Change iterate_over_symbols to return bool
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4 51#include "observable.h"
268a13a5 52#include "gdbsupport/vec.h"
692465f1 53#include "stack.h"
268a13a5 54#include "gdbsupport/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
268a13a5
TT
63#include "gdbsupport/function-view.h"
64#include "gdbsupport/byte-vector.h"
4de283e4 65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
a121b7c1 149static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 150 int, int);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 191
d2e4a39e 192static int equiv_types (struct type *, struct type *);
14f9c5c9 193
d2e4a39e 194static int is_name_suffix (const char *);
14f9c5c9 195
73589123
PH
196static int advance_wild_match (const char **, const char *, int);
197
b5ec771e 198static bool wild_match (const char *name, const char *patn);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
108d56a4 211static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
0d5cff50 217static int find_struct_field (const char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2 219
d12307c1 220static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 221 struct value **, int, const char *,
2a612529 222 struct type *, int);
4c4b4cd2 223
4c4b4cd2
PH
224static int ada_is_direct_array_type (struct type *);
225
72d5681a
PH
226static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
714e53ab 228
52ce6436
PH
229static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
233 struct expression *,
234 int *, enum noside);
52ce6436
PH
235
236static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
852dff6c
JB
260
261static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
262
263static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
4c4b4cd2
PH
266\f
267
ee01b665
JB
268/* The result of a symbol lookup to be stored in our symbol cache. */
269
270struct cache_entry
271{
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
fe978cb0 275 domain_enum domain;
ee01b665
JB
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284};
285
286/* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295#define HASH_SIZE 1009
296
297struct ada_symbol_cache
298{
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304};
305
306static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 307
4c4b4cd2 308/* Maximum-sized dynamic type. */
14f9c5c9
AS
309static unsigned int varsize_limit;
310
67cb5b2d 311static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
312#ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314#else
14f9c5c9 315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 316#endif
14f9c5c9 317
4c4b4cd2 318/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 319static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 320 = "__gnat_ada_main_program_name";
14f9c5c9 321
4c4b4cd2
PH
322/* Limit on the number of warnings to raise per expression evaluation. */
323static int warning_limit = 2;
324
325/* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327static int warnings_issued = 0;
328
329static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331};
332
333static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335};
336
c6044dd1
JB
337/* Maintenance-related settings for this module. */
338
339static struct cmd_list_element *maint_set_ada_cmdlist;
340static struct cmd_list_element *maint_show_ada_cmdlist;
341
342/* Implement the "maintenance set ada" (prefix) command. */
343
344static void
981a3fb3 345maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 346{
635c7e8a
TT
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
c6044dd1
JB
349}
350
351/* Implement the "maintenance show ada" (prefix) command. */
352
353static void
981a3fb3 354maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
355{
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357}
358
359/* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361static int ada_ignore_descriptive_types_p = 0;
362
e802dbe0
JB
363 /* Inferior-specific data. */
364
365/* Per-inferior data for this module. */
366
367struct ada_inferior_data
368{
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
f37b313d 373 struct type *tsd_type = nullptr;
3eecfa55
JB
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
f37b313d 378 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
379};
380
381/* Our key to this module's inferior data. */
f37b313d 382static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
383
384/* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392static struct ada_inferior_data *
393get_ada_inferior_data (struct inferior *inf)
394{
395 struct ada_inferior_data *data;
396
f37b313d 397 data = ada_inferior_data.get (inf);
e802dbe0 398 if (data == NULL)
f37b313d 399 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
400
401 return data;
402}
403
404/* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407static void
408ada_inferior_exit (struct inferior *inf)
409{
f37b313d 410 ada_inferior_data.clear (inf);
e802dbe0
JB
411}
412
ee01b665
JB
413
414 /* program-space-specific data. */
415
416/* This module's per-program-space data. */
417struct ada_pspace_data
418{
f37b313d
TT
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
ee01b665 425 /* The Ada symbol cache. */
f37b313d 426 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
427};
428
429/* Key to our per-program-space data. */
f37b313d 430static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
431
432/* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437static struct ada_pspace_data *
438get_ada_pspace_data (struct program_space *pspace)
439{
440 struct ada_pspace_data *data;
441
f37b313d 442 data = ada_pspace_data_handle.get (pspace);
ee01b665 443 if (data == NULL)
f37b313d 444 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
445
446 return data;
447}
448
4c4b4cd2
PH
449 /* Utilities */
450
720d1a40 451/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 452 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478static struct type *
479ada_typedef_target_type (struct type *type)
480{
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484}
485
41d27058
JB
486/* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490static const char *
491ada_unqualified_name (const char *decoded_name)
492{
2b0f535a
JB
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
41d27058
JB
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509}
510
39e7af3e 511/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 512
39e7af3e 513static std::string
41d27058
JB
514add_angle_brackets (const char *str)
515{
39e7af3e 516 return string_printf ("<%s>", str);
41d27058 517}
96d887e8 518
67cb5b2d 519static const char *
4c4b4cd2
PH
520ada_get_gdb_completer_word_break_characters (void)
521{
522 return ada_completer_word_break_characters;
523}
524
e79af960
JB
525/* Print an array element index using the Ada syntax. */
526
527static void
528ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 529 const struct value_print_options *options)
e79af960 530{
79a45b7d 531 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
532 fprintf_filtered (stream, " => ");
533}
534
e2b7af72
JB
535/* la_watch_location_expression for Ada. */
536
537gdb::unique_xmalloc_ptr<char>
538ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539{
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544}
545
f27cf670 546/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 548 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 549
f27cf670
AS
550void *
551grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 552{
d2e4a39e
AS
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
4c4b4cd2 557 *size = min_size;
f27cf670 558 vect = xrealloc (vect, *size * element_size);
d2e4a39e 559 }
f27cf670 560 return vect;
14f9c5c9
AS
561}
562
563/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 564 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
565
566static int
ebf56fd3 567field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
568{
569 int len = strlen (target);
5b4ee69b 570
d2e4a39e 571 return
4c4b4cd2
PH
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
61012eef 574 || (startswith (field_name + len, "___")
76a01679
JB
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
14f9c5c9
AS
577}
578
579
872c8b51
JB
580/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
587
588int
589ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591{
592 int fieldno;
872c8b51
JB
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
597 return fieldno;
598
599 if (!maybe_missing)
323e0a4a 600 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 601 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
602
603 return -1;
604}
605
606/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
607
608int
d2e4a39e 609ada_name_prefix_len (const char *name)
14f9c5c9
AS
610{
611 if (name == NULL)
612 return 0;
d2e4a39e 613 else
14f9c5c9 614 {
d2e4a39e 615 const char *p = strstr (name, "___");
5b4ee69b 616
14f9c5c9 617 if (p == NULL)
4c4b4cd2 618 return strlen (name);
14f9c5c9 619 else
4c4b4cd2 620 return p - name;
14f9c5c9
AS
621 }
622}
623
4c4b4cd2
PH
624/* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
14f9c5c9 627static int
d2e4a39e 628is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
629{
630 int len1, len2;
5b4ee69b 631
14f9c5c9
AS
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
4c4b4cd2 636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
637}
638
4c4b4cd2
PH
639/* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
14f9c5c9 641
d2e4a39e 642static struct value *
4c4b4cd2 643coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 644{
61ee279c 645 type = ada_check_typedef (type);
df407dfe 646 if (value_type (val) == type)
4c4b4cd2 647 return val;
d2e4a39e 648 else
14f9c5c9 649 {
4c4b4cd2
PH
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
c1b5a1a6 654 ada_ensure_varsize_limit (type);
4c4b4cd2 655
41e8491f
JK
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
9a0dc9e3 662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 663 }
74bcbdf3 664 set_value_component_location (result, val);
9bbda503
AC
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
14f9c5c9
AS
669 return result;
670 }
671}
672
fc1a4b47
AC
673static const gdb_byte *
674cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
675{
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680}
681
682static CORE_ADDR
ebf56fd3 683cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
684{
685 if (address == 0)
686 return 0;
d2e4a39e 687 else
14f9c5c9
AS
688 return address + offset;
689}
690
4c4b4cd2
PH
691/* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
a2249542 695
77109804
AC
696/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
a0b31db1 698static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 699
14f9c5c9 700static void
a2249542 701lim_warning (const char *format, ...)
14f9c5c9 702{
a2249542 703 va_list args;
a2249542 704
5b4ee69b 705 va_start (args, format);
4c4b4cd2
PH
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
a2249542
MK
708 vwarning (format, args);
709
710 va_end (args);
4c4b4cd2
PH
711}
712
714e53ab
PH
713/* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
c1b5a1a6
JB
717void
718ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
719{
720 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 721 error (_("object size is larger than varsize-limit"));
714e53ab
PH
722}
723
0963b4bd 724/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 725static LONGEST
c3e5cd34 726max_of_size (int size)
4c4b4cd2 727{
76a01679 728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 729
76a01679 730 return top_bit | (top_bit - 1);
4c4b4cd2
PH
731}
732
0963b4bd 733/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 734static LONGEST
c3e5cd34 735min_of_size (int size)
4c4b4cd2 736{
c3e5cd34 737 return -max_of_size (size) - 1;
4c4b4cd2
PH
738}
739
0963b4bd 740/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 741static ULONGEST
c3e5cd34 742umax_of_size (int size)
4c4b4cd2 743{
76a01679 744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 745
76a01679 746 return top_bit | (top_bit - 1);
4c4b4cd2
PH
747}
748
0963b4bd 749/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
750static LONGEST
751max_of_type (struct type *t)
4c4b4cd2 752{
c3e5cd34
PH
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757}
758
0963b4bd 759/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
760static LONGEST
761min_of_type (struct type *t)
762{
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
767}
768
769/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
770LONGEST
771ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 772{
c3345124 773 type = resolve_dynamic_type (type, NULL, 0);
76a01679 774 switch (TYPE_CODE (type))
4c4b4cd2
PH
775 {
776 case TYPE_CODE_RANGE:
690cc4eb 777 return TYPE_HIGH_BOUND (type);
4c4b4cd2 778 case TYPE_CODE_ENUM:
14e75d8e 779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
76a01679 783 case TYPE_CODE_INT:
690cc4eb 784 return max_of_type (type);
4c4b4cd2 785 default:
43bbcdc2 786 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
787 }
788}
789
14e75d8e 790/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_LOW_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return min_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
808 }
809}
810
811/* The identity on non-range types. For range types, the underlying
76a01679 812 non-range scalar type. */
4c4b4cd2
PH
813
814static struct type *
18af8284 815get_base_type (struct type *type)
4c4b4cd2
PH
816{
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
76a01679
JB
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
4c4b4cd2
PH
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
14f9c5c9 824}
41246937
JB
825
826/* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831struct value *
832ada_get_decoded_value (struct value *value)
833{
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849}
850
851/* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856struct type *
857ada_get_decoded_type (struct type *type)
858{
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863}
864
4c4b4cd2 865\f
76a01679 866
4c4b4cd2 867 /* Language Selection */
14f9c5c9
AS
868
869/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 870 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 871
14f9c5c9 872enum language
ccefe4c4 873ada_update_initial_language (enum language lang)
14f9c5c9 874{
cafb3438 875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 876 return language_ada;
14f9c5c9
AS
877
878 return lang;
879}
96d887e8
PH
880
881/* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885char *
886ada_main_name (void)
887{
3b7344d5 888 struct bound_minimal_symbol msym;
e83e4e24 889 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 890
96d887e8
PH
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
3b7344d5 898 if (msym.minsym != NULL)
96d887e8 899 {
f9bc20b9
JB
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
77e371c0 903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 904 if (main_program_name_addr == 0)
323e0a4a 905 error (_("Invalid address for Ada main program name."));
96d887e8 906
f9bc20b9
JB
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
e83e4e24 912 return main_program_name.get ();
96d887e8
PH
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917}
14f9c5c9 918\f
4c4b4cd2 919 /* Symbols */
d2e4a39e 920
4c4b4cd2
PH
921/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
14f9c5c9 923
d2e4a39e
AS
924const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
14f9c5c9
AS
947};
948
b5ec771e
PA
949/* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
4c4b4cd2 953
b5ec771e
PA
954static char *
955ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 956{
4c4b4cd2
PH
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
d2e4a39e 959 const char *p;
14f9c5c9 960 int k;
d2e4a39e 961
4c4b4cd2 962 if (decoded == NULL)
14f9c5c9
AS
963 return NULL;
964
4c4b4cd2
PH
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
14f9c5c9
AS
967
968 k = 0;
4c4b4cd2 969 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 970 {
cdc7bb92 971 if (*p == '.')
4c4b4cd2
PH
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
14f9c5c9 976 else if (*p == '"')
4c4b4cd2
PH
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
1265e4aa 981 mapping->encoded != NULL
61012eef 982 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
983 ;
984 if (mapping->encoded == NULL)
b5ec771e
PA
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
4c4b4cd2
PH
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
d2e4a39e 995 else
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
14f9c5c9
AS
1000 }
1001
4c4b4cd2
PH
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
14f9c5c9
AS
1004}
1005
b5ec771e
PA
1006/* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009char *
1010ada_encode (const char *decoded)
1011{
1012 return ada_encode_1 (decoded, true);
1013}
1014
14f9c5c9 1015/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
d2e4a39e
AS
1019char *
1020ada_fold_name (const char *name)
14f9c5c9 1021{
d2e4a39e 1022 static char *fold_buffer = NULL;
14f9c5c9
AS
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
d2e4a39e 1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1027
1028 if (name[0] == '\'')
1029 {
d2e4a39e
AS
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1032 }
1033 else
1034 {
1035 int i;
5b4ee69b 1036
14f9c5c9 1037 for (i = 0; i <= len; i += 1)
4c4b4cd2 1038 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1039 }
1040
1041 return fold_buffer;
1042}
1043
529cad9c
PH
1044/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046static int
1047is_lower_alphanum (const char c)
1048{
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050}
1051
c90092fe
JB
1052/* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
29480c32
JB
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
c90092fe 1059
29480c32
JB
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064static void
1065ada_remove_trailing_digits (const char *encoded, int *len)
1066{
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
5b4ee69b 1070
29480c32
JB
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
61012eef 1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1078 *len = i - 2;
61012eef 1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1080 *len = i - 1;
1081 }
1082}
1083
1084/* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087static void
1088ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089{
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
0963b4bd 1095 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104}
1105
1106/* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
14f9c5c9 1109
4c4b4cd2 1110 The resulting string is valid until the next call of ada_decode.
29480c32 1111 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1112 is returned. */
1113
1114const char *
1115ada_decode (const char *encoded)
14f9c5c9
AS
1116{
1117 int i, j;
1118 int len0;
d2e4a39e 1119 const char *p;
4c4b4cd2 1120 char *decoded;
14f9c5c9 1121 int at_start_name;
4c4b4cd2
PH
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
d2e4a39e 1124
0d81f350
JG
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
29480c32
JB
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
61012eef 1133 if (startswith (encoded, "_ada_"))
4c4b4cd2 1134 encoded += 5;
14f9c5c9 1135
29480c32
JB
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
4c4b4cd2 1139 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1140 goto Suppress;
1141
4c4b4cd2 1142 len0 = strlen (encoded);
4c4b4cd2 1143
29480c32
JB
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1146
4c4b4cd2
PH
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1153 {
1154 if (p[3] == 'X')
4c4b4cd2 1155 len0 = p - encoded;
14f9c5c9 1156 else
4c4b4cd2 1157 goto Suppress;
14f9c5c9 1158 }
4c4b4cd2 1159
29480c32
JB
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
61012eef 1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1165 len0 -= 3;
76a01679 1166
a10967fa
JB
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
61012eef 1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1172 len0 -= 2;
1173
29480c32
JB
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
61012eef 1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1178 len0 -= 1;
1179
4c4b4cd2 1180 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1181
4c4b4cd2
PH
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
14f9c5c9 1184
29480c32
JB
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
4c4b4cd2 1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1188 {
4c4b4cd2
PH
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
d2e4a39e 1197 }
14f9c5c9 1198
29480c32
JB
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
4c4b4cd2
PH
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
14f9c5c9
AS
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
29480c32 1208 /* Is this a symbol function? */
4c4b4cd2
PH
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
5b4ee69b 1212
4c4b4cd2
PH
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
14f9c5c9
AS
1230 at_start_name = 0;
1231
529cad9c
PH
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
61012eef 1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1236 i += 2;
529cad9c 1237
29480c32
JB
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
529cad9c
PH
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1260 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
4c4b4cd2
PH
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
29480c32
JB
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
4c4b4cd2
PH
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
cdc7bb92 1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1325 {
29480c32 1326 /* Replace '__' by '.'. */
4c4b4cd2
PH
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
14f9c5c9 1332 else
4c4b4cd2 1333 {
29480c32
JB
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
4c4b4cd2
PH
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
14f9c5c9 1340 }
4c4b4cd2 1341 decoded[j] = '\000';
14f9c5c9 1342
29480c32
JB
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
4c4b4cd2
PH
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1348 goto Suppress;
1349
4c4b4cd2
PH
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
14f9c5c9
AS
1354
1355Suppress:
4c4b4cd2
PH
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
14f9c5c9 1360 else
88c15c34 1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1362 return decoded;
1363
1364}
1365
1366/* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371static struct htab *decoded_names_store;
1372
1373/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1378 GSYMBOL).
4c4b4cd2
PH
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1381 when a decoded name is cached in it. */
4c4b4cd2 1382
45e6c716 1383const char *
f85f34ed 1384ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1385{
f85f34ed
TT
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
615b3f62 1388 &gsymbol->language_specific.demangled_name;
5b4ee69b 1389
f85f34ed 1390 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1393 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1394
f85f34ed 1395 gsymbol->ada_mangled = 1;
5b4ee69b 1396
f85f34ed 1397 if (obstack != NULL)
021887d8 1398 *resultp = obstack_strdup (obstack, decoded);
f85f34ed 1399 else
76a01679 1400 {
f85f34ed
TT
1401 /* Sometimes, we can't find a corresponding objfile, in
1402 which case, we put the result on the heap. Since we only
1403 decode when needed, we hope this usually does not cause a
1404 significant memory leak (FIXME). */
1405
76a01679
JB
1406 char **slot = (char **) htab_find_slot (decoded_names_store,
1407 decoded, INSERT);
5b4ee69b 1408
76a01679
JB
1409 if (*slot == NULL)
1410 *slot = xstrdup (decoded);
1411 *resultp = *slot;
1412 }
4c4b4cd2 1413 }
14f9c5c9 1414
4c4b4cd2
PH
1415 return *resultp;
1416}
76a01679 1417
2c0b251b 1418static char *
76a01679 1419ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1420{
1421 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1422}
1423
8b302db8
TT
1424/* Implement la_sniff_from_mangled_name for Ada. */
1425
1426static int
1427ada_sniff_from_mangled_name (const char *mangled, char **out)
1428{
1429 const char *demangled = ada_decode (mangled);
1430
1431 *out = NULL;
1432
1433 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1434 {
1435 /* Set the gsymbol language to Ada, but still return 0.
1436 Two reasons for that:
1437
1438 1. For Ada, we prefer computing the symbol's decoded name
1439 on the fly rather than pre-compute it, in order to save
1440 memory (Ada projects are typically very large).
1441
1442 2. There are some areas in the definition of the GNAT
1443 encoding where, with a bit of bad luck, we might be able
1444 to decode a non-Ada symbol, generating an incorrect
1445 demangled name (Eg: names ending with "TB" for instance
1446 are identified as task bodies and so stripped from
1447 the decoded name returned).
1448
1449 Returning 1, here, but not setting *DEMANGLED, helps us get a
1450 little bit of the best of both worlds. Because we're last,
1451 we should not affect any of the other languages that were
1452 able to demangle the symbol before us; we get to correctly
1453 tag Ada symbols as such; and even if we incorrectly tagged a
1454 non-Ada symbol, which should be rare, any routing through the
1455 Ada language should be transparent (Ada tries to behave much
1456 like C/C++ with non-Ada symbols). */
1457 return 1;
1458 }
1459
1460 return 0;
1461}
1462
14f9c5c9 1463\f
d2e4a39e 1464
4c4b4cd2 1465 /* Arrays */
14f9c5c9 1466
28c85d6c
JB
1467/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1468 generated by the GNAT compiler to describe the index type used
1469 for each dimension of an array, check whether it follows the latest
1470 known encoding. If not, fix it up to conform to the latest encoding.
1471 Otherwise, do nothing. This function also does nothing if
1472 INDEX_DESC_TYPE is NULL.
1473
1474 The GNAT encoding used to describle the array index type evolved a bit.
1475 Initially, the information would be provided through the name of each
1476 field of the structure type only, while the type of these fields was
1477 described as unspecified and irrelevant. The debugger was then expected
1478 to perform a global type lookup using the name of that field in order
1479 to get access to the full index type description. Because these global
1480 lookups can be very expensive, the encoding was later enhanced to make
1481 the global lookup unnecessary by defining the field type as being
1482 the full index type description.
1483
1484 The purpose of this routine is to allow us to support older versions
1485 of the compiler by detecting the use of the older encoding, and by
1486 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1487 we essentially replace each field's meaningless type by the associated
1488 index subtype). */
1489
1490void
1491ada_fixup_array_indexes_type (struct type *index_desc_type)
1492{
1493 int i;
1494
1495 if (index_desc_type == NULL)
1496 return;
1497 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1498
1499 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1500 to check one field only, no need to check them all). If not, return
1501 now.
