Prepare gdb.python/mi-py-events.exp for Python/MI in separate channels
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
618f726f 3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
1455/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
14f9c5c9 1461
2c0b251b 1462static int
40658b94 1463match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1464{
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
73589123 1468 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1469 else
1470 {
1471 int len_name = strlen (name);
5b4ee69b 1472
4c4b4cd2
PH
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
61012eef 1475 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1478 }
14f9c5c9 1479}
14f9c5c9 1480\f
d2e4a39e 1481
4c4b4cd2 1482 /* Arrays */
14f9c5c9 1483
28c85d6c
JB
1484/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507void
1508ada_fixup_array_indexes_type (struct type *index_desc_type)
1509{
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
0d5cff50 1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537}
1538
4c4b4cd2 1539/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1540
d2e4a39e
AS
1541static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544};
1545
1546/* Maximum number of array dimensions we are prepared to handle. */
1547
4c4b4cd2 1548#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1549
14f9c5c9 1550
4c4b4cd2
PH
1551/* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
14f9c5c9
AS
1553
1554/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1555 level of indirection, if needed. */
1556
d2e4a39e
AS
1557static struct type *
1558desc_base_type (struct type *type)
14f9c5c9
AS
1559{
1560 if (type == NULL)
1561 return NULL;
61ee279c 1562 type = ada_check_typedef (type);
720d1a40
JB
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1265e4aa
JB
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1570 else
1571 return type;
1572}
1573
4c4b4cd2
PH
1574/* True iff TYPE indicates a "thin" array pointer type. */
1575
14f9c5c9 1576static int
d2e4a39e 1577is_thin_pntr (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 return
14f9c5c9
AS
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582}
1583
4c4b4cd2
PH
1584/* The descriptor type for thin pointer type TYPE. */
1585
d2e4a39e
AS
1586static struct type *
1587thin_descriptor_type (struct type *type)
14f9c5c9 1588{
d2e4a39e 1589 struct type *base_type = desc_base_type (type);
5b4ee69b 1590
14f9c5c9
AS
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
d2e4a39e 1595 else
14f9c5c9 1596 {
d2e4a39e 1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1598
14f9c5c9 1599 if (alt_type == NULL)
4c4b4cd2 1600 return base_type;
14f9c5c9 1601 else
4c4b4cd2 1602 return alt_type;
14f9c5c9
AS
1603 }
1604}
1605
4c4b4cd2
PH
1606/* A pointer to the array data for thin-pointer value VAL. */
1607
d2e4a39e
AS
1608static struct value *
1609thin_data_pntr (struct value *val)
14f9c5c9 1610{
828292f2 1611 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1613
556bdfd4
UW
1614 data_type = lookup_pointer_type (data_type);
1615
14f9c5c9 1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1617 return value_cast (data_type, value_copy (val));
d2e4a39e 1618 else
42ae5230 1619 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1620}
1621
4c4b4cd2
PH
1622/* True iff TYPE indicates a "thick" array pointer type. */
1623
14f9c5c9 1624static int
d2e4a39e 1625is_thick_pntr (struct type *type)
14f9c5c9
AS
1626{
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1630}
1631
4c4b4cd2
PH
1632/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1634
d2e4a39e
AS
1635static struct type *
1636desc_bounds_type (struct type *type)
14f9c5c9 1637{
d2e4a39e 1638 struct type *r;
14f9c5c9
AS
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
4c4b4cd2 1648 return NULL;
14f9c5c9
AS
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (r);
14f9c5c9
AS
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
61ee279c 1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1658 }
1659 return NULL;
1660}
1661
1662/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
d2e4a39e
AS
1665static struct value *
1666desc_bounds (struct value *arr)
14f9c5c9 1667{
df407dfe 1668 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1669
d2e4a39e 1670 if (is_thin_pntr (type))
14f9c5c9 1671 {
d2e4a39e 1672 struct type *bounds_type =
4c4b4cd2 1673 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1674 LONGEST addr;
1675
4cdfadb1 1676 if (bounds_type == NULL)
323e0a4a 1677 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1678
1679 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1680 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1681 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1683 addr = value_as_long (arr);
d2e4a39e 1684 else
42ae5230 1685 addr = value_address (arr);
14f9c5c9 1686
d2e4a39e 1687 return
4c4b4cd2
PH
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1690 }
1691
1692 else if (is_thick_pntr (type))
05e522ef
JB
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
14f9c5c9
AS
1713 else
1714 return NULL;
1715}
1716
4c4b4cd2
PH
1717/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
14f9c5c9 1720static int
d2e4a39e 1721fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1722{
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724}
1725
1726/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1727 size of the field containing the address of the bounds data. */
1728
14f9c5c9 1729static int
d2e4a39e 1730fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
d2e4a39e 1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
61ee279c 1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1738}
1739
4c4b4cd2 1740/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
4c4b4cd2 1744
d2e4a39e 1745static struct type *
556bdfd4 1746desc_data_target_type (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
4c4b4cd2 1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1751 if (is_thin_pntr (type))
556bdfd4 1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1753 else if (is_thick_pntr (type))
556bdfd4
UW
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1760 }
1761
1762 return NULL;
14f9c5c9
AS
1763}
1764
1765/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
4c4b4cd2 1767
d2e4a39e
AS
1768static struct value *
1769desc_data (struct value *arr)
14f9c5c9 1770{
df407dfe 1771 struct type *type = value_type (arr);
5b4ee69b 1772
14f9c5c9
AS
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
d2e4a39e 1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1777 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1778 else
1779 return NULL;
1780}
1781
1782
1783/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1784 position of the field containing the address of the data. */
1785
14f9c5c9 1786static int
d2e4a39e 1787fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1788{
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790}
1791
1792/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1793 size of the field containing the address of the data. */
1794
14f9c5c9 1795static int
d2e4a39e 1796fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1797{
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1802 else
14f9c5c9
AS
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804}
1805
4c4b4cd2 1806/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
d2e4a39e
AS
1810static struct value *
1811desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1814 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
14f9c5c9 1821static int
d2e4a39e 1822desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1823{
d2e4a39e 1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1825}
1826
1827/* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
76a01679 1831static int
d2e4a39e 1832desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
d2e4a39e
AS
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1840}
1841
1842/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
d2e4a39e
AS
1845static struct type *
1846desc_index_type (struct type *type, int i)
14f9c5c9
AS
1847{
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
14f9c5c9
AS
1853 return NULL;
1854}
1855
4c4b4cd2
PH
1856/* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
14f9c5c9 1859static int
d2e4a39e 1860desc_arity (struct type *type)
14f9c5c9
AS
1861{
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867}
1868
4c4b4cd2
PH
1869/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
76a01679
JB
1873static int
1874ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1875{
1876 if (type == NULL)
1877 return 0;
61ee279c 1878 type = ada_check_typedef (type);
4c4b4cd2 1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1880 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1881}
1882
52ce6436 1883/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1884 * to one. */
52ce6436 1885
2c0b251b 1886static int
52ce6436
PH
1887ada_is_array_type (struct type *type)
1888{
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894}
1895
4c4b4cd2 1896/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1897
14f9c5c9 1898int
4c4b4cd2 1899ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1900{
1901 if (type == NULL)
1902 return 0;
61ee279c 1903 type = ada_check_typedef (type);
14f9c5c9 1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1908}
1909
4c4b4cd2
PH
1910/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
14f9c5c9 1912int
4c4b4cd2 1913ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1914{
556bdfd4 1915 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1916
1917 if (type == NULL)
1918 return 0;
61ee279c 1919 type = ada_check_typedef (type);
556bdfd4
UW
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1923}
1924
1925/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1926 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1927 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1928 is still needed. */
1929
14f9c5c9 1930int
ebf56fd3 1931ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1932{
d2e4a39e 1933 return
14f9c5c9
AS
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1939}
1940
1941
4c4b4cd2 1942/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1943 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1945 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1948 a descriptor. */
d2e4a39e
AS
1949struct type *
1950ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1951{
ad82864c
JB
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1954
df407dfe
AC
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
d2e4a39e
AS
1957
1958 if (!bounds)
ad82864c
JB
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
14f9c5c9
AS
1969 else
1970 {
d2e4a39e 1971 struct type *elt_type;
14f9c5c9 1972 int arity;
d2e4a39e 1973 struct value *descriptor;
14f9c5c9 1974
df407dfe
AC
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
14f9c5c9 1977
d2e4a39e 1978 if (elt_type == NULL || arity == 0)
df407dfe 1979 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1980
1981 descriptor = desc_bounds (arr);
d2e4a39e 1982 if (value_as_long (descriptor) == 0)
4c4b4cd2 1983 return NULL;
d2e4a39e 1984 while (arity > 0)
4c4b4cd2 1985 {
e9bb382b
UW
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1990
5b4ee69b 1991 arity -= 1;
0c9c3474
SA
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
4c4b4cd2 1995 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
4c4b4cd2 2017 }
14f9c5c9
AS
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021}
2022
2023/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
d2e4a39e
AS
2028struct value *
2029ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2030{
df407dfe 2031 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2032 {
d2e4a39e 2033 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2034
14f9c5c9 2035 if (arrType == NULL)
4c4b4cd2 2036 return NULL;
14f9c5c9
AS
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
ad82864c
JB
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2041 else
2042 return arr;
2043}
2044
2045/* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2047 be ARR itself if it already is in the proper form). */
2048
720d1a40 2049struct value *
d2e4a39e 2050ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2051{
df407dfe 2052 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2053 {
d2e4a39e 2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2055
14f9c5c9 2056 if (arrVal == NULL)
323e0a4a 2057 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2059 return value_ind (arrVal);
2060 }
ad82864c
JB
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
d2e4a39e 2063 else
14f9c5c9
AS
2064 return arr;
2065}
2066
2067/* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2069 packing). For other types, is the identity. */
2070
d2e4a39e
AS
2071struct type *
2072ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2073{
ad82864c
JB
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
17280b9f
UW
2076
2077 if (ada_is_array_descriptor_type (type))
556bdfd4 2078 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2079
2080 return type;
14f9c5c9
AS
2081}
2082
4c4b4cd2
PH
2083/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
ad82864c
JB
2085static int
2086ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2087{
2088 if (type == NULL)
2089 return 0;
4c4b4cd2 2090 type = desc_base_type (type);
61ee279c 2091 type = ada_check_typedef (type);
d2e4a39e 2092 return
14f9c5c9
AS
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095}
2096
ad82864c
JB
2097/* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100int
2101ada_is_constrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105}
2106
2107/* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110static int
2111ada_is_unconstrained_packed_array_type (struct type *type)
2112{
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115}
2116
2117/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120static long
2121decode_packed_array_bitsize (struct type *type)
2122{
0d5cff50
DE
2123 const char *raw_name;
2124 const char *tail;
ad82864c
JB
2125 long bits;
2126
720d1a40
JB
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
720d1a40 2141 gdb_assert (tail != NULL);
ad82864c
JB
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151}
2152
14f9c5c9
AS
2153/* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
4c4b4cd2 2169
d2e4a39e 2170static struct type *
ad82864c 2171constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2172{
d2e4a39e
AS
2173 struct type *new_elt_type;
2174 struct type *new_type;
99b1c762
JB
2175 struct type *index_type_desc;
2176 struct type *index_type;
14f9c5c9
AS
2177 LONGEST low_bound, high_bound;
2178
61ee279c 2179 type = ada_check_typedef (type);
14f9c5c9
AS
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
99b1c762
JB
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
e9bb382b 2190 new_type = alloc_type_copy (type);
ad82864c
JB
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
99b1c762 2194 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
4a46959e
JB
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2204 else
14f9c5c9
AS
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2207 TYPE_LENGTH (new_type) =
4c4b4cd2 2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2209 }
2210
876cecd0 2211 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2212 return new_type;
2213}
2214
ad82864c
JB
2215/* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2217
d2e4a39e 2218static struct type *
ad82864c 2219decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2220{
0d5cff50 2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2222 char *name;
0d5cff50 2223 const char *tail;
d2e4a39e 2224 struct type *shadow_type;
14f9c5c9 2225 long bits;
14f9c5c9 2226
727e3d2e
JB
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2235 type = desc_base_type (type);
2236
14f9c5c9
AS
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
b4ba55a1
JB
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
14f9c5c9 2243 {
323e0a4a 2244 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2245 return NULL;
2246 }
f168693b 2247 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
0963b4bd
MS
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
14f9c5c9
AS
2253 return NULL;
2254 }
d2e4a39e 2255
ad82864c
JB
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2258}
2259
ad82864c
JB
2260/* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
4c4b4cd2 2264 type length is set appropriately. */
14f9c5c9 2265
d2e4a39e 2266static struct value *
ad82864c 2267decode_constrained_packed_array (struct value *arr)
14f9c5c9 2268{
4c4b4cd2 2269 struct type *type;
14f9c5c9 2270
11aa919a
PMR
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
828292f2 2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2280 arr = value_ind (arr);
4c4b4cd2 2281
ad82864c 2282 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2283 if (type == NULL)
2284 {
323e0a4a 2285 error (_("can't unpack array"));
14f9c5c9
AS
2286 return NULL;
2287 }
61ee279c 2288
50810684 2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2290 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
df407dfe 2299 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
df407dfe 2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
4c4b4cd2 2314 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2315}
2316
2317
2318/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2319 given in IND. ARR must be a simple array. */
14f9c5c9 2320
d2e4a39e
AS
2321static struct value *
2322value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2323{
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
d2e4a39e
AS
2327 struct type *elt_type;
2328 struct value *v;
14f9c5c9
AS
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
df407dfe 2332 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2333 for (i = 0; i < arity; i += 1)
14f9c5c9 2334 {
d2e4a39e 2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
0963b4bd
MS
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
14f9c5c9 2340 else
4c4b4cd2
PH
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
323e0a4a 2348 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2349 lowerbound = upperbound = 0;
2350 }
2351
3cb382c9 2352 idx = pos_atr (ind[i]);
4c4b4cd2 2353 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
4c4b4cd2
PH
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2359 }
14f9c5c9
AS
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2365 bits, elt_type);
14f9c5c9
AS
2366 return v;
2367}
2368
4c4b4cd2 2369/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2370
2371static int
d2e4a39e 2372has_negatives (struct type *type)
14f9c5c9 2373{
d2e4a39e
AS
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
14f9c5c9 2383}
d2e4a39e 2384
f93fca70 2385/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2387 the unpacked buffer.
14f9c5c9 2388
5b639dea
JB
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2391
f93fca70
JB
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2393 zero otherwise.
14f9c5c9 2394
f93fca70 2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2396
f93fca70
JB
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2398
2399static void
2400ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2403 int is_scalar)
2404{
a1c95e6b
JB
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2411
a1c95e6b
JB
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2414
4c4b4cd2 2415 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2416 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2417 unsigned char sign;
a1c95e6b 2418
4c4b4cd2
PH
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
f93fca70 2421 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2422
5b639dea
JB
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2424 bits from SRC. .*/
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2428
14f9c5c9 2429 srcBitsLeft = bit_size;
086ca51f 2430 src_bytes_left = src_len;
f93fca70 2431 unpacked_bytes_left = unpacked_len;
14f9c5c9 2432 sign = 0;
f93fca70
JB
2433
2434 if (is_big_endian)
14f9c5c9 2435 {
086ca51f 2436 src_idx = src_len - 1;
f93fca70
JB
2437 if (is_signed_type
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2439 sign = ~0;
d2e4a39e
AS
2440
2441 unusedLS =
4c4b4cd2
PH
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2443 % HOST_CHAR_BIT;
14f9c5c9 2444
f93fca70
JB
2445 if (is_scalar)
2446 {
2447 accumSize = 0;
2448 unpacked_idx = unpacked_len - 1;
2449 }
2450 else
2451 {
4c4b4cd2
PH
2452 /* Non-scalar values must be aligned at a byte boundary... */
2453 accumSize =
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2456 of the target. */
086ca51f
JB
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2459 }
14f9c5c9 2460 }
d2e4a39e 2461 else
14f9c5c9
AS
2462 {
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2464
086ca51f 2465 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2466 unusedLS = bit_offset;
2467 accumSize = 0;
2468
f93fca70 2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2470 sign = ~0;
14f9c5c9 2471 }
d2e4a39e 2472
14f9c5c9 2473 accum = 0;
086ca51f 2474 while (src_bytes_left > 0)
14f9c5c9
AS
2475 {
2476 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2477 part of the value. */
d2e4a39e 2478 unsigned int unusedMSMask =
4c4b4cd2
PH
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2480 1;
2481 /* Sign-extend bits for this byte. */
14f9c5c9 2482 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2483
d2e4a39e 2484 accum |=
086ca51f 2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2486 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2487 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2488 {
086ca51f 2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
4c4b4cd2
PH
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
4c4b4cd2 2494 }
14f9c5c9
AS
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2496 unusedLS = 0;
086ca51f
JB
2497 src_bytes_left -= 1;
2498 src_idx += delta;
14f9c5c9 2499 }
086ca51f 2500 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 accum |= sign << accumSize;
086ca51f 2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
14f9c5c9 2504 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2505 if (accumSize < 0)
2506 accumSize = 0;
14f9c5c9 2507 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
14f9c5c9 2510 }
f93fca70
JB
2511}
2512
2513/* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2521
2522struct value *
2523ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2525 struct type *type)
2526{
2527 struct value *v;
bfb1c796 2528 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2529 gdb_byte *unpacked;
220475ed 2530 const int is_scalar = is_scalar_type (type);
d0a9e810
JB
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
f93fca70
JB
2535
2536 type = ada_check_typedef (type);
2537
d0a9e810 2538 if (obj == NULL)
bfb1c796 2539 src = valaddr + offset;
d0a9e810 2540 else
bfb1c796 2541 src = value_contents (obj) + offset;
d0a9e810
JB
2542
2543 if (is_dynamic_type (type))
2544 {
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aa5c10ce 2553 staging = (gdb_byte *) malloc (staging_len);
d0a9e810
JB
2554 make_cleanup (xfree, staging);
2555
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2559 is_scalar);
2560 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2562 {
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2569 of that stride. */
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2571 }
d0a9e810
JB
2572 }
2573
f93fca70
JB
2574 if (obj == NULL)
2575 {
2576 v = allocate_value (type);
bfb1c796 2577 src = valaddr + offset;
f93fca70
JB
2578 }
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2580 {
0cafa88c 2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2582 gdb_byte *buf;
0cafa88c 2583
f93fca70 2584 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2585 buf = (gdb_byte *) alloca (src_len);
2586 read_memory (value_address (v), buf, src_len);
2587 src = buf;
f93fca70
JB
2588 }
2589 else
2590 {
2591 v = allocate_value (type);
bfb1c796 2592 src = value_contents (obj) + offset;
f93fca70
JB
2593 }
2594
2595 if (obj != NULL)
2596 {
2597 long new_offset = offset;
2598
2599 set_value_component_location (v, obj);
2600 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2601 set_value_bitsize (v, bit_size);
2602 if (value_bitpos (v) >= HOST_CHAR_BIT)
2603 {
2604 ++new_offset;
2605 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2606 }
2607 set_value_offset (v, new_offset);
2608
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v, obj);
2612 }
2613 else
2614 set_value_bitsize (v, bit_size);
bfb1c796 2615 unpacked = value_contents_writeable (v);
f93fca70
JB
2616
2617 if (bit_size == 0)
2618 {
2619 memset (unpacked, 0, TYPE_LENGTH (type));
d0a9e810 2620 do_cleanups (old_chain);
f93fca70
JB
2621 return v;
2622 }
2623
d0a9e810 2624 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2625 {
d0a9e810
JB
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked, staging, staging_len);
f93fca70 2630 }
d0a9e810
JB
2631 else
2632 ada_unpack_from_contents (src, bit_offset, bit_size,
2633 unpacked, TYPE_LENGTH (type),
2634 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2635
d0a9e810 2636 do_cleanups (old_chain);
14f9c5c9
AS
2637 return v;
2638}
d2e4a39e 2639
14f9c5c9
AS
2640/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2642 not overlap. */
14f9c5c9 2643static void
fc1a4b47 2644move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2645 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2646{
2647 unsigned int accum, mask;
2648 int accum_bits, chunk_size;
2649
2650 target += targ_offset / HOST_CHAR_BIT;
2651 targ_offset %= HOST_CHAR_BIT;
2652 source += src_offset / HOST_CHAR_BIT;
2653 src_offset %= HOST_CHAR_BIT;
50810684 2654 if (bits_big_endian_p)
14f9c5c9
AS
2655 {
2656 accum = (unsigned char) *source;
2657 source += 1;
2658 accum_bits = HOST_CHAR_BIT - src_offset;
2659
d2e4a39e 2660 while (n > 0)
4c4b4cd2
PH
2661 {
2662 int unused_right;
5b4ee69b 2663
4c4b4cd2
PH
2664 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2665 accum_bits += HOST_CHAR_BIT;
2666 source += 1;
2667 chunk_size = HOST_CHAR_BIT - targ_offset;
2668 if (chunk_size > n)
2669 chunk_size = n;
2670 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2671 mask = ((1 << chunk_size) - 1) << unused_right;
2672 *target =
2673 (*target & ~mask)
2674 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2675 n -= chunk_size;
2676 accum_bits -= chunk_size;
2677 target += 1;
2678 targ_offset = 0;
2679 }
14f9c5c9
AS
2680 }
2681 else
2682 {
2683 accum = (unsigned char) *source >> src_offset;
2684 source += 1;
2685 accum_bits = HOST_CHAR_BIT - src_offset;
2686
d2e4a39e 2687 while (n > 0)
4c4b4cd2
PH
2688 {
2689 accum = accum + ((unsigned char) *source << accum_bits);
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 mask = ((1 << chunk_size) - 1) << targ_offset;
2696 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2697 n -= chunk_size;
2698 accum_bits -= chunk_size;
2699 accum >>= chunk_size;
2700 target += 1;
2701 targ_offset = 0;
2702 }
14f9c5c9
AS
2703 }
2704}
2705
14f9c5c9
AS
2706/* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2709 floating-point or non-scalar types. */
14f9c5c9 2710
d2e4a39e
AS
2711static struct value *
2712ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2713{
df407dfe
AC
2714 struct type *type = value_type (toval);
2715 int bits = value_bitsize (toval);
14f9c5c9 2716
52ce6436
PH
2717 toval = ada_coerce_ref (toval);
2718 fromval = ada_coerce_ref (fromval);
2719
2720 if (ada_is_direct_array_type (value_type (toval)))
2721 toval = ada_coerce_to_simple_array (toval);
2722 if (ada_is_direct_array_type (value_type (fromval)))
2723 fromval = ada_coerce_to_simple_array (fromval);
2724
88e3b34b 2725 if (!deprecated_value_modifiable (toval))
323e0a4a 2726 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2727
d2e4a39e 2728 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2729 && bits > 0
d2e4a39e 2730 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2731 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2732 {
df407dfe
AC
2733 int len = (value_bitpos (toval)
2734 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2735 int from_size;
224c3ddb 2736 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2737 struct value *val;
42ae5230 2738 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2739
2740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2741 fromval = value_cast (type, fromval);
14f9c5c9 2742
52ce6436 2743 read_memory (to_addr, buffer, len);
aced2898
PH
2744 from_size = value_bitsize (fromval);
2745 if (from_size == 0)
2746 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2747 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2748 move_bits (buffer, value_bitpos (toval),
50810684 2749 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2750 else
50810684
UW
2751 move_bits (buffer, value_bitpos (toval),
2752 value_contents (fromval), 0, bits, 0);
972daa01 2753 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2754
14f9c5c9 2755 val = value_copy (toval);
0fd88904 2756 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2757 TYPE_LENGTH (type));
04624583 2758 deprecated_set_value_type (val, type);
d2e4a39e 2759
14f9c5c9
AS
2760 return val;
2761 }
2762
2763 return value_assign (toval, fromval);
2764}
2765
2766
7c512744
JB
2767/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2772
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2777
52ce6436
PH
2778static void
2779value_assign_to_component (struct value *container, struct value *component,
2780 struct value *val)
2781{
2782 LONGEST offset_in_container =
42ae5230 2783 (LONGEST) (value_address (component) - value_address (container));
7c512744 2784 int bit_offset_in_container =
52ce6436
PH
2785 value_bitpos (component) - value_bitpos (container);
2786 int bits;
7c512744 2787
52ce6436
PH
2788 val = value_cast (value_type (component), val);
2789
2790 if (value_bitsize (component) == 0)
2791 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2792 else
2793 bits = value_bitsize (component);
2794
50810684 2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2796 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2797 value_bitpos (container) + bit_offset_in_container,
2798 value_contents (val),
2799 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2800 bits, 1);
52ce6436 2801 else
7c512744 2802 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2803 value_bitpos (container) + bit_offset_in_container,
50810684 2804 value_contents (val), 0, bits, 0);
7c512744
JB
2805}
2806
4c4b4cd2
PH
2807/* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2809 thereto. */
2810
d2e4a39e
AS
2811struct value *
2812ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2813{
2814 int k;
d2e4a39e
AS
2815 struct value *elt;
2816 struct type *elt_type;
14f9c5c9
AS
2817
2818 elt = ada_coerce_to_simple_array (arr);
2819
df407dfe 2820 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2821 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2822 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2823 return value_subscript_packed (elt, arity, ind);
2824
2825 for (k = 0; k < arity; k += 1)
2826 {
2827 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2828 error (_("too many subscripts (%d expected)"), k);
2497b498 2829 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2830 }
2831 return elt;
2832}
2833
deede10c
JB
2834/* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2836 Does not read the entire array into memory.
2837
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
14f9c5c9 2845
2c0b251b 2846static struct value *
deede10c 2847ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2848{
2849 int k;
919e6dbe 2850 struct value *array_ind = ada_value_ind (arr);
deede10c 2851 struct type *type
919e6dbe
PMR
2852 = check_typedef (value_enclosing_type (array_ind));
2853
2854 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2856 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 LONGEST lwb, upb;
aa715135 2861 struct value *lwb_value;
14f9c5c9
AS
2862
2863 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2864 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2865 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2866 value_copy (arr));
14f9c5c9 2867 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2868 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2869 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2870 type = TYPE_TARGET_TYPE (type);
2871 }
2872
2873 return value_ind (arr);
2874}
2875
0b5d8877 2876/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
0b5d8877 2880static struct value *
f5938064
JG
2881ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2882 int low, int high)
0b5d8877 2883{
b0dd7688 2884 struct type *type0 = ada_check_typedef (type);
aa715135 2885 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2886 struct type *index_type
aa715135 2887 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2888 struct type *slice_type =
b0dd7688 2889 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2890 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2891 LONGEST base_low_pos, low_pos;
2892 CORE_ADDR base;
2893
2894 if (!discrete_position (base_index_type, low, &low_pos)
2895 || !discrete_position (base_index_type, base_low, &base_low_pos))
2896 {
2897 warning (_("unable to get positions in slice, use bounds instead"));
2898 low_pos = low;
2899 base_low_pos = base_low;
2900 }
5b4ee69b 2901
aa715135
JG
2902 base = value_as_address (array_ptr)
2903 + ((low_pos - base_low_pos)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2905 return value_at_lazy (slice_type, base);
0b5d8877
PH
2906}
2907
2908
2909static struct value *
2910ada_value_slice (struct value *array, int low, int high)
2911{
b0dd7688 2912 struct type *type = ada_check_typedef (value_type (array));
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2914 struct type *index_type
2915 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2916 struct type *slice_type =
0b5d8877 2917 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2918 LONGEST low_pos, high_pos;
5b4ee69b 2919
aa715135
JG
2920 if (!discrete_position (base_index_type, low, &low_pos)
2921 || !discrete_position (base_index_type, high, &high_pos))
2922 {
2923 warning (_("unable to get positions in slice, use bounds instead"));
2924 low_pos = low;
2925 high_pos = high;
2926 }
2927
2928 return value_cast (slice_type,
2929 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2930}
2931
14f9c5c9
AS
2932/* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2935 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2936
2937int
d2e4a39e 2938ada_array_arity (struct type *type)
14f9c5c9
AS
2939{
2940 int arity;
2941
2942 if (type == NULL)
2943 return 0;
2944
2945 type = desc_base_type (type);
2946
2947 arity = 0;
d2e4a39e 2948 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2949 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2950 else
2951 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2952 {
4c4b4cd2 2953 arity += 1;
61ee279c 2954 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2955 }
d2e4a39e 2956
14f9c5c9
AS
2957 return arity;
2958}
2959
2960/* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2963 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2964
d2e4a39e
AS
2965struct type *
2966ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2967{
2968 type = desc_base_type (type);
2969
d2e4a39e 2970 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2971 {
2972 int k;
d2e4a39e 2973 struct type *p_array_type;
14f9c5c9 2974
556bdfd4 2975 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2976
2977 k = ada_array_arity (type);
2978 if (k == 0)
4c4b4cd2 2979 return NULL;
d2e4a39e 2980
4c4b4cd2 2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2982 if (nindices >= 0 && k > nindices)
4c4b4cd2 2983 k = nindices;
d2e4a39e 2984 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2985 {
61ee279c 2986 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2987 k -= 1;
2988 }
14f9c5c9
AS
2989 return p_array_type;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2992 {
2993 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2994 {
2995 type = TYPE_TARGET_TYPE (type);
2996 nindices -= 1;
2997 }
14f9c5c9
AS
2998 return type;
2999 }
3000
3001 return NULL;
3002}
3003
4c4b4cd2 3004/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
14f9c5c9 3009
1eea4ebd
UW
3010static struct type *
3011ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3012{
4c4b4cd2
PH
3013 struct type *result_type;
3014
14f9c5c9
AS
3015 type = desc_base_type (type);
3016
1eea4ebd
UW
3017 if (n < 0 || n > ada_array_arity (type))
3018 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3019
4c4b4cd2 3020 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3021 {
3022 int i;
3023
3024 for (i = 1; i < n; i += 1)
4c4b4cd2 3025 type = TYPE_TARGET_TYPE (type);
262452ec 3026 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3029 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3030 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3031 result_type = NULL;
14f9c5c9 3032 }
d2e4a39e 3033 else
1eea4ebd
UW
3034 {
3035 result_type = desc_index_type (desc_bounds_type (type), n);
3036 if (result_type == NULL)
3037 error (_("attempt to take bound of something that is not an array"));
3038 }
3039
3040 return result_type;
14f9c5c9
AS
3041}
3042
3043/* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
14f9c5c9 3048
abb68b3e 3049static LONGEST
fb5e3d5c 3050ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3051{
8a48ac95 3052 struct type *type, *index_type_desc, *index_type;
1ce677a4 3053 int i;
262452ec
JK
3054
3055 gdb_assert (which == 0 || which == 1);
14f9c5c9 3056
ad82864c
JB
3057 if (ada_is_constrained_packed_array_type (arr_type))
3058 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3059
4c4b4cd2 3060 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3061 return (LONGEST) - which;
14f9c5c9
AS
3062
3063 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3064 type = TYPE_TARGET_TYPE (arr_type);
3065 else
3066 type = arr_type;
3067
bafffb51
JB
3068 if (TYPE_FIXED_INSTANCE (type))
3069 {
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc = NULL;
3074 }
3075 else
3076 {
3077 index_type_desc = ada_find_parallel_type (type, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc);
3079 }
3080
262452ec 3081 if (index_type_desc != NULL)
28c85d6c
JB
3082 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3083 NULL);
262452ec 3084 else
8a48ac95
JB
3085 {
3086 struct type *elt_type = check_typedef (type);
3087
3088 for (i = 1; i < n; i++)
3089 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3090
3091 index_type = TYPE_INDEX_TYPE (elt_type);
3092 }
262452ec 3093
43bbcdc2
PH
3094 return
3095 (LONGEST) (which == 0
3096 ? ada_discrete_type_low_bound (index_type)
3097 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3098}
3099
3100/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3103 supplied by run-time quantities other than discriminants. */
14f9c5c9 3104
1eea4ebd 3105static LONGEST
4dc81987 3106ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3107{
eb479039
JB
3108 struct type *arr_type;
3109
3110 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3111 arr = value_ind (arr);
3112 arr_type = value_enclosing_type (arr);
14f9c5c9 3113
ad82864c
JB
3114 if (ada_is_constrained_packed_array_type (arr_type))
3115 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3116 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3117 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3118 else
1eea4ebd 3119 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3120}
3121
3122/* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
14f9c5c9 3127
1eea4ebd 3128static LONGEST
d2e4a39e 3129ada_array_length (struct value *arr, int n)
14f9c5c9 3130{
aa715135
JG
3131 struct type *arr_type, *index_type;
3132 int low, high;
eb479039
JB
3133
3134 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3135 arr = value_ind (arr);
3136 arr_type = value_enclosing_type (arr);
14f9c5c9 3137
ad82864c
JB
3138 if (ada_is_constrained_packed_array_type (arr_type))
3139 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3140
4c4b4cd2 3141 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3142 {
3143 low = ada_array_bound_from_type (arr_type, n, 0);
3144 high = ada_array_bound_from_type (arr_type, n, 1);
3145 }
14f9c5c9 3146 else
aa715135
JG
3147 {
3148 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3149 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3150 }
3151
f168693b 3152 arr_type = check_typedef (arr_type);
aa715135
JG
3153 index_type = TYPE_INDEX_TYPE (arr_type);
3154 if (index_type != NULL)
3155 {
3156 struct type *base_type;
3157 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3158 base_type = TYPE_TARGET_TYPE (index_type);
3159 else
3160 base_type = index_type;
3161
3162 low = pos_atr (value_from_longest (base_type, low));
3163 high = pos_atr (value_from_longest (base_type, high));
3164 }
3165 return high - low + 1;
4c4b4cd2
PH
3166}
3167
3168/* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3170
3171static struct value *
3172empty_array (struct type *arr_type, int low)
3173{
b0dd7688 3174 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3175 struct type *index_type
3176 = create_static_range_type
3177 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3178 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3179
0b5d8877 3180 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3181}
14f9c5c9 3182\f
d2e4a39e 3183
4c4b4cd2 3184 /* Name resolution */
14f9c5c9 3185
4c4b4cd2
PH
3186/* The "decoded" name for the user-definable Ada operator corresponding
3187 to OP. */
14f9c5c9 3188
d2e4a39e 3189static const char *
4c4b4cd2 3190ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3191{
3192 int i;
3193
4c4b4cd2 3194 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3195 {
3196 if (ada_opname_table[i].op == op)
4c4b4cd2 3197 return ada_opname_table[i].decoded;
14f9c5c9 3198 }
323e0a4a 3199 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3200}
3201
3202
4c4b4cd2
PH
3203/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3210 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3211
4c4b4cd2
PH
3212static void
3213resolve (struct expression **expp, int void_context_p)
14f9c5c9 3214{
30b15541
UW
3215 struct type *context_type = NULL;
3216 int pc = 0;
3217
3218 if (void_context_p)
3219 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3220
3221 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3222}
3223
4c4b4cd2
PH
3224/* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
14f9c5c9 3232
d2e4a39e 3233static struct value *
4c4b4cd2 3234resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3235 struct type *context_type)
14f9c5c9
AS
3236{
3237 int pc = *pos;
3238 int i;
4c4b4cd2 3239 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3240 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3241 struct value **argvec; /* Vector of operand types (alloca'ed). */
3242 int nargs; /* Number of operands. */
52ce6436 3243 int oplen;
14f9c5c9
AS
3244
3245 argvec = NULL;
3246 nargs = 0;
3247 exp = *expp;
3248
52ce6436
PH
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3250 if needed. */
14f9c5c9
AS
3251 switch (op)
3252 {
4c4b4cd2
PH
3253 case OP_FUNCALL:
3254 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3255 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3256 *pos += 7;
4c4b4cd2
PH
3257 else
3258 {
3259 *pos += 3;
3260 resolve_subexp (expp, pos, 0, NULL);
3261 }
3262 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3263 break;
3264
14f9c5c9 3265 case UNOP_ADDR:
4c4b4cd2
PH
3266 *pos += 1;
3267 resolve_subexp (expp, pos, 0, NULL);
3268 break;
3269
52ce6436
PH
3270 case UNOP_QUAL:
3271 *pos += 3;
17466c1a 3272 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3273 break;
3274
52ce6436 3275 case OP_ATR_MODULUS:
4c4b4cd2
PH
3276 case OP_ATR_SIZE:
3277 case OP_ATR_TAG:
4c4b4cd2
PH
3278 case OP_ATR_FIRST:
3279 case OP_ATR_LAST:
3280 case OP_ATR_LENGTH:
3281 case OP_ATR_POS:
3282 case OP_ATR_VAL:
4c4b4cd2
PH
3283 case OP_ATR_MIN:
3284 case OP_ATR_MAX:
52ce6436
PH
3285 case TERNOP_IN_RANGE:
3286 case BINOP_IN_BOUNDS:
3287 case UNOP_IN_RANGE:
3288 case OP_AGGREGATE:
3289 case OP_OTHERS:
3290 case OP_CHOICES:
3291 case OP_POSITIONAL:
3292 case OP_DISCRETE_RANGE:
3293 case OP_NAME:
3294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3295 *pos += oplen;
14f9c5c9
AS
3296 break;
3297
3298 case BINOP_ASSIGN:
3299 {
4c4b4cd2
PH
3300 struct value *arg1;
3301
3302 *pos += 1;
3303 arg1 = resolve_subexp (expp, pos, 0, NULL);
3304 if (arg1 == NULL)
3305 resolve_subexp (expp, pos, 1, NULL);
3306 else
df407dfe 3307 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3308 break;
14f9c5c9
AS
3309 }
3310
4c4b4cd2 3311 case UNOP_CAST:
4c4b4cd2
PH
3312 *pos += 3;
3313 nargs = 1;
3314 break;
14f9c5c9 3315
4c4b4cd2
PH
3316 case BINOP_ADD:
3317 case BINOP_SUB:
3318 case BINOP_MUL:
3319 case BINOP_DIV:
3320 case BINOP_REM:
3321 case BINOP_MOD:
3322 case BINOP_EXP:
3323 case BINOP_CONCAT:
3324 case BINOP_LOGICAL_AND:
3325 case BINOP_LOGICAL_OR:
3326 case BINOP_BITWISE_AND:
3327 case BINOP_BITWISE_IOR:
3328 case BINOP_BITWISE_XOR:
14f9c5c9 3329
4c4b4cd2
PH
3330 case BINOP_EQUAL:
3331 case BINOP_NOTEQUAL:
3332 case BINOP_LESS:
3333 case BINOP_GTR:
3334 case BINOP_LEQ:
3335 case BINOP_GEQ:
14f9c5c9 3336
4c4b4cd2
PH
3337 case BINOP_REPEAT:
3338 case BINOP_SUBSCRIPT:
3339 case BINOP_COMMA:
40c8aaa9
JB
3340 *pos += 1;
3341 nargs = 2;
3342 break;
14f9c5c9 3343
4c4b4cd2
PH
3344 case UNOP_NEG:
3345 case UNOP_PLUS:
3346 case UNOP_LOGICAL_NOT:
3347 case UNOP_ABS:
3348 case UNOP_IND:
3349 *pos += 1;
3350 nargs = 1;
3351 break;
14f9c5c9 3352
4c4b4cd2
PH
3353 case OP_LONG:
3354 case OP_DOUBLE:
3355 case OP_VAR_VALUE:
3356 *pos += 4;
3357 break;
14f9c5c9 3358
4c4b4cd2
PH
3359 case OP_TYPE:
3360 case OP_BOOL:
3361 case OP_LAST:
4c4b4cd2
PH
3362 case OP_INTERNALVAR:
3363 *pos += 3;
3364 break;
14f9c5c9 3365
4c4b4cd2
PH
3366 case UNOP_MEMVAL:
3367 *pos += 3;
3368 nargs = 1;
3369 break;
3370
67f3407f
DJ
3371 case OP_REGISTER:
3372 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3373 break;
3374
4c4b4cd2
PH
3375 case STRUCTOP_STRUCT:
3376 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3377 nargs = 1;
3378 break;
3379
4c4b4cd2 3380 case TERNOP_SLICE:
4c4b4cd2
PH
3381 *pos += 1;
3382 nargs = 3;
3383 break;
3384
52ce6436 3385 case OP_STRING:
14f9c5c9 3386 break;
4c4b4cd2
PH
3387
3388 default:
323e0a4a 3389 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3390 }
3391
8d749320 3392 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3393 for (i = 0; i < nargs; i += 1)
3394 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3395 argvec[i] = NULL;
3396 exp = *expp;
3397
3398 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3399 switch (op)
3400 {
3401 default:
3402 break;
3403
14f9c5c9 3404 case OP_VAR_VALUE:
4c4b4cd2 3405 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3406 {
d12307c1 3407 struct block_symbol *candidates;
76a01679
JB
3408 int n_candidates;
3409
3410 n_candidates =
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp->elts[pc + 2].symbol),
3413 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3414 &candidates);
76a01679
JB
3415
3416 if (n_candidates > 1)
3417 {
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3420 out all types. */
3421 int j;
3422 for (j = 0; j < n_candidates; j += 1)
d12307c1 3423 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3424 {
3425 case LOC_REGISTER:
3426 case LOC_ARG:
3427 case LOC_REF_ARG:
76a01679
JB
3428 case LOC_REGPARM_ADDR:
3429 case LOC_LOCAL:
76a01679 3430 case LOC_COMPUTED:
76a01679
JB
3431 goto FoundNonType;
3432 default:
3433 break;
3434 }
3435 FoundNonType:
3436 if (j < n_candidates)
3437 {
3438 j = 0;
3439 while (j < n_candidates)
3440 {
d12307c1 3441 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3442 {
3443 candidates[j] = candidates[n_candidates - 1];
3444 n_candidates -= 1;
3445 }
3446 else
3447 j += 1;
3448 }
3449 }
3450 }
3451
3452 if (n_candidates == 0)
323e0a4a 3453 error (_("No definition found for %s"),
76a01679
JB
3454 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3455 else if (n_candidates == 1)
3456 i = 0;
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates, n_candidates))
3459 {
06d5cf63
JB
3460 i = ada_resolve_function
3461 (candidates, n_candidates, NULL, 0,
3462 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3463 context_type);
76a01679 3464 if (i < 0)
323e0a4a 3465 error (_("Could not find a match for %s"),
76a01679
JB
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3467 }
3468 else
3469 {
323e0a4a 3470 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 user_select_syms (candidates, n_candidates, 1);
3473 i = 0;
3474 }
3475
3476 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3477 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3478 if (innermost_block == NULL
3479 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3480 innermost_block = candidates[i].block;
3481 }
3482
3483 if (deprocedure_p
3484 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3485 == TYPE_CODE_FUNC))
3486 {
3487 replace_operator_with_call (expp, pc, 0, 0,
3488 exp->elts[pc + 2].symbol,
3489 exp->elts[pc + 1].block);
3490 exp = *expp;
3491 }
14f9c5c9
AS
3492 break;
3493
3494 case OP_FUNCALL:
3495 {
4c4b4cd2 3496 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3497 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3498 {
d12307c1 3499 struct block_symbol *candidates;
4c4b4cd2
PH
3500 int n_candidates;
3501
3502 n_candidates =
76a01679
JB
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp->elts[pc + 5].symbol),
3505 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3506 &candidates);
4c4b4cd2
PH
3507 if (n_candidates == 1)
3508 i = 0;
3509 else
3510 {
06d5cf63
JB
3511 i = ada_resolve_function
3512 (candidates, n_candidates,
3513 argvec, nargs,
3514 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3515 context_type);
4c4b4cd2 3516 if (i < 0)
323e0a4a 3517 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3518 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3519 }
3520
3521 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3522 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3523 if (innermost_block == NULL
3524 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3525 innermost_block = candidates[i].block;
3526 }
14f9c5c9
AS
3527 }
3528 break;
3529 case BINOP_ADD:
3530 case BINOP_SUB:
3531 case BINOP_MUL:
3532 case BINOP_DIV:
3533 case BINOP_REM:
3534 case BINOP_MOD:
3535 case BINOP_CONCAT:
3536 case BINOP_BITWISE_AND:
3537 case BINOP_BITWISE_IOR:
3538 case BINOP_BITWISE_XOR:
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 case BINOP_EXP:
3546 case UNOP_NEG:
3547 case UNOP_PLUS:
3548 case UNOP_LOGICAL_NOT:
3549 case UNOP_ABS:
3550 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3551 {
d12307c1 3552 struct block_symbol *candidates;
4c4b4cd2
PH
3553 int n_candidates;
3554
3555 n_candidates =
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3557 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3558 &candidates);
4c4b4cd2 3559 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3560 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3561 if (i < 0)
3562 break;
3563
d12307c1
PMR
3564 replace_operator_with_call (expp, pc, nargs, 1,
3565 candidates[i].symbol,
3566 candidates[i].block);
4c4b4cd2
PH
3567 exp = *expp;
3568 }
14f9c5c9 3569 break;
4c4b4cd2
PH
3570
3571 case OP_TYPE:
b3dbf008 3572 case OP_REGISTER:
4c4b4cd2 3573 return NULL;
14f9c5c9
AS
3574 }
3575
3576 *pos = pc;
3577 return evaluate_subexp_type (exp, pos);
3578}
3579
3580/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3582 a non-pointer. */
14f9c5c9 3583/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3584 liberal. */
14f9c5c9
AS
3585
3586static int
4dc81987 3587ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3588{
61ee279c
PH
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
14f9c5c9
AS
3591
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3596
d2e4a39e 3597 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3598 {
3599 default:
5b3d5b7d 3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3601 case TYPE_CODE_PTR:
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3605 else
1265e4aa
JB
3606 return (may_deref
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3612 {
3613 case TYPE_CODE_INT:
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3616 return 1;
3617 default:
3618 return 0;
3619 }
14f9c5c9
AS
3620
3621 case TYPE_CODE_ARRAY:
d2e4a39e 3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3623 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3624
3625 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
14f9c5c9 3629 else
4c4b4cd2
PH
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3632
3633 case TYPE_CODE_UNION:
3634 case TYPE_CODE_FLT:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3636 }
3637}
3638
3639/* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3642 argument function. */
14f9c5c9
AS
3643
3644static int
d2e4a39e 3645ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3646{
3647 int i;
d2e4a39e 3648 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3649
1265e4aa
JB
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3654 return 0;
3655
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3657 return 0;
3658
3659 for (i = 0; i < n_actuals; i += 1)
3660 {
4c4b4cd2 3661 if (actuals[i] == NULL)
76a01679
JB
3662 return 0;
3663 else
3664 {
5b4ee69b
MS
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3666 i));
df407dfe 3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3668
76a01679
JB
3669 if (!ada_type_match (ftype, atype, 1))
3670 return 0;
3671 }
14f9c5c9
AS
3672 }
3673 return 1;
3674}
3675
3676/* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3680
3681static int
d2e4a39e 3682return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3683{
d2e4a39e 3684 struct type *return_type;
14f9c5c9
AS
3685
3686 if (func_type == NULL)
3687 return 1;
3688
4c4b4cd2 3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3691 else
18af8284 3692 return_type = get_base_type (func_type);
14f9c5c9
AS
3693 if (return_type == NULL)
3694 return 1;
3695
18af8284 3696 context_type = get_base_type (context_type);
14f9c5c9
AS
3697
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3702 else
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3704}
3705
3706
4c4b4cd2 3707/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3708 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3713
14f9c5c9
AS
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
14f9c5c9 3718
4c4b4cd2 3719static int
d12307c1 3720ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type)
14f9c5c9 3723{
30b15541 3724 int fallback;
14f9c5c9 3725 int k;
4c4b4cd2 3726 int m; /* Number of hits */
14f9c5c9 3727
d2e4a39e 3728 m = 0;
30b15541
UW
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3733 {
3734 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3735 {
d12307c1 3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3737
d12307c1 3738 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3739 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3740 {
3741 syms[m] = syms[k];
3742 m += 1;
3743 }
3744 }
14f9c5c9
AS
3745 }
3746
dc5c8746
PMR
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3751 if (m == 0)
3752 return -1;
dc5c8746 3753 else if (m > 1 && !parse_completion)
14f9c5c9 3754 {
323e0a4a 3755 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3756 user_select_syms (syms, m, 1);
14f9c5c9
AS
3757 return 0;
3758 }
3759 return 0;
3760}
3761
4c4b4cd2
PH
3762/* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3767
14f9c5c9 3768static int
0d5cff50 3769encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3770{
3771 if (N1 == NULL)
3772 return 0;
3773 else if (N0 == NULL)
3774 return 1;
3775 else
3776 {
3777 int k0, k1;
5b4ee69b 3778
d2e4a39e 3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3780 ;
d2e4a39e 3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3782 ;
d2e4a39e 3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3785 {
3786 int n0, n1;
5b4ee69b 3787
4c4b4cd2
PH
3788 n0 = k0;
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3790 n0 -= 1;
3791 n1 = k1;
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3793 n1 -= 1;
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3796 }
14f9c5c9
AS
3797 return (strcmp (N0, N1) < 0);
3798 }
3799}
d2e4a39e 3800
4c4b4cd2
PH
3801/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3802 encoded names. */
3803
d2e4a39e 3804static void
d12307c1 3805sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3806{
4c4b4cd2 3807 int i;
5b4ee69b 3808
d2e4a39e 3809 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3810 {
d12307c1 3811 struct block_symbol sym = syms[i];
14f9c5c9
AS
3812 int j;
3813
d2e4a39e 3814 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3815 {
d12307c1
PMR
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3818 break;
3819 syms[j + 1] = syms[j];
3820 }
d2e4a39e 3821 syms[j + 1] = sym;
14f9c5c9
AS
3822 }
3823}
3824
d72413e6
PMR
3825/* Whether GDB should display formals and return types for functions in the
3826 overloads selection menu. */
3827static int print_signatures = 1;
3828
3829/* Print the signature for SYM on STREAM according to the FLAGS options. For
3830 all but functions, the signature is just the name of the symbol. For
3831 functions, this is the name of the function, the list of types for formals
3832 and the return type (if any). */
3833
3834static void
3835ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3836 const struct type_print_options *flags)
3837{
3838 struct type *type = SYMBOL_TYPE (sym);
3839
3840 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3841 if (!print_signatures
3842 || type == NULL
3843 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3844 return;
3845
3846 if (TYPE_NFIELDS (type) > 0)
3847 {
3848 int i;
3849
3850 fprintf_filtered (stream, " (");
3851 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3852 {
3853 if (i > 0)
3854 fprintf_filtered (stream, "; ");
3855 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3856 flags);
3857 }
3858 fprintf_filtered (stream, ")");
3859 }
3860 if (TYPE_TARGET_TYPE (type) != NULL
3861 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3862 {
3863 fprintf_filtered (stream, " return ");
3864 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3865 }
3866}
3867
4c4b4cd2
PH
3868/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3869 by asking the user (if necessary), returning the number selected,
3870 and setting the first elements of SYMS items. Error if no symbols
3871 selected. */
14f9c5c9
AS
3872
3873/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3874 to be re-integrated one of these days. */
14f9c5c9
AS
3875
3876int
d12307c1 3877user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3878{
3879 int i;
8d749320 3880 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3881 int n_chosen;
3882 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3883 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3884
3885 if (max_results < 1)
323e0a4a 3886 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3887 if (nsyms <= 1)
3888 return nsyms;
3889
717d2f5a
JB
3890 if (select_mode == multiple_symbols_cancel)
3891 error (_("\
3892canceled because the command is ambiguous\n\
3893See set/show multiple-symbol."));
3894
3895 /* If select_mode is "all", then return all possible symbols.
3896 Only do that if more than one symbol can be selected, of course.
3897 Otherwise, display the menu as usual. */
3898 if (select_mode == multiple_symbols_all && max_results > 1)
3899 return nsyms;
3900
323e0a4a 3901 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3902 if (max_results > 1)
323e0a4a 3903 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3904
4c4b4cd2 3905 sort_choices (syms, nsyms);
14f9c5c9
AS
3906
3907 for (i = 0; i < nsyms; i += 1)
3908 {
d12307c1 3909 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3910 continue;
3911
d12307c1 3912 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3913 {
76a01679 3914 struct symtab_and_line sal =
d12307c1 3915 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3916
d72413e6
PMR
3917 printf_unfiltered ("[%d] ", i + first_choice);
3918 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3919 &type_print_raw_options);
323e0a4a 3920 if (sal.symtab == NULL)
d72413e6 3921 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3922 sal.line);
3923 else
d72413e6 3924 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3925 symtab_to_filename_for_display (sal.symtab),
3926 sal.line);
4c4b4cd2
PH
3927 continue;
3928 }
d2e4a39e 3929 else
4c4b4cd2
PH
3930 {
3931 int is_enumeral =
d12307c1
PMR
3932 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3933 && SYMBOL_TYPE (syms[i].symbol) != NULL
3934 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3935 struct symtab *symtab = NULL;
3936
d12307c1
PMR
3937 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3938 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3939
d12307c1 3940 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3941 {
3942 printf_unfiltered ("[%d] ", i + first_choice);
3943 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3944 &type_print_raw_options);
3945 printf_unfiltered (_(" at %s:%d\n"),
3946 symtab_to_filename_for_display (symtab),
3947 SYMBOL_LINE (syms[i].symbol));
3948 }
76a01679 3949 else if (is_enumeral
d12307c1 3950 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3951 {
a3f17187 3952 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3953 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3954 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3955 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3956 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3957 }
d72413e6
PMR
3958 else
3959 {
3960 printf_unfiltered ("[%d] ", i + first_choice);
3961 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3962 &type_print_raw_options);
3963
3964 if (symtab != NULL)
3965 printf_unfiltered (is_enumeral
3966 ? _(" in %s (enumeral)\n")
3967 : _(" at %s:?\n"),
3968 symtab_to_filename_for_display (symtab));
3969 else
3970 printf_unfiltered (is_enumeral
3971 ? _(" (enumeral)\n")
3972 : _(" at ?\n"));
3973 }
4c4b4cd2 3974 }
14f9c5c9 3975 }
d2e4a39e 3976
14f9c5c9 3977 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3978 "overload-choice");
14f9c5c9
AS
3979
3980 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3981 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3982
3983 return n_chosen;
3984}
3985
3986/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3987 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3988 order in CHOICES[0 .. N-1], and return N.
3989
3990 The user types choices as a sequence of numbers on one line
3991 separated by blanks, encoding them as follows:
3992
4c4b4cd2 3993 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3994 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3995 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3996
4c4b4cd2 3997 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3998
3999 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4000 prompts (for use with the -f switch). */
14f9c5c9
AS
4001
4002int
d2e4a39e 4003get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 4004 int is_all_choice, char *annotation_suffix)
14f9c5c9 4005{
d2e4a39e 4006 char *args;
0bcd0149 4007 char *prompt;
14f9c5c9
AS
4008 int n_chosen;
4009 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4010
14f9c5c9
AS
4011 prompt = getenv ("PS2");
4012 if (prompt == NULL)
0bcd0149 4013 prompt = "> ";
14f9c5c9 4014
0bcd0149 4015 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4016
14f9c5c9 4017 if (args == NULL)
323e0a4a 4018 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4019
4020 n_chosen = 0;
76a01679 4021
4c4b4cd2
PH
4022 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4023 order, as given in args. Choices are validated. */
14f9c5c9
AS
4024 while (1)
4025 {
d2e4a39e 4026 char *args2;
14f9c5c9
AS
4027 int choice, j;
4028
0fcd72ba 4029 args = skip_spaces (args);
14f9c5c9 4030 if (*args == '\0' && n_chosen == 0)
323e0a4a 4031 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4032 else if (*args == '\0')
4c4b4cd2 4033 break;
14f9c5c9
AS
4034
4035 choice = strtol (args, &args2, 10);
d2e4a39e 4036 if (args == args2 || choice < 0
4c4b4cd2 4037 || choice > n_choices + first_choice - 1)
323e0a4a 4038 error (_("Argument must be choice number"));
14f9c5c9
AS
4039 args = args2;
4040
d2e4a39e 4041 if (choice == 0)
323e0a4a 4042 error (_("cancelled"));
14f9c5c9
AS
4043
4044 if (choice < first_choice)
4c4b4cd2
PH
4045 {
4046 n_chosen = n_choices;
4047 for (j = 0; j < n_choices; j += 1)
4048 choices[j] = j;
4049 break;
4050 }
14f9c5c9
AS
4051 choice -= first_choice;
4052
d2e4a39e 4053 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4054 {
4055 }
14f9c5c9
AS
4056
4057 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4058 {
4059 int k;
5b4ee69b 4060
4c4b4cd2
PH
4061 for (k = n_chosen - 1; k > j; k -= 1)
4062 choices[k + 1] = choices[k];
4063 choices[j + 1] = choice;
4064 n_chosen += 1;
4065 }
14f9c5c9
AS
4066 }
4067
4068 if (n_chosen > max_results)
323e0a4a 4069 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4070
14f9c5c9
AS
4071 return n_chosen;
4072}
4073
4c4b4cd2
PH
4074/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4075 on the function identified by SYM and BLOCK, and taking NARGS
4076 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4077
4078static void
d2e4a39e 4079replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4080 int oplen, struct symbol *sym,
270140bd 4081 const struct block *block)
14f9c5c9
AS
4082{
4083 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4084 symbol, -oplen for operator being replaced). */
d2e4a39e 4085 struct expression *newexp = (struct expression *)
8c1a34e7 4086 xzalloc (sizeof (struct expression)
4c4b4cd2 4087 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4088 struct expression *exp = *expp;
14f9c5c9
AS
4089
4090 newexp->nelts = exp->nelts + 7 - oplen;
4091 newexp->language_defn = exp->language_defn;
3489610d 4092 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4093 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4094 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4095 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4096
4097 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4098 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4099
4100 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4101 newexp->elts[pc + 4].block = block;
4102 newexp->elts[pc + 5].symbol = sym;
4103
4104 *expp = newexp;
aacb1f0a 4105 xfree (exp);
d2e4a39e 4106}
14f9c5c9
AS
4107
4108/* Type-class predicates */
4109
4c4b4cd2
PH
4110/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4111 or FLOAT). */
14f9c5c9
AS
4112
4113static int
d2e4a39e 4114numeric_type_p (struct type *type)
14f9c5c9
AS
4115{
4116 if (type == NULL)
4117 return 0;
d2e4a39e
AS
4118 else
4119 {
4120 switch (TYPE_CODE (type))
4c4b4cd2
PH
4121 {
4122 case TYPE_CODE_INT:
4123 case TYPE_CODE_FLT:
4124 return 1;
4125 case TYPE_CODE_RANGE:
4126 return (type == TYPE_TARGET_TYPE (type)
4127 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4128 default:
4129 return 0;
4130 }
d2e4a39e 4131 }
14f9c5c9
AS
4132}
4133
4c4b4cd2 4134/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4135
4136static int
d2e4a39e 4137integer_type_p (struct type *type)
14f9c5c9
AS
4138{
4139 if (type == NULL)
4140 return 0;
d2e4a39e
AS
4141 else
4142 {
4143 switch (TYPE_CODE (type))
4c4b4cd2
PH
4144 {
4145 case TYPE_CODE_INT:
4146 return 1;
4147 case TYPE_CODE_RANGE:
4148 return (type == TYPE_TARGET_TYPE (type)
4149 || integer_type_p (TYPE_TARGET_TYPE (type)));
4150 default:
4151 return 0;
4152 }
d2e4a39e 4153 }
14f9c5c9
AS
4154}
4155
4c4b4cd2 4156/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4157
4158static int
d2e4a39e 4159scalar_type_p (struct type *type)
14f9c5c9
AS
4160{
4161 if (type == NULL)
4162 return 0;
d2e4a39e
AS
4163 else
4164 {
4165 switch (TYPE_CODE (type))
4c4b4cd2
PH
4166 {
4167 case TYPE_CODE_INT:
4168 case TYPE_CODE_RANGE:
4169 case TYPE_CODE_ENUM:
4170 case TYPE_CODE_FLT:
4171 return 1;
4172 default:
4173 return 0;
4174 }
d2e4a39e 4175 }
14f9c5c9
AS
4176}
4177
4c4b4cd2 4178/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4179
4180static int
d2e4a39e 4181discrete_type_p (struct type *type)
14f9c5c9
AS
4182{
4183 if (type == NULL)
4184 return 0;
d2e4a39e
AS
4185 else
4186 {
4187 switch (TYPE_CODE (type))
4c4b4cd2
PH
4188 {
4189 case TYPE_CODE_INT:
4190 case TYPE_CODE_RANGE:
4191 case TYPE_CODE_ENUM:
872f0337 4192 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4193 return 1;
4194 default:
4195 return 0;
4196 }
d2e4a39e 4197 }
14f9c5c9
AS
4198}
4199
4c4b4cd2
PH
4200/* Returns non-zero if OP with operands in the vector ARGS could be
4201 a user-defined function. Errs on the side of pre-defined operators
4202 (i.e., result 0). */
14f9c5c9
AS
4203
4204static int
d2e4a39e 4205possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4206{
76a01679 4207 struct type *type0 =
df407dfe 4208 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4209 struct type *type1 =
df407dfe 4210 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4211
4c4b4cd2
PH
4212 if (type0 == NULL)
4213 return 0;
4214
14f9c5c9
AS
4215 switch (op)
4216 {
4217 default:
4218 return 0;
4219
4220 case BINOP_ADD:
4221 case BINOP_SUB:
4222 case BINOP_MUL:
4223 case BINOP_DIV:
d2e4a39e 4224 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4225
4226 case BINOP_REM:
4227 case BINOP_MOD:
4228 case BINOP_BITWISE_AND:
4229 case BINOP_BITWISE_IOR:
4230 case BINOP_BITWISE_XOR:
d2e4a39e 4231 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4232
4233 case BINOP_EQUAL:
4234 case BINOP_NOTEQUAL:
4235 case BINOP_LESS:
4236 case BINOP_GTR:
4237 case BINOP_LEQ:
4238 case BINOP_GEQ:
d2e4a39e 4239 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4240
4241 case BINOP_CONCAT:
ee90b9ab 4242 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4243
4244 case BINOP_EXP:
d2e4a39e 4245 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4246
4247 case UNOP_NEG:
4248 case UNOP_PLUS:
4249 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4250 case UNOP_ABS:
4251 return (!numeric_type_p (type0));
14f9c5c9
AS
4252
4253 }
4254}
4255\f
4c4b4cd2 4256 /* Renaming */
14f9c5c9 4257
aeb5907d
JB
4258/* NOTES:
4259
4260 1. In the following, we assume that a renaming type's name may
4261 have an ___XD suffix. It would be nice if this went away at some
4262 point.
4263 2. We handle both the (old) purely type-based representation of
4264 renamings and the (new) variable-based encoding. At some point,
4265 it is devoutly to be hoped that the former goes away
4266 (FIXME: hilfinger-2007-07-09).
4267 3. Subprogram renamings are not implemented, although the XRS
4268 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4269
4270/* If SYM encodes a renaming,
4271
4272 <renaming> renames <renamed entity>,
4273
4274 sets *LEN to the length of the renamed entity's name,
4275 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4276 the string describing the subcomponent selected from the renamed
0963b4bd 4277 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4278 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4279 are undefined). Otherwise, returns a value indicating the category
4280 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4281 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4282 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4283 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4284 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4285 may be NULL, in which case they are not assigned.
4286
4287 [Currently, however, GCC does not generate subprogram renamings.] */
4288
4289enum ada_renaming_category
4290ada_parse_renaming (struct symbol *sym,
4291 const char **renamed_entity, int *len,
4292 const char **renaming_expr)
4293{
4294 enum ada_renaming_category kind;
4295 const char *info;
4296 const char *suffix;
4297
4298 if (sym == NULL)
4299 return ADA_NOT_RENAMING;
4300 switch (SYMBOL_CLASS (sym))
14f9c5c9 4301 {
aeb5907d
JB
4302 default:
4303 return ADA_NOT_RENAMING;
4304 case LOC_TYPEDEF:
4305 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4306 renamed_entity, len, renaming_expr);
4307 case LOC_LOCAL:
4308 case LOC_STATIC:
4309 case LOC_COMPUTED:
4310 case LOC_OPTIMIZED_OUT:
4311 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4312 if (info == NULL)
4313 return ADA_NOT_RENAMING;
4314 switch (info[5])
4315 {
4316 case '_':
4317 kind = ADA_OBJECT_RENAMING;
4318 info += 6;
4319 break;
4320 case 'E':
4321 kind = ADA_EXCEPTION_RENAMING;
4322 info += 7;
4323 break;
4324 case 'P':
4325 kind = ADA_PACKAGE_RENAMING;
4326 info += 7;
4327 break;
4328 case 'S':
4329 kind = ADA_SUBPROGRAM_RENAMING;
4330 info += 7;
4331 break;
4332 default:
4333 return ADA_NOT_RENAMING;
4334 }
14f9c5c9 4335 }
4c4b4cd2 4336
aeb5907d
JB
4337 if (renamed_entity != NULL)
4338 *renamed_entity = info;
4339 suffix = strstr (info, "___XE");
4340 if (suffix == NULL || suffix == info)
4341 return ADA_NOT_RENAMING;
4342 if (len != NULL)
4343 *len = strlen (info) - strlen (suffix);
4344 suffix += 5;
4345 if (renaming_expr != NULL)
4346 *renaming_expr = suffix;
4347 return kind;
4348}
4349
4350/* Assuming TYPE encodes a renaming according to the old encoding in
4351 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4352 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4353 ADA_NOT_RENAMING otherwise. */
4354static enum ada_renaming_category
4355parse_old_style_renaming (struct type *type,
4356 const char **renamed_entity, int *len,
4357 const char **renaming_expr)
4358{
4359 enum ada_renaming_category kind;
4360 const char *name;
4361 const char *info;
4362 const char *suffix;
14f9c5c9 4363
aeb5907d
JB
4364 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4365 || TYPE_NFIELDS (type) != 1)
4366 return ADA_NOT_RENAMING;
14f9c5c9 4367
aeb5907d
JB
4368 name = type_name_no_tag (type);
4369 if (name == NULL)
4370 return ADA_NOT_RENAMING;
4371
4372 name = strstr (name, "___XR");
4373 if (name == NULL)
4374 return ADA_NOT_RENAMING;
4375 switch (name[5])
4376 {
4377 case '\0':
4378 case '_':
4379 kind = ADA_OBJECT_RENAMING;
4380 break;
4381 case 'E':
4382 kind = ADA_EXCEPTION_RENAMING;
4383 break;
4384 case 'P':
4385 kind = ADA_PACKAGE_RENAMING;
4386 break;
4387 case 'S':
4388 kind = ADA_SUBPROGRAM_RENAMING;
4389 break;
4390 default:
4391 return ADA_NOT_RENAMING;
4392 }
14f9c5c9 4393
aeb5907d
JB
4394 info = TYPE_FIELD_NAME (type, 0);
4395 if (info == NULL)
4396 return ADA_NOT_RENAMING;
4397 if (renamed_entity != NULL)
4398 *renamed_entity = info;
4399 suffix = strstr (info, "___XE");
4400 if (renaming_expr != NULL)
4401 *renaming_expr = suffix + 5;
4402 if (suffix == NULL || suffix == info)
4403 return ADA_NOT_RENAMING;
4404 if (len != NULL)
4405 *len = suffix - info;
4406 return kind;
a5ee536b
JB
4407}
4408
4409/* Compute the value of the given RENAMING_SYM, which is expected to
4410 be a symbol encoding a renaming expression. BLOCK is the block
4411 used to evaluate the renaming. */
52ce6436 4412
a5ee536b
JB
4413static struct value *
4414ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4415 const struct block *block)
a5ee536b 4416{
bbc13ae3 4417 const char *sym_name;
a5ee536b
JB
4418 struct expression *expr;
4419 struct value *value;
4420 struct cleanup *old_chain = NULL;
4421
bbc13ae3 4422 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4423 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4424 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4425 value = evaluate_expression (expr);
4426
4427 do_cleanups (old_chain);
4428 return value;
4429}
14f9c5c9 4430\f
d2e4a39e 4431
4c4b4cd2 4432 /* Evaluation: Function Calls */
14f9c5c9 4433
4c4b4cd2 4434/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4435 lvalues, and otherwise has the side-effect of allocating memory
4436 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4437
d2e4a39e 4438static struct value *
40bc484c 4439ensure_lval (struct value *val)
14f9c5c9 4440{
40bc484c
JB
4441 if (VALUE_LVAL (val) == not_lval
4442 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4443 {
df407dfe 4444 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4445 const CORE_ADDR addr =
4446 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4447
40bc484c 4448 set_value_address (val, addr);
a84a8a0d 4449 VALUE_LVAL (val) = lval_memory;
40bc484c 4450 write_memory (addr, value_contents (val), len);
c3e5cd34 4451 }
14f9c5c9
AS
4452
4453 return val;
4454}
4455
4456/* Return the value ACTUAL, converted to be an appropriate value for a
4457 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4458 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4459 values not residing in memory, updating it as needed. */
14f9c5c9 4460
a93c0eb6 4461struct value *
40bc484c 4462ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4463{
df407dfe 4464 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4465 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4466 struct type *formal_target =
4467 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4468 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4469 struct type *actual_target =
4470 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4471 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4472
4c4b4cd2 4473 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4474 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4475 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4476 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4477 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4478 {
a84a8a0d 4479 struct value *result;
5b4ee69b 4480
14f9c5c9 4481 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4482 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4483 result = desc_data (actual);
14f9c5c9 4484 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4485 {
4486 if (VALUE_LVAL (actual) != lval_memory)
4487 {
4488 struct value *val;
5b4ee69b 4489
df407dfe 4490 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4491 val = allocate_value (actual_type);
990a07ab 4492 memcpy ((char *) value_contents_raw (val),
0fd88904 4493 (char *) value_contents (actual),
4c4b4cd2 4494 TYPE_LENGTH (actual_type));
40bc484c 4495 actual = ensure_lval (val);
4c4b4cd2 4496 }
a84a8a0d 4497 result = value_addr (actual);
4c4b4cd2 4498 }
a84a8a0d
JB
4499 else
4500 return actual;
b1af9e97 4501 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4502 }
4503 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4504 return ada_value_ind (actual);
8344af1e
JB
4505 else if (ada_is_aligner_type (formal_type))
4506 {
4507 /* We need to turn this parameter into an aligner type
4508 as well. */
4509 struct value *aligner = allocate_value (formal_type);
4510 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4511
4512 value_assign_to_component (aligner, component, actual);
4513 return aligner;
4514 }
14f9c5c9
AS
4515
4516 return actual;
4517}
4518
438c98a1
JB
4519/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4520 type TYPE. This is usually an inefficient no-op except on some targets
4521 (such as AVR) where the representation of a pointer and an address
4522 differs. */
4523
4524static CORE_ADDR
4525value_pointer (struct value *value, struct type *type)
4526{
4527 struct gdbarch *gdbarch = get_type_arch (type);
4528 unsigned len = TYPE_LENGTH (type);
224c3ddb 4529 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4530 CORE_ADDR addr;
4531
4532 addr = value_address (value);
4533 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4534 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4535 return addr;
4536}
4537
14f9c5c9 4538
4c4b4cd2
PH
4539/* Push a descriptor of type TYPE for array value ARR on the stack at
4540 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4541 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4542 to-descriptor type rather than a descriptor type), a struct value *
4543 representing a pointer to this descriptor. */
14f9c5c9 4544
d2e4a39e 4545static struct value *
40bc484c 4546make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4547{
d2e4a39e
AS
4548 struct type *bounds_type = desc_bounds_type (type);
4549 struct type *desc_type = desc_base_type (type);
4550 struct value *descriptor = allocate_value (desc_type);
4551 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4552 int i;
d2e4a39e 4553
0963b4bd
MS
4554 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4555 i > 0; i -= 1)
14f9c5c9 4556 {
19f220c3
JK
4557 modify_field (value_type (bounds), value_contents_writeable (bounds),
4558 ada_array_bound (arr, i, 0),
4559 desc_bound_bitpos (bounds_type, i, 0),
4560 desc_bound_bitsize (bounds_type, i, 0));
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 1),
4563 desc_bound_bitpos (bounds_type, i, 1),
4564 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4565 }
d2e4a39e 4566
40bc484c 4567 bounds = ensure_lval (bounds);
d2e4a39e 4568
19f220c3
JK
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (ensure_lval (arr),
4572 TYPE_FIELD_TYPE (desc_type, 0)),
4573 fat_pntr_data_bitpos (desc_type),
4574 fat_pntr_data_bitsize (desc_type));
4575
4576 modify_field (value_type (descriptor),
4577 value_contents_writeable (descriptor),
4578 value_pointer (bounds,
4579 TYPE_FIELD_TYPE (desc_type, 1)),
4580 fat_pntr_bounds_bitpos (desc_type),
4581 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4582
40bc484c 4583 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4584
4585 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4586 return value_addr (descriptor);
4587 else
4588 return descriptor;
4589}
14f9c5c9 4590\f
3d9434b5
JB
4591 /* Symbol Cache Module */
4592
3d9434b5 4593/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4594 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4595 on the type of entity being printed, the cache can make it as much
4596 as an order of magnitude faster than without it.
4597
4598 The descriptive type DWARF extension has significantly reduced
4599 the need for this cache, at least when DWARF is being used. However,
4600 even in this case, some expensive name-based symbol searches are still
4601 sometimes necessary - to find an XVZ variable, mostly. */
4602
ee01b665 4603/* Initialize the contents of SYM_CACHE. */
3d9434b5 4604
ee01b665
JB
4605static void
4606ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4607{
4608 obstack_init (&sym_cache->cache_space);
4609 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4610}
3d9434b5 4611
ee01b665
JB
4612/* Free the memory used by SYM_CACHE. */
4613
4614static void
4615ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4616{
ee01b665
JB
4617 obstack_free (&sym_cache->cache_space, NULL);
4618 xfree (sym_cache);
4619}
3d9434b5 4620
ee01b665
JB
4621/* Return the symbol cache associated to the given program space PSPACE.
4622 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4623
ee01b665
JB
4624static struct ada_symbol_cache *
4625ada_get_symbol_cache (struct program_space *pspace)
4626{
4627 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4628
66c168ae 4629 if (pspace_data->sym_cache == NULL)
ee01b665 4630 {
66c168ae
JB
4631 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4632 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4633 }
4634
66c168ae 4635 return pspace_data->sym_cache;
ee01b665 4636}
3d9434b5
JB
4637
4638/* Clear all entries from the symbol cache. */
4639
4640static void
4641ada_clear_symbol_cache (void)
4642{
ee01b665
JB
4643 struct ada_symbol_cache *sym_cache
4644 = ada_get_symbol_cache (current_program_space);
4645
4646 obstack_free (&sym_cache->cache_space, NULL);
4647 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4648}
4649
fe978cb0 4650/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4651 Return it if found, or NULL otherwise. */
4652
4653static struct cache_entry **
fe978cb0 4654find_entry (const char *name, domain_enum domain)
3d9434b5 4655{
ee01b665
JB
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4658 int h = msymbol_hash (name) % HASH_SIZE;
4659 struct cache_entry **e;
4660
ee01b665 4661 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4662 {
fe978cb0 4663 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4664 return e;
4665 }
4666 return NULL;
4667}
4668
fe978cb0 4669/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4670 Return 1 if found, 0 otherwise.
4671
4672 If an entry was found and SYM is not NULL, set *SYM to the entry's
4673 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4674
96d887e8 4675static int
fe978cb0 4676lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4677 struct symbol **sym, const struct block **block)
96d887e8 4678{
fe978cb0 4679 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4680
4681 if (e == NULL)
4682 return 0;
4683 if (sym != NULL)
4684 *sym = (*e)->sym;
4685 if (block != NULL)
4686 *block = (*e)->block;
4687 return 1;
96d887e8
PH
4688}
4689
3d9434b5 4690/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4691 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4692
96d887e8 4693static void
fe978cb0 4694cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4695 const struct block *block)
96d887e8 4696{
ee01b665
JB
4697 struct ada_symbol_cache *sym_cache
4698 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4699 int h;
4700 char *copy;
4701 struct cache_entry *e;
4702
1994afbf
DE
4703 /* Symbols for builtin types don't have a block.
4704 For now don't cache such symbols. */
4705 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4706 return;
4707
3d9434b5
JB
4708 /* If the symbol is a local symbol, then do not cache it, as a search
4709 for that symbol depends on the context. To determine whether
4710 the symbol is local or not, we check the block where we found it
4711 against the global and static blocks of its associated symtab. */
4712 if (sym
08be3fe3 4713 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4714 GLOBAL_BLOCK) != block
08be3fe3 4715 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4716 STATIC_BLOCK) != block)
3d9434b5
JB
4717 return;
4718
4719 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4720 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4721 sizeof (*e));
4722 e->next = sym_cache->root[h];
4723 sym_cache->root[h] = e;
224c3ddb
SM
4724 e->name = copy
4725 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4726 strcpy (copy, name);
4727 e->sym = sym;
fe978cb0 4728 e->domain = domain;
3d9434b5 4729 e->block = block;
96d887e8 4730}
4c4b4cd2
PH
4731\f
4732 /* Symbol Lookup */
4733
c0431670
JB
4734/* Return nonzero if wild matching should be used when searching for
4735 all symbols matching LOOKUP_NAME.
4736
4737 LOOKUP_NAME is expected to be a symbol name after transformation
4738 for Ada lookups (see ada_name_for_lookup). */
4739
4740static int
4741should_use_wild_match (const char *lookup_name)
4742{
4743 return (strstr (lookup_name, "__") == NULL);
4744}
4745
4c4b4cd2
PH
4746/* Return the result of a standard (literal, C-like) lookup of NAME in
4747 given DOMAIN, visible from lexical block BLOCK. */
4748
4749static struct symbol *
4750standard_lookup (const char *name, const struct block *block,
4751 domain_enum domain)
4752{
acbd605d 4753 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4754 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4755
d12307c1
PMR
4756 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4757 return sym.symbol;
2570f2b7 4758 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4759 cache_symbol (name, domain, sym.symbol, sym.block);
4760 return sym.symbol;
4c4b4cd2
PH
4761}
4762
4763
4764/* Non-zero iff there is at least one non-function/non-enumeral symbol
4765 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4766 since they contend in overloading in the same way. */
4767static int
d12307c1 4768is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4769{
4770 int i;
4771
4772 for (i = 0; i < n; i += 1)
d12307c1
PMR
4773 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4774 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4775 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4776 return 1;
4777
4778 return 0;
4779}
4780
4781/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4782 struct types. Otherwise, they may not. */
14f9c5c9
AS
4783
4784static int
d2e4a39e 4785equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4786{
d2e4a39e 4787 if (type0 == type1)
14f9c5c9 4788 return 1;
d2e4a39e 4789 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4790 || TYPE_CODE (type0) != TYPE_CODE (type1))
4791 return 0;
d2e4a39e 4792 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4793 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4794 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4795 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4796 return 1;
d2e4a39e 4797
14f9c5c9
AS
4798 return 0;
4799}
4800
4801/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4802 no more defined than that of SYM1. */
14f9c5c9
AS
4803
4804static int
d2e4a39e 4805lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4806{
4807 if (sym0 == sym1)
4808 return 1;
176620f1 4809 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4810 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4811 return 0;
4812
d2e4a39e 4813 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4814 {
4815 case LOC_UNDEF:
4816 return 1;
4817 case LOC_TYPEDEF:
4818 {
4c4b4cd2
PH
4819 struct type *type0 = SYMBOL_TYPE (sym0);
4820 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4821 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4822 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4823 int len0 = strlen (name0);
5b4ee69b 4824
4c4b4cd2
PH
4825 return
4826 TYPE_CODE (type0) == TYPE_CODE (type1)
4827 && (equiv_types (type0, type1)
4828 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4829 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4830 }
4831 case LOC_CONST:
4832 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4833 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4834 default:
4835 return 0;
14f9c5c9
AS
4836 }
4837}
4838
d12307c1 4839/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4840 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4841
4842static void
76a01679
JB
4843add_defn_to_vec (struct obstack *obstackp,
4844 struct symbol *sym,
f0c5f9b2 4845 const struct block *block)
14f9c5c9
AS
4846{
4847 int i;
d12307c1 4848 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4849
529cad9c
PH
4850 /* Do not try to complete stub types, as the debugger is probably
4851 already scanning all symbols matching a certain name at the
4852 time when this function is called. Trying to replace the stub
4853 type by its associated full type will cause us to restart a scan
4854 which may lead to an infinite recursion. Instead, the client
4855 collecting the matching symbols will end up collecting several
4856 matches, with at least one of them complete. It can then filter
4857 out the stub ones if needed. */
4858
4c4b4cd2
PH
4859 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4860 {
d12307c1 4861 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4862 return;
d12307c1 4863 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4864 {
d12307c1 4865 prevDefns[i].symbol = sym;
4c4b4cd2 4866 prevDefns[i].block = block;
4c4b4cd2 4867 return;
76a01679 4868 }
4c4b4cd2
PH
4869 }
4870
4871 {
d12307c1 4872 struct block_symbol info;
4c4b4cd2 4873
d12307c1 4874 info.symbol = sym;
4c4b4cd2 4875 info.block = block;
d12307c1 4876 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4877 }
4878}
4879
d12307c1
PMR
4880/* Number of block_symbol structures currently collected in current vector in
4881 OBSTACKP. */
4c4b4cd2 4882
76a01679
JB
4883static int
4884num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4885{
d12307c1 4886 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4887}
4888
d12307c1
PMR
4889/* Vector of block_symbol structures currently collected in current vector in
4890 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4891
d12307c1 4892static struct block_symbol *
4c4b4cd2
PH
4893defns_collected (struct obstack *obstackp, int finish)
4894{
4895 if (finish)
224c3ddb 4896 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4897 else
d12307c1 4898 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4899}
4900
7c7b6655
TT
4901/* Return a bound minimal symbol matching NAME according to Ada
4902 decoding rules. Returns an invalid symbol if there is no such
4903 minimal symbol. Names prefixed with "standard__" are handled
4904 specially: "standard__" is first stripped off, and only static and
4905 global symbols are searched. */
4c4b4cd2 4906
7c7b6655 4907struct bound_minimal_symbol
96d887e8 4908ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4909{
7c7b6655 4910 struct bound_minimal_symbol result;
4c4b4cd2 4911 struct objfile *objfile;
96d887e8 4912 struct minimal_symbol *msymbol;
dc4024cd 4913 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4914
7c7b6655
TT
4915 memset (&result, 0, sizeof (result));
4916
c0431670
JB
4917 /* Special case: If the user specifies a symbol name inside package
4918 Standard, do a non-wild matching of the symbol name without
4919 the "standard__" prefix. This was primarily introduced in order
4920 to allow the user to specifically access the standard exceptions
4921 using, for instance, Standard.Constraint_Error when Constraint_Error
4922 is ambiguous (due to the user defining its own Constraint_Error
4923 entity inside its program). */
61012eef 4924 if (startswith (name, "standard__"))
c0431670 4925 name += sizeof ("standard__") - 1;
4c4b4cd2 4926
96d887e8
PH
4927 ALL_MSYMBOLS (objfile, msymbol)
4928 {
efd66ac6 4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4931 {
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4934 break;
4935 }
96d887e8 4936 }
4c4b4cd2 4937
7c7b6655 4938 return result;
96d887e8 4939}
4c4b4cd2 4940
96d887e8
PH
4941/* For all subprograms that statically enclose the subprogram of the
4942 selected frame, add symbols matching identifier NAME in DOMAIN
4943 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4944 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4945 with a wildcard prefix. */
4c4b4cd2 4946
96d887e8
PH
4947static void
4948add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4949 const char *name, domain_enum domain,
48b78332 4950 int wild_match_p)
96d887e8 4951{
96d887e8 4952}
14f9c5c9 4953
96d887e8
PH
4954/* True if TYPE is definitely an artificial type supplied to a symbol
4955 for which no debugging information was given in the symbol file. */
14f9c5c9 4956
96d887e8
PH
4957static int
4958is_nondebugging_type (struct type *type)
4959{
0d5cff50 4960 const char *name = ada_type_name (type);
5b4ee69b 4961
96d887e8
PH
4962 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4963}
4c4b4cd2 4964
8f17729f
JB
4965/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4966 that are deemed "identical" for practical purposes.
4967
4968 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4969 types and that their number of enumerals is identical (in other
4970 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4971
4972static int
4973ada_identical_enum_types_p (struct type *type1, struct type *type2)
4974{
4975 int i;
4976
4977 /* The heuristic we use here is fairly conservative. We consider
4978 that 2 enumerate types are identical if they have the same
4979 number of enumerals and that all enumerals have the same
4980 underlying value and name. */
4981
4982 /* All enums in the type should have an identical underlying value. */
4983 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4984 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4985 return 0;
4986
4987 /* All enumerals should also have the same name (modulo any numerical
4988 suffix). */
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4990 {
0d5cff50
DE
4991 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4992 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4993 int len_1 = strlen (name_1);
4994 int len_2 = strlen (name_2);
4995
4996 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4998 if (len_1 != len_2
4999 || strncmp (TYPE_FIELD_NAME (type1, i),
5000 TYPE_FIELD_NAME (type2, i),
5001 len_1) != 0)
5002 return 0;
5003 }
5004
5005 return 1;
5006}
5007
5008/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5009 that are deemed "identical" for practical purposes. Sometimes,
5010 enumerals are not strictly identical, but their types are so similar
5011 that they can be considered identical.
5012
5013 For instance, consider the following code:
5014
5015 type Color is (Black, Red, Green, Blue, White);
5016 type RGB_Color is new Color range Red .. Blue;
5017
5018 Type RGB_Color is a subrange of an implicit type which is a copy
5019 of type Color. If we call that implicit type RGB_ColorB ("B" is
5020 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5021 As a result, when an expression references any of the enumeral
5022 by name (Eg. "print green"), the expression is technically
5023 ambiguous and the user should be asked to disambiguate. But
5024 doing so would only hinder the user, since it wouldn't matter
5025 what choice he makes, the outcome would always be the same.
5026 So, for practical purposes, we consider them as the same. */
5027
5028static int
d12307c1 5029symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5030{
5031 int i;
5032
5033 /* Before performing a thorough comparison check of each type,
5034 we perform a series of inexpensive checks. We expect that these
5035 checks will quickly fail in the vast majority of cases, and thus
5036 help prevent the unnecessary use of a more expensive comparison.
5037 Said comparison also expects us to make some of these checks
5038 (see ada_identical_enum_types_p). */
5039
5040 /* Quick check: All symbols should have an enum type. */
5041 for (i = 0; i < nsyms; i++)
d12307c1 5042 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5043 return 0;
5044
5045 /* Quick check: They should all have the same value. */
5046 for (i = 1; i < nsyms; i++)
d12307c1 5047 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5048 return 0;
5049
5050 /* Quick check: They should all have the same number of enumerals. */
5051 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5052 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5053 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5054 return 0;
5055
5056 /* All the sanity checks passed, so we might have a set of
5057 identical enumeration types. Perform a more complete
5058 comparison of the type of each symbol. */
5059 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5060 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5061 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5062 return 0;
5063
5064 return 1;
5065}
5066
96d887e8
PH
5067/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5068 duplicate other symbols in the list (The only case I know of where
5069 this happens is when object files containing stabs-in-ecoff are
5070 linked with files containing ordinary ecoff debugging symbols (or no
5071 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5072 Returns the number of items in the modified list. */
4c4b4cd2 5073
96d887e8 5074static int
d12307c1 5075remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5076{
5077 int i, j;
4c4b4cd2 5078
8f17729f
JB
5079 /* We should never be called with less than 2 symbols, as there
5080 cannot be any extra symbol in that case. But it's easy to
5081 handle, since we have nothing to do in that case. */
5082 if (nsyms < 2)
5083 return nsyms;
5084
96d887e8
PH
5085 i = 0;
5086 while (i < nsyms)
5087 {
a35ddb44 5088 int remove_p = 0;
339c13b6
JB
5089
5090 /* If two symbols have the same name and one of them is a stub type,
5091 the get rid of the stub. */
5092
d12307c1
PMR
5093 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5094 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5095 {
5096 for (j = 0; j < nsyms; j++)
5097 {
5098 if (j != i
d12307c1
PMR
5099 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5100 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5101 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5102 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5103 remove_p = 1;
339c13b6
JB
5104 }
5105 }
5106
5107 /* Two symbols with the same name, same class and same address
5108 should be identical. */
5109
d12307c1
PMR
5110 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5111 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5112 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5113 {
5114 for (j = 0; j < nsyms; j += 1)
5115 {
5116 if (i != j
d12307c1
PMR
5117 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5119 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5120 && SYMBOL_CLASS (syms[i].symbol)
5121 == SYMBOL_CLASS (syms[j].symbol)
5122 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5123 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5124 remove_p = 1;
4c4b4cd2 5125 }
4c4b4cd2 5126 }
339c13b6 5127
a35ddb44 5128 if (remove_p)
339c13b6
JB
5129 {
5130 for (j = i + 1; j < nsyms; j += 1)
5131 syms[j - 1] = syms[j];
5132 nsyms -= 1;
5133 }
5134
96d887e8 5135 i += 1;
14f9c5c9 5136 }
8f17729f
JB
5137
5138 /* If all the remaining symbols are identical enumerals, then
5139 just keep the first one and discard the rest.
5140
5141 Unlike what we did previously, we do not discard any entry
5142 unless they are ALL identical. This is because the symbol
5143 comparison is not a strict comparison, but rather a practical
5144 comparison. If all symbols are considered identical, then
5145 we can just go ahead and use the first one and discard the rest.
5146 But if we cannot reduce the list to a single element, we have
5147 to ask the user to disambiguate anyways. And if we have to
5148 present a multiple-choice menu, it's less confusing if the list
5149 isn't missing some choices that were identical and yet distinct. */
5150 if (symbols_are_identical_enums (syms, nsyms))
5151 nsyms = 1;
5152
96d887e8 5153 return nsyms;
14f9c5c9
AS
5154}
5155
96d887e8
PH
5156/* Given a type that corresponds to a renaming entity, use the type name
5157 to extract the scope (package name or function name, fully qualified,
5158 and following the GNAT encoding convention) where this renaming has been
5159 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5160
96d887e8
PH
5161static char *
5162xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5163{
96d887e8 5164 /* The renaming types adhere to the following convention:
0963b4bd 5165 <scope>__<rename>___<XR extension>.
96d887e8
PH
5166 So, to extract the scope, we search for the "___XR" extension,
5167 and then backtrack until we find the first "__". */
76a01679 5168
96d887e8 5169 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5170 const char *suffix = strstr (name, "___XR");
5171 const char *last;
96d887e8
PH
5172 int scope_len;
5173 char *scope;
14f9c5c9 5174
96d887e8
PH
5175 /* Now, backtrack a bit until we find the first "__". Start looking
5176 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5177
96d887e8
PH
5178 for (last = suffix - 3; last > name; last--)
5179 if (last[0] == '_' && last[1] == '_')
5180 break;
76a01679 5181
96d887e8 5182 /* Make a copy of scope and return it. */
14f9c5c9 5183
96d887e8
PH
5184 scope_len = last - name;
5185 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5186
96d887e8
PH
5187 strncpy (scope, name, scope_len);
5188 scope[scope_len] = '\0';
4c4b4cd2 5189
96d887e8 5190 return scope;
4c4b4cd2
PH
5191}
5192
96d887e8 5193/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5194
96d887e8
PH
5195static int
5196is_package_name (const char *name)
4c4b4cd2 5197{
96d887e8
PH
5198 /* Here, We take advantage of the fact that no symbols are generated
5199 for packages, while symbols are generated for each function.
5200 So the condition for NAME represent a package becomes equivalent
5201 to NAME not existing in our list of symbols. There is only one
5202 small complication with library-level functions (see below). */
4c4b4cd2 5203
96d887e8 5204 char *fun_name;
76a01679 5205
96d887e8
PH
5206 /* If it is a function that has not been defined at library level,
5207 then we should be able to look it up in the symbols. */
5208 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5209 return 0;
14f9c5c9 5210
96d887e8
PH
5211 /* Library-level function names start with "_ada_". See if function
5212 "_ada_" followed by NAME can be found. */
14f9c5c9 5213
96d887e8 5214 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5215 functions names cannot contain "__" in them. */
96d887e8
PH
5216 if (strstr (name, "__") != NULL)
5217 return 0;
4c4b4cd2 5218
b435e160 5219 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5220
96d887e8
PH
5221 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5222}
14f9c5c9 5223
96d887e8 5224/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5225 not visible from FUNCTION_NAME. */
14f9c5c9 5226
96d887e8 5227static int
0d5cff50 5228old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5229{
aeb5907d 5230 char *scope;
1509e573 5231 struct cleanup *old_chain;
aeb5907d
JB
5232
5233 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5234 return 0;
5235
5236 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5237 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5238
96d887e8
PH
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope))
1509e573
JB
5241 {
5242 do_cleanups (old_chain);
5243 return 0;
5244 }
14f9c5c9 5245
96d887e8
PH
5246 /* Check that the rename is in the current function scope by checking
5247 that its name starts with SCOPE. */
76a01679 5248
96d887e8
PH
5249 /* If the function name starts with "_ada_", it means that it is
5250 a library-level function. Strip this prefix before doing the
5251 comparison, as the encoding for the renaming does not contain
5252 this prefix. */
61012eef 5253 if (startswith (function_name, "_ada_"))
96d887e8 5254 function_name += 5;
f26caa11 5255
1509e573 5256 {
61012eef 5257 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5258
5259 do_cleanups (old_chain);
5260 return is_invisible;
5261 }
f26caa11
PH
5262}
5263
aeb5907d
JB
5264/* Remove entries from SYMS that corresponds to a renaming entity that
5265 is not visible from the function associated with CURRENT_BLOCK or
5266 that is superfluous due to the presence of more specific renaming
5267 information. Places surviving symbols in the initial entries of
5268 SYMS and returns the number of surviving symbols.
96d887e8
PH
5269
5270 Rationale:
aeb5907d
JB
5271 First, in cases where an object renaming is implemented as a
5272 reference variable, GNAT may produce both the actual reference
5273 variable and the renaming encoding. In this case, we discard the
5274 latter.
5275
5276 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5277 entity. Unfortunately, STABS currently does not support the definition
5278 of types that are local to a given lexical block, so all renamings types
5279 are emitted at library level. As a consequence, if an application
5280 contains two renaming entities using the same name, and a user tries to
5281 print the value of one of these entities, the result of the ada symbol
5282 lookup will also contain the wrong renaming type.
f26caa11 5283
96d887e8
PH
5284 This function partially covers for this limitation by attempting to
5285 remove from the SYMS list renaming symbols that should be visible
5286 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5287 method with the current information available. The implementation
5288 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5289
5290 - When the user tries to print a rename in a function while there
5291 is another rename entity defined in a package: Normally, the
5292 rename in the function has precedence over the rename in the
5293 package, so the latter should be removed from the list. This is
5294 currently not the case.
5295
5296 - This function will incorrectly remove valid renames if
5297 the CURRENT_BLOCK corresponds to a function which symbol name
5298 has been changed by an "Export" pragma. As a consequence,
5299 the user will be unable to print such rename entities. */
4c4b4cd2 5300
14f9c5c9 5301static int
d12307c1 5302remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5303 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5304{
5305 struct symbol *current_function;
0d5cff50 5306 const char *current_function_name;
4c4b4cd2 5307 int i;
aeb5907d
JB
5308 int is_new_style_renaming;
5309
5310 /* If there is both a renaming foo___XR... encoded as a variable and
5311 a simple variable foo in the same block, discard the latter.
0963b4bd 5312 First, zero out such symbols, then compress. */
aeb5907d
JB
5313 is_new_style_renaming = 0;
5314 for (i = 0; i < nsyms; i += 1)
5315 {
d12307c1 5316 struct symbol *sym = syms[i].symbol;
270140bd 5317 const struct block *block = syms[i].block;
aeb5907d
JB
5318 const char *name;
5319 const char *suffix;
5320
5321 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5322 continue;
5323 name = SYMBOL_LINKAGE_NAME (sym);
5324 suffix = strstr (name, "___XR");
5325
5326 if (suffix != NULL)
5327 {
5328 int name_len = suffix - name;
5329 int j;
5b4ee69b 5330
aeb5907d
JB
5331 is_new_style_renaming = 1;
5332 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5333 if (i != j && syms[j].symbol != NULL
5334 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5335 name_len) == 0
5336 && block == syms[j].block)
d12307c1 5337 syms[j].symbol = NULL;
aeb5907d
JB
5338 }
5339 }
5340 if (is_new_style_renaming)
5341 {
5342 int j, k;
5343
5344 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5345 if (syms[j].symbol != NULL)
aeb5907d
JB
5346 {
5347 syms[k] = syms[j];
5348 k += 1;
5349 }
5350 return k;
5351 }
4c4b4cd2
PH
5352
5353 /* Extract the function name associated to CURRENT_BLOCK.
5354 Abort if unable to do so. */
76a01679 5355
4c4b4cd2
PH
5356 if (current_block == NULL)
5357 return nsyms;
76a01679 5358
7f0df278 5359 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5360 if (current_function == NULL)
5361 return nsyms;
5362
5363 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5364 if (current_function_name == NULL)
5365 return nsyms;
5366
5367 /* Check each of the symbols, and remove it from the list if it is
5368 a type corresponding to a renaming that is out of the scope of
5369 the current block. */
5370
5371 i = 0;
5372 while (i < nsyms)
5373 {
d12307c1 5374 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5375 == ADA_OBJECT_RENAMING
d12307c1 5376 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5377 {
5378 int j;
5b4ee69b 5379
aeb5907d 5380 for (j = i + 1; j < nsyms; j += 1)
76a01679 5381 syms[j - 1] = syms[j];
4c4b4cd2
PH
5382 nsyms -= 1;
5383 }
5384 else
5385 i += 1;
5386 }
5387
5388 return nsyms;
5389}
5390
339c13b6
JB
5391/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5392 whose name and domain match NAME and DOMAIN respectively.
5393 If no match was found, then extend the search to "enclosing"
5394 routines (in other words, if we're inside a nested function,
5395 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5396 If WILD_MATCH_P is nonzero, perform the naming matching in
5397 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5398
5399 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5400
5401static void
5402ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5403 const struct block *block, domain_enum domain,
d0a8ab18 5404 int wild_match_p)
339c13b6
JB
5405{
5406 int block_depth = 0;
5407
5408 while (block != NULL)
5409 {
5410 block_depth += 1;
d0a8ab18
JB
5411 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5412 wild_match_p);
339c13b6
JB
5413
5414 /* If we found a non-function match, assume that's the one. */
5415 if (is_nonfunction (defns_collected (obstackp, 0),
5416 num_defns_collected (obstackp)))
5417 return;
5418
5419 block = BLOCK_SUPERBLOCK (block);
5420 }
5421
5422 /* If no luck so far, try to find NAME as a local symbol in some lexically
5423 enclosing subprogram. */
5424 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5425 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5426}
5427
ccefe4c4 5428/* An object of this type is used as the user_data argument when
40658b94 5429 calling the map_matching_symbols method. */
ccefe4c4 5430
40658b94 5431struct match_data
ccefe4c4 5432{
40658b94 5433 struct objfile *objfile;
ccefe4c4 5434 struct obstack *obstackp;
40658b94
PH
5435 struct symbol *arg_sym;
5436 int found_sym;
ccefe4c4
TT
5437};
5438
22cee43f 5439/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5440 to a list of symbols. DATA0 is a pointer to a struct match_data *
5441 containing the obstack that collects the symbol list, the file that SYM
5442 must come from, a flag indicating whether a non-argument symbol has
5443 been found in the current block, and the last argument symbol
5444 passed in SYM within the current block (if any). When SYM is null,
5445 marking the end of a block, the argument symbol is added if no
5446 other has been found. */
ccefe4c4 5447
40658b94
PH
5448static int
5449aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5450{
40658b94
PH
5451 struct match_data *data = (struct match_data *) data0;
5452
5453 if (sym == NULL)
5454 {
5455 if (!data->found_sym && data->arg_sym != NULL)
5456 add_defn_to_vec (data->obstackp,
5457 fixup_symbol_section (data->arg_sym, data->objfile),
5458 block);
5459 data->found_sym = 0;
5460 data->arg_sym = NULL;
5461 }
5462 else
5463 {
5464 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5465 return 0;
5466 else if (SYMBOL_IS_ARGUMENT (sym))
5467 data->arg_sym = sym;
5468 else
5469 {
5470 data->found_sym = 1;
5471 add_defn_to_vec (data->obstackp,
5472 fixup_symbol_section (sym, data->objfile),
5473 block);
5474 }
5475 }
5476 return 0;
5477}
5478
22cee43f
PMR
5479/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5480 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5481 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5482 function "wild_match" for more information). Return whether we found such
5483 symbols. */
5484
5485static int
5486ada_add_block_renamings (struct obstack *obstackp,
5487 const struct block *block,
5488 const char *name,
5489 domain_enum domain,
5490 int wild_match_p)
5491{
5492 struct using_direct *renaming;
5493 int defns_mark = num_defns_collected (obstackp);
5494
5495 for (renaming = block_using (block);
5496 renaming != NULL;
5497 renaming = renaming->next)
5498 {
5499 const char *r_name;
5500 int name_match;
5501
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5504
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5512 continue;
5513 renaming->searched = 1;
5514
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5523 ? renaming->alias
5524 : renaming->declaration);
5525 name_match
5526 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5527 if (name_match == 0)
5528 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5529 1, NULL);
5530 renaming->searched = 0;
5531 }
5532 return num_defns_collected (obstackp) != defns_mark;
5533}
5534
db230ce3
JB
5535/* Implements compare_names, but only applying the comparision using
5536 the given CASING. */
5b4ee69b 5537
40658b94 5538static int
db230ce3
JB
5539compare_names_with_case (const char *string1, const char *string2,
5540 enum case_sensitivity casing)
40658b94
PH
5541{
5542 while (*string1 != '\0' && *string2 != '\0')
5543 {
db230ce3
JB
5544 char c1, c2;
5545
40658b94
PH
5546 if (isspace (*string1) || isspace (*string2))
5547 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5548
5549 if (casing == case_sensitive_off)
5550 {
5551 c1 = tolower (*string1);
5552 c2 = tolower (*string2);
5553 }
5554 else
5555 {
5556 c1 = *string1;
5557 c2 = *string2;
5558 }
5559 if (c1 != c2)
40658b94 5560 break;
db230ce3 5561
40658b94
PH
5562 string1 += 1;
5563 string2 += 1;
5564 }
db230ce3 5565
40658b94
PH
5566 switch (*string1)
5567 {
5568 case '(':
5569 return strcmp_iw_ordered (string1, string2);
5570 case '_':
5571 if (*string2 == '\0')
5572 {
052874e8 5573 if (is_name_suffix (string1))
40658b94
PH
5574 return 0;
5575 else
1a1d5513 5576 return 1;
40658b94 5577 }
dbb8534f 5578 /* FALLTHROUGH */
40658b94
PH
5579 default:
5580 if (*string2 == '(')
5581 return strcmp_iw_ordered (string1, string2);
5582 else
db230ce3
JB
5583 {
5584 if (casing == case_sensitive_off)
5585 return tolower (*string1) - tolower (*string2);
5586 else
5587 return *string1 - *string2;
5588 }
40658b94 5589 }
ccefe4c4
TT
5590}
5591
db230ce3
JB
5592/* Compare STRING1 to STRING2, with results as for strcmp.
5593 Compatible with strcmp_iw_ordered in that...
5594
5595 strcmp_iw_ordered (STRING1, STRING2) <= 0
5596
5597 ... implies...
5598
5599 compare_names (STRING1, STRING2) <= 0
5600
5601 (they may differ as to what symbols compare equal). */
5602
5603static int
5604compare_names (const char *string1, const char *string2)
5605{
5606 int result;
5607
5608 /* Similar to what strcmp_iw_ordered does, we need to perform
5609 a case-insensitive comparison first, and only resort to
5610 a second, case-sensitive, comparison if the first one was
5611 not sufficient to differentiate the two strings. */
5612
5613 result = compare_names_with_case (string1, string2, case_sensitive_off);
5614 if (result == 0)
5615 result = compare_names_with_case (string1, string2, case_sensitive_on);
5616
5617 return result;
5618}
5619
339c13b6
JB
5620/* Add to OBSTACKP all non-local symbols whose name and domain match
5621 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5622 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5623
5624static void
40658b94
PH
5625add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5626 domain_enum domain, int global,
5627 int is_wild_match)
339c13b6
JB
5628{
5629 struct objfile *objfile;
22cee43f 5630 struct compunit_symtab *cu;
40658b94 5631 struct match_data data;
339c13b6 5632
6475f2fe 5633 memset (&data, 0, sizeof data);
ccefe4c4 5634 data.obstackp = obstackp;
339c13b6 5635
ccefe4c4 5636 ALL_OBJFILES (objfile)
40658b94
PH
5637 {
5638 data.objfile = objfile;
5639
5640 if (is_wild_match)
4186eb54
KS
5641 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5642 aux_add_nonlocal_symbols, &data,
5643 wild_match, NULL);
40658b94 5644 else
4186eb54
KS
5645 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5646 aux_add_nonlocal_symbols, &data,
5647 full_match, compare_names);
22cee43f
PMR
5648
5649 ALL_OBJFILE_COMPUNITS (objfile, cu)
5650 {
5651 const struct block *global_block
5652 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5653
5654 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5655 is_wild_match))
5656 data.found_sym = 1;
5657 }
40658b94
PH
5658 }
5659
5660 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5661 {
5662 ALL_OBJFILES (objfile)
5663 {
224c3ddb 5664 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5665 strcpy (name1, "_ada_");
5666 strcpy (name1 + sizeof ("_ada_") - 1, name);
5667 data.objfile = objfile;
ade7ed9e
DE
5668 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5669 global,
0963b4bd
MS
5670 aux_add_nonlocal_symbols,
5671 &data,
40658b94
PH
5672 full_match, compare_names);
5673 }
5674 }
339c13b6
JB
5675}
5676
22cee43f 5677/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5678 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5679 matches. Add these to OBSTACKP.
4eeaa230 5680
22cee43f
PMR
5681 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5682 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5683 is the one match returned (no other matches in that or
d9680e73 5684 enclosing blocks is returned). If there are any matches in or
22cee43f 5685 surrounding BLOCK, then these alone are returned.
4eeaa230 5686
9f88c959 5687 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5688 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5689
22cee43f
PMR
5690 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5691 to lookup global symbols. */
5692
5693static void
5694ada_add_all_symbols (struct obstack *obstackp,
5695 const struct block *block,
5696 const char *name,
5697 domain_enum domain,
5698 int full_search,
5699 int *made_global_lookup_p)
14f9c5c9
AS
5700{
5701 struct symbol *sym;
22cee43f 5702 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5703
22cee43f
PMR
5704 if (made_global_lookup_p)
5705 *made_global_lookup_p = 0;
339c13b6
JB
5706
5707 /* Special case: If the user specifies a symbol name inside package
5708 Standard, do a non-wild matching of the symbol name without
5709 the "standard__" prefix. This was primarily introduced in order
5710 to allow the user to specifically access the standard exceptions
5711 using, for instance, Standard.Constraint_Error when Constraint_Error
5712 is ambiguous (due to the user defining its own Constraint_Error
5713 entity inside its program). */
22cee43f 5714 if (startswith (name, "standard__"))
4c4b4cd2 5715 {
4c4b4cd2 5716 block = NULL;
22cee43f 5717 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5718 }
5719
339c13b6 5720 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5721
4eeaa230
DE
5722 if (block != NULL)
5723 {
5724 if (full_search)
22cee43f 5725 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5726 else
5727 {
5728 /* In the !full_search case we're are being called by
5729 ada_iterate_over_symbols, and we don't want to search
5730 superblocks. */
22cee43f
PMR
5731 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5732 wild_match_p);
4eeaa230 5733 }
22cee43f
PMR
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5735 return;
4eeaa230 5736 }
d2e4a39e 5737
339c13b6
JB
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5740 the same result. */
5741
22cee43f 5742 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5743 {
5744 if (sym != NULL)
22cee43f
PMR
5745 add_defn_to_vec (obstackp, sym, block);
5746 return;
4c4b4cd2 5747 }
14f9c5c9 5748
22cee43f
PMR
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 1;
b1eedac9 5751
339c13b6
JB
5752 /* Search symbols from all global blocks. */
5753
22cee43f 5754 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5755
4c4b4cd2 5756 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5757 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5758
22cee43f
PMR
5759 if (num_defns_collected (obstackp) == 0)
5760 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5761}
5762
5763/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5764 non-zero, enclosing scope and in global scopes, returning the number of
5765 matches.
5766 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5767 indicating the symbols found and the blocks and symbol tables (if
5768 any) in which they were found. This vector is transient---good only to
5769 the next call of ada_lookup_symbol_list.
5770
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5776
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5779
5780static int
5781ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5782 domain_enum domain,
5783 struct block_symbol **results,
5784 int full_search)
5785{
5786 const int wild_match_p = should_use_wild_match (name);
5787 int syms_from_global_search;
5788 int ndefns;
5789
5790 obstack_free (&symbol_list_obstack, NULL);
5791 obstack_init (&symbol_list_obstack);
5792 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5793 full_search, &syms_from_global_search);
14f9c5c9 5794
4c4b4cd2
PH
5795 ndefns = num_defns_collected (&symbol_list_obstack);
5796 *results = defns_collected (&symbol_list_obstack, 1);
5797
5798 ndefns = remove_extra_symbols (*results, ndefns);
5799
b1eedac9 5800 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5801 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5802
b1eedac9 5803 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5804 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5805
22cee43f 5806 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5807 return ndefns;
5808}
5809
4eeaa230
DE
5810/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5811 in global scopes, returning the number of matches, and setting *RESULTS
5812 to a vector of (SYM,BLOCK) tuples.
5813 See ada_lookup_symbol_list_worker for further details. */
5814
5815int
5816ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5817 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5818{
5819 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5820}
5821
5822/* Implementation of the la_iterate_over_symbols method. */
5823
5824static void
5825ada_iterate_over_symbols (const struct block *block,
5826 const char *name, domain_enum domain,
5827 symbol_found_callback_ftype *callback,
5828 void *data)
5829{
5830 int ndefs, i;
d12307c1 5831 struct block_symbol *results;
4eeaa230
DE
5832
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5834 for (i = 0; i < ndefs; ++i)
5835 {
d12307c1 5836 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5837 break;
5838 }
5839}
5840
f8eba3c6
TT
5841/* If NAME is the name of an entity, return a string that should
5842 be used to look that entity up in Ada units. This string should
5843 be deallocated after use using xfree.
5844
5845 NAME can have any form that the "break" or "print" commands might
5846 recognize. In other words, it does not have to be the "natural"
5847 name, or the "encoded" name. */
5848
5849char *
5850ada_name_for_lookup (const char *name)
5851{
5852 char *canon;
5853 int nlen = strlen (name);
5854
5855 if (name[0] == '<' && name[nlen - 1] == '>')
5856 {
224c3ddb 5857 canon = (char *) xmalloc (nlen - 1);
f8eba3c6
TT
5858 memcpy (canon, name + 1, nlen - 2);
5859 canon[nlen - 2] = '\0';
5860 }
5861 else
5862 canon = xstrdup (ada_encode (ada_fold_name (name)));
5863 return canon;
5864}
5865
4e5c77fe
JB
5866/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5867 to 1, but choosing the first symbol found if there are multiple
5868 choices.
5869
5e2336be
JB
5870 The result is stored in *INFO, which must be non-NULL.
5871 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5872
5873void
5874ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5875 domain_enum domain,
d12307c1 5876 struct block_symbol *info)
14f9c5c9 5877{
d12307c1 5878 struct block_symbol *candidates;
14f9c5c9
AS
5879 int n_candidates;
5880
5e2336be 5881 gdb_assert (info != NULL);
d12307c1 5882 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5883
fe978cb0 5884 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5885 if (n_candidates == 0)
4e5c77fe 5886 return;
4c4b4cd2 5887
5e2336be 5888 *info = candidates[0];
d12307c1 5889 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5890}
aeb5907d
JB
5891
5892/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5893 scope and in global scopes, or NULL if none. NAME is folded and
5894 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5895 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5896 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5897
d12307c1 5898struct block_symbol
aeb5907d 5899ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5900 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5901{
d12307c1 5902 struct block_symbol info;
4e5c77fe 5903
aeb5907d
JB
5904 if (is_a_field_of_this != NULL)
5905 *is_a_field_of_this = 0;
5906
4e5c77fe 5907 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5908 block0, domain, &info);
d12307c1 5909 return info;
4c4b4cd2 5910}
14f9c5c9 5911
d12307c1 5912static struct block_symbol
f606139a
DE
5913ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5914 const char *name,
76a01679 5915 const struct block *block,
21b556f4 5916 const domain_enum domain)
4c4b4cd2 5917{
d12307c1 5918 struct block_symbol sym;
04dccad0
JB
5919
5920 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5921 if (sym.symbol != NULL)
04dccad0
JB
5922 return sym;
5923
5924 /* If we haven't found a match at this point, try the primitive
5925 types. In other languages, this search is performed before
5926 searching for global symbols in order to short-circuit that
5927 global-symbol search if it happens that the name corresponds
5928 to a primitive type. But we cannot do the same in Ada, because
5929 it is perfectly legitimate for a program to declare a type which
5930 has the same name as a standard type. If looking up a type in
5931 that situation, we have traditionally ignored the primitive type
5932 in favor of user-defined types. This is why, unlike most other
5933 languages, we search the primitive types this late and only after
5934 having searched the global symbols without success. */
5935
5936 if (domain == VAR_DOMAIN)
5937 {
5938 struct gdbarch *gdbarch;
5939
5940 if (block == NULL)
5941 gdbarch = target_gdbarch ();
5942 else
5943 gdbarch = block_gdbarch (block);
d12307c1
PMR
5944 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5945 if (sym.symbol != NULL)
04dccad0
JB
5946 return sym;
5947 }
5948
d12307c1 5949 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5950}
5951
5952
4c4b4cd2
PH
5953/* True iff STR is a possible encoded suffix of a normal Ada name
5954 that is to be ignored for matching purposes. Suffixes of parallel
5955 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5956 are given by any of the regular expressions:
4c4b4cd2 5957
babe1480
JB
5958 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5959 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5960 TKB [subprogram suffix for task bodies]
babe1480 5961 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5962 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5963
5964 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5965 match is performed. This sequence is used to differentiate homonyms,
5966 is an optional part of a valid name suffix. */
4c4b4cd2 5967
14f9c5c9 5968static int
d2e4a39e 5969is_name_suffix (const char *str)
14f9c5c9
AS
5970{
5971 int k;
4c4b4cd2
PH
5972 const char *matching;
5973 const int len = strlen (str);
5974
babe1480
JB
5975 /* Skip optional leading __[0-9]+. */
5976
4c4b4cd2
PH
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5978 {
babe1480
JB
5979 str += 3;
5980 while (isdigit (str[0]))
5981 str += 1;
4c4b4cd2 5982 }
babe1480
JB
5983
5984 /* [.$][0-9]+ */
4c4b4cd2 5985
babe1480 5986 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5987 {
babe1480 5988 matching = str + 1;
4c4b4cd2
PH
5989 while (isdigit (matching[0]))
5990 matching += 1;
5991 if (matching[0] == '\0')
5992 return 1;
5993 }
5994
5995 /* ___[0-9]+ */
babe1480 5996
4c4b4cd2
PH
5997 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5998 {
5999 matching = str + 3;
6000 while (isdigit (matching[0]))
6001 matching += 1;
6002 if (matching[0] == '\0')
6003 return 1;
6004 }
6005
9ac7f98e
JB
6006 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6007
6008 if (strcmp (str, "TKB") == 0)
6009 return 1;
6010
529cad9c
PH
6011#if 0
6012 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6013 with a N at the end. Unfortunately, the compiler uses the same
6014 convention for other internal types it creates. So treating
529cad9c 6015 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6016 some regressions. For instance, consider the case of an enumerated
6017 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6018 name ends with N.
6019 Having a single character like this as a suffix carrying some
0963b4bd 6020 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6021 to be something like "_N" instead. In the meantime, do not do
6022 the following check. */
6023 /* Protected Object Subprograms */
6024 if (len == 1 && str [0] == 'N')
6025 return 1;
6026#endif
6027
6028 /* _E[0-9]+[bs]$ */
6029 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6030 {
6031 matching = str + 3;
6032 while (isdigit (matching[0]))
6033 matching += 1;
6034 if ((matching[0] == 'b' || matching[0] == 's')
6035 && matching [1] == '\0')
6036 return 1;
6037 }
6038
4c4b4cd2
PH
6039 /* ??? We should not modify STR directly, as we are doing below. This
6040 is fine in this case, but may become problematic later if we find
6041 that this alternative did not work, and want to try matching
6042 another one from the begining of STR. Since we modified it, we
6043 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6044 if (str[0] == 'X')
6045 {
6046 str += 1;
d2e4a39e 6047 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6048 {
6049 if (str[0] != 'n' && str[0] != 'b')
6050 return 0;
6051 str += 1;
6052 }
14f9c5c9 6053 }
babe1480 6054
14f9c5c9
AS
6055 if (str[0] == '\000')
6056 return 1;
babe1480 6057
d2e4a39e 6058 if (str[0] == '_')
14f9c5c9
AS
6059 {
6060 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6061 return 0;
d2e4a39e 6062 if (str[2] == '_')
4c4b4cd2 6063 {
61ee279c
PH
6064 if (strcmp (str + 3, "JM") == 0)
6065 return 1;
6066 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6067 the LJM suffix in favor of the JM one. But we will
6068 still accept LJM as a valid suffix for a reasonable
6069 amount of time, just to allow ourselves to debug programs
6070 compiled using an older version of GNAT. */
4c4b4cd2
PH
6071 if (strcmp (str + 3, "LJM") == 0)
6072 return 1;
6073 if (str[3] != 'X')
6074 return 0;
1265e4aa
JB
6075 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6076 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6077 return 1;
6078 if (str[4] == 'R' && str[5] != 'T')
6079 return 1;
6080 return 0;
6081 }
6082 if (!isdigit (str[2]))
6083 return 0;
6084 for (k = 3; str[k] != '\0'; k += 1)
6085 if (!isdigit (str[k]) && str[k] != '_')
6086 return 0;
14f9c5c9
AS
6087 return 1;
6088 }
4c4b4cd2 6089 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6090 {
4c4b4cd2
PH
6091 for (k = 2; str[k] != '\0'; k += 1)
6092 if (!isdigit (str[k]) && str[k] != '_')
6093 return 0;
14f9c5c9
AS
6094 return 1;
6095 }
6096 return 0;
6097}
d2e4a39e 6098
aeb5907d
JB
6099/* Return non-zero if the string starting at NAME and ending before
6100 NAME_END contains no capital letters. */
529cad9c
PH
6101
6102static int
6103is_valid_name_for_wild_match (const char *name0)
6104{
6105 const char *decoded_name = ada_decode (name0);
6106 int i;
6107
5823c3ef
JB
6108 /* If the decoded name starts with an angle bracket, it means that
6109 NAME0 does not follow the GNAT encoding format. It should then
6110 not be allowed as a possible wild match. */
6111 if (decoded_name[0] == '<')
6112 return 0;
6113
529cad9c
PH
6114 for (i=0; decoded_name[i] != '\0'; i++)
6115 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6116 return 0;
6117
6118 return 1;
6119}
6120
73589123
PH
6121/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6122 that could start a simple name. Assumes that *NAMEP points into
6123 the string beginning at NAME0. */
4c4b4cd2 6124
14f9c5c9 6125static int
73589123 6126advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6127{
73589123 6128 const char *name = *namep;
5b4ee69b 6129
5823c3ef 6130 while (1)
14f9c5c9 6131 {
aa27d0b3 6132 int t0, t1;
73589123
PH
6133
6134 t0 = *name;
6135 if (t0 == '_')
6136 {
6137 t1 = name[1];
6138 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6139 {
6140 name += 1;
61012eef 6141 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6142 break;
6143 else
6144 name += 1;
6145 }
aa27d0b3
JB
6146 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6147 || name[2] == target0))
73589123
PH
6148 {
6149 name += 2;
6150 break;
6151 }
6152 else
6153 return 0;
6154 }
6155 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6156 name += 1;
6157 else
5823c3ef 6158 return 0;
73589123
PH
6159 }
6160
6161 *namep = name;
6162 return 1;
6163}
6164
6165/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6166 informational suffixes of NAME (i.e., for which is_name_suffix is
6167 true). Assumes that PATN is a lower-cased Ada simple name. */
6168
6169static int
6170wild_match (const char *name, const char *patn)
6171{
22e048c9 6172 const char *p;
73589123
PH
6173 const char *name0 = name;
6174
6175 while (1)
6176 {
6177 const char *match = name;
6178
6179 if (*name == *patn)
6180 {
6181 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6182 if (*p != *name)
6183 break;
6184 if (*p == '\0' && is_name_suffix (name))
6185 return match != name0 && !is_valid_name_for_wild_match (name0);
6186
6187 if (name[-1] == '_')
6188 name -= 1;
6189 }
6190 if (!advance_wild_match (&name, name0, *patn))
6191 return 1;
96d887e8 6192 }
96d887e8
PH
6193}
6194
40658b94
PH
6195/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6196 informational suffix. */
6197
c4d840bd
PH
6198static int
6199full_match (const char *sym_name, const char *search_name)
6200{
40658b94 6201 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6202}
6203
6204
96d887e8
PH
6205/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6206 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6207 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6208 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6209
6210static void
6211ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6212 const struct block *block, const char *name,
96d887e8 6213 domain_enum domain, struct objfile *objfile,
2570f2b7 6214 int wild)
96d887e8 6215{
8157b174 6216 struct block_iterator iter;
96d887e8
PH
6217 int name_len = strlen (name);
6218 /* A matching argument symbol, if any. */
6219 struct symbol *arg_sym;
6220 /* Set true when we find a matching non-argument symbol. */
6221 int found_sym;
6222 struct symbol *sym;
6223
6224 arg_sym = NULL;
6225 found_sym = 0;
6226 if (wild)
6227 {
8157b174
TT
6228 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6229 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6230 {
4186eb54
KS
6231 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6232 SYMBOL_DOMAIN (sym), domain)
73589123 6233 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6234 {
2a2d4dc3
AS
6235 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6236 continue;
6237 else if (SYMBOL_IS_ARGUMENT (sym))
6238 arg_sym = sym;
6239 else
6240 {
76a01679
JB
6241 found_sym = 1;
6242 add_defn_to_vec (obstackp,
6243 fixup_symbol_section (sym, objfile),
2570f2b7 6244 block);
76a01679
JB
6245 }
6246 }
6247 }
96d887e8
PH
6248 }
6249 else
6250 {
8157b174
TT
6251 for (sym = block_iter_match_first (block, name, full_match, &iter);
6252 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6253 {
4186eb54
KS
6254 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6255 SYMBOL_DOMAIN (sym), domain))
76a01679 6256 {
c4d840bd
PH
6257 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6258 {
6259 if (SYMBOL_IS_ARGUMENT (sym))
6260 arg_sym = sym;
6261 else
2a2d4dc3 6262 {
c4d840bd
PH
6263 found_sym = 1;
6264 add_defn_to_vec (obstackp,
6265 fixup_symbol_section (sym, objfile),
6266 block);
2a2d4dc3 6267 }
c4d840bd 6268 }
76a01679
JB
6269 }
6270 }
96d887e8
PH
6271 }
6272
22cee43f
PMR
6273 /* Handle renamings. */
6274
6275 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6276 found_sym = 1;
6277
96d887e8
PH
6278 if (!found_sym && arg_sym != NULL)
6279 {
76a01679
JB
6280 add_defn_to_vec (obstackp,
6281 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6282 block);
96d887e8
PH
6283 }
6284
6285 if (!wild)
6286 {
6287 arg_sym = NULL;
6288 found_sym = 0;
6289
6290 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6291 {
4186eb54
KS
6292 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6293 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6294 {
6295 int cmp;
6296
6297 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6298 if (cmp == 0)
6299 {
61012eef 6300 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6301 if (cmp == 0)
6302 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6303 name_len);
6304 }
6305
6306 if (cmp == 0
6307 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6308 {
2a2d4dc3
AS
6309 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6310 {
6311 if (SYMBOL_IS_ARGUMENT (sym))
6312 arg_sym = sym;
6313 else
6314 {
6315 found_sym = 1;
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (sym, objfile),
6318 block);
6319 }
6320 }
76a01679
JB
6321 }
6322 }
76a01679 6323 }
96d887e8
PH
6324
6325 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6326 They aren't parameters, right? */
6327 if (!found_sym && arg_sym != NULL)
6328 {
6329 add_defn_to_vec (obstackp,
76a01679 6330 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6331 block);
96d887e8
PH
6332 }
6333 }
6334}
6335\f
41d27058
JB
6336
6337 /* Symbol Completion */
6338
6339/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6340 name in a form that's appropriate for the completion. The result
6341 does not need to be deallocated, but is only good until the next call.
6342
6343 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6344 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6345 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6346 in its encoded form. */
6347
6348static const char *
6349symbol_completion_match (const char *sym_name,
6350 const char *text, int text_len,
6ea35997 6351 int wild_match_p, int encoded_p)
41d27058 6352{
41d27058
JB
6353 const int verbatim_match = (text[0] == '<');
6354 int match = 0;
6355
6356 if (verbatim_match)
6357 {
6358 /* Strip the leading angle bracket. */
6359 text = text + 1;
6360 text_len--;
6361 }
6362
6363 /* First, test against the fully qualified name of the symbol. */
6364
6365 if (strncmp (sym_name, text, text_len) == 0)
6366 match = 1;
6367
6ea35997 6368 if (match && !encoded_p)
41d27058
JB
6369 {
6370 /* One needed check before declaring a positive match is to verify
6371 that iff we are doing a verbatim match, the decoded version
6372 of the symbol name starts with '<'. Otherwise, this symbol name
6373 is not a suitable completion. */
6374 const char *sym_name_copy = sym_name;
6375 int has_angle_bracket;
6376
6377 sym_name = ada_decode (sym_name);
6378 has_angle_bracket = (sym_name[0] == '<');
6379 match = (has_angle_bracket == verbatim_match);
6380 sym_name = sym_name_copy;
6381 }
6382
6383 if (match && !verbatim_match)
6384 {
6385 /* When doing non-verbatim match, another check that needs to
6386 be done is to verify that the potentially matching symbol name
6387 does not include capital letters, because the ada-mode would
6388 not be able to understand these symbol names without the
6389 angle bracket notation. */
6390 const char *tmp;
6391
6392 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6393 if (*tmp != '\0')
6394 match = 0;
6395 }
6396
6397 /* Second: Try wild matching... */
6398
e701b3c0 6399 if (!match && wild_match_p)
41d27058
JB
6400 {
6401 /* Since we are doing wild matching, this means that TEXT
6402 may represent an unqualified symbol name. We therefore must
6403 also compare TEXT against the unqualified name of the symbol. */
6404 sym_name = ada_unqualified_name (ada_decode (sym_name));
6405
6406 if (strncmp (sym_name, text, text_len) == 0)
6407 match = 1;
6408 }
6409
6410 /* Finally: If we found a mach, prepare the result to return. */
6411
6412 if (!match)
6413 return NULL;
6414
6415 if (verbatim_match)
6416 sym_name = add_angle_brackets (sym_name);
6417
6ea35997 6418 if (!encoded_p)
41d27058
JB
6419 sym_name = ada_decode (sym_name);
6420
6421 return sym_name;
6422}
6423
6424/* A companion function to ada_make_symbol_completion_list().
6425 Check if SYM_NAME represents a symbol which name would be suitable
6426 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6427 it is appended at the end of the given string vector SV.
6428
6429 ORIG_TEXT is the string original string from the user command
6430 that needs to be completed. WORD is the entire command on which
6431 completion should be performed. These two parameters are used to
6432 determine which part of the symbol name should be added to the
6433 completion vector.
c0af1706 6434 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6435 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6436 encoded formed (in which case the completion should also be
6437 encoded). */
6438
6439static void
d6565258 6440symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6441 const char *sym_name,
6442 const char *text, int text_len,
6443 const char *orig_text, const char *word,
cb8e9b97 6444 int wild_match_p, int encoded_p)
41d27058
JB
6445{
6446 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6447 wild_match_p, encoded_p);
41d27058
JB
6448 char *completion;
6449
6450 if (match == NULL)
6451 return;
6452
6453 /* We found a match, so add the appropriate completion to the given
6454 string vector. */
6455
6456 if (word == orig_text)
6457 {
224c3ddb 6458 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6459 strcpy (completion, match);
6460 }
6461 else if (word > orig_text)
6462 {
6463 /* Return some portion of sym_name. */
224c3ddb 6464 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6465 strcpy (completion, match + (word - orig_text));
6466 }
6467 else
6468 {
6469 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6470 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6471 strncpy (completion, word, orig_text - word);
6472 completion[orig_text - word] = '\0';
6473 strcat (completion, match);
6474 }
6475
d6565258 6476 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6477}
6478
ccefe4c4 6479/* An object of this type is passed as the user_data argument to the
bb4142cf 6480 expand_symtabs_matching method. */
ccefe4c4
TT
6481struct add_partial_datum
6482{
6483 VEC(char_ptr) **completions;
6f937416 6484 const char *text;
ccefe4c4 6485 int text_len;
6f937416
PA
6486 const char *text0;
6487 const char *word;
ccefe4c4
TT
6488 int wild_match;
6489 int encoded;
6490};
6491
bb4142cf
DE
6492/* A callback for expand_symtabs_matching. */
6493
7b08b9eb 6494static int
bb4142cf 6495ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6496{
9a3c8263 6497 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6498
6499 return symbol_completion_match (name, data->text, data->text_len,
6500 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6501}
6502
49c4e619
TT
6503/* Return a list of possible symbol names completing TEXT0. WORD is
6504 the entire command on which completion is made. */
41d27058 6505
49c4e619 6506static VEC (char_ptr) *
6f937416
PA
6507ada_make_symbol_completion_list (const char *text0, const char *word,
6508 enum type_code code)
41d27058
JB
6509{
6510 char *text;
6511 int text_len;
b1ed564a
JB
6512 int wild_match_p;
6513 int encoded_p;
2ba95b9b 6514 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6515 struct symbol *sym;
43f3e411 6516 struct compunit_symtab *s;
41d27058
JB
6517 struct minimal_symbol *msymbol;
6518 struct objfile *objfile;
3977b71f 6519 const struct block *b, *surrounding_static_block = 0;
41d27058 6520 int i;
8157b174 6521 struct block_iterator iter;
b8fea896 6522 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6523
2f68a895
TT
6524 gdb_assert (code == TYPE_CODE_UNDEF);
6525
41d27058
JB
6526 if (text0[0] == '<')
6527 {
6528 text = xstrdup (text0);
6529 make_cleanup (xfree, text);
6530 text_len = strlen (text);
b1ed564a
JB
6531 wild_match_p = 0;
6532 encoded_p = 1;
41d27058
JB
6533 }
6534 else
6535 {
6536 text = xstrdup (ada_encode (text0));
6537 make_cleanup (xfree, text);
6538 text_len = strlen (text);
6539 for (i = 0; i < text_len; i++)
6540 text[i] = tolower (text[i]);
6541
b1ed564a 6542 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6543 /* If the name contains a ".", then the user is entering a fully
6544 qualified entity name, and the match must not be done in wild
6545 mode. Similarly, if the user wants to complete what looks like
6546 an encoded name, the match must not be done in wild mode. */
b1ed564a 6547 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6548 }
6549
6550 /* First, look at the partial symtab symbols. */
41d27058 6551 {
ccefe4c4
TT
6552 struct add_partial_datum data;
6553
6554 data.completions = &completions;
6555 data.text = text;
6556 data.text_len = text_len;
6557 data.text0 = text0;
6558 data.word = word;
b1ed564a
JB
6559 data.wild_match = wild_match_p;
6560 data.encoded = encoded_p;
276d885b
GB
6561 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6562 ALL_DOMAIN, &data);
41d27058
JB
6563 }
6564
6565 /* At this point scan through the misc symbol vectors and add each
6566 symbol you find to the list. Eventually we want to ignore
6567 anything that isn't a text symbol (everything else will be
6568 handled by the psymtab code above). */
6569
6570 ALL_MSYMBOLS (objfile, msymbol)
6571 {
6572 QUIT;
efd66ac6 6573 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6574 text, text_len, text0, word, wild_match_p,
6575 encoded_p);
41d27058
JB
6576 }
6577
6578 /* Search upwards from currently selected frame (so that we can
6579 complete on local vars. */
6580
6581 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6582 {
6583 if (!BLOCK_SUPERBLOCK (b))
6584 surrounding_static_block = b; /* For elmin of dups */
6585
6586 ALL_BLOCK_SYMBOLS (b, iter, sym)
6587 {
d6565258 6588 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6589 text, text_len, text0, word,
b1ed564a 6590 wild_match_p, encoded_p);
41d27058
JB
6591 }
6592 }
6593
6594 /* Go through the symtabs and check the externs and statics for
43f3e411 6595 symbols which match. */
41d27058 6596
43f3e411 6597 ALL_COMPUNITS (objfile, s)
41d27058
JB
6598 {
6599 QUIT;
43f3e411 6600 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6601 ALL_BLOCK_SYMBOLS (b, iter, sym)
6602 {
d6565258 6603 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6604 text, text_len, text0, word,
b1ed564a 6605 wild_match_p, encoded_p);
41d27058
JB
6606 }
6607 }
6608
43f3e411 6609 ALL_COMPUNITS (objfile, s)
41d27058
JB
6610 {
6611 QUIT;
43f3e411 6612 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6613 /* Don't do this block twice. */
6614 if (b == surrounding_static_block)
6615 continue;
6616 ALL_BLOCK_SYMBOLS (b, iter, sym)
6617 {
d6565258 6618 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6619 text, text_len, text0, word,
b1ed564a 6620 wild_match_p, encoded_p);
41d27058
JB
6621 }
6622 }
6623
b8fea896 6624 do_cleanups (old_chain);
49c4e619 6625 return completions;
41d27058
JB
6626}
6627
963a6417 6628 /* Field Access */
96d887e8 6629
73fb9985
JB
6630/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6631 for tagged types. */
6632
6633static int
6634ada_is_dispatch_table_ptr_type (struct type *type)
6635{
0d5cff50 6636 const char *name;
73fb9985
JB
6637
6638 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6639 return 0;
6640
6641 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6642 if (name == NULL)
6643 return 0;
6644
6645 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6646}
6647
ac4a2da4
JG
6648/* Return non-zero if TYPE is an interface tag. */
6649
6650static int
6651ada_is_interface_tag (struct type *type)
6652{
6653 const char *name = TYPE_NAME (type);
6654
6655 if (name == NULL)
6656 return 0;
6657
6658 return (strcmp (name, "ada__tags__interface_tag") == 0);
6659}
6660
963a6417
PH
6661/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6662 to be invisible to users. */
96d887e8 6663
963a6417
PH
6664int
6665ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6666{
963a6417
PH
6667 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6668 return 1;
ffde82bf 6669
73fb9985
JB
6670 /* Check the name of that field. */
6671 {
6672 const char *name = TYPE_FIELD_NAME (type, field_num);
6673
6674 /* Anonymous field names should not be printed.
6675 brobecker/2007-02-20: I don't think this can actually happen
6676 but we don't want to print the value of annonymous fields anyway. */
6677 if (name == NULL)
6678 return 1;
6679
ffde82bf
JB
6680 /* Normally, fields whose name start with an underscore ("_")
6681 are fields that have been internally generated by the compiler,
6682 and thus should not be printed. The "_parent" field is special,
6683 however: This is a field internally generated by the compiler
6684 for tagged types, and it contains the components inherited from
6685 the parent type. This field should not be printed as is, but
6686 should not be ignored either. */
61012eef 6687 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6688 return 1;
6689 }
6690
ac4a2da4
JG
6691 /* If this is the dispatch table of a tagged type or an interface tag,
6692 then ignore. */
73fb9985 6693 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6694 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6695 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6696 return 1;
6697
6698 /* Not a special field, so it should not be ignored. */
6699 return 0;
963a6417 6700}
96d887e8 6701
963a6417 6702/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6703 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6704
963a6417
PH
6705int
6706ada_is_tagged_type (struct type *type, int refok)
6707{
6708 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6709}
96d887e8 6710
963a6417 6711/* True iff TYPE represents the type of X'Tag */
96d887e8 6712
963a6417
PH
6713int
6714ada_is_tag_type (struct type *type)
6715{
460efde1
JB
6716 type = ada_check_typedef (type);
6717
963a6417
PH
6718 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6719 return 0;
6720 else
96d887e8 6721 {
963a6417 6722 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6723
963a6417
PH
6724 return (name != NULL
6725 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6726 }
96d887e8
PH
6727}
6728
963a6417 6729/* The type of the tag on VAL. */
76a01679 6730
963a6417
PH
6731struct type *
6732ada_tag_type (struct value *val)
96d887e8 6733{
df407dfe 6734 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6735}
96d887e8 6736
b50d69b5
JG
6737/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6738 retired at Ada 05). */
6739
6740static int
6741is_ada95_tag (struct value *tag)
6742{
6743 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6744}
6745
963a6417 6746/* The value of the tag on VAL. */
96d887e8 6747
963a6417
PH
6748struct value *
6749ada_value_tag (struct value *val)
6750{
03ee6b2e 6751 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6752}
6753
963a6417
PH
6754/* The value of the tag on the object of type TYPE whose contents are
6755 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6756 ADDRESS. */
96d887e8 6757
963a6417 6758static struct value *
10a2c479 6759value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6760 const gdb_byte *valaddr,
963a6417 6761 CORE_ADDR address)
96d887e8 6762{
b5385fc0 6763 int tag_byte_offset;
963a6417 6764 struct type *tag_type;
5b4ee69b 6765
963a6417 6766 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6767 NULL, NULL, NULL))
96d887e8 6768 {
fc1a4b47 6769 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6770 ? NULL
6771 : valaddr + tag_byte_offset);
963a6417 6772 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6773
963a6417 6774 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6775 }
963a6417
PH
6776 return NULL;
6777}
96d887e8 6778
963a6417
PH
6779static struct type *
6780type_from_tag (struct value *tag)
6781{
6782 const char *type_name = ada_tag_name (tag);
5b4ee69b 6783
963a6417
PH
6784 if (type_name != NULL)
6785 return ada_find_any_type (ada_encode (type_name));
6786 return NULL;
6787}
96d887e8 6788
b50d69b5
JG
6789/* Given a value OBJ of a tagged type, return a value of this
6790 type at the base address of the object. The base address, as
6791 defined in Ada.Tags, it is the address of the primary tag of
6792 the object, and therefore where the field values of its full
6793 view can be fetched. */
6794
6795struct value *
6796ada_tag_value_at_base_address (struct value *obj)
6797{
b50d69b5
JG
6798 struct value *val;
6799 LONGEST offset_to_top = 0;
6800 struct type *ptr_type, *obj_type;
6801 struct value *tag;
6802 CORE_ADDR base_address;
6803
6804 obj_type = value_type (obj);
6805
6806 /* It is the responsability of the caller to deref pointers. */
6807
6808 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6809 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6810 return obj;
6811
6812 tag = ada_value_tag (obj);
6813 if (!tag)
6814 return obj;
6815
6816 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6817
6818 if (is_ada95_tag (tag))
6819 return obj;
6820
6821 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6822 ptr_type = lookup_pointer_type (ptr_type);
6823 val = value_cast (ptr_type, tag);
6824 if (!val)
6825 return obj;
6826
6827 /* It is perfectly possible that an exception be raised while
6828 trying to determine the base address, just like for the tag;
6829 see ada_tag_name for more details. We do not print the error
6830 message for the same reason. */
6831
492d29ea 6832 TRY
b50d69b5
JG
6833 {
6834 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6835 }
6836
492d29ea
PA
6837 CATCH (e, RETURN_MASK_ERROR)
6838 {
6839 return obj;
6840 }
6841 END_CATCH
b50d69b5
JG
6842
6843 /* If offset is null, nothing to do. */
6844
6845 if (offset_to_top == 0)
6846 return obj;
6847
6848 /* -1 is a special case in Ada.Tags; however, what should be done
6849 is not quite clear from the documentation. So do nothing for
6850 now. */
6851
6852 if (offset_to_top == -1)
6853 return obj;
6854
6855 base_address = value_address (obj) - offset_to_top;
6856 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6857
6858 /* Make sure that we have a proper tag at the new address.
6859 Otherwise, offset_to_top is bogus (which can happen when
6860 the object is not initialized yet). */
6861
6862 if (!tag)
6863 return obj;
6864
6865 obj_type = type_from_tag (tag);
6866
6867 if (!obj_type)
6868 return obj;
6869
6870 return value_from_contents_and_address (obj_type, NULL, base_address);
6871}
6872
1b611343
JB
6873/* Return the "ada__tags__type_specific_data" type. */
6874
6875static struct type *
6876ada_get_tsd_type (struct inferior *inf)
963a6417 6877{
1b611343 6878 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6879
1b611343
JB
6880 if (data->tsd_type == 0)
6881 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6882 return data->tsd_type;
6883}
529cad9c 6884
1b611343
JB
6885/* Return the TSD (type-specific data) associated to the given TAG.
6886 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6887
1b611343 6888 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6889
1b611343
JB
6890static struct value *
6891ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6892{
4c4b4cd2 6893 struct value *val;
1b611343 6894 struct type *type;
5b4ee69b 6895
1b611343
JB
6896 /* First option: The TSD is simply stored as a field of our TAG.
6897 Only older versions of GNAT would use this format, but we have
6898 to test it first, because there are no visible markers for
6899 the current approach except the absence of that field. */
529cad9c 6900
1b611343
JB
6901 val = ada_value_struct_elt (tag, "tsd", 1);
6902 if (val)
6903 return val;
e802dbe0 6904
1b611343
JB
6905 /* Try the second representation for the dispatch table (in which
6906 there is no explicit 'tsd' field in the referent of the tag pointer,
6907 and instead the tsd pointer is stored just before the dispatch
6908 table. */
e802dbe0 6909
1b611343
JB
6910 type = ada_get_tsd_type (current_inferior());
6911 if (type == NULL)
6912 return NULL;
6913 type = lookup_pointer_type (lookup_pointer_type (type));
6914 val = value_cast (type, tag);
6915 if (val == NULL)
6916 return NULL;
6917 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6918}
6919
1b611343
JB
6920/* Given the TSD of a tag (type-specific data), return a string
6921 containing the name of the associated type.
6922
6923 The returned value is good until the next call. May return NULL
6924 if we are unable to determine the tag name. */
6925
6926static char *
6927ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6928{
529cad9c
PH
6929 static char name[1024];
6930 char *p;
1b611343 6931 struct value *val;
529cad9c 6932
1b611343 6933 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6934 if (val == NULL)
1b611343 6935 return NULL;
4c4b4cd2
PH
6936 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6937 for (p = name; *p != '\0'; p += 1)
6938 if (isalpha (*p))
6939 *p = tolower (*p);
1b611343 6940 return name;
4c4b4cd2
PH
6941}
6942
6943/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6944 a C string.
6945
6946 Return NULL if the TAG is not an Ada tag, or if we were unable to
6947 determine the name of that tag. The result is good until the next
6948 call. */
4c4b4cd2
PH
6949
6950const char *
6951ada_tag_name (struct value *tag)
6952{
1b611343 6953 char *name = NULL;
5b4ee69b 6954
df407dfe 6955 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6956 return NULL;
1b611343
JB
6957
6958 /* It is perfectly possible that an exception be raised while trying
6959 to determine the TAG's name, even under normal circumstances:
6960 The associated variable may be uninitialized or corrupted, for
6961 instance. We do not let any exception propagate past this point.
6962 instead we return NULL.
6963
6964 We also do not print the error message either (which often is very
6965 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6966 the caller print a more meaningful message if necessary. */
492d29ea 6967 TRY
1b611343
JB
6968 {
6969 struct value *tsd = ada_get_tsd_from_tag (tag);
6970
6971 if (tsd != NULL)
6972 name = ada_tag_name_from_tsd (tsd);
6973 }
492d29ea
PA
6974 CATCH (e, RETURN_MASK_ERROR)
6975 {
6976 }
6977 END_CATCH
1b611343
JB
6978
6979 return name;
4c4b4cd2
PH
6980}
6981
6982/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6983
d2e4a39e 6984struct type *
ebf56fd3 6985ada_parent_type (struct type *type)
14f9c5c9
AS
6986{
6987 int i;
6988
61ee279c 6989 type = ada_check_typedef (type);
14f9c5c9
AS
6990
6991 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6992 return NULL;
6993
6994 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6995 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6996 {
6997 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6998
6999 /* If the _parent field is a pointer, then dereference it. */
7000 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7001 parent_type = TYPE_TARGET_TYPE (parent_type);
7002 /* If there is a parallel XVS type, get the actual base type. */
7003 parent_type = ada_get_base_type (parent_type);
7004
7005 return ada_check_typedef (parent_type);
7006 }
14f9c5c9
AS
7007
7008 return NULL;
7009}
7010
4c4b4cd2
PH
7011/* True iff field number FIELD_NUM of structure type TYPE contains the
7012 parent-type (inherited) fields of a derived type. Assumes TYPE is
7013 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
7014
7015int
ebf56fd3 7016ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 7017{
61ee279c 7018 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 7019
4c4b4cd2 7020 return (name != NULL
61012eef
GB
7021 && (startswith (name, "PARENT")
7022 || startswith (name, "_parent")));
14f9c5c9
AS
7023}
7024
4c4b4cd2 7025/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 7026 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 7027 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 7028 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 7029 structures. */
14f9c5c9
AS
7030
7031int
ebf56fd3 7032ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 7033{
d2e4a39e 7034 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7035
dddc0e16
JB
7036 if (name != NULL && strcmp (name, "RETVAL") == 0)
7037 {
7038 /* This happens in functions with "out" or "in out" parameters
7039 which are passed by copy. For such functions, GNAT describes
7040 the function's return type as being a struct where the return
7041 value is in a field called RETVAL, and where the other "out"
7042 or "in out" parameters are fields of that struct. This is not
7043 a wrapper. */
7044 return 0;
7045 }
7046
d2e4a39e 7047 return (name != NULL
61012eef 7048 && (startswith (name, "PARENT")
4c4b4cd2 7049 || strcmp (name, "REP") == 0
61012eef 7050 || startswith (name, "_parent")
4c4b4cd2 7051 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7052}
7053
4c4b4cd2
PH
7054/* True iff field number FIELD_NUM of structure or union type TYPE
7055 is a variant wrapper. Assumes TYPE is a structure type with at least
7056 FIELD_NUM+1 fields. */
14f9c5c9
AS
7057
7058int
ebf56fd3 7059ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7060{
d2e4a39e 7061 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7062
14f9c5c9 7063 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7064 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7065 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7066 == TYPE_CODE_UNION)));
14f9c5c9
AS
7067}
7068
7069/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7070 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7071 returns the type of the controlling discriminant for the variant.
7072 May return NULL if the type could not be found. */
14f9c5c9 7073
d2e4a39e 7074struct type *
ebf56fd3 7075ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7076{
d2e4a39e 7077 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7078
7c964f07 7079 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7080}
7081
4c4b4cd2 7082/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7083 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7084 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7085
7086int
ebf56fd3 7087ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7088{
d2e4a39e 7089 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7090
14f9c5c9
AS
7091 return (name != NULL && name[0] == 'O');
7092}
7093
7094/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7095 returns the name of the discriminant controlling the variant.
7096 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7097
d2e4a39e 7098char *
ebf56fd3 7099ada_variant_discrim_name (struct type *type0)
14f9c5c9 7100{
d2e4a39e 7101 static char *result = NULL;
14f9c5c9 7102 static size_t result_len = 0;
d2e4a39e
AS
7103 struct type *type;
7104 const char *name;
7105 const char *discrim_end;
7106 const char *discrim_start;
14f9c5c9
AS
7107
7108 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7109 type = TYPE_TARGET_TYPE (type0);
7110 else
7111 type = type0;
7112
7113 name = ada_type_name (type);
7114
7115 if (name == NULL || name[0] == '\000')
7116 return "";
7117
7118 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7119 discrim_end -= 1)
7120 {
61012eef 7121 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7122 break;
14f9c5c9
AS
7123 }
7124 if (discrim_end == name)
7125 return "";
7126
d2e4a39e 7127 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7128 discrim_start -= 1)
7129 {
d2e4a39e 7130 if (discrim_start == name + 1)
4c4b4cd2 7131 return "";
76a01679 7132 if ((discrim_start > name + 3
61012eef 7133 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7134 || discrim_start[-1] == '.')
7135 break;
14f9c5c9
AS
7136 }
7137
7138 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7139 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7140 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7141 return result;
7142}
7143
4c4b4cd2
PH
7144/* Scan STR for a subtype-encoded number, beginning at position K.
7145 Put the position of the character just past the number scanned in
7146 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7147 Return 1 if there was a valid number at the given position, and 0
7148 otherwise. A "subtype-encoded" number consists of the absolute value
7149 in decimal, followed by the letter 'm' to indicate a negative number.
7150 Assumes 0m does not occur. */
14f9c5c9
AS
7151
7152int
d2e4a39e 7153ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7154{
7155 ULONGEST RU;
7156
d2e4a39e 7157 if (!isdigit (str[k]))
14f9c5c9
AS
7158 return 0;
7159
4c4b4cd2 7160 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7161 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7162 LONGEST. */
14f9c5c9
AS
7163 RU = 0;
7164 while (isdigit (str[k]))
7165 {
d2e4a39e 7166 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7167 k += 1;
7168 }
7169
d2e4a39e 7170 if (str[k] == 'm')
14f9c5c9
AS
7171 {
7172 if (R != NULL)
4c4b4cd2 7173 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7174 k += 1;
7175 }
7176 else if (R != NULL)
7177 *R = (LONGEST) RU;
7178
4c4b4cd2 7179 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7180 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7181 number representable as a LONGEST (although either would probably work
7182 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7183 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7184
7185 if (new_k != NULL)
7186 *new_k = k;
7187 return 1;
7188}
7189
4c4b4cd2
PH
7190/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7191 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7192 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7193
d2e4a39e 7194int
ebf56fd3 7195ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7196{
d2e4a39e 7197 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7198 int p;
7199
7200 p = 0;
7201 while (1)
7202 {
d2e4a39e 7203 switch (name[p])
4c4b4cd2
PH
7204 {
7205 case '\0':
7206 return 0;
7207 case 'S':
7208 {
7209 LONGEST W;
5b4ee69b 7210
4c4b4cd2
PH
7211 if (!ada_scan_number (name, p + 1, &W, &p))
7212 return 0;
7213 if (val == W)
7214 return 1;
7215 break;
7216 }
7217 case 'R':
7218 {
7219 LONGEST L, U;
5b4ee69b 7220
4c4b4cd2
PH
7221 if (!ada_scan_number (name, p + 1, &L, &p)
7222 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7223 return 0;
7224 if (val >= L && val <= U)
7225 return 1;
7226 break;
7227 }
7228 case 'O':
7229 return 1;
7230 default:
7231 return 0;
7232 }
7233 }
7234}
7235
0963b4bd 7236/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7237
7238/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7239 ARG_TYPE, extract and return the value of one of its (non-static)
7240 fields. FIELDNO says which field. Differs from value_primitive_field
7241 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7242
4c4b4cd2 7243static struct value *
d2e4a39e 7244ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7245 struct type *arg_type)
14f9c5c9 7246{
14f9c5c9
AS
7247 struct type *type;
7248
61ee279c 7249 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7250 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7251
4c4b4cd2 7252 /* Handle packed fields. */
14f9c5c9
AS
7253
7254 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7255 {
7256 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7257 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7258
0fd88904 7259 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7260 offset + bit_pos / 8,
7261 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7262 }
7263 else
7264 return value_primitive_field (arg1, offset, fieldno, arg_type);
7265}
7266
52ce6436
PH
7267/* Find field with name NAME in object of type TYPE. If found,
7268 set the following for each argument that is non-null:
7269 - *FIELD_TYPE_P to the field's type;
7270 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7271 an object of that type;
7272 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7273 - *BIT_SIZE_P to its size in bits if the field is packed, and
7274 0 otherwise;
7275 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7276 fields up to but not including the desired field, or by the total
7277 number of fields if not found. A NULL value of NAME never
7278 matches; the function just counts visible fields in this case.
7279
0963b4bd 7280 Returns 1 if found, 0 otherwise. */
52ce6436 7281
4c4b4cd2 7282static int
0d5cff50 7283find_struct_field (const char *name, struct type *type, int offset,
76a01679 7284 struct type **field_type_p,
52ce6436
PH
7285 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7286 int *index_p)
4c4b4cd2
PH
7287{
7288 int i;
7289
61ee279c 7290 type = ada_check_typedef (type);
76a01679 7291
52ce6436
PH
7292 if (field_type_p != NULL)
7293 *field_type_p = NULL;
7294 if (byte_offset_p != NULL)
d5d6fca5 7295 *byte_offset_p = 0;
52ce6436
PH
7296 if (bit_offset_p != NULL)
7297 *bit_offset_p = 0;
7298 if (bit_size_p != NULL)
7299 *bit_size_p = 0;
7300
7301 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7302 {
7303 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7304 int fld_offset = offset + bit_pos / 8;
0d5cff50 7305 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7306
4c4b4cd2
PH
7307 if (t_field_name == NULL)
7308 continue;
7309
52ce6436 7310 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7311 {
7312 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7313
52ce6436
PH
7314 if (field_type_p != NULL)
7315 *field_type_p = TYPE_FIELD_TYPE (type, i);
7316 if (byte_offset_p != NULL)
7317 *byte_offset_p = fld_offset;
7318 if (bit_offset_p != NULL)
7319 *bit_offset_p = bit_pos % 8;
7320 if (bit_size_p != NULL)
7321 *bit_size_p = bit_size;
76a01679
JB
7322 return 1;
7323 }
4c4b4cd2
PH
7324 else if (ada_is_wrapper_field (type, i))
7325 {
52ce6436
PH
7326 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7327 field_type_p, byte_offset_p, bit_offset_p,
7328 bit_size_p, index_p))
76a01679
JB
7329 return 1;
7330 }
4c4b4cd2
PH
7331 else if (ada_is_variant_part (type, i))
7332 {
52ce6436
PH
7333 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7334 fixed type?? */
4c4b4cd2 7335 int j;
52ce6436
PH
7336 struct type *field_type
7337 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7338
52ce6436 7339 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7340 {
76a01679
JB
7341 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7342 fld_offset
7343 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7344 field_type_p, byte_offset_p,
52ce6436 7345 bit_offset_p, bit_size_p, index_p))
76a01679 7346 return 1;
4c4b4cd2
PH
7347 }
7348 }
52ce6436
PH
7349 else if (index_p != NULL)
7350 *index_p += 1;
4c4b4cd2
PH
7351 }
7352 return 0;
7353}
7354
0963b4bd 7355/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7356
52ce6436
PH
7357static int
7358num_visible_fields (struct type *type)
7359{
7360 int n;
5b4ee69b 7361
52ce6436
PH
7362 n = 0;
7363 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7364 return n;
7365}
14f9c5c9 7366
4c4b4cd2 7367/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7368 and search in it assuming it has (class) type TYPE.
7369 If found, return value, else return NULL.
7370
4c4b4cd2 7371 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7372
4c4b4cd2 7373static struct value *
108d56a4 7374ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7375 struct type *type)
14f9c5c9
AS
7376{
7377 int i;
14f9c5c9 7378
5b4ee69b 7379 type = ada_check_typedef (type);
52ce6436 7380 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7381 {
0d5cff50 7382 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7383
7384 if (t_field_name == NULL)
4c4b4cd2 7385 continue;
14f9c5c9
AS
7386
7387 else if (field_name_match (t_field_name, name))
4c4b4cd2 7388 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7389
7390 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7391 {
0963b4bd 7392 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7393 ada_search_struct_field (name, arg,
7394 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7395 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7396
4c4b4cd2
PH
7397 if (v != NULL)
7398 return v;
7399 }
14f9c5c9
AS
7400
7401 else if (ada_is_variant_part (type, i))
4c4b4cd2 7402 {
0963b4bd 7403 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7404 int j;
5b4ee69b
MS
7405 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7406 i));
4c4b4cd2
PH
7407 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7408
52ce6436 7409 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7410 {
0963b4bd
MS
7411 struct value *v = ada_search_struct_field /* Force line
7412 break. */
06d5cf63
JB
7413 (name, arg,
7414 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7415 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7416
4c4b4cd2
PH
7417 if (v != NULL)
7418 return v;
7419 }
7420 }
14f9c5c9
AS
7421 }
7422 return NULL;
7423}
d2e4a39e 7424
52ce6436
PH
7425static struct value *ada_index_struct_field_1 (int *, struct value *,
7426 int, struct type *);
7427
7428
7429/* Return field #INDEX in ARG, where the index is that returned by
7430 * find_struct_field through its INDEX_P argument. Adjust the address
7431 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7432 * If found, return value, else return NULL. */
52ce6436
PH
7433
7434static struct value *
7435ada_index_struct_field (int index, struct value *arg, int offset,
7436 struct type *type)
7437{
7438 return ada_index_struct_field_1 (&index, arg, offset, type);
7439}
7440
7441
7442/* Auxiliary function for ada_index_struct_field. Like
7443 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7444 * *INDEX_P. */
52ce6436
PH
7445
7446static struct value *
7447ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7448 struct type *type)
7449{
7450 int i;
7451 type = ada_check_typedef (type);
7452
7453 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7454 {
7455 if (TYPE_FIELD_NAME (type, i) == NULL)
7456 continue;
7457 else if (ada_is_wrapper_field (type, i))
7458 {
0963b4bd 7459 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7460 ada_index_struct_field_1 (index_p, arg,
7461 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7462 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7463
52ce6436
PH
7464 if (v != NULL)
7465 return v;
7466 }
7467
7468 else if (ada_is_variant_part (type, i))
7469 {
7470 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7471 find_struct_field. */
52ce6436
PH
7472 error (_("Cannot assign this kind of variant record"));
7473 }
7474 else if (*index_p == 0)
7475 return ada_value_primitive_field (arg, offset, i, type);
7476 else
7477 *index_p -= 1;
7478 }
7479 return NULL;
7480}
7481
4c4b4cd2
PH
7482/* Given ARG, a value of type (pointer or reference to a)*
7483 structure/union, extract the component named NAME from the ultimate
7484 target structure/union and return it as a value with its
f5938064 7485 appropriate type.
14f9c5c9 7486
4c4b4cd2
PH
7487 The routine searches for NAME among all members of the structure itself
7488 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7489 (e.g., '_parent').
7490
03ee6b2e
PH
7491 If NO_ERR, then simply return NULL in case of error, rather than
7492 calling error. */
14f9c5c9 7493
d2e4a39e 7494struct value *
03ee6b2e 7495ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7496{
4c4b4cd2 7497 struct type *t, *t1;
d2e4a39e 7498 struct value *v;
14f9c5c9 7499
4c4b4cd2 7500 v = NULL;
df407dfe 7501 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7502 if (TYPE_CODE (t) == TYPE_CODE_REF)
7503 {
7504 t1 = TYPE_TARGET_TYPE (t);
7505 if (t1 == NULL)
03ee6b2e 7506 goto BadValue;
61ee279c 7507 t1 = ada_check_typedef (t1);
4c4b4cd2 7508 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7509 {
994b9211 7510 arg = coerce_ref (arg);
76a01679
JB
7511 t = t1;
7512 }
4c4b4cd2 7513 }
14f9c5c9 7514
4c4b4cd2
PH
7515 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7516 {
7517 t1 = TYPE_TARGET_TYPE (t);
7518 if (t1 == NULL)
03ee6b2e 7519 goto BadValue;
61ee279c 7520 t1 = ada_check_typedef (t1);
4c4b4cd2 7521 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7522 {
7523 arg = value_ind (arg);
7524 t = t1;
7525 }
4c4b4cd2 7526 else
76a01679 7527 break;
4c4b4cd2 7528 }
14f9c5c9 7529
4c4b4cd2 7530 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7531 goto BadValue;
14f9c5c9 7532
4c4b4cd2
PH
7533 if (t1 == t)
7534 v = ada_search_struct_field (name, arg, 0, t);
7535 else
7536 {
7537 int bit_offset, bit_size, byte_offset;
7538 struct type *field_type;
7539 CORE_ADDR address;
7540
76a01679 7541 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7542 address = value_address (ada_value_ind (arg));
4c4b4cd2 7543 else
b50d69b5 7544 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7545
1ed6ede0 7546 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7547 if (find_struct_field (name, t1, 0,
7548 &field_type, &byte_offset, &bit_offset,
52ce6436 7549 &bit_size, NULL))
76a01679
JB
7550 {
7551 if (bit_size != 0)
7552 {
714e53ab
PH
7553 if (TYPE_CODE (t) == TYPE_CODE_REF)
7554 arg = ada_coerce_ref (arg);
7555 else
7556 arg = ada_value_ind (arg);
76a01679
JB
7557 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7558 bit_offset, bit_size,
7559 field_type);
7560 }
7561 else
f5938064 7562 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7563 }
7564 }
7565
03ee6b2e
PH
7566 if (v != NULL || no_err)
7567 return v;
7568 else
323e0a4a 7569 error (_("There is no member named %s."), name);
14f9c5c9 7570
03ee6b2e
PH
7571 BadValue:
7572 if (no_err)
7573 return NULL;
7574 else
0963b4bd
MS
7575 error (_("Attempt to extract a component of "
7576 "a value that is not a record."));
14f9c5c9
AS
7577}
7578
99bbb428
PA
7579/* Return a string representation of type TYPE. Caller must free
7580 result. */
7581
7582static char *
7583type_as_string (struct type *type)
7584{
7585 struct ui_file *tmp_stream = mem_fileopen ();
7586 struct cleanup *old_chain;
7587 char *str;
7588
7589 tmp_stream = mem_fileopen ();
7590 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7591
7592 type_print (type, "", tmp_stream, -1);
7593 str = ui_file_xstrdup (tmp_stream, NULL);
7594
7595 do_cleanups (old_chain);
7596 return str;
7597}
7598
7599/* Return a string representation of type TYPE, and install a cleanup
7600 that releases it. */
7601
7602static char *
7603type_as_string_and_cleanup (struct type *type)
7604{
7605 char *str;
7606
7607 str = type_as_string (type);
7608 make_cleanup (xfree, str);
7609 return str;
7610}
7611
14f9c5c9 7612/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7613 If DISPP is non-null, add its byte displacement from the beginning of a
7614 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7615 work for packed fields).
7616
7617 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7618 followed by "___".
14f9c5c9 7619
0963b4bd 7620 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7621 be a (pointer or reference)+ to a struct or union, and the
7622 ultimate target type will be searched.
14f9c5c9
AS
7623
7624 Looks recursively into variant clauses and parent types.
7625
4c4b4cd2
PH
7626 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7627 TYPE is not a type of the right kind. */
14f9c5c9 7628
4c4b4cd2 7629static struct type *
76a01679
JB
7630ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7631 int noerr, int *dispp)
14f9c5c9
AS
7632{
7633 int i;
7634
7635 if (name == NULL)
7636 goto BadName;
7637
76a01679 7638 if (refok && type != NULL)
4c4b4cd2
PH
7639 while (1)
7640 {
61ee279c 7641 type = ada_check_typedef (type);
76a01679
JB
7642 if (TYPE_CODE (type) != TYPE_CODE_PTR
7643 && TYPE_CODE (type) != TYPE_CODE_REF)
7644 break;
7645 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7646 }
14f9c5c9 7647
76a01679 7648 if (type == NULL
1265e4aa
JB
7649 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7650 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7651 {
2b2798cc 7652 const char *type_str;
99bbb428 7653
4c4b4cd2 7654 if (noerr)
76a01679 7655 return NULL;
99bbb428
PA
7656
7657 type_str = (type != NULL
7658 ? type_as_string_and_cleanup (type)
7659 : _("(null)"));
7660 error (_("Type %s is not a structure or union type"), type_str);
14f9c5c9
AS
7661 }
7662
7663 type = to_static_fixed_type (type);
7664
7665 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7666 {
0d5cff50 7667 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7668 struct type *t;
7669 int disp;
d2e4a39e 7670
14f9c5c9 7671 if (t_field_name == NULL)
4c4b4cd2 7672 continue;
14f9c5c9
AS
7673
7674 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7675 {
7676 if (dispp != NULL)
7677 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7678 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7679 }
14f9c5c9
AS
7680
7681 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7682 {
7683 disp = 0;
7684 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7685 0, 1, &disp);
7686 if (t != NULL)
7687 {
7688 if (dispp != NULL)
7689 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7690 return t;
7691 }
7692 }
14f9c5c9
AS
7693
7694 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7695 {
7696 int j;
5b4ee69b
MS
7697 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7698 i));
4c4b4cd2
PH
7699
7700 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7701 {
b1f33ddd
JB
7702 /* FIXME pnh 2008/01/26: We check for a field that is
7703 NOT wrapped in a struct, since the compiler sometimes
7704 generates these for unchecked variant types. Revisit
0963b4bd 7705 if the compiler changes this practice. */
0d5cff50 7706 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7707 disp = 0;
b1f33ddd
JB
7708 if (v_field_name != NULL
7709 && field_name_match (v_field_name, name))
460efde1 7710 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7711 else
0963b4bd
MS
7712 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7713 j),
b1f33ddd
JB
7714 name, 0, 1, &disp);
7715
4c4b4cd2
PH
7716 if (t != NULL)
7717 {
7718 if (dispp != NULL)
7719 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7720 return t;
7721 }
7722 }
7723 }
14f9c5c9
AS
7724
7725 }
7726
7727BadName:
d2e4a39e 7728 if (!noerr)
14f9c5c9 7729 {
2b2798cc 7730 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7731
7732 error (_("Type %s has no component named %s"),
7733 type_as_string_and_cleanup (type), name_str);
14f9c5c9
AS
7734 }
7735
7736 return NULL;
7737}
7738
b1f33ddd
JB
7739/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7740 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7741 represents an unchecked union (that is, the variant part of a
0963b4bd 7742 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7743
7744static int
7745is_unchecked_variant (struct type *var_type, struct type *outer_type)
7746{
7747 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7748
b1f33ddd
JB
7749 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7750 == NULL);
7751}
7752
7753
14f9c5c9
AS
7754/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7755 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7756 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7757 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7758
d2e4a39e 7759int
ebf56fd3 7760ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7761 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7762{
7763 int others_clause;
7764 int i;
d2e4a39e 7765 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7766 struct value *outer;
7767 struct value *discrim;
14f9c5c9
AS
7768 LONGEST discrim_val;
7769
012370f6
TT
7770 /* Using plain value_from_contents_and_address here causes problems
7771 because we will end up trying to resolve a type that is currently
7772 being constructed. */
7773 outer = value_from_contents_and_address_unresolved (outer_type,
7774 outer_valaddr, 0);
0c281816
JB
7775 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7776 if (discrim == NULL)
14f9c5c9 7777 return -1;
0c281816 7778 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7779
7780 others_clause = -1;
7781 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7782 {
7783 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7784 others_clause = i;
14f9c5c9 7785 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7786 return i;
14f9c5c9
AS
7787 }
7788
7789 return others_clause;
7790}
d2e4a39e 7791\f
14f9c5c9
AS
7792
7793
4c4b4cd2 7794 /* Dynamic-Sized Records */
14f9c5c9
AS
7795
7796/* Strategy: The type ostensibly attached to a value with dynamic size
7797 (i.e., a size that is not statically recorded in the debugging
7798 data) does not accurately reflect the size or layout of the value.
7799 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7800 conventional types that are constructed on the fly. */
14f9c5c9
AS
7801
7802/* There is a subtle and tricky problem here. In general, we cannot
7803 determine the size of dynamic records without its data. However,
7804 the 'struct value' data structure, which GDB uses to represent
7805 quantities in the inferior process (the target), requires the size
7806 of the type at the time of its allocation in order to reserve space
7807 for GDB's internal copy of the data. That's why the
7808 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7809 rather than struct value*s.
14f9c5c9
AS
7810
7811 However, GDB's internal history variables ($1, $2, etc.) are
7812 struct value*s containing internal copies of the data that are not, in
7813 general, the same as the data at their corresponding addresses in
7814 the target. Fortunately, the types we give to these values are all
7815 conventional, fixed-size types (as per the strategy described
7816 above), so that we don't usually have to perform the
7817 'to_fixed_xxx_type' conversions to look at their values.
7818 Unfortunately, there is one exception: if one of the internal
7819 history variables is an array whose elements are unconstrained
7820 records, then we will need to create distinct fixed types for each
7821 element selected. */
7822
7823/* The upshot of all of this is that many routines take a (type, host
7824 address, target address) triple as arguments to represent a value.
7825 The host address, if non-null, is supposed to contain an internal
7826 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7827 target at the target address. */
14f9c5c9
AS
7828
7829/* Assuming that VAL0 represents a pointer value, the result of
7830 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7831 dynamic-sized types. */
14f9c5c9 7832
d2e4a39e
AS
7833struct value *
7834ada_value_ind (struct value *val0)
14f9c5c9 7835{
c48db5ca 7836 struct value *val = value_ind (val0);
5b4ee69b 7837
b50d69b5
JG
7838 if (ada_is_tagged_type (value_type (val), 0))
7839 val = ada_tag_value_at_base_address (val);
7840
4c4b4cd2 7841 return ada_to_fixed_value (val);
14f9c5c9
AS
7842}
7843
7844/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7845 qualifiers on VAL0. */
7846
d2e4a39e
AS
7847static struct value *
7848ada_coerce_ref (struct value *val0)
7849{
df407dfe 7850 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7851 {
7852 struct value *val = val0;
5b4ee69b 7853
994b9211 7854 val = coerce_ref (val);
b50d69b5
JG
7855
7856 if (ada_is_tagged_type (value_type (val), 0))
7857 val = ada_tag_value_at_base_address (val);
7858
4c4b4cd2 7859 return ada_to_fixed_value (val);
d2e4a39e
AS
7860 }
7861 else
14f9c5c9
AS
7862 return val0;
7863}
7864
7865/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7866 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7867
7868static unsigned int
ebf56fd3 7869align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7870{
7871 return (off + alignment - 1) & ~(alignment - 1);
7872}
7873
4c4b4cd2 7874/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7875
7876static unsigned int
ebf56fd3 7877field_alignment (struct type *type, int f)
14f9c5c9 7878{
d2e4a39e 7879 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7880 int len;
14f9c5c9
AS
7881 int align_offset;
7882
64a1bf19
JB
7883 /* The field name should never be null, unless the debugging information
7884 is somehow malformed. In this case, we assume the field does not
7885 require any alignment. */
7886 if (name == NULL)
7887 return 1;
7888
7889 len = strlen (name);
7890
4c4b4cd2
PH
7891 if (!isdigit (name[len - 1]))
7892 return 1;
14f9c5c9 7893
d2e4a39e 7894 if (isdigit (name[len - 2]))
14f9c5c9
AS
7895 align_offset = len - 2;
7896 else
7897 align_offset = len - 1;
7898
61012eef 7899 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7900 return TARGET_CHAR_BIT;
7901
4c4b4cd2
PH
7902 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7903}
7904
852dff6c 7905/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7906
852dff6c
JB
7907static struct symbol *
7908ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7909{
7910 struct symbol *sym;
7911
7912 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7913 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7914 return sym;
7915
4186eb54
KS
7916 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7917 return sym;
14f9c5c9
AS
7918}
7919
dddfab26
UW
7920/* Find a type named NAME. Ignores ambiguity. This routine will look
7921 solely for types defined by debug info, it will not search the GDB
7922 primitive types. */
4c4b4cd2 7923
852dff6c 7924static struct type *
ebf56fd3 7925ada_find_any_type (const char *name)
14f9c5c9 7926{
852dff6c 7927 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7928
14f9c5c9 7929 if (sym != NULL)
dddfab26 7930 return SYMBOL_TYPE (sym);
14f9c5c9 7931
dddfab26 7932 return NULL;
14f9c5c9
AS
7933}
7934
739593e0
JB
7935/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7936 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7937 symbol, in which case it is returned. Otherwise, this looks for
7938 symbols whose name is that of NAME_SYM suffixed with "___XR".
7939 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7940
7941struct symbol *
270140bd 7942ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7943{
739593e0 7944 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7945 struct symbol *sym;
7946
739593e0
JB
7947 if (strstr (name, "___XR") != NULL)
7948 return name_sym;
7949
aeb5907d
JB
7950 sym = find_old_style_renaming_symbol (name, block);
7951
7952 if (sym != NULL)
7953 return sym;
7954
0963b4bd 7955 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7956 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7957 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7958 return sym;
7959 else
7960 return NULL;
7961}
7962
7963static struct symbol *
270140bd 7964find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7965{
7f0df278 7966 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7967 char *rename;
7968
7969 if (function_sym != NULL)
7970 {
7971 /* If the symbol is defined inside a function, NAME is not fully
7972 qualified. This means we need to prepend the function name
7973 as well as adding the ``___XR'' suffix to build the name of
7974 the associated renaming symbol. */
0d5cff50 7975 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7976 /* Function names sometimes contain suffixes used
7977 for instance to qualify nested subprograms. When building
7978 the XR type name, we need to make sure that this suffix is
7979 not included. So do not include any suffix in the function
7980 name length below. */
69fadcdf 7981 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7982 const int rename_len = function_name_len + 2 /* "__" */
7983 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7984
529cad9c 7985 /* Strip the suffix if necessary. */
69fadcdf
JB
7986 ada_remove_trailing_digits (function_name, &function_name_len);
7987 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7988 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7989
4c4b4cd2
PH
7990 /* Library-level functions are a special case, as GNAT adds
7991 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7992 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7993 have this prefix, so we need to skip this prefix if present. */
7994 if (function_name_len > 5 /* "_ada_" */
7995 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7996 {
7997 function_name += 5;
7998 function_name_len -= 5;
7999 }
4c4b4cd2
PH
8000
8001 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8002 strncpy (rename, function_name, function_name_len);
8003 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8004 "__%s___XR", name);
4c4b4cd2
PH
8005 }
8006 else
8007 {
8008 const int rename_len = strlen (name) + 6;
5b4ee69b 8009
4c4b4cd2 8010 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8011 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8012 }
8013
852dff6c 8014 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8015}
8016
14f9c5c9 8017/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8018 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8019 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8020 otherwise return 0. */
8021
14f9c5c9 8022int
d2e4a39e 8023ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8024{
8025 if (type1 == NULL)
8026 return 1;
8027 else if (type0 == NULL)
8028 return 0;
8029 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8030 return 1;
8031 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8032 return 0;
4c4b4cd2
PH
8033 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8034 return 1;
ad82864c 8035 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8036 return 1;
4c4b4cd2
PH
8037 else if (ada_is_array_descriptor_type (type0)
8038 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8039 return 1;
aeb5907d
JB
8040 else
8041 {
8042 const char *type0_name = type_name_no_tag (type0);
8043 const char *type1_name = type_name_no_tag (type1);
8044
8045 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8046 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8047 return 1;
8048 }
14f9c5c9
AS
8049 return 0;
8050}
8051
8052/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8053 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8054
0d5cff50 8055const char *
d2e4a39e 8056ada_type_name (struct type *type)
14f9c5c9 8057{
d2e4a39e 8058 if (type == NULL)
14f9c5c9
AS
8059 return NULL;
8060 else if (TYPE_NAME (type) != NULL)
8061 return TYPE_NAME (type);
8062 else
8063 return TYPE_TAG_NAME (type);
8064}
8065
b4ba55a1
JB
8066/* Search the list of "descriptive" types associated to TYPE for a type
8067 whose name is NAME. */
8068
8069static struct type *
8070find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8071{
931e5bc3 8072 struct type *result, *tmp;
b4ba55a1 8073
c6044dd1
JB
8074 if (ada_ignore_descriptive_types_p)
8075 return NULL;
8076
b4ba55a1
JB
8077 /* If there no descriptive-type info, then there is no parallel type
8078 to be found. */
8079 if (!HAVE_GNAT_AUX_INFO (type))
8080 return NULL;
8081
8082 result = TYPE_DESCRIPTIVE_TYPE (type);
8083 while (result != NULL)
8084 {
0d5cff50 8085 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8086
8087 if (result_name == NULL)
8088 {
8089 warning (_("unexpected null name on descriptive type"));
8090 return NULL;
8091 }
8092
8093 /* If the names match, stop. */
8094 if (strcmp (result_name, name) == 0)
8095 break;
8096
8097 /* Otherwise, look at the next item on the list, if any. */
8098 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8099 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8100 else
8101 tmp = NULL;
8102
8103 /* If not found either, try after having resolved the typedef. */
8104 if (tmp != NULL)
8105 result = tmp;
b4ba55a1 8106 else
931e5bc3 8107 {
f168693b 8108 result = check_typedef (result);
931e5bc3
JG
8109 if (HAVE_GNAT_AUX_INFO (result))
8110 result = TYPE_DESCRIPTIVE_TYPE (result);
8111 else
8112 result = NULL;
8113 }
b4ba55a1
JB
8114 }
8115
8116 /* If we didn't find a match, see whether this is a packed array. With
8117 older compilers, the descriptive type information is either absent or
8118 irrelevant when it comes to packed arrays so the above lookup fails.
8119 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8120 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8121 return ada_find_any_type (name);
8122
8123 return result;
8124}
8125
8126/* Find a parallel type to TYPE with the specified NAME, using the
8127 descriptive type taken from the debugging information, if available,
8128 and otherwise using the (slower) name-based method. */
8129
8130static struct type *
8131ada_find_parallel_type_with_name (struct type *type, const char *name)
8132{
8133 struct type *result = NULL;
8134
8135 if (HAVE_GNAT_AUX_INFO (type))
8136 result = find_parallel_type_by_descriptive_type (type, name);
8137 else
8138 result = ada_find_any_type (name);
8139
8140 return result;
8141}
8142
8143/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8144 SUFFIX to the name of TYPE. */
14f9c5c9 8145
d2e4a39e 8146struct type *
ebf56fd3 8147ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8148{
0d5cff50 8149 char *name;
fe978cb0 8150 const char *type_name = ada_type_name (type);
14f9c5c9 8151 int len;
d2e4a39e 8152
fe978cb0 8153 if (type_name == NULL)
14f9c5c9
AS
8154 return NULL;
8155
fe978cb0 8156 len = strlen (type_name);
14f9c5c9 8157
b4ba55a1 8158 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8159
fe978cb0 8160 strcpy (name, type_name);
14f9c5c9
AS
8161 strcpy (name + len, suffix);
8162
b4ba55a1 8163 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8164}
8165
14f9c5c9 8166/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8167 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8168
d2e4a39e
AS
8169static struct type *
8170dynamic_template_type (struct type *type)
14f9c5c9 8171{
61ee279c 8172 type = ada_check_typedef (type);
14f9c5c9
AS
8173
8174 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8175 || ada_type_name (type) == NULL)
14f9c5c9 8176 return NULL;
d2e4a39e 8177 else
14f9c5c9
AS
8178 {
8179 int len = strlen (ada_type_name (type));
5b4ee69b 8180
4c4b4cd2
PH
8181 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8182 return type;
14f9c5c9 8183 else
4c4b4cd2 8184 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8185 }
8186}
8187
8188/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8189 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8190
d2e4a39e
AS
8191static int
8192is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8193{
8194 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8195
d2e4a39e 8196 return name != NULL
14f9c5c9
AS
8197 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8198 && strstr (name, "___XVL") != NULL;
8199}
8200
4c4b4cd2
PH
8201/* The index of the variant field of TYPE, or -1 if TYPE does not
8202 represent a variant record type. */
14f9c5c9 8203
d2e4a39e 8204static int
4c4b4cd2 8205variant_field_index (struct type *type)
14f9c5c9
AS
8206{
8207 int f;
8208
4c4b4cd2
PH
8209 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8210 return -1;
8211
8212 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8213 {
8214 if (ada_is_variant_part (type, f))
8215 return f;
8216 }
8217 return -1;
14f9c5c9
AS
8218}
8219
4c4b4cd2
PH
8220/* A record type with no fields. */
8221
d2e4a39e 8222static struct type *
fe978cb0 8223empty_record (struct type *templ)
14f9c5c9 8224{
fe978cb0 8225 struct type *type = alloc_type_copy (templ);
5b4ee69b 8226
14f9c5c9
AS
8227 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8228 TYPE_NFIELDS (type) = 0;
8229 TYPE_FIELDS (type) = NULL;
b1f33ddd 8230 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8231 TYPE_NAME (type) = "<empty>";
8232 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8233 TYPE_LENGTH (type) = 0;
8234 return type;
8235}
8236
8237/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8238 the value of type TYPE at VALADDR or ADDRESS (see comments at
8239 the beginning of this section) VAL according to GNAT conventions.
8240 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8241 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8242 an outer-level type (i.e., as opposed to a branch of a variant.) A
8243 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8244 of the variant.
14f9c5c9 8245
4c4b4cd2
PH
8246 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8247 length are not statically known are discarded. As a consequence,
8248 VALADDR, ADDRESS and DVAL0 are ignored.
8249
8250 NOTE: Limitations: For now, we assume that dynamic fields and
8251 variants occupy whole numbers of bytes. However, they need not be
8252 byte-aligned. */
8253
8254struct type *
10a2c479 8255ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8256 const gdb_byte *valaddr,
4c4b4cd2
PH
8257 CORE_ADDR address, struct value *dval0,
8258 int keep_dynamic_fields)
14f9c5c9 8259{
d2e4a39e
AS
8260 struct value *mark = value_mark ();
8261 struct value *dval;
8262 struct type *rtype;
14f9c5c9 8263 int nfields, bit_len;
4c4b4cd2 8264 int variant_field;
14f9c5c9 8265 long off;
d94e4f4f 8266 int fld_bit_len;
14f9c5c9
AS
8267 int f;
8268
4c4b4cd2
PH
8269 /* Compute the number of fields in this record type that are going
8270 to be processed: unless keep_dynamic_fields, this includes only
8271 fields whose position and length are static will be processed. */
8272 if (keep_dynamic_fields)
8273 nfields = TYPE_NFIELDS (type);
8274 else
8275 {
8276 nfields = 0;
76a01679 8277 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8278 && !ada_is_variant_part (type, nfields)
8279 && !is_dynamic_field (type, nfields))
8280 nfields++;
8281 }
8282
e9bb382b 8283 rtype = alloc_type_copy (type);
14f9c5c9
AS
8284 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8285 INIT_CPLUS_SPECIFIC (rtype);
8286 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8287 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8288 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8289 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8290 TYPE_NAME (rtype) = ada_type_name (type);
8291 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8292 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8293
d2e4a39e
AS
8294 off = 0;
8295 bit_len = 0;
4c4b4cd2
PH
8296 variant_field = -1;
8297
14f9c5c9
AS
8298 for (f = 0; f < nfields; f += 1)
8299 {
6c038f32
PH
8300 off = align_value (off, field_alignment (type, f))
8301 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8302 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8303 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8304
d2e4a39e 8305 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8306 {
8307 variant_field = f;
d94e4f4f 8308 fld_bit_len = 0;
4c4b4cd2 8309 }
14f9c5c9 8310 else if (is_dynamic_field (type, f))
4c4b4cd2 8311 {
284614f0
JB
8312 const gdb_byte *field_valaddr = valaddr;
8313 CORE_ADDR field_address = address;
8314 struct type *field_type =
8315 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8316
4c4b4cd2 8317 if (dval0 == NULL)
b5304971
JG
8318 {
8319 /* rtype's length is computed based on the run-time
8320 value of discriminants. If the discriminants are not
8321 initialized, the type size may be completely bogus and
0963b4bd 8322 GDB may fail to allocate a value for it. So check the
b5304971 8323 size first before creating the value. */
c1b5a1a6 8324 ada_ensure_varsize_limit (rtype);
012370f6
TT
8325 /* Using plain value_from_contents_and_address here
8326 causes problems because we will end up trying to
8327 resolve a type that is currently being
8328 constructed. */
8329 dval = value_from_contents_and_address_unresolved (rtype,
8330 valaddr,
8331 address);
9f1f738a 8332 rtype = value_type (dval);
b5304971 8333 }
4c4b4cd2
PH
8334 else
8335 dval = dval0;
8336
284614f0
JB
8337 /* If the type referenced by this field is an aligner type, we need
8338 to unwrap that aligner type, because its size might not be set.
8339 Keeping the aligner type would cause us to compute the wrong
8340 size for this field, impacting the offset of the all the fields
8341 that follow this one. */
8342 if (ada_is_aligner_type (field_type))
8343 {
8344 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8345
8346 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8347 field_address = cond_offset_target (field_address, field_offset);
8348 field_type = ada_aligned_type (field_type);
8349 }
8350
8351 field_valaddr = cond_offset_host (field_valaddr,
8352 off / TARGET_CHAR_BIT);
8353 field_address = cond_offset_target (field_address,
8354 off / TARGET_CHAR_BIT);
8355
8356 /* Get the fixed type of the field. Note that, in this case,
8357 we do not want to get the real type out of the tag: if
8358 the current field is the parent part of a tagged record,
8359 we will get the tag of the object. Clearly wrong: the real
8360 type of the parent is not the real type of the child. We
8361 would end up in an infinite loop. */
8362 field_type = ada_get_base_type (field_type);
8363 field_type = ada_to_fixed_type (field_type, field_valaddr,
8364 field_address, dval, 0);
27f2a97b
JB
8365 /* If the field size is already larger than the maximum
8366 object size, then the record itself will necessarily
8367 be larger than the maximum object size. We need to make
8368 this check now, because the size might be so ridiculously
8369 large (due to an uninitialized variable in the inferior)
8370 that it would cause an overflow when adding it to the
8371 record size. */
c1b5a1a6 8372 ada_ensure_varsize_limit (field_type);
284614f0
JB
8373
8374 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8375 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8376 /* The multiplication can potentially overflow. But because
8377 the field length has been size-checked just above, and
8378 assuming that the maximum size is a reasonable value,
8379 an overflow should not happen in practice. So rather than
8380 adding overflow recovery code to this already complex code,
8381 we just assume that it's not going to happen. */
d94e4f4f 8382 fld_bit_len =
4c4b4cd2
PH
8383 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8384 }
14f9c5c9 8385 else
4c4b4cd2 8386 {
5ded5331
JB
8387 /* Note: If this field's type is a typedef, it is important
8388 to preserve the typedef layer.
8389
8390 Otherwise, we might be transforming a typedef to a fat
8391 pointer (encoding a pointer to an unconstrained array),
8392 into a basic fat pointer (encoding an unconstrained
8393 array). As both types are implemented using the same
8394 structure, the typedef is the only clue which allows us
8395 to distinguish between the two options. Stripping it
8396 would prevent us from printing this field appropriately. */
8397 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8398 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8399 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8400 fld_bit_len =
4c4b4cd2
PH
8401 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8402 else
5ded5331
JB
8403 {
8404 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8405
8406 /* We need to be careful of typedefs when computing
8407 the length of our field. If this is a typedef,
8408 get the length of the target type, not the length
8409 of the typedef. */
8410 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8411 field_type = ada_typedef_target_type (field_type);
8412
8413 fld_bit_len =
8414 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8415 }
4c4b4cd2 8416 }
14f9c5c9 8417 if (off + fld_bit_len > bit_len)
4c4b4cd2 8418 bit_len = off + fld_bit_len;
d94e4f4f 8419 off += fld_bit_len;
4c4b4cd2
PH
8420 TYPE_LENGTH (rtype) =
8421 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8422 }
4c4b4cd2
PH
8423
8424 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8425 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8426 the record. This can happen in the presence of representation
8427 clauses. */
8428 if (variant_field >= 0)
8429 {
8430 struct type *branch_type;
8431
8432 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8433
8434 if (dval0 == NULL)
9f1f738a 8435 {
012370f6
TT
8436 /* Using plain value_from_contents_and_address here causes
8437 problems because we will end up trying to resolve a type
8438 that is currently being constructed. */
8439 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8440 address);
9f1f738a
SA
8441 rtype = value_type (dval);
8442 }
4c4b4cd2
PH
8443 else
8444 dval = dval0;
8445
8446 branch_type =
8447 to_fixed_variant_branch_type
8448 (TYPE_FIELD_TYPE (type, variant_field),
8449 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8450 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8451 if (branch_type == NULL)
8452 {
8453 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8454 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8455 TYPE_NFIELDS (rtype) -= 1;
8456 }
8457 else
8458 {
8459 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8460 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8461 fld_bit_len =
8462 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8463 TARGET_CHAR_BIT;
8464 if (off + fld_bit_len > bit_len)
8465 bit_len = off + fld_bit_len;
8466 TYPE_LENGTH (rtype) =
8467 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8468 }
8469 }
8470
714e53ab
PH
8471 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8472 should contain the alignment of that record, which should be a strictly
8473 positive value. If null or negative, then something is wrong, most
8474 probably in the debug info. In that case, we don't round up the size
0963b4bd 8475 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8476 the current RTYPE length might be good enough for our purposes. */
8477 if (TYPE_LENGTH (type) <= 0)
8478 {
323e0a4a
AC
8479 if (TYPE_NAME (rtype))
8480 warning (_("Invalid type size for `%s' detected: %d."),
8481 TYPE_NAME (rtype), TYPE_LENGTH (type));
8482 else
8483 warning (_("Invalid type size for <unnamed> detected: %d."),
8484 TYPE_LENGTH (type));
714e53ab
PH
8485 }
8486 else
8487 {
8488 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8489 TYPE_LENGTH (type));
8490 }
14f9c5c9
AS
8491
8492 value_free_to_mark (mark);
d2e4a39e 8493 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8494 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8495 return rtype;
8496}
8497
4c4b4cd2
PH
8498/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8499 of 1. */
14f9c5c9 8500
d2e4a39e 8501static struct type *
fc1a4b47 8502template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8503 CORE_ADDR address, struct value *dval0)
8504{
8505 return ada_template_to_fixed_record_type_1 (type, valaddr,
8506 address, dval0, 1);
8507}
8508
8509/* An ordinary record type in which ___XVL-convention fields and
8510 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8511 static approximations, containing all possible fields. Uses
8512 no runtime values. Useless for use in values, but that's OK,
8513 since the results are used only for type determinations. Works on both
8514 structs and unions. Representation note: to save space, we memorize
8515 the result of this function in the TYPE_TARGET_TYPE of the
8516 template type. */
8517
8518static struct type *
8519template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8520{
8521 struct type *type;
8522 int nfields;
8523 int f;
8524
9e195661
PMR
8525 /* No need no do anything if the input type is already fixed. */
8526 if (TYPE_FIXED_INSTANCE (type0))
8527 return type0;
8528
8529 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8530 if (TYPE_TARGET_TYPE (type0) != NULL)
8531 return TYPE_TARGET_TYPE (type0);
8532
9e195661 8533 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8534 type = type0;
9e195661
PMR
8535 nfields = TYPE_NFIELDS (type0);
8536
8537 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8538 recompute all over next time. */
8539 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8540
8541 for (f = 0; f < nfields; f += 1)
8542 {
460efde1 8543 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8544 struct type *new_type;
14f9c5c9 8545
4c4b4cd2 8546 if (is_dynamic_field (type0, f))
460efde1
JB
8547 {
8548 field_type = ada_check_typedef (field_type);
8549 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8550 }
14f9c5c9 8551 else
f192137b 8552 new_type = static_unwrap_type (field_type);
9e195661
PMR
8553
8554 if (new_type != field_type)
8555 {
8556 /* Clone TYPE0 only the first time we get a new field type. */
8557 if (type == type0)
8558 {
8559 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8560 TYPE_CODE (type) = TYPE_CODE (type0);
8561 INIT_CPLUS_SPECIFIC (type);
8562 TYPE_NFIELDS (type) = nfields;
8563 TYPE_FIELDS (type) = (struct field *)
8564 TYPE_ALLOC (type, nfields * sizeof (struct field));
8565 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8566 sizeof (struct field) * nfields);
8567 TYPE_NAME (type) = ada_type_name (type0);
8568 TYPE_TAG_NAME (type) = NULL;
8569 TYPE_FIXED_INSTANCE (type) = 1;
8570 TYPE_LENGTH (type) = 0;
8571 }
8572 TYPE_FIELD_TYPE (type, f) = new_type;
8573 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8574 }
14f9c5c9 8575 }
9e195661 8576
14f9c5c9
AS
8577 return type;
8578}
8579
4c4b4cd2 8580/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8581 whose address in memory is ADDRESS, returns a revision of TYPE,
8582 which should be a non-dynamic-sized record, in which the variant
8583 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8584 for discriminant values in DVAL0, which can be NULL if the record
8585 contains the necessary discriminant values. */
8586
d2e4a39e 8587static struct type *
fc1a4b47 8588to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8589 CORE_ADDR address, struct value *dval0)
14f9c5c9 8590{
d2e4a39e 8591 struct value *mark = value_mark ();
4c4b4cd2 8592 struct value *dval;
d2e4a39e 8593 struct type *rtype;
14f9c5c9
AS
8594 struct type *branch_type;
8595 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8596 int variant_field = variant_field_index (type);
14f9c5c9 8597
4c4b4cd2 8598 if (variant_field == -1)
14f9c5c9
AS
8599 return type;
8600
4c4b4cd2 8601 if (dval0 == NULL)
9f1f738a
SA
8602 {
8603 dval = value_from_contents_and_address (type, valaddr, address);
8604 type = value_type (dval);
8605 }
4c4b4cd2
PH
8606 else
8607 dval = dval0;
8608
e9bb382b 8609 rtype = alloc_type_copy (type);
14f9c5c9 8610 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8611 INIT_CPLUS_SPECIFIC (rtype);
8612 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8613 TYPE_FIELDS (rtype) =
8614 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8615 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8616 sizeof (struct field) * nfields);
14f9c5c9
AS
8617 TYPE_NAME (rtype) = ada_type_name (type);
8618 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8619 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8620 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8621
4c4b4cd2
PH
8622 branch_type = to_fixed_variant_branch_type
8623 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8624 cond_offset_host (valaddr,
4c4b4cd2
PH
8625 TYPE_FIELD_BITPOS (type, variant_field)
8626 / TARGET_CHAR_BIT),
d2e4a39e 8627 cond_offset_target (address,
4c4b4cd2
PH
8628 TYPE_FIELD_BITPOS (type, variant_field)
8629 / TARGET_CHAR_BIT), dval);
d2e4a39e 8630 if (branch_type == NULL)
14f9c5c9 8631 {
4c4b4cd2 8632 int f;
5b4ee69b 8633
4c4b4cd2
PH
8634 for (f = variant_field + 1; f < nfields; f += 1)
8635 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8636 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8637 }
8638 else
8639 {
4c4b4cd2
PH
8640 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8641 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8642 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8643 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8644 }
4c4b4cd2 8645 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8646
4c4b4cd2 8647 value_free_to_mark (mark);
14f9c5c9
AS
8648 return rtype;
8649}
8650
8651/* An ordinary record type (with fixed-length fields) that describes
8652 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8653 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8654 should be in DVAL, a record value; it may be NULL if the object
8655 at ADDR itself contains any necessary discriminant values.
8656 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8657 values from the record are needed. Except in the case that DVAL,
8658 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8659 unchecked) is replaced by a particular branch of the variant.
8660
8661 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8662 is questionable and may be removed. It can arise during the
8663 processing of an unconstrained-array-of-record type where all the
8664 variant branches have exactly the same size. This is because in
8665 such cases, the compiler does not bother to use the XVS convention
8666 when encoding the record. I am currently dubious of this
8667 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8668
d2e4a39e 8669static struct type *
fc1a4b47 8670to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8671 CORE_ADDR address, struct value *dval)
14f9c5c9 8672{
d2e4a39e 8673 struct type *templ_type;
14f9c5c9 8674
876cecd0 8675 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8676 return type0;
8677
d2e4a39e 8678 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8679
8680 if (templ_type != NULL)
8681 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8682 else if (variant_field_index (type0) >= 0)
8683 {
8684 if (dval == NULL && valaddr == NULL && address == 0)
8685 return type0;
8686 return to_record_with_fixed_variant_part (type0, valaddr, address,
8687 dval);
8688 }
14f9c5c9
AS
8689 else
8690 {
876cecd0 8691 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8692 return type0;
8693 }
8694
8695}
8696
8697/* An ordinary record type (with fixed-length fields) that describes
8698 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8699 union type. Any necessary discriminants' values should be in DVAL,
8700 a record value. That is, this routine selects the appropriate
8701 branch of the union at ADDR according to the discriminant value
b1f33ddd 8702 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8703 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8704
d2e4a39e 8705static struct type *
fc1a4b47 8706to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8707 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8708{
8709 int which;
d2e4a39e
AS
8710 struct type *templ_type;
8711 struct type *var_type;
14f9c5c9
AS
8712
8713 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8714 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8715 else
14f9c5c9
AS
8716 var_type = var_type0;
8717
8718 templ_type = ada_find_parallel_type (var_type, "___XVU");
8719
8720 if (templ_type != NULL)
8721 var_type = templ_type;
8722
b1f33ddd
JB
8723 if (is_unchecked_variant (var_type, value_type (dval)))
8724 return var_type0;
d2e4a39e
AS
8725 which =
8726 ada_which_variant_applies (var_type,
0fd88904 8727 value_type (dval), value_contents (dval));
14f9c5c9
AS
8728
8729 if (which < 0)
e9bb382b 8730 return empty_record (var_type);
14f9c5c9 8731 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8732 return to_fixed_record_type
d2e4a39e
AS
8733 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8734 valaddr, address, dval);
4c4b4cd2 8735 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8736 return
8737 to_fixed_record_type
8738 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8739 else
8740 return TYPE_FIELD_TYPE (var_type, which);
8741}
8742
8908fca5
JB
8743/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8744 ENCODING_TYPE, a type following the GNAT conventions for discrete
8745 type encodings, only carries redundant information. */
8746
8747static int
8748ada_is_redundant_range_encoding (struct type *range_type,
8749 struct type *encoding_type)
8750{
8751 struct type *fixed_range_type;
108d56a4 8752 const char *bounds_str;
8908fca5
JB
8753 int n;
8754 LONGEST lo, hi;
8755
8756 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8757
005e2509
JB
8758 if (TYPE_CODE (get_base_type (range_type))
8759 != TYPE_CODE (get_base_type (encoding_type)))
8760 {
8761 /* The compiler probably used a simple base type to describe
8762 the range type instead of the range's actual base type,
8763 expecting us to get the real base type from the encoding
8764 anyway. In this situation, the encoding cannot be ignored
8765 as redundant. */
8766 return 0;
8767 }
8768
8908fca5
JB
8769 if (is_dynamic_type (range_type))
8770 return 0;
8771
8772 if (TYPE_NAME (encoding_type) == NULL)
8773 return 0;
8774
8775 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8776 if (bounds_str == NULL)
8777 return 0;
8778
8779 n = 8; /* Skip "___XDLU_". */
8780 if (!ada_scan_number (bounds_str, n, &lo, &n))
8781 return 0;
8782 if (TYPE_LOW_BOUND (range_type) != lo)
8783 return 0;
8784
8785 n += 2; /* Skip the "__" separator between the two bounds. */
8786 if (!ada_scan_number (bounds_str, n, &hi, &n))
8787 return 0;
8788 if (TYPE_HIGH_BOUND (range_type) != hi)
8789 return 0;
8790
8791 return 1;
8792}
8793
8794/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8795 a type following the GNAT encoding for describing array type
8796 indices, only carries redundant information. */
8797
8798static int
8799ada_is_redundant_index_type_desc (struct type *array_type,
8800 struct type *desc_type)
8801{
8802 struct type *this_layer = check_typedef (array_type);
8803 int i;
8804
8805 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8806 {
8807 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8808 TYPE_FIELD_TYPE (desc_type, i)))
8809 return 0;
8810 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8811 }
8812
8813 return 1;
8814}
8815
14f9c5c9
AS
8816/* Assuming that TYPE0 is an array type describing the type of a value
8817 at ADDR, and that DVAL describes a record containing any
8818 discriminants used in TYPE0, returns a type for the value that
8819 contains no dynamic components (that is, no components whose sizes
8820 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8821 true, gives an error message if the resulting type's size is over
4c4b4cd2 8822 varsize_limit. */
14f9c5c9 8823
d2e4a39e
AS
8824static struct type *
8825to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8826 int ignore_too_big)
14f9c5c9 8827{
d2e4a39e
AS
8828 struct type *index_type_desc;
8829 struct type *result;
ad82864c 8830 int constrained_packed_array_p;
931e5bc3 8831 static const char *xa_suffix = "___XA";
14f9c5c9 8832
b0dd7688 8833 type0 = ada_check_typedef (type0);
284614f0 8834 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8835 return type0;
14f9c5c9 8836
ad82864c
JB
8837 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8838 if (constrained_packed_array_p)
8839 type0 = decode_constrained_packed_array_type (type0);
284614f0 8840
931e5bc3
JG
8841 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8842
8843 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8844 encoding suffixed with 'P' may still be generated. If so,
8845 it should be used to find the XA type. */
8846
8847 if (index_type_desc == NULL)
8848 {
1da0522e 8849 const char *type_name = ada_type_name (type0);
931e5bc3 8850
1da0522e 8851 if (type_name != NULL)
931e5bc3 8852 {
1da0522e 8853 const int len = strlen (type_name);
931e5bc3
JG
8854 char *name = (char *) alloca (len + strlen (xa_suffix));
8855
1da0522e 8856 if (type_name[len - 1] == 'P')
931e5bc3 8857 {
1da0522e 8858 strcpy (name, type_name);
931e5bc3
JG
8859 strcpy (name + len - 1, xa_suffix);
8860 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8861 }
8862 }
8863 }
8864
28c85d6c 8865 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8866 if (index_type_desc != NULL
8867 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8868 {
8869 /* Ignore this ___XA parallel type, as it does not bring any
8870 useful information. This allows us to avoid creating fixed
8871 versions of the array's index types, which would be identical
8872 to the original ones. This, in turn, can also help avoid
8873 the creation of fixed versions of the array itself. */
8874 index_type_desc = NULL;
8875 }
8876
14f9c5c9
AS
8877 if (index_type_desc == NULL)
8878 {
61ee279c 8879 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8880
14f9c5c9 8881 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8882 depend on the contents of the array in properly constructed
8883 debugging data. */
529cad9c
PH
8884 /* Create a fixed version of the array element type.
8885 We're not providing the address of an element here,
e1d5a0d2 8886 and thus the actual object value cannot be inspected to do
529cad9c
PH
8887 the conversion. This should not be a problem, since arrays of
8888 unconstrained objects are not allowed. In particular, all
8889 the elements of an array of a tagged type should all be of
8890 the same type specified in the debugging info. No need to
8891 consult the object tag. */
1ed6ede0 8892 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8893
284614f0
JB
8894 /* Make sure we always create a new array type when dealing with
8895 packed array types, since we're going to fix-up the array
8896 type length and element bitsize a little further down. */
ad82864c 8897 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8898 result = type0;
14f9c5c9 8899 else
e9bb382b 8900 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8901 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8902 }
8903 else
8904 {
8905 int i;
8906 struct type *elt_type0;
8907
8908 elt_type0 = type0;
8909 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8910 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8911
8912 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8913 depend on the contents of the array in properly constructed
8914 debugging data. */
529cad9c
PH
8915 /* Create a fixed version of the array element type.
8916 We're not providing the address of an element here,
e1d5a0d2 8917 and thus the actual object value cannot be inspected to do
529cad9c
PH
8918 the conversion. This should not be a problem, since arrays of
8919 unconstrained objects are not allowed. In particular, all
8920 the elements of an array of a tagged type should all be of
8921 the same type specified in the debugging info. No need to
8922 consult the object tag. */
1ed6ede0
JB
8923 result =
8924 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8925
8926 elt_type0 = type0;
14f9c5c9 8927 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8928 {
8929 struct type *range_type =
28c85d6c 8930 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8931
e9bb382b 8932 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8933 result, range_type);
1ce677a4 8934 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8935 }
d2e4a39e 8936 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8937 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8938 }
8939
2e6fda7d
JB
8940 /* We want to preserve the type name. This can be useful when
8941 trying to get the type name of a value that has already been
8942 printed (for instance, if the user did "print VAR; whatis $". */
8943 TYPE_NAME (result) = TYPE_NAME (type0);
8944
ad82864c 8945 if (constrained_packed_array_p)
284614f0
JB
8946 {
8947 /* So far, the resulting type has been created as if the original
8948 type was a regular (non-packed) array type. As a result, the
8949 bitsize of the array elements needs to be set again, and the array
8950 length needs to be recomputed based on that bitsize. */
8951 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8952 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8953
8954 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8955 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8956 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8957 TYPE_LENGTH (result)++;
8958 }
8959
876cecd0 8960 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8961 return result;
d2e4a39e 8962}
14f9c5c9
AS
8963
8964
8965/* A standard type (containing no dynamically sized components)
8966 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8967 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8968 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8969 ADDRESS or in VALADDR contains these discriminants.
8970
1ed6ede0
JB
8971 If CHECK_TAG is not null, in the case of tagged types, this function
8972 attempts to locate the object's tag and use it to compute the actual
8973 type. However, when ADDRESS is null, we cannot use it to determine the
8974 location of the tag, and therefore compute the tagged type's actual type.
8975 So we return the tagged type without consulting the tag. */
529cad9c 8976
f192137b
JB
8977static struct type *
8978ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8979 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8980{
61ee279c 8981 type = ada_check_typedef (type);
d2e4a39e
AS
8982 switch (TYPE_CODE (type))
8983 {
8984 default:
14f9c5c9 8985 return type;
d2e4a39e 8986 case TYPE_CODE_STRUCT:
4c4b4cd2 8987 {
76a01679 8988 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8989 struct type *fixed_record_type =
8990 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8991
529cad9c
PH
8992 /* If STATIC_TYPE is a tagged type and we know the object's address,
8993 then we can determine its tag, and compute the object's actual
0963b4bd 8994 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8995 type (the parent part of the record may have dynamic fields
8996 and the way the location of _tag is expressed may depend on
8997 them). */
529cad9c 8998
1ed6ede0 8999 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9000 {
b50d69b5
JG
9001 struct value *tag =
9002 value_tag_from_contents_and_address
9003 (fixed_record_type,
9004 valaddr,
9005 address);
9006 struct type *real_type = type_from_tag (tag);
9007 struct value *obj =
9008 value_from_contents_and_address (fixed_record_type,
9009 valaddr,
9010 address);
9f1f738a 9011 fixed_record_type = value_type (obj);
76a01679 9012 if (real_type != NULL)
b50d69b5
JG
9013 return to_fixed_record_type
9014 (real_type, NULL,
9015 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9016 }
4af88198
JB
9017
9018 /* Check to see if there is a parallel ___XVZ variable.
9019 If there is, then it provides the actual size of our type. */
9020 else if (ada_type_name (fixed_record_type) != NULL)
9021 {
0d5cff50 9022 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9023 char *xvz_name
9024 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
9025 int xvz_found = 0;
9026 LONGEST size;
9027
88c15c34 9028 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
9029 size = get_int_var_value (xvz_name, &xvz_found);
9030 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9031 {
9032 fixed_record_type = copy_type (fixed_record_type);
9033 TYPE_LENGTH (fixed_record_type) = size;
9034
9035 /* The FIXED_RECORD_TYPE may have be a stub. We have
9036 observed this when the debugging info is STABS, and
9037 apparently it is something that is hard to fix.
9038
9039 In practice, we don't need the actual type definition
9040 at all, because the presence of the XVZ variable allows us
9041 to assume that there must be a XVS type as well, which we
9042 should be able to use later, when we need the actual type
9043 definition.
9044
9045 In the meantime, pretend that the "fixed" type we are
9046 returning is NOT a stub, because this can cause trouble
9047 when using this type to create new types targeting it.
9048 Indeed, the associated creation routines often check
9049 whether the target type is a stub and will try to replace
0963b4bd 9050 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9051 might cause the new type to have the wrong size too.
9052 Consider the case of an array, for instance, where the size
9053 of the array is computed from the number of elements in
9054 our array multiplied by the size of its element. */
9055 TYPE_STUB (fixed_record_type) = 0;
9056 }
9057 }
1ed6ede0 9058 return fixed_record_type;
4c4b4cd2 9059 }
d2e4a39e 9060 case TYPE_CODE_ARRAY:
4c4b4cd2 9061 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9062 case TYPE_CODE_UNION:
9063 if (dval == NULL)
4c4b4cd2 9064 return type;
d2e4a39e 9065 else
4c4b4cd2 9066 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9067 }
14f9c5c9
AS
9068}
9069
f192137b
JB
9070/* The same as ada_to_fixed_type_1, except that it preserves the type
9071 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9072
9073 The typedef layer needs be preserved in order to differentiate between
9074 arrays and array pointers when both types are implemented using the same
9075 fat pointer. In the array pointer case, the pointer is encoded as
9076 a typedef of the pointer type. For instance, considering:
9077
9078 type String_Access is access String;
9079 S1 : String_Access := null;
9080
9081 To the debugger, S1 is defined as a typedef of type String. But
9082 to the user, it is a pointer. So if the user tries to print S1,
9083 we should not dereference the array, but print the array address
9084 instead.
9085
9086 If we didn't preserve the typedef layer, we would lose the fact that
9087 the type is to be presented as a pointer (needs de-reference before
9088 being printed). And we would also use the source-level type name. */
f192137b
JB
9089
9090struct type *
9091ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9092 CORE_ADDR address, struct value *dval, int check_tag)
9093
9094{
9095 struct type *fixed_type =
9096 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9097
96dbd2c1
JB
9098 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9099 then preserve the typedef layer.
9100
9101 Implementation note: We can only check the main-type portion of
9102 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9103 from TYPE now returns a type that has the same instance flags
9104 as TYPE. For instance, if TYPE is a "typedef const", and its
9105 target type is a "struct", then the typedef elimination will return
9106 a "const" version of the target type. See check_typedef for more
9107 details about how the typedef layer elimination is done.
9108
9109 brobecker/2010-11-19: It seems to me that the only case where it is
9110 useful to preserve the typedef layer is when dealing with fat pointers.
9111 Perhaps, we could add a check for that and preserve the typedef layer
9112 only in that situation. But this seems unecessary so far, probably
9113 because we call check_typedef/ada_check_typedef pretty much everywhere.
9114 */
f192137b 9115 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9116 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9117 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9118 return type;
9119
9120 return fixed_type;
9121}
9122
14f9c5c9 9123/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9124 TYPE0, but based on no runtime data. */
14f9c5c9 9125
d2e4a39e
AS
9126static struct type *
9127to_static_fixed_type (struct type *type0)
14f9c5c9 9128{
d2e4a39e 9129 struct type *type;
14f9c5c9
AS
9130
9131 if (type0 == NULL)
9132 return NULL;
9133
876cecd0 9134 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9135 return type0;
9136
61ee279c 9137 type0 = ada_check_typedef (type0);
d2e4a39e 9138
14f9c5c9
AS
9139 switch (TYPE_CODE (type0))
9140 {
9141 default:
9142 return type0;
9143 case TYPE_CODE_STRUCT:
9144 type = dynamic_template_type (type0);
d2e4a39e 9145 if (type != NULL)
4c4b4cd2
PH
9146 return template_to_static_fixed_type (type);
9147 else
9148 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9149 case TYPE_CODE_UNION:
9150 type = ada_find_parallel_type (type0, "___XVU");
9151 if (type != NULL)
4c4b4cd2
PH
9152 return template_to_static_fixed_type (type);
9153 else
9154 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9155 }
9156}
9157
4c4b4cd2
PH
9158/* A static approximation of TYPE with all type wrappers removed. */
9159
d2e4a39e
AS
9160static struct type *
9161static_unwrap_type (struct type *type)
14f9c5c9
AS
9162{
9163 if (ada_is_aligner_type (type))
9164 {
61ee279c 9165 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9166 if (ada_type_name (type1) == NULL)
4c4b4cd2 9167 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9168
9169 return static_unwrap_type (type1);
9170 }
d2e4a39e 9171 else
14f9c5c9 9172 {
d2e4a39e 9173 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9174
d2e4a39e 9175 if (raw_real_type == type)
4c4b4cd2 9176 return type;
14f9c5c9 9177 else
4c4b4cd2 9178 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9179 }
9180}
9181
9182/* In some cases, incomplete and private types require
4c4b4cd2 9183 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9184 type Foo;
9185 type FooP is access Foo;
9186 V: FooP;
9187 type Foo is array ...;
4c4b4cd2 9188 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9189 cross-references to such types, we instead substitute for FooP a
9190 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9191 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9192
9193/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9194 exists, otherwise TYPE. */
9195
d2e4a39e 9196struct type *
61ee279c 9197ada_check_typedef (struct type *type)
14f9c5c9 9198{
727e3d2e
JB
9199 if (type == NULL)
9200 return NULL;
9201
720d1a40
JB
9202 /* If our type is a typedef type of a fat pointer, then we're done.
9203 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9204 what allows us to distinguish between fat pointers that represent
9205 array types, and fat pointers that represent array access types
9206 (in both cases, the compiler implements them as fat pointers). */
9207 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9208 && is_thick_pntr (ada_typedef_target_type (type)))
9209 return type;
9210
f168693b 9211 type = check_typedef (type);
14f9c5c9 9212 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9213 || !TYPE_STUB (type)
14f9c5c9
AS
9214 || TYPE_TAG_NAME (type) == NULL)
9215 return type;
d2e4a39e 9216 else
14f9c5c9 9217 {
0d5cff50 9218 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9219 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9220
05e522ef
JB
9221 if (type1 == NULL)
9222 return type;
9223
9224 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9225 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9226 types, only for the typedef-to-array types). If that's the case,
9227 strip the typedef layer. */
9228 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9229 type1 = ada_check_typedef (type1);
9230
9231 return type1;
14f9c5c9
AS
9232 }
9233}
9234
9235/* A value representing the data at VALADDR/ADDRESS as described by
9236 type TYPE0, but with a standard (static-sized) type that correctly
9237 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9238 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9239 creation of struct values]. */
14f9c5c9 9240
4c4b4cd2
PH
9241static struct value *
9242ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9243 struct value *val0)
14f9c5c9 9244{
1ed6ede0 9245 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9246
14f9c5c9
AS
9247 if (type == type0 && val0 != NULL)
9248 return val0;
d2e4a39e 9249 else
4c4b4cd2
PH
9250 return value_from_contents_and_address (type, 0, address);
9251}
9252
9253/* A value representing VAL, but with a standard (static-sized) type
9254 that correctly describes it. Does not necessarily create a new
9255 value. */
9256
0c3acc09 9257struct value *
4c4b4cd2
PH
9258ada_to_fixed_value (struct value *val)
9259{
c48db5ca
JB
9260 val = unwrap_value (val);
9261 val = ada_to_fixed_value_create (value_type (val),
9262 value_address (val),
9263 val);
9264 return val;
14f9c5c9 9265}
d2e4a39e 9266\f
14f9c5c9 9267
14f9c5c9
AS
9268/* Attributes */
9269
4c4b4cd2
PH
9270/* Table mapping attribute numbers to names.
9271 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9272
d2e4a39e 9273static const char *attribute_names[] = {
14f9c5c9
AS
9274 "<?>",
9275
d2e4a39e 9276 "first",
14f9c5c9
AS
9277 "last",
9278 "length",
9279 "image",
14f9c5c9
AS
9280 "max",
9281 "min",
4c4b4cd2
PH
9282 "modulus",
9283 "pos",
9284 "size",
9285 "tag",
14f9c5c9 9286 "val",
14f9c5c9
AS
9287 0
9288};
9289
d2e4a39e 9290const char *
4c4b4cd2 9291ada_attribute_name (enum exp_opcode n)
14f9c5c9 9292{
4c4b4cd2
PH
9293 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9294 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9295 else
9296 return attribute_names[0];
9297}
9298
4c4b4cd2 9299/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9300
4c4b4cd2
PH
9301static LONGEST
9302pos_atr (struct value *arg)
14f9c5c9 9303{
24209737
PH
9304 struct value *val = coerce_ref (arg);
9305 struct type *type = value_type (val);
aa715135 9306 LONGEST result;
14f9c5c9 9307
d2e4a39e 9308 if (!discrete_type_p (type))
323e0a4a 9309 error (_("'POS only defined on discrete types"));
14f9c5c9 9310
aa715135
JG
9311 if (!discrete_position (type, value_as_long (val), &result))
9312 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9313
aa715135 9314 return result;
4c4b4cd2
PH
9315}
9316
9317static struct value *
3cb382c9 9318value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9319{
3cb382c9 9320 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9321}
9322
4c4b4cd2 9323/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9324
d2e4a39e
AS
9325static struct value *
9326value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9327{
d2e4a39e 9328 if (!discrete_type_p (type))
323e0a4a 9329 error (_("'VAL only defined on discrete types"));
df407dfe 9330 if (!integer_type_p (value_type (arg)))
323e0a4a 9331 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9332
9333 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9334 {
9335 long pos = value_as_long (arg);
5b4ee69b 9336
14f9c5c9 9337 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9338 error (_("argument to 'VAL out of range"));
14e75d8e 9339 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9340 }
9341 else
9342 return value_from_longest (type, value_as_long (arg));
9343}
14f9c5c9 9344\f
d2e4a39e 9345
4c4b4cd2 9346 /* Evaluation */
14f9c5c9 9347
4c4b4cd2
PH
9348/* True if TYPE appears to be an Ada character type.
9349 [At the moment, this is true only for Character and Wide_Character;
9350 It is a heuristic test that could stand improvement]. */
14f9c5c9 9351
d2e4a39e
AS
9352int
9353ada_is_character_type (struct type *type)
14f9c5c9 9354{
7b9f71f2
JB
9355 const char *name;
9356
9357 /* If the type code says it's a character, then assume it really is,
9358 and don't check any further. */
9359 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9360 return 1;
9361
9362 /* Otherwise, assume it's a character type iff it is a discrete type
9363 with a known character type name. */
9364 name = ada_type_name (type);
9365 return (name != NULL
9366 && (TYPE_CODE (type) == TYPE_CODE_INT
9367 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9368 && (strcmp (name, "character") == 0
9369 || strcmp (name, "wide_character") == 0
5a517ebd 9370 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9371 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9372}
9373
4c4b4cd2 9374/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9375
9376int
ebf56fd3 9377ada_is_string_type (struct type *type)
14f9c5c9 9378{
61ee279c 9379 type = ada_check_typedef (type);
d2e4a39e 9380 if (type != NULL
14f9c5c9 9381 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9382 && (ada_is_simple_array_type (type)
9383 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9384 && ada_array_arity (type) == 1)
9385 {
9386 struct type *elttype = ada_array_element_type (type, 1);
9387
9388 return ada_is_character_type (elttype);
9389 }
d2e4a39e 9390 else
14f9c5c9
AS
9391 return 0;
9392}
9393
5bf03f13
JB
9394/* The compiler sometimes provides a parallel XVS type for a given
9395 PAD type. Normally, it is safe to follow the PAD type directly,
9396 but older versions of the compiler have a bug that causes the offset
9397 of its "F" field to be wrong. Following that field in that case
9398 would lead to incorrect results, but this can be worked around
9399 by ignoring the PAD type and using the associated XVS type instead.
9400
9401 Set to True if the debugger should trust the contents of PAD types.
9402 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9403static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9404
9405/* True if TYPE is a struct type introduced by the compiler to force the
9406 alignment of a value. Such types have a single field with a
4c4b4cd2 9407 distinctive name. */
14f9c5c9
AS
9408
9409int
ebf56fd3 9410ada_is_aligner_type (struct type *type)
14f9c5c9 9411{
61ee279c 9412 type = ada_check_typedef (type);
714e53ab 9413
5bf03f13 9414 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9415 return 0;
9416
14f9c5c9 9417 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9418 && TYPE_NFIELDS (type) == 1
9419 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9420}
9421
9422/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9423 the parallel type. */
14f9c5c9 9424
d2e4a39e
AS
9425struct type *
9426ada_get_base_type (struct type *raw_type)
14f9c5c9 9427{
d2e4a39e
AS
9428 struct type *real_type_namer;
9429 struct type *raw_real_type;
14f9c5c9
AS
9430
9431 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9432 return raw_type;
9433
284614f0
JB
9434 if (ada_is_aligner_type (raw_type))
9435 /* The encoding specifies that we should always use the aligner type.
9436 So, even if this aligner type has an associated XVS type, we should
9437 simply ignore it.
9438
9439 According to the compiler gurus, an XVS type parallel to an aligner
9440 type may exist because of a stabs limitation. In stabs, aligner
9441 types are empty because the field has a variable-sized type, and
9442 thus cannot actually be used as an aligner type. As a result,
9443 we need the associated parallel XVS type to decode the type.
9444 Since the policy in the compiler is to not change the internal
9445 representation based on the debugging info format, we sometimes
9446 end up having a redundant XVS type parallel to the aligner type. */
9447 return raw_type;
9448
14f9c5c9 9449 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9450 if (real_type_namer == NULL
14f9c5c9
AS
9451 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9452 || TYPE_NFIELDS (real_type_namer) != 1)
9453 return raw_type;
9454
f80d3ff2
JB
9455 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9456 {
9457 /* This is an older encoding form where the base type needs to be
9458 looked up by name. We prefer the newer enconding because it is
9459 more efficient. */
9460 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9461 if (raw_real_type == NULL)
9462 return raw_type;
9463 else
9464 return raw_real_type;
9465 }
9466
9467 /* The field in our XVS type is a reference to the base type. */
9468 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9469}
14f9c5c9 9470
4c4b4cd2 9471/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9472
d2e4a39e
AS
9473struct type *
9474ada_aligned_type (struct type *type)
14f9c5c9
AS
9475{
9476 if (ada_is_aligner_type (type))
9477 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9478 else
9479 return ada_get_base_type (type);
9480}
9481
9482
9483/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9484 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9485
fc1a4b47
AC
9486const gdb_byte *
9487ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9488{
d2e4a39e 9489 if (ada_is_aligner_type (type))
14f9c5c9 9490 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9491 valaddr +
9492 TYPE_FIELD_BITPOS (type,
9493 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9494 else
9495 return valaddr;
9496}
9497
4c4b4cd2
PH
9498
9499
14f9c5c9 9500/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9501 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9502const char *
9503ada_enum_name (const char *name)
14f9c5c9 9504{
4c4b4cd2
PH
9505 static char *result;
9506 static size_t result_len = 0;
e6a959d6 9507 const char *tmp;
14f9c5c9 9508
4c4b4cd2
PH
9509 /* First, unqualify the enumeration name:
9510 1. Search for the last '.' character. If we find one, then skip
177b42fe 9511 all the preceding characters, the unqualified name starts
76a01679 9512 right after that dot.
4c4b4cd2 9513 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9514 translates dots into "__". Search forward for double underscores,
9515 but stop searching when we hit an overloading suffix, which is
9516 of the form "__" followed by digits. */
4c4b4cd2 9517
c3e5cd34
PH
9518 tmp = strrchr (name, '.');
9519 if (tmp != NULL)
4c4b4cd2
PH
9520 name = tmp + 1;
9521 else
14f9c5c9 9522 {
4c4b4cd2
PH
9523 while ((tmp = strstr (name, "__")) != NULL)
9524 {
9525 if (isdigit (tmp[2]))
9526 break;
9527 else
9528 name = tmp + 2;
9529 }
14f9c5c9
AS
9530 }
9531
9532 if (name[0] == 'Q')
9533 {
14f9c5c9 9534 int v;
5b4ee69b 9535
14f9c5c9 9536 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9537 {
9538 if (sscanf (name + 2, "%x", &v) != 1)
9539 return name;
9540 }
14f9c5c9 9541 else
4c4b4cd2 9542 return name;
14f9c5c9 9543
4c4b4cd2 9544 GROW_VECT (result, result_len, 16);
14f9c5c9 9545 if (isascii (v) && isprint (v))
88c15c34 9546 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9547 else if (name[1] == 'U')
88c15c34 9548 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9549 else
88c15c34 9550 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9551
9552 return result;
9553 }
d2e4a39e 9554 else
4c4b4cd2 9555 {
c3e5cd34
PH
9556 tmp = strstr (name, "__");
9557 if (tmp == NULL)
9558 tmp = strstr (name, "$");
9559 if (tmp != NULL)
4c4b4cd2
PH
9560 {
9561 GROW_VECT (result, result_len, tmp - name + 1);
9562 strncpy (result, name, tmp - name);
9563 result[tmp - name] = '\0';
9564 return result;
9565 }
9566
9567 return name;
9568 }
14f9c5c9
AS
9569}
9570
14f9c5c9
AS
9571/* Evaluate the subexpression of EXP starting at *POS as for
9572 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9573 expression. */
14f9c5c9 9574
d2e4a39e
AS
9575static struct value *
9576evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9577{
4b27a620 9578 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9579}
9580
9581/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9582 value it wraps. */
14f9c5c9 9583
d2e4a39e
AS
9584static struct value *
9585unwrap_value (struct value *val)
14f9c5c9 9586{
df407dfe 9587 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9588
14f9c5c9
AS
9589 if (ada_is_aligner_type (type))
9590 {
de4d072f 9591 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9592 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9593
14f9c5c9 9594 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9595 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9596
9597 return unwrap_value (v);
9598 }
d2e4a39e 9599 else
14f9c5c9 9600 {
d2e4a39e 9601 struct type *raw_real_type =
61ee279c 9602 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9603
5bf03f13
JB
9604 /* If there is no parallel XVS or XVE type, then the value is
9605 already unwrapped. Return it without further modification. */
9606 if ((type == raw_real_type)
9607 && ada_find_parallel_type (type, "___XVE") == NULL)
9608 return val;
14f9c5c9 9609
d2e4a39e 9610 return
4c4b4cd2
PH
9611 coerce_unspec_val_to_type
9612 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9613 value_address (val),
1ed6ede0 9614 NULL, 1));
14f9c5c9
AS
9615 }
9616}
d2e4a39e
AS
9617
9618static struct value *
9619cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9620{
9621 LONGEST val;
9622
df407dfe 9623 if (type == value_type (arg))
14f9c5c9 9624 return arg;
df407dfe 9625 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9626 val = ada_float_to_fixed (type,
df407dfe 9627 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9628 value_as_long (arg)));
d2e4a39e 9629 else
14f9c5c9 9630 {
a53b7a21 9631 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9632
14f9c5c9
AS
9633 val = ada_float_to_fixed (type, argd);
9634 }
9635
9636 return value_from_longest (type, val);
9637}
9638
d2e4a39e 9639static struct value *
a53b7a21 9640cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9641{
df407dfe 9642 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9643 value_as_long (arg));
5b4ee69b 9644
a53b7a21 9645 return value_from_double (type, val);
14f9c5c9
AS
9646}
9647
d99dcf51
JB
9648/* Given two array types T1 and T2, return nonzero iff both arrays
9649 contain the same number of elements. */
9650
9651static int
9652ada_same_array_size_p (struct type *t1, struct type *t2)
9653{
9654 LONGEST lo1, hi1, lo2, hi2;
9655
9656 /* Get the array bounds in order to verify that the size of
9657 the two arrays match. */
9658 if (!get_array_bounds (t1, &lo1, &hi1)
9659 || !get_array_bounds (t2, &lo2, &hi2))
9660 error (_("unable to determine array bounds"));
9661
9662 /* To make things easier for size comparison, normalize a bit
9663 the case of empty arrays by making sure that the difference
9664 between upper bound and lower bound is always -1. */
9665 if (lo1 > hi1)
9666 hi1 = lo1 - 1;
9667 if (lo2 > hi2)
9668 hi2 = lo2 - 1;
9669
9670 return (hi1 - lo1 == hi2 - lo2);
9671}
9672
9673/* Assuming that VAL is an array of integrals, and TYPE represents
9674 an array with the same number of elements, but with wider integral
9675 elements, return an array "casted" to TYPE. In practice, this
9676 means that the returned array is built by casting each element
9677 of the original array into TYPE's (wider) element type. */
9678
9679static struct value *
9680ada_promote_array_of_integrals (struct type *type, struct value *val)
9681{
9682 struct type *elt_type = TYPE_TARGET_TYPE (type);
9683 LONGEST lo, hi;
9684 struct value *res;
9685 LONGEST i;
9686
9687 /* Verify that both val and type are arrays of scalars, and
9688 that the size of val's elements is smaller than the size
9689 of type's element. */
9690 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9691 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9692 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9693 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9694 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9695 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9696
9697 if (!get_array_bounds (type, &lo, &hi))
9698 error (_("unable to determine array bounds"));
9699
9700 res = allocate_value (type);
9701
9702 /* Promote each array element. */
9703 for (i = 0; i < hi - lo + 1; i++)
9704 {
9705 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9706
9707 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9708 value_contents_all (elt), TYPE_LENGTH (elt_type));
9709 }
9710
9711 return res;
9712}
9713
4c4b4cd2
PH
9714/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9715 return the converted value. */
9716
d2e4a39e
AS
9717static struct value *
9718coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9719{
df407dfe 9720 struct type *type2 = value_type (val);
5b4ee69b 9721
14f9c5c9
AS
9722 if (type == type2)
9723 return val;
9724
61ee279c
PH
9725 type2 = ada_check_typedef (type2);
9726 type = ada_check_typedef (type);
14f9c5c9 9727
d2e4a39e
AS
9728 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9729 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9730 {
9731 val = ada_value_ind (val);
df407dfe 9732 type2 = value_type (val);
14f9c5c9
AS
9733 }
9734
d2e4a39e 9735 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9736 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9737 {
d99dcf51
JB
9738 if (!ada_same_array_size_p (type, type2))
9739 error (_("cannot assign arrays of different length"));
9740
9741 if (is_integral_type (TYPE_TARGET_TYPE (type))
9742 && is_integral_type (TYPE_TARGET_TYPE (type2))
9743 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9744 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9745 {
9746 /* Allow implicit promotion of the array elements to
9747 a wider type. */
9748 return ada_promote_array_of_integrals (type, val);
9749 }
9750
9751 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9752 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9753 error (_("Incompatible types in assignment"));
04624583 9754 deprecated_set_value_type (val, type);
14f9c5c9 9755 }
d2e4a39e 9756 return val;
14f9c5c9
AS
9757}
9758
4c4b4cd2
PH
9759static struct value *
9760ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9761{
9762 struct value *val;
9763 struct type *type1, *type2;
9764 LONGEST v, v1, v2;
9765
994b9211
AC
9766 arg1 = coerce_ref (arg1);
9767 arg2 = coerce_ref (arg2);
18af8284
JB
9768 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9769 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9770
76a01679
JB
9771 if (TYPE_CODE (type1) != TYPE_CODE_INT
9772 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9773 return value_binop (arg1, arg2, op);
9774
76a01679 9775 switch (op)
4c4b4cd2
PH
9776 {
9777 case BINOP_MOD:
9778 case BINOP_DIV:
9779 case BINOP_REM:
9780 break;
9781 default:
9782 return value_binop (arg1, arg2, op);
9783 }
9784
9785 v2 = value_as_long (arg2);
9786 if (v2 == 0)
323e0a4a 9787 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9788
9789 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9790 return value_binop (arg1, arg2, op);
9791
9792 v1 = value_as_long (arg1);
9793 switch (op)
9794 {
9795 case BINOP_DIV:
9796 v = v1 / v2;
76a01679
JB
9797 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9798 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9799 break;
9800 case BINOP_REM:
9801 v = v1 % v2;
76a01679
JB
9802 if (v * v1 < 0)
9803 v -= v2;
4c4b4cd2
PH
9804 break;
9805 default:
9806 /* Should not reach this point. */
9807 v = 0;
9808 }
9809
9810 val = allocate_value (type1);
990a07ab 9811 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9812 TYPE_LENGTH (value_type (val)),
9813 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9814 return val;
9815}
9816
9817static int
9818ada_value_equal (struct value *arg1, struct value *arg2)
9819{
df407dfe
AC
9820 if (ada_is_direct_array_type (value_type (arg1))
9821 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9822 {
f58b38bf
JB
9823 /* Automatically dereference any array reference before
9824 we attempt to perform the comparison. */
9825 arg1 = ada_coerce_ref (arg1);
9826 arg2 = ada_coerce_ref (arg2);
9827
4c4b4cd2
PH
9828 arg1 = ada_coerce_to_simple_array (arg1);
9829 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9830 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9831 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9832 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9833 /* FIXME: The following works only for types whose
76a01679
JB
9834 representations use all bits (no padding or undefined bits)
9835 and do not have user-defined equality. */
9836 return
df407dfe 9837 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9838 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9839 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9840 }
9841 return value_equal (arg1, arg2);
9842}
9843
52ce6436
PH
9844/* Total number of component associations in the aggregate starting at
9845 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9846 OP_AGGREGATE. */
52ce6436
PH
9847
9848static int
9849num_component_specs (struct expression *exp, int pc)
9850{
9851 int n, m, i;
5b4ee69b 9852
52ce6436
PH
9853 m = exp->elts[pc + 1].longconst;
9854 pc += 3;
9855 n = 0;
9856 for (i = 0; i < m; i += 1)
9857 {
9858 switch (exp->elts[pc].opcode)
9859 {
9860 default:
9861 n += 1;
9862 break;
9863 case OP_CHOICES:
9864 n += exp->elts[pc + 1].longconst;
9865 break;
9866 }
9867 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9868 }
9869 return n;
9870}
9871
9872/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9873 component of LHS (a simple array or a record), updating *POS past
9874 the expression, assuming that LHS is contained in CONTAINER. Does
9875 not modify the inferior's memory, nor does it modify LHS (unless
9876 LHS == CONTAINER). */
9877
9878static void
9879assign_component (struct value *container, struct value *lhs, LONGEST index,
9880 struct expression *exp, int *pos)
9881{
9882 struct value *mark = value_mark ();
9883 struct value *elt;
5b4ee69b 9884
52ce6436
PH
9885 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9886 {
22601c15
UW
9887 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9888 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9889
52ce6436
PH
9890 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9891 }
9892 else
9893 {
9894 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9895 elt = ada_to_fixed_value (elt);
52ce6436
PH
9896 }
9897
9898 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9899 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9900 else
9901 value_assign_to_component (container, elt,
9902 ada_evaluate_subexp (NULL, exp, pos,
9903 EVAL_NORMAL));
9904
9905 value_free_to_mark (mark);
9906}
9907
9908/* Assuming that LHS represents an lvalue having a record or array
9909 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9910 of that aggregate's value to LHS, advancing *POS past the
9911 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9912 lvalue containing LHS (possibly LHS itself). Does not modify
9913 the inferior's memory, nor does it modify the contents of
0963b4bd 9914 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9915
9916static struct value *
9917assign_aggregate (struct value *container,
9918 struct value *lhs, struct expression *exp,
9919 int *pos, enum noside noside)
9920{
9921 struct type *lhs_type;
9922 int n = exp->elts[*pos+1].longconst;
9923 LONGEST low_index, high_index;
9924 int num_specs;
9925 LONGEST *indices;
9926 int max_indices, num_indices;
52ce6436 9927 int i;
52ce6436
PH
9928
9929 *pos += 3;
9930 if (noside != EVAL_NORMAL)
9931 {
52ce6436
PH
9932 for (i = 0; i < n; i += 1)
9933 ada_evaluate_subexp (NULL, exp, pos, noside);
9934 return container;
9935 }
9936
9937 container = ada_coerce_ref (container);
9938 if (ada_is_direct_array_type (value_type (container)))
9939 container = ada_coerce_to_simple_array (container);
9940 lhs = ada_coerce_ref (lhs);
9941 if (!deprecated_value_modifiable (lhs))
9942 error (_("Left operand of assignment is not a modifiable lvalue."));
9943
9944 lhs_type = value_type (lhs);
9945 if (ada_is_direct_array_type (lhs_type))
9946 {
9947 lhs = ada_coerce_to_simple_array (lhs);
9948 lhs_type = value_type (lhs);
9949 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9950 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9951 }
9952 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9953 {
9954 low_index = 0;
9955 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9956 }
9957 else
9958 error (_("Left-hand side must be array or record."));
9959
9960 num_specs = num_component_specs (exp, *pos - 3);
9961 max_indices = 4 * num_specs + 4;
8d749320 9962 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9963 indices[0] = indices[1] = low_index - 1;
9964 indices[2] = indices[3] = high_index + 1;
9965 num_indices = 4;
9966
9967 for (i = 0; i < n; i += 1)
9968 {
9969 switch (exp->elts[*pos].opcode)
9970 {
1fbf5ada
JB
9971 case OP_CHOICES:
9972 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9973 &num_indices, max_indices,
9974 low_index, high_index);
9975 break;
9976 case OP_POSITIONAL:
9977 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9978 &num_indices, max_indices,
9979 low_index, high_index);
1fbf5ada
JB
9980 break;
9981 case OP_OTHERS:
9982 if (i != n-1)
9983 error (_("Misplaced 'others' clause"));
9984 aggregate_assign_others (container, lhs, exp, pos, indices,
9985 num_indices, low_index, high_index);
9986 break;
9987 default:
9988 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9989 }
9990 }
9991
9992 return container;
9993}
9994
9995/* Assign into the component of LHS indexed by the OP_POSITIONAL
9996 construct at *POS, updating *POS past the construct, given that
9997 the positions are relative to lower bound LOW, where HIGH is the
9998 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9999 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10000 assign_aggregate. */
52ce6436
PH
10001static void
10002aggregate_assign_positional (struct value *container,
10003 struct value *lhs, struct expression *exp,
10004 int *pos, LONGEST *indices, int *num_indices,
10005 int max_indices, LONGEST low, LONGEST high)
10006{
10007 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10008
10009 if (ind - 1 == high)
e1d5a0d2 10010 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10011 if (ind <= high)
10012 {
10013 add_component_interval (ind, ind, indices, num_indices, max_indices);
10014 *pos += 3;
10015 assign_component (container, lhs, ind, exp, pos);
10016 }
10017 else
10018 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10019}
10020
10021/* Assign into the components of LHS indexed by the OP_CHOICES
10022 construct at *POS, updating *POS past the construct, given that
10023 the allowable indices are LOW..HIGH. Record the indices assigned
10024 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10025 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10026static void
10027aggregate_assign_from_choices (struct value *container,
10028 struct value *lhs, struct expression *exp,
10029 int *pos, LONGEST *indices, int *num_indices,
10030 int max_indices, LONGEST low, LONGEST high)
10031{
10032 int j;
10033 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10034 int choice_pos, expr_pc;
10035 int is_array = ada_is_direct_array_type (value_type (lhs));
10036
10037 choice_pos = *pos += 3;
10038
10039 for (j = 0; j < n_choices; j += 1)
10040 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10041 expr_pc = *pos;
10042 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10043
10044 for (j = 0; j < n_choices; j += 1)
10045 {
10046 LONGEST lower, upper;
10047 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10048
52ce6436
PH
10049 if (op == OP_DISCRETE_RANGE)
10050 {
10051 choice_pos += 1;
10052 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10053 EVAL_NORMAL));
10054 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10055 EVAL_NORMAL));
10056 }
10057 else if (is_array)
10058 {
10059 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10060 EVAL_NORMAL));
10061 upper = lower;
10062 }
10063 else
10064 {
10065 int ind;
0d5cff50 10066 const char *name;
5b4ee69b 10067
52ce6436
PH
10068 switch (op)
10069 {
10070 case OP_NAME:
10071 name = &exp->elts[choice_pos + 2].string;
10072 break;
10073 case OP_VAR_VALUE:
10074 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10075 break;
10076 default:
10077 error (_("Invalid record component association."));
10078 }
10079 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10080 ind = 0;
10081 if (! find_struct_field (name, value_type (lhs), 0,
10082 NULL, NULL, NULL, NULL, &ind))
10083 error (_("Unknown component name: %s."), name);
10084 lower = upper = ind;
10085 }
10086
10087 if (lower <= upper && (lower < low || upper > high))
10088 error (_("Index in component association out of bounds."));
10089
10090 add_component_interval (lower, upper, indices, num_indices,
10091 max_indices);
10092 while (lower <= upper)
10093 {
10094 int pos1;
5b4ee69b 10095
52ce6436
PH
10096 pos1 = expr_pc;
10097 assign_component (container, lhs, lower, exp, &pos1);
10098 lower += 1;
10099 }
10100 }
10101}
10102
10103/* Assign the value of the expression in the OP_OTHERS construct in
10104 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10105 have not been previously assigned. The index intervals already assigned
10106 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10107 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10108static void
10109aggregate_assign_others (struct value *container,
10110 struct value *lhs, struct expression *exp,
10111 int *pos, LONGEST *indices, int num_indices,
10112 LONGEST low, LONGEST high)
10113{
10114 int i;
5ce64950 10115 int expr_pc = *pos + 1;
52ce6436
PH
10116
10117 for (i = 0; i < num_indices - 2; i += 2)
10118 {
10119 LONGEST ind;
5b4ee69b 10120
52ce6436
PH
10121 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10122 {
5ce64950 10123 int localpos;
5b4ee69b 10124
5ce64950
MS
10125 localpos = expr_pc;
10126 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10127 }
10128 }
10129 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10130}
10131
10132/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10133 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10134 modifying *SIZE as needed. It is an error if *SIZE exceeds
10135 MAX_SIZE. The resulting intervals do not overlap. */
10136static void
10137add_component_interval (LONGEST low, LONGEST high,
10138 LONGEST* indices, int *size, int max_size)
10139{
10140 int i, j;
5b4ee69b 10141
52ce6436
PH
10142 for (i = 0; i < *size; i += 2) {
10143 if (high >= indices[i] && low <= indices[i + 1])
10144 {
10145 int kh;
5b4ee69b 10146
52ce6436
PH
10147 for (kh = i + 2; kh < *size; kh += 2)
10148 if (high < indices[kh])
10149 break;
10150 if (low < indices[i])
10151 indices[i] = low;
10152 indices[i + 1] = indices[kh - 1];
10153 if (high > indices[i + 1])
10154 indices[i + 1] = high;
10155 memcpy (indices + i + 2, indices + kh, *size - kh);
10156 *size -= kh - i - 2;
10157 return;
10158 }
10159 else if (high < indices[i])
10160 break;
10161 }
10162
10163 if (*size == max_size)
10164 error (_("Internal error: miscounted aggregate components."));
10165 *size += 2;
10166 for (j = *size-1; j >= i+2; j -= 1)
10167 indices[j] = indices[j - 2];
10168 indices[i] = low;
10169 indices[i + 1] = high;
10170}
10171
6e48bd2c
JB
10172/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10173 is different. */
10174
10175static struct value *
10176ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10177{
10178 if (type == ada_check_typedef (value_type (arg2)))
10179 return arg2;
10180
10181 if (ada_is_fixed_point_type (type))
10182 return (cast_to_fixed (type, arg2));
10183
10184 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10185 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10186
10187 return value_cast (type, arg2);
10188}
10189
284614f0
JB
10190/* Evaluating Ada expressions, and printing their result.
10191 ------------------------------------------------------
10192
21649b50
JB
10193 1. Introduction:
10194 ----------------
10195
284614f0
JB
10196 We usually evaluate an Ada expression in order to print its value.
10197 We also evaluate an expression in order to print its type, which
10198 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10199 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10200 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10201 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10202 similar.
10203
10204 Evaluating expressions is a little more complicated for Ada entities
10205 than it is for entities in languages such as C. The main reason for
10206 this is that Ada provides types whose definition might be dynamic.
10207 One example of such types is variant records. Or another example
10208 would be an array whose bounds can only be known at run time.
10209
10210 The following description is a general guide as to what should be
10211 done (and what should NOT be done) in order to evaluate an expression
10212 involving such types, and when. This does not cover how the semantic
10213 information is encoded by GNAT as this is covered separatly. For the
10214 document used as the reference for the GNAT encoding, see exp_dbug.ads
10215 in the GNAT sources.
10216
10217 Ideally, we should embed each part of this description next to its
10218 associated code. Unfortunately, the amount of code is so vast right
10219 now that it's hard to see whether the code handling a particular
10220 situation might be duplicated or not. One day, when the code is
10221 cleaned up, this guide might become redundant with the comments
10222 inserted in the code, and we might want to remove it.
10223
21649b50
JB
10224 2. ``Fixing'' an Entity, the Simple Case:
10225 -----------------------------------------
10226
284614f0
JB
10227 When evaluating Ada expressions, the tricky issue is that they may
10228 reference entities whose type contents and size are not statically
10229 known. Consider for instance a variant record:
10230
10231 type Rec (Empty : Boolean := True) is record
10232 case Empty is
10233 when True => null;
10234 when False => Value : Integer;
10235 end case;
10236 end record;
10237 Yes : Rec := (Empty => False, Value => 1);
10238 No : Rec := (empty => True);
10239
10240 The size and contents of that record depends on the value of the
10241 descriminant (Rec.Empty). At this point, neither the debugging
10242 information nor the associated type structure in GDB are able to
10243 express such dynamic types. So what the debugger does is to create
10244 "fixed" versions of the type that applies to the specific object.
10245 We also informally refer to this opperation as "fixing" an object,
10246 which means creating its associated fixed type.
10247
10248 Example: when printing the value of variable "Yes" above, its fixed
10249 type would look like this:
10250
10251 type Rec is record
10252 Empty : Boolean;
10253 Value : Integer;
10254 end record;
10255
10256 On the other hand, if we printed the value of "No", its fixed type
10257 would become:
10258
10259 type Rec is record
10260 Empty : Boolean;
10261 end record;
10262
10263 Things become a little more complicated when trying to fix an entity
10264 with a dynamic type that directly contains another dynamic type,
10265 such as an array of variant records, for instance. There are
10266 two possible cases: Arrays, and records.
10267
21649b50
JB
10268 3. ``Fixing'' Arrays:
10269 ---------------------
10270
10271 The type structure in GDB describes an array in terms of its bounds,
10272 and the type of its elements. By design, all elements in the array
10273 have the same type and we cannot represent an array of variant elements
10274 using the current type structure in GDB. When fixing an array,
10275 we cannot fix the array element, as we would potentially need one
10276 fixed type per element of the array. As a result, the best we can do
10277 when fixing an array is to produce an array whose bounds and size
10278 are correct (allowing us to read it from memory), but without having
10279 touched its element type. Fixing each element will be done later,
10280 when (if) necessary.
10281
10282 Arrays are a little simpler to handle than records, because the same
10283 amount of memory is allocated for each element of the array, even if
1b536f04 10284 the amount of space actually used by each element differs from element
21649b50 10285 to element. Consider for instance the following array of type Rec:
284614f0
JB
10286
10287 type Rec_Array is array (1 .. 2) of Rec;
10288
1b536f04
JB
10289 The actual amount of memory occupied by each element might be different
10290 from element to element, depending on the value of their discriminant.
21649b50 10291 But the amount of space reserved for each element in the array remains
1b536f04 10292 fixed regardless. So we simply need to compute that size using
21649b50
JB
10293 the debugging information available, from which we can then determine
10294 the array size (we multiply the number of elements of the array by
10295 the size of each element).
10296
10297 The simplest case is when we have an array of a constrained element
10298 type. For instance, consider the following type declarations:
10299
10300 type Bounded_String (Max_Size : Integer) is
10301 Length : Integer;
10302 Buffer : String (1 .. Max_Size);
10303 end record;
10304 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10305
10306 In this case, the compiler describes the array as an array of
10307 variable-size elements (identified by its XVS suffix) for which
10308 the size can be read in the parallel XVZ variable.
10309
10310 In the case of an array of an unconstrained element type, the compiler
10311 wraps the array element inside a private PAD type. This type should not
10312 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10313 that we also use the adjective "aligner" in our code to designate
10314 these wrapper types.
10315
1b536f04 10316 In some cases, the size allocated for each element is statically
21649b50
JB
10317 known. In that case, the PAD type already has the correct size,
10318 and the array element should remain unfixed.
10319
10320 But there are cases when this size is not statically known.
10321 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10322
10323 type Dynamic is array (1 .. Five) of Integer;
10324 type Wrapper (Has_Length : Boolean := False) is record
10325 Data : Dynamic;
10326 case Has_Length is
10327 when True => Length : Integer;
10328 when False => null;
10329 end case;
10330 end record;
10331 type Wrapper_Array is array (1 .. 2) of Wrapper;
10332
10333 Hello : Wrapper_Array := (others => (Has_Length => True,
10334 Data => (others => 17),
10335 Length => 1));
10336
10337
10338 The debugging info would describe variable Hello as being an
10339 array of a PAD type. The size of that PAD type is not statically
10340 known, but can be determined using a parallel XVZ variable.
10341 In that case, a copy of the PAD type with the correct size should
10342 be used for the fixed array.
10343
21649b50
JB
10344 3. ``Fixing'' record type objects:
10345 ----------------------------------
10346
10347 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10348 record types. In this case, in order to compute the associated
10349 fixed type, we need to determine the size and offset of each of
10350 its components. This, in turn, requires us to compute the fixed
10351 type of each of these components.
10352
10353 Consider for instance the example:
10354
10355 type Bounded_String (Max_Size : Natural) is record
10356 Str : String (1 .. Max_Size);
10357 Length : Natural;
10358 end record;
10359 My_String : Bounded_String (Max_Size => 10);
10360
10361 In that case, the position of field "Length" depends on the size
10362 of field Str, which itself depends on the value of the Max_Size
21649b50 10363 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10364 we need to fix the type of field Str. Therefore, fixing a variant
10365 record requires us to fix each of its components.
10366
10367 However, if a component does not have a dynamic size, the component
10368 should not be fixed. In particular, fields that use a PAD type
10369 should not fixed. Here is an example where this might happen
10370 (assuming type Rec above):
10371
10372 type Container (Big : Boolean) is record
10373 First : Rec;
10374 After : Integer;
10375 case Big is
10376 when True => Another : Integer;
10377 when False => null;
10378 end case;
10379 end record;
10380 My_Container : Container := (Big => False,
10381 First => (Empty => True),
10382 After => 42);
10383
10384 In that example, the compiler creates a PAD type for component First,
10385 whose size is constant, and then positions the component After just
10386 right after it. The offset of component After is therefore constant
10387 in this case.
10388
10389 The debugger computes the position of each field based on an algorithm
10390 that uses, among other things, the actual position and size of the field
21649b50
JB
10391 preceding it. Let's now imagine that the user is trying to print
10392 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10393 end up computing the offset of field After based on the size of the
10394 fixed version of field First. And since in our example First has
10395 only one actual field, the size of the fixed type is actually smaller
10396 than the amount of space allocated to that field, and thus we would
10397 compute the wrong offset of field After.
10398
21649b50
JB
10399 To make things more complicated, we need to watch out for dynamic
10400 components of variant records (identified by the ___XVL suffix in
10401 the component name). Even if the target type is a PAD type, the size
10402 of that type might not be statically known. So the PAD type needs
10403 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10404 we might end up with the wrong size for our component. This can be
10405 observed with the following type declarations:
284614f0
JB
10406
10407 type Octal is new Integer range 0 .. 7;
10408 type Octal_Array is array (Positive range <>) of Octal;
10409 pragma Pack (Octal_Array);
10410
10411 type Octal_Buffer (Size : Positive) is record
10412 Buffer : Octal_Array (1 .. Size);
10413 Length : Integer;
10414 end record;
10415
10416 In that case, Buffer is a PAD type whose size is unset and needs
10417 to be computed by fixing the unwrapped type.
10418
21649b50
JB
10419 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10420 ----------------------------------------------------------
10421
10422 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10423 thus far, be actually fixed?
10424
10425 The answer is: Only when referencing that element. For instance
10426 when selecting one component of a record, this specific component
10427 should be fixed at that point in time. Or when printing the value
10428 of a record, each component should be fixed before its value gets
10429 printed. Similarly for arrays, the element of the array should be
10430 fixed when printing each element of the array, or when extracting
10431 one element out of that array. On the other hand, fixing should
10432 not be performed on the elements when taking a slice of an array!
10433
10434 Note that one of the side-effects of miscomputing the offset and
10435 size of each field is that we end up also miscomputing the size
10436 of the containing type. This can have adverse results when computing
10437 the value of an entity. GDB fetches the value of an entity based
10438 on the size of its type, and thus a wrong size causes GDB to fetch
10439 the wrong amount of memory. In the case where the computed size is
10440 too small, GDB fetches too little data to print the value of our
10441 entiry. Results in this case as unpredicatble, as we usually read
10442 past the buffer containing the data =:-o. */
10443
10444/* Implement the evaluate_exp routine in the exp_descriptor structure
10445 for the Ada language. */
10446
52ce6436 10447static struct value *
ebf56fd3 10448ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10449 int *pos, enum noside noside)
14f9c5c9
AS
10450{
10451 enum exp_opcode op;
b5385fc0 10452 int tem;
14f9c5c9 10453 int pc;
5ec18f2b 10454 int preeval_pos;
14f9c5c9
AS
10455 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10456 struct type *type;
52ce6436 10457 int nargs, oplen;
d2e4a39e 10458 struct value **argvec;
14f9c5c9 10459
d2e4a39e
AS
10460 pc = *pos;
10461 *pos += 1;
14f9c5c9
AS
10462 op = exp->elts[pc].opcode;
10463
d2e4a39e 10464 switch (op)
14f9c5c9
AS
10465 {
10466 default:
10467 *pos -= 1;
6e48bd2c 10468 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10469
10470 if (noside == EVAL_NORMAL)
10471 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10472
10473 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10474 then we need to perform the conversion manually, because
10475 evaluate_subexp_standard doesn't do it. This conversion is
10476 necessary in Ada because the different kinds of float/fixed
10477 types in Ada have different representations.
10478
10479 Similarly, we need to perform the conversion from OP_LONG
10480 ourselves. */
10481 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10482 arg1 = ada_value_cast (expect_type, arg1, noside);
10483
10484 return arg1;
4c4b4cd2
PH
10485
10486 case OP_STRING:
10487 {
76a01679 10488 struct value *result;
5b4ee69b 10489
76a01679
JB
10490 *pos -= 1;
10491 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10492 /* The result type will have code OP_STRING, bashed there from
10493 OP_ARRAY. Bash it back. */
df407dfe
AC
10494 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10495 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10496 return result;
4c4b4cd2 10497 }
14f9c5c9
AS
10498
10499 case UNOP_CAST:
10500 (*pos) += 2;
10501 type = exp->elts[pc + 1].type;
10502 arg1 = evaluate_subexp (type, exp, pos, noside);
10503 if (noside == EVAL_SKIP)
4c4b4cd2 10504 goto nosideret;
6e48bd2c 10505 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10506 return arg1;
10507
4c4b4cd2
PH
10508 case UNOP_QUAL:
10509 (*pos) += 2;
10510 type = exp->elts[pc + 1].type;
10511 return ada_evaluate_subexp (type, exp, pos, noside);
10512
14f9c5c9
AS
10513 case BINOP_ASSIGN:
10514 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10515 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10516 {
10517 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10518 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10519 return arg1;
10520 return ada_value_assign (arg1, arg1);
10521 }
003f3813
JB
10522 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10523 except if the lhs of our assignment is a convenience variable.
10524 In the case of assigning to a convenience variable, the lhs
10525 should be exactly the result of the evaluation of the rhs. */
10526 type = value_type (arg1);
10527 if (VALUE_LVAL (arg1) == lval_internalvar)
10528 type = NULL;
10529 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10530 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10531 return arg1;
df407dfe
AC
10532 if (ada_is_fixed_point_type (value_type (arg1)))
10533 arg2 = cast_to_fixed (value_type (arg1), arg2);
10534 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10535 error
323e0a4a 10536 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10537 else
df407dfe 10538 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10539 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10540
10541 case BINOP_ADD:
10542 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10543 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10544 if (noside == EVAL_SKIP)
4c4b4cd2 10545 goto nosideret;
2ac8a782
JB
10546 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10547 return (value_from_longest
10548 (value_type (arg1),
10549 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10550 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10551 return (value_from_longest
10552 (value_type (arg2),
10553 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10554 if ((ada_is_fixed_point_type (value_type (arg1))
10555 || ada_is_fixed_point_type (value_type (arg2)))
10556 && value_type (arg1) != value_type (arg2))
323e0a4a 10557 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10558 /* Do the addition, and cast the result to the type of the first
10559 argument. We cannot cast the result to a reference type, so if
10560 ARG1 is a reference type, find its underlying type. */
10561 type = value_type (arg1);
10562 while (TYPE_CODE (type) == TYPE_CODE_REF)
10563 type = TYPE_TARGET_TYPE (type);
f44316fa 10564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10565 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10566
10567 case BINOP_SUB:
10568 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10569 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10570 if (noside == EVAL_SKIP)
4c4b4cd2 10571 goto nosideret;
2ac8a782
JB
10572 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10573 return (value_from_longest
10574 (value_type (arg1),
10575 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10576 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10577 return (value_from_longest
10578 (value_type (arg2),
10579 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10580 if ((ada_is_fixed_point_type (value_type (arg1))
10581 || ada_is_fixed_point_type (value_type (arg2)))
10582 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10583 error (_("Operands of fixed-point subtraction "
10584 "must have the same type"));
b7789565
JB
10585 /* Do the substraction, and cast the result to the type of the first
10586 argument. We cannot cast the result to a reference type, so if
10587 ARG1 is a reference type, find its underlying type. */
10588 type = value_type (arg1);
10589 while (TYPE_CODE (type) == TYPE_CODE_REF)
10590 type = TYPE_TARGET_TYPE (type);
f44316fa 10591 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10592 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10593
10594 case BINOP_MUL:
10595 case BINOP_DIV:
e1578042
JB
10596 case BINOP_REM:
10597 case BINOP_MOD:
14f9c5c9
AS
10598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10599 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10600 if (noside == EVAL_SKIP)
4c4b4cd2 10601 goto nosideret;
e1578042 10602 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10603 {
10604 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10605 return value_zero (value_type (arg1), not_lval);
10606 }
14f9c5c9 10607 else
4c4b4cd2 10608 {
a53b7a21 10609 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10610 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10611 arg1 = cast_from_fixed (type, arg1);
df407dfe 10612 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10613 arg2 = cast_from_fixed (type, arg2);
f44316fa 10614 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10615 return ada_value_binop (arg1, arg2, op);
10616 }
10617
4c4b4cd2
PH
10618 case BINOP_EQUAL:
10619 case BINOP_NOTEQUAL:
14f9c5c9 10620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10621 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10622 if (noside == EVAL_SKIP)
76a01679 10623 goto nosideret;
4c4b4cd2 10624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10625 tem = 0;
4c4b4cd2 10626 else
f44316fa
UW
10627 {
10628 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10629 tem = ada_value_equal (arg1, arg2);
10630 }
4c4b4cd2 10631 if (op == BINOP_NOTEQUAL)
76a01679 10632 tem = !tem;
fbb06eb1
UW
10633 type = language_bool_type (exp->language_defn, exp->gdbarch);
10634 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10635
10636 case UNOP_NEG:
10637 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10638 if (noside == EVAL_SKIP)
10639 goto nosideret;
df407dfe
AC
10640 else if (ada_is_fixed_point_type (value_type (arg1)))
10641 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10642 else
f44316fa
UW
10643 {
10644 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10645 return value_neg (arg1);
10646 }
4c4b4cd2 10647
2330c6c6
JB
10648 case BINOP_LOGICAL_AND:
10649 case BINOP_LOGICAL_OR:
10650 case UNOP_LOGICAL_NOT:
000d5124
JB
10651 {
10652 struct value *val;
10653
10654 *pos -= 1;
10655 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10656 type = language_bool_type (exp->language_defn, exp->gdbarch);
10657 return value_cast (type, val);
000d5124 10658 }
2330c6c6
JB
10659
10660 case BINOP_BITWISE_AND:
10661 case BINOP_BITWISE_IOR:
10662 case BINOP_BITWISE_XOR:
000d5124
JB
10663 {
10664 struct value *val;
10665
10666 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10667 *pos = pc;
10668 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10669
10670 return value_cast (value_type (arg1), val);
10671 }
2330c6c6 10672
14f9c5c9
AS
10673 case OP_VAR_VALUE:
10674 *pos -= 1;
6799def4 10675
14f9c5c9 10676 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10677 {
10678 *pos += 4;
10679 goto nosideret;
10680 }
da5c522f
JB
10681
10682 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10683 /* Only encountered when an unresolved symbol occurs in a
10684 context other than a function call, in which case, it is
52ce6436 10685 invalid. */
323e0a4a 10686 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10687 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10688
10689 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10690 {
0c1f74cf 10691 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10692 /* Check to see if this is a tagged type. We also need to handle
10693 the case where the type is a reference to a tagged type, but
10694 we have to be careful to exclude pointers to tagged types.
10695 The latter should be shown as usual (as a pointer), whereas
10696 a reference should mostly be transparent to the user. */
10697 if (ada_is_tagged_type (type, 0)
023db19c 10698 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10699 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10700 {
10701 /* Tagged types are a little special in the fact that the real
10702 type is dynamic and can only be determined by inspecting the
10703 object's tag. This means that we need to get the object's
10704 value first (EVAL_NORMAL) and then extract the actual object
10705 type from its tag.
10706
10707 Note that we cannot skip the final step where we extract
10708 the object type from its tag, because the EVAL_NORMAL phase
10709 results in dynamic components being resolved into fixed ones.
10710 This can cause problems when trying to print the type
10711 description of tagged types whose parent has a dynamic size:
10712 We use the type name of the "_parent" component in order
10713 to print the name of the ancestor type in the type description.
10714 If that component had a dynamic size, the resolution into
10715 a fixed type would result in the loss of that type name,
10716 thus preventing us from printing the name of the ancestor
10717 type in the type description. */
10718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10719
10720 if (TYPE_CODE (type) != TYPE_CODE_REF)
10721 {
10722 struct type *actual_type;
10723
10724 actual_type = type_from_tag (ada_value_tag (arg1));
10725 if (actual_type == NULL)
10726 /* If, for some reason, we were unable to determine
10727 the actual type from the tag, then use the static
10728 approximation that we just computed as a fallback.
10729 This can happen if the debugging information is
10730 incomplete, for instance. */
10731 actual_type = type;
10732 return value_zero (actual_type, not_lval);
10733 }
10734 else
10735 {
10736 /* In the case of a ref, ada_coerce_ref takes care
10737 of determining the actual type. But the evaluation
10738 should return a ref as it should be valid to ask
10739 for its address; so rebuild a ref after coerce. */
10740 arg1 = ada_coerce_ref (arg1);
10741 return value_ref (arg1);
10742 }
10743 }
0c1f74cf 10744
84754697
JB
10745 /* Records and unions for which GNAT encodings have been
10746 generated need to be statically fixed as well.
10747 Otherwise, non-static fixing produces a type where
10748 all dynamic properties are removed, which prevents "ptype"
10749 from being able to completely describe the type.
10750 For instance, a case statement in a variant record would be
10751 replaced by the relevant components based on the actual
10752 value of the discriminants. */
10753 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10754 && dynamic_template_type (type) != NULL)
10755 || (TYPE_CODE (type) == TYPE_CODE_UNION
10756 && ada_find_parallel_type (type, "___XVU") != NULL))
10757 {
10758 *pos += 4;
10759 return value_zero (to_static_fixed_type (type), not_lval);
10760 }
4c4b4cd2 10761 }
da5c522f
JB
10762
10763 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10764 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10765
10766 case OP_FUNCALL:
10767 (*pos) += 2;
10768
10769 /* Allocate arg vector, including space for the function to be
10770 called in argvec[0] and a terminating NULL. */
10771 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10772 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10773
10774 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10775 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10776 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10777 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10778 else
10779 {
10780 for (tem = 0; tem <= nargs; tem += 1)
10781 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10782 argvec[tem] = 0;
10783
10784 if (noside == EVAL_SKIP)
10785 goto nosideret;
10786 }
10787
ad82864c
JB
10788 if (ada_is_constrained_packed_array_type
10789 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10790 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10791 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10792 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10793 /* This is a packed array that has already been fixed, and
10794 therefore already coerced to a simple array. Nothing further
10795 to do. */
10796 ;
e6c2c623
PMR
10797 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10798 {
10799 /* Make sure we dereference references so that all the code below
10800 feels like it's really handling the referenced value. Wrapping
10801 types (for alignment) may be there, so make sure we strip them as
10802 well. */
10803 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10804 }
10805 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10806 && VALUE_LVAL (argvec[0]) == lval_memory)
10807 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10808
df407dfe 10809 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10810
10811 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10812 them. So, if this is an array typedef (encoding use for array
10813 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10814 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10815 type = ada_typedef_target_type (type);
10816
4c4b4cd2
PH
10817 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10818 {
61ee279c 10819 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10820 {
10821 case TYPE_CODE_FUNC:
61ee279c 10822 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10823 break;
10824 case TYPE_CODE_ARRAY:
10825 break;
10826 case TYPE_CODE_STRUCT:
10827 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10828 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10829 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10830 break;
10831 default:
323e0a4a 10832 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10833 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10834 break;
10835 }
10836 }
10837
10838 switch (TYPE_CODE (type))
10839 {
10840 case TYPE_CODE_FUNC:
10841 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10842 {
10843 struct type *rtype = TYPE_TARGET_TYPE (type);
10844
10845 if (TYPE_GNU_IFUNC (type))
10846 return allocate_value (TYPE_TARGET_TYPE (rtype));
10847 return allocate_value (rtype);
10848 }
4c4b4cd2 10849 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10850 case TYPE_CODE_INTERNAL_FUNCTION:
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 /* We don't know anything about what the internal
10853 function might return, but we have to return
10854 something. */
10855 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10856 not_lval);
10857 else
10858 return call_internal_function (exp->gdbarch, exp->language_defn,
10859 argvec[0], nargs, argvec + 1);
10860
4c4b4cd2
PH
10861 case TYPE_CODE_STRUCT:
10862 {
10863 int arity;
10864
4c4b4cd2
PH
10865 arity = ada_array_arity (type);
10866 type = ada_array_element_type (type, nargs);
10867 if (type == NULL)
323e0a4a 10868 error (_("cannot subscript or call a record"));
4c4b4cd2 10869 if (arity != nargs)
323e0a4a 10870 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10871 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10872 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10873 return
10874 unwrap_value (ada_value_subscript
10875 (argvec[0], nargs, argvec + 1));
10876 }
10877 case TYPE_CODE_ARRAY:
10878 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10879 {
10880 type = ada_array_element_type (type, nargs);
10881 if (type == NULL)
323e0a4a 10882 error (_("element type of array unknown"));
4c4b4cd2 10883 else
0a07e705 10884 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10885 }
10886 return
10887 unwrap_value (ada_value_subscript
10888 (ada_coerce_to_simple_array (argvec[0]),
10889 nargs, argvec + 1));
10890 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10892 {
deede10c 10893 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10894 type = ada_array_element_type (type, nargs);
10895 if (type == NULL)
323e0a4a 10896 error (_("element type of array unknown"));
4c4b4cd2 10897 else
0a07e705 10898 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10899 }
10900 return
deede10c
JB
10901 unwrap_value (ada_value_ptr_subscript (argvec[0],
10902 nargs, argvec + 1));
4c4b4cd2
PH
10903
10904 default:
e1d5a0d2
PH
10905 error (_("Attempt to index or call something other than an "
10906 "array or function"));
4c4b4cd2
PH
10907 }
10908
10909 case TERNOP_SLICE:
10910 {
10911 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10912 struct value *low_bound_val =
10913 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10914 struct value *high_bound_val =
10915 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10916 LONGEST low_bound;
10917 LONGEST high_bound;
5b4ee69b 10918
994b9211
AC
10919 low_bound_val = coerce_ref (low_bound_val);
10920 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10921 low_bound = value_as_long (low_bound_val);
10922 high_bound = value_as_long (high_bound_val);
963a6417 10923
4c4b4cd2
PH
10924 if (noside == EVAL_SKIP)
10925 goto nosideret;
10926
4c4b4cd2
PH
10927 /* If this is a reference to an aligner type, then remove all
10928 the aligners. */
df407dfe
AC
10929 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10930 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10931 TYPE_TARGET_TYPE (value_type (array)) =
10932 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10933
ad82864c 10934 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10935 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10936
10937 /* If this is a reference to an array or an array lvalue,
10938 convert to a pointer. */
df407dfe
AC
10939 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10940 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10941 && VALUE_LVAL (array) == lval_memory))
10942 array = value_addr (array);
10943
1265e4aa 10944 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10945 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10946 (value_type (array))))
0b5d8877 10947 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10948
10949 array = ada_coerce_to_simple_array_ptr (array);
10950
714e53ab
PH
10951 /* If we have more than one level of pointer indirection,
10952 dereference the value until we get only one level. */
df407dfe
AC
10953 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10954 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10955 == TYPE_CODE_PTR))
10956 array = value_ind (array);
10957
10958 /* Make sure we really do have an array type before going further,
10959 to avoid a SEGV when trying to get the index type or the target
10960 type later down the road if the debug info generated by
10961 the compiler is incorrect or incomplete. */
df407dfe 10962 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10963 error (_("cannot take slice of non-array"));
714e53ab 10964
828292f2
JB
10965 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10966 == TYPE_CODE_PTR)
4c4b4cd2 10967 {
828292f2
JB
10968 struct type *type0 = ada_check_typedef (value_type (array));
10969
0b5d8877 10970 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10971 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10972 else
10973 {
10974 struct type *arr_type0 =
828292f2 10975 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10976
f5938064
JG
10977 return ada_value_slice_from_ptr (array, arr_type0,
10978 longest_to_int (low_bound),
10979 longest_to_int (high_bound));
4c4b4cd2
PH
10980 }
10981 }
10982 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10983 return array;
10984 else if (high_bound < low_bound)
df407dfe 10985 return empty_array (value_type (array), low_bound);
4c4b4cd2 10986 else
529cad9c
PH
10987 return ada_value_slice (array, longest_to_int (low_bound),
10988 longest_to_int (high_bound));
4c4b4cd2 10989 }
14f9c5c9 10990
4c4b4cd2
PH
10991 case UNOP_IN_RANGE:
10992 (*pos) += 2;
10993 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10994 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10995
14f9c5c9 10996 if (noside == EVAL_SKIP)
4c4b4cd2 10997 goto nosideret;
14f9c5c9 10998
4c4b4cd2
PH
10999 switch (TYPE_CODE (type))
11000 {
11001 default:
e1d5a0d2
PH
11002 lim_warning (_("Membership test incompletely implemented; "
11003 "always returns true"));
fbb06eb1
UW
11004 type = language_bool_type (exp->language_defn, exp->gdbarch);
11005 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11006
11007 case TYPE_CODE_RANGE:
030b4912
UW
11008 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11009 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
11013 return
11014 value_from_longest (type,
4c4b4cd2
PH
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11019 }
11020
11021 case BINOP_IN_BOUNDS:
14f9c5c9 11022 (*pos) += 2;
4c4b4cd2
PH
11023 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11025
4c4b4cd2
PH
11026 if (noside == EVAL_SKIP)
11027 goto nosideret;
14f9c5c9 11028
4c4b4cd2 11029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11030 {
11031 type = language_bool_type (exp->language_defn, exp->gdbarch);
11032 return value_zero (type, not_lval);
11033 }
14f9c5c9 11034
4c4b4cd2 11035 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11036
1eea4ebd
UW
11037 type = ada_index_type (value_type (arg2), tem, "range");
11038 if (!type)
11039 type = value_type (arg1);
14f9c5c9 11040
1eea4ebd
UW
11041 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11042 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11043
f44316fa
UW
11044 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11045 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11046 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11047 return
fbb06eb1 11048 value_from_longest (type,
4c4b4cd2
PH
11049 (value_less (arg1, arg3)
11050 || value_equal (arg1, arg3))
11051 && (value_less (arg2, arg1)
11052 || value_equal (arg2, arg1)));
11053
11054 case TERNOP_IN_RANGE:
11055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11057 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11058
11059 if (noside == EVAL_SKIP)
11060 goto nosideret;
11061
f44316fa
UW
11062 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11064 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11065 return
fbb06eb1 11066 value_from_longest (type,
4c4b4cd2
PH
11067 (value_less (arg1, arg3)
11068 || value_equal (arg1, arg3))
11069 && (value_less (arg2, arg1)
11070 || value_equal (arg2, arg1)));
11071
11072 case OP_ATR_FIRST:
11073 case OP_ATR_LAST:
11074 case OP_ATR_LENGTH:
11075 {
76a01679 11076 struct type *type_arg;
5b4ee69b 11077
76a01679
JB
11078 if (exp->elts[*pos].opcode == OP_TYPE)
11079 {
11080 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11081 arg1 = NULL;
5bc23cb3 11082 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11083 }
11084 else
11085 {
11086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11087 type_arg = NULL;
11088 }
11089
11090 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11091 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11092 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11093 *pos += 4;
11094
11095 if (noside == EVAL_SKIP)
11096 goto nosideret;
11097
11098 if (type_arg == NULL)
11099 {
11100 arg1 = ada_coerce_ref (arg1);
11101
ad82864c 11102 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11103 arg1 = ada_coerce_to_simple_array (arg1);
11104
aa4fb036 11105 if (op == OP_ATR_LENGTH)
1eea4ebd 11106 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11107 else
11108 {
11109 type = ada_index_type (value_type (arg1), tem,
11110 ada_attribute_name (op));
11111 if (type == NULL)
11112 type = builtin_type (exp->gdbarch)->builtin_int;
11113 }
76a01679
JB
11114
11115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11116 return allocate_value (type);
76a01679
JB
11117
11118 switch (op)
11119 {
11120 default: /* Should never happen. */
323e0a4a 11121 error (_("unexpected attribute encountered"));
76a01679 11122 case OP_ATR_FIRST:
1eea4ebd
UW
11123 return value_from_longest
11124 (type, ada_array_bound (arg1, tem, 0));
76a01679 11125 case OP_ATR_LAST:
1eea4ebd
UW
11126 return value_from_longest
11127 (type, ada_array_bound (arg1, tem, 1));
76a01679 11128 case OP_ATR_LENGTH:
1eea4ebd
UW
11129 return value_from_longest
11130 (type, ada_array_length (arg1, tem));
76a01679
JB
11131 }
11132 }
11133 else if (discrete_type_p (type_arg))
11134 {
11135 struct type *range_type;
0d5cff50 11136 const char *name = ada_type_name (type_arg);
5b4ee69b 11137
76a01679
JB
11138 range_type = NULL;
11139 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11140 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11141 if (range_type == NULL)
11142 range_type = type_arg;
11143 switch (op)
11144 {
11145 default:
323e0a4a 11146 error (_("unexpected attribute encountered"));
76a01679 11147 case OP_ATR_FIRST:
690cc4eb 11148 return value_from_longest
43bbcdc2 11149 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11150 case OP_ATR_LAST:
690cc4eb 11151 return value_from_longest
43bbcdc2 11152 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11153 case OP_ATR_LENGTH:
323e0a4a 11154 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11155 }
11156 }
11157 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11158 error (_("unimplemented type attribute"));
76a01679
JB
11159 else
11160 {
11161 LONGEST low, high;
11162
ad82864c
JB
11163 if (ada_is_constrained_packed_array_type (type_arg))
11164 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11165
aa4fb036 11166 if (op == OP_ATR_LENGTH)
1eea4ebd 11167 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11168 else
11169 {
11170 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11171 if (type == NULL)
11172 type = builtin_type (exp->gdbarch)->builtin_int;
11173 }
1eea4ebd 11174
76a01679
JB
11175 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11176 return allocate_value (type);
11177
11178 switch (op)
11179 {
11180 default:
323e0a4a 11181 error (_("unexpected attribute encountered"));
76a01679 11182 case OP_ATR_FIRST:
1eea4ebd 11183 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11184 return value_from_longest (type, low);
11185 case OP_ATR_LAST:
1eea4ebd 11186 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11187 return value_from_longest (type, high);
11188 case OP_ATR_LENGTH:
1eea4ebd
UW
11189 low = ada_array_bound_from_type (type_arg, tem, 0);
11190 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11191 return value_from_longest (type, high - low + 1);
11192 }
11193 }
14f9c5c9
AS
11194 }
11195
4c4b4cd2
PH
11196 case OP_ATR_TAG:
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 if (noside == EVAL_SKIP)
76a01679 11199 goto nosideret;
4c4b4cd2
PH
11200
11201 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11202 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11203
11204 return ada_value_tag (arg1);
11205
11206 case OP_ATR_MIN:
11207 case OP_ATR_MAX:
11208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11210 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 if (noside == EVAL_SKIP)
76a01679 11212 goto nosideret;
d2e4a39e 11213 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11214 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11215 else
f44316fa
UW
11216 {
11217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11218 return value_binop (arg1, arg2,
11219 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11220 }
14f9c5c9 11221
4c4b4cd2
PH
11222 case OP_ATR_MODULUS:
11223 {
31dedfee 11224 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11225
5b4ee69b 11226 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11227 if (noside == EVAL_SKIP)
11228 goto nosideret;
4c4b4cd2 11229
76a01679 11230 if (!ada_is_modular_type (type_arg))
323e0a4a 11231 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11232
76a01679
JB
11233 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11234 ada_modulus (type_arg));
4c4b4cd2
PH
11235 }
11236
11237
11238 case OP_ATR_POS:
11239 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11241 if (noside == EVAL_SKIP)
76a01679 11242 goto nosideret;
3cb382c9
UW
11243 type = builtin_type (exp->gdbarch)->builtin_int;
11244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11245 return value_zero (type, not_lval);
14f9c5c9 11246 else
3cb382c9 11247 return value_pos_atr (type, arg1);
14f9c5c9 11248
4c4b4cd2
PH
11249 case OP_ATR_SIZE:
11250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11251 type = value_type (arg1);
11252
11253 /* If the argument is a reference, then dereference its type, since
11254 the user is really asking for the size of the actual object,
11255 not the size of the pointer. */
11256 if (TYPE_CODE (type) == TYPE_CODE_REF)
11257 type = TYPE_TARGET_TYPE (type);
11258
4c4b4cd2 11259 if (noside == EVAL_SKIP)
76a01679 11260 goto nosideret;
4c4b4cd2 11261 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11262 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11263 else
22601c15 11264 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11265 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11266
11267 case OP_ATR_VAL:
11268 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11270 type = exp->elts[pc + 2].type;
14f9c5c9 11271 if (noside == EVAL_SKIP)
76a01679 11272 goto nosideret;
4c4b4cd2 11273 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11274 return value_zero (type, not_lval);
4c4b4cd2 11275 else
76a01679 11276 return value_val_atr (type, arg1);
4c4b4cd2
PH
11277
11278 case BINOP_EXP:
11279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11280 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11281 if (noside == EVAL_SKIP)
11282 goto nosideret;
11283 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11284 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11285 else
f44316fa
UW
11286 {
11287 /* For integer exponentiation operations,
11288 only promote the first argument. */
11289 if (is_integral_type (value_type (arg2)))
11290 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11291 else
11292 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11293
11294 return value_binop (arg1, arg2, op);
11295 }
4c4b4cd2
PH
11296
11297 case UNOP_PLUS:
11298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11299 if (noside == EVAL_SKIP)
11300 goto nosideret;
11301 else
11302 return arg1;
11303
11304 case UNOP_ABS:
11305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11306 if (noside == EVAL_SKIP)
11307 goto nosideret;
f44316fa 11308 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11309 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11310 return value_neg (arg1);
14f9c5c9 11311 else
4c4b4cd2 11312 return arg1;
14f9c5c9
AS
11313
11314 case UNOP_IND:
5ec18f2b 11315 preeval_pos = *pos;
6b0d7253 11316 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11317 if (noside == EVAL_SKIP)
4c4b4cd2 11318 goto nosideret;
df407dfe 11319 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11320 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11321 {
11322 if (ada_is_array_descriptor_type (type))
11323 /* GDB allows dereferencing GNAT array descriptors. */
11324 {
11325 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11326
4c4b4cd2 11327 if (arrType == NULL)
323e0a4a 11328 error (_("Attempt to dereference null array pointer."));
00a4c844 11329 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11330 }
11331 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11332 || TYPE_CODE (type) == TYPE_CODE_REF
11333 /* In C you can dereference an array to get the 1st elt. */
11334 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11335 {
5ec18f2b
JG
11336 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11337 only be determined by inspecting the object's tag.
11338 This means that we need to evaluate completely the
11339 expression in order to get its type. */
11340
023db19c
JB
11341 if ((TYPE_CODE (type) == TYPE_CODE_REF
11342 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11343 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11344 {
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11346 EVAL_NORMAL);
11347 type = value_type (ada_value_ind (arg1));
11348 }
11349 else
11350 {
11351 type = to_static_fixed_type
11352 (ada_aligned_type
11353 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11354 }
c1b5a1a6 11355 ada_ensure_varsize_limit (type);
714e53ab
PH
11356 return value_zero (type, lval_memory);
11357 }
4c4b4cd2 11358 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11359 {
11360 /* GDB allows dereferencing an int. */
11361 if (expect_type == NULL)
11362 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11363 lval_memory);
11364 else
11365 {
11366 expect_type =
11367 to_static_fixed_type (ada_aligned_type (expect_type));
11368 return value_zero (expect_type, lval_memory);
11369 }
11370 }
4c4b4cd2 11371 else
323e0a4a 11372 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11373 }
0963b4bd 11374 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11375 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11376
96967637
JB
11377 if (TYPE_CODE (type) == TYPE_CODE_INT)
11378 /* GDB allows dereferencing an int. If we were given
11379 the expect_type, then use that as the target type.
11380 Otherwise, assume that the target type is an int. */
11381 {
11382 if (expect_type != NULL)
11383 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11384 arg1));
11385 else
11386 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11387 (CORE_ADDR) value_as_address (arg1));
11388 }
6b0d7253 11389
4c4b4cd2
PH
11390 if (ada_is_array_descriptor_type (type))
11391 /* GDB allows dereferencing GNAT array descriptors. */
11392 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11393 else
4c4b4cd2 11394 return ada_value_ind (arg1);
14f9c5c9
AS
11395
11396 case STRUCTOP_STRUCT:
11397 tem = longest_to_int (exp->elts[pc + 1].longconst);
11398 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11399 preeval_pos = *pos;
14f9c5c9
AS
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 if (noside == EVAL_SKIP)
4c4b4cd2 11402 goto nosideret;
14f9c5c9 11403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11404 {
df407dfe 11405 struct type *type1 = value_type (arg1);
5b4ee69b 11406
76a01679
JB
11407 if (ada_is_tagged_type (type1, 1))
11408 {
11409 type = ada_lookup_struct_elt_type (type1,
11410 &exp->elts[pc + 2].string,
11411 1, 1, NULL);
5ec18f2b
JG
11412
11413 /* If the field is not found, check if it exists in the
11414 extension of this object's type. This means that we
11415 need to evaluate completely the expression. */
11416
76a01679 11417 if (type == NULL)
5ec18f2b
JG
11418 {
11419 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11420 EVAL_NORMAL);
11421 arg1 = ada_value_struct_elt (arg1,
11422 &exp->elts[pc + 2].string,
11423 0);
11424 arg1 = unwrap_value (arg1);
11425 type = value_type (ada_to_fixed_value (arg1));
11426 }
76a01679
JB
11427 }
11428 else
11429 type =
11430 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11431 0, NULL);
11432
11433 return value_zero (ada_aligned_type (type), lval_memory);
11434 }
14f9c5c9 11435 else
a579cd9a
MW
11436 {
11437 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11438 arg1 = unwrap_value (arg1);
11439 return ada_to_fixed_value (arg1);
11440 }
284614f0 11441
14f9c5c9 11442 case OP_TYPE:
4c4b4cd2
PH
11443 /* The value is not supposed to be used. This is here to make it
11444 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11445 (*pos) += 2;
11446 if (noside == EVAL_SKIP)
4c4b4cd2 11447 goto nosideret;
14f9c5c9 11448 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11449 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11450 else
323e0a4a 11451 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11452
11453 case OP_AGGREGATE:
11454 case OP_CHOICES:
11455 case OP_OTHERS:
11456 case OP_DISCRETE_RANGE:
11457 case OP_POSITIONAL:
11458 case OP_NAME:
11459 if (noside == EVAL_NORMAL)
11460 switch (op)
11461 {
11462 case OP_NAME:
11463 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11464 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11465 case OP_AGGREGATE:
11466 error (_("Aggregates only allowed on the right of an assignment"));
11467 default:
0963b4bd
MS
11468 internal_error (__FILE__, __LINE__,
11469 _("aggregate apparently mangled"));
52ce6436
PH
11470 }
11471
11472 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11473 *pos += oplen - 1;
11474 for (tem = 0; tem < nargs; tem += 1)
11475 ada_evaluate_subexp (NULL, exp, pos, noside);
11476 goto nosideret;
14f9c5c9
AS
11477 }
11478
11479nosideret:
22601c15 11480 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11481}
14f9c5c9 11482\f
d2e4a39e 11483
4c4b4cd2 11484 /* Fixed point */
14f9c5c9
AS
11485
11486/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11487 type name that encodes the 'small and 'delta information.
4c4b4cd2 11488 Otherwise, return NULL. */
14f9c5c9 11489
d2e4a39e 11490static const char *
ebf56fd3 11491fixed_type_info (struct type *type)
14f9c5c9 11492{
d2e4a39e 11493 const char *name = ada_type_name (type);
14f9c5c9
AS
11494 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11495
d2e4a39e
AS
11496 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11497 {
14f9c5c9 11498 const char *tail = strstr (name, "___XF_");
5b4ee69b 11499
14f9c5c9 11500 if (tail == NULL)
4c4b4cd2 11501 return NULL;
d2e4a39e 11502 else
4c4b4cd2 11503 return tail + 5;
14f9c5c9
AS
11504 }
11505 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11506 return fixed_type_info (TYPE_TARGET_TYPE (type));
11507 else
11508 return NULL;
11509}
11510
4c4b4cd2 11511/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11512
11513int
ebf56fd3 11514ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11515{
11516 return fixed_type_info (type) != NULL;
11517}
11518
4c4b4cd2
PH
11519/* Return non-zero iff TYPE represents a System.Address type. */
11520
11521int
11522ada_is_system_address_type (struct type *type)
11523{
11524 return (TYPE_NAME (type)
11525 && strcmp (TYPE_NAME (type), "system__address") == 0);
11526}
11527
14f9c5c9
AS
11528/* Assuming that TYPE is the representation of an Ada fixed-point
11529 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11530 delta cannot be determined. */
14f9c5c9
AS
11531
11532DOUBLEST
ebf56fd3 11533ada_delta (struct type *type)
14f9c5c9
AS
11534{
11535 const char *encoding = fixed_type_info (type);
facc390f 11536 DOUBLEST num, den;
14f9c5c9 11537
facc390f
JB
11538 /* Strictly speaking, num and den are encoded as integer. However,
11539 they may not fit into a long, and they will have to be converted
11540 to DOUBLEST anyway. So scan them as DOUBLEST. */
11541 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11542 &num, &den) < 2)
14f9c5c9 11543 return -1.0;
d2e4a39e 11544 else
facc390f 11545 return num / den;
14f9c5c9
AS
11546}
11547
11548/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11549 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11550
11551static DOUBLEST
ebf56fd3 11552scaling_factor (struct type *type)
14f9c5c9
AS
11553{
11554 const char *encoding = fixed_type_info (type);
facc390f 11555 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11556 int n;
d2e4a39e 11557
facc390f
JB
11558 /* Strictly speaking, num's and den's are encoded as integer. However,
11559 they may not fit into a long, and they will have to be converted
11560 to DOUBLEST anyway. So scan them as DOUBLEST. */
11561 n = sscanf (encoding,
11562 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11563 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11564 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11565
11566 if (n < 2)
11567 return 1.0;
11568 else if (n == 4)
facc390f 11569 return num1 / den1;
d2e4a39e 11570 else
facc390f 11571 return num0 / den0;
14f9c5c9
AS
11572}
11573
11574
11575/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11576 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11577
11578DOUBLEST
ebf56fd3 11579ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11580{
d2e4a39e 11581 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11582}
11583
4c4b4cd2
PH
11584/* The representation of a fixed-point value of type TYPE
11585 corresponding to the value X. */
14f9c5c9
AS
11586
11587LONGEST
ebf56fd3 11588ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11589{
11590 return (LONGEST) (x / scaling_factor (type) + 0.5);
11591}
11592
14f9c5c9 11593\f
d2e4a39e 11594
4c4b4cd2 11595 /* Range types */
14f9c5c9
AS
11596
11597/* Scan STR beginning at position K for a discriminant name, and
11598 return the value of that discriminant field of DVAL in *PX. If
11599 PNEW_K is not null, put the position of the character beyond the
11600 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11601 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11602
11603static int
108d56a4 11604scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11605 int *pnew_k)
14f9c5c9
AS
11606{
11607 static char *bound_buffer = NULL;
11608 static size_t bound_buffer_len = 0;
5da1a4d3 11609 const char *pstart, *pend, *bound;
d2e4a39e 11610 struct value *bound_val;
14f9c5c9
AS
11611
11612 if (dval == NULL || str == NULL || str[k] == '\0')
11613 return 0;
11614
5da1a4d3
SM
11615 pstart = str + k;
11616 pend = strstr (pstart, "__");
14f9c5c9
AS
11617 if (pend == NULL)
11618 {
5da1a4d3 11619 bound = pstart;
14f9c5c9
AS
11620 k += strlen (bound);
11621 }
d2e4a39e 11622 else
14f9c5c9 11623 {
5da1a4d3
SM
11624 int len = pend - pstart;
11625
11626 /* Strip __ and beyond. */
11627 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11628 strncpy (bound_buffer, pstart, len);
11629 bound_buffer[len] = '\0';
11630
14f9c5c9 11631 bound = bound_buffer;
d2e4a39e 11632 k = pend - str;
14f9c5c9 11633 }
d2e4a39e 11634
df407dfe 11635 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11636 if (bound_val == NULL)
11637 return 0;
11638
11639 *px = value_as_long (bound_val);
11640 if (pnew_k != NULL)
11641 *pnew_k = k;
11642 return 1;
11643}
11644
11645/* Value of variable named NAME in the current environment. If
11646 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11647 otherwise causes an error with message ERR_MSG. */
11648
d2e4a39e
AS
11649static struct value *
11650get_var_value (char *name, char *err_msg)
14f9c5c9 11651{
d12307c1 11652 struct block_symbol *syms;
14f9c5c9
AS
11653 int nsyms;
11654
4c4b4cd2 11655 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11656 &syms);
14f9c5c9
AS
11657
11658 if (nsyms != 1)
11659 {
11660 if (err_msg == NULL)
4c4b4cd2 11661 return 0;
14f9c5c9 11662 else
8a3fe4f8 11663 error (("%s"), err_msg);
14f9c5c9
AS
11664 }
11665
d12307c1 11666 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11667}
d2e4a39e 11668
14f9c5c9 11669/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11670 no such variable found, returns 0, and sets *FLAG to 0. If
11671 successful, sets *FLAG to 1. */
11672
14f9c5c9 11673LONGEST
4c4b4cd2 11674get_int_var_value (char *name, int *flag)
14f9c5c9 11675{
4c4b4cd2 11676 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11677
14f9c5c9
AS
11678 if (var_val == 0)
11679 {
11680 if (flag != NULL)
4c4b4cd2 11681 *flag = 0;
14f9c5c9
AS
11682 return 0;
11683 }
11684 else
11685 {
11686 if (flag != NULL)
4c4b4cd2 11687 *flag = 1;
14f9c5c9
AS
11688 return value_as_long (var_val);
11689 }
11690}
d2e4a39e 11691
14f9c5c9
AS
11692
11693/* Return a range type whose base type is that of the range type named
11694 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11695 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11696 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11697 corresponding range type from debug information; fall back to using it
11698 if symbol lookup fails. If a new type must be created, allocate it
11699 like ORIG_TYPE was. The bounds information, in general, is encoded
11700 in NAME, the base type given in the named range type. */
14f9c5c9 11701
d2e4a39e 11702static struct type *
28c85d6c 11703to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11704{
0d5cff50 11705 const char *name;
14f9c5c9 11706 struct type *base_type;
108d56a4 11707 const char *subtype_info;
14f9c5c9 11708
28c85d6c
JB
11709 gdb_assert (raw_type != NULL);
11710 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11711
1ce677a4 11712 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11713 base_type = TYPE_TARGET_TYPE (raw_type);
11714 else
11715 base_type = raw_type;
11716
28c85d6c 11717 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11718 subtype_info = strstr (name, "___XD");
11719 if (subtype_info == NULL)
690cc4eb 11720 {
43bbcdc2
PH
11721 LONGEST L = ada_discrete_type_low_bound (raw_type);
11722 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11723
690cc4eb
PH
11724 if (L < INT_MIN || U > INT_MAX)
11725 return raw_type;
11726 else
0c9c3474
SA
11727 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11728 L, U);
690cc4eb 11729 }
14f9c5c9
AS
11730 else
11731 {
11732 static char *name_buf = NULL;
11733 static size_t name_len = 0;
11734 int prefix_len = subtype_info - name;
11735 LONGEST L, U;
11736 struct type *type;
108d56a4 11737 const char *bounds_str;
14f9c5c9
AS
11738 int n;
11739
11740 GROW_VECT (name_buf, name_len, prefix_len + 5);
11741 strncpy (name_buf, name, prefix_len);
11742 name_buf[prefix_len] = '\0';
11743
11744 subtype_info += 5;
11745 bounds_str = strchr (subtype_info, '_');
11746 n = 1;
11747
d2e4a39e 11748 if (*subtype_info == 'L')
4c4b4cd2
PH
11749 {
11750 if (!ada_scan_number (bounds_str, n, &L, &n)
11751 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11752 return raw_type;
11753 if (bounds_str[n] == '_')
11754 n += 2;
0963b4bd 11755 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11756 n += 1;
11757 subtype_info += 1;
11758 }
d2e4a39e 11759 else
4c4b4cd2
PH
11760 {
11761 int ok;
5b4ee69b 11762
4c4b4cd2
PH
11763 strcpy (name_buf + prefix_len, "___L");
11764 L = get_int_var_value (name_buf, &ok);
11765 if (!ok)
11766 {
323e0a4a 11767 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11768 L = 1;
11769 }
11770 }
14f9c5c9 11771
d2e4a39e 11772 if (*subtype_info == 'U')
4c4b4cd2
PH
11773 {
11774 if (!ada_scan_number (bounds_str, n, &U, &n)
11775 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11776 return raw_type;
11777 }
d2e4a39e 11778 else
4c4b4cd2
PH
11779 {
11780 int ok;
5b4ee69b 11781
4c4b4cd2
PH
11782 strcpy (name_buf + prefix_len, "___U");
11783 U = get_int_var_value (name_buf, &ok);
11784 if (!ok)
11785 {
323e0a4a 11786 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11787 U = L;
11788 }
11789 }
14f9c5c9 11790
0c9c3474
SA
11791 type = create_static_range_type (alloc_type_copy (raw_type),
11792 base_type, L, U);
d2e4a39e 11793 TYPE_NAME (type) = name;
14f9c5c9
AS
11794 return type;
11795 }
11796}
11797
4c4b4cd2
PH
11798/* True iff NAME is the name of a range type. */
11799
14f9c5c9 11800int
d2e4a39e 11801ada_is_range_type_name (const char *name)
14f9c5c9
AS
11802{
11803 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11804}
14f9c5c9 11805\f
d2e4a39e 11806
4c4b4cd2
PH
11807 /* Modular types */
11808
11809/* True iff TYPE is an Ada modular type. */
14f9c5c9 11810
14f9c5c9 11811int
d2e4a39e 11812ada_is_modular_type (struct type *type)
14f9c5c9 11813{
18af8284 11814 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11815
11816 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11817 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11818 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11819}
11820
4c4b4cd2
PH
11821/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11822
61ee279c 11823ULONGEST
0056e4d5 11824ada_modulus (struct type *type)
14f9c5c9 11825{
43bbcdc2 11826 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11827}
d2e4a39e 11828\f
f7f9143b
JB
11829
11830/* Ada exception catchpoint support:
11831 ---------------------------------
11832
11833 We support 3 kinds of exception catchpoints:
11834 . catchpoints on Ada exceptions
11835 . catchpoints on unhandled Ada exceptions
11836 . catchpoints on failed assertions
11837
11838 Exceptions raised during failed assertions, or unhandled exceptions
11839 could perfectly be caught with the general catchpoint on Ada exceptions.
11840 However, we can easily differentiate these two special cases, and having
11841 the option to distinguish these two cases from the rest can be useful
11842 to zero-in on certain situations.
11843
11844 Exception catchpoints are a specialized form of breakpoint,
11845 since they rely on inserting breakpoints inside known routines
11846 of the GNAT runtime. The implementation therefore uses a standard
11847 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11848 of breakpoint_ops.
11849
0259addd
JB
11850 Support in the runtime for exception catchpoints have been changed
11851 a few times already, and these changes affect the implementation
11852 of these catchpoints. In order to be able to support several
11853 variants of the runtime, we use a sniffer that will determine
28010a5d 11854 the runtime variant used by the program being debugged. */
f7f9143b 11855
82eacd52
JB
11856/* Ada's standard exceptions.
11857
11858 The Ada 83 standard also defined Numeric_Error. But there so many
11859 situations where it was unclear from the Ada 83 Reference Manual
11860 (RM) whether Constraint_Error or Numeric_Error should be raised,
11861 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11862 Interpretation saying that anytime the RM says that Numeric_Error
11863 should be raised, the implementation may raise Constraint_Error.
11864 Ada 95 went one step further and pretty much removed Numeric_Error
11865 from the list of standard exceptions (it made it a renaming of
11866 Constraint_Error, to help preserve compatibility when compiling
11867 an Ada83 compiler). As such, we do not include Numeric_Error from
11868 this list of standard exceptions. */
3d0b0fa3
JB
11869
11870static char *standard_exc[] = {
11871 "constraint_error",
11872 "program_error",
11873 "storage_error",
11874 "tasking_error"
11875};
11876
0259addd
JB
11877typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11878
11879/* A structure that describes how to support exception catchpoints
11880 for a given executable. */
11881
11882struct exception_support_info
11883{
11884 /* The name of the symbol to break on in order to insert
11885 a catchpoint on exceptions. */
11886 const char *catch_exception_sym;
11887
11888 /* The name of the symbol to break on in order to insert
11889 a catchpoint on unhandled exceptions. */
11890 const char *catch_exception_unhandled_sym;
11891
11892 /* The name of the symbol to break on in order to insert
11893 a catchpoint on failed assertions. */
11894 const char *catch_assert_sym;
11895
11896 /* Assuming that the inferior just triggered an unhandled exception
11897 catchpoint, this function is responsible for returning the address
11898 in inferior memory where the name of that exception is stored.
11899 Return zero if the address could not be computed. */
11900 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11901};
11902
11903static CORE_ADDR ada_unhandled_exception_name_addr (void);
11904static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11905
11906/* The following exception support info structure describes how to
11907 implement exception catchpoints with the latest version of the
11908 Ada runtime (as of 2007-03-06). */
11909
11910static const struct exception_support_info default_exception_support_info =
11911{
11912 "__gnat_debug_raise_exception", /* catch_exception_sym */
11913 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11914 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11915 ada_unhandled_exception_name_addr
11916};
11917
11918/* The following exception support info structure describes how to
11919 implement exception catchpoints with a slightly older version
11920 of the Ada runtime. */
11921
11922static const struct exception_support_info exception_support_info_fallback =
11923{
11924 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11925 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11926 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11927 ada_unhandled_exception_name_addr_from_raise
11928};
11929
f17011e0
JB
11930/* Return nonzero if we can detect the exception support routines
11931 described in EINFO.
11932
11933 This function errors out if an abnormal situation is detected
11934 (for instance, if we find the exception support routines, but
11935 that support is found to be incomplete). */
11936
11937static int
11938ada_has_this_exception_support (const struct exception_support_info *einfo)
11939{
11940 struct symbol *sym;
11941
11942 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11943 that should be compiled with debugging information. As a result, we
11944 expect to find that symbol in the symtabs. */
11945
11946 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11947 if (sym == NULL)
a6af7abe
JB
11948 {
11949 /* Perhaps we did not find our symbol because the Ada runtime was
11950 compiled without debugging info, or simply stripped of it.
11951 It happens on some GNU/Linux distributions for instance, where
11952 users have to install a separate debug package in order to get
11953 the runtime's debugging info. In that situation, let the user
11954 know why we cannot insert an Ada exception catchpoint.
11955
11956 Note: Just for the purpose of inserting our Ada exception
11957 catchpoint, we could rely purely on the associated minimal symbol.
11958 But we would be operating in degraded mode anyway, since we are
11959 still lacking the debugging info needed later on to extract
11960 the name of the exception being raised (this name is printed in
11961 the catchpoint message, and is also used when trying to catch
11962 a specific exception). We do not handle this case for now. */
3b7344d5 11963 struct bound_minimal_symbol msym
1c8e84b0
JB
11964 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11965
3b7344d5 11966 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11967 error (_("Your Ada runtime appears to be missing some debugging "
11968 "information.\nCannot insert Ada exception catchpoint "
11969 "in this configuration."));
11970
11971 return 0;
11972 }
f17011e0
JB
11973
11974 /* Make sure that the symbol we found corresponds to a function. */
11975
11976 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11977 error (_("Symbol \"%s\" is not a function (class = %d)"),
11978 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11979
11980 return 1;
11981}
11982
0259addd
JB
11983/* Inspect the Ada runtime and determine which exception info structure
11984 should be used to provide support for exception catchpoints.
11985
3eecfa55
JB
11986 This function will always set the per-inferior exception_info,
11987 or raise an error. */
0259addd
JB
11988
11989static void
11990ada_exception_support_info_sniffer (void)
11991{
3eecfa55 11992 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11993
11994 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11995 if (data->exception_info != NULL)
0259addd
JB
11996 return;
11997
11998 /* Check the latest (default) exception support info. */
f17011e0 11999 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12000 {
3eecfa55 12001 data->exception_info = &default_exception_support_info;
0259addd
JB
12002 return;
12003 }
12004
12005 /* Try our fallback exception suport info. */
f17011e0 12006 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12007 {
3eecfa55 12008 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12009 return;
12010 }
12011
12012 /* Sometimes, it is normal for us to not be able to find the routine
12013 we are looking for. This happens when the program is linked with
12014 the shared version of the GNAT runtime, and the program has not been
12015 started yet. Inform the user of these two possible causes if
12016 applicable. */
12017
ccefe4c4 12018 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12019 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12020
12021 /* If the symbol does not exist, then check that the program is
12022 already started, to make sure that shared libraries have been
12023 loaded. If it is not started, this may mean that the symbol is
12024 in a shared library. */
12025
12026 if (ptid_get_pid (inferior_ptid) == 0)
12027 error (_("Unable to insert catchpoint. Try to start the program first."));
12028
12029 /* At this point, we know that we are debugging an Ada program and
12030 that the inferior has been started, but we still are not able to
0963b4bd 12031 find the run-time symbols. That can mean that we are in
0259addd
JB
12032 configurable run time mode, or that a-except as been optimized
12033 out by the linker... In any case, at this point it is not worth
12034 supporting this feature. */
12035
7dda8cff 12036 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12037}
12038
f7f9143b
JB
12039/* True iff FRAME is very likely to be that of a function that is
12040 part of the runtime system. This is all very heuristic, but is
12041 intended to be used as advice as to what frames are uninteresting
12042 to most users. */
12043
12044static int
12045is_known_support_routine (struct frame_info *frame)
12046{
4ed6b5be 12047 struct symtab_and_line sal;
55b87a52 12048 char *func_name;
692465f1 12049 enum language func_lang;
f7f9143b 12050 int i;
f35a17b5 12051 const char *fullname;
f7f9143b 12052
4ed6b5be
JB
12053 /* If this code does not have any debugging information (no symtab),
12054 This cannot be any user code. */
f7f9143b 12055
4ed6b5be 12056 find_frame_sal (frame, &sal);
f7f9143b
JB
12057 if (sal.symtab == NULL)
12058 return 1;
12059
4ed6b5be
JB
12060 /* If there is a symtab, but the associated source file cannot be
12061 located, then assume this is not user code: Selecting a frame
12062 for which we cannot display the code would not be very helpful
12063 for the user. This should also take care of case such as VxWorks
12064 where the kernel has some debugging info provided for a few units. */
f7f9143b 12065
f35a17b5
JK
12066 fullname = symtab_to_fullname (sal.symtab);
12067 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12068 return 1;
12069
4ed6b5be
JB
12070 /* Check the unit filename againt the Ada runtime file naming.
12071 We also check the name of the objfile against the name of some
12072 known system libraries that sometimes come with debugging info
12073 too. */
12074
f7f9143b
JB
12075 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12076 {
12077 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12078 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12079 return 1;
eb822aa6
DE
12080 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12081 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12082 return 1;
f7f9143b
JB
12083 }
12084
4ed6b5be 12085 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12086
e9e07ba6 12087 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12088 if (func_name == NULL)
12089 return 1;
12090
12091 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12092 {
12093 re_comp (known_auxiliary_function_name_patterns[i]);
12094 if (re_exec (func_name))
55b87a52
KS
12095 {
12096 xfree (func_name);
12097 return 1;
12098 }
f7f9143b
JB
12099 }
12100
55b87a52 12101 xfree (func_name);
f7f9143b
JB
12102 return 0;
12103}
12104
12105/* Find the first frame that contains debugging information and that is not
12106 part of the Ada run-time, starting from FI and moving upward. */
12107
0ef643c8 12108void
f7f9143b
JB
12109ada_find_printable_frame (struct frame_info *fi)
12110{
12111 for (; fi != NULL; fi = get_prev_frame (fi))
12112 {
12113 if (!is_known_support_routine (fi))
12114 {
12115 select_frame (fi);
12116 break;
12117 }
12118 }
12119
12120}
12121
12122/* Assuming that the inferior just triggered an unhandled exception
12123 catchpoint, return the address in inferior memory where the name
12124 of the exception is stored.
12125
12126 Return zero if the address could not be computed. */
12127
12128static CORE_ADDR
12129ada_unhandled_exception_name_addr (void)
0259addd
JB
12130{
12131 return parse_and_eval_address ("e.full_name");
12132}
12133
12134/* Same as ada_unhandled_exception_name_addr, except that this function
12135 should be used when the inferior uses an older version of the runtime,
12136 where the exception name needs to be extracted from a specific frame
12137 several frames up in the callstack. */
12138
12139static CORE_ADDR
12140ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12141{
12142 int frame_level;
12143 struct frame_info *fi;
3eecfa55 12144 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12145 struct cleanup *old_chain;
f7f9143b
JB
12146
12147 /* To determine the name of this exception, we need to select
12148 the frame corresponding to RAISE_SYM_NAME. This frame is
12149 at least 3 levels up, so we simply skip the first 3 frames
12150 without checking the name of their associated function. */
12151 fi = get_current_frame ();
12152 for (frame_level = 0; frame_level < 3; frame_level += 1)
12153 if (fi != NULL)
12154 fi = get_prev_frame (fi);
12155
55b87a52 12156 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12157 while (fi != NULL)
12158 {
55b87a52 12159 char *func_name;
692465f1
JB
12160 enum language func_lang;
12161
e9e07ba6 12162 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12163 if (func_name != NULL)
12164 {
12165 make_cleanup (xfree, func_name);
12166
12167 if (strcmp (func_name,
12168 data->exception_info->catch_exception_sym) == 0)
12169 break; /* We found the frame we were looking for... */
12170 fi = get_prev_frame (fi);
12171 }
f7f9143b 12172 }
55b87a52 12173 do_cleanups (old_chain);
f7f9143b
JB
12174
12175 if (fi == NULL)
12176 return 0;
12177
12178 select_frame (fi);
12179 return parse_and_eval_address ("id.full_name");
12180}
12181
12182/* Assuming the inferior just triggered an Ada exception catchpoint
12183 (of any type), return the address in inferior memory where the name
12184 of the exception is stored, if applicable.
12185
12186 Return zero if the address could not be computed, or if not relevant. */
12187
12188static CORE_ADDR
761269c8 12189ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12190 struct breakpoint *b)
12191{
3eecfa55
JB
12192 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12193
f7f9143b
JB
12194 switch (ex)
12195 {
761269c8 12196 case ada_catch_exception:
f7f9143b
JB
12197 return (parse_and_eval_address ("e.full_name"));
12198 break;
12199
761269c8 12200 case ada_catch_exception_unhandled:
3eecfa55 12201 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12202 break;
12203
761269c8 12204 case ada_catch_assert:
f7f9143b
JB
12205 return 0; /* Exception name is not relevant in this case. */
12206 break;
12207
12208 default:
12209 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12210 break;
12211 }
12212
12213 return 0; /* Should never be reached. */
12214}
12215
12216/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12217 any error that ada_exception_name_addr_1 might cause to be thrown.
12218 When an error is intercepted, a warning with the error message is printed,
12219 and zero is returned. */
12220
12221static CORE_ADDR
761269c8 12222ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12223 struct breakpoint *b)
12224{
f7f9143b
JB
12225 CORE_ADDR result = 0;
12226
492d29ea 12227 TRY
f7f9143b
JB
12228 {
12229 result = ada_exception_name_addr_1 (ex, b);
12230 }
12231
492d29ea 12232 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12233 {
12234 warning (_("failed to get exception name: %s"), e.message);
12235 return 0;
12236 }
492d29ea 12237 END_CATCH
f7f9143b
JB
12238
12239 return result;
12240}
12241
28010a5d
PA
12242static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12243
12244/* Ada catchpoints.
12245
12246 In the case of catchpoints on Ada exceptions, the catchpoint will
12247 stop the target on every exception the program throws. When a user
12248 specifies the name of a specific exception, we translate this
12249 request into a condition expression (in text form), and then parse
12250 it into an expression stored in each of the catchpoint's locations.
12251 We then use this condition to check whether the exception that was
12252 raised is the one the user is interested in. If not, then the
12253 target is resumed again. We store the name of the requested
12254 exception, in order to be able to re-set the condition expression
12255 when symbols change. */
12256
12257/* An instance of this type is used to represent an Ada catchpoint
12258 breakpoint location. It includes a "struct bp_location" as a kind
12259 of base class; users downcast to "struct bp_location *" when
12260 needed. */
12261
12262struct ada_catchpoint_location
12263{
12264 /* The base class. */
12265 struct bp_location base;
12266
12267 /* The condition that checks whether the exception that was raised
12268 is the specific exception the user specified on catchpoint
12269 creation. */
12270 struct expression *excep_cond_expr;
12271};
12272
12273/* Implement the DTOR method in the bp_location_ops structure for all
12274 Ada exception catchpoint kinds. */
12275
12276static void
12277ada_catchpoint_location_dtor (struct bp_location *bl)
12278{
12279 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12280
12281 xfree (al->excep_cond_expr);
12282}
12283
12284/* The vtable to be used in Ada catchpoint locations. */
12285
12286static const struct bp_location_ops ada_catchpoint_location_ops =
12287{
12288 ada_catchpoint_location_dtor
12289};
12290
12291/* An instance of this type is used to represent an Ada catchpoint.
12292 It includes a "struct breakpoint" as a kind of base class; users
12293 downcast to "struct breakpoint *" when needed. */
12294
12295struct ada_catchpoint
12296{
12297 /* The base class. */
12298 struct breakpoint base;
12299
12300 /* The name of the specific exception the user specified. */
12301 char *excep_string;
12302};
12303
12304/* Parse the exception condition string in the context of each of the
12305 catchpoint's locations, and store them for later evaluation. */
12306
12307static void
12308create_excep_cond_exprs (struct ada_catchpoint *c)
12309{
12310 struct cleanup *old_chain;
12311 struct bp_location *bl;
12312 char *cond_string;
12313
12314 /* Nothing to do if there's no specific exception to catch. */
12315 if (c->excep_string == NULL)
12316 return;
12317
12318 /* Same if there are no locations... */
12319 if (c->base.loc == NULL)
12320 return;
12321
12322 /* Compute the condition expression in text form, from the specific
12323 expection we want to catch. */
12324 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12325 old_chain = make_cleanup (xfree, cond_string);
12326
12327 /* Iterate over all the catchpoint's locations, and parse an
12328 expression for each. */
12329 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12330 {
12331 struct ada_catchpoint_location *ada_loc
12332 = (struct ada_catchpoint_location *) bl;
12333 struct expression *exp = NULL;
12334
12335 if (!bl->shlib_disabled)
12336 {
bbc13ae3 12337 const char *s;
28010a5d
PA
12338
12339 s = cond_string;
492d29ea 12340 TRY
28010a5d 12341 {
1bb9788d
TT
12342 exp = parse_exp_1 (&s, bl->address,
12343 block_for_pc (bl->address), 0);
28010a5d 12344 }
492d29ea 12345 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12346 {
12347 warning (_("failed to reevaluate internal exception condition "
12348 "for catchpoint %d: %s"),
12349 c->base.number, e.message);
12350 /* There is a bug in GCC on sparc-solaris when building with
12351 optimization which causes EXP to change unexpectedly
12352 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12353 The problem should be fixed starting with GCC 4.9.
12354 In the meantime, work around it by forcing EXP back
12355 to NULL. */
12356 exp = NULL;
12357 }
492d29ea 12358 END_CATCH
28010a5d
PA
12359 }
12360
12361 ada_loc->excep_cond_expr = exp;
12362 }
12363
12364 do_cleanups (old_chain);
12365}
12366
12367/* Implement the DTOR method in the breakpoint_ops structure for all
12368 exception catchpoint kinds. */
12369
12370static void
761269c8 12371dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12372{
12373 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12374
12375 xfree (c->excep_string);
348d480f 12376
2060206e 12377 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12378}
12379
12380/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12381 structure for all exception catchpoint kinds. */
12382
12383static struct bp_location *
761269c8 12384allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12385 struct breakpoint *self)
12386{
12387 struct ada_catchpoint_location *loc;
12388
12389 loc = XNEW (struct ada_catchpoint_location);
12390 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12391 loc->excep_cond_expr = NULL;
12392 return &loc->base;
12393}
12394
12395/* Implement the RE_SET method in the breakpoint_ops structure for all
12396 exception catchpoint kinds. */
12397
12398static void
761269c8 12399re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12400{
12401 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12402
12403 /* Call the base class's method. This updates the catchpoint's
12404 locations. */
2060206e 12405 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12406
12407 /* Reparse the exception conditional expressions. One for each
12408 location. */
12409 create_excep_cond_exprs (c);
12410}
12411
12412/* Returns true if we should stop for this breakpoint hit. If the
12413 user specified a specific exception, we only want to cause a stop
12414 if the program thrown that exception. */
12415
12416static int
12417should_stop_exception (const struct bp_location *bl)
12418{
12419 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12420 const struct ada_catchpoint_location *ada_loc
12421 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12422 int stop;
12423
12424 /* With no specific exception, should always stop. */
12425 if (c->excep_string == NULL)
12426 return 1;
12427
12428 if (ada_loc->excep_cond_expr == NULL)
12429 {
12430 /* We will have a NULL expression if back when we were creating
12431 the expressions, this location's had failed to parse. */
12432 return 1;
12433 }
12434
12435 stop = 1;
492d29ea 12436 TRY
28010a5d
PA
12437 {
12438 struct value *mark;
12439
12440 mark = value_mark ();
12441 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12442 value_free_to_mark (mark);
12443 }
492d29ea
PA
12444 CATCH (ex, RETURN_MASK_ALL)
12445 {
12446 exception_fprintf (gdb_stderr, ex,
12447 _("Error in testing exception condition:\n"));
12448 }
12449 END_CATCH
12450
28010a5d
PA
12451 return stop;
12452}
12453
12454/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12455 for all exception catchpoint kinds. */
12456
12457static void
761269c8 12458check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12459{
12460 bs->stop = should_stop_exception (bs->bp_location_at);
12461}
12462
f7f9143b
JB
12463/* Implement the PRINT_IT method in the breakpoint_ops structure
12464 for all exception catchpoint kinds. */
12465
12466static enum print_stop_action
761269c8 12467print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12468{
79a45e25 12469 struct ui_out *uiout = current_uiout;
348d480f
PA
12470 struct breakpoint *b = bs->breakpoint_at;
12471
956a9fb9 12472 annotate_catchpoint (b->number);
f7f9143b 12473
956a9fb9 12474 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12475 {
956a9fb9
JB
12476 ui_out_field_string (uiout, "reason",
12477 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12478 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12479 }
12480
00eb2c4a
JB
12481 ui_out_text (uiout,
12482 b->disposition == disp_del ? "\nTemporary catchpoint "
12483 : "\nCatchpoint ");
956a9fb9
JB
12484 ui_out_field_int (uiout, "bkptno", b->number);
12485 ui_out_text (uiout, ", ");
f7f9143b 12486
f7f9143b
JB
12487 switch (ex)
12488 {
761269c8
JB
12489 case ada_catch_exception:
12490 case ada_catch_exception_unhandled:
956a9fb9
JB
12491 {
12492 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12493 char exception_name[256];
12494
12495 if (addr != 0)
12496 {
c714b426
PA
12497 read_memory (addr, (gdb_byte *) exception_name,
12498 sizeof (exception_name) - 1);
956a9fb9
JB
12499 exception_name [sizeof (exception_name) - 1] = '\0';
12500 }
12501 else
12502 {
12503 /* For some reason, we were unable to read the exception
12504 name. This could happen if the Runtime was compiled
12505 without debugging info, for instance. In that case,
12506 just replace the exception name by the generic string
12507 "exception" - it will read as "an exception" in the
12508 notification we are about to print. */
967cff16 12509 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12510 }
12511 /* In the case of unhandled exception breakpoints, we print
12512 the exception name as "unhandled EXCEPTION_NAME", to make
12513 it clearer to the user which kind of catchpoint just got
12514 hit. We used ui_out_text to make sure that this extra
12515 info does not pollute the exception name in the MI case. */
761269c8 12516 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12517 ui_out_text (uiout, "unhandled ");
12518 ui_out_field_string (uiout, "exception-name", exception_name);
12519 }
12520 break;
761269c8 12521 case ada_catch_assert:
956a9fb9
JB
12522 /* In this case, the name of the exception is not really
12523 important. Just print "failed assertion" to make it clearer
12524 that his program just hit an assertion-failure catchpoint.
12525 We used ui_out_text because this info does not belong in
12526 the MI output. */
12527 ui_out_text (uiout, "failed assertion");
12528 break;
f7f9143b 12529 }
956a9fb9
JB
12530 ui_out_text (uiout, " at ");
12531 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12532
12533 return PRINT_SRC_AND_LOC;
12534}
12535
12536/* Implement the PRINT_ONE method in the breakpoint_ops structure
12537 for all exception catchpoint kinds. */
12538
12539static void
761269c8 12540print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12541 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12542{
79a45e25 12543 struct ui_out *uiout = current_uiout;
28010a5d 12544 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12545 struct value_print_options opts;
12546
12547 get_user_print_options (&opts);
12548 if (opts.addressprint)
f7f9143b
JB
12549 {
12550 annotate_field (4);
5af949e3 12551 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12552 }
12553
12554 annotate_field (5);
a6d9a66e 12555 *last_loc = b->loc;
f7f9143b
JB
12556 switch (ex)
12557 {
761269c8 12558 case ada_catch_exception:
28010a5d 12559 if (c->excep_string != NULL)
f7f9143b 12560 {
28010a5d
PA
12561 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12562
f7f9143b
JB
12563 ui_out_field_string (uiout, "what", msg);
12564 xfree (msg);
12565 }
12566 else
12567 ui_out_field_string (uiout, "what", "all Ada exceptions");
12568
12569 break;
12570
761269c8 12571 case ada_catch_exception_unhandled:
f7f9143b
JB
12572 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12573 break;
12574
761269c8 12575 case ada_catch_assert:
f7f9143b
JB
12576 ui_out_field_string (uiout, "what", "failed Ada assertions");
12577 break;
12578
12579 default:
12580 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12581 break;
12582 }
12583}
12584
12585/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12586 for all exception catchpoint kinds. */
12587
12588static void
761269c8 12589print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12590 struct breakpoint *b)
12591{
28010a5d 12592 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12593 struct ui_out *uiout = current_uiout;
28010a5d 12594
00eb2c4a
JB
12595 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12596 : _("Catchpoint "));
12597 ui_out_field_int (uiout, "bkptno", b->number);
12598 ui_out_text (uiout, ": ");
12599
f7f9143b
JB
12600 switch (ex)
12601 {
761269c8 12602 case ada_catch_exception:
28010a5d 12603 if (c->excep_string != NULL)
00eb2c4a
JB
12604 {
12605 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12606 struct cleanup *old_chain = make_cleanup (xfree, info);
12607
12608 ui_out_text (uiout, info);
12609 do_cleanups (old_chain);
12610 }
f7f9143b 12611 else
00eb2c4a 12612 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12613 break;
12614
761269c8 12615 case ada_catch_exception_unhandled:
00eb2c4a 12616 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12617 break;
12618
761269c8 12619 case ada_catch_assert:
00eb2c4a 12620 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12621 break;
12622
12623 default:
12624 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12625 break;
12626 }
12627}
12628
6149aea9
PA
12629/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12630 for all exception catchpoint kinds. */
12631
12632static void
761269c8 12633print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12634 struct breakpoint *b, struct ui_file *fp)
12635{
28010a5d
PA
12636 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12637
6149aea9
PA
12638 switch (ex)
12639 {
761269c8 12640 case ada_catch_exception:
6149aea9 12641 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12642 if (c->excep_string != NULL)
12643 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12644 break;
12645
761269c8 12646 case ada_catch_exception_unhandled:
78076abc 12647 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12648 break;
12649
761269c8 12650 case ada_catch_assert:
6149aea9
PA
12651 fprintf_filtered (fp, "catch assert");
12652 break;
12653
12654 default:
12655 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12656 }
d9b3f62e 12657 print_recreate_thread (b, fp);
6149aea9
PA
12658}
12659
f7f9143b
JB
12660/* Virtual table for "catch exception" breakpoints. */
12661
28010a5d
PA
12662static void
12663dtor_catch_exception (struct breakpoint *b)
12664{
761269c8 12665 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12666}
12667
12668static struct bp_location *
12669allocate_location_catch_exception (struct breakpoint *self)
12670{
761269c8 12671 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12672}
12673
12674static void
12675re_set_catch_exception (struct breakpoint *b)
12676{
761269c8 12677 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12678}
12679
12680static void
12681check_status_catch_exception (bpstat bs)
12682{
761269c8 12683 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12684}
12685
f7f9143b 12686static enum print_stop_action
348d480f 12687print_it_catch_exception (bpstat bs)
f7f9143b 12688{
761269c8 12689 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12690}
12691
12692static void
a6d9a66e 12693print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12694{
761269c8 12695 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12696}
12697
12698static void
12699print_mention_catch_exception (struct breakpoint *b)
12700{
761269c8 12701 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12702}
12703
6149aea9
PA
12704static void
12705print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12706{
761269c8 12707 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12708}
12709
2060206e 12710static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12711
12712/* Virtual table for "catch exception unhandled" breakpoints. */
12713
28010a5d
PA
12714static void
12715dtor_catch_exception_unhandled (struct breakpoint *b)
12716{
761269c8 12717 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12718}
12719
12720static struct bp_location *
12721allocate_location_catch_exception_unhandled (struct breakpoint *self)
12722{
761269c8 12723 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12724}
12725
12726static void
12727re_set_catch_exception_unhandled (struct breakpoint *b)
12728{
761269c8 12729 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12730}
12731
12732static void
12733check_status_catch_exception_unhandled (bpstat bs)
12734{
761269c8 12735 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12736}
12737
f7f9143b 12738static enum print_stop_action
348d480f 12739print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12740{
761269c8 12741 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12742}
12743
12744static void
a6d9a66e
UW
12745print_one_catch_exception_unhandled (struct breakpoint *b,
12746 struct bp_location **last_loc)
f7f9143b 12747{
761269c8 12748 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12749}
12750
12751static void
12752print_mention_catch_exception_unhandled (struct breakpoint *b)
12753{
761269c8 12754 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12755}
12756
6149aea9
PA
12757static void
12758print_recreate_catch_exception_unhandled (struct breakpoint *b,
12759 struct ui_file *fp)
12760{
761269c8 12761 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12762}
12763
2060206e 12764static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12765
12766/* Virtual table for "catch assert" breakpoints. */
12767
28010a5d
PA
12768static void
12769dtor_catch_assert (struct breakpoint *b)
12770{
761269c8 12771 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12772}
12773
12774static struct bp_location *
12775allocate_location_catch_assert (struct breakpoint *self)
12776{
761269c8 12777 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12778}
12779
12780static void
12781re_set_catch_assert (struct breakpoint *b)
12782{
761269c8 12783 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12784}
12785
12786static void
12787check_status_catch_assert (bpstat bs)
12788{
761269c8 12789 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12790}
12791
f7f9143b 12792static enum print_stop_action
348d480f 12793print_it_catch_assert (bpstat bs)
f7f9143b 12794{
761269c8 12795 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12796}
12797
12798static void
a6d9a66e 12799print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12800{
761269c8 12801 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12802}
12803
12804static void
12805print_mention_catch_assert (struct breakpoint *b)
12806{
761269c8 12807 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12808}
12809
6149aea9
PA
12810static void
12811print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12812{
761269c8 12813 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12814}
12815
2060206e 12816static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12817
f7f9143b
JB
12818/* Return a newly allocated copy of the first space-separated token
12819 in ARGSP, and then adjust ARGSP to point immediately after that
12820 token.
12821
12822 Return NULL if ARGPS does not contain any more tokens. */
12823
12824static char *
12825ada_get_next_arg (char **argsp)
12826{
12827 char *args = *argsp;
12828 char *end;
12829 char *result;
12830
0fcd72ba 12831 args = skip_spaces (args);
f7f9143b
JB
12832 if (args[0] == '\0')
12833 return NULL; /* No more arguments. */
12834
12835 /* Find the end of the current argument. */
12836
0fcd72ba 12837 end = skip_to_space (args);
f7f9143b
JB
12838
12839 /* Adjust ARGSP to point to the start of the next argument. */
12840
12841 *argsp = end;
12842
12843 /* Make a copy of the current argument and return it. */
12844
224c3ddb 12845 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12846 strncpy (result, args, end - args);
12847 result[end - args] = '\0';
12848
12849 return result;
12850}
12851
12852/* Split the arguments specified in a "catch exception" command.
12853 Set EX to the appropriate catchpoint type.
28010a5d 12854 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12855 specified by the user.
12856 If a condition is found at the end of the arguments, the condition
12857 expression is stored in COND_STRING (memory must be deallocated
12858 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12859
12860static void
12861catch_ada_exception_command_split (char *args,
761269c8 12862 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12863 char **excep_string,
12864 char **cond_string)
f7f9143b
JB
12865{
12866 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12867 char *exception_name;
5845583d 12868 char *cond = NULL;
f7f9143b
JB
12869
12870 exception_name = ada_get_next_arg (&args);
5845583d
JB
12871 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12872 {
12873 /* This is not an exception name; this is the start of a condition
12874 expression for a catchpoint on all exceptions. So, "un-get"
12875 this token, and set exception_name to NULL. */
12876 xfree (exception_name);
12877 exception_name = NULL;
12878 args -= 2;
12879 }
f7f9143b
JB
12880 make_cleanup (xfree, exception_name);
12881
5845583d 12882 /* Check to see if we have a condition. */
f7f9143b 12883
0fcd72ba 12884 args = skip_spaces (args);
61012eef 12885 if (startswith (args, "if")
5845583d
JB
12886 && (isspace (args[2]) || args[2] == '\0'))
12887 {
12888 args += 2;
12889 args = skip_spaces (args);
12890
12891 if (args[0] == '\0')
12892 error (_("Condition missing after `if' keyword"));
12893 cond = xstrdup (args);
12894 make_cleanup (xfree, cond);
12895
12896 args += strlen (args);
12897 }
12898
12899 /* Check that we do not have any more arguments. Anything else
12900 is unexpected. */
f7f9143b
JB
12901
12902 if (args[0] != '\0')
12903 error (_("Junk at end of expression"));
12904
12905 discard_cleanups (old_chain);
12906
12907 if (exception_name == NULL)
12908 {
12909 /* Catch all exceptions. */
761269c8 12910 *ex = ada_catch_exception;
28010a5d 12911 *excep_string = NULL;
f7f9143b
JB
12912 }
12913 else if (strcmp (exception_name, "unhandled") == 0)
12914 {
12915 /* Catch unhandled exceptions. */
761269c8 12916 *ex = ada_catch_exception_unhandled;
28010a5d 12917 *excep_string = NULL;
f7f9143b
JB
12918 }
12919 else
12920 {
12921 /* Catch a specific exception. */
761269c8 12922 *ex = ada_catch_exception;
28010a5d 12923 *excep_string = exception_name;
f7f9143b 12924 }
5845583d 12925 *cond_string = cond;
f7f9143b
JB
12926}
12927
12928/* Return the name of the symbol on which we should break in order to
12929 implement a catchpoint of the EX kind. */
12930
12931static const char *
761269c8 12932ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12933{
3eecfa55
JB
12934 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12935
12936 gdb_assert (data->exception_info != NULL);
0259addd 12937
f7f9143b
JB
12938 switch (ex)
12939 {
761269c8 12940 case ada_catch_exception:
3eecfa55 12941 return (data->exception_info->catch_exception_sym);
f7f9143b 12942 break;
761269c8 12943 case ada_catch_exception_unhandled:
3eecfa55 12944 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12945 break;
761269c8 12946 case ada_catch_assert:
3eecfa55 12947 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12948 break;
12949 default:
12950 internal_error (__FILE__, __LINE__,
12951 _("unexpected catchpoint kind (%d)"), ex);
12952 }
12953}
12954
12955/* Return the breakpoint ops "virtual table" used for catchpoints
12956 of the EX kind. */
12957
c0a91b2b 12958static const struct breakpoint_ops *
761269c8 12959ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12960{
12961 switch (ex)
12962 {
761269c8 12963 case ada_catch_exception:
f7f9143b
JB
12964 return (&catch_exception_breakpoint_ops);
12965 break;
761269c8 12966 case ada_catch_exception_unhandled:
f7f9143b
JB
12967 return (&catch_exception_unhandled_breakpoint_ops);
12968 break;
761269c8 12969 case ada_catch_assert:
f7f9143b
JB
12970 return (&catch_assert_breakpoint_ops);
12971 break;
12972 default:
12973 internal_error (__FILE__, __LINE__,
12974 _("unexpected catchpoint kind (%d)"), ex);
12975 }
12976}
12977
12978/* Return the condition that will be used to match the current exception
12979 being raised with the exception that the user wants to catch. This
12980 assumes that this condition is used when the inferior just triggered
12981 an exception catchpoint.
12982
12983 The string returned is a newly allocated string that needs to be
12984 deallocated later. */
12985
12986static char *
28010a5d 12987ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12988{
3d0b0fa3
JB
12989 int i;
12990
0963b4bd 12991 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12992 runtime units that have been compiled without debugging info; if
28010a5d 12993 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12994 exception (e.g. "constraint_error") then, during the evaluation
12995 of the condition expression, the symbol lookup on this name would
0963b4bd 12996 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12997 may then be set only on user-defined exceptions which have the
12998 same not-fully-qualified name (e.g. my_package.constraint_error).
12999
13000 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13001 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13002 exception constraint_error" is rewritten into "catch exception
13003 standard.constraint_error".
13004
13005 If an exception named contraint_error is defined in another package of
13006 the inferior program, then the only way to specify this exception as a
13007 breakpoint condition is to use its fully-qualified named:
13008 e.g. my_package.constraint_error. */
13009
13010 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13011 {
28010a5d 13012 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
13013 {
13014 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13015 excep_string);
3d0b0fa3
JB
13016 }
13017 }
28010a5d 13018 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13019}
13020
13021/* Return the symtab_and_line that should be used to insert an exception
13022 catchpoint of the TYPE kind.
13023
28010a5d
PA
13024 EXCEP_STRING should contain the name of a specific exception that
13025 the catchpoint should catch, or NULL otherwise.
f7f9143b 13026
28010a5d
PA
13027 ADDR_STRING returns the name of the function where the real
13028 breakpoint that implements the catchpoints is set, depending on the
13029 type of catchpoint we need to create. */
f7f9143b
JB
13030
13031static struct symtab_and_line
761269c8 13032ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 13033 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13034{
13035 const char *sym_name;
13036 struct symbol *sym;
f7f9143b 13037
0259addd
JB
13038 /* First, find out which exception support info to use. */
13039 ada_exception_support_info_sniffer ();
13040
13041 /* Then lookup the function on which we will break in order to catch
f7f9143b 13042 the Ada exceptions requested by the user. */
f7f9143b
JB
13043 sym_name = ada_exception_sym_name (ex);
13044 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13045
f17011e0
JB
13046 /* We can assume that SYM is not NULL at this stage. If the symbol
13047 did not exist, ada_exception_support_info_sniffer would have
13048 raised an exception.
f7f9143b 13049
f17011e0
JB
13050 Also, ada_exception_support_info_sniffer should have already
13051 verified that SYM is a function symbol. */
13052 gdb_assert (sym != NULL);
13053 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13054
13055 /* Set ADDR_STRING. */
f7f9143b
JB
13056 *addr_string = xstrdup (sym_name);
13057
f7f9143b 13058 /* Set OPS. */
4b9eee8c 13059 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13060
f17011e0 13061 return find_function_start_sal (sym, 1);
f7f9143b
JB
13062}
13063
b4a5b78b 13064/* Create an Ada exception catchpoint.
f7f9143b 13065
b4a5b78b 13066 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13067
2df4d1d5
JB
13068 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13069 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13070 of the exception to which this catchpoint applies. When not NULL,
13071 the string must be allocated on the heap, and its deallocation
13072 is no longer the responsibility of the caller.
13073
13074 COND_STRING, if not NULL, is the catchpoint condition. This string
13075 must be allocated on the heap, and its deallocation is no longer
13076 the responsibility of the caller.
f7f9143b 13077
b4a5b78b
JB
13078 TEMPFLAG, if nonzero, means that the underlying breakpoint
13079 should be temporary.
28010a5d 13080
b4a5b78b 13081 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13082
349774ef 13083void
28010a5d 13084create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13085 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13086 char *excep_string,
5845583d 13087 char *cond_string,
28010a5d 13088 int tempflag,
349774ef 13089 int disabled,
28010a5d
PA
13090 int from_tty)
13091{
13092 struct ada_catchpoint *c;
b4a5b78b
JB
13093 char *addr_string = NULL;
13094 const struct breakpoint_ops *ops = NULL;
13095 struct symtab_and_line sal
13096 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
13097
13098 c = XNEW (struct ada_catchpoint);
13099 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13100 ops, tempflag, disabled, from_tty);
28010a5d
PA
13101 c->excep_string = excep_string;
13102 create_excep_cond_exprs (c);
5845583d
JB
13103 if (cond_string != NULL)
13104 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13105 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13106}
13107
9ac4176b
PA
13108/* Implement the "catch exception" command. */
13109
13110static void
13111catch_ada_exception_command (char *arg, int from_tty,
13112 struct cmd_list_element *command)
13113{
13114 struct gdbarch *gdbarch = get_current_arch ();
13115 int tempflag;
761269c8 13116 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13117 char *excep_string = NULL;
5845583d 13118 char *cond_string = NULL;
9ac4176b
PA
13119
13120 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13121
13122 if (!arg)
13123 arg = "";
b4a5b78b
JB
13124 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13125 &cond_string);
13126 create_ada_exception_catchpoint (gdbarch, ex_kind,
13127 excep_string, cond_string,
349774ef
JB
13128 tempflag, 1 /* enabled */,
13129 from_tty);
9ac4176b
PA
13130}
13131
b4a5b78b 13132/* Split the arguments specified in a "catch assert" command.
5845583d 13133
b4a5b78b
JB
13134 ARGS contains the command's arguments (or the empty string if
13135 no arguments were passed).
5845583d
JB
13136
13137 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13138 (the memory needs to be deallocated after use). */
5845583d 13139
b4a5b78b
JB
13140static void
13141catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13142{
5845583d 13143 args = skip_spaces (args);
f7f9143b 13144
5845583d 13145 /* Check whether a condition was provided. */
61012eef 13146 if (startswith (args, "if")
5845583d 13147 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13148 {
5845583d 13149 args += 2;
0fcd72ba 13150 args = skip_spaces (args);
5845583d
JB
13151 if (args[0] == '\0')
13152 error (_("condition missing after `if' keyword"));
13153 *cond_string = xstrdup (args);
f7f9143b
JB
13154 }
13155
5845583d
JB
13156 /* Otherwise, there should be no other argument at the end of
13157 the command. */
13158 else if (args[0] != '\0')
13159 error (_("Junk at end of arguments."));
f7f9143b
JB
13160}
13161
9ac4176b
PA
13162/* Implement the "catch assert" command. */
13163
13164static void
13165catch_assert_command (char *arg, int from_tty,
13166 struct cmd_list_element *command)
13167{
13168 struct gdbarch *gdbarch = get_current_arch ();
13169 int tempflag;
5845583d 13170 char *cond_string = NULL;
9ac4176b
PA
13171
13172 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13173
13174 if (!arg)
13175 arg = "";
b4a5b78b 13176 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13177 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13178 NULL, cond_string,
349774ef
JB
13179 tempflag, 1 /* enabled */,
13180 from_tty);
9ac4176b 13181}
778865d3
JB
13182
13183/* Return non-zero if the symbol SYM is an Ada exception object. */
13184
13185static int
13186ada_is_exception_sym (struct symbol *sym)
13187{
13188 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13189
13190 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13191 && SYMBOL_CLASS (sym) != LOC_BLOCK
13192 && SYMBOL_CLASS (sym) != LOC_CONST
13193 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13194 && type_name != NULL && strcmp (type_name, "exception") == 0);
13195}
13196
13197/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13198 Ada exception object. This matches all exceptions except the ones
13199 defined by the Ada language. */
13200
13201static int
13202ada_is_non_standard_exception_sym (struct symbol *sym)
13203{
13204 int i;
13205
13206 if (!ada_is_exception_sym (sym))
13207 return 0;
13208
13209 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13210 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13211 return 0; /* A standard exception. */
13212
13213 /* Numeric_Error is also a standard exception, so exclude it.
13214 See the STANDARD_EXC description for more details as to why
13215 this exception is not listed in that array. */
13216 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13217 return 0;
13218
13219 return 1;
13220}
13221
13222/* A helper function for qsort, comparing two struct ada_exc_info
13223 objects.
13224
13225 The comparison is determined first by exception name, and then
13226 by exception address. */
13227
13228static int
13229compare_ada_exception_info (const void *a, const void *b)
13230{
13231 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13232 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13233 int result;
13234
13235 result = strcmp (exc_a->name, exc_b->name);
13236 if (result != 0)
13237 return result;
13238
13239 if (exc_a->addr < exc_b->addr)
13240 return -1;
13241 if (exc_a->addr > exc_b->addr)
13242 return 1;
13243
13244 return 0;
13245}
13246
13247/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13248 routine, but keeping the first SKIP elements untouched.
13249
13250 All duplicates are also removed. */
13251
13252static void
13253sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13254 int skip)
13255{
13256 struct ada_exc_info *to_sort
13257 = VEC_address (ada_exc_info, *exceptions) + skip;
13258 int to_sort_len
13259 = VEC_length (ada_exc_info, *exceptions) - skip;
13260 int i, j;
13261
13262 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13263 compare_ada_exception_info);
13264
13265 for (i = 1, j = 1; i < to_sort_len; i++)
13266 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13267 to_sort[j++] = to_sort[i];
13268 to_sort_len = j;
13269 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13270}
13271
13272/* A function intended as the "name_matcher" callback in the struct
13273 quick_symbol_functions' expand_symtabs_matching method.
13274
13275 SEARCH_NAME is the symbol's search name.
13276
13277 If USER_DATA is not NULL, it is a pointer to a regext_t object
13278 used to match the symbol (by natural name). Otherwise, when USER_DATA
13279 is null, no filtering is performed, and all symbols are a positive
13280 match. */
13281
13282static int
13283ada_exc_search_name_matches (const char *search_name, void *user_data)
13284{
9a3c8263 13285 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13286
13287 if (preg == NULL)
13288 return 1;
13289
13290 /* In Ada, the symbol "search name" is a linkage name, whereas
13291 the regular expression used to do the matching refers to
13292 the natural name. So match against the decoded name. */
13293 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13294}
13295
13296/* Add all exceptions defined by the Ada standard whose name match
13297 a regular expression.
13298
13299 If PREG is not NULL, then this regexp_t object is used to
13300 perform the symbol name matching. Otherwise, no name-based
13301 filtering is performed.
13302
13303 EXCEPTIONS is a vector of exceptions to which matching exceptions
13304 gets pushed. */
13305
13306static void
13307ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13308{
13309 int i;
13310
13311 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13312 {
13313 if (preg == NULL
13314 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13315 {
13316 struct bound_minimal_symbol msymbol
13317 = ada_lookup_simple_minsym (standard_exc[i]);
13318
13319 if (msymbol.minsym != NULL)
13320 {
13321 struct ada_exc_info info
77e371c0 13322 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13323
13324 VEC_safe_push (ada_exc_info, *exceptions, &info);
13325 }
13326 }
13327 }
13328}
13329
13330/* Add all Ada exceptions defined locally and accessible from the given
13331 FRAME.
13332
13333 If PREG is not NULL, then this regexp_t object is used to
13334 perform the symbol name matching. Otherwise, no name-based
13335 filtering is performed.
13336
13337 EXCEPTIONS is a vector of exceptions to which matching exceptions
13338 gets pushed. */
13339
13340static void
13341ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13342 VEC(ada_exc_info) **exceptions)
13343{
3977b71f 13344 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13345
13346 while (block != 0)
13347 {
13348 struct block_iterator iter;
13349 struct symbol *sym;
13350
13351 ALL_BLOCK_SYMBOLS (block, iter, sym)
13352 {
13353 switch (SYMBOL_CLASS (sym))
13354 {
13355 case LOC_TYPEDEF:
13356 case LOC_BLOCK:
13357 case LOC_CONST:
13358 break;
13359 default:
13360 if (ada_is_exception_sym (sym))
13361 {
13362 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13363 SYMBOL_VALUE_ADDRESS (sym)};
13364
13365 VEC_safe_push (ada_exc_info, *exceptions, &info);
13366 }
13367 }
13368 }
13369 if (BLOCK_FUNCTION (block) != NULL)
13370 break;
13371 block = BLOCK_SUPERBLOCK (block);
13372 }
13373}
13374
13375/* Add all exceptions defined globally whose name name match
13376 a regular expression, excluding standard exceptions.
13377
13378 The reason we exclude standard exceptions is that they need
13379 to be handled separately: Standard exceptions are defined inside
13380 a runtime unit which is normally not compiled with debugging info,
13381 and thus usually do not show up in our symbol search. However,
13382 if the unit was in fact built with debugging info, we need to
13383 exclude them because they would duplicate the entry we found
13384 during the special loop that specifically searches for those
13385 standard exceptions.
13386
13387 If PREG is not NULL, then this regexp_t object is used to
13388 perform the symbol name matching. Otherwise, no name-based
13389 filtering is performed.
13390
13391 EXCEPTIONS is a vector of exceptions to which matching exceptions
13392 gets pushed. */
13393
13394static void
13395ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13396{
13397 struct objfile *objfile;
43f3e411 13398 struct compunit_symtab *s;
778865d3 13399
276d885b 13400 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13401 VARIABLES_DOMAIN, preg);
778865d3 13402
43f3e411 13403 ALL_COMPUNITS (objfile, s)
778865d3 13404 {
43f3e411 13405 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13406 int i;
13407
13408 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13409 {
13410 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13411 struct block_iterator iter;
13412 struct symbol *sym;
13413
13414 ALL_BLOCK_SYMBOLS (b, iter, sym)
13415 if (ada_is_non_standard_exception_sym (sym)
13416 && (preg == NULL
13417 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13418 0, NULL, 0) == 0))
13419 {
13420 struct ada_exc_info info
13421 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13422
13423 VEC_safe_push (ada_exc_info, *exceptions, &info);
13424 }
13425 }
13426 }
13427}
13428
13429/* Implements ada_exceptions_list with the regular expression passed
13430 as a regex_t, rather than a string.
13431
13432 If not NULL, PREG is used to filter out exceptions whose names
13433 do not match. Otherwise, all exceptions are listed. */
13434
13435static VEC(ada_exc_info) *
13436ada_exceptions_list_1 (regex_t *preg)
13437{
13438 VEC(ada_exc_info) *result = NULL;
13439 struct cleanup *old_chain
13440 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13441 int prev_len;
13442
13443 /* First, list the known standard exceptions. These exceptions
13444 need to be handled separately, as they are usually defined in
13445 runtime units that have been compiled without debugging info. */
13446
13447 ada_add_standard_exceptions (preg, &result);
13448
13449 /* Next, find all exceptions whose scope is local and accessible
13450 from the currently selected frame. */
13451
13452 if (has_stack_frames ())
13453 {
13454 prev_len = VEC_length (ada_exc_info, result);
13455 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13456 &result);
13457 if (VEC_length (ada_exc_info, result) > prev_len)
13458 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13459 }
13460
13461 /* Add all exceptions whose scope is global. */
13462
13463 prev_len = VEC_length (ada_exc_info, result);
13464 ada_add_global_exceptions (preg, &result);
13465 if (VEC_length (ada_exc_info, result) > prev_len)
13466 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13467
13468 discard_cleanups (old_chain);
13469 return result;
13470}
13471
13472/* Return a vector of ada_exc_info.
13473
13474 If REGEXP is NULL, all exceptions are included in the result.
13475 Otherwise, it should contain a valid regular expression,
13476 and only the exceptions whose names match that regular expression
13477 are included in the result.
13478
13479 The exceptions are sorted in the following order:
13480 - Standard exceptions (defined by the Ada language), in
13481 alphabetical order;
13482 - Exceptions only visible from the current frame, in
13483 alphabetical order;
13484 - Exceptions whose scope is global, in alphabetical order. */
13485
13486VEC(ada_exc_info) *
13487ada_exceptions_list (const char *regexp)
13488{
13489 VEC(ada_exc_info) *result = NULL;
13490 struct cleanup *old_chain = NULL;
13491 regex_t reg;
13492
13493 if (regexp != NULL)
13494 old_chain = compile_rx_or_error (&reg, regexp,
13495 _("invalid regular expression"));
13496
13497 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13498
13499 if (old_chain != NULL)
13500 do_cleanups (old_chain);
13501 return result;
13502}
13503
13504/* Implement the "info exceptions" command. */
13505
13506static void
13507info_exceptions_command (char *regexp, int from_tty)
13508{
13509 VEC(ada_exc_info) *exceptions;
13510 struct cleanup *cleanup;
13511 struct gdbarch *gdbarch = get_current_arch ();
13512 int ix;
13513 struct ada_exc_info *info;
13514
13515 exceptions = ada_exceptions_list (regexp);
13516 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13517
13518 if (regexp != NULL)
13519 printf_filtered
13520 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13521 else
13522 printf_filtered (_("All defined Ada exceptions:\n"));
13523
13524 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13525 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13526
13527 do_cleanups (cleanup);
13528}
13529
4c4b4cd2
PH
13530 /* Operators */
13531/* Information about operators given special treatment in functions
13532 below. */
13533/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13534
13535#define ADA_OPERATORS \
13536 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13537 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13538 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13539 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13540 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13541 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13542 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13543 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13544 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13545 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13546 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13547 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13548 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13549 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13550 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13551 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13552 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13553 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13554 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13555
13556static void
554794dc
SDJ
13557ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13558 int *argsp)
4c4b4cd2
PH
13559{
13560 switch (exp->elts[pc - 1].opcode)
13561 {
76a01679 13562 default:
4c4b4cd2
PH
13563 operator_length_standard (exp, pc, oplenp, argsp);
13564 break;
13565
13566#define OP_DEFN(op, len, args, binop) \
13567 case op: *oplenp = len; *argsp = args; break;
13568 ADA_OPERATORS;
13569#undef OP_DEFN
52ce6436
PH
13570
13571 case OP_AGGREGATE:
13572 *oplenp = 3;
13573 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13574 break;
13575
13576 case OP_CHOICES:
13577 *oplenp = 3;
13578 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13579 break;
4c4b4cd2
PH
13580 }
13581}
13582
c0201579
JK
13583/* Implementation of the exp_descriptor method operator_check. */
13584
13585static int
13586ada_operator_check (struct expression *exp, int pos,
13587 int (*objfile_func) (struct objfile *objfile, void *data),
13588 void *data)
13589{
13590 const union exp_element *const elts = exp->elts;
13591 struct type *type = NULL;
13592
13593 switch (elts[pos].opcode)
13594 {
13595 case UNOP_IN_RANGE:
13596 case UNOP_QUAL:
13597 type = elts[pos + 1].type;
13598 break;
13599
13600 default:
13601 return operator_check_standard (exp, pos, objfile_func, data);
13602 }
13603
13604 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13605
13606 if (type && TYPE_OBJFILE (type)
13607 && (*objfile_func) (TYPE_OBJFILE (type), data))
13608 return 1;
13609
13610 return 0;
13611}
13612
4c4b4cd2
PH
13613static char *
13614ada_op_name (enum exp_opcode opcode)
13615{
13616 switch (opcode)
13617 {
76a01679 13618 default:
4c4b4cd2 13619 return op_name_standard (opcode);
52ce6436 13620
4c4b4cd2
PH
13621#define OP_DEFN(op, len, args, binop) case op: return #op;
13622 ADA_OPERATORS;
13623#undef OP_DEFN
52ce6436
PH
13624
13625 case OP_AGGREGATE:
13626 return "OP_AGGREGATE";
13627 case OP_CHOICES:
13628 return "OP_CHOICES";
13629 case OP_NAME:
13630 return "OP_NAME";
4c4b4cd2
PH
13631 }
13632}
13633
13634/* As for operator_length, but assumes PC is pointing at the first
13635 element of the operator, and gives meaningful results only for the
52ce6436 13636 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13637
13638static void
76a01679
JB
13639ada_forward_operator_length (struct expression *exp, int pc,
13640 int *oplenp, int *argsp)
4c4b4cd2 13641{
76a01679 13642 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13643 {
13644 default:
13645 *oplenp = *argsp = 0;
13646 break;
52ce6436 13647
4c4b4cd2
PH
13648#define OP_DEFN(op, len, args, binop) \
13649 case op: *oplenp = len; *argsp = args; break;
13650 ADA_OPERATORS;
13651#undef OP_DEFN
52ce6436
PH
13652
13653 case OP_AGGREGATE:
13654 *oplenp = 3;
13655 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13656 break;
13657
13658 case OP_CHOICES:
13659 *oplenp = 3;
13660 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13661 break;
13662
13663 case OP_STRING:
13664 case OP_NAME:
13665 {
13666 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13667
52ce6436
PH
13668 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13669 *argsp = 0;
13670 break;
13671 }
4c4b4cd2
PH
13672 }
13673}
13674
13675static int
13676ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13677{
13678 enum exp_opcode op = exp->elts[elt].opcode;
13679 int oplen, nargs;
13680 int pc = elt;
13681 int i;
76a01679 13682
4c4b4cd2
PH
13683 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13684
76a01679 13685 switch (op)
4c4b4cd2 13686 {
76a01679 13687 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13688 case OP_ATR_FIRST:
13689 case OP_ATR_LAST:
13690 case OP_ATR_LENGTH:
13691 case OP_ATR_IMAGE:
13692 case OP_ATR_MAX:
13693 case OP_ATR_MIN:
13694 case OP_ATR_MODULUS:
13695 case OP_ATR_POS:
13696 case OP_ATR_SIZE:
13697 case OP_ATR_TAG:
13698 case OP_ATR_VAL:
13699 break;
13700
13701 case UNOP_IN_RANGE:
13702 case UNOP_QUAL:
323e0a4a
AC
13703 /* XXX: gdb_sprint_host_address, type_sprint */
13704 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13705 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13706 fprintf_filtered (stream, " (");
13707 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13708 fprintf_filtered (stream, ")");
13709 break;
13710 case BINOP_IN_BOUNDS:
52ce6436
PH
13711 fprintf_filtered (stream, " (%d)",
13712 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13713 break;
13714 case TERNOP_IN_RANGE:
13715 break;
13716
52ce6436
PH
13717 case OP_AGGREGATE:
13718 case OP_OTHERS:
13719 case OP_DISCRETE_RANGE:
13720 case OP_POSITIONAL:
13721 case OP_CHOICES:
13722 break;
13723
13724 case OP_NAME:
13725 case OP_STRING:
13726 {
13727 char *name = &exp->elts[elt + 2].string;
13728 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13729
52ce6436
PH
13730 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13731 break;
13732 }
13733
4c4b4cd2
PH
13734 default:
13735 return dump_subexp_body_standard (exp, stream, elt);
13736 }
13737
13738 elt += oplen;
13739 for (i = 0; i < nargs; i += 1)
13740 elt = dump_subexp (exp, stream, elt);
13741
13742 return elt;
13743}
13744
13745/* The Ada extension of print_subexp (q.v.). */
13746
76a01679
JB
13747static void
13748ada_print_subexp (struct expression *exp, int *pos,
13749 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13750{
52ce6436 13751 int oplen, nargs, i;
4c4b4cd2
PH
13752 int pc = *pos;
13753 enum exp_opcode op = exp->elts[pc].opcode;
13754
13755 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13756
52ce6436 13757 *pos += oplen;
4c4b4cd2
PH
13758 switch (op)
13759 {
13760 default:
52ce6436 13761 *pos -= oplen;
4c4b4cd2
PH
13762 print_subexp_standard (exp, pos, stream, prec);
13763 return;
13764
13765 case OP_VAR_VALUE:
4c4b4cd2
PH
13766 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13767 return;
13768
13769 case BINOP_IN_BOUNDS:
323e0a4a 13770 /* XXX: sprint_subexp */
4c4b4cd2 13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13772 fputs_filtered (" in ", stream);
4c4b4cd2 13773 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13774 fputs_filtered ("'range", stream);
4c4b4cd2 13775 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13776 fprintf_filtered (stream, "(%ld)",
13777 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13778 return;
13779
13780 case TERNOP_IN_RANGE:
4c4b4cd2 13781 if (prec >= PREC_EQUAL)
76a01679 13782 fputs_filtered ("(", stream);
323e0a4a 13783 /* XXX: sprint_subexp */
4c4b4cd2 13784 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13785 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13786 print_subexp (exp, pos, stream, PREC_EQUAL);
13787 fputs_filtered (" .. ", stream);
13788 print_subexp (exp, pos, stream, PREC_EQUAL);
13789 if (prec >= PREC_EQUAL)
76a01679
JB
13790 fputs_filtered (")", stream);
13791 return;
4c4b4cd2
PH
13792
13793 case OP_ATR_FIRST:
13794 case OP_ATR_LAST:
13795 case OP_ATR_LENGTH:
13796 case OP_ATR_IMAGE:
13797 case OP_ATR_MAX:
13798 case OP_ATR_MIN:
13799 case OP_ATR_MODULUS:
13800 case OP_ATR_POS:
13801 case OP_ATR_SIZE:
13802 case OP_ATR_TAG:
13803 case OP_ATR_VAL:
4c4b4cd2 13804 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13805 {
13806 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13807 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13808 &type_print_raw_options);
76a01679
JB
13809 *pos += 3;
13810 }
4c4b4cd2 13811 else
76a01679 13812 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13813 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13814 if (nargs > 1)
76a01679
JB
13815 {
13816 int tem;
5b4ee69b 13817
76a01679
JB
13818 for (tem = 1; tem < nargs; tem += 1)
13819 {
13820 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13821 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13822 }
13823 fputs_filtered (")", stream);
13824 }
4c4b4cd2 13825 return;
14f9c5c9 13826
4c4b4cd2 13827 case UNOP_QUAL:
4c4b4cd2
PH
13828 type_print (exp->elts[pc + 1].type, "", stream, 0);
13829 fputs_filtered ("'(", stream);
13830 print_subexp (exp, pos, stream, PREC_PREFIX);
13831 fputs_filtered (")", stream);
13832 return;
14f9c5c9 13833
4c4b4cd2 13834 case UNOP_IN_RANGE:
323e0a4a 13835 /* XXX: sprint_subexp */
4c4b4cd2 13836 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13837 fputs_filtered (" in ", stream);
79d43c61
TT
13838 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13839 &type_print_raw_options);
4c4b4cd2 13840 return;
52ce6436
PH
13841
13842 case OP_DISCRETE_RANGE:
13843 print_subexp (exp, pos, stream, PREC_SUFFIX);
13844 fputs_filtered ("..", stream);
13845 print_subexp (exp, pos, stream, PREC_SUFFIX);
13846 return;
13847
13848 case OP_OTHERS:
13849 fputs_filtered ("others => ", stream);
13850 print_subexp (exp, pos, stream, PREC_SUFFIX);
13851 return;
13852
13853 case OP_CHOICES:
13854 for (i = 0; i < nargs-1; i += 1)
13855 {
13856 if (i > 0)
13857 fputs_filtered ("|", stream);
13858 print_subexp (exp, pos, stream, PREC_SUFFIX);
13859 }
13860 fputs_filtered (" => ", stream);
13861 print_subexp (exp, pos, stream, PREC_SUFFIX);
13862 return;
13863
13864 case OP_POSITIONAL:
13865 print_subexp (exp, pos, stream, PREC_SUFFIX);
13866 return;
13867
13868 case OP_AGGREGATE:
13869 fputs_filtered ("(", stream);
13870 for (i = 0; i < nargs; i += 1)
13871 {
13872 if (i > 0)
13873 fputs_filtered (", ", stream);
13874 print_subexp (exp, pos, stream, PREC_SUFFIX);
13875 }
13876 fputs_filtered (")", stream);
13877 return;
4c4b4cd2
PH
13878 }
13879}
14f9c5c9
AS
13880
13881/* Table mapping opcodes into strings for printing operators
13882 and precedences of the operators. */
13883
d2e4a39e
AS
13884static const struct op_print ada_op_print_tab[] = {
13885 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13886 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13887 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13888 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13889 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13890 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13891 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13892 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13893 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13894 {">=", BINOP_GEQ, PREC_ORDER, 0},
13895 {">", BINOP_GTR, PREC_ORDER, 0},
13896 {"<", BINOP_LESS, PREC_ORDER, 0},
13897 {">>", BINOP_RSH, PREC_SHIFT, 0},
13898 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13899 {"+", BINOP_ADD, PREC_ADD, 0},
13900 {"-", BINOP_SUB, PREC_ADD, 0},
13901 {"&", BINOP_CONCAT, PREC_ADD, 0},
13902 {"*", BINOP_MUL, PREC_MUL, 0},
13903 {"/", BINOP_DIV, PREC_MUL, 0},
13904 {"rem", BINOP_REM, PREC_MUL, 0},
13905 {"mod", BINOP_MOD, PREC_MUL, 0},
13906 {"**", BINOP_EXP, PREC_REPEAT, 0},
13907 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13908 {"-", UNOP_NEG, PREC_PREFIX, 0},
13909 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13910 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13911 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13912 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13913 {".all", UNOP_IND, PREC_SUFFIX, 1},
13914 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13915 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13916 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13917};
13918\f
72d5681a
PH
13919enum ada_primitive_types {
13920 ada_primitive_type_int,
13921 ada_primitive_type_long,
13922 ada_primitive_type_short,
13923 ada_primitive_type_char,
13924 ada_primitive_type_float,
13925 ada_primitive_type_double,
13926 ada_primitive_type_void,
13927 ada_primitive_type_long_long,
13928 ada_primitive_type_long_double,
13929 ada_primitive_type_natural,
13930 ada_primitive_type_positive,
13931 ada_primitive_type_system_address,
13932 nr_ada_primitive_types
13933};
6c038f32
PH
13934
13935static void
d4a9a881 13936ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13937 struct language_arch_info *lai)
13938{
d4a9a881 13939 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13940
72d5681a 13941 lai->primitive_type_vector
d4a9a881 13942 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13943 struct type *);
e9bb382b
UW
13944
13945 lai->primitive_type_vector [ada_primitive_type_int]
13946 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13947 0, "integer");
13948 lai->primitive_type_vector [ada_primitive_type_long]
13949 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13950 0, "long_integer");
13951 lai->primitive_type_vector [ada_primitive_type_short]
13952 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13953 0, "short_integer");
13954 lai->string_char_type
13955 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13956 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13957 lai->primitive_type_vector [ada_primitive_type_float]
13958 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13959 "float", NULL);
13960 lai->primitive_type_vector [ada_primitive_type_double]
13961 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13962 "long_float", NULL);
13963 lai->primitive_type_vector [ada_primitive_type_long_long]
13964 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13965 0, "long_long_integer");
13966 lai->primitive_type_vector [ada_primitive_type_long_double]
13967 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13968 "long_long_float", NULL);
13969 lai->primitive_type_vector [ada_primitive_type_natural]
13970 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13971 0, "natural");
13972 lai->primitive_type_vector [ada_primitive_type_positive]
13973 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13974 0, "positive");
13975 lai->primitive_type_vector [ada_primitive_type_void]
13976 = builtin->builtin_void;
13977
13978 lai->primitive_type_vector [ada_primitive_type_system_address]
13979 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13980 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13981 = "system__address";
fbb06eb1 13982
47e729a8 13983 lai->bool_type_symbol = NULL;
fbb06eb1 13984 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13985}
6c038f32
PH
13986\f
13987 /* Language vector */
13988
13989/* Not really used, but needed in the ada_language_defn. */
13990
13991static void
6c7a06a3 13992emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13993{
6c7a06a3 13994 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13995}
13996
13997static int
410a0ff2 13998parse (struct parser_state *ps)
6c038f32
PH
13999{
14000 warnings_issued = 0;
410a0ff2 14001 return ada_parse (ps);
6c038f32
PH
14002}
14003
14004static const struct exp_descriptor ada_exp_descriptor = {
14005 ada_print_subexp,
14006 ada_operator_length,
c0201579 14007 ada_operator_check,
6c038f32
PH
14008 ada_op_name,
14009 ada_dump_subexp_body,
14010 ada_evaluate_subexp
14011};
14012
1a119f36 14013/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
14014 for Ada. */
14015
1a119f36
JB
14016static symbol_name_cmp_ftype
14017ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
14018{
14019 if (should_use_wild_match (lookup_name))
14020 return wild_match;
14021 else
14022 return compare_names;
14023}
14024
a5ee536b
JB
14025/* Implement the "la_read_var_value" language_defn method for Ada. */
14026
14027static struct value *
63e43d3a
PMR
14028ada_read_var_value (struct symbol *var, const struct block *var_block,
14029 struct frame_info *frame)
a5ee536b 14030{
3977b71f 14031 const struct block *frame_block = NULL;
a5ee536b
JB
14032 struct symbol *renaming_sym = NULL;
14033
14034 /* The only case where default_read_var_value is not sufficient
14035 is when VAR is a renaming... */
14036 if (frame)
14037 frame_block = get_frame_block (frame, NULL);
14038 if (frame_block)
14039 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14040 if (renaming_sym != NULL)
14041 return ada_read_renaming_var_value (renaming_sym, frame_block);
14042
14043 /* This is a typical case where we expect the default_read_var_value
14044 function to work. */
63e43d3a 14045 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14046}
14047
6c038f32
PH
14048const struct language_defn ada_language_defn = {
14049 "ada", /* Language name */
6abde28f 14050 "Ada",
6c038f32 14051 language_ada,
6c038f32 14052 range_check_off,
6c038f32
PH
14053 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14054 that's not quite what this means. */
6c038f32 14055 array_row_major,
9a044a89 14056 macro_expansion_no,
6c038f32
PH
14057 &ada_exp_descriptor,
14058 parse,
b3f11165 14059 ada_yyerror,
6c038f32
PH
14060 resolve,
14061 ada_printchar, /* Print a character constant */
14062 ada_printstr, /* Function to print string constant */
14063 emit_char, /* Function to print single char (not used) */
6c038f32 14064 ada_print_type, /* Print a type using appropriate syntax */
be942545 14065 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14066 ada_val_print, /* Print a value using appropriate syntax */
14067 ada_value_print, /* Print a top-level value */
a5ee536b 14068 ada_read_var_value, /* la_read_var_value */
6c038f32 14069 NULL, /* Language specific skip_trampoline */
2b2d9e11 14070 NULL, /* name_of_this */
6c038f32
PH
14071 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14072 basic_lookup_transparent_type, /* lookup_transparent_type */
14073 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
14074 NULL, /* Language specific
14075 class_name_from_physname */
6c038f32
PH
14076 ada_op_print_tab, /* expression operators for printing */
14077 0, /* c-style arrays */
14078 1, /* String lower bound */
6c038f32 14079 ada_get_gdb_completer_word_break_characters,
41d27058 14080 ada_make_symbol_completion_list,
72d5681a 14081 ada_language_arch_info,
e79af960 14082 ada_print_array_index,
41f1b697 14083 default_pass_by_reference,
ae6a3a4c 14084 c_get_string,
1a119f36 14085 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14086 ada_iterate_over_symbols,
a53b64ea 14087 &ada_varobj_ops,
bb2ec1b3
TT
14088 NULL,
14089 NULL,
6c038f32
PH
14090 LANG_MAGIC
14091};
14092
2c0b251b
PA
14093/* Provide a prototype to silence -Wmissing-prototypes. */
14094extern initialize_file_ftype _initialize_ada_language;
14095
5bf03f13
JB
14096/* Command-list for the "set/show ada" prefix command. */
14097static struct cmd_list_element *set_ada_list;
14098static struct cmd_list_element *show_ada_list;
14099
14100/* Implement the "set ada" prefix command. */
14101
14102static void
14103set_ada_command (char *arg, int from_tty)
14104{
14105 printf_unfiltered (_(\
14106"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14107 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14108}
14109
14110/* Implement the "show ada" prefix command. */
14111
14112static void
14113show_ada_command (char *args, int from_tty)
14114{
14115 cmd_show_list (show_ada_list, from_tty, "");
14116}
14117
2060206e
PA
14118static void
14119initialize_ada_catchpoint_ops (void)
14120{
14121 struct breakpoint_ops *ops;
14122
14123 initialize_breakpoint_ops ();
14124
14125 ops = &catch_exception_breakpoint_ops;
14126 *ops = bkpt_breakpoint_ops;
14127 ops->dtor = dtor_catch_exception;
14128 ops->allocate_location = allocate_location_catch_exception;
14129 ops->re_set = re_set_catch_exception;
14130 ops->check_status = check_status_catch_exception;
14131 ops->print_it = print_it_catch_exception;
14132 ops->print_one = print_one_catch_exception;
14133 ops->print_mention = print_mention_catch_exception;
14134 ops->print_recreate = print_recreate_catch_exception;
14135
14136 ops = &catch_exception_unhandled_breakpoint_ops;
14137 *ops = bkpt_breakpoint_ops;
14138 ops->dtor = dtor_catch_exception_unhandled;
14139 ops->allocate_location = allocate_location_catch_exception_unhandled;
14140 ops->re_set = re_set_catch_exception_unhandled;
14141 ops->check_status = check_status_catch_exception_unhandled;
14142 ops->print_it = print_it_catch_exception_unhandled;
14143 ops->print_one = print_one_catch_exception_unhandled;
14144 ops->print_mention = print_mention_catch_exception_unhandled;
14145 ops->print_recreate = print_recreate_catch_exception_unhandled;
14146
14147 ops = &catch_assert_breakpoint_ops;
14148 *ops = bkpt_breakpoint_ops;
14149 ops->dtor = dtor_catch_assert;
14150 ops->allocate_location = allocate_location_catch_assert;
14151 ops->re_set = re_set_catch_assert;
14152 ops->check_status = check_status_catch_assert;
14153 ops->print_it = print_it_catch_assert;
14154 ops->print_one = print_one_catch_assert;
14155 ops->print_mention = print_mention_catch_assert;
14156 ops->print_recreate = print_recreate_catch_assert;
14157}
14158
3d9434b5
JB
14159/* This module's 'new_objfile' observer. */
14160
14161static void
14162ada_new_objfile_observer (struct objfile *objfile)
14163{
14164 ada_clear_symbol_cache ();
14165}
14166
14167/* This module's 'free_objfile' observer. */
14168
14169static void
14170ada_free_objfile_observer (struct objfile *objfile)
14171{
14172 ada_clear_symbol_cache ();
14173}
14174
d2e4a39e 14175void
6c038f32 14176_initialize_ada_language (void)
14f9c5c9 14177{
6c038f32
PH
14178 add_language (&ada_language_defn);
14179
2060206e
PA
14180 initialize_ada_catchpoint_ops ();
14181
5bf03f13
JB
14182 add_prefix_cmd ("ada", no_class, set_ada_command,
14183 _("Prefix command for changing Ada-specfic settings"),
14184 &set_ada_list, "set ada ", 0, &setlist);
14185
14186 add_prefix_cmd ("ada", no_class, show_ada_command,
14187 _("Generic command for showing Ada-specific settings."),
14188 &show_ada_list, "show ada ", 0, &showlist);
14189
14190 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14191 &trust_pad_over_xvs, _("\
14192Enable or disable an optimization trusting PAD types over XVS types"), _("\
14193Show whether an optimization trusting PAD types over XVS types is activated"),
14194 _("\
14195This is related to the encoding used by the GNAT compiler. The debugger\n\
14196should normally trust the contents of PAD types, but certain older versions\n\
14197of GNAT have a bug that sometimes causes the information in the PAD type\n\
14198to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14199work around this bug. It is always safe to turn this option \"off\", but\n\
14200this incurs a slight performance penalty, so it is recommended to NOT change\n\
14201this option to \"off\" unless necessary."),
14202 NULL, NULL, &set_ada_list, &show_ada_list);
14203
d72413e6
PMR
14204 add_setshow_boolean_cmd ("print-signatures", class_vars,
14205 &print_signatures, _("\
14206Enable or disable the output of formal and return types for functions in the \
14207overloads selection menu"), _("\
14208Show whether the output of formal and return types for functions in the \
14209overloads selection menu is activated"),
14210 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14211
9ac4176b
PA
14212 add_catch_command ("exception", _("\
14213Catch Ada exceptions, when raised.\n\
14214With an argument, catch only exceptions with the given name."),
14215 catch_ada_exception_command,
14216 NULL,
14217 CATCH_PERMANENT,
14218 CATCH_TEMPORARY);
14219 add_catch_command ("assert", _("\
14220Catch failed Ada assertions, when raised.\n\
14221With an argument, catch only exceptions with the given name."),
14222 catch_assert_command,
14223 NULL,
14224 CATCH_PERMANENT,
14225 CATCH_TEMPORARY);
14226
6c038f32 14227 varsize_limit = 65536;
6c038f32 14228
778865d3
JB
14229 add_info ("exceptions", info_exceptions_command,
14230 _("\
14231List all Ada exception names.\n\
14232If a regular expression is passed as an argument, only those matching\n\
14233the regular expression are listed."));
14234
c6044dd1
JB
14235 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14236 _("Set Ada maintenance-related variables."),
14237 &maint_set_ada_cmdlist, "maintenance set ada ",
14238 0/*allow-unknown*/, &maintenance_set_cmdlist);
14239
14240 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14241 _("Show Ada maintenance-related variables"),
14242 &maint_show_ada_cmdlist, "maintenance show ada ",
14243 0/*allow-unknown*/, &maintenance_show_cmdlist);
14244
14245 add_setshow_boolean_cmd
14246 ("ignore-descriptive-types", class_maintenance,
14247 &ada_ignore_descriptive_types_p,
14248 _("Set whether descriptive types generated by GNAT should be ignored."),
14249 _("Show whether descriptive types generated by GNAT should be ignored."),
14250 _("\
14251When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14252DWARF attribute."),
14253 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14254
6c038f32
PH
14255 obstack_init (&symbol_list_obstack);
14256
14257 decoded_names_store = htab_create_alloc
14258 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14259 NULL, xcalloc, xfree);
6b69afc4 14260
3d9434b5
JB
14261 /* The ada-lang observers. */
14262 observer_attach_new_objfile (ada_new_objfile_observer);
14263 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14264 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14265
14266 /* Setup various context-specific data. */
e802dbe0 14267 ada_inferior_data
8e260fc0 14268 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14269 ada_pspace_data_handle
14270 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14271}
This page took 2.069336 seconds and 4 git commands to generate.