */
28010a5d 12332
5625a286 12333class ada_catchpoint_location : public bp_location
28010a5d 12334{
5625a286 12335public:
5f486660 12336 ada_catchpoint_location (breakpoint *owner)
f06f1252 12337 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12338 {}
28010a5d
PA
12339
12340 /* The condition that checks whether the exception that was raised
12341 is the specific exception the user specified on catchpoint
12342 creation. */
4d01a485 12343 expression_up excep_cond_expr;
28010a5d
PA
12344};
12345
c1fc2657 12346/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12347
c1fc2657 12348struct ada_catchpoint : public breakpoint
28010a5d 12349{
28010a5d 12350 /* The name of the specific exception the user specified. */
bc18fbb5 12351 std::string excep_string;
28010a5d
PA
12352};
12353
12354/* Parse the exception condition string in the context of each of the
12355 catchpoint's locations, and store them for later evaluation. */
12356
12357static void
9f757bf7
XR
12358create_excep_cond_exprs (struct ada_catchpoint *c,
12359 enum ada_exception_catchpoint_kind ex)
28010a5d 12360{
28010a5d 12361 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12362 if (c->excep_string.empty ())
28010a5d
PA
12363 return;
12364
12365 /* Same if there are no locations... */
c1fc2657 12366 if (c->loc == NULL)
28010a5d
PA
12367 return;
12368
2ff0a947
TT
12369 /* We have to compute the expression once for each program space,
12370 because the expression may hold the addresses of multiple symbols
12371 in some cases. */
12372 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12373 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12374 loc_map.emplace (bl->pspace, bl);
28010a5d 12375
2ff0a947
TT
12376 scoped_restore_current_program_space save_pspace;
12377
12378 std::string cond_string;
12379 program_space *last_ps = nullptr;
12380 for (auto iter : loc_map)
28010a5d
PA
12381 {
12382 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12383 = (struct ada_catchpoint_location *) iter.second;
12384
12385 if (ada_loc->pspace != last_ps)
12386 {
12387 last_ps = ada_loc->pspace;
12388 set_current_program_space (last_ps);
12389
12390 /* Compute the condition expression in text form, from the
12391 specific expection we want to catch. */
12392 cond_string
12393 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12394 ex);
12395 }
12396
4d01a485 12397 expression_up exp;
28010a5d 12398
2ff0a947 12399 if (!ada_loc->shlib_disabled)
28010a5d 12400 {
bbc13ae3 12401 const char *s;
28010a5d 12402
cb7de75e 12403 s = cond_string.c_str ();
a70b8144 12404 try
28010a5d 12405 {
2ff0a947
TT
12406 exp = parse_exp_1 (&s, ada_loc->address,
12407 block_for_pc (ada_loc->address),
036e657b 12408 0);
28010a5d 12409 }
230d2906 12410 catch (const gdb_exception_error &e)
849f2b52
JB
12411 {
12412 warning (_("failed to reevaluate internal exception condition "
12413 "for catchpoint %d: %s"),
3d6e9d23 12414 c->number, e.what ());
849f2b52 12415 }
28010a5d
PA
12416 }
12417
b22e99fd 12418 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12419 }
28010a5d
PA
12420}
12421
28010a5d
PA
12422/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12423 structure for all exception catchpoint kinds. */
12424
12425static struct bp_location *
761269c8 12426allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12427 struct breakpoint *self)
12428{
5f486660 12429 return new ada_catchpoint_location (self);
28010a5d
PA
12430}
12431
12432/* Implement the RE_SET method in the breakpoint_ops structure for all
12433 exception catchpoint kinds. */
12434
12435static void
761269c8 12436re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12437{
12438 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12439
12440 /* Call the base class's method. This updates the catchpoint's
12441 locations. */
2060206e 12442 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12443
12444 /* Reparse the exception conditional expressions. One for each
12445 location. */
9f757bf7 12446 create_excep_cond_exprs (c, ex);
28010a5d
PA
12447}
12448
12449/* Returns true if we should stop for this breakpoint hit. If the
12450 user specified a specific exception, we only want to cause a stop
12451 if the program thrown that exception. */
12452
12453static int
12454should_stop_exception (const struct bp_location *bl)
12455{
12456 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12457 const struct ada_catchpoint_location *ada_loc
12458 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12459 int stop;
12460
12461 /* With no specific exception, should always stop. */
bc18fbb5 12462 if (c->excep_string.empty ())
28010a5d
PA
12463 return 1;
12464
12465 if (ada_loc->excep_cond_expr == NULL)
12466 {
12467 /* We will have a NULL expression if back when we were creating
12468 the expressions, this location's had failed to parse. */
12469 return 1;
12470 }
12471
12472 stop = 1;
a70b8144 12473 try
28010a5d
PA
12474 {
12475 struct value *mark;
12476
12477 mark = value_mark ();
4d01a485 12478 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12479 value_free_to_mark (mark);
12480 }
230d2906 12481 catch (const gdb_exception &ex)
492d29ea
PA
12482 {
12483 exception_fprintf (gdb_stderr, ex,
12484 _("Error in testing exception condition:\n"));
12485 }
492d29ea 12486
28010a5d
PA
12487 return stop;
12488}
12489
12490/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12491 for all exception catchpoint kinds. */
12492
12493static void
761269c8 12494check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12495{
12496 bs->stop = should_stop_exception (bs->bp_location_at);
12497}
12498
f7f9143b
JB
12499/* Implement the PRINT_IT method in the breakpoint_ops structure
12500 for all exception catchpoint kinds. */
12501
12502static enum print_stop_action
761269c8 12503print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12504{
79a45e25 12505 struct ui_out *uiout = current_uiout;
348d480f
PA
12506 struct breakpoint *b = bs->breakpoint_at;
12507
956a9fb9 12508 annotate_catchpoint (b->number);
f7f9143b 12509
112e8700 12510 if (uiout->is_mi_like_p ())
f7f9143b 12511 {
112e8700 12512 uiout->field_string ("reason",
956a9fb9 12513 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12514 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12515 }
12516
112e8700
SM
12517 uiout->text (b->disposition == disp_del
12518 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12519 uiout->field_signed ("bkptno", b->number);
112e8700 12520 uiout->text (", ");
f7f9143b 12521
45db7c09
PA
12522 /* ada_exception_name_addr relies on the selected frame being the
12523 current frame. Need to do this here because this function may be
12524 called more than once when printing a stop, and below, we'll
12525 select the first frame past the Ada run-time (see
12526 ada_find_printable_frame). */
12527 select_frame (get_current_frame ());
12528
f7f9143b
JB
12529 switch (ex)
12530 {
761269c8
JB
12531 case ada_catch_exception:
12532 case ada_catch_exception_unhandled:
9f757bf7 12533 case ada_catch_handlers:
956a9fb9
JB
12534 {
12535 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12536 char exception_name[256];
12537
12538 if (addr != 0)
12539 {
c714b426
PA
12540 read_memory (addr, (gdb_byte *) exception_name,
12541 sizeof (exception_name) - 1);
956a9fb9
JB
12542 exception_name [sizeof (exception_name) - 1] = '\0';
12543 }
12544 else
12545 {
12546 /* For some reason, we were unable to read the exception
12547 name. This could happen if the Runtime was compiled
12548 without debugging info, for instance. In that case,
12549 just replace the exception name by the generic string
12550 "exception" - it will read as "an exception" in the
12551 notification we are about to print. */
967cff16 12552 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12553 }
12554 /* In the case of unhandled exception breakpoints, we print
12555 the exception name as "unhandled EXCEPTION_NAME", to make
12556 it clearer to the user which kind of catchpoint just got
12557 hit. We used ui_out_text to make sure that this extra
12558 info does not pollute the exception name in the MI case. */
761269c8 12559 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12560 uiout->text ("unhandled ");
12561 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12562 }
12563 break;
761269c8 12564 case ada_catch_assert:
956a9fb9
JB
12565 /* In this case, the name of the exception is not really
12566 important. Just print "failed assertion" to make it clearer
12567 that his program just hit an assertion-failure catchpoint.
12568 We used ui_out_text because this info does not belong in
12569 the MI output. */
112e8700 12570 uiout->text ("failed assertion");
956a9fb9 12571 break;
f7f9143b 12572 }
e547c119 12573
6f46ac85 12574 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12575 if (exception_message != NULL)
12576 {
e547c119 12577 uiout->text (" (");
6f46ac85 12578 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12579 uiout->text (")");
e547c119
JB
12580 }
12581
112e8700 12582 uiout->text (" at ");
956a9fb9 12583 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12584
12585 return PRINT_SRC_AND_LOC;
12586}
12587
12588/* Implement the PRINT_ONE method in the breakpoint_ops structure
12589 for all exception catchpoint kinds. */
12590
12591static void
761269c8 12592print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12593 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12594{
79a45e25 12595 struct ui_out *uiout = current_uiout;
28010a5d 12596 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12597 struct value_print_options opts;
12598
12599 get_user_print_options (&opts);
f06f1252 12600
79a45b7d 12601 if (opts.addressprint)
f06f1252 12602 uiout->field_skip ("addr");
f7f9143b
JB
12603
12604 annotate_field (5);
f7f9143b
JB
12605 switch (ex)
12606 {
761269c8 12607 case ada_catch_exception:
bc18fbb5 12608 if (!c->excep_string.empty ())
f7f9143b 12609 {
bc18fbb5
TT
12610 std::string msg = string_printf (_("`%s' Ada exception"),
12611 c->excep_string.c_str ());
28010a5d 12612
112e8700 12613 uiout->field_string ("what", msg);
f7f9143b
JB
12614 }
12615 else
112e8700 12616 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12617
12618 break;
12619
761269c8 12620 case ada_catch_exception_unhandled:
112e8700 12621 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12622 break;
12623
9f757bf7 12624 case ada_catch_handlers:
bc18fbb5 12625 if (!c->excep_string.empty ())
9f757bf7
XR
12626 {
12627 uiout->field_fmt ("what",
12628 _("`%s' Ada exception handlers"),
bc18fbb5 12629 c->excep_string.c_str ());
9f757bf7
XR
12630 }
12631 else
12632 uiout->field_string ("what", "all Ada exceptions handlers");
12633 break;
12634
761269c8 12635 case ada_catch_assert:
112e8700 12636 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12637 break;
12638
12639 default:
12640 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12641 break;
12642 }
12643}
12644
12645/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12646 for all exception catchpoint kinds. */
12647
12648static void
761269c8 12649print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12650 struct breakpoint *b)
12651{
28010a5d 12652 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12653 struct ui_out *uiout = current_uiout;
28010a5d 12654
112e8700 12655 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12656 : _("Catchpoint "));
381befee 12657 uiout->field_signed ("bkptno", b->number);
112e8700 12658 uiout->text (": ");
00eb2c4a 12659
f7f9143b
JB
12660 switch (ex)
12661 {
761269c8 12662 case ada_catch_exception:
bc18fbb5 12663 if (!c->excep_string.empty ())
00eb2c4a 12664 {
862d101a 12665 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12666 c->excep_string.c_str ());
862d101a 12667 uiout->text (info.c_str ());
00eb2c4a 12668 }
f7f9143b 12669 else
112e8700 12670 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12671 break;
12672
761269c8 12673 case ada_catch_exception_unhandled:
112e8700 12674 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12675 break;
9f757bf7
XR
12676
12677 case ada_catch_handlers:
bc18fbb5 12678 if (!c->excep_string.empty ())
9f757bf7
XR
12679 {
12680 std::string info
12681 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12682 c->excep_string.c_str ());
9f757bf7
XR
12683 uiout->text (info.c_str ());
12684 }
12685 else
12686 uiout->text (_("all Ada exceptions handlers"));
12687 break;
12688
761269c8 12689 case ada_catch_assert:
112e8700 12690 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12691 break;
12692
12693 default:
12694 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12695 break;
12696 }
12697}
12698
6149aea9
PA
12699/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12700 for all exception catchpoint kinds. */
12701
12702static void
761269c8 12703print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12704 struct breakpoint *b, struct ui_file *fp)
12705{
28010a5d
PA
12706 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12707
6149aea9
PA
12708 switch (ex)
12709 {
761269c8 12710 case ada_catch_exception:
6149aea9 12711 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12712 if (!c->excep_string.empty ())
12713 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12714 break;
12715
761269c8 12716 case ada_catch_exception_unhandled:
78076abc 12717 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12718 break;
12719
9f757bf7
XR
12720 case ada_catch_handlers:
12721 fprintf_filtered (fp, "catch handlers");
12722 break;
12723
761269c8 12724 case ada_catch_assert:
6149aea9
PA
12725 fprintf_filtered (fp, "catch assert");
12726 break;
12727
12728 default:
12729 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12730 }
d9b3f62e 12731 print_recreate_thread (b, fp);
6149aea9
PA
12732}
12733
f7f9143b
JB
12734/* Virtual table for "catch exception" breakpoints. */
12735
28010a5d
PA
12736static struct bp_location *
12737allocate_location_catch_exception (struct breakpoint *self)
12738{
761269c8 12739 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12740}
12741
12742static void
12743re_set_catch_exception (struct breakpoint *b)
12744{
761269c8 12745 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12746}
12747
12748static void
12749check_status_catch_exception (bpstat bs)
12750{
761269c8 12751 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12752}
12753
f7f9143b 12754static enum print_stop_action
348d480f 12755print_it_catch_exception (bpstat bs)
f7f9143b 12756{
761269c8 12757 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12758}
12759
12760static void
a6d9a66e 12761print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12762{
761269c8 12763 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12764}
12765
12766static void
12767print_mention_catch_exception (struct breakpoint *b)
12768{
761269c8 12769 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12770}
12771
6149aea9
PA
12772static void
12773print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12774{
761269c8 12775 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12776}
12777
2060206e 12778static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12779
12780/* Virtual table for "catch exception unhandled" breakpoints. */
12781
28010a5d
PA
12782static struct bp_location *
12783allocate_location_catch_exception_unhandled (struct breakpoint *self)
12784{
761269c8 12785 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12786}
12787
12788static void
12789re_set_catch_exception_unhandled (struct breakpoint *b)
12790{
761269c8 12791 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12792}
12793
12794static void
12795check_status_catch_exception_unhandled (bpstat bs)
12796{
761269c8 12797 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12798}
12799
f7f9143b 12800static enum print_stop_action
348d480f 12801print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12802{
761269c8 12803 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12804}
12805
12806static void
a6d9a66e
UW
12807print_one_catch_exception_unhandled (struct breakpoint *b,
12808 struct bp_location **last_loc)
f7f9143b 12809{
761269c8 12810 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12811}
12812
12813static void
12814print_mention_catch_exception_unhandled (struct breakpoint *b)
12815{
761269c8 12816 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12817}
12818
6149aea9
PA
12819static void
12820print_recreate_catch_exception_unhandled (struct breakpoint *b,
12821 struct ui_file *fp)
12822{
761269c8 12823 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12824}
12825
2060206e 12826static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12827
12828/* Virtual table for "catch assert" breakpoints. */
12829
28010a5d
PA
12830static struct bp_location *
12831allocate_location_catch_assert (struct breakpoint *self)
12832{
761269c8 12833 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12834}
12835
12836static void
12837re_set_catch_assert (struct breakpoint *b)
12838{
761269c8 12839 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12840}
12841
12842static void
12843check_status_catch_assert (bpstat bs)
12844{
761269c8 12845 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12846}
12847
f7f9143b 12848static enum print_stop_action
348d480f 12849print_it_catch_assert (bpstat bs)
f7f9143b 12850{
761269c8 12851 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12852}
12853
12854static void
a6d9a66e 12855print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12856{
761269c8 12857 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12858}
12859
12860static void
12861print_mention_catch_assert (struct breakpoint *b)
12862{
761269c8 12863 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12864}
12865
6149aea9
PA
12866static void
12867print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12868{
761269c8 12869 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12870}
12871
2060206e 12872static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12873
9f757bf7
XR
12874/* Virtual table for "catch handlers" breakpoints. */
12875
12876static struct bp_location *
12877allocate_location_catch_handlers (struct breakpoint *self)
12878{
12879 return allocate_location_exception (ada_catch_handlers, self);
12880}
12881
12882static void
12883re_set_catch_handlers (struct breakpoint *b)
12884{
12885 re_set_exception (ada_catch_handlers, b);
12886}
12887
12888static void
12889check_status_catch_handlers (bpstat bs)
12890{
12891 check_status_exception (ada_catch_handlers, bs);
12892}
12893
12894static enum print_stop_action
12895print_it_catch_handlers (bpstat bs)
12896{
12897 return print_it_exception (ada_catch_handlers, bs);
12898}
12899
12900static void
12901print_one_catch_handlers (struct breakpoint *b,
12902 struct bp_location **last_loc)
12903{
12904 print_one_exception (ada_catch_handlers, b, last_loc);
12905}
12906
12907static void
12908print_mention_catch_handlers (struct breakpoint *b)
12909{
12910 print_mention_exception (ada_catch_handlers, b);
12911}
12912
12913static void
12914print_recreate_catch_handlers (struct breakpoint *b,
12915 struct ui_file *fp)
12916{
12917 print_recreate_exception (ada_catch_handlers, b, fp);
12918}
12919
12920static struct breakpoint_ops catch_handlers_breakpoint_ops;
12921
f06f1252
TT
12922/* See ada-lang.h. */
12923
12924bool
12925is_ada_exception_catchpoint (breakpoint *bp)
12926{
12927 return (bp->ops == &catch_exception_breakpoint_ops
12928 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12929 || bp->ops == &catch_assert_breakpoint_ops
12930 || bp->ops == &catch_handlers_breakpoint_ops);
12931}
12932
f7f9143b
JB
12933/* Split the arguments specified in a "catch exception" command.
12934 Set EX to the appropriate catchpoint type.
28010a5d 12935 Set EXCEP_STRING to the name of the specific exception if
5845583d 12936 specified by the user.
9f757bf7
XR
12937 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12938 "catch handlers" command. False otherwise.
5845583d
JB
12939 If a condition is found at the end of the arguments, the condition
12940 expression is stored in COND_STRING (memory must be deallocated
12941 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12942
12943static void
a121b7c1 12944catch_ada_exception_command_split (const char *args,
9f757bf7 12945 bool is_catch_handlers_cmd,
761269c8 12946 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12947 std::string *excep_string,
12948 std::string *cond_string)
f7f9143b 12949{
bc18fbb5 12950 std::string exception_name;
f7f9143b 12951
bc18fbb5
TT
12952 exception_name = extract_arg (&args);
12953 if (exception_name == "if")
5845583d
JB
12954 {
12955 /* This is not an exception name; this is the start of a condition
12956 expression for a catchpoint on all exceptions. So, "un-get"
12957 this token, and set exception_name to NULL. */
bc18fbb5 12958 exception_name.clear ();
5845583d
JB
12959 args -= 2;
12960 }
f7f9143b 12961
5845583d 12962 /* Check to see if we have a condition. */
f7f9143b 12963
f1735a53 12964 args = skip_spaces (args);
61012eef 12965 if (startswith (args, "if")
5845583d
JB
12966 && (isspace (args[2]) || args[2] == '\0'))
12967 {
12968 args += 2;
f1735a53 12969 args = skip_spaces (args);
5845583d
JB
12970
12971 if (args[0] == '\0')
12972 error (_("Condition missing after `if' keyword"));
bc18fbb5 12973 *cond_string = args;
5845583d
JB
12974
12975 args += strlen (args);
12976 }
12977
12978 /* Check that we do not have any more arguments. Anything else
12979 is unexpected. */
f7f9143b
JB
12980
12981 if (args[0] != '\0')
12982 error (_("Junk at end of expression"));
12983
9f757bf7
XR
12984 if (is_catch_handlers_cmd)
12985 {
12986 /* Catch handling of exceptions. */
12987 *ex = ada_catch_handlers;
12988 *excep_string = exception_name;
12989 }
bc18fbb5 12990 else if (exception_name.empty ())
f7f9143b
JB
12991 {
12992 /* Catch all exceptions. */
761269c8 12993 *ex = ada_catch_exception;
bc18fbb5 12994 excep_string->clear ();
f7f9143b 12995 }
bc18fbb5 12996 else if (exception_name == "unhandled")
f7f9143b
JB
12997 {
12998 /* Catch unhandled exceptions. */
761269c8 12999 *ex = ada_catch_exception_unhandled;
bc18fbb5 13000 excep_string->clear ();
f7f9143b
JB
13001 }
13002 else
13003 {
13004 /* Catch a specific exception. */
761269c8 13005 *ex = ada_catch_exception;
28010a5d 13006 *excep_string = exception_name;
f7f9143b
JB
13007 }
13008}
13009
13010/* Return the name of the symbol on which we should break in order to
13011 implement a catchpoint of the EX kind. */
13012
13013static const char *
761269c8 13014ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13015{
3eecfa55
JB
13016 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13017
13018 gdb_assert (data->exception_info != NULL);
0259addd 13019
f7f9143b
JB
13020 switch (ex)
13021 {
761269c8 13022 case ada_catch_exception:
3eecfa55 13023 return (data->exception_info->catch_exception_sym);
f7f9143b 13024 break;
761269c8 13025 case ada_catch_exception_unhandled:
3eecfa55 13026 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13027 break;
761269c8 13028 case ada_catch_assert:
3eecfa55 13029 return (data->exception_info->catch_assert_sym);
f7f9143b 13030 break;
9f757bf7
XR
13031 case ada_catch_handlers:
13032 return (data->exception_info->catch_handlers_sym);
13033 break;
f7f9143b
JB
13034 default:
13035 internal_error (__FILE__, __LINE__,
13036 _("unexpected catchpoint kind (%d)"), ex);
13037 }
13038}
13039
13040/* Return the breakpoint ops "virtual table" used for catchpoints
13041 of the EX kind. */
13042
c0a91b2b 13043static const struct breakpoint_ops *
761269c8 13044ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13045{
13046 switch (ex)
13047 {
761269c8 13048 case ada_catch_exception:
f7f9143b
JB
13049 return (&catch_exception_breakpoint_ops);
13050 break;
761269c8 13051 case ada_catch_exception_unhandled:
f7f9143b
JB
13052 return (&catch_exception_unhandled_breakpoint_ops);
13053 break;
761269c8 13054 case ada_catch_assert:
f7f9143b
JB
13055 return (&catch_assert_breakpoint_ops);
13056 break;
9f757bf7
XR
13057 case ada_catch_handlers:
13058 return (&catch_handlers_breakpoint_ops);
13059 break;
f7f9143b
JB
13060 default:
13061 internal_error (__FILE__, __LINE__,
13062 _("unexpected catchpoint kind (%d)"), ex);
13063 }
13064}
13065
13066/* Return the condition that will be used to match the current exception
13067 being raised with the exception that the user wants to catch. This
13068 assumes that this condition is used when the inferior just triggered
13069 an exception catchpoint.
cb7de75e 13070 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13071
cb7de75e 13072static std::string
9f757bf7
XR
13073ada_exception_catchpoint_cond_string (const char *excep_string,
13074 enum ada_exception_catchpoint_kind ex)
f7f9143b 13075{
3d0b0fa3 13076 int i;
cb7de75e 13077 std::string result;
2ff0a947 13078 const char *name;
9f757bf7
XR
13079
13080 if (ex == ada_catch_handlers)
13081 {
13082 /* For exception handlers catchpoints, the condition string does
13083 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13084 name = ("long_integer (GNAT_GCC_exception_Access"
13085 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13086 }
13087 else
2ff0a947 13088 name = "long_integer (e)";
3d0b0fa3 13089
0963b4bd 13090 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13091 runtime units that have been compiled without debugging info; if
28010a5d 13092 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13093 exception (e.g. "constraint_error") then, during the evaluation
13094 of the condition expression, the symbol lookup on this name would
0963b4bd 13095 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13096 may then be set only on user-defined exceptions which have the
13097 same not-fully-qualified name (e.g. my_package.constraint_error).
13098
13099 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13100 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13101 exception constraint_error" is rewritten into "catch exception
13102 standard.constraint_error".
13103
13104 If an exception named contraint_error is defined in another package of
13105 the inferior program, then the only way to specify this exception as a
13106 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13107 e.g. my_package.constraint_error.
13108
13109 Furthermore, in some situations a standard exception's symbol may
13110 be present in more than one objfile, because the compiler may
13111 choose to emit copy relocations for them. So, we have to compare
13112 against all the possible addresses. */
3d0b0fa3 13113
2ff0a947
TT
13114 /* Storage for a rewritten symbol name. */
13115 std::string std_name;
3d0b0fa3
JB
13116 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13117 {
28010a5d 13118 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13119 {
2ff0a947
TT
13120 std_name = std::string ("standard.") + excep_string;
13121 excep_string = std_name.c_str ();
9f757bf7 13122 break;
3d0b0fa3
JB
13123 }
13124 }
9f757bf7 13125
2ff0a947
TT
13126 excep_string = ada_encode (excep_string);
13127 std::vector<struct bound_minimal_symbol> symbols
13128 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13129 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13130 {
13131 if (!result.empty ())
13132 result += " or ";
13133 string_appendf (result, "%s = %s", name,
13134 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13135 }
9f757bf7 13136
9f757bf7 13137 return result;
f7f9143b
JB
13138}
13139
13140/* Return the symtab_and_line that should be used to insert an exception
13141 catchpoint of the TYPE kind.
13142
28010a5d
PA
13143 ADDR_STRING returns the name of the function where the real
13144 breakpoint that implements the catchpoints is set, depending on the
13145 type of catchpoint we need to create. */
f7f9143b
JB
13146
13147static struct symtab_and_line
bc18fbb5 13148ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13149 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13150{
13151 const char *sym_name;
13152 struct symbol *sym;
f7f9143b 13153
0259addd
JB
13154 /* First, find out which exception support info to use. */
13155 ada_exception_support_info_sniffer ();
13156
13157 /* Then lookup the function on which we will break in order to catch
f7f9143b 13158 the Ada exceptions requested by the user. */
f7f9143b
JB
13159 sym_name = ada_exception_sym_name (ex);
13160 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13161
57aff202
JB
13162 if (sym == NULL)
13163 error (_("Catchpoint symbol not found: %s"), sym_name);
13164
13165 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13166 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13167
13168 /* Set ADDR_STRING. */
cc12f4a8 13169 *addr_string = sym_name;
f7f9143b 13170
f7f9143b 13171 /* Set OPS. */
4b9eee8c 13172 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13173
f17011e0 13174 return find_function_start_sal (sym, 1);
f7f9143b
JB
13175}
13176
b4a5b78b 13177/* Create an Ada exception catchpoint.
f7f9143b 13178
b4a5b78b 13179 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13180
bc18fbb5 13181 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13182 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13183 of the exception to which this catchpoint applies.
2df4d1d5 13184
bc18fbb5 13185 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13186
b4a5b78b
JB
13187 TEMPFLAG, if nonzero, means that the underlying breakpoint
13188 should be temporary.
28010a5d 13189
b4a5b78b 13190 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13191
349774ef 13192void
28010a5d 13193create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13194 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13195 const std::string &excep_string,
56ecd069 13196 const std::string &cond_string,
28010a5d 13197 int tempflag,
349774ef 13198 int disabled,
28010a5d
PA
13199 int from_tty)
13200{
cc12f4a8 13201 std::string addr_string;
b4a5b78b 13202 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13203 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13204
b270e6f9 13205 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13206 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13207 ops, tempflag, disabled, from_tty);
28010a5d 13208 c->excep_string = excep_string;
9f757bf7 13209 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13210 if (!cond_string.empty ())
13211 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13212 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13213}
13214
9ac4176b
PA
13215/* Implement the "catch exception" command. */
13216
13217static void
eb4c3f4a 13218catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13219 struct cmd_list_element *command)
13220{
a121b7c1 13221 const char *arg = arg_entry;
9ac4176b
PA
13222 struct gdbarch *gdbarch = get_current_arch ();
13223 int tempflag;
761269c8 13224 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13225 std::string excep_string;
56ecd069 13226 std::string cond_string;
9ac4176b
PA
13227
13228 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13229
13230 if (!arg)
13231 arg = "";
9f757bf7 13232 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13233 &cond_string);
9f757bf7
XR
13234 create_ada_exception_catchpoint (gdbarch, ex_kind,
13235 excep_string, cond_string,
13236 tempflag, 1 /* enabled */,
13237 from_tty);
13238}
13239
13240/* Implement the "catch handlers" command. */
13241
13242static void
13243catch_ada_handlers_command (const char *arg_entry, int from_tty,
13244 struct cmd_list_element *command)
13245{
13246 const char *arg = arg_entry;
13247 struct gdbarch *gdbarch = get_current_arch ();
13248 int tempflag;
13249 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13250 std::string excep_string;
56ecd069 13251 std::string cond_string;
9f757bf7
XR
13252
13253 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13254
13255 if (!arg)
13256 arg = "";
13257 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13258 &cond_string);
b4a5b78b
JB
13259 create_ada_exception_catchpoint (gdbarch, ex_kind,
13260 excep_string, cond_string,
349774ef
JB
13261 tempflag, 1 /* enabled */,
13262 from_tty);
9ac4176b
PA
13263}
13264
71bed2db
TT
13265/* Completion function for the Ada "catch" commands. */
13266
13267static void
13268catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13269 const char *text, const char *word)
13270{
13271 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13272
13273 for (const ada_exc_info &info : exceptions)
13274 {
13275 if (startswith (info.name, word))
b02f78f9 13276 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13277 }
13278}
13279
b4a5b78b 13280/* Split the arguments specified in a "catch assert" command.
5845583d 13281
b4a5b78b
JB
13282 ARGS contains the command's arguments (or the empty string if
13283 no arguments were passed).
5845583d
JB
13284
13285 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13286 (the memory needs to be deallocated after use). */
5845583d 13287
b4a5b78b 13288static void
56ecd069 13289catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13290{
f1735a53 13291 args = skip_spaces (args);
f7f9143b 13292
5845583d 13293 /* Check whether a condition was provided. */
61012eef 13294 if (startswith (args, "if")
5845583d 13295 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13296 {
5845583d 13297 args += 2;
f1735a53 13298 args = skip_spaces (args);
5845583d
JB
13299 if (args[0] == '\0')
13300 error (_("condition missing after `if' keyword"));
56ecd069 13301 cond_string.assign (args);
f7f9143b
JB
13302 }
13303
5845583d
JB
13304 /* Otherwise, there should be no other argument at the end of
13305 the command. */
13306 else if (args[0] != '\0')
13307 error (_("Junk at end of arguments."));
f7f9143b
JB
13308}
13309
9ac4176b
PA
13310/* Implement the "catch assert" command. */
13311
13312static void
eb4c3f4a 13313catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13314 struct cmd_list_element *command)
13315{
a121b7c1 13316 const char *arg = arg_entry;
9ac4176b
PA
13317 struct gdbarch *gdbarch = get_current_arch ();
13318 int tempflag;
56ecd069 13319 std::string cond_string;
9ac4176b
PA
13320
13321 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13322
13323 if (!arg)
13324 arg = "";
56ecd069 13325 catch_ada_assert_command_split (arg, cond_string);
761269c8 13326 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13327 "", cond_string,
349774ef
JB
13328 tempflag, 1 /* enabled */,
13329 from_tty);
9ac4176b 13330}
778865d3
JB
13331
13332/* Return non-zero if the symbol SYM is an Ada exception object. */
13333
13334static int
13335ada_is_exception_sym (struct symbol *sym)
13336{
a737d952 13337 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13338
13339 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13340 && SYMBOL_CLASS (sym) != LOC_BLOCK
13341 && SYMBOL_CLASS (sym) != LOC_CONST
13342 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13343 && type_name != NULL && strcmp (type_name, "exception") == 0);
13344}
13345
13346/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13347 Ada exception object. This matches all exceptions except the ones
13348 defined by the Ada language. */
13349
13350static int
13351ada_is_non_standard_exception_sym (struct symbol *sym)
13352{
13353 int i;
13354
13355 if (!ada_is_exception_sym (sym))
13356 return 0;
13357
13358 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13359 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13360 return 0; /* A standard exception. */
13361
13362 /* Numeric_Error is also a standard exception, so exclude it.
13363 See the STANDARD_EXC description for more details as to why
13364 this exception is not listed in that array. */
13365 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13366 return 0;
13367
13368 return 1;
13369}
13370
ab816a27 13371/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13372 objects.
13373
13374 The comparison is determined first by exception name, and then
13375 by exception address. */
13376
ab816a27 13377bool
cc536b21 13378ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13379{
778865d3
JB
13380 int result;
13381
ab816a27
TT
13382 result = strcmp (name, other.name);
13383 if (result < 0)
13384 return true;
13385 if (result == 0 && addr < other.addr)
13386 return true;
13387 return false;
13388}
778865d3 13389
ab816a27 13390bool
cc536b21 13391ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13392{
13393 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13394}
13395
13396/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13397 routine, but keeping the first SKIP elements untouched.
13398
13399 All duplicates are also removed. */
13400
13401static void
ab816a27 13402sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13403 int skip)
13404{
ab816a27
TT
13405 std::sort (exceptions->begin () + skip, exceptions->end ());
13406 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13407 exceptions->end ());
778865d3
JB
13408}
13409
778865d3
JB
13410/* Add all exceptions defined by the Ada standard whose name match
13411 a regular expression.
13412
13413 If PREG is not NULL, then this regexp_t object is used to
13414 perform the symbol name matching. Otherwise, no name-based
13415 filtering is performed.
13416
13417 EXCEPTIONS is a vector of exceptions to which matching exceptions
13418 gets pushed. */
13419
13420static void
2d7cc5c7 13421ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13422 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13423{
13424 int i;
13425
13426 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13427 {
13428 if (preg == NULL
2d7cc5c7 13429 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13430 {
13431 struct bound_minimal_symbol msymbol
13432 = ada_lookup_simple_minsym (standard_exc[i]);
13433
13434 if (msymbol.minsym != NULL)
13435 {
13436 struct ada_exc_info info
77e371c0 13437 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13438
ab816a27 13439 exceptions->push_back (info);
778865d3
JB
13440 }
13441 }
13442 }
13443}
13444
13445/* Add all Ada exceptions defined locally and accessible from the given
13446 FRAME.
13447
13448 If PREG is not NULL, then this regexp_t object is used to
13449 perform the symbol name matching. Otherwise, no name-based
13450 filtering is performed.
13451
13452 EXCEPTIONS is a vector of exceptions to which matching exceptions
13453 gets pushed. */
13454
13455static void
2d7cc5c7
PA
13456ada_add_exceptions_from_frame (compiled_regex *preg,
13457 struct frame_info *frame,
ab816a27 13458 std::vector<ada_exc_info> *exceptions)
778865d3 13459{
3977b71f 13460 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13461
13462 while (block != 0)
13463 {
13464 struct block_iterator iter;
13465 struct symbol *sym;
13466
13467 ALL_BLOCK_SYMBOLS (block, iter, sym)
13468 {
13469 switch (SYMBOL_CLASS (sym))
13470 {
13471 case LOC_TYPEDEF:
13472 case LOC_BLOCK:
13473 case LOC_CONST:
13474 break;
13475 default:
13476 if (ada_is_exception_sym (sym))
13477 {
13478 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13479 SYMBOL_VALUE_ADDRESS (sym)};
13480
ab816a27 13481 exceptions->push_back (info);
778865d3
JB
13482 }
13483 }
13484 }
13485 if (BLOCK_FUNCTION (block) != NULL)
13486 break;
13487 block = BLOCK_SUPERBLOCK (block);
13488 }
13489}
13490
14bc53a8
PA
13491/* Return true if NAME matches PREG or if PREG is NULL. */
13492
13493static bool
2d7cc5c7 13494name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13495{
13496 return (preg == NULL
2d7cc5c7 13497 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13498}
13499
778865d3
JB
13500/* Add all exceptions defined globally whose name name match
13501 a regular expression, excluding standard exceptions.
13502
13503 The reason we exclude standard exceptions is that they need
13504 to be handled separately: Standard exceptions are defined inside
13505 a runtime unit which is normally not compiled with debugging info,
13506 and thus usually do not show up in our symbol search. However,
13507 if the unit was in fact built with debugging info, we need to
13508 exclude them because they would duplicate the entry we found
13509 during the special loop that specifically searches for those
13510 standard exceptions.
13511
13512 If PREG is not NULL, then this regexp_t object is used to
13513 perform the symbol name matching. Otherwise, no name-based
13514 filtering is performed.
13515
13516 EXCEPTIONS is a vector of exceptions to which matching exceptions
13517 gets pushed. */
13518
13519static void
2d7cc5c7 13520ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13521 std::vector<ada_exc_info> *exceptions)
778865d3 13522{
14bc53a8
PA
13523 /* In Ada, the symbol "search name" is a linkage name, whereas the
13524 regular expression used to do the matching refers to the natural
13525 name. So match against the decoded name. */
13526 expand_symtabs_matching (NULL,
b5ec771e 13527 lookup_name_info::match_any (),
14bc53a8
PA
13528 [&] (const char *search_name)
13529 {
13530 const char *decoded = ada_decode (search_name);
13531 return name_matches_regex (decoded, preg);
13532 },
13533 NULL,
13534 VARIABLES_DOMAIN);
778865d3 13535
2030c079 13536 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13537 {
b669c953 13538 for (compunit_symtab *s : objfile->compunits ())
778865d3 13539 {
d8aeb77f
TT
13540 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13541 int i;
778865d3 13542
d8aeb77f
TT
13543 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13544 {
582942f4 13545 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13546 struct block_iterator iter;
13547 struct symbol *sym;
778865d3 13548
d8aeb77f
TT
13549 ALL_BLOCK_SYMBOLS (b, iter, sym)
13550 if (ada_is_non_standard_exception_sym (sym)
13551 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13552 {
13553 struct ada_exc_info info
13554 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13555
13556 exceptions->push_back (info);
13557 }
13558 }
778865d3
JB
13559 }
13560 }
13561}
13562
13563/* Implements ada_exceptions_list with the regular expression passed
13564 as a regex_t, rather than a string.
13565
13566 If not NULL, PREG is used to filter out exceptions whose names
13567 do not match. Otherwise, all exceptions are listed. */
13568
ab816a27 13569static std::vector<ada_exc_info>
2d7cc5c7 13570ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13571{
ab816a27 13572 std::vector<ada_exc_info> result;
778865d3
JB
13573 int prev_len;
13574
13575 /* First, list the known standard exceptions. These exceptions
13576 need to be handled separately, as they are usually defined in
13577 runtime units that have been compiled without debugging info. */
13578
13579 ada_add_standard_exceptions (preg, &result);
13580
13581 /* Next, find all exceptions whose scope is local and accessible
13582 from the currently selected frame. */
13583
13584 if (has_stack_frames ())
13585 {
ab816a27 13586 prev_len = result.size ();
778865d3
JB
13587 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13588 &result);
ab816a27 13589 if (result.size () > prev_len)
778865d3
JB
13590 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13591 }
13592
13593 /* Add all exceptions whose scope is global. */
13594
ab816a27 13595 prev_len = result.size ();
778865d3 13596 ada_add_global_exceptions (preg, &result);
ab816a27 13597 if (result.size () > prev_len)
778865d3
JB
13598 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13599
778865d3
JB
13600 return result;
13601}
13602
13603/* Return a vector of ada_exc_info.
13604
13605 If REGEXP is NULL, all exceptions are included in the result.
13606 Otherwise, it should contain a valid regular expression,
13607 and only the exceptions whose names match that regular expression
13608 are included in the result.
13609
13610 The exceptions are sorted in the following order:
13611 - Standard exceptions (defined by the Ada language), in
13612 alphabetical order;
13613 - Exceptions only visible from the current frame, in
13614 alphabetical order;
13615 - Exceptions whose scope is global, in alphabetical order. */
13616
ab816a27 13617std::vector<ada_exc_info>
778865d3
JB
13618ada_exceptions_list (const char *regexp)
13619{
2d7cc5c7
PA
13620 if (regexp == NULL)
13621 return ada_exceptions_list_1 (NULL);
778865d3 13622
2d7cc5c7
PA
13623 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13624 return ada_exceptions_list_1 (&reg);
778865d3
JB
13625}
13626
13627/* Implement the "info exceptions" command. */
13628
13629static void
1d12d88f 13630info_exceptions_command (const char *regexp, int from_tty)
778865d3 13631{
778865d3 13632 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13633
ab816a27 13634 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13635
13636 if (regexp != NULL)
13637 printf_filtered
13638 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13639 else
13640 printf_filtered (_("All defined Ada exceptions:\n"));
13641
ab816a27
TT
13642 for (const ada_exc_info &info : exceptions)
13643 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13644}
13645
4c4b4cd2
PH
13646 /* Operators */
13647/* Information about operators given special treatment in functions
13648 below. */
13649/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13650
13651#define ADA_OPERATORS \
13652 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13653 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13654 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13655 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13656 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13657 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13658 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13659 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13660 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13661 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13662 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13663 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13664 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13665 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13666 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13667 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13668 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13669 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13670 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13671
13672static void
554794dc
SDJ
13673ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13674 int *argsp)
4c4b4cd2
PH
13675{
13676 switch (exp->elts[pc - 1].opcode)
13677 {
76a01679 13678 default:
4c4b4cd2
PH
13679 operator_length_standard (exp, pc, oplenp, argsp);
13680 break;
13681
13682#define OP_DEFN(op, len, args, binop) \
13683 case op: *oplenp = len; *argsp = args; break;
13684 ADA_OPERATORS;
13685#undef OP_DEFN
52ce6436
PH
13686
13687 case OP_AGGREGATE:
13688 *oplenp = 3;
13689 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13690 break;
13691
13692 case OP_CHOICES:
13693 *oplenp = 3;
13694 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13695 break;
4c4b4cd2
PH
13696 }
13697}
13698
c0201579
JK
13699/* Implementation of the exp_descriptor method operator_check. */
13700
13701static int
13702ada_operator_check (struct expression *exp, int pos,
13703 int (*objfile_func) (struct objfile *objfile, void *data),
13704 void *data)
13705{
13706 const union exp_element *const elts = exp->elts;
13707 struct type *type = NULL;
13708
13709 switch (elts[pos].opcode)
13710 {
13711 case UNOP_IN_RANGE:
13712 case UNOP_QUAL:
13713 type = elts[pos + 1].type;
13714 break;
13715
13716 default:
13717 return operator_check_standard (exp, pos, objfile_func, data);
13718 }
13719
13720 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13721
13722 if (type && TYPE_OBJFILE (type)
13723 && (*objfile_func) (TYPE_OBJFILE (type), data))
13724 return 1;
13725
13726 return 0;
13727}
13728
a121b7c1 13729static const char *
4c4b4cd2
PH
13730ada_op_name (enum exp_opcode opcode)
13731{
13732 switch (opcode)
13733 {
76a01679 13734 default:
4c4b4cd2 13735 return op_name_standard (opcode);
52ce6436 13736
4c4b4cd2
PH
13737#define OP_DEFN(op, len, args, binop) case op: return #op;
13738 ADA_OPERATORS;
13739#undef OP_DEFN
52ce6436
PH
13740
13741 case OP_AGGREGATE:
13742 return "OP_AGGREGATE";
13743 case OP_CHOICES:
13744 return "OP_CHOICES";
13745 case OP_NAME:
13746 return "OP_NAME";
4c4b4cd2
PH
13747 }
13748}
13749
13750/* As for operator_length, but assumes PC is pointing at the first
13751 element of the operator, and gives meaningful results only for the
52ce6436 13752 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13753
13754static void
76a01679
JB
13755ada_forward_operator_length (struct expression *exp, int pc,
13756 int *oplenp, int *argsp)
4c4b4cd2 13757{
76a01679 13758 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13759 {
13760 default:
13761 *oplenp = *argsp = 0;
13762 break;
52ce6436 13763
4c4b4cd2
PH
13764#define OP_DEFN(op, len, args, binop) \
13765 case op: *oplenp = len; *argsp = args; break;
13766 ADA_OPERATORS;
13767#undef OP_DEFN
52ce6436
PH
13768
13769 case OP_AGGREGATE:
13770 *oplenp = 3;
13771 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13772 break;
13773
13774 case OP_CHOICES:
13775 *oplenp = 3;
13776 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13777 break;
13778
13779 case OP_STRING:
13780 case OP_NAME:
13781 {
13782 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13783
52ce6436
PH
13784 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13785 *argsp = 0;
13786 break;
13787 }
4c4b4cd2
PH
13788 }
13789}
13790
13791static int
13792ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13793{
13794 enum exp_opcode op = exp->elts[elt].opcode;
13795 int oplen, nargs;
13796 int pc = elt;
13797 int i;
76a01679 13798
4c4b4cd2
PH
13799 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13800
76a01679 13801 switch (op)
4c4b4cd2 13802 {
76a01679 13803 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13804 case OP_ATR_FIRST:
13805 case OP_ATR_LAST:
13806 case OP_ATR_LENGTH:
13807 case OP_ATR_IMAGE:
13808 case OP_ATR_MAX:
13809 case OP_ATR_MIN:
13810 case OP_ATR_MODULUS:
13811 case OP_ATR_POS:
13812 case OP_ATR_SIZE:
13813 case OP_ATR_TAG:
13814 case OP_ATR_VAL:
13815 break;
13816
13817 case UNOP_IN_RANGE:
13818 case UNOP_QUAL:
323e0a4a
AC
13819 /* XXX: gdb_sprint_host_address, type_sprint */
13820 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13821 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13822 fprintf_filtered (stream, " (");
13823 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13824 fprintf_filtered (stream, ")");
13825 break;
13826 case BINOP_IN_BOUNDS:
52ce6436
PH
13827 fprintf_filtered (stream, " (%d)",
13828 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13829 break;
13830 case TERNOP_IN_RANGE:
13831 break;
13832
52ce6436
PH
13833 case OP_AGGREGATE:
13834 case OP_OTHERS:
13835 case OP_DISCRETE_RANGE:
13836 case OP_POSITIONAL:
13837 case OP_CHOICES:
13838 break;
13839
13840 case OP_NAME:
13841 case OP_STRING:
13842 {
13843 char *name = &exp->elts[elt + 2].string;
13844 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13845
52ce6436
PH
13846 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13847 break;
13848 }
13849
4c4b4cd2
PH
13850 default:
13851 return dump_subexp_body_standard (exp, stream, elt);
13852 }
13853
13854 elt += oplen;
13855 for (i = 0; i < nargs; i += 1)
13856 elt = dump_subexp (exp, stream, elt);
13857
13858 return elt;
13859}
13860
13861/* The Ada extension of print_subexp (q.v.). */
13862
76a01679
JB
13863static void
13864ada_print_subexp (struct expression *exp, int *pos,
13865 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13866{
52ce6436 13867 int oplen, nargs, i;
4c4b4cd2
PH
13868 int pc = *pos;
13869 enum exp_opcode op = exp->elts[pc].opcode;
13870
13871 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13872
52ce6436 13873 *pos += oplen;
4c4b4cd2
PH
13874 switch (op)
13875 {
13876 default:
52ce6436 13877 *pos -= oplen;
4c4b4cd2
PH
13878 print_subexp_standard (exp, pos, stream, prec);
13879 return;
13880
13881 case OP_VAR_VALUE:
4c4b4cd2
PH
13882 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13883 return;
13884
13885 case BINOP_IN_BOUNDS:
323e0a4a 13886 /* XXX: sprint_subexp */
4c4b4cd2 13887 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13888 fputs_filtered (" in ", stream);
4c4b4cd2 13889 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13890 fputs_filtered ("'range", stream);
4c4b4cd2 13891 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13892 fprintf_filtered (stream, "(%ld)",
13893 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13894 return;
13895
13896 case TERNOP_IN_RANGE:
4c4b4cd2 13897 if (prec >= PREC_EQUAL)
76a01679 13898 fputs_filtered ("(", stream);
323e0a4a 13899 /* XXX: sprint_subexp */
4c4b4cd2 13900 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13901 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13902 print_subexp (exp, pos, stream, PREC_EQUAL);
13903 fputs_filtered (" .. ", stream);
13904 print_subexp (exp, pos, stream, PREC_EQUAL);
13905 if (prec >= PREC_EQUAL)
76a01679
JB
13906 fputs_filtered (")", stream);
13907 return;
4c4b4cd2
PH
13908
13909 case OP_ATR_FIRST:
13910 case OP_ATR_LAST:
13911 case OP_ATR_LENGTH:
13912 case OP_ATR_IMAGE:
13913 case OP_ATR_MAX:
13914 case OP_ATR_MIN:
13915 case OP_ATR_MODULUS:
13916 case OP_ATR_POS:
13917 case OP_ATR_SIZE:
13918 case OP_ATR_TAG:
13919 case OP_ATR_VAL:
4c4b4cd2 13920 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13921 {
13922 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13923 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13924 &type_print_raw_options);
76a01679
JB
13925 *pos += 3;
13926 }
4c4b4cd2 13927 else
76a01679 13928 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13929 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13930 if (nargs > 1)
76a01679
JB
13931 {
13932 int tem;
5b4ee69b 13933
76a01679
JB
13934 for (tem = 1; tem < nargs; tem += 1)
13935 {
13936 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13937 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13938 }
13939 fputs_filtered (")", stream);
13940 }
4c4b4cd2 13941 return;
14f9c5c9 13942
4c4b4cd2 13943 case UNOP_QUAL:
4c4b4cd2
PH
13944 type_print (exp->elts[pc + 1].type, "", stream, 0);
13945 fputs_filtered ("'(", stream);
13946 print_subexp (exp, pos, stream, PREC_PREFIX);
13947 fputs_filtered (")", stream);
13948 return;
14f9c5c9 13949
4c4b4cd2 13950 case UNOP_IN_RANGE:
323e0a4a 13951 /* XXX: sprint_subexp */
4c4b4cd2 13952 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13953 fputs_filtered (" in ", stream);
79d43c61
TT
13954 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13955 &type_print_raw_options);
4c4b4cd2 13956 return;
52ce6436
PH
13957
13958 case OP_DISCRETE_RANGE:
13959 print_subexp (exp, pos, stream, PREC_SUFFIX);
13960 fputs_filtered ("..", stream);
13961 print_subexp (exp, pos, stream, PREC_SUFFIX);
13962 return;
13963
13964 case OP_OTHERS:
13965 fputs_filtered ("others => ", stream);
13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
13967 return;
13968
13969 case OP_CHOICES:
13970 for (i = 0; i < nargs-1; i += 1)
13971 {
13972 if (i > 0)
13973 fputs_filtered ("|", stream);
13974 print_subexp (exp, pos, stream, PREC_SUFFIX);
13975 }
13976 fputs_filtered (" => ", stream);
13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 return;
13979
13980 case OP_POSITIONAL:
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_AGGREGATE:
13985 fputs_filtered ("(", stream);
13986 for (i = 0; i < nargs; i += 1)
13987 {
13988 if (i > 0)
13989 fputs_filtered (", ", stream);
13990 print_subexp (exp, pos, stream, PREC_SUFFIX);
13991 }
13992 fputs_filtered (")", stream);
13993 return;
4c4b4cd2
PH
13994 }
13995}
14f9c5c9
AS
13996
13997/* Table mapping opcodes into strings for printing operators
13998 and precedences of the operators. */
13999
d2e4a39e
AS
14000static const struct op_print ada_op_print_tab[] = {
14001 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14002 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14003 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14004 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14005 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14006 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14007 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14008 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14009 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14010 {">=", BINOP_GEQ, PREC_ORDER, 0},
14011 {">", BINOP_GTR, PREC_ORDER, 0},
14012 {"<", BINOP_LESS, PREC_ORDER, 0},
14013 {">>", BINOP_RSH, PREC_SHIFT, 0},
14014 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14015 {"+", BINOP_ADD, PREC_ADD, 0},
14016 {"-", BINOP_SUB, PREC_ADD, 0},
14017 {"&", BINOP_CONCAT, PREC_ADD, 0},
14018 {"*", BINOP_MUL, PREC_MUL, 0},
14019 {"/", BINOP_DIV, PREC_MUL, 0},
14020 {"rem", BINOP_REM, PREC_MUL, 0},
14021 {"mod", BINOP_MOD, PREC_MUL, 0},
14022 {"**", BINOP_EXP, PREC_REPEAT, 0},
14023 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14024 {"-", UNOP_NEG, PREC_PREFIX, 0},
14025 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14026 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14027 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14028 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14029 {".all", UNOP_IND, PREC_SUFFIX, 1},
14030 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14031 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14032 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14033};
14034\f
72d5681a
PH
14035enum ada_primitive_types {
14036 ada_primitive_type_int,
14037 ada_primitive_type_long,
14038 ada_primitive_type_short,
14039 ada_primitive_type_char,
14040 ada_primitive_type_float,
14041 ada_primitive_type_double,
14042 ada_primitive_type_void,
14043 ada_primitive_type_long_long,
14044 ada_primitive_type_long_double,
14045 ada_primitive_type_natural,
14046 ada_primitive_type_positive,
14047 ada_primitive_type_system_address,
08f49010 14048 ada_primitive_type_storage_offset,
72d5681a
PH
14049 nr_ada_primitive_types
14050};
6c038f32
PH
14051
14052static void
d4a9a881 14053ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14054 struct language_arch_info *lai)
14055{
d4a9a881 14056 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14057
72d5681a 14058 lai->primitive_type_vector
d4a9a881 14059 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14060 struct type *);
e9bb382b
UW
14061
14062 lai->primitive_type_vector [ada_primitive_type_int]
14063 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14064 0, "integer");
14065 lai->primitive_type_vector [ada_primitive_type_long]
14066 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14067 0, "long_integer");
14068 lai->primitive_type_vector [ada_primitive_type_short]
14069 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14070 0, "short_integer");
14071 lai->string_char_type
14072 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14073 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14074 lai->primitive_type_vector [ada_primitive_type_float]
14075 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14076 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14077 lai->primitive_type_vector [ada_primitive_type_double]
14078 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14079 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14080 lai->primitive_type_vector [ada_primitive_type_long_long]
14081 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14082 0, "long_long_integer");
14083 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14084 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14085 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14086 lai->primitive_type_vector [ada_primitive_type_natural]
14087 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14088 0, "natural");
14089 lai->primitive_type_vector [ada_primitive_type_positive]
14090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14091 0, "positive");
14092 lai->primitive_type_vector [ada_primitive_type_void]
14093 = builtin->builtin_void;
14094
14095 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14096 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14097 "void"));
72d5681a
PH
14098 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14099 = "system__address";
fbb06eb1 14100
08f49010
XR
14101 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14102 type. This is a signed integral type whose size is the same as
14103 the size of addresses. */
14104 {
14105 unsigned int addr_length = TYPE_LENGTH
14106 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14107
14108 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14109 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14110 "storage_offset");
14111 }
14112
47e729a8 14113 lai->bool_type_symbol = NULL;
fbb06eb1 14114 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14115}
6c038f32
PH
14116\f
14117 /* Language vector */
14118
14119/* Not really used, but needed in the ada_language_defn. */
14120
14121static void
6c7a06a3 14122emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14123{
6c7a06a3 14124 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14125}
14126
14127static int
410a0ff2 14128parse (struct parser_state *ps)
6c038f32
PH
14129{
14130 warnings_issued = 0;
410a0ff2 14131 return ada_parse (ps);
6c038f32
PH
14132}
14133
14134static const struct exp_descriptor ada_exp_descriptor = {
14135 ada_print_subexp,
14136 ada_operator_length,
c0201579 14137 ada_operator_check,
6c038f32
PH
14138 ada_op_name,
14139 ada_dump_subexp_body,
14140 ada_evaluate_subexp
14141};
14142
b5ec771e
PA
14143/* symbol_name_matcher_ftype adapter for wild_match. */
14144
14145static bool
14146do_wild_match (const char *symbol_search_name,
14147 const lookup_name_info &lookup_name,
a207cff2 14148 completion_match_result *comp_match_res)
b5ec771e
PA
14149{
14150 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14151}
14152
14153/* symbol_name_matcher_ftype adapter for full_match. */
14154
14155static bool
14156do_full_match (const char *symbol_search_name,
14157 const lookup_name_info &lookup_name,
a207cff2 14158 completion_match_result *comp_match_res)
b5ec771e
PA
14159{
14160 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14161}
14162
a2cd4f14
JB
14163/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14164
14165static bool
14166do_exact_match (const char *symbol_search_name,
14167 const lookup_name_info &lookup_name,
14168 completion_match_result *comp_match_res)
14169{
14170 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14171}
14172
b5ec771e
PA
14173/* Build the Ada lookup name for LOOKUP_NAME. */
14174
14175ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14176{
14177 const std::string &user_name = lookup_name.name ();
14178
14179 if (user_name[0] == '<')
14180 {
14181 if (user_name.back () == '>')
14182 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14183 else
14184 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14185 m_encoded_p = true;
14186 m_verbatim_p = true;
14187 m_wild_match_p = false;
14188 m_standard_p = false;
14189 }
14190 else
14191 {
14192 m_verbatim_p = false;
14193
14194 m_encoded_p = user_name.find ("__") != std::string::npos;
14195
14196 if (!m_encoded_p)
14197 {
14198 const char *folded = ada_fold_name (user_name.c_str ());
14199 const char *encoded = ada_encode_1 (folded, false);
14200 if (encoded != NULL)
14201 m_encoded_name = encoded;
14202 else
14203 m_encoded_name = user_name;
14204 }
14205 else
14206 m_encoded_name = user_name;
14207
14208 /* Handle the 'package Standard' special case. See description
14209 of m_standard_p. */
14210 if (startswith (m_encoded_name.c_str (), "standard__"))
14211 {
14212 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14213 m_standard_p = true;
14214 }
14215 else
14216 m_standard_p = false;
74ccd7f5 14217
b5ec771e
PA
14218 /* If the name contains a ".", then the user is entering a fully
14219 qualified entity name, and the match must not be done in wild
14220 mode. Similarly, if the user wants to complete what looks
14221 like an encoded name, the match must not be done in wild
14222 mode. Also, in the standard__ special case always do
14223 non-wild matching. */
14224 m_wild_match_p
14225 = (lookup_name.match_type () != symbol_name_match_type::FULL
14226 && !m_encoded_p
14227 && !m_standard_p
14228 && user_name.find ('.') == std::string::npos);
14229 }
14230}
14231
14232/* symbol_name_matcher_ftype method for Ada. This only handles
14233 completion mode. */
14234
14235static bool
14236ada_symbol_name_matches (const char *symbol_search_name,
14237 const lookup_name_info &lookup_name,
a207cff2 14238 completion_match_result *comp_match_res)
74ccd7f5 14239{
b5ec771e
PA
14240 return lookup_name.ada ().matches (symbol_search_name,
14241 lookup_name.match_type (),
a207cff2 14242 comp_match_res);
b5ec771e
PA
14243}
14244
de63c46b
PA
14245/* A name matcher that matches the symbol name exactly, with
14246 strcmp. */
14247
14248static bool
14249literal_symbol_name_matcher (const char *symbol_search_name,
14250 const lookup_name_info &lookup_name,
14251 completion_match_result *comp_match_res)
14252{
14253 const std::string &name = lookup_name.name ();
14254
14255 int cmp = (lookup_name.completion_mode ()
14256 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14257 : strcmp (symbol_search_name, name.c_str ()));
14258 if (cmp == 0)
14259 {
14260 if (comp_match_res != NULL)
14261 comp_match_res->set_match (symbol_search_name);
14262 return true;
14263 }
14264 else
14265 return false;
14266}
14267
b5ec771e
PA
14268/* Implement the "la_get_symbol_name_matcher" language_defn method for
14269 Ada. */
14270
14271static symbol_name_matcher_ftype *
14272ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14273{
de63c46b
PA
14274 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14275 return literal_symbol_name_matcher;
14276
b5ec771e
PA
14277 if (lookup_name.completion_mode ())
14278 return ada_symbol_name_matches;
74ccd7f5 14279 else
b5ec771e
PA
14280 {
14281 if (lookup_name.ada ().wild_match_p ())
14282 return do_wild_match;
a2cd4f14
JB
14283 else if (lookup_name.ada ().verbatim_p ())
14284 return do_exact_match;
b5ec771e
PA
14285 else
14286 return do_full_match;
14287 }
74ccd7f5
JB
14288}
14289
a5ee536b
JB
14290/* Implement the "la_read_var_value" language_defn method for Ada. */
14291
14292static struct value *
63e43d3a
PMR
14293ada_read_var_value (struct symbol *var, const struct block *var_block,
14294 struct frame_info *frame)
a5ee536b 14295{
a5ee536b
JB
14296 /* The only case where default_read_var_value is not sufficient
14297 is when VAR is a renaming... */
c0e70c62
TT
14298 if (frame != nullptr)
14299 {
14300 const struct block *frame_block = get_frame_block (frame, NULL);
14301 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14302 return ada_read_renaming_var_value (var, frame_block);
14303 }
a5ee536b
JB
14304
14305 /* This is a typical case where we expect the default_read_var_value
14306 function to work. */
63e43d3a 14307 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14308}
14309
56618e20
TT
14310static const char *ada_extensions[] =
14311{
14312 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14313};
14314
47e77640 14315extern const struct language_defn ada_language_defn = {
6c038f32 14316 "ada", /* Language name */
6abde28f 14317 "Ada",
6c038f32 14318 language_ada,
6c038f32 14319 range_check_off,
6c038f32
PH
14320 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14321 that's not quite what this means. */
6c038f32 14322 array_row_major,
9a044a89 14323 macro_expansion_no,
56618e20 14324 ada_extensions,
6c038f32
PH
14325 &ada_exp_descriptor,
14326 parse,
6c038f32
PH
14327 resolve,
14328 ada_printchar, /* Print a character constant */
14329 ada_printstr, /* Function to print string constant */
14330 emit_char, /* Function to print single char (not used) */
6c038f32 14331 ada_print_type, /* Print a type using appropriate syntax */
be942545 14332 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14333 ada_val_print, /* Print a value using appropriate syntax */
14334 ada_value_print, /* Print a top-level value */
a5ee536b 14335 ada_read_var_value, /* la_read_var_value */
6c038f32 14336 NULL, /* Language specific skip_trampoline */
2b2d9e11 14337 NULL, /* name_of_this */
59cc4834 14338 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14339 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14340 basic_lookup_transparent_type, /* lookup_transparent_type */
14341 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14342 ada_sniff_from_mangled_name,
0963b4bd
MS
14343 NULL, /* Language specific
14344 class_name_from_physname */
6c038f32
PH
14345 ada_op_print_tab, /* expression operators for printing */
14346 0, /* c-style arrays */
14347 1, /* String lower bound */
6c038f32 14348 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14349 ada_collect_symbol_completion_matches,
72d5681a 14350 ada_language_arch_info,
e79af960 14351 ada_print_array_index,
41f1b697 14352 default_pass_by_reference,
ae6a3a4c 14353 c_get_string,
e2b7af72 14354 ada_watch_location_expression,
b5ec771e 14355 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14356 ada_iterate_over_symbols,
5ffa0793 14357 default_search_name_hash,
a53b64ea 14358 &ada_varobj_ops,
bb2ec1b3 14359 NULL,
721b08c6 14360 NULL,
4be290b2 14361 ada_is_string_type,
721b08c6 14362 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14363};
14364
5bf03f13
JB
14365/* Command-list for the "set/show ada" prefix command. */
14366static struct cmd_list_element *set_ada_list;
14367static struct cmd_list_element *show_ada_list;
14368
14369/* Implement the "set ada" prefix command. */
14370
14371static void
981a3fb3 14372set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14373{
14374 printf_unfiltered (_(\
14375"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14376 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14377}
14378
14379/* Implement the "show ada" prefix command. */
14380
14381static void
981a3fb3 14382show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14383{
14384 cmd_show_list (show_ada_list, from_tty, "");
14385}
14386
2060206e
PA
14387static void
14388initialize_ada_catchpoint_ops (void)
14389{
14390 struct breakpoint_ops *ops;
14391
14392 initialize_breakpoint_ops ();
14393
14394 ops = &catch_exception_breakpoint_ops;
14395 *ops = bkpt_breakpoint_ops;
2060206e
PA
14396 ops->allocate_location = allocate_location_catch_exception;
14397 ops->re_set = re_set_catch_exception;
14398 ops->check_status = check_status_catch_exception;
14399 ops->print_it = print_it_catch_exception;
14400 ops->print_one = print_one_catch_exception;
14401 ops->print_mention = print_mention_catch_exception;
14402 ops->print_recreate = print_recreate_catch_exception;
14403
14404 ops = &catch_exception_unhandled_breakpoint_ops;
14405 *ops = bkpt_breakpoint_ops;
2060206e
PA
14406 ops->allocate_location = allocate_location_catch_exception_unhandled;
14407 ops->re_set = re_set_catch_exception_unhandled;
14408 ops->check_status = check_status_catch_exception_unhandled;
14409 ops->print_it = print_it_catch_exception_unhandled;
14410 ops->print_one = print_one_catch_exception_unhandled;
14411 ops->print_mention = print_mention_catch_exception_unhandled;
14412 ops->print_recreate = print_recreate_catch_exception_unhandled;
14413
14414 ops = &catch_assert_breakpoint_ops;
14415 *ops = bkpt_breakpoint_ops;
2060206e
PA
14416 ops->allocate_location = allocate_location_catch_assert;
14417 ops->re_set = re_set_catch_assert;
14418 ops->check_status = check_status_catch_assert;
14419 ops->print_it = print_it_catch_assert;
14420 ops->print_one = print_one_catch_assert;
14421 ops->print_mention = print_mention_catch_assert;
14422 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14423
14424 ops = &catch_handlers_breakpoint_ops;
14425 *ops = bkpt_breakpoint_ops;
14426 ops->allocate_location = allocate_location_catch_handlers;
14427 ops->re_set = re_set_catch_handlers;
14428 ops->check_status = check_status_catch_handlers;
14429 ops->print_it = print_it_catch_handlers;
14430 ops->print_one = print_one_catch_handlers;
14431 ops->print_mention = print_mention_catch_handlers;
14432 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14433}
14434
3d9434b5
JB
14435/* This module's 'new_objfile' observer. */
14436
14437static void
14438ada_new_objfile_observer (struct objfile *objfile)
14439{
14440 ada_clear_symbol_cache ();
14441}
14442
14443/* This module's 'free_objfile' observer. */
14444
14445static void
14446ada_free_objfile_observer (struct objfile *objfile)
14447{
14448 ada_clear_symbol_cache ();
14449}
14450
d2e4a39e 14451void
6c038f32 14452_initialize_ada_language (void)
14f9c5c9 14453{
2060206e
PA
14454 initialize_ada_catchpoint_ops ();
14455
5bf03f13 14456 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14457 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14458 &set_ada_list, "set ada ", 0, &setlist);
14459
14460 add_prefix_cmd ("ada", no_class, show_ada_command,
14461 _("Generic command for showing Ada-specific settings."),
14462 &show_ada_list, "show ada ", 0, &showlist);
14463
14464 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14465 &trust_pad_over_xvs, _("\
590042fc
PW
14466Enable or disable an optimization trusting PAD types over XVS types."), _("\
14467Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14468 _("\
14469This is related to the encoding used by the GNAT compiler. The debugger\n\
14470should normally trust the contents of PAD types, but certain older versions\n\
14471of GNAT have a bug that sometimes causes the information in the PAD type\n\
14472to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14473work around this bug. It is always safe to turn this option \"off\", but\n\
14474this incurs a slight performance penalty, so it is recommended to NOT change\n\
14475this option to \"off\" unless necessary."),
14476 NULL, NULL, &set_ada_list, &show_ada_list);
14477
d72413e6
PMR
14478 add_setshow_boolean_cmd ("print-signatures", class_vars,
14479 &print_signatures, _("\
14480Enable or disable the output of formal and return types for functions in the \
590042fc 14481overloads selection menu."), _("\
d72413e6 14482Show whether the output of formal and return types for functions in the \
590042fc 14483overloads selection menu is activated."),
d72413e6
PMR
14484 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14485
9ac4176b
PA
14486 add_catch_command ("exception", _("\
14487Catch Ada exceptions, when raised.\n\
9bf7038b 14488Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14489Without any argument, stop when any Ada exception is raised.\n\
14490If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14491being raised does not have a handler (and will therefore lead to the task's\n\
14492termination).\n\
14493Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14494raised is the same as ARG.\n\
14495CONDITION is a boolean expression that is evaluated to see whether the\n\
14496exception should cause a stop."),
9ac4176b 14497 catch_ada_exception_command,
71bed2db 14498 catch_ada_completer,
9ac4176b
PA
14499 CATCH_PERMANENT,
14500 CATCH_TEMPORARY);
9f757bf7
XR
14501
14502 add_catch_command ("handlers", _("\
14503Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14504Usage: catch handlers [ARG] [if CONDITION]\n\
14505Without any argument, stop when any Ada exception is handled.\n\
14506With an argument, catch only exceptions with the given name.\n\
14507CONDITION is a boolean expression that is evaluated to see whether the\n\
14508exception should cause a stop."),
9f757bf7 14509 catch_ada_handlers_command,
71bed2db 14510 catch_ada_completer,
9f757bf7
XR
14511 CATCH_PERMANENT,
14512 CATCH_TEMPORARY);
9ac4176b
PA
14513 add_catch_command ("assert", _("\
14514Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14515Usage: catch assert [if CONDITION]\n\
14516CONDITION is a boolean expression that is evaluated to see whether the\n\
14517exception should cause a stop."),
9ac4176b
PA
14518 catch_assert_command,
14519 NULL,
14520 CATCH_PERMANENT,
14521 CATCH_TEMPORARY);
14522
6c038f32 14523 varsize_limit = 65536;
3fcded8f
JB
14524 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14525 &varsize_limit, _("\
14526Set the maximum number of bytes allowed in a variable-size object."), _("\
14527Show the maximum number of bytes allowed in a variable-size object."), _("\
14528Attempts to access an object whose size is not a compile-time constant\n\
14529and exceeds this limit will cause an error."),
14530 NULL, NULL, &setlist, &showlist);
6c038f32 14531
778865d3
JB
14532 add_info ("exceptions", info_exceptions_command,
14533 _("\
14534List all Ada exception names.\n\
9bf7038b 14535Usage: info exceptions [REGEXP]\n\
778865d3
JB
14536If a regular expression is passed as an argument, only those matching\n\
14537the regular expression are listed."));
14538
c6044dd1
JB
14539 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14540 _("Set Ada maintenance-related variables."),
14541 &maint_set_ada_cmdlist, "maintenance set ada ",
14542 0/*allow-unknown*/, &maintenance_set_cmdlist);
14543
14544 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14545 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14546 &maint_show_ada_cmdlist, "maintenance show ada ",
14547 0/*allow-unknown*/, &maintenance_show_cmdlist);
14548
14549 add_setshow_boolean_cmd
14550 ("ignore-descriptive-types", class_maintenance,
14551 &ada_ignore_descriptive_types_p,
14552 _("Set whether descriptive types generated by GNAT should be ignored."),
14553 _("Show whether descriptive types generated by GNAT should be ignored."),
14554 _("\
14555When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14556DWARF attribute."),
14557 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14558
459a2e4c
TT
14559 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14560 NULL, xcalloc, xfree);
6b69afc4 14561
3d9434b5 14562 /* The ada-lang observers. */
76727919
TT
14563 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14564 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14565 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14566}
This page took 3.568114 seconds and 4 git commands to generate.