1502
1503 If our INDEX_DESC_TYPE was generated using the older encoding,
1504 the field type should be a meaningless integer type whose name
1505 is not equal to the field name. */
1506 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1507 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1508 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1509 return;
1510
1511 /* Fixup each field of INDEX_DESC_TYPE. */
1512 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1513 {
0d5cff50 1514 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1515 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1516
1517 if (raw_type)
1518 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1519 }
1520}
1521
4c4b4cd2 1522/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1523
a121b7c1 1524static const char *bound_name[] = {
d2e4a39e 1525 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1526 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1527};
1528
1529/* Maximum number of array dimensions we are prepared to handle. */
1530
4c4b4cd2 1531#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1532
14f9c5c9 1533
4c4b4cd2
PH
1534/* The desc_* routines return primitive portions of array descriptors
1535 (fat pointers). */
14f9c5c9
AS
1536
1537/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1538 level of indirection, if needed. */
1539
d2e4a39e
AS
1540static struct type *
1541desc_base_type (struct type *type)
14f9c5c9
AS
1542{
1543 if (type == NULL)
1544 return NULL;
61ee279c 1545 type = ada_check_typedef (type);
720d1a40
JB
1546 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1547 type = ada_typedef_target_type (type);
1548
1265e4aa
JB
1549 if (type != NULL
1550 && (TYPE_CODE (type) == TYPE_CODE_PTR
1551 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1552 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1553 else
1554 return type;
1555}
1556
4c4b4cd2
PH
1557/* True iff TYPE indicates a "thin" array pointer type. */
1558
14f9c5c9 1559static int
d2e4a39e 1560is_thin_pntr (struct type *type)
14f9c5c9 1561{
d2e4a39e 1562 return
14f9c5c9
AS
1563 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1564 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1565}
1566
4c4b4cd2
PH
1567/* The descriptor type for thin pointer type TYPE. */
1568
d2e4a39e
AS
1569static struct type *
1570thin_descriptor_type (struct type *type)
14f9c5c9 1571{
d2e4a39e 1572 struct type *base_type = desc_base_type (type);
5b4ee69b 1573
14f9c5c9
AS
1574 if (base_type == NULL)
1575 return NULL;
1576 if (is_suffix (ada_type_name (base_type), "___XVE"))
1577 return base_type;
d2e4a39e 1578 else
14f9c5c9 1579 {
d2e4a39e 1580 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1581
14f9c5c9 1582 if (alt_type == NULL)
4c4b4cd2 1583 return base_type;
14f9c5c9 1584 else
4c4b4cd2 1585 return alt_type;
14f9c5c9
AS
1586 }
1587}
1588
4c4b4cd2
PH
1589/* A pointer to the array data for thin-pointer value VAL. */
1590
d2e4a39e
AS
1591static struct value *
1592thin_data_pntr (struct value *val)
14f9c5c9 1593{
828292f2 1594 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1595 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1596
556bdfd4
UW
1597 data_type = lookup_pointer_type (data_type);
1598
14f9c5c9 1599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1600 return value_cast (data_type, value_copy (val));
d2e4a39e 1601 else
42ae5230 1602 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1603}
1604
4c4b4cd2
PH
1605/* True iff TYPE indicates a "thick" array pointer type. */
1606
14f9c5c9 1607static int
d2e4a39e 1608is_thick_pntr (struct type *type)
14f9c5c9
AS
1609{
1610 type = desc_base_type (type);
1611 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1612 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1613}
1614
4c4b4cd2
PH
1615/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1617
d2e4a39e
AS
1618static struct type *
1619desc_bounds_type (struct type *type)
14f9c5c9 1620{
d2e4a39e 1621 struct type *r;
14f9c5c9
AS
1622
1623 type = desc_base_type (type);
1624
1625 if (type == NULL)
1626 return NULL;
1627 else if (is_thin_pntr (type))
1628 {
1629 type = thin_descriptor_type (type);
1630 if (type == NULL)
4c4b4cd2 1631 return NULL;
14f9c5c9
AS
1632 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1633 if (r != NULL)
61ee279c 1634 return ada_check_typedef (r);
14f9c5c9
AS
1635 }
1636 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1637 {
1638 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1639 if (r != NULL)
61ee279c 1640 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1641 }
1642 return NULL;
1643}
1644
1645/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1646 one, a pointer to its bounds data. Otherwise NULL. */
1647
d2e4a39e
AS
1648static struct value *
1649desc_bounds (struct value *arr)
14f9c5c9 1650{
df407dfe 1651 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1652
d2e4a39e 1653 if (is_thin_pntr (type))
14f9c5c9 1654 {
d2e4a39e 1655 struct type *bounds_type =
4c4b4cd2 1656 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1657 LONGEST addr;
1658
4cdfadb1 1659 if (bounds_type == NULL)
323e0a4a 1660 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1661
1662 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1663 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1664 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1666 addr = value_as_long (arr);
d2e4a39e 1667 else
42ae5230 1668 addr = value_address (arr);
14f9c5c9 1669
d2e4a39e 1670 return
4c4b4cd2
PH
1671 value_from_longest (lookup_pointer_type (bounds_type),
1672 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1673 }
1674
1675 else if (is_thick_pntr (type))
05e522ef
JB
1676 {
1677 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1678 _("Bad GNAT array descriptor"));
1679 struct type *p_bounds_type = value_type (p_bounds);
1680
1681 if (p_bounds_type
1682 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1683 {
1684 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1685
1686 if (TYPE_STUB (target_type))
1687 p_bounds = value_cast (lookup_pointer_type
1688 (ada_check_typedef (target_type)),
1689 p_bounds);
1690 }
1691 else
1692 error (_("Bad GNAT array descriptor"));
1693
1694 return p_bounds;
1695 }
14f9c5c9
AS
1696 else
1697 return NULL;
1698}
1699
4c4b4cd2
PH
1700/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 position of the field containing the address of the bounds data. */
1702
14f9c5c9 1703static int
d2e4a39e 1704fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1705{
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1707}
1708
1709/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1710 size of the field containing the address of the bounds data. */
1711
14f9c5c9 1712static int
d2e4a39e 1713fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1714{
1715 type = desc_base_type (type);
1716
d2e4a39e 1717 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1718 return TYPE_FIELD_BITSIZE (type, 1);
1719 else
61ee279c 1720 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1721}
1722
4c4b4cd2 1723/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1724 pointer to one, the type of its array data (a array-with-no-bounds type);
1725 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1726 data. */
4c4b4cd2 1727
d2e4a39e 1728static struct type *
556bdfd4 1729desc_data_target_type (struct type *type)
14f9c5c9
AS
1730{
1731 type = desc_base_type (type);
1732
4c4b4cd2 1733 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1734 if (is_thin_pntr (type))
556bdfd4 1735 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1736 else if (is_thick_pntr (type))
556bdfd4
UW
1737 {
1738 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1739
1740 if (data_type
1741 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1742 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1743 }
1744
1745 return NULL;
14f9c5c9
AS
1746}
1747
1748/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1749 its array data. */
4c4b4cd2 1750
d2e4a39e
AS
1751static struct value *
1752desc_data (struct value *arr)
14f9c5c9 1753{
df407dfe 1754 struct type *type = value_type (arr);
5b4ee69b 1755
14f9c5c9
AS
1756 if (is_thin_pntr (type))
1757 return thin_data_pntr (arr);
1758 else if (is_thick_pntr (type))
d2e4a39e 1759 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1760 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1761 else
1762 return NULL;
1763}
1764
1765
1766/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1767 position of the field containing the address of the data. */
1768
14f9c5c9 1769static int
d2e4a39e 1770fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1771{
1772 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1773}
1774
1775/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1776 size of the field containing the address of the data. */
1777
14f9c5c9 1778static int
d2e4a39e 1779fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1780{
1781 type = desc_base_type (type);
1782
1783 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1784 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1785 else
14f9c5c9
AS
1786 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1787}
1788
4c4b4cd2 1789/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1790 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
d2e4a39e
AS
1793static struct value *
1794desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1795{
d2e4a39e 1796 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1797 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1798}
1799
1800/* If BOUNDS is an array-bounds structure type, return the bit position
1801 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
14f9c5c9 1804static int
d2e4a39e 1805desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1806{
d2e4a39e 1807 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1808}
1809
1810/* If BOUNDS is an array-bounds structure type, return the bit field size
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
76a01679 1814static int
d2e4a39e 1815desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1816{
1817 type = desc_base_type (type);
1818
d2e4a39e
AS
1819 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1820 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1821 else
1822 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1823}
1824
1825/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1826 Ith bound (numbering from 1). Otherwise, NULL. */
1827
d2e4a39e
AS
1828static struct type *
1829desc_index_type (struct type *type, int i)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
1833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1834 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1835 else
14f9c5c9
AS
1836 return NULL;
1837}
1838
4c4b4cd2
PH
1839/* The number of index positions in the array-bounds type TYPE.
1840 Return 0 if TYPE is NULL. */
1841
14f9c5c9 1842static int
d2e4a39e 1843desc_arity (struct type *type)
14f9c5c9
AS
1844{
1845 type = desc_base_type (type);
1846
1847 if (type != NULL)
1848 return TYPE_NFIELDS (type) / 2;
1849 return 0;
1850}
1851
4c4b4cd2
PH
1852/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1853 an array descriptor type (representing an unconstrained array
1854 type). */
1855
76a01679
JB
1856static int
1857ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1858{
1859 if (type == NULL)
1860 return 0;
61ee279c 1861 type = ada_check_typedef (type);
4c4b4cd2 1862 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1863 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1864}
1865
52ce6436 1866/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1867 * to one. */
52ce6436 1868
2c0b251b 1869static int
52ce6436
PH
1870ada_is_array_type (struct type *type)
1871{
1872 while (type != NULL
1873 && (TYPE_CODE (type) == TYPE_CODE_PTR
1874 || TYPE_CODE (type) == TYPE_CODE_REF))
1875 type = TYPE_TARGET_TYPE (type);
1876 return ada_is_direct_array_type (type);
1877}
1878
4c4b4cd2 1879/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1880
14f9c5c9 1881int
4c4b4cd2 1882ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1883{
1884 if (type == NULL)
1885 return 0;
61ee279c 1886 type = ada_check_typedef (type);
14f9c5c9 1887 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1888 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1889 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1890 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1891}
1892
4c4b4cd2
PH
1893/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1894
14f9c5c9 1895int
4c4b4cd2 1896ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1897{
556bdfd4 1898 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1899
1900 if (type == NULL)
1901 return 0;
61ee279c 1902 type = ada_check_typedef (type);
556bdfd4
UW
1903 return (data_type != NULL
1904 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1905 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1906}
1907
1908/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1909 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1910 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1911 is still needed. */
1912
14f9c5c9 1913int
ebf56fd3 1914ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1915{
d2e4a39e 1916 return
14f9c5c9
AS
1917 type != NULL
1918 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1919 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1920 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1921 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1922}
1923
1924
4c4b4cd2 1925/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1926 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1927 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1928 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1929 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1930 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1931 a descriptor. */
d2e4a39e
AS
1932struct type *
1933ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1934{
ad82864c
JB
1935 if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1937
df407dfe
AC
1938 if (!ada_is_array_descriptor_type (value_type (arr)))
1939 return value_type (arr);
d2e4a39e
AS
1940
1941 if (!bounds)
ad82864c
JB
1942 {
1943 struct type *array_type =
1944 ada_check_typedef (desc_data_target_type (value_type (arr)));
1945
1946 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1947 TYPE_FIELD_BITSIZE (array_type, 0) =
1948 decode_packed_array_bitsize (value_type (arr));
1949
1950 return array_type;
1951 }
14f9c5c9
AS
1952 else
1953 {
d2e4a39e 1954 struct type *elt_type;
14f9c5c9 1955 int arity;
d2e4a39e 1956 struct value *descriptor;
14f9c5c9 1957
df407dfe
AC
1958 elt_type = ada_array_element_type (value_type (arr), -1);
1959 arity = ada_array_arity (value_type (arr));
14f9c5c9 1960
d2e4a39e 1961 if (elt_type == NULL || arity == 0)
df407dfe 1962 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1963
1964 descriptor = desc_bounds (arr);
d2e4a39e 1965 if (value_as_long (descriptor) == 0)
4c4b4cd2 1966 return NULL;
d2e4a39e 1967 while (arity > 0)
4c4b4cd2 1968 {
e9bb382b
UW
1969 struct type *range_type = alloc_type_copy (value_type (arr));
1970 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1971 struct value *low = desc_one_bound (descriptor, arity, 0);
1972 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1973
5b4ee69b 1974 arity -= 1;
0c9c3474
SA
1975 create_static_range_type (range_type, value_type (low),
1976 longest_to_int (value_as_long (low)),
1977 longest_to_int (value_as_long (high)));
4c4b4cd2 1978 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1979
1980 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1981 {
1982 /* We need to store the element packed bitsize, as well as
1983 recompute the array size, because it was previously
1984 computed based on the unpacked element size. */
1985 LONGEST lo = value_as_long (low);
1986 LONGEST hi = value_as_long (high);
1987
1988 TYPE_FIELD_BITSIZE (elt_type, 0) =
1989 decode_packed_array_bitsize (value_type (arr));
1990 /* If the array has no element, then the size is already
1991 zero, and does not need to be recomputed. */
1992 if (lo < hi)
1993 {
1994 int array_bitsize =
1995 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1996
1997 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1998 }
1999 }
4c4b4cd2 2000 }
14f9c5c9
AS
2001
2002 return lookup_pointer_type (elt_type);
2003 }
2004}
2005
2006/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2007 Otherwise, returns either a standard GDB array with bounds set
2008 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2009 GDB array. Returns NULL if ARR is a null fat pointer. */
2010
d2e4a39e
AS
2011struct value *
2012ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2013{
df407dfe 2014 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2015 {
d2e4a39e 2016 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2017
14f9c5c9 2018 if (arrType == NULL)
4c4b4cd2 2019 return NULL;
14f9c5c9
AS
2020 return value_cast (arrType, value_copy (desc_data (arr)));
2021 }
ad82864c
JB
2022 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2023 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2024 else
2025 return arr;
2026}
2027
2028/* If ARR does not represent an array, returns ARR unchanged.
2029 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2030 be ARR itself if it already is in the proper form). */
2031
720d1a40 2032struct value *
d2e4a39e 2033ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2034{
df407dfe 2035 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2036 {
d2e4a39e 2037 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2038
14f9c5c9 2039 if (arrVal == NULL)
323e0a4a 2040 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2041 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2042 return value_ind (arrVal);
2043 }
ad82864c
JB
2044 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2045 return decode_constrained_packed_array (arr);
d2e4a39e 2046 else
14f9c5c9
AS
2047 return arr;
2048}
2049
2050/* If TYPE represents a GNAT array type, return it translated to an
2051 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2052 packing). For other types, is the identity. */
2053
d2e4a39e
AS
2054struct type *
2055ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2056{
ad82864c
JB
2057 if (ada_is_constrained_packed_array_type (type))
2058 return decode_constrained_packed_array_type (type);
17280b9f
UW
2059
2060 if (ada_is_array_descriptor_type (type))
556bdfd4 2061 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2062
2063 return type;
14f9c5c9
AS
2064}
2065
4c4b4cd2
PH
2066/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2067
ad82864c
JB
2068static int
2069ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2070{
2071 if (type == NULL)
2072 return 0;
4c4b4cd2 2073 type = desc_base_type (type);
61ee279c 2074 type = ada_check_typedef (type);
d2e4a39e 2075 return
14f9c5c9
AS
2076 ada_type_name (type) != NULL
2077 && strstr (ada_type_name (type), "___XP") != NULL;
2078}
2079
ad82864c
JB
2080/* Non-zero iff TYPE represents a standard GNAT constrained
2081 packed-array type. */
2082
2083int
2084ada_is_constrained_packed_array_type (struct type *type)
2085{
2086 return ada_is_packed_array_type (type)
2087 && !ada_is_array_descriptor_type (type);
2088}
2089
2090/* Non-zero iff TYPE represents an array descriptor for a
2091 unconstrained packed-array type. */
2092
2093static int
2094ada_is_unconstrained_packed_array_type (struct type *type)
2095{
2096 return ada_is_packed_array_type (type)
2097 && ada_is_array_descriptor_type (type);
2098}
2099
2100/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2101 return the size of its elements in bits. */
2102
2103static long
2104decode_packed_array_bitsize (struct type *type)
2105{
0d5cff50
DE
2106 const char *raw_name;
2107 const char *tail;
ad82864c
JB
2108 long bits;
2109
720d1a40
JB
2110 /* Access to arrays implemented as fat pointers are encoded as a typedef
2111 of the fat pointer type. We need the name of the fat pointer type
2112 to do the decoding, so strip the typedef layer. */
2113 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2114 type = ada_typedef_target_type (type);
2115
2116 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2117 if (!raw_name)
2118 raw_name = ada_type_name (desc_base_type (type));
2119
2120 if (!raw_name)
2121 return 0;
2122
2123 tail = strstr (raw_name, "___XP");
720d1a40 2124 gdb_assert (tail != NULL);
ad82864c
JB
2125
2126 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2127 {
2128 lim_warning
2129 (_("could not understand bit size information on packed array"));
2130 return 0;
2131 }
2132
2133 return bits;
2134}
2135
14f9c5c9
AS
2136/* Given that TYPE is a standard GDB array type with all bounds filled
2137 in, and that the element size of its ultimate scalar constituents
2138 (that is, either its elements, or, if it is an array of arrays, its
2139 elements' elements, etc.) is *ELT_BITS, return an identical type,
2140 but with the bit sizes of its elements (and those of any
2141 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2142 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2143 in bits.
2144
2145 Note that, for arrays whose index type has an XA encoding where
2146 a bound references a record discriminant, getting that discriminant,
2147 and therefore the actual value of that bound, is not possible
2148 because none of the given parameters gives us access to the record.
2149 This function assumes that it is OK in the context where it is being
2150 used to return an array whose bounds are still dynamic and where
2151 the length is arbitrary. */
4c4b4cd2 2152
d2e4a39e 2153static struct type *
ad82864c 2154constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2155{
d2e4a39e
AS
2156 struct type *new_elt_type;
2157 struct type *new_type;
99b1c762
JB
2158 struct type *index_type_desc;
2159 struct type *index_type;
14f9c5c9
AS
2160 LONGEST low_bound, high_bound;
2161
61ee279c 2162 type = ada_check_typedef (type);
14f9c5c9
AS
2163 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2164 return type;
2165
99b1c762
JB
2166 index_type_desc = ada_find_parallel_type (type, "___XA");
2167 if (index_type_desc)
2168 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2169 NULL);
2170 else
2171 index_type = TYPE_INDEX_TYPE (type);
2172
e9bb382b 2173 new_type = alloc_type_copy (type);
ad82864c
JB
2174 new_elt_type =
2175 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2176 elt_bits);
99b1c762 2177 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2178 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2179 TYPE_NAME (new_type) = ada_type_name (type);
2180
4a46959e
JB
2181 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2182 && is_dynamic_type (check_typedef (index_type)))
2183 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2187 else
14f9c5c9
AS
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2190 TYPE_LENGTH (new_type) =
4c4b4cd2 2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2192 }
2193
876cecd0 2194 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2195 return new_type;
2196}
2197
ad82864c
JB
2198/* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2200
d2e4a39e 2201static struct type *
ad82864c 2202decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2203{
0d5cff50 2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2205 char *name;
0d5cff50 2206 const char *tail;
d2e4a39e 2207 struct type *shadow_type;
14f9c5c9 2208 long bits;
14f9c5c9 2209
727e3d2e
JB
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2218 type = desc_base_type (type);
2219
14f9c5c9
AS
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
b4ba55a1
JB
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
14f9c5c9 2226 {
323e0a4a 2227 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2228 return NULL;
2229 }
f168693b 2230 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
0963b4bd
MS
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
14f9c5c9
AS
2236 return NULL;
2237 }
d2e4a39e 2238
ad82864c
JB
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2241}
2242
ad82864c
JB
2243/* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
4c4b4cd2 2247 type length is set appropriately. */
14f9c5c9 2248
d2e4a39e 2249static struct value *
ad82864c 2250decode_constrained_packed_array (struct value *arr)
14f9c5c9 2251{
4c4b4cd2 2252 struct type *type;
14f9c5c9 2253
11aa919a
PMR
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
828292f2 2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2263 arr = value_ind (arr);
4c4b4cd2 2264
ad82864c 2265 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2266 if (type == NULL)
2267 {
323e0a4a 2268 error (_("can't unpack array"));
14f9c5c9
AS
2269 return NULL;
2270 }
61ee279c 2271
50810684 2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2273 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
df407dfe 2282 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
df407dfe 2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
4c4b4cd2 2297 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2298}
2299
2300
2301/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2302 given in IND. ARR must be a simple array. */
14f9c5c9 2303
d2e4a39e
AS
2304static struct value *
2305value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2306{
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
d2e4a39e
AS
2310 struct type *elt_type;
2311 struct value *v;
14f9c5c9
AS
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
df407dfe 2315 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2316 for (i = 0; i < arity; i += 1)
14f9c5c9 2317 {
d2e4a39e 2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
0963b4bd
MS
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
14f9c5c9 2323 else
4c4b4cd2
PH
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
323e0a4a 2331 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2332 lowerbound = upperbound = 0;
2333 }
2334
3cb382c9 2335 idx = pos_atr (ind[i]);
4c4b4cd2 2336 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
4c4b4cd2
PH
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2342 }
14f9c5c9
AS
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2348 bits, elt_type);
14f9c5c9
AS
2349 return v;
2350}
2351
4c4b4cd2 2352/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2353
2354static int
d2e4a39e 2355has_negatives (struct type *type)
14f9c5c9 2356{
d2e4a39e
AS
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
4e962e74 2364 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2365 }
14f9c5c9 2366}
d2e4a39e 2367
f93fca70 2368/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2369 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2370 the unpacked buffer.
14f9c5c9 2371
5b639dea
JB
2372 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2373 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2374
f93fca70
JB
2375 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2376 zero otherwise.
14f9c5c9 2377
f93fca70 2378 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2379
f93fca70
JB
2380 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2381
2382static void
2383ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2384 gdb_byte *unpacked, int unpacked_len,
2385 int is_big_endian, int is_signed_type,
2386 int is_scalar)
2387{
a1c95e6b
JB
2388 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2389 int src_idx; /* Index into the source area */
2390 int src_bytes_left; /* Number of source bytes left to process. */
2391 int srcBitsLeft; /* Number of source bits left to move */
2392 int unusedLS; /* Number of bits in next significant
2393 byte of source that are unused */
2394
a1c95e6b
JB
2395 int unpacked_idx; /* Index into the unpacked buffer */
2396 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2397
4c4b4cd2 2398 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2399 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2400 unsigned char sign;
a1c95e6b 2401
4c4b4cd2
PH
2402 /* Transmit bytes from least to most significant; delta is the direction
2403 the indices move. */
f93fca70 2404 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2405
5b639dea
JB
2406 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2407 bits from SRC. .*/
2408 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2409 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2410 bit_size, unpacked_len);
2411
14f9c5c9 2412 srcBitsLeft = bit_size;
086ca51f 2413 src_bytes_left = src_len;
f93fca70 2414 unpacked_bytes_left = unpacked_len;
14f9c5c9 2415 sign = 0;
f93fca70
JB
2416
2417 if (is_big_endian)
14f9c5c9 2418 {
086ca51f 2419 src_idx = src_len - 1;
f93fca70
JB
2420 if (is_signed_type
2421 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2422 sign = ~0;
d2e4a39e
AS
2423
2424 unusedLS =
4c4b4cd2
PH
2425 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2426 % HOST_CHAR_BIT;
14f9c5c9 2427
f93fca70
JB
2428 if (is_scalar)
2429 {
2430 accumSize = 0;
2431 unpacked_idx = unpacked_len - 1;
2432 }
2433 else
2434 {
4c4b4cd2
PH
2435 /* Non-scalar values must be aligned at a byte boundary... */
2436 accumSize =
2437 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2438 /* ... And are placed at the beginning (most-significant) bytes
2439 of the target. */
086ca51f
JB
2440 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2441 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2442 }
14f9c5c9 2443 }
d2e4a39e 2444 else
14f9c5c9
AS
2445 {
2446 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2447
086ca51f 2448 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2449 unusedLS = bit_offset;
2450 accumSize = 0;
2451
f93fca70 2452 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2453 sign = ~0;
14f9c5c9 2454 }
d2e4a39e 2455
14f9c5c9 2456 accum = 0;
086ca51f 2457 while (src_bytes_left > 0)
14f9c5c9
AS
2458 {
2459 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2460 part of the value. */
d2e4a39e 2461 unsigned int unusedMSMask =
4c4b4cd2
PH
2462 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2463 1;
2464 /* Sign-extend bits for this byte. */
14f9c5c9 2465 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2466
d2e4a39e 2467 accum |=
086ca51f 2468 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2469 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2470 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2471 {
db297a65 2472 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2473 accumSize -= HOST_CHAR_BIT;
2474 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2475 unpacked_bytes_left -= 1;
2476 unpacked_idx += delta;
4c4b4cd2 2477 }
14f9c5c9
AS
2478 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2479 unusedLS = 0;
086ca51f
JB
2480 src_bytes_left -= 1;
2481 src_idx += delta;
14f9c5c9 2482 }
086ca51f 2483 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2484 {
2485 accum |= sign << accumSize;
db297a65 2486 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2487 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2488 if (accumSize < 0)
2489 accumSize = 0;
14f9c5c9 2490 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2491 unpacked_bytes_left -= 1;
2492 unpacked_idx += delta;
14f9c5c9 2493 }
f93fca70
JB
2494}
2495
2496/* Create a new value of type TYPE from the contents of OBJ starting
2497 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2498 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2499 assigning through the result will set the field fetched from.
2500 VALADDR is ignored unless OBJ is NULL, in which case,
2501 VALADDR+OFFSET must address the start of storage containing the
2502 packed value. The value returned in this case is never an lval.
2503 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2504
2505struct value *
2506ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2507 long offset, int bit_offset, int bit_size,
2508 struct type *type)
2509{
2510 struct value *v;
bfb1c796 2511 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2512 gdb_byte *unpacked;
220475ed 2513 const int is_scalar = is_scalar_type (type);
d0a9e810 2514 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2515 gdb::byte_vector staging;
f93fca70
JB
2516
2517 type = ada_check_typedef (type);
2518
d0a9e810 2519 if (obj == NULL)
bfb1c796 2520 src = valaddr + offset;
d0a9e810 2521 else
bfb1c796 2522 src = value_contents (obj) + offset;
d0a9e810
JB
2523
2524 if (is_dynamic_type (type))
2525 {
2526 /* The length of TYPE might by dynamic, so we need to resolve
2527 TYPE in order to know its actual size, which we then use
2528 to create the contents buffer of the value we return.
2529 The difficulty is that the data containing our object is
2530 packed, and therefore maybe not at a byte boundary. So, what
2531 we do, is unpack the data into a byte-aligned buffer, and then
2532 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2533 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2534 staging.resize (staging_len);
d0a9e810
JB
2535
2536 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2537 staging.data (), staging.size (),
d0a9e810
JB
2538 is_big_endian, has_negatives (type),
2539 is_scalar);
d5722aa2 2540 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2541 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2542 {
2543 /* This happens when the length of the object is dynamic,
2544 and is actually smaller than the space reserved for it.
2545 For instance, in an array of variant records, the bit_size
2546 we're given is the array stride, which is constant and
2547 normally equal to the maximum size of its element.
2548 But, in reality, each element only actually spans a portion
2549 of that stride. */
2550 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2551 }
d0a9e810
JB
2552 }
2553
f93fca70
JB
2554 if (obj == NULL)
2555 {
2556 v = allocate_value (type);
bfb1c796 2557 src = valaddr + offset;
f93fca70
JB
2558 }
2559 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2560 {
0cafa88c 2561 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2562 gdb_byte *buf;
0cafa88c 2563
f93fca70 2564 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2565 buf = (gdb_byte *) alloca (src_len);
2566 read_memory (value_address (v), buf, src_len);
2567 src = buf;
f93fca70
JB
2568 }
2569 else
2570 {
2571 v = allocate_value (type);
bfb1c796 2572 src = value_contents (obj) + offset;
f93fca70
JB
2573 }
2574
2575 if (obj != NULL)
2576 {
2577 long new_offset = offset;
2578
2579 set_value_component_location (v, obj);
2580 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2581 set_value_bitsize (v, bit_size);
2582 if (value_bitpos (v) >= HOST_CHAR_BIT)
2583 {
2584 ++new_offset;
2585 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2586 }
2587 set_value_offset (v, new_offset);
2588
2589 /* Also set the parent value. This is needed when trying to
2590 assign a new value (in inferior memory). */
2591 set_value_parent (v, obj);
2592 }
2593 else
2594 set_value_bitsize (v, bit_size);
bfb1c796 2595 unpacked = value_contents_writeable (v);
f93fca70
JB
2596
2597 if (bit_size == 0)
2598 {
2599 memset (unpacked, 0, TYPE_LENGTH (type));
2600 return v;
2601 }
2602
d5722aa2 2603 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2604 {
d0a9e810
JB
2605 /* Small short-cut: If we've unpacked the data into a buffer
2606 of the same size as TYPE's length, then we can reuse that,
2607 instead of doing the unpacking again. */
d5722aa2 2608 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2609 }
d0a9e810
JB
2610 else
2611 ada_unpack_from_contents (src, bit_offset, bit_size,
2612 unpacked, TYPE_LENGTH (type),
2613 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2614
14f9c5c9
AS
2615 return v;
2616}
d2e4a39e 2617
14f9c5c9
AS
2618/* Store the contents of FROMVAL into the location of TOVAL.
2619 Return a new value with the location of TOVAL and contents of
2620 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2621 floating-point or non-scalar types. */
14f9c5c9 2622
d2e4a39e
AS
2623static struct value *
2624ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2625{
df407dfe
AC
2626 struct type *type = value_type (toval);
2627 int bits = value_bitsize (toval);
14f9c5c9 2628
52ce6436
PH
2629 toval = ada_coerce_ref (toval);
2630 fromval = ada_coerce_ref (fromval);
2631
2632 if (ada_is_direct_array_type (value_type (toval)))
2633 toval = ada_coerce_to_simple_array (toval);
2634 if (ada_is_direct_array_type (value_type (fromval)))
2635 fromval = ada_coerce_to_simple_array (fromval);
2636
88e3b34b 2637 if (!deprecated_value_modifiable (toval))
323e0a4a 2638 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2639
d2e4a39e 2640 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2641 && bits > 0
d2e4a39e 2642 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2643 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2644 {
df407dfe
AC
2645 int len = (value_bitpos (toval)
2646 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2647 int from_size;
224c3ddb 2648 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2649 struct value *val;
42ae5230 2650 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2651
2652 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2653 fromval = value_cast (type, fromval);
14f9c5c9 2654
52ce6436 2655 read_memory (to_addr, buffer, len);
aced2898
PH
2656 from_size = value_bitsize (fromval);
2657 if (from_size == 0)
2658 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2659
2660 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2661 ULONGEST from_offset = 0;
2662 if (is_big_endian && is_scalar_type (value_type (fromval)))
2663 from_offset = from_size - bits;
2664 copy_bitwise (buffer, value_bitpos (toval),
2665 value_contents (fromval), from_offset,
2666 bits, is_big_endian);
972daa01 2667 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2668
14f9c5c9 2669 val = value_copy (toval);
0fd88904 2670 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2671 TYPE_LENGTH (type));
04624583 2672 deprecated_set_value_type (val, type);
d2e4a39e 2673
14f9c5c9
AS
2674 return val;
2675 }
2676
2677 return value_assign (toval, fromval);
2678}
2679
2680
7c512744
JB
2681/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2682 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2683 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2684 COMPONENT, and not the inferior's memory. The current contents
2685 of COMPONENT are ignored.
2686
2687 Although not part of the initial design, this function also works
2688 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2689 had a null address, and COMPONENT had an address which is equal to
2690 its offset inside CONTAINER. */
2691
52ce6436
PH
2692static void
2693value_assign_to_component (struct value *container, struct value *component,
2694 struct value *val)
2695{
2696 LONGEST offset_in_container =
42ae5230 2697 (LONGEST) (value_address (component) - value_address (container));
7c512744 2698 int bit_offset_in_container =
52ce6436
PH
2699 value_bitpos (component) - value_bitpos (container);
2700 int bits;
7c512744 2701
52ce6436
PH
2702 val = value_cast (value_type (component), val);
2703
2704 if (value_bitsize (component) == 0)
2705 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2706 else
2707 bits = value_bitsize (component);
2708
50810684 2709 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2710 {
2711 int src_offset;
2712
2713 if (is_scalar_type (check_typedef (value_type (component))))
2714 src_offset
2715 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2716 else
2717 src_offset = 0;
a99bc3d2
JB
2718 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2719 value_bitpos (container) + bit_offset_in_container,
2720 value_contents (val), src_offset, bits, 1);
2a62dfa9 2721 }
52ce6436 2722 else
a99bc3d2
JB
2723 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val), 0, bits, 0);
7c512744
JB
2726}
2727
736ade86
XR
2728/* Determine if TYPE is an access to an unconstrained array. */
2729
d91e9ea8 2730bool
736ade86
XR
2731ada_is_access_to_unconstrained_array (struct type *type)
2732{
2733 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2734 && is_thick_pntr (ada_typedef_target_type (type)));
2735}
2736
4c4b4cd2
PH
2737/* The value of the element of array ARR at the ARITY indices given in IND.
2738 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2739 thereto. */
2740
d2e4a39e
AS
2741struct value *
2742ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2743{
2744 int k;
d2e4a39e
AS
2745 struct value *elt;
2746 struct type *elt_type;
14f9c5c9
AS
2747
2748 elt = ada_coerce_to_simple_array (arr);
2749
df407dfe 2750 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2751 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2752 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2753 return value_subscript_packed (elt, arity, ind);
2754
2755 for (k = 0; k < arity; k += 1)
2756 {
b9c50e9a
XR
2757 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2758
14f9c5c9 2759 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2760 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2761
2497b498 2762 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2763
2764 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2765 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2766 {
2767 /* The element is a typedef to an unconstrained array,
2768 except that the value_subscript call stripped the
2769 typedef layer. The typedef layer is GNAT's way to
2770 specify that the element is, at the source level, an
2771 access to the unconstrained array, rather than the
2772 unconstrained array. So, we need to restore that
2773 typedef layer, which we can do by forcing the element's
2774 type back to its original type. Otherwise, the returned
2775 value is going to be printed as the array, rather
2776 than as an access. Another symptom of the same issue
2777 would be that an expression trying to dereference the
2778 element would also be improperly rejected. */
2779 deprecated_set_value_type (elt, saved_elt_type);
2780 }
2781
2782 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2783 }
b9c50e9a 2784
14f9c5c9
AS
2785 return elt;
2786}
2787
deede10c
JB
2788/* Assuming ARR is a pointer to a GDB array, the value of the element
2789 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2790 Does not read the entire array into memory.
2791
2792 Note: Unlike what one would expect, this function is used instead of
2793 ada_value_subscript for basically all non-packed array types. The reason
2794 for this is that a side effect of doing our own pointer arithmetics instead
2795 of relying on value_subscript is that there is no implicit typedef peeling.
2796 This is important for arrays of array accesses, where it allows us to
2797 preserve the fact that the array's element is an array access, where the
2798 access part os encoded in a typedef layer. */
14f9c5c9 2799
2c0b251b 2800static struct value *
deede10c 2801ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2802{
2803 int k;
919e6dbe 2804 struct value *array_ind = ada_value_ind (arr);
deede10c 2805 struct type *type
919e6dbe
PMR
2806 = check_typedef (value_enclosing_type (array_ind));
2807
2808 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2809 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2810 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2811
2812 for (k = 0; k < arity; k += 1)
2813 {
2814 LONGEST lwb, upb;
aa715135 2815 struct value *lwb_value;
14f9c5c9
AS
2816
2817 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2818 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2819 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2820 value_copy (arr));
14f9c5c9 2821 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2822 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2823 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2824 type = TYPE_TARGET_TYPE (type);
2825 }
2826
2827 return value_ind (arr);
2828}
2829
0b5d8877 2830/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2831 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2832 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2833 this array is LOW, as per Ada rules. */
0b5d8877 2834static struct value *
f5938064
JG
2835ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2836 int low, int high)
0b5d8877 2837{
b0dd7688 2838 struct type *type0 = ada_check_typedef (type);
aa715135 2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2840 struct type *index_type
aa715135 2841 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2842 struct type *slice_type = create_array_type_with_stride
2843 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2844 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2845 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2846 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2847 LONGEST base_low_pos, low_pos;
2848 CORE_ADDR base;
2849
2850 if (!discrete_position (base_index_type, low, &low_pos)
2851 || !discrete_position (base_index_type, base_low, &base_low_pos))
2852 {
2853 warning (_("unable to get positions in slice, use bounds instead"));
2854 low_pos = low;
2855 base_low_pos = base_low;
2856 }
5b4ee69b 2857
aa715135
JG
2858 base = value_as_address (array_ptr)
2859 + ((low_pos - base_low_pos)
2860 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2861 return value_at_lazy (slice_type, base);
0b5d8877
PH
2862}
2863
2864
2865static struct value *
2866ada_value_slice (struct value *array, int low, int high)
2867{
b0dd7688 2868 struct type *type = ada_check_typedef (value_type (array));
aa715135 2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2870 struct type *index_type
2871 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2875 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2876 LONGEST low_pos, high_pos;
5b4ee69b 2877
aa715135
JG
2878 if (!discrete_position (base_index_type, low, &low_pos)
2879 || !discrete_position (base_index_type, high, &high_pos))
2880 {
2881 warning (_("unable to get positions in slice, use bounds instead"));
2882 low_pos = low;
2883 high_pos = high;
2884 }
2885
2886 return value_cast (slice_type,
2887 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2888}
2889
14f9c5c9
AS
2890/* If type is a record type in the form of a standard GNAT array
2891 descriptor, returns the number of dimensions for type. If arr is a
2892 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2893 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2894
2895int
d2e4a39e 2896ada_array_arity (struct type *type)
14f9c5c9
AS
2897{
2898 int arity;
2899
2900 if (type == NULL)
2901 return 0;
2902
2903 type = desc_base_type (type);
2904
2905 arity = 0;
d2e4a39e 2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2907 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2908 else
2909 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2910 {
4c4b4cd2 2911 arity += 1;
61ee279c 2912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2913 }
d2e4a39e 2914
14f9c5c9
AS
2915 return arity;
2916}
2917
2918/* If TYPE is a record type in the form of a standard GNAT array
2919 descriptor or a simple array type, returns the element type for
2920 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2921 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2922
d2e4a39e
AS
2923struct type *
2924ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2925{
2926 type = desc_base_type (type);
2927
d2e4a39e 2928 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2929 {
2930 int k;
d2e4a39e 2931 struct type *p_array_type;
14f9c5c9 2932
556bdfd4 2933 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2934
2935 k = ada_array_arity (type);
2936 if (k == 0)
4c4b4cd2 2937 return NULL;
d2e4a39e 2938
4c4b4cd2 2939 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2940 if (nindices >= 0 && k > nindices)
4c4b4cd2 2941 k = nindices;
d2e4a39e 2942 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2943 {
61ee279c 2944 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2945 k -= 1;
2946 }
14f9c5c9
AS
2947 return p_array_type;
2948 }
2949 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2950 {
2951 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2952 {
2953 type = TYPE_TARGET_TYPE (type);
2954 nindices -= 1;
2955 }
14f9c5c9
AS
2956 return type;
2957 }
2958
2959 return NULL;
2960}
2961
4c4b4cd2 2962/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2963 Does not examine memory. Throws an error if N is invalid or TYPE
2964 is not an array type. NAME is the name of the Ada attribute being
2965 evaluated ('range, 'first, 'last, or 'length); it is used in building
2966 the error message. */
14f9c5c9 2967
1eea4ebd
UW
2968static struct type *
2969ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2970{
4c4b4cd2
PH
2971 struct type *result_type;
2972
14f9c5c9
AS
2973 type = desc_base_type (type);
2974
1eea4ebd
UW
2975 if (n < 0 || n > ada_array_arity (type))
2976 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2977
4c4b4cd2 2978 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2979 {
2980 int i;
2981
2982 for (i = 1; i < n; i += 1)
4c4b4cd2 2983 type = TYPE_TARGET_TYPE (type);
262452ec 2984 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2985 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2986 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2987 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2988 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2989 result_type = NULL;
14f9c5c9 2990 }
d2e4a39e 2991 else
1eea4ebd
UW
2992 {
2993 result_type = desc_index_type (desc_bounds_type (type), n);
2994 if (result_type == NULL)
2995 error (_("attempt to take bound of something that is not an array"));
2996 }
2997
2998 return result_type;
14f9c5c9
AS
2999}
3000
3001/* Given that arr is an array type, returns the lower bound of the
3002 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3003 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3004 array-descriptor type. It works for other arrays with bounds supplied
3005 by run-time quantities other than discriminants. */
14f9c5c9 3006
abb68b3e 3007static LONGEST
fb5e3d5c 3008ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3009{
8a48ac95 3010 struct type *type, *index_type_desc, *index_type;
1ce677a4 3011 int i;
262452ec
JK
3012
3013 gdb_assert (which == 0 || which == 1);
14f9c5c9 3014
ad82864c
JB
3015 if (ada_is_constrained_packed_array_type (arr_type))
3016 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3017
4c4b4cd2 3018 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3019 return (LONGEST) - which;
14f9c5c9
AS
3020
3021 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3022 type = TYPE_TARGET_TYPE (arr_type);
3023 else
3024 type = arr_type;
3025
bafffb51
JB
3026 if (TYPE_FIXED_INSTANCE (type))
3027 {
3028 /* The array has already been fixed, so we do not need to
3029 check the parallel ___XA type again. That encoding has
3030 already been applied, so ignore it now. */
3031 index_type_desc = NULL;
3032 }
3033 else
3034 {
3035 index_type_desc = ada_find_parallel_type (type, "___XA");
3036 ada_fixup_array_indexes_type (index_type_desc);
3037 }
3038
262452ec 3039 if (index_type_desc != NULL)
28c85d6c
JB
3040 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3041 NULL);
262452ec 3042 else
8a48ac95
JB
3043 {
3044 struct type *elt_type = check_typedef (type);
3045
3046 for (i = 1; i < n; i++)
3047 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3048
3049 index_type = TYPE_INDEX_TYPE (elt_type);
3050 }
262452ec 3051
43bbcdc2
PH
3052 return
3053 (LONGEST) (which == 0
3054 ? ada_discrete_type_low_bound (index_type)
3055 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3056}
3057
3058/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3059 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3060 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3061 supplied by run-time quantities other than discriminants. */
14f9c5c9 3062
1eea4ebd 3063static LONGEST
4dc81987 3064ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3065{
eb479039
JB
3066 struct type *arr_type;
3067
3068 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3069 arr = value_ind (arr);
3070 arr_type = value_enclosing_type (arr);
14f9c5c9 3071
ad82864c
JB
3072 if (ada_is_constrained_packed_array_type (arr_type))
3073 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3074 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3075 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3076 else
1eea4ebd 3077 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3078}
3079
3080/* Given that arr is an array value, returns the length of the
3081 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3082 supplied by run-time quantities other than discriminants.
3083 Does not work for arrays indexed by enumeration types with representation
3084 clauses at the moment. */
14f9c5c9 3085
1eea4ebd 3086static LONGEST
d2e4a39e 3087ada_array_length (struct value *arr, int n)
14f9c5c9 3088{
aa715135
JG
3089 struct type *arr_type, *index_type;
3090 int low, high;
eb479039
JB
3091
3092 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3093 arr = value_ind (arr);
3094 arr_type = value_enclosing_type (arr);
14f9c5c9 3095
ad82864c
JB
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3098
4c4b4cd2 3099 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3100 {
3101 low = ada_array_bound_from_type (arr_type, n, 0);
3102 high = ada_array_bound_from_type (arr_type, n, 1);
3103 }
14f9c5c9 3104 else
aa715135
JG
3105 {
3106 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3107 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3108 }
3109
f168693b 3110 arr_type = check_typedef (arr_type);
7150d33c 3111 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3112 if (index_type != NULL)
3113 {
3114 struct type *base_type;
3115 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3116 base_type = TYPE_TARGET_TYPE (index_type);
3117 else
3118 base_type = index_type;
3119
3120 low = pos_atr (value_from_longest (base_type, low));
3121 high = pos_atr (value_from_longest (base_type, high));
3122 }
3123 return high - low + 1;
4c4b4cd2
PH
3124}
3125
bff8c71f
TT
3126/* An array whose type is that of ARR_TYPE (an array type), with
3127 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3128 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3129
3130static struct value *
bff8c71f 3131empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3132{
b0dd7688 3133 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3134 struct type *index_type
3135 = create_static_range_type
bff8c71f
TT
3136 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3137 high < low ? low - 1 : high);
b0dd7688 3138 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3139
0b5d8877 3140 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3141}
14f9c5c9 3142\f
d2e4a39e 3143
4c4b4cd2 3144 /* Name resolution */
14f9c5c9 3145
4c4b4cd2
PH
3146/* The "decoded" name for the user-definable Ada operator corresponding
3147 to OP. */
14f9c5c9 3148
d2e4a39e 3149static const char *
4c4b4cd2 3150ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3151{
3152 int i;
3153
4c4b4cd2 3154 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3155 {
3156 if (ada_opname_table[i].op == op)
4c4b4cd2 3157 return ada_opname_table[i].decoded;
14f9c5c9 3158 }
323e0a4a 3159 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3160}
3161
3162
4c4b4cd2
PH
3163/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3164 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3165 undefined namespace) and converts operators that are
3166 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3167 non-null, it provides a preferred result type [at the moment, only
3168 type void has any effect---causing procedures to be preferred over
3169 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3170 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3171
4c4b4cd2 3172static void
699bd4cf
TT
3173resolve (expression_up *expp, int void_context_p, int parse_completion,
3174 innermost_block_tracker *tracker)
14f9c5c9 3175{
30b15541
UW
3176 struct type *context_type = NULL;
3177 int pc = 0;
3178
3179 if (void_context_p)
3180 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3181
699bd4cf 3182 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3183}
3184
4c4b4cd2
PH
3185/* Resolve the operator of the subexpression beginning at
3186 position *POS of *EXPP. "Resolving" consists of replacing
3187 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3188 with their resolutions, replacing built-in operators with
3189 function calls to user-defined operators, where appropriate, and,
3190 when DEPROCEDURE_P is non-zero, converting function-valued variables
3191 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3192 are as in ada_resolve, above. */
14f9c5c9 3193
d2e4a39e 3194static struct value *
e9d9f57e 3195resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3196 struct type *context_type, int parse_completion,
3197 innermost_block_tracker *tracker)
14f9c5c9
AS
3198{
3199 int pc = *pos;
3200 int i;
4c4b4cd2 3201 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3202 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3203 struct value **argvec; /* Vector of operand types (alloca'ed). */
3204 int nargs; /* Number of operands. */
52ce6436 3205 int oplen;
14f9c5c9
AS
3206
3207 argvec = NULL;
3208 nargs = 0;
e9d9f57e 3209 exp = expp->get ();
14f9c5c9 3210
52ce6436
PH
3211 /* Pass one: resolve operands, saving their types and updating *pos,
3212 if needed. */
14f9c5c9
AS
3213 switch (op)
3214 {
4c4b4cd2
PH
3215 case OP_FUNCALL:
3216 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3218 *pos += 7;
4c4b4cd2
PH
3219 else
3220 {
3221 *pos += 3;
699bd4cf 3222 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3223 }
3224 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3225 break;
3226
14f9c5c9 3227 case UNOP_ADDR:
4c4b4cd2 3228 *pos += 1;
699bd4cf 3229 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3230 break;
3231
52ce6436
PH
3232 case UNOP_QUAL:
3233 *pos += 3;
2a612529 3234 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3235 parse_completion, tracker);
4c4b4cd2
PH
3236 break;
3237
52ce6436 3238 case OP_ATR_MODULUS:
4c4b4cd2
PH
3239 case OP_ATR_SIZE:
3240 case OP_ATR_TAG:
4c4b4cd2
PH
3241 case OP_ATR_FIRST:
3242 case OP_ATR_LAST:
3243 case OP_ATR_LENGTH:
3244 case OP_ATR_POS:
3245 case OP_ATR_VAL:
4c4b4cd2
PH
3246 case OP_ATR_MIN:
3247 case OP_ATR_MAX:
52ce6436
PH
3248 case TERNOP_IN_RANGE:
3249 case BINOP_IN_BOUNDS:
3250 case UNOP_IN_RANGE:
3251 case OP_AGGREGATE:
3252 case OP_OTHERS:
3253 case OP_CHOICES:
3254 case OP_POSITIONAL:
3255 case OP_DISCRETE_RANGE:
3256 case OP_NAME:
3257 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3258 *pos += oplen;
14f9c5c9
AS
3259 break;
3260
3261 case BINOP_ASSIGN:
3262 {
4c4b4cd2
PH
3263 struct value *arg1;
3264
3265 *pos += 1;
699bd4cf 3266 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3267 if (arg1 == NULL)
699bd4cf 3268 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3269 else
699bd4cf
TT
3270 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3271 tracker);
4c4b4cd2 3272 break;
14f9c5c9
AS
3273 }
3274
4c4b4cd2 3275 case UNOP_CAST:
4c4b4cd2
PH
3276 *pos += 3;
3277 nargs = 1;
3278 break;
14f9c5c9 3279
4c4b4cd2
PH
3280 case BINOP_ADD:
3281 case BINOP_SUB:
3282 case BINOP_MUL:
3283 case BINOP_DIV:
3284 case BINOP_REM:
3285 case BINOP_MOD:
3286 case BINOP_EXP:
3287 case BINOP_CONCAT:
3288 case BINOP_LOGICAL_AND:
3289 case BINOP_LOGICAL_OR:
3290 case BINOP_BITWISE_AND:
3291 case BINOP_BITWISE_IOR:
3292 case BINOP_BITWISE_XOR:
14f9c5c9 3293
4c4b4cd2
PH
3294 case BINOP_EQUAL:
3295 case BINOP_NOTEQUAL:
3296 case BINOP_LESS:
3297 case BINOP_GTR:
3298 case BINOP_LEQ:
3299 case BINOP_GEQ:
14f9c5c9 3300
4c4b4cd2
PH
3301 case BINOP_REPEAT:
3302 case BINOP_SUBSCRIPT:
3303 case BINOP_COMMA:
40c8aaa9
JB
3304 *pos += 1;
3305 nargs = 2;
3306 break;
14f9c5c9 3307
4c4b4cd2
PH
3308 case UNOP_NEG:
3309 case UNOP_PLUS:
3310 case UNOP_LOGICAL_NOT:
3311 case UNOP_ABS:
3312 case UNOP_IND:
3313 *pos += 1;
3314 nargs = 1;
3315 break;
14f9c5c9 3316
4c4b4cd2 3317 case OP_LONG:
edd079d9 3318 case OP_FLOAT:
4c4b4cd2 3319 case OP_VAR_VALUE:
74ea4be4 3320 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3321 *pos += 4;
3322 break;
14f9c5c9 3323
4c4b4cd2
PH
3324 case OP_TYPE:
3325 case OP_BOOL:
3326 case OP_LAST:
4c4b4cd2
PH
3327 case OP_INTERNALVAR:
3328 *pos += 3;
3329 break;
14f9c5c9 3330
4c4b4cd2
PH
3331 case UNOP_MEMVAL:
3332 *pos += 3;
3333 nargs = 1;
3334 break;
3335
67f3407f
DJ
3336 case OP_REGISTER:
3337 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3338 break;
3339
4c4b4cd2
PH
3340 case STRUCTOP_STRUCT:
3341 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3342 nargs = 1;
3343 break;
3344
4c4b4cd2 3345 case TERNOP_SLICE:
4c4b4cd2
PH
3346 *pos += 1;
3347 nargs = 3;
3348 break;
3349
52ce6436 3350 case OP_STRING:
14f9c5c9 3351 break;
4c4b4cd2
PH
3352
3353 default:
323e0a4a 3354 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3355 }
3356
8d749320 3357 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3358 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3359 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3360 tracker);
4c4b4cd2 3361 argvec[i] = NULL;
e9d9f57e 3362 exp = expp->get ();
4c4b4cd2
PH
3363
3364 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3365 switch (op)
3366 {
3367 default:
3368 break;
3369
14f9c5c9 3370 case OP_VAR_VALUE:
4c4b4cd2 3371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3372 {
54d343a2 3373 std::vector<struct block_symbol> candidates;
76a01679
JB
3374 int n_candidates;
3375
3376 n_candidates =
3377 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3378 (exp->elts[pc + 2].symbol),
3379 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3380 &candidates);
76a01679
JB
3381
3382 if (n_candidates > 1)
3383 {
3384 /* Types tend to get re-introduced locally, so if there
3385 are any local symbols that are not types, first filter
3386 out all types. */
3387 int j;
3388 for (j = 0; j < n_candidates; j += 1)
d12307c1 3389 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3390 {
3391 case LOC_REGISTER:
3392 case LOC_ARG:
3393 case LOC_REF_ARG:
76a01679
JB
3394 case LOC_REGPARM_ADDR:
3395 case LOC_LOCAL:
76a01679 3396 case LOC_COMPUTED:
76a01679
JB
3397 goto FoundNonType;
3398 default:
3399 break;
3400 }
3401 FoundNonType:
3402 if (j < n_candidates)
3403 {
3404 j = 0;
3405 while (j < n_candidates)
3406 {
d12307c1 3407 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3408 {
3409 candidates[j] = candidates[n_candidates - 1];
3410 n_candidates -= 1;
3411 }
3412 else
3413 j += 1;
3414 }
3415 }
3416 }
3417
3418 if (n_candidates == 0)
323e0a4a 3419 error (_("No definition found for %s"),
76a01679
JB
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 else if (n_candidates == 1)
3422 i = 0;
3423 else if (deprocedure_p
54d343a2 3424 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3425 {
06d5cf63 3426 i = ada_resolve_function
54d343a2 3427 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3428 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3429 context_type, parse_completion);
76a01679 3430 if (i < 0)
323e0a4a 3431 error (_("Could not find a match for %s"),
76a01679
JB
3432 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3433 }
3434 else
3435 {
323e0a4a 3436 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3437 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3438 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3439 i = 0;
3440 }
3441
3442 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3443 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3444 tracker->update (candidates[i]);
76a01679
JB
3445 }
3446
3447 if (deprocedure_p
3448 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3449 == TYPE_CODE_FUNC))
3450 {
424da6cf 3451 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3452 exp->elts[pc + 2].symbol,
3453 exp->elts[pc + 1].block);
e9d9f57e 3454 exp = expp->get ();
76a01679 3455 }
14f9c5c9
AS
3456 break;
3457
3458 case OP_FUNCALL:
3459 {
4c4b4cd2 3460 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3461 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3462 {
54d343a2 3463 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3464 int n_candidates;
3465
3466 n_candidates =
76a01679
JB
3467 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3468 (exp->elts[pc + 5].symbol),
3469 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3470 &candidates);
ec6a20c2 3471
4c4b4cd2
PH
3472 if (n_candidates == 1)
3473 i = 0;
3474 else
3475 {
06d5cf63 3476 i = ada_resolve_function
54d343a2 3477 (candidates.data (), n_candidates,
06d5cf63
JB
3478 argvec, nargs,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3480 context_type, parse_completion);
4c4b4cd2 3481 if (i < 0)
323e0a4a 3482 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3484 }
3485
3486 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3487 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3488 tracker->update (candidates[i]);
4c4b4cd2 3489 }
14f9c5c9
AS
3490 }
3491 break;
3492 case BINOP_ADD:
3493 case BINOP_SUB:
3494 case BINOP_MUL:
3495 case BINOP_DIV:
3496 case BINOP_REM:
3497 case BINOP_MOD:
3498 case BINOP_CONCAT:
3499 case BINOP_BITWISE_AND:
3500 case BINOP_BITWISE_IOR:
3501 case BINOP_BITWISE_XOR:
3502 case BINOP_EQUAL:
3503 case BINOP_NOTEQUAL:
3504 case BINOP_LESS:
3505 case BINOP_GTR:
3506 case BINOP_LEQ:
3507 case BINOP_GEQ:
3508 case BINOP_EXP:
3509 case UNOP_NEG:
3510 case UNOP_PLUS:
3511 case UNOP_LOGICAL_NOT:
3512 case UNOP_ABS:
3513 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3514 {
54d343a2 3515 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3516 int n_candidates;
3517
3518 n_candidates =
b5ec771e 3519 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3520 NULL, VAR_DOMAIN,
4eeaa230 3521 &candidates);
ec6a20c2 3522
54d343a2 3523 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3524 nargs, ada_decoded_op_name (op), NULL,
3525 parse_completion);
4c4b4cd2
PH
3526 if (i < 0)
3527 break;
3528
d12307c1
PMR
3529 replace_operator_with_call (expp, pc, nargs, 1,
3530 candidates[i].symbol,
3531 candidates[i].block);
e9d9f57e 3532 exp = expp->get ();
4c4b4cd2 3533 }
14f9c5c9 3534 break;
4c4b4cd2
PH
3535
3536 case OP_TYPE:
b3dbf008 3537 case OP_REGISTER:
4c4b4cd2 3538 return NULL;
14f9c5c9
AS
3539 }
3540
3541 *pos = pc;
ced9779b
JB
3542 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3543 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3544 exp->elts[pc + 1].objfile,
3545 exp->elts[pc + 2].msymbol);
3546 else
3547 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3548}
3549
3550/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3551 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3552 a non-pointer. */
14f9c5c9 3553/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3554 liberal. */
14f9c5c9
AS
3555
3556static int
4dc81987 3557ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3558{
61ee279c
PH
3559 ftype = ada_check_typedef (ftype);
3560 atype = ada_check_typedef (atype);
14f9c5c9
AS
3561
3562 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3563 ftype = TYPE_TARGET_TYPE (ftype);
3564 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3565 atype = TYPE_TARGET_TYPE (atype);
3566
d2e4a39e 3567 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3568 {
3569 default:
5b3d5b7d 3570 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3571 case TYPE_CODE_PTR:
3572 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3573 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3574 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3575 else
1265e4aa
JB
3576 return (may_deref
3577 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_RANGE:
3581 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_ENUM:
3585 case TYPE_CODE_RANGE:
3586 return 1;
3587 default:
3588 return 0;
3589 }
14f9c5c9
AS
3590
3591 case TYPE_CODE_ARRAY:
d2e4a39e 3592 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3593 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3594
3595 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3596 if (ada_is_array_descriptor_type (ftype))
3597 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3598 || ada_is_array_descriptor_type (atype));
14f9c5c9 3599 else
4c4b4cd2
PH
3600 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3601 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3602
3603 case TYPE_CODE_UNION:
3604 case TYPE_CODE_FLT:
3605 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3606 }
3607}
3608
3609/* Return non-zero if the formals of FUNC "sufficiently match" the
3610 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3611 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3612 argument function. */
14f9c5c9
AS
3613
3614static int
d2e4a39e 3615ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3616{
3617 int i;
d2e4a39e 3618 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3619
1265e4aa
JB
3620 if (SYMBOL_CLASS (func) == LOC_CONST
3621 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3622 return (n_actuals == 0);
3623 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3624 return 0;
3625
3626 if (TYPE_NFIELDS (func_type) != n_actuals)
3627 return 0;
3628
3629 for (i = 0; i < n_actuals; i += 1)
3630 {
4c4b4cd2 3631 if (actuals[i] == NULL)
76a01679
JB
3632 return 0;
3633 else
3634 {
5b4ee69b
MS
3635 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3636 i));
df407dfe 3637 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3638
76a01679
JB
3639 if (!ada_type_match (ftype, atype, 1))
3640 return 0;
3641 }
14f9c5c9
AS
3642 }
3643 return 1;
3644}
3645
3646/* False iff function type FUNC_TYPE definitely does not produce a value
3647 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3648 FUNC_TYPE is not a valid function type with a non-null return type
3649 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3650
3651static int
d2e4a39e 3652return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3653{
d2e4a39e 3654 struct type *return_type;
14f9c5c9
AS
3655
3656 if (func_type == NULL)
3657 return 1;
3658
4c4b4cd2 3659 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3660 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3661 else
18af8284 3662 return_type = get_base_type (func_type);
14f9c5c9
AS
3663 if (return_type == NULL)
3664 return 1;
3665
18af8284 3666 context_type = get_base_type (context_type);
14f9c5c9
AS
3667
3668 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3669 return context_type == NULL || return_type == context_type;
3670 else if (context_type == NULL)
3671 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3672 else
3673 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3674}
3675
3676
4c4b4cd2 3677/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3678 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3679 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3680 that returns that type, then eliminate matches that don't. If
3681 CONTEXT_TYPE is void and there is at least one match that does not
3682 return void, eliminate all matches that do.
3683
14f9c5c9
AS
3684 Asks the user if there is more than one match remaining. Returns -1
3685 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3686 solely for messages. May re-arrange and modify SYMS in
3687 the process; the index returned is for the modified vector. */
14f9c5c9 3688
4c4b4cd2 3689static int
d12307c1 3690ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3691 int nsyms, struct value **args, int nargs,
2a612529
TT
3692 const char *name, struct type *context_type,
3693 int parse_completion)
14f9c5c9 3694{
30b15541 3695 int fallback;
14f9c5c9 3696 int k;
4c4b4cd2 3697 int m; /* Number of hits */
14f9c5c9 3698
d2e4a39e 3699 m = 0;
30b15541
UW
3700 /* In the first pass of the loop, we only accept functions matching
3701 context_type. If none are found, we add a second pass of the loop
3702 where every function is accepted. */
3703 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3704 {
3705 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3706 {
d12307c1 3707 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3708
d12307c1 3709 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3710 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3711 {
3712 syms[m] = syms[k];
3713 m += 1;
3714 }
3715 }
14f9c5c9
AS
3716 }
3717
dc5c8746
PMR
3718 /* If we got multiple matches, ask the user which one to use. Don't do this
3719 interactive thing during completion, though, as the purpose of the
3720 completion is providing a list of all possible matches. Prompting the
3721 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3722 if (m == 0)
3723 return -1;
dc5c8746 3724 else if (m > 1 && !parse_completion)
14f9c5c9 3725 {
323e0a4a 3726 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3727 user_select_syms (syms, m, 1);
14f9c5c9
AS
3728 return 0;
3729 }
3730 return 0;
3731}
3732
4c4b4cd2
PH
3733/* Returns true (non-zero) iff decoded name N0 should appear before N1
3734 in a listing of choices during disambiguation (see sort_choices, below).
3735 The idea is that overloadings of a subprogram name from the
3736 same package should sort in their source order. We settle for ordering
3737 such symbols by their trailing number (__N or $N). */
3738
14f9c5c9 3739static int
0d5cff50 3740encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3741{
3742 if (N1 == NULL)
3743 return 0;
3744 else if (N0 == NULL)
3745 return 1;
3746 else
3747 {
3748 int k0, k1;
5b4ee69b 3749
d2e4a39e 3750 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3751 ;
d2e4a39e 3752 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3753 ;
d2e4a39e 3754 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3755 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3756 {
3757 int n0, n1;
5b4ee69b 3758
4c4b4cd2
PH
3759 n0 = k0;
3760 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3761 n0 -= 1;
3762 n1 = k1;
3763 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3764 n1 -= 1;
3765 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3766 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3767 }
14f9c5c9
AS
3768 return (strcmp (N0, N1) < 0);
3769 }
3770}
d2e4a39e 3771
4c4b4cd2
PH
3772/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3773 encoded names. */
3774
d2e4a39e 3775static void
d12307c1 3776sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3777{
4c4b4cd2 3778 int i;
5b4ee69b 3779
d2e4a39e 3780 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3781 {
d12307c1 3782 struct block_symbol sym = syms[i];
14f9c5c9
AS
3783 int j;
3784
d2e4a39e 3785 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3786 {
d12307c1
PMR
3787 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3788 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3789 break;
3790 syms[j + 1] = syms[j];
3791 }
d2e4a39e 3792 syms[j + 1] = sym;
14f9c5c9
AS
3793 }
3794}
3795
d72413e6
PMR
3796/* Whether GDB should display formals and return types for functions in the
3797 overloads selection menu. */
3798static int print_signatures = 1;
3799
3800/* Print the signature for SYM on STREAM according to the FLAGS options. For
3801 all but functions, the signature is just the name of the symbol. For
3802 functions, this is the name of the function, the list of types for formals
3803 and the return type (if any). */
3804
3805static void
3806ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3807 const struct type_print_options *flags)
3808{
3809 struct type *type = SYMBOL_TYPE (sym);
3810
3811 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3812 if (!print_signatures
3813 || type == NULL
3814 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3815 return;
3816
3817 if (TYPE_NFIELDS (type) > 0)
3818 {
3819 int i;
3820
3821 fprintf_filtered (stream, " (");
3822 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3823 {
3824 if (i > 0)
3825 fprintf_filtered (stream, "; ");
3826 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3827 flags);
3828 }
3829 fprintf_filtered (stream, ")");
3830 }
3831 if (TYPE_TARGET_TYPE (type) != NULL
3832 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3833 {
3834 fprintf_filtered (stream, " return ");
3835 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3836 }
3837}
3838
4c4b4cd2
PH
3839/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3840 by asking the user (if necessary), returning the number selected,
3841 and setting the first elements of SYMS items. Error if no symbols
3842 selected. */
14f9c5c9
AS
3843
3844/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3845 to be re-integrated one of these days. */
14f9c5c9
AS
3846
3847int
d12307c1 3848user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3849{
3850 int i;
8d749320 3851 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3852 int n_chosen;
3853 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3854 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3855
3856 if (max_results < 1)
323e0a4a 3857 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3858 if (nsyms <= 1)
3859 return nsyms;
3860
717d2f5a
JB
3861 if (select_mode == multiple_symbols_cancel)
3862 error (_("\
3863canceled because the command is ambiguous\n\
3864See set/show multiple-symbol."));
a0087920 3865
717d2f5a
JB
3866 /* If select_mode is "all", then return all possible symbols.
3867 Only do that if more than one symbol can be selected, of course.
3868 Otherwise, display the menu as usual. */
3869 if (select_mode == multiple_symbols_all && max_results > 1)
3870 return nsyms;
3871
a0087920 3872 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3873 if (max_results > 1)
a0087920 3874 printf_filtered (_("[1] all\n"));
14f9c5c9 3875
4c4b4cd2 3876 sort_choices (syms, nsyms);
14f9c5c9
AS
3877
3878 for (i = 0; i < nsyms; i += 1)
3879 {
d12307c1 3880 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3881 continue;
3882
d12307c1 3883 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3884 {
76a01679 3885 struct symtab_and_line sal =
d12307c1 3886 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3887
a0087920 3888 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3889 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3890 &type_print_raw_options);
323e0a4a 3891 if (sal.symtab == NULL)
a0087920
TT
3892 printf_filtered (_(" at <no source file available>:%d\n"),
3893 sal.line);
323e0a4a 3894 else
a0087920
TT
3895 printf_filtered (_(" at %s:%d\n"),
3896 symtab_to_filename_for_display (sal.symtab),
3897 sal.line);
4c4b4cd2
PH
3898 continue;
3899 }
d2e4a39e 3900 else
4c4b4cd2
PH
3901 {
3902 int is_enumeral =
d12307c1
PMR
3903 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3904 && SYMBOL_TYPE (syms[i].symbol) != NULL
3905 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3906 struct symtab *symtab = NULL;
3907
d12307c1
PMR
3908 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3909 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3910
d12307c1 3911 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3912 {
a0087920 3913 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3914 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3915 &type_print_raw_options);
a0087920
TT
3916 printf_filtered (_(" at %s:%d\n"),
3917 symtab_to_filename_for_display (symtab),
3918 SYMBOL_LINE (syms[i].symbol));
d72413e6 3919 }
76a01679 3920 else if (is_enumeral
d12307c1 3921 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3922 {
a0087920 3923 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3924 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3925 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3926 printf_filtered (_("'(%s) (enumeral)\n"),
3927 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3928 }
d72413e6
PMR
3929 else
3930 {
a0087920 3931 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934
3935 if (symtab != NULL)
a0087920
TT
3936 printf_filtered (is_enumeral
3937 ? _(" in %s (enumeral)\n")
3938 : _(" at %s:?\n"),
3939 symtab_to_filename_for_display (symtab));
d72413e6 3940 else
a0087920
TT
3941 printf_filtered (is_enumeral
3942 ? _(" (enumeral)\n")
3943 : _(" at ?\n"));
d72413e6 3944 }
4c4b4cd2 3945 }
14f9c5c9 3946 }
d2e4a39e 3947
14f9c5c9 3948 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3949 "overload-choice");
14f9c5c9
AS
3950
3951 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3952 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3953
3954 return n_chosen;
3955}
3956
3957/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3958 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3959 order in CHOICES[0 .. N-1], and return N.
3960
3961 The user types choices as a sequence of numbers on one line
3962 separated by blanks, encoding them as follows:
3963
4c4b4cd2 3964 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3965 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3966 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3967
4c4b4cd2 3968 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3969
3970 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3971 prompts (for use with the -f switch). */
14f9c5c9
AS
3972
3973int
d2e4a39e 3974get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3975 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3976{
d2e4a39e 3977 char *args;
a121b7c1 3978 const char *prompt;
14f9c5c9
AS
3979 int n_chosen;
3980 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3981
14f9c5c9
AS
3982 prompt = getenv ("PS2");
3983 if (prompt == NULL)
0bcd0149 3984 prompt = "> ";
14f9c5c9 3985
89fbedf3 3986 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3987
14f9c5c9 3988 if (args == NULL)
323e0a4a 3989 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3990
3991 n_chosen = 0;
76a01679 3992
4c4b4cd2
PH
3993 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3994 order, as given in args. Choices are validated. */
14f9c5c9
AS
3995 while (1)
3996 {
d2e4a39e 3997 char *args2;
14f9c5c9
AS
3998 int choice, j;
3999
0fcd72ba 4000 args = skip_spaces (args);
14f9c5c9 4001 if (*args == '\0' && n_chosen == 0)
323e0a4a 4002 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4003 else if (*args == '\0')
4c4b4cd2 4004 break;
14f9c5c9
AS
4005
4006 choice = strtol (args, &args2, 10);
d2e4a39e 4007 if (args == args2 || choice < 0
4c4b4cd2 4008 || choice > n_choices + first_choice - 1)
323e0a4a 4009 error (_("Argument must be choice number"));
14f9c5c9
AS
4010 args = args2;
4011
d2e4a39e 4012 if (choice == 0)
323e0a4a 4013 error (_("cancelled"));
14f9c5c9
AS
4014
4015 if (choice < first_choice)
4c4b4cd2
PH
4016 {
4017 n_chosen = n_choices;
4018 for (j = 0; j < n_choices; j += 1)
4019 choices[j] = j;
4020 break;
4021 }
14f9c5c9
AS
4022 choice -= first_choice;
4023
d2e4a39e 4024 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4025 {
4026 }
14f9c5c9
AS
4027
4028 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4029 {
4030 int k;
5b4ee69b 4031
4c4b4cd2
PH
4032 for (k = n_chosen - 1; k > j; k -= 1)
4033 choices[k + 1] = choices[k];
4034 choices[j + 1] = choice;
4035 n_chosen += 1;
4036 }
14f9c5c9
AS
4037 }
4038
4039 if (n_chosen > max_results)
323e0a4a 4040 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4041
14f9c5c9
AS
4042 return n_chosen;
4043}
4044
4c4b4cd2
PH
4045/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4046 on the function identified by SYM and BLOCK, and taking NARGS
4047 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4048
4049static void
e9d9f57e 4050replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4051 int oplen, struct symbol *sym,
270140bd 4052 const struct block *block)
14f9c5c9
AS
4053{
4054 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4055 symbol, -oplen for operator being replaced). */
d2e4a39e 4056 struct expression *newexp = (struct expression *)
8c1a34e7 4057 xzalloc (sizeof (struct expression)
4c4b4cd2 4058 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4059 struct expression *exp = expp->get ();
14f9c5c9
AS
4060
4061 newexp->nelts = exp->nelts + 7 - oplen;
4062 newexp->language_defn = exp->language_defn;
3489610d 4063 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4064 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4065 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4066 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4067
4068 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4069 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4070
4071 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4072 newexp->elts[pc + 4].block = block;
4073 newexp->elts[pc + 5].symbol = sym;
4074
e9d9f57e 4075 expp->reset (newexp);
d2e4a39e 4076}
14f9c5c9
AS
4077
4078/* Type-class predicates */
4079
4c4b4cd2
PH
4080/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4081 or FLOAT). */
14f9c5c9
AS
4082
4083static int
d2e4a39e 4084numeric_type_p (struct type *type)
14f9c5c9
AS
4085{
4086 if (type == NULL)
4087 return 0;
d2e4a39e
AS
4088 else
4089 {
4090 switch (TYPE_CODE (type))
4c4b4cd2
PH
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 case TYPE_CODE_RANGE:
4096 return (type == TYPE_TARGET_TYPE (type)
4097 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4098 default:
4099 return 0;
4100 }
d2e4a39e 4101 }
14f9c5c9
AS
4102}
4103
4c4b4cd2 4104/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4105
4106static int
d2e4a39e 4107integer_type_p (struct type *type)
14f9c5c9
AS
4108{
4109 if (type == NULL)
4110 return 0;
d2e4a39e
AS
4111 else
4112 {
4113 switch (TYPE_CODE (type))
4c4b4cd2
PH
4114 {
4115 case TYPE_CODE_INT:
4116 return 1;
4117 case TYPE_CODE_RANGE:
4118 return (type == TYPE_TARGET_TYPE (type)
4119 || integer_type_p (TYPE_TARGET_TYPE (type)));
4120 default:
4121 return 0;
4122 }
d2e4a39e 4123 }
14f9c5c9
AS
4124}
4125
4c4b4cd2 4126/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4127
4128static int
d2e4a39e 4129scalar_type_p (struct type *type)
14f9c5c9
AS
4130{
4131 if (type == NULL)
4132 return 0;
d2e4a39e
AS
4133 else
4134 {
4135 switch (TYPE_CODE (type))
4c4b4cd2
PH
4136 {
4137 case TYPE_CODE_INT:
4138 case TYPE_CODE_RANGE:
4139 case TYPE_CODE_ENUM:
4140 case TYPE_CODE_FLT:
4141 return 1;
4142 default:
4143 return 0;
4144 }
d2e4a39e 4145 }
14f9c5c9
AS
4146}
4147
4c4b4cd2 4148/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4149
4150static int
d2e4a39e 4151discrete_type_p (struct type *type)
14f9c5c9
AS
4152{
4153 if (type == NULL)
4154 return 0;
d2e4a39e
AS
4155 else
4156 {
4157 switch (TYPE_CODE (type))
4c4b4cd2
PH
4158 {
4159 case TYPE_CODE_INT:
4160 case TYPE_CODE_RANGE:
4161 case TYPE_CODE_ENUM:
872f0337 4162 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4163 return 1;
4164 default:
4165 return 0;
4166 }
d2e4a39e 4167 }
14f9c5c9
AS
4168}
4169
4c4b4cd2
PH
4170/* Returns non-zero if OP with operands in the vector ARGS could be
4171 a user-defined function. Errs on the side of pre-defined operators
4172 (i.e., result 0). */
14f9c5c9
AS
4173
4174static int
d2e4a39e 4175possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4176{
76a01679 4177 struct type *type0 =
df407dfe 4178 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4179 struct type *type1 =
df407dfe 4180 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4181
4c4b4cd2
PH
4182 if (type0 == NULL)
4183 return 0;
4184
14f9c5c9
AS
4185 switch (op)
4186 {
4187 default:
4188 return 0;
4189
4190 case BINOP_ADD:
4191 case BINOP_SUB:
4192 case BINOP_MUL:
4193 case BINOP_DIV:
d2e4a39e 4194 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4195
4196 case BINOP_REM:
4197 case BINOP_MOD:
4198 case BINOP_BITWISE_AND:
4199 case BINOP_BITWISE_IOR:
4200 case BINOP_BITWISE_XOR:
d2e4a39e 4201 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4202
4203 case BINOP_EQUAL:
4204 case BINOP_NOTEQUAL:
4205 case BINOP_LESS:
4206 case BINOP_GTR:
4207 case BINOP_LEQ:
4208 case BINOP_GEQ:
d2e4a39e 4209 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4210
4211 case BINOP_CONCAT:
ee90b9ab 4212 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4213
4214 case BINOP_EXP:
d2e4a39e 4215 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4216
4217 case UNOP_NEG:
4218 case UNOP_PLUS:
4219 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4220 case UNOP_ABS:
4221 return (!numeric_type_p (type0));
14f9c5c9
AS
4222
4223 }
4224}
4225\f
4c4b4cd2 4226 /* Renaming */
14f9c5c9 4227
aeb5907d
JB
4228/* NOTES:
4229
4230 1. In the following, we assume that a renaming type's name may
4231 have an ___XD suffix. It would be nice if this went away at some
4232 point.
4233 2. We handle both the (old) purely type-based representation of
4234 renamings and the (new) variable-based encoding. At some point,
4235 it is devoutly to be hoped that the former goes away
4236 (FIXME: hilfinger-2007-07-09).
4237 3. Subprogram renamings are not implemented, although the XRS
4238 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4239
4240/* If SYM encodes a renaming,
4241
4242 <renaming> renames <renamed entity>,
4243
4244 sets *LEN to the length of the renamed entity's name,
4245 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4246 the string describing the subcomponent selected from the renamed
0963b4bd 4247 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4248 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4249 are undefined). Otherwise, returns a value indicating the category
4250 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4251 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4252 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4253 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4254 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4255 may be NULL, in which case they are not assigned.
4256
4257 [Currently, however, GCC does not generate subprogram renamings.] */
4258
4259enum ada_renaming_category
4260ada_parse_renaming (struct symbol *sym,
4261 const char **renamed_entity, int *len,
4262 const char **renaming_expr)
4263{
4264 enum ada_renaming_category kind;
4265 const char *info;
4266 const char *suffix;
4267
4268 if (sym == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (SYMBOL_CLASS (sym))
14f9c5c9 4271 {
aeb5907d
JB
4272 default:
4273 return ADA_NOT_RENAMING;
aeb5907d
JB
4274 case LOC_LOCAL:
4275 case LOC_STATIC:
4276 case LOC_COMPUTED:
4277 case LOC_OPTIMIZED_OUT:
4278 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4279 if (info == NULL)
4280 return ADA_NOT_RENAMING;
4281 switch (info[5])
4282 {
4283 case '_':
4284 kind = ADA_OBJECT_RENAMING;
4285 info += 6;
4286 break;
4287 case 'E':
4288 kind = ADA_EXCEPTION_RENAMING;
4289 info += 7;
4290 break;
4291 case 'P':
4292 kind = ADA_PACKAGE_RENAMING;
4293 info += 7;
4294 break;
4295 case 'S':
4296 kind = ADA_SUBPROGRAM_RENAMING;
4297 info += 7;
4298 break;
4299 default:
4300 return ADA_NOT_RENAMING;
4301 }
14f9c5c9 4302 }
4c4b4cd2 4303
aeb5907d
JB
4304 if (renamed_entity != NULL)
4305 *renamed_entity = info;
4306 suffix = strstr (info, "___XE");
4307 if (suffix == NULL || suffix == info)
4308 return ADA_NOT_RENAMING;
4309 if (len != NULL)
4310 *len = strlen (info) - strlen (suffix);
4311 suffix += 5;
4312 if (renaming_expr != NULL)
4313 *renaming_expr = suffix;
4314 return kind;
4315}
4316
a5ee536b
JB
4317/* Compute the value of the given RENAMING_SYM, which is expected to
4318 be a symbol encoding a renaming expression. BLOCK is the block
4319 used to evaluate the renaming. */
52ce6436 4320
a5ee536b
JB
4321static struct value *
4322ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4323 const struct block *block)
a5ee536b 4324{
bbc13ae3 4325 const char *sym_name;
a5ee536b 4326
bbc13ae3 4327 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4328 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4329 return evaluate_expression (expr.get ());
a5ee536b 4330}
14f9c5c9 4331\f
d2e4a39e 4332
4c4b4cd2 4333 /* Evaluation: Function Calls */
14f9c5c9 4334
4c4b4cd2 4335/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4336 lvalues, and otherwise has the side-effect of allocating memory
4337 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4338
d2e4a39e 4339static struct value *
40bc484c 4340ensure_lval (struct value *val)
14f9c5c9 4341{
40bc484c
JB
4342 if (VALUE_LVAL (val) == not_lval
4343 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4344 {
df407dfe 4345 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4346 const CORE_ADDR addr =
4347 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4348
a84a8a0d 4349 VALUE_LVAL (val) = lval_memory;
1a088441 4350 set_value_address (val, addr);
40bc484c 4351 write_memory (addr, value_contents (val), len);
c3e5cd34 4352 }
14f9c5c9
AS
4353
4354 return val;
4355}
4356
4357/* Return the value ACTUAL, converted to be an appropriate value for a
4358 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4359 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4360 values not residing in memory, updating it as needed. */
14f9c5c9 4361
a93c0eb6 4362struct value *
40bc484c 4363ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4364{
df407dfe 4365 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4366 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4367 struct type *formal_target =
4368 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4369 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4370 struct type *actual_target =
4371 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4372 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4373
4c4b4cd2 4374 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4375 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4376 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4377 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4378 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4379 {
a84a8a0d 4380 struct value *result;
5b4ee69b 4381
14f9c5c9 4382 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4383 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4384 result = desc_data (actual);
cb923fcc 4385 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4386 {
4387 if (VALUE_LVAL (actual) != lval_memory)
4388 {
4389 struct value *val;
5b4ee69b 4390
df407dfe 4391 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4392 val = allocate_value (actual_type);
990a07ab 4393 memcpy ((char *) value_contents_raw (val),
0fd88904 4394 (char *) value_contents (actual),
4c4b4cd2 4395 TYPE_LENGTH (actual_type));
40bc484c 4396 actual = ensure_lval (val);
4c4b4cd2 4397 }
a84a8a0d 4398 result = value_addr (actual);
4c4b4cd2 4399 }
a84a8a0d
JB
4400 else
4401 return actual;
b1af9e97 4402 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4403 }
4404 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4405 return ada_value_ind (actual);
8344af1e
JB
4406 else if (ada_is_aligner_type (formal_type))
4407 {
4408 /* We need to turn this parameter into an aligner type
4409 as well. */
4410 struct value *aligner = allocate_value (formal_type);
4411 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4412
4413 value_assign_to_component (aligner, component, actual);
4414 return aligner;
4415 }
14f9c5c9
AS
4416
4417 return actual;
4418}
4419
438c98a1
JB
4420/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4421 type TYPE. This is usually an inefficient no-op except on some targets
4422 (such as AVR) where the representation of a pointer and an address
4423 differs. */
4424
4425static CORE_ADDR
4426value_pointer (struct value *value, struct type *type)
4427{
4428 struct gdbarch *gdbarch = get_type_arch (type);
4429 unsigned len = TYPE_LENGTH (type);
224c3ddb 4430 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4431 CORE_ADDR addr;
4432
4433 addr = value_address (value);
4434 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4435 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4436 return addr;
4437}
4438
14f9c5c9 4439
4c4b4cd2
PH
4440/* Push a descriptor of type TYPE for array value ARR on the stack at
4441 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4442 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4443 to-descriptor type rather than a descriptor type), a struct value *
4444 representing a pointer to this descriptor. */
14f9c5c9 4445
d2e4a39e 4446static struct value *
40bc484c 4447make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4448{
d2e4a39e
AS
4449 struct type *bounds_type = desc_bounds_type (type);
4450 struct type *desc_type = desc_base_type (type);
4451 struct value *descriptor = allocate_value (desc_type);
4452 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4453 int i;
d2e4a39e 4454
0963b4bd
MS
4455 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4456 i > 0; i -= 1)
14f9c5c9 4457 {
19f220c3
JK
4458 modify_field (value_type (bounds), value_contents_writeable (bounds),
4459 ada_array_bound (arr, i, 0),
4460 desc_bound_bitpos (bounds_type, i, 0),
4461 desc_bound_bitsize (bounds_type, i, 0));
4462 modify_field (value_type (bounds), value_contents_writeable (bounds),
4463 ada_array_bound (arr, i, 1),
4464 desc_bound_bitpos (bounds_type, i, 1),
4465 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4466 }
d2e4a39e 4467
40bc484c 4468 bounds = ensure_lval (bounds);
d2e4a39e 4469
19f220c3
JK
4470 modify_field (value_type (descriptor),
4471 value_contents_writeable (descriptor),
4472 value_pointer (ensure_lval (arr),
4473 TYPE_FIELD_TYPE (desc_type, 0)),
4474 fat_pntr_data_bitpos (desc_type),
4475 fat_pntr_data_bitsize (desc_type));
4476
4477 modify_field (value_type (descriptor),
4478 value_contents_writeable (descriptor),
4479 value_pointer (bounds,
4480 TYPE_FIELD_TYPE (desc_type, 1)),
4481 fat_pntr_bounds_bitpos (desc_type),
4482 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4483
40bc484c 4484 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4485
4486 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4487 return value_addr (descriptor);
4488 else
4489 return descriptor;
4490}
14f9c5c9 4491\f
3d9434b5
JB
4492 /* Symbol Cache Module */
4493
3d9434b5 4494/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4495 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4496 on the type of entity being printed, the cache can make it as much
4497 as an order of magnitude faster than without it.
4498
4499 The descriptive type DWARF extension has significantly reduced
4500 the need for this cache, at least when DWARF is being used. However,
4501 even in this case, some expensive name-based symbol searches are still
4502 sometimes necessary - to find an XVZ variable, mostly. */
4503
ee01b665 4504/* Initialize the contents of SYM_CACHE. */
3d9434b5 4505
ee01b665
JB
4506static void
4507ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4508{
4509 obstack_init (&sym_cache->cache_space);
4510 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4511}
3d9434b5 4512
ee01b665
JB
4513/* Free the memory used by SYM_CACHE. */
4514
4515static void
4516ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4517{
ee01b665
JB
4518 obstack_free (&sym_cache->cache_space, NULL);
4519 xfree (sym_cache);
4520}
3d9434b5 4521
ee01b665
JB
4522/* Return the symbol cache associated to the given program space PSPACE.
4523 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4524
ee01b665
JB
4525static struct ada_symbol_cache *
4526ada_get_symbol_cache (struct program_space *pspace)
4527{
4528 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4529
66c168ae 4530 if (pspace_data->sym_cache == NULL)
ee01b665 4531 {
66c168ae
JB
4532 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4533 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4534 }
4535
66c168ae 4536 return pspace_data->sym_cache;
ee01b665 4537}
3d9434b5
JB
4538
4539/* Clear all entries from the symbol cache. */
4540
4541static void
4542ada_clear_symbol_cache (void)
4543{
ee01b665
JB
4544 struct ada_symbol_cache *sym_cache
4545 = ada_get_symbol_cache (current_program_space);
4546
4547 obstack_free (&sym_cache->cache_space, NULL);
4548 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4549}
4550
fe978cb0 4551/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4552 Return it if found, or NULL otherwise. */
4553
4554static struct cache_entry **
fe978cb0 4555find_entry (const char *name, domain_enum domain)
3d9434b5 4556{
ee01b665
JB
4557 struct ada_symbol_cache *sym_cache
4558 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4559 int h = msymbol_hash (name) % HASH_SIZE;
4560 struct cache_entry **e;
4561
ee01b665 4562 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4563 {
fe978cb0 4564 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4565 return e;
4566 }
4567 return NULL;
4568}
4569
fe978cb0 4570/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4571 Return 1 if found, 0 otherwise.
4572
4573 If an entry was found and SYM is not NULL, set *SYM to the entry's
4574 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4575
96d887e8 4576static int
fe978cb0 4577lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4578 struct symbol **sym, const struct block **block)
96d887e8 4579{
fe978cb0 4580 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4581
4582 if (e == NULL)
4583 return 0;
4584 if (sym != NULL)
4585 *sym = (*e)->sym;
4586 if (block != NULL)
4587 *block = (*e)->block;
4588 return 1;
96d887e8
PH
4589}
4590
3d9434b5 4591/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4592 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4593
96d887e8 4594static void
fe978cb0 4595cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4596 const struct block *block)
96d887e8 4597{
ee01b665
JB
4598 struct ada_symbol_cache *sym_cache
4599 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4600 int h;
4601 char *copy;
4602 struct cache_entry *e;
4603
1994afbf
DE
4604 /* Symbols for builtin types don't have a block.
4605 For now don't cache such symbols. */
4606 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4607 return;
4608
3d9434b5
JB
4609 /* If the symbol is a local symbol, then do not cache it, as a search
4610 for that symbol depends on the context. To determine whether
4611 the symbol is local or not, we check the block where we found it
4612 against the global and static blocks of its associated symtab. */
4613 if (sym
08be3fe3 4614 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4615 GLOBAL_BLOCK) != block
08be3fe3 4616 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4617 STATIC_BLOCK) != block)
3d9434b5
JB
4618 return;
4619
4620 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4621 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4622 e->next = sym_cache->root[h];
4623 sym_cache->root[h] = e;
224c3ddb
SM
4624 e->name = copy
4625 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4626 strcpy (copy, name);
4627 e->sym = sym;
fe978cb0 4628 e->domain = domain;
3d9434b5 4629 e->block = block;
96d887e8 4630}
4c4b4cd2
PH
4631\f
4632 /* Symbol Lookup */
4633
b5ec771e
PA
4634/* Return the symbol name match type that should be used used when
4635 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4636
4637 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4638 for Ada lookups. */
c0431670 4639
b5ec771e
PA
4640static symbol_name_match_type
4641name_match_type_from_name (const char *lookup_name)
c0431670 4642{
b5ec771e
PA
4643 return (strstr (lookup_name, "__") == NULL
4644 ? symbol_name_match_type::WILD
4645 : symbol_name_match_type::FULL);
c0431670
JB
4646}
4647
4c4b4cd2
PH
4648/* Return the result of a standard (literal, C-like) lookup of NAME in
4649 given DOMAIN, visible from lexical block BLOCK. */
4650
4651static struct symbol *
4652standard_lookup (const char *name, const struct block *block,
4653 domain_enum domain)
4654{
acbd605d 4655 /* Initialize it just to avoid a GCC false warning. */
6640a367 4656 struct block_symbol sym = {};
4c4b4cd2 4657
d12307c1
PMR
4658 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4659 return sym.symbol;
a2cd4f14 4660 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4661 cache_symbol (name, domain, sym.symbol, sym.block);
4662 return sym.symbol;
4c4b4cd2
PH
4663}
4664
4665
4666/* Non-zero iff there is at least one non-function/non-enumeral symbol
4667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4668 since they contend in overloading in the same way. */
4669static int
d12307c1 4670is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4671{
4672 int i;
4673
4674 for (i = 0; i < n; i += 1)
d12307c1
PMR
4675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4677 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4678 return 1;
4679
4680 return 0;
4681}
4682
4683/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4684 struct types. Otherwise, they may not. */
14f9c5c9
AS
4685
4686static int
d2e4a39e 4687equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4688{
d2e4a39e 4689 if (type0 == type1)
14f9c5c9 4690 return 1;
d2e4a39e 4691 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4692 || TYPE_CODE (type0) != TYPE_CODE (type1))
4693 return 0;
d2e4a39e 4694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4698 return 1;
d2e4a39e 4699
14f9c5c9
AS
4700 return 0;
4701}
4702
4703/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4704 no more defined than that of SYM1. */
14f9c5c9
AS
4705
4706static int
d2e4a39e 4707lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4708{
4709 if (sym0 == sym1)
4710 return 1;
176620f1 4711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4713 return 0;
4714
d2e4a39e 4715 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4716 {
4717 case LOC_UNDEF:
4718 return 1;
4719 case LOC_TYPEDEF:
4720 {
4c4b4cd2
PH
4721 struct type *type0 = SYMBOL_TYPE (sym0);
4722 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4723 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4724 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4725 int len0 = strlen (name0);
5b4ee69b 4726
4c4b4cd2
PH
4727 return
4728 TYPE_CODE (type0) == TYPE_CODE (type1)
4729 && (equiv_types (type0, type1)
4730 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4731 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4732 }
4733 case LOC_CONST:
4734 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4735 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4736 default:
4737 return 0;
14f9c5c9
AS
4738 }
4739}
4740
d12307c1 4741/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4743
4744static void
76a01679
JB
4745add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
f0c5f9b2 4747 const struct block *block)
14f9c5c9
AS
4748{
4749 int i;
d12307c1 4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4751
529cad9c
PH
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4c4b4cd2
PH
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
d12307c1 4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4764 return;
d12307c1 4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4766 {
d12307c1 4767 prevDefns[i].symbol = sym;
4c4b4cd2 4768 prevDefns[i].block = block;
4c4b4cd2 4769 return;
76a01679 4770 }
4c4b4cd2
PH
4771 }
4772
4773 {
d12307c1 4774 struct block_symbol info;
4c4b4cd2 4775
d12307c1 4776 info.symbol = sym;
4c4b4cd2 4777 info.block = block;
d12307c1 4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4779 }
4780}
4781
d12307c1
PMR
4782/* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4c4b4cd2 4784
76a01679
JB
4785static int
4786num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4787{
d12307c1 4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4789}
4790
d12307c1
PMR
4791/* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4793
d12307c1 4794static struct block_symbol *
4c4b4cd2
PH
4795defns_collected (struct obstack *obstackp, int finish)
4796{
4797 if (finish)
224c3ddb 4798 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4799 else
d12307c1 4800 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4801}
4802
7c7b6655
TT
4803/* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4c4b4cd2 4808
7c7b6655 4809struct bound_minimal_symbol
96d887e8 4810ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4811{
7c7b6655 4812 struct bound_minimal_symbol result;
4c4b4cd2 4813
7c7b6655
TT
4814 memset (&result, 0, sizeof (result));
4815
b5ec771e
PA
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4821
2030c079 4822 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4823 {
7932255d 4824 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4c4b4cd2 4835
7c7b6655 4836 return result;
96d887e8 4837}
4c4b4cd2 4838
2ff0a947
TT
4839/* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845static std::vector<struct bound_minimal_symbol>
4846ada_lookup_simple_minsyms (const char *name)
4847{
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867}
4868
96d887e8
PH
4869/* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4c4b4cd2 4874
96d887e8
PH
4875static void
4876add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
96d887e8 4879{
96d887e8 4880}
14f9c5c9 4881
96d887e8
PH
4882/* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
14f9c5c9 4884
96d887e8
PH
4885static int
4886is_nondebugging_type (struct type *type)
4887{
0d5cff50 4888 const char *name = ada_type_name (type);
5b4ee69b 4889
96d887e8
PH
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891}
4c4b4cd2 4892
8f17729f
JB
4893/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900static int
4901ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902{
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
0d5cff50
DE
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934}
4935
4936/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956static int
54d343a2 4957symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4958{
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
54d343a2 4969 for (i = 0; i < syms.size (); i++)
d12307c1 4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
54d343a2 4974 for (i = 1; i < syms.size (); i++)
d12307c1 4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4979 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
54d343a2 4987 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4990 return 0;
4991
4992 return 1;
4993}
4994
54d343a2 4995/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
4c4b4cd2 5001
96d887e8 5002static int
54d343a2 5003remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5004{
5005 int i, j;
4c4b4cd2 5006
8f17729f
JB
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
54d343a2
TT
5010 if (syms->size () < 2)
5011 return syms->size ();
8f17729f 5012
96d887e8 5013 i = 0;
54d343a2 5014 while (i < syms->size ())
96d887e8 5015 {
a35ddb44 5016 int remove_p = 0;
339c13b6
JB
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
54d343a2
TT
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5023 {
54d343a2 5024 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5025 {
5026 if (j != i
54d343a2
TT
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5031 remove_p = 1;
339c13b6
JB
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
54d343a2
TT
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5041 {
54d343a2 5042 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5043 {
5044 if (i != j
54d343a2
TT
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5052 remove_p = 1;
4c4b4cd2 5053 }
4c4b4cd2 5054 }
339c13b6 5055
a35ddb44 5056 if (remove_p)
54d343a2 5057 syms->erase (syms->begin () + i);
339c13b6 5058
96d887e8 5059 i += 1;
14f9c5c9 5060 }
8f17729f
JB
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
8f17729f 5076
54d343a2 5077 return syms->size ();
14f9c5c9
AS
5078}
5079
96d887e8
PH
5080/* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
49d83361 5083 defined. */
4c4b4cd2 5084
49d83361 5085static std::string
96d887e8 5086xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5087{
96d887e8 5088 /* The renaming types adhere to the following convention:
0963b4bd 5089 <scope>__<rename>___<XR extension>.
96d887e8
PH
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
76a01679 5092
a737d952 5093 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
14f9c5c9 5096
96d887e8
PH
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5099
96d887e8
PH
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
76a01679 5103
96d887e8 5104 /* Make a copy of scope and return it. */
49d83361 5105 return std::string (name, last);
4c4b4cd2
PH
5106}
5107
96d887e8 5108/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5109
96d887e8
PH
5110static int
5111is_package_name (const char *name)
4c4b4cd2 5112{
96d887e8
PH
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
4c4b4cd2 5118
96d887e8
PH
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
14f9c5c9 5123
96d887e8
PH
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
14f9c5c9 5126
96d887e8 5127 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5128 functions names cannot contain "__" in them. */
96d887e8
PH
5129 if (strstr (name, "__") != NULL)
5130 return 0;
4c4b4cd2 5131
528e1572 5132 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5133
528e1572 5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5135}
14f9c5c9 5136
96d887e8 5137/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5138 not visible from FUNCTION_NAME. */
14f9c5c9 5139
96d887e8 5140static int
0d5cff50 5141old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5142{
aeb5907d
JB
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
49d83361 5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5147
96d887e8 5148 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
14f9c5c9 5151
96d887e8
PH
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
76a01679 5154
96d887e8
PH
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
61012eef 5159 if (startswith (function_name, "_ada_"))
96d887e8 5160 function_name += 5;
f26caa11 5161
49d83361 5162 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5163}
5164
aeb5907d
JB
5165/* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
96d887e8
PH
5170
5171 Rationale:
aeb5907d
JB
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
f26caa11 5184
96d887e8
PH
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
4c4b4cd2 5201
14f9c5c9 5202static int
54d343a2
TT
5203remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
4c4b4cd2
PH
5205{
5206 struct symbol *current_function;
0d5cff50 5207 const char *current_function_name;
4c4b4cd2 5208 int i;
aeb5907d
JB
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
0963b4bd 5213 First, zero out such symbols, then compress. */
aeb5907d 5214 is_new_style_renaming = 0;
54d343a2 5215 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5216 {
54d343a2
TT
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5b4ee69b 5231
aeb5907d 5232 is_new_style_renaming = 1;
54d343a2
TT
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5236 name_len) == 0
54d343a2
TT
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
aeb5907d
JB
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
54d343a2
TT
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
aeb5907d 5247 {
54d343a2 5248 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5249 k += 1;
5250 }
5251 return k;
5252 }
4c4b4cd2
PH
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
76a01679 5256
4c4b4cd2 5257 if (current_block == NULL)
54d343a2 5258 return syms->size ();
76a01679 5259
7f0df278 5260 current_function = block_linkage_function (current_block);
4c4b4cd2 5261 if (current_function == NULL)
54d343a2 5262 return syms->size ();
4c4b4cd2
PH
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
54d343a2 5266 return syms->size ();
4c4b4cd2
PH
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
54d343a2 5273 while (i < syms->size ())
4c4b4cd2 5274 {
54d343a2 5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5276 == ADA_OBJECT_RENAMING
54d343a2
TT
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5280 else
5281 i += 1;
5282 }
5283
54d343a2 5284 return syms->size ();
4c4b4cd2
PH
5285}
5286
339c13b6
JB
5287/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297static void
b5ec771e
PA
5298ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
339c13b6
JB
5301{
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
b5ec771e 5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5321}
5322
ccefe4c4 5323/* An object of this type is used as the user_data argument when
40658b94 5324 calling the map_matching_symbols method. */
ccefe4c4 5325
40658b94 5326struct match_data
ccefe4c4 5327{
40658b94 5328 struct objfile *objfile;
ccefe4c4 5329 struct obstack *obstackp;
40658b94
PH
5330 struct symbol *arg_sym;
5331 int found_sym;
ccefe4c4
TT
5332};
5333
199b4314
TT
5334/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5335 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
ccefe4c4 5342
199b4314
TT
5343static bool
5344aux_add_nonlocal_symbols (struct block_symbol *bsym,
5345 struct match_data *data)
ccefe4c4 5346{
199b4314
TT
5347 const struct block *block = bsym->block;
5348 struct symbol *sym = bsym->symbol;
5349
40658b94
PH
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5362 return true;
40658b94
PH
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
199b4314 5373 return true;
40658b94
PH
5374}
5375
b5ec771e
PA
5376/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5379
5380static int
5381ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
b5ec771e
PA
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
22cee43f
PMR
5385{
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
b5ec771e
PA
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
22cee43f
PMR
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
22cee43f
PMR
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
b5ec771e
PA
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
22cee43f
PMR
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431}
5432
db230ce3
JB
5433/* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5b4ee69b 5435
40658b94 5436static int
db230ce3
JB
5437compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
40658b94
PH
5439{
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
db230ce3
JB
5442 char c1, c2;
5443
40658b94
PH
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
40658b94 5458 break;
db230ce3 5459
40658b94
PH
5460 string1 += 1;
5461 string2 += 1;
5462 }
db230ce3 5463
40658b94
PH
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
052874e8 5471 if (is_name_suffix (string1))
40658b94
PH
5472 return 0;
5473 else
1a1d5513 5474 return 1;
40658b94 5475 }
dbb8534f 5476 /* FALLTHROUGH */
40658b94
PH
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
db230ce3
JB
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
40658b94 5487 }
ccefe4c4
TT
5488}
5489
db230ce3
JB
5490/* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501static int
5502compare_names (const char *string1, const char *string2)
5503{
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516}
5517
b5ec771e
PA
5518/* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521static const char *
5522ada_lookup_name (const lookup_name_info &lookup_name)
5523{
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525}
5526
339c13b6 5527/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
339c13b6
JB
5531
5532static void
b5ec771e
PA
5533add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
339c13b6 5536{
40658b94 5537 struct match_data data;
339c13b6 5538
6475f2fe 5539 memset (&data, 0, sizeof data);
ccefe4c4 5540 data.obstackp = obstackp;
339c13b6 5541
b5ec771e
PA
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
199b4314
TT
5544 auto callback = [&] (struct block_symbol *bsym)
5545 {
5546 return aux_add_nonlocal_symbols (bsym, &data);
5547 };
5548
2030c079 5549 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5550 {
5551 data.objfile = objfile;
5552
5553 if (is_wild_match)
b5ec771e 5554 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
199b4314 5555 domain, global, callback,
b5ec771e
PA
5556 symbol_name_match_type::WILD,
5557 NULL);
40658b94 5558 else
b5ec771e 5559 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
199b4314 5560 domain, global, callback,
b5ec771e
PA
5561 symbol_name_match_type::FULL,
5562 compare_names);
22cee43f 5563
b669c953 5564 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5565 {
5566 const struct block *global_block
5567 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5568
b5ec771e
PA
5569 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5570 domain))
22cee43f
PMR
5571 data.found_sym = 1;
5572 }
40658b94
PH
5573 }
5574
5575 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5576 {
b5ec771e
PA
5577 const char *name = ada_lookup_name (lookup_name);
5578 std::string name1 = std::string ("<_ada_") + name + '>';
5579
2030c079 5580 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5581 {
40658b94 5582 data.objfile = objfile;
b5ec771e 5583 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
199b4314 5584 domain, global, callback,
b5ec771e
PA
5585 symbol_name_match_type::FULL,
5586 compare_names);
40658b94
PH
5587 }
5588 }
339c13b6
JB
5589}
5590
b5ec771e
PA
5591/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5592 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5593 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5594
22cee43f
PMR
5595 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5596 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5597 is the one match returned (no other matches in that or
d9680e73 5598 enclosing blocks is returned). If there are any matches in or
22cee43f 5599 surrounding BLOCK, then these alone are returned.
4eeaa230 5600
b5ec771e
PA
5601 Names prefixed with "standard__" are handled specially:
5602 "standard__" is first stripped off (by the lookup_name
5603 constructor), and only static and global symbols are searched.
14f9c5c9 5604
22cee43f
PMR
5605 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5606 to lookup global symbols. */
5607
5608static void
5609ada_add_all_symbols (struct obstack *obstackp,
5610 const struct block *block,
b5ec771e 5611 const lookup_name_info &lookup_name,
22cee43f
PMR
5612 domain_enum domain,
5613 int full_search,
5614 int *made_global_lookup_p)
14f9c5c9
AS
5615{
5616 struct symbol *sym;
14f9c5c9 5617
22cee43f
PMR
5618 if (made_global_lookup_p)
5619 *made_global_lookup_p = 0;
339c13b6
JB
5620
5621 /* Special case: If the user specifies a symbol name inside package
5622 Standard, do a non-wild matching of the symbol name without
5623 the "standard__" prefix. This was primarily introduced in order
5624 to allow the user to specifically access the standard exceptions
5625 using, for instance, Standard.Constraint_Error when Constraint_Error
5626 is ambiguous (due to the user defining its own Constraint_Error
5627 entity inside its program). */
b5ec771e
PA
5628 if (lookup_name.ada ().standard_p ())
5629 block = NULL;
4c4b4cd2 5630
339c13b6 5631 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5632
4eeaa230
DE
5633 if (block != NULL)
5634 {
5635 if (full_search)
b5ec771e 5636 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5637 else
5638 {
5639 /* In the !full_search case we're are being called by
5640 ada_iterate_over_symbols, and we don't want to search
5641 superblocks. */
b5ec771e 5642 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5643 }
22cee43f
PMR
5644 if (num_defns_collected (obstackp) > 0 || !full_search)
5645 return;
4eeaa230 5646 }
d2e4a39e 5647
339c13b6
JB
5648 /* No non-global symbols found. Check our cache to see if we have
5649 already performed this search before. If we have, then return
5650 the same result. */
5651
b5ec771e
PA
5652 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5653 domain, &sym, &block))
4c4b4cd2
PH
5654 {
5655 if (sym != NULL)
b5ec771e 5656 add_defn_to_vec (obstackp, sym, block);
22cee43f 5657 return;
4c4b4cd2 5658 }
14f9c5c9 5659
22cee43f
PMR
5660 if (made_global_lookup_p)
5661 *made_global_lookup_p = 1;
b1eedac9 5662
339c13b6
JB
5663 /* Search symbols from all global blocks. */
5664
b5ec771e 5665 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5666
4c4b4cd2 5667 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5668 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5669
22cee43f 5670 if (num_defns_collected (obstackp) == 0)
b5ec771e 5671 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5672}
5673
b5ec771e
PA
5674/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5675 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5676 matches.
54d343a2
TT
5677 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5678 found and the blocks and symbol tables (if any) in which they were
5679 found.
22cee43f
PMR
5680
5681 When full_search is non-zero, any non-function/non-enumeral
5682 symbol match within the nest of blocks whose innermost member is BLOCK,
5683 is the one match returned (no other matches in that or
5684 enclosing blocks is returned). If there are any matches in or
5685 surrounding BLOCK, then these alone are returned.
5686
5687 Names prefixed with "standard__" are handled specially: "standard__"
5688 is first stripped off, and only static and global symbols are searched. */
5689
5690static int
b5ec771e
PA
5691ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5692 const struct block *block,
22cee43f 5693 domain_enum domain,
54d343a2 5694 std::vector<struct block_symbol> *results,
22cee43f
PMR
5695 int full_search)
5696{
22cee43f
PMR
5697 int syms_from_global_search;
5698 int ndefns;
ec6a20c2 5699 auto_obstack obstack;
22cee43f 5700
ec6a20c2 5701 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5702 domain, full_search, &syms_from_global_search);
14f9c5c9 5703
ec6a20c2
JB
5704 ndefns = num_defns_collected (&obstack);
5705
54d343a2
TT
5706 struct block_symbol *base = defns_collected (&obstack, 1);
5707 for (int i = 0; i < ndefns; ++i)
5708 results->push_back (base[i]);
4c4b4cd2 5709
54d343a2 5710 ndefns = remove_extra_symbols (results);
4c4b4cd2 5711
b1eedac9 5712 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5713 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5714
b1eedac9 5715 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5716 cache_symbol (ada_lookup_name (lookup_name), domain,
5717 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5718
54d343a2 5719 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5720
14f9c5c9
AS
5721 return ndefns;
5722}
5723
b5ec771e 5724/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5725 in global scopes, returning the number of matches, and filling *RESULTS
5726 with (SYM,BLOCK) tuples.
ec6a20c2 5727
4eeaa230
DE
5728 See ada_lookup_symbol_list_worker for further details. */
5729
5730int
b5ec771e 5731ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5732 domain_enum domain,
5733 std::vector<struct block_symbol> *results)
4eeaa230 5734{
b5ec771e
PA
5735 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5736 lookup_name_info lookup_name (name, name_match_type);
5737
5738 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5739}
5740
5741/* Implementation of the la_iterate_over_symbols method. */
5742
6969f124 5743static bool
14bc53a8 5744ada_iterate_over_symbols
b5ec771e
PA
5745 (const struct block *block, const lookup_name_info &name,
5746 domain_enum domain,
14bc53a8 5747 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5748{
5749 int ndefs, i;
54d343a2 5750 std::vector<struct block_symbol> results;
4eeaa230
DE
5751
5752 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5753
4eeaa230
DE
5754 for (i = 0; i < ndefs; ++i)
5755 {
7e41c8db 5756 if (!callback (&results[i]))
6969f124 5757 return false;
4eeaa230 5758 }
6969f124
TT
5759
5760 return true;
4eeaa230
DE
5761}
5762
4e5c77fe
JB
5763/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5764 to 1, but choosing the first symbol found if there are multiple
5765 choices.
5766
5e2336be
JB
5767 The result is stored in *INFO, which must be non-NULL.
5768 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5769
5770void
5771ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5772 domain_enum domain,
d12307c1 5773 struct block_symbol *info)
14f9c5c9 5774{
b5ec771e
PA
5775 /* Since we already have an encoded name, wrap it in '<>' to force a
5776 verbatim match. Otherwise, if the name happens to not look like
5777 an encoded name (because it doesn't include a "__"),
5778 ada_lookup_name_info would re-encode/fold it again, and that
5779 would e.g., incorrectly lowercase object renaming names like
5780 "R28b" -> "r28b". */
5781 std::string verbatim = std::string ("<") + name + '>';
5782
5e2336be 5783 gdb_assert (info != NULL);
65392b3e 5784 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5785}
aeb5907d
JB
5786
5787/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5788 scope and in global scopes, or NULL if none. NAME is folded and
5789 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5790 choosing the first symbol if there are multiple choices. */
4e5c77fe 5791
d12307c1 5792struct block_symbol
aeb5907d 5793ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5794 domain_enum domain)
aeb5907d 5795{
54d343a2 5796 std::vector<struct block_symbol> candidates;
f98fc17b 5797 int n_candidates;
f98fc17b
PA
5798
5799 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5800
5801 if (n_candidates == 0)
54d343a2 5802 return {};
f98fc17b
PA
5803
5804 block_symbol info = candidates[0];
5805 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5806 return info;
4c4b4cd2 5807}
14f9c5c9 5808
d12307c1 5809static struct block_symbol
f606139a
DE
5810ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5811 const char *name,
76a01679 5812 const struct block *block,
21b556f4 5813 const domain_enum domain)
4c4b4cd2 5814{
d12307c1 5815 struct block_symbol sym;
04dccad0 5816
65392b3e 5817 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5818 if (sym.symbol != NULL)
04dccad0
JB
5819 return sym;
5820
5821 /* If we haven't found a match at this point, try the primitive
5822 types. In other languages, this search is performed before
5823 searching for global symbols in order to short-circuit that
5824 global-symbol search if it happens that the name corresponds
5825 to a primitive type. But we cannot do the same in Ada, because
5826 it is perfectly legitimate for a program to declare a type which
5827 has the same name as a standard type. If looking up a type in
5828 that situation, we have traditionally ignored the primitive type
5829 in favor of user-defined types. This is why, unlike most other
5830 languages, we search the primitive types this late and only after
5831 having searched the global symbols without success. */
5832
5833 if (domain == VAR_DOMAIN)
5834 {
5835 struct gdbarch *gdbarch;
5836
5837 if (block == NULL)
5838 gdbarch = target_gdbarch ();
5839 else
5840 gdbarch = block_gdbarch (block);
d12307c1
PMR
5841 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5842 if (sym.symbol != NULL)
04dccad0
JB
5843 return sym;
5844 }
5845
6640a367 5846 return {};
14f9c5c9
AS
5847}
5848
5849
4c4b4cd2
PH
5850/* True iff STR is a possible encoded suffix of a normal Ada name
5851 that is to be ignored for matching purposes. Suffixes of parallel
5852 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5853 are given by any of the regular expressions:
4c4b4cd2 5854
babe1480
JB
5855 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5856 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5857 TKB [subprogram suffix for task bodies]
babe1480 5858 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5859 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5860
5861 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5862 match is performed. This sequence is used to differentiate homonyms,
5863 is an optional part of a valid name suffix. */
4c4b4cd2 5864
14f9c5c9 5865static int
d2e4a39e 5866is_name_suffix (const char *str)
14f9c5c9
AS
5867{
5868 int k;
4c4b4cd2
PH
5869 const char *matching;
5870 const int len = strlen (str);
5871
babe1480
JB
5872 /* Skip optional leading __[0-9]+. */
5873
4c4b4cd2
PH
5874 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5875 {
babe1480
JB
5876 str += 3;
5877 while (isdigit (str[0]))
5878 str += 1;
4c4b4cd2 5879 }
babe1480
JB
5880
5881 /* [.$][0-9]+ */
4c4b4cd2 5882
babe1480 5883 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5884 {
babe1480 5885 matching = str + 1;
4c4b4cd2
PH
5886 while (isdigit (matching[0]))
5887 matching += 1;
5888 if (matching[0] == '\0')
5889 return 1;
5890 }
5891
5892 /* ___[0-9]+ */
babe1480 5893
4c4b4cd2
PH
5894 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5895 {
5896 matching = str + 3;
5897 while (isdigit (matching[0]))
5898 matching += 1;
5899 if (matching[0] == '\0')
5900 return 1;
5901 }
5902
9ac7f98e
JB
5903 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5904
5905 if (strcmp (str, "TKB") == 0)
5906 return 1;
5907
529cad9c
PH
5908#if 0
5909 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5910 with a N at the end. Unfortunately, the compiler uses the same
5911 convention for other internal types it creates. So treating
529cad9c 5912 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5913 some regressions. For instance, consider the case of an enumerated
5914 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5915 name ends with N.
5916 Having a single character like this as a suffix carrying some
0963b4bd 5917 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5918 to be something like "_N" instead. In the meantime, do not do
5919 the following check. */
5920 /* Protected Object Subprograms */
5921 if (len == 1 && str [0] == 'N')
5922 return 1;
5923#endif
5924
5925 /* _E[0-9]+[bs]$ */
5926 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5927 {
5928 matching = str + 3;
5929 while (isdigit (matching[0]))
5930 matching += 1;
5931 if ((matching[0] == 'b' || matching[0] == 's')
5932 && matching [1] == '\0')
5933 return 1;
5934 }
5935
4c4b4cd2
PH
5936 /* ??? We should not modify STR directly, as we are doing below. This
5937 is fine in this case, but may become problematic later if we find
5938 that this alternative did not work, and want to try matching
5939 another one from the begining of STR. Since we modified it, we
5940 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5941 if (str[0] == 'X')
5942 {
5943 str += 1;
d2e4a39e 5944 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5945 {
5946 if (str[0] != 'n' && str[0] != 'b')
5947 return 0;
5948 str += 1;
5949 }
14f9c5c9 5950 }
babe1480 5951
14f9c5c9
AS
5952 if (str[0] == '\000')
5953 return 1;
babe1480 5954
d2e4a39e 5955 if (str[0] == '_')
14f9c5c9
AS
5956 {
5957 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5958 return 0;
d2e4a39e 5959 if (str[2] == '_')
4c4b4cd2 5960 {
61ee279c
PH
5961 if (strcmp (str + 3, "JM") == 0)
5962 return 1;
5963 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5964 the LJM suffix in favor of the JM one. But we will
5965 still accept LJM as a valid suffix for a reasonable
5966 amount of time, just to allow ourselves to debug programs
5967 compiled using an older version of GNAT. */
4c4b4cd2
PH
5968 if (strcmp (str + 3, "LJM") == 0)
5969 return 1;
5970 if (str[3] != 'X')
5971 return 0;
1265e4aa
JB
5972 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5973 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5974 return 1;
5975 if (str[4] == 'R' && str[5] != 'T')
5976 return 1;
5977 return 0;
5978 }
5979 if (!isdigit (str[2]))
5980 return 0;
5981 for (k = 3; str[k] != '\0'; k += 1)
5982 if (!isdigit (str[k]) && str[k] != '_')
5983 return 0;
14f9c5c9
AS
5984 return 1;
5985 }
4c4b4cd2 5986 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5987 {
4c4b4cd2
PH
5988 for (k = 2; str[k] != '\0'; k += 1)
5989 if (!isdigit (str[k]) && str[k] != '_')
5990 return 0;
14f9c5c9
AS
5991 return 1;
5992 }
5993 return 0;
5994}
d2e4a39e 5995
aeb5907d
JB
5996/* Return non-zero if the string starting at NAME and ending before
5997 NAME_END contains no capital letters. */
529cad9c
PH
5998
5999static int
6000is_valid_name_for_wild_match (const char *name0)
6001{
6002 const char *decoded_name = ada_decode (name0);
6003 int i;
6004
5823c3ef
JB
6005 /* If the decoded name starts with an angle bracket, it means that
6006 NAME0 does not follow the GNAT encoding format. It should then
6007 not be allowed as a possible wild match. */
6008 if (decoded_name[0] == '<')
6009 return 0;
6010
529cad9c
PH
6011 for (i=0; decoded_name[i] != '\0'; i++)
6012 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6013 return 0;
6014
6015 return 1;
6016}
6017
73589123
PH
6018/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6019 that could start a simple name. Assumes that *NAMEP points into
6020 the string beginning at NAME0. */
4c4b4cd2 6021
14f9c5c9 6022static int
73589123 6023advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6024{
73589123 6025 const char *name = *namep;
5b4ee69b 6026
5823c3ef 6027 while (1)
14f9c5c9 6028 {
aa27d0b3 6029 int t0, t1;
73589123
PH
6030
6031 t0 = *name;
6032 if (t0 == '_')
6033 {
6034 t1 = name[1];
6035 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6036 {
6037 name += 1;
61012eef 6038 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6039 break;
6040 else
6041 name += 1;
6042 }
aa27d0b3
JB
6043 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6044 || name[2] == target0))
73589123
PH
6045 {
6046 name += 2;
6047 break;
6048 }
6049 else
6050 return 0;
6051 }
6052 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6053 name += 1;
6054 else
5823c3ef 6055 return 0;
73589123
PH
6056 }
6057
6058 *namep = name;
6059 return 1;
6060}
6061
b5ec771e
PA
6062/* Return true iff NAME encodes a name of the form prefix.PATN.
6063 Ignores any informational suffixes of NAME (i.e., for which
6064 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6065 simple name. */
73589123 6066
b5ec771e 6067static bool
73589123
PH
6068wild_match (const char *name, const char *patn)
6069{
22e048c9 6070 const char *p;
73589123
PH
6071 const char *name0 = name;
6072
6073 while (1)
6074 {
6075 const char *match = name;
6076
6077 if (*name == *patn)
6078 {
6079 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6080 if (*p != *name)
6081 break;
6082 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6083 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6084
6085 if (name[-1] == '_')
6086 name -= 1;
6087 }
6088 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6089 return false;
96d887e8 6090 }
96d887e8
PH
6091}
6092
b5ec771e
PA
6093/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6094 any trailing suffixes that encode debugging information or leading
6095 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6096 information that is ignored). */
40658b94 6097
b5ec771e 6098static bool
c4d840bd
PH
6099full_match (const char *sym_name, const char *search_name)
6100{
b5ec771e
PA
6101 size_t search_name_len = strlen (search_name);
6102
6103 if (strncmp (sym_name, search_name, search_name_len) == 0
6104 && is_name_suffix (sym_name + search_name_len))
6105 return true;
6106
6107 if (startswith (sym_name, "_ada_")
6108 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6109 && is_name_suffix (sym_name + search_name_len + 5))
6110 return true;
c4d840bd 6111
b5ec771e
PA
6112 return false;
6113}
c4d840bd 6114
b5ec771e
PA
6115/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6116 *defn_symbols, updating the list of symbols in OBSTACKP (if
6117 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6118
6119static void
6120ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6121 const struct block *block,
6122 const lookup_name_info &lookup_name,
6123 domain_enum domain, struct objfile *objfile)
96d887e8 6124{
8157b174 6125 struct block_iterator iter;
96d887e8
PH
6126 /* A matching argument symbol, if any. */
6127 struct symbol *arg_sym;
6128 /* Set true when we find a matching non-argument symbol. */
6129 int found_sym;
6130 struct symbol *sym;
6131
6132 arg_sym = NULL;
6133 found_sym = 0;
b5ec771e
PA
6134 for (sym = block_iter_match_first (block, lookup_name, &iter);
6135 sym != NULL;
6136 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6137 {
b5ec771e
PA
6138 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6139 SYMBOL_DOMAIN (sym), domain))
6140 {
6141 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6142 {
6143 if (SYMBOL_IS_ARGUMENT (sym))
6144 arg_sym = sym;
6145 else
6146 {
6147 found_sym = 1;
6148 add_defn_to_vec (obstackp,
6149 fixup_symbol_section (sym, objfile),
6150 block);
6151 }
6152 }
6153 }
96d887e8
PH
6154 }
6155
22cee43f
PMR
6156 /* Handle renamings. */
6157
b5ec771e 6158 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6159 found_sym = 1;
6160
96d887e8
PH
6161 if (!found_sym && arg_sym != NULL)
6162 {
76a01679
JB
6163 add_defn_to_vec (obstackp,
6164 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6165 block);
96d887e8
PH
6166 }
6167
b5ec771e 6168 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6169 {
6170 arg_sym = NULL;
6171 found_sym = 0;
b5ec771e
PA
6172 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6173 const char *name = ada_lookup_name.c_str ();
6174 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6175
6176 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6177 {
4186eb54
KS
6178 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6179 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6180 {
6181 int cmp;
6182
6183 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6184 if (cmp == 0)
6185 {
61012eef 6186 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6187 if (cmp == 0)
6188 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6189 name_len);
6190 }
6191
6192 if (cmp == 0
6193 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6194 {
2a2d4dc3
AS
6195 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6196 {
6197 if (SYMBOL_IS_ARGUMENT (sym))
6198 arg_sym = sym;
6199 else
6200 {
6201 found_sym = 1;
6202 add_defn_to_vec (obstackp,
6203 fixup_symbol_section (sym, objfile),
6204 block);
6205 }
6206 }
76a01679
JB
6207 }
6208 }
76a01679 6209 }
96d887e8
PH
6210
6211 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6212 They aren't parameters, right? */
6213 if (!found_sym && arg_sym != NULL)
6214 {
6215 add_defn_to_vec (obstackp,
76a01679 6216 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6217 block);
96d887e8
PH
6218 }
6219 }
6220}
6221\f
41d27058
JB
6222
6223 /* Symbol Completion */
6224
b5ec771e 6225/* See symtab.h. */
41d27058 6226
b5ec771e
PA
6227bool
6228ada_lookup_name_info::matches
6229 (const char *sym_name,
6230 symbol_name_match_type match_type,
a207cff2 6231 completion_match_result *comp_match_res) const
41d27058 6232{
b5ec771e
PA
6233 bool match = false;
6234 const char *text = m_encoded_name.c_str ();
6235 size_t text_len = m_encoded_name.size ();
41d27058
JB
6236
6237 /* First, test against the fully qualified name of the symbol. */
6238
6239 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6240 match = true;
41d27058 6241
b5ec771e 6242 if (match && !m_encoded_p)
41d27058
JB
6243 {
6244 /* One needed check before declaring a positive match is to verify
6245 that iff we are doing a verbatim match, the decoded version
6246 of the symbol name starts with '<'. Otherwise, this symbol name
6247 is not a suitable completion. */
6248 const char *sym_name_copy = sym_name;
b5ec771e 6249 bool has_angle_bracket;
41d27058
JB
6250
6251 sym_name = ada_decode (sym_name);
6252 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6253 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6254 sym_name = sym_name_copy;
6255 }
6256
b5ec771e 6257 if (match && !m_verbatim_p)
41d27058
JB
6258 {
6259 /* When doing non-verbatim match, another check that needs to
6260 be done is to verify that the potentially matching symbol name
6261 does not include capital letters, because the ada-mode would
6262 not be able to understand these symbol names without the
6263 angle bracket notation. */
6264 const char *tmp;
6265
6266 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6267 if (*tmp != '\0')
b5ec771e 6268 match = false;
41d27058
JB
6269 }
6270
6271 /* Second: Try wild matching... */
6272
b5ec771e 6273 if (!match && m_wild_match_p)
41d27058
JB
6274 {
6275 /* Since we are doing wild matching, this means that TEXT
6276 may represent an unqualified symbol name. We therefore must
6277 also compare TEXT against the unqualified name of the symbol. */
6278 sym_name = ada_unqualified_name (ada_decode (sym_name));
6279
6280 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6281 match = true;
41d27058
JB
6282 }
6283
b5ec771e 6284 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6285
6286 if (!match)
b5ec771e 6287 return false;
41d27058 6288
a207cff2 6289 if (comp_match_res != NULL)
b5ec771e 6290 {
a207cff2 6291 std::string &match_str = comp_match_res->match.storage ();
41d27058 6292
b5ec771e 6293 if (!m_encoded_p)
a207cff2 6294 match_str = ada_decode (sym_name);
b5ec771e
PA
6295 else
6296 {
6297 if (m_verbatim_p)
6298 match_str = add_angle_brackets (sym_name);
6299 else
6300 match_str = sym_name;
41d27058 6301
b5ec771e 6302 }
a207cff2
PA
6303
6304 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6305 }
6306
b5ec771e 6307 return true;
41d27058
JB
6308}
6309
b5ec771e 6310/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6311 WORD is the entire command on which completion is made. */
41d27058 6312
eb3ff9a5
PA
6313static void
6314ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6315 complete_symbol_mode mode,
b5ec771e
PA
6316 symbol_name_match_type name_match_type,
6317 const char *text, const char *word,
eb3ff9a5 6318 enum type_code code)
41d27058 6319{
41d27058 6320 struct symbol *sym;
3977b71f 6321 const struct block *b, *surrounding_static_block = 0;
8157b174 6322 struct block_iterator iter;
41d27058 6323
2f68a895
TT
6324 gdb_assert (code == TYPE_CODE_UNDEF);
6325
1b026119 6326 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6327
6328 /* First, look at the partial symtab symbols. */
14bc53a8 6329 expand_symtabs_matching (NULL,
b5ec771e
PA
6330 lookup_name,
6331 NULL,
14bc53a8
PA
6332 NULL,
6333 ALL_DOMAIN);
41d27058
JB
6334
6335 /* At this point scan through the misc symbol vectors and add each
6336 symbol you find to the list. Eventually we want to ignore
6337 anything that isn't a text symbol (everything else will be
6338 handled by the psymtab code above). */
6339
2030c079 6340 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6341 {
7932255d 6342 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6343 {
6344 QUIT;
6345
6346 if (completion_skip_symbol (mode, msymbol))
6347 continue;
6348
6349 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6350
6351 /* Ada minimal symbols won't have their language set to Ada. If
6352 we let completion_list_add_name compare using the
6353 default/C-like matcher, then when completing e.g., symbols in a
6354 package named "pck", we'd match internal Ada symbols like
6355 "pckS", which are invalid in an Ada expression, unless you wrap
6356 them in '<' '>' to request a verbatim match.
6357
6358 Unfortunately, some Ada encoded names successfully demangle as
6359 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6360 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6361 with the wrong language set. Paper over that issue here. */
6362 if (symbol_language == language_auto
6363 || symbol_language == language_cplus)
6364 symbol_language = language_ada;
6365
6366 completion_list_add_name (tracker,
6367 symbol_language,
6368 MSYMBOL_LINKAGE_NAME (msymbol),
6369 lookup_name, text, word);
6370 }
6371 }
41d27058
JB
6372
6373 /* Search upwards from currently selected frame (so that we can
6374 complete on local vars. */
6375
6376 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6377 {
6378 if (!BLOCK_SUPERBLOCK (b))
6379 surrounding_static_block = b; /* For elmin of dups */
6380
6381 ALL_BLOCK_SYMBOLS (b, iter, sym)
6382 {
f9d67a22
PA
6383 if (completion_skip_symbol (mode, sym))
6384 continue;
6385
b5ec771e
PA
6386 completion_list_add_name (tracker,
6387 SYMBOL_LANGUAGE (sym),
6388 SYMBOL_LINKAGE_NAME (sym),
1b026119 6389 lookup_name, text, word);
41d27058
JB
6390 }
6391 }
6392
6393 /* Go through the symtabs and check the externs and statics for
43f3e411 6394 symbols which match. */
41d27058 6395
2030c079 6396 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6397 {
b669c953 6398 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6399 {
6400 QUIT;
6401 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6402 ALL_BLOCK_SYMBOLS (b, iter, sym)
6403 {
6404 if (completion_skip_symbol (mode, sym))
6405 continue;
f9d67a22 6406
d8aeb77f
TT
6407 completion_list_add_name (tracker,
6408 SYMBOL_LANGUAGE (sym),
6409 SYMBOL_LINKAGE_NAME (sym),
6410 lookup_name, text, word);
6411 }
6412 }
41d27058 6413 }
41d27058 6414
2030c079 6415 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6416 {
b669c953 6417 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6418 {
6419 QUIT;
6420 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6421 /* Don't do this block twice. */
6422 if (b == surrounding_static_block)
6423 continue;
6424 ALL_BLOCK_SYMBOLS (b, iter, sym)
6425 {
6426 if (completion_skip_symbol (mode, sym))
6427 continue;
f9d67a22 6428
d8aeb77f
TT
6429 completion_list_add_name (tracker,
6430 SYMBOL_LANGUAGE (sym),
6431 SYMBOL_LINKAGE_NAME (sym),
6432 lookup_name, text, word);
6433 }
6434 }
41d27058 6435 }
41d27058
JB
6436}
6437
963a6417 6438 /* Field Access */
96d887e8 6439
73fb9985
JB
6440/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6441 for tagged types. */
6442
6443static int
6444ada_is_dispatch_table_ptr_type (struct type *type)
6445{
0d5cff50 6446 const char *name;
73fb9985
JB
6447
6448 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6449 return 0;
6450
6451 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6452 if (name == NULL)
6453 return 0;
6454
6455 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6456}
6457
ac4a2da4
JG
6458/* Return non-zero if TYPE is an interface tag. */
6459
6460static int
6461ada_is_interface_tag (struct type *type)
6462{
6463 const char *name = TYPE_NAME (type);
6464
6465 if (name == NULL)
6466 return 0;
6467
6468 return (strcmp (name, "ada__tags__interface_tag") == 0);
6469}
6470
963a6417
PH
6471/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6472 to be invisible to users. */
96d887e8 6473
963a6417
PH
6474int
6475ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6476{
963a6417
PH
6477 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6478 return 1;
ffde82bf 6479
73fb9985
JB
6480 /* Check the name of that field. */
6481 {
6482 const char *name = TYPE_FIELD_NAME (type, field_num);
6483
6484 /* Anonymous field names should not be printed.
6485 brobecker/2007-02-20: I don't think this can actually happen
6486 but we don't want to print the value of annonymous fields anyway. */
6487 if (name == NULL)
6488 return 1;
6489
ffde82bf
JB
6490 /* Normally, fields whose name start with an underscore ("_")
6491 are fields that have been internally generated by the compiler,
6492 and thus should not be printed. The "_parent" field is special,
6493 however: This is a field internally generated by the compiler
6494 for tagged types, and it contains the components inherited from
6495 the parent type. This field should not be printed as is, but
6496 should not be ignored either. */
61012eef 6497 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6498 return 1;
6499 }
6500
ac4a2da4
JG
6501 /* If this is the dispatch table of a tagged type or an interface tag,
6502 then ignore. */
73fb9985 6503 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6504 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6505 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6506 return 1;
6507
6508 /* Not a special field, so it should not be ignored. */
6509 return 0;
963a6417 6510}
96d887e8 6511
963a6417 6512/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6513 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6514
963a6417
PH
6515int
6516ada_is_tagged_type (struct type *type, int refok)
6517{
988f6b3d 6518 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6519}
96d887e8 6520
963a6417 6521/* True iff TYPE represents the type of X'Tag */
96d887e8 6522
963a6417
PH
6523int
6524ada_is_tag_type (struct type *type)
6525{
460efde1
JB
6526 type = ada_check_typedef (type);
6527
963a6417
PH
6528 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6529 return 0;
6530 else
96d887e8 6531 {
963a6417 6532 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6533
963a6417
PH
6534 return (name != NULL
6535 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6536 }
96d887e8
PH
6537}
6538
963a6417 6539/* The type of the tag on VAL. */
76a01679 6540
963a6417
PH
6541struct type *
6542ada_tag_type (struct value *val)
96d887e8 6543{
988f6b3d 6544 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6545}
96d887e8 6546
b50d69b5
JG
6547/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6548 retired at Ada 05). */
6549
6550static int
6551is_ada95_tag (struct value *tag)
6552{
6553 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6554}
6555
963a6417 6556/* The value of the tag on VAL. */
96d887e8 6557
963a6417
PH
6558struct value *
6559ada_value_tag (struct value *val)
6560{
03ee6b2e 6561 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6562}
6563
963a6417
PH
6564/* The value of the tag on the object of type TYPE whose contents are
6565 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6566 ADDRESS. */
96d887e8 6567
963a6417 6568static struct value *
10a2c479 6569value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6570 const gdb_byte *valaddr,
963a6417 6571 CORE_ADDR address)
96d887e8 6572{
b5385fc0 6573 int tag_byte_offset;
963a6417 6574 struct type *tag_type;
5b4ee69b 6575
963a6417 6576 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6577 NULL, NULL, NULL))
96d887e8 6578 {
fc1a4b47 6579 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6580 ? NULL
6581 : valaddr + tag_byte_offset);
963a6417 6582 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6583
963a6417 6584 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6585 }
963a6417
PH
6586 return NULL;
6587}
96d887e8 6588
963a6417
PH
6589static struct type *
6590type_from_tag (struct value *tag)
6591{
6592 const char *type_name = ada_tag_name (tag);
5b4ee69b 6593
963a6417
PH
6594 if (type_name != NULL)
6595 return ada_find_any_type (ada_encode (type_name));
6596 return NULL;
6597}
96d887e8 6598
b50d69b5
JG
6599/* Given a value OBJ of a tagged type, return a value of this
6600 type at the base address of the object. The base address, as
6601 defined in Ada.Tags, it is the address of the primary tag of
6602 the object, and therefore where the field values of its full
6603 view can be fetched. */
6604
6605struct value *
6606ada_tag_value_at_base_address (struct value *obj)
6607{
b50d69b5
JG
6608 struct value *val;
6609 LONGEST offset_to_top = 0;
6610 struct type *ptr_type, *obj_type;
6611 struct value *tag;
6612 CORE_ADDR base_address;
6613
6614 obj_type = value_type (obj);
6615
6616 /* It is the responsability of the caller to deref pointers. */
6617
6618 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6619 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6620 return obj;
6621
6622 tag = ada_value_tag (obj);
6623 if (!tag)
6624 return obj;
6625
6626 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6627
6628 if (is_ada95_tag (tag))
6629 return obj;
6630
08f49010
XR
6631 ptr_type = language_lookup_primitive_type
6632 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6633 ptr_type = lookup_pointer_type (ptr_type);
6634 val = value_cast (ptr_type, tag);
6635 if (!val)
6636 return obj;
6637
6638 /* It is perfectly possible that an exception be raised while
6639 trying to determine the base address, just like for the tag;
6640 see ada_tag_name for more details. We do not print the error
6641 message for the same reason. */
6642
a70b8144 6643 try
b50d69b5
JG
6644 {
6645 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6646 }
6647
230d2906 6648 catch (const gdb_exception_error &e)
492d29ea
PA
6649 {
6650 return obj;
6651 }
b50d69b5
JG
6652
6653 /* If offset is null, nothing to do. */
6654
6655 if (offset_to_top == 0)
6656 return obj;
6657
6658 /* -1 is a special case in Ada.Tags; however, what should be done
6659 is not quite clear from the documentation. So do nothing for
6660 now. */
6661
6662 if (offset_to_top == -1)
6663 return obj;
6664
08f49010
XR
6665 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6666 from the base address. This was however incompatible with
6667 C++ dispatch table: C++ uses a *negative* value to *add*
6668 to the base address. Ada's convention has therefore been
6669 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6670 use the same convention. Here, we support both cases by
6671 checking the sign of OFFSET_TO_TOP. */
6672
6673 if (offset_to_top > 0)
6674 offset_to_top = -offset_to_top;
6675
6676 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6677 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6678
6679 /* Make sure that we have a proper tag at the new address.
6680 Otherwise, offset_to_top is bogus (which can happen when
6681 the object is not initialized yet). */
6682
6683 if (!tag)
6684 return obj;
6685
6686 obj_type = type_from_tag (tag);
6687
6688 if (!obj_type)
6689 return obj;
6690
6691 return value_from_contents_and_address (obj_type, NULL, base_address);
6692}
6693
1b611343
JB
6694/* Return the "ada__tags__type_specific_data" type. */
6695
6696static struct type *
6697ada_get_tsd_type (struct inferior *inf)
963a6417 6698{
1b611343 6699 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6700
1b611343
JB
6701 if (data->tsd_type == 0)
6702 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6703 return data->tsd_type;
6704}
529cad9c 6705
1b611343
JB
6706/* Return the TSD (type-specific data) associated to the given TAG.
6707 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6708
1b611343 6709 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6710
1b611343
JB
6711static struct value *
6712ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6713{
4c4b4cd2 6714 struct value *val;
1b611343 6715 struct type *type;
5b4ee69b 6716
1b611343
JB
6717 /* First option: The TSD is simply stored as a field of our TAG.
6718 Only older versions of GNAT would use this format, but we have
6719 to test it first, because there are no visible markers for
6720 the current approach except the absence of that field. */
529cad9c 6721
1b611343
JB
6722 val = ada_value_struct_elt (tag, "tsd", 1);
6723 if (val)
6724 return val;
e802dbe0 6725
1b611343
JB
6726 /* Try the second representation for the dispatch table (in which
6727 there is no explicit 'tsd' field in the referent of the tag pointer,
6728 and instead the tsd pointer is stored just before the dispatch
6729 table. */
e802dbe0 6730
1b611343
JB
6731 type = ada_get_tsd_type (current_inferior());
6732 if (type == NULL)
6733 return NULL;
6734 type = lookup_pointer_type (lookup_pointer_type (type));
6735 val = value_cast (type, tag);
6736 if (val == NULL)
6737 return NULL;
6738 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6739}
6740
1b611343
JB
6741/* Given the TSD of a tag (type-specific data), return a string
6742 containing the name of the associated type.
6743
6744 The returned value is good until the next call. May return NULL
6745 if we are unable to determine the tag name. */
6746
6747static char *
6748ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6749{
529cad9c
PH
6750 static char name[1024];
6751 char *p;
1b611343 6752 struct value *val;
529cad9c 6753
1b611343 6754 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6755 if (val == NULL)
1b611343 6756 return NULL;
4c4b4cd2
PH
6757 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6758 for (p = name; *p != '\0'; p += 1)
6759 if (isalpha (*p))
6760 *p = tolower (*p);
1b611343 6761 return name;
4c4b4cd2
PH
6762}
6763
6764/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6765 a C string.
6766
6767 Return NULL if the TAG is not an Ada tag, or if we were unable to
6768 determine the name of that tag. The result is good until the next
6769 call. */
4c4b4cd2
PH
6770
6771const char *
6772ada_tag_name (struct value *tag)
6773{
1b611343 6774 char *name = NULL;
5b4ee69b 6775
df407dfe 6776 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6777 return NULL;
1b611343
JB
6778
6779 /* It is perfectly possible that an exception be raised while trying
6780 to determine the TAG's name, even under normal circumstances:
6781 The associated variable may be uninitialized or corrupted, for
6782 instance. We do not let any exception propagate past this point.
6783 instead we return NULL.
6784
6785 We also do not print the error message either (which often is very
6786 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6787 the caller print a more meaningful message if necessary. */
a70b8144 6788 try
1b611343
JB
6789 {
6790 struct value *tsd = ada_get_tsd_from_tag (tag);
6791
6792 if (tsd != NULL)
6793 name = ada_tag_name_from_tsd (tsd);
6794 }
230d2906 6795 catch (const gdb_exception_error &e)
492d29ea
PA
6796 {
6797 }
1b611343
JB
6798
6799 return name;
4c4b4cd2
PH
6800}
6801
6802/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6803
d2e4a39e 6804struct type *
ebf56fd3 6805ada_parent_type (struct type *type)
14f9c5c9
AS
6806{
6807 int i;
6808
61ee279c 6809 type = ada_check_typedef (type);
14f9c5c9
AS
6810
6811 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6812 return NULL;
6813
6814 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6815 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6816 {
6817 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6818
6819 /* If the _parent field is a pointer, then dereference it. */
6820 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6821 parent_type = TYPE_TARGET_TYPE (parent_type);
6822 /* If there is a parallel XVS type, get the actual base type. */
6823 parent_type = ada_get_base_type (parent_type);
6824
6825 return ada_check_typedef (parent_type);
6826 }
14f9c5c9
AS
6827
6828 return NULL;
6829}
6830
4c4b4cd2
PH
6831/* True iff field number FIELD_NUM of structure type TYPE contains the
6832 parent-type (inherited) fields of a derived type. Assumes TYPE is
6833 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6834
6835int
ebf56fd3 6836ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6837{
61ee279c 6838 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6839
4c4b4cd2 6840 return (name != NULL
61012eef
GB
6841 && (startswith (name, "PARENT")
6842 || startswith (name, "_parent")));
14f9c5c9
AS
6843}
6844
4c4b4cd2 6845/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6846 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6847 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6848 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6849 structures. */
14f9c5c9
AS
6850
6851int
ebf56fd3 6852ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6853{
d2e4a39e 6854 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6855
dddc0e16
JB
6856 if (name != NULL && strcmp (name, "RETVAL") == 0)
6857 {
6858 /* This happens in functions with "out" or "in out" parameters
6859 which are passed by copy. For such functions, GNAT describes
6860 the function's return type as being a struct where the return
6861 value is in a field called RETVAL, and where the other "out"
6862 or "in out" parameters are fields of that struct. This is not
6863 a wrapper. */
6864 return 0;
6865 }
6866
d2e4a39e 6867 return (name != NULL
61012eef 6868 && (startswith (name, "PARENT")
4c4b4cd2 6869 || strcmp (name, "REP") == 0
61012eef 6870 || startswith (name, "_parent")
4c4b4cd2 6871 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6872}
6873
4c4b4cd2
PH
6874/* True iff field number FIELD_NUM of structure or union type TYPE
6875 is a variant wrapper. Assumes TYPE is a structure type with at least
6876 FIELD_NUM+1 fields. */
14f9c5c9
AS
6877
6878int
ebf56fd3 6879ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6880{
8ecb59f8
TT
6881 /* Only Ada types are eligible. */
6882 if (!ADA_TYPE_P (type))
6883 return 0;
6884
d2e4a39e 6885 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6886
14f9c5c9 6887 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6888 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6889 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6890 == TYPE_CODE_UNION)));
14f9c5c9
AS
6891}
6892
6893/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6894 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6895 returns the type of the controlling discriminant for the variant.
6896 May return NULL if the type could not be found. */
14f9c5c9 6897
d2e4a39e 6898struct type *
ebf56fd3 6899ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6900{
a121b7c1 6901 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6902
988f6b3d 6903 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6904}
6905
4c4b4cd2 6906/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6907 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6908 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6909
6910int
ebf56fd3 6911ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6912{
d2e4a39e 6913 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6914
14f9c5c9
AS
6915 return (name != NULL && name[0] == 'O');
6916}
6917
6918/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6919 returns the name of the discriminant controlling the variant.
6920 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6921
a121b7c1 6922const char *
ebf56fd3 6923ada_variant_discrim_name (struct type *type0)
14f9c5c9 6924{
d2e4a39e 6925 static char *result = NULL;
14f9c5c9 6926 static size_t result_len = 0;
d2e4a39e
AS
6927 struct type *type;
6928 const char *name;
6929 const char *discrim_end;
6930 const char *discrim_start;
14f9c5c9
AS
6931
6932 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6933 type = TYPE_TARGET_TYPE (type0);
6934 else
6935 type = type0;
6936
6937 name = ada_type_name (type);
6938
6939 if (name == NULL || name[0] == '\000')
6940 return "";
6941
6942 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6943 discrim_end -= 1)
6944 {
61012eef 6945 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6946 break;
14f9c5c9
AS
6947 }
6948 if (discrim_end == name)
6949 return "";
6950
d2e4a39e 6951 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6952 discrim_start -= 1)
6953 {
d2e4a39e 6954 if (discrim_start == name + 1)
4c4b4cd2 6955 return "";
76a01679 6956 if ((discrim_start > name + 3
61012eef 6957 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6958 || discrim_start[-1] == '.')
6959 break;
14f9c5c9
AS
6960 }
6961
6962 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6963 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6964 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6965 return result;
6966}
6967
4c4b4cd2
PH
6968/* Scan STR for a subtype-encoded number, beginning at position K.
6969 Put the position of the character just past the number scanned in
6970 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6971 Return 1 if there was a valid number at the given position, and 0
6972 otherwise. A "subtype-encoded" number consists of the absolute value
6973 in decimal, followed by the letter 'm' to indicate a negative number.
6974 Assumes 0m does not occur. */
14f9c5c9
AS
6975
6976int
d2e4a39e 6977ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6978{
6979 ULONGEST RU;
6980
d2e4a39e 6981 if (!isdigit (str[k]))
14f9c5c9
AS
6982 return 0;
6983
4c4b4cd2 6984 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6985 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6986 LONGEST. */
14f9c5c9
AS
6987 RU = 0;
6988 while (isdigit (str[k]))
6989 {
d2e4a39e 6990 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6991 k += 1;
6992 }
6993
d2e4a39e 6994 if (str[k] == 'm')
14f9c5c9
AS
6995 {
6996 if (R != NULL)
4c4b4cd2 6997 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6998 k += 1;
6999 }
7000 else if (R != NULL)
7001 *R = (LONGEST) RU;
7002
4c4b4cd2 7003 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7004 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7005 number representable as a LONGEST (although either would probably work
7006 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7007 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7008
7009 if (new_k != NULL)
7010 *new_k = k;
7011 return 1;
7012}
7013
4c4b4cd2
PH
7014/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7015 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7016 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7017
d2e4a39e 7018int
ebf56fd3 7019ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7020{
d2e4a39e 7021 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7022 int p;
7023
7024 p = 0;
7025 while (1)
7026 {
d2e4a39e 7027 switch (name[p])
4c4b4cd2
PH
7028 {
7029 case '\0':
7030 return 0;
7031 case 'S':
7032 {
7033 LONGEST W;
5b4ee69b 7034
4c4b4cd2
PH
7035 if (!ada_scan_number (name, p + 1, &W, &p))
7036 return 0;
7037 if (val == W)
7038 return 1;
7039 break;
7040 }
7041 case 'R':
7042 {
7043 LONGEST L, U;
5b4ee69b 7044
4c4b4cd2
PH
7045 if (!ada_scan_number (name, p + 1, &L, &p)
7046 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7047 return 0;
7048 if (val >= L && val <= U)
7049 return 1;
7050 break;
7051 }
7052 case 'O':
7053 return 1;
7054 default:
7055 return 0;
7056 }
7057 }
7058}
7059
0963b4bd 7060/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7061
7062/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7063 ARG_TYPE, extract and return the value of one of its (non-static)
7064 fields. FIELDNO says which field. Differs from value_primitive_field
7065 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7066
4c4b4cd2 7067static struct value *
d2e4a39e 7068ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7069 struct type *arg_type)
14f9c5c9 7070{
14f9c5c9
AS
7071 struct type *type;
7072
61ee279c 7073 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7074 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7075
4504bbde
TT
7076 /* Handle packed fields. It might be that the field is not packed
7077 relative to its containing structure, but the structure itself is
7078 packed; in this case we must take the bit-field path. */
7079 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7080 {
7081 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7082 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7083
0fd88904 7084 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7085 offset + bit_pos / 8,
7086 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7087 }
7088 else
7089 return value_primitive_field (arg1, offset, fieldno, arg_type);
7090}
7091
52ce6436
PH
7092/* Find field with name NAME in object of type TYPE. If found,
7093 set the following for each argument that is non-null:
7094 - *FIELD_TYPE_P to the field's type;
7095 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7096 an object of that type;
7097 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7098 - *BIT_SIZE_P to its size in bits if the field is packed, and
7099 0 otherwise;
7100 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7101 fields up to but not including the desired field, or by the total
7102 number of fields if not found. A NULL value of NAME never
7103 matches; the function just counts visible fields in this case.
7104
828d5846
XR
7105 Notice that we need to handle when a tagged record hierarchy
7106 has some components with the same name, like in this scenario:
7107
7108 type Top_T is tagged record
7109 N : Integer := 1;
7110 U : Integer := 974;
7111 A : Integer := 48;
7112 end record;
7113
7114 type Middle_T is new Top.Top_T with record
7115 N : Character := 'a';
7116 C : Integer := 3;
7117 end record;
7118
7119 type Bottom_T is new Middle.Middle_T with record
7120 N : Float := 4.0;
7121 C : Character := '5';
7122 X : Integer := 6;
7123 A : Character := 'J';
7124 end record;
7125
7126 Let's say we now have a variable declared and initialized as follow:
7127
7128 TC : Top_A := new Bottom_T;
7129
7130 And then we use this variable to call this function
7131
7132 procedure Assign (Obj: in out Top_T; TV : Integer);
7133
7134 as follow:
7135
7136 Assign (Top_T (B), 12);
7137
7138 Now, we're in the debugger, and we're inside that procedure
7139 then and we want to print the value of obj.c:
7140
7141 Usually, the tagged record or one of the parent type owns the
7142 component to print and there's no issue but in this particular
7143 case, what does it mean to ask for Obj.C? Since the actual
7144 type for object is type Bottom_T, it could mean two things: type
7145 component C from the Middle_T view, but also component C from
7146 Bottom_T. So in that "undefined" case, when the component is
7147 not found in the non-resolved type (which includes all the
7148 components of the parent type), then resolve it and see if we
7149 get better luck once expanded.
7150
7151 In the case of homonyms in the derived tagged type, we don't
7152 guaranty anything, and pick the one that's easiest for us
7153 to program.
7154
0963b4bd 7155 Returns 1 if found, 0 otherwise. */
52ce6436 7156
4c4b4cd2 7157static int
0d5cff50 7158find_struct_field (const char *name, struct type *type, int offset,
76a01679 7159 struct type **field_type_p,
52ce6436
PH
7160 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7161 int *index_p)
4c4b4cd2
PH
7162{
7163 int i;
828d5846 7164 int parent_offset = -1;
4c4b4cd2 7165
61ee279c 7166 type = ada_check_typedef (type);
76a01679 7167
52ce6436
PH
7168 if (field_type_p != NULL)
7169 *field_type_p = NULL;
7170 if (byte_offset_p != NULL)
d5d6fca5 7171 *byte_offset_p = 0;
52ce6436
PH
7172 if (bit_offset_p != NULL)
7173 *bit_offset_p = 0;
7174 if (bit_size_p != NULL)
7175 *bit_size_p = 0;
7176
7177 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7178 {
7179 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7180 int fld_offset = offset + bit_pos / 8;
0d5cff50 7181 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7182
4c4b4cd2
PH
7183 if (t_field_name == NULL)
7184 continue;
7185
828d5846
XR
7186 else if (ada_is_parent_field (type, i))
7187 {
7188 /* This is a field pointing us to the parent type of a tagged
7189 type. As hinted in this function's documentation, we give
7190 preference to fields in the current record first, so what
7191 we do here is just record the index of this field before
7192 we skip it. If it turns out we couldn't find our field
7193 in the current record, then we'll get back to it and search
7194 inside it whether the field might exist in the parent. */
7195
7196 parent_offset = i;
7197 continue;
7198 }
7199
52ce6436 7200 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7201 {
7202 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7203
52ce6436
PH
7204 if (field_type_p != NULL)
7205 *field_type_p = TYPE_FIELD_TYPE (type, i);
7206 if (byte_offset_p != NULL)
7207 *byte_offset_p = fld_offset;
7208 if (bit_offset_p != NULL)
7209 *bit_offset_p = bit_pos % 8;
7210 if (bit_size_p != NULL)
7211 *bit_size_p = bit_size;
76a01679
JB
7212 return 1;
7213 }
4c4b4cd2
PH
7214 else if (ada_is_wrapper_field (type, i))
7215 {
52ce6436
PH
7216 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7217 field_type_p, byte_offset_p, bit_offset_p,
7218 bit_size_p, index_p))
76a01679
JB
7219 return 1;
7220 }
4c4b4cd2
PH
7221 else if (ada_is_variant_part (type, i))
7222 {
52ce6436
PH
7223 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7224 fixed type?? */
4c4b4cd2 7225 int j;
52ce6436
PH
7226 struct type *field_type
7227 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7228
52ce6436 7229 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7230 {
76a01679
JB
7231 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7232 fld_offset
7233 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7234 field_type_p, byte_offset_p,
52ce6436 7235 bit_offset_p, bit_size_p, index_p))
76a01679 7236 return 1;
4c4b4cd2
PH
7237 }
7238 }
52ce6436
PH
7239 else if (index_p != NULL)
7240 *index_p += 1;
4c4b4cd2 7241 }
828d5846
XR
7242
7243 /* Field not found so far. If this is a tagged type which
7244 has a parent, try finding that field in the parent now. */
7245
7246 if (parent_offset != -1)
7247 {
7248 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7249 int fld_offset = offset + bit_pos / 8;
7250
7251 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7252 fld_offset, field_type_p, byte_offset_p,
7253 bit_offset_p, bit_size_p, index_p))
7254 return 1;
7255 }
7256
4c4b4cd2
PH
7257 return 0;
7258}
7259
0963b4bd 7260/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7261
52ce6436
PH
7262static int
7263num_visible_fields (struct type *type)
7264{
7265 int n;
5b4ee69b 7266
52ce6436
PH
7267 n = 0;
7268 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7269 return n;
7270}
14f9c5c9 7271
4c4b4cd2 7272/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7273 and search in it assuming it has (class) type TYPE.
7274 If found, return value, else return NULL.
7275
828d5846
XR
7276 Searches recursively through wrapper fields (e.g., '_parent').
7277
7278 In the case of homonyms in the tagged types, please refer to the
7279 long explanation in find_struct_field's function documentation. */
14f9c5c9 7280
4c4b4cd2 7281static struct value *
108d56a4 7282ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7283 struct type *type)
14f9c5c9
AS
7284{
7285 int i;
828d5846 7286 int parent_offset = -1;
14f9c5c9 7287
5b4ee69b 7288 type = ada_check_typedef (type);
52ce6436 7289 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7290 {
0d5cff50 7291 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7292
7293 if (t_field_name == NULL)
4c4b4cd2 7294 continue;
14f9c5c9 7295
828d5846
XR
7296 else if (ada_is_parent_field (type, i))
7297 {
7298 /* This is a field pointing us to the parent type of a tagged
7299 type. As hinted in this function's documentation, we give
7300 preference to fields in the current record first, so what
7301 we do here is just record the index of this field before
7302 we skip it. If it turns out we couldn't find our field
7303 in the current record, then we'll get back to it and search
7304 inside it whether the field might exist in the parent. */
7305
7306 parent_offset = i;
7307 continue;
7308 }
7309
14f9c5c9 7310 else if (field_name_match (t_field_name, name))
4c4b4cd2 7311 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7312
7313 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7314 {
0963b4bd 7315 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7316 ada_search_struct_field (name, arg,
7317 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7318 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7319
4c4b4cd2
PH
7320 if (v != NULL)
7321 return v;
7322 }
14f9c5c9
AS
7323
7324 else if (ada_is_variant_part (type, i))
4c4b4cd2 7325 {
0963b4bd 7326 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7327 int j;
5b4ee69b
MS
7328 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7329 i));
4c4b4cd2
PH
7330 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7331
52ce6436 7332 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7333 {
0963b4bd
MS
7334 struct value *v = ada_search_struct_field /* Force line
7335 break. */
06d5cf63
JB
7336 (name, arg,
7337 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7338 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7339
4c4b4cd2
PH
7340 if (v != NULL)
7341 return v;
7342 }
7343 }
14f9c5c9 7344 }
828d5846
XR
7345
7346 /* Field not found so far. If this is a tagged type which
7347 has a parent, try finding that field in the parent now. */
7348
7349 if (parent_offset != -1)
7350 {
7351 struct value *v = ada_search_struct_field (
7352 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7353 TYPE_FIELD_TYPE (type, parent_offset));
7354
7355 if (v != NULL)
7356 return v;
7357 }
7358
14f9c5c9
AS
7359 return NULL;
7360}
d2e4a39e 7361
52ce6436
PH
7362static struct value *ada_index_struct_field_1 (int *, struct value *,
7363 int, struct type *);
7364
7365
7366/* Return field #INDEX in ARG, where the index is that returned by
7367 * find_struct_field through its INDEX_P argument. Adjust the address
7368 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7369 * If found, return value, else return NULL. */
52ce6436
PH
7370
7371static struct value *
7372ada_index_struct_field (int index, struct value *arg, int offset,
7373 struct type *type)
7374{
7375 return ada_index_struct_field_1 (&index, arg, offset, type);
7376}
7377
7378
7379/* Auxiliary function for ada_index_struct_field. Like
7380 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7381 * *INDEX_P. */
52ce6436
PH
7382
7383static struct value *
7384ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7385 struct type *type)
7386{
7387 int i;
7388 type = ada_check_typedef (type);
7389
7390 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7391 {
7392 if (TYPE_FIELD_NAME (type, i) == NULL)
7393 continue;
7394 else if (ada_is_wrapper_field (type, i))
7395 {
0963b4bd 7396 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7397 ada_index_struct_field_1 (index_p, arg,
7398 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7399 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7400
52ce6436
PH
7401 if (v != NULL)
7402 return v;
7403 }
7404
7405 else if (ada_is_variant_part (type, i))
7406 {
7407 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7408 find_struct_field. */
52ce6436
PH
7409 error (_("Cannot assign this kind of variant record"));
7410 }
7411 else if (*index_p == 0)
7412 return ada_value_primitive_field (arg, offset, i, type);
7413 else
7414 *index_p -= 1;
7415 }
7416 return NULL;
7417}
7418
4c4b4cd2
PH
7419/* Given ARG, a value of type (pointer or reference to a)*
7420 structure/union, extract the component named NAME from the ultimate
7421 target structure/union and return it as a value with its
f5938064 7422 appropriate type.
14f9c5c9 7423
4c4b4cd2
PH
7424 The routine searches for NAME among all members of the structure itself
7425 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7426 (e.g., '_parent').
7427
03ee6b2e
PH
7428 If NO_ERR, then simply return NULL in case of error, rather than
7429 calling error. */
14f9c5c9 7430
d2e4a39e 7431struct value *
a121b7c1 7432ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7433{
4c4b4cd2 7434 struct type *t, *t1;
d2e4a39e 7435 struct value *v;
1f5d1570 7436 int check_tag;
14f9c5c9 7437
4c4b4cd2 7438 v = NULL;
df407dfe 7439 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7440 if (TYPE_CODE (t) == TYPE_CODE_REF)
7441 {
7442 t1 = TYPE_TARGET_TYPE (t);
7443 if (t1 == NULL)
03ee6b2e 7444 goto BadValue;
61ee279c 7445 t1 = ada_check_typedef (t1);
4c4b4cd2 7446 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7447 {
994b9211 7448 arg = coerce_ref (arg);
76a01679
JB
7449 t = t1;
7450 }
4c4b4cd2 7451 }
14f9c5c9 7452
4c4b4cd2
PH
7453 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7454 {
7455 t1 = TYPE_TARGET_TYPE (t);
7456 if (t1 == NULL)
03ee6b2e 7457 goto BadValue;
61ee279c 7458 t1 = ada_check_typedef (t1);
4c4b4cd2 7459 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7460 {
7461 arg = value_ind (arg);
7462 t = t1;
7463 }
4c4b4cd2 7464 else
76a01679 7465 break;
4c4b4cd2 7466 }
14f9c5c9 7467
4c4b4cd2 7468 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7469 goto BadValue;
14f9c5c9 7470
4c4b4cd2
PH
7471 if (t1 == t)
7472 v = ada_search_struct_field (name, arg, 0, t);
7473 else
7474 {
7475 int bit_offset, bit_size, byte_offset;
7476 struct type *field_type;
7477 CORE_ADDR address;
7478
76a01679 7479 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7480 address = value_address (ada_value_ind (arg));
4c4b4cd2 7481 else
b50d69b5 7482 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7483
828d5846
XR
7484 /* Check to see if this is a tagged type. We also need to handle
7485 the case where the type is a reference to a tagged type, but
7486 we have to be careful to exclude pointers to tagged types.
7487 The latter should be shown as usual (as a pointer), whereas
7488 a reference should mostly be transparent to the user. */
7489
7490 if (ada_is_tagged_type (t1, 0)
7491 || (TYPE_CODE (t1) == TYPE_CODE_REF
7492 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7493 {
7494 /* We first try to find the searched field in the current type.
7495 If not found then let's look in the fixed type. */
7496
7497 if (!find_struct_field (name, t1, 0,
7498 &field_type, &byte_offset, &bit_offset,
7499 &bit_size, NULL))
1f5d1570
JG
7500 check_tag = 1;
7501 else
7502 check_tag = 0;
828d5846
XR
7503 }
7504 else
1f5d1570
JG
7505 check_tag = 0;
7506
7507 /* Convert to fixed type in all cases, so that we have proper
7508 offsets to each field in unconstrained record types. */
7509 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7510 address, NULL, check_tag);
828d5846 7511
76a01679
JB
7512 if (find_struct_field (name, t1, 0,
7513 &field_type, &byte_offset, &bit_offset,
52ce6436 7514 &bit_size, NULL))
76a01679
JB
7515 {
7516 if (bit_size != 0)
7517 {
714e53ab
PH
7518 if (TYPE_CODE (t) == TYPE_CODE_REF)
7519 arg = ada_coerce_ref (arg);
7520 else
7521 arg = ada_value_ind (arg);
76a01679
JB
7522 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7523 bit_offset, bit_size,
7524 field_type);
7525 }
7526 else
f5938064 7527 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7528 }
7529 }
7530
03ee6b2e
PH
7531 if (v != NULL || no_err)
7532 return v;
7533 else
323e0a4a 7534 error (_("There is no member named %s."), name);
14f9c5c9 7535
03ee6b2e
PH
7536 BadValue:
7537 if (no_err)
7538 return NULL;
7539 else
0963b4bd
MS
7540 error (_("Attempt to extract a component of "
7541 "a value that is not a record."));
14f9c5c9
AS
7542}
7543
3b4de39c 7544/* Return a string representation of type TYPE. */
99bbb428 7545
3b4de39c 7546static std::string
99bbb428
PA
7547type_as_string (struct type *type)
7548{
d7e74731 7549 string_file tmp_stream;
99bbb428 7550
d7e74731 7551 type_print (type, "", &tmp_stream, -1);
99bbb428 7552
d7e74731 7553 return std::move (tmp_stream.string ());
99bbb428
PA
7554}
7555
14f9c5c9 7556/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7557 If DISPP is non-null, add its byte displacement from the beginning of a
7558 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7559 work for packed fields).
7560
7561 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7562 followed by "___".
14f9c5c9 7563
0963b4bd 7564 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7565 be a (pointer or reference)+ to a struct or union, and the
7566 ultimate target type will be searched.
14f9c5c9
AS
7567
7568 Looks recursively into variant clauses and parent types.
7569
828d5846
XR
7570 In the case of homonyms in the tagged types, please refer to the
7571 long explanation in find_struct_field's function documentation.
7572
4c4b4cd2
PH
7573 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7574 TYPE is not a type of the right kind. */
14f9c5c9 7575
4c4b4cd2 7576static struct type *
a121b7c1 7577ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7578 int noerr)
14f9c5c9
AS
7579{
7580 int i;
828d5846 7581 int parent_offset = -1;
14f9c5c9
AS
7582
7583 if (name == NULL)
7584 goto BadName;
7585
76a01679 7586 if (refok && type != NULL)
4c4b4cd2
PH
7587 while (1)
7588 {
61ee279c 7589 type = ada_check_typedef (type);
76a01679
JB
7590 if (TYPE_CODE (type) != TYPE_CODE_PTR
7591 && TYPE_CODE (type) != TYPE_CODE_REF)
7592 break;
7593 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7594 }
14f9c5c9 7595
76a01679 7596 if (type == NULL
1265e4aa
JB
7597 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7598 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7599 {
4c4b4cd2 7600 if (noerr)
76a01679 7601 return NULL;
99bbb428 7602
3b4de39c
PA
7603 error (_("Type %s is not a structure or union type"),
7604 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7605 }
7606
7607 type = to_static_fixed_type (type);
7608
7609 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7610 {
0d5cff50 7611 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7612 struct type *t;
d2e4a39e 7613
14f9c5c9 7614 if (t_field_name == NULL)
4c4b4cd2 7615 continue;
14f9c5c9 7616
828d5846
XR
7617 else if (ada_is_parent_field (type, i))
7618 {
7619 /* This is a field pointing us to the parent type of a tagged
7620 type. As hinted in this function's documentation, we give
7621 preference to fields in the current record first, so what
7622 we do here is just record the index of this field before
7623 we skip it. If it turns out we couldn't find our field
7624 in the current record, then we'll get back to it and search
7625 inside it whether the field might exist in the parent. */
7626
7627 parent_offset = i;
7628 continue;
7629 }
7630
14f9c5c9 7631 else if (field_name_match (t_field_name, name))
988f6b3d 7632 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7633
7634 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7635 {
4c4b4cd2 7636 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7637 0, 1);
4c4b4cd2 7638 if (t != NULL)
988f6b3d 7639 return t;
4c4b4cd2 7640 }
14f9c5c9
AS
7641
7642 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7643 {
7644 int j;
5b4ee69b
MS
7645 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7646 i));
4c4b4cd2
PH
7647
7648 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7649 {
b1f33ddd
JB
7650 /* FIXME pnh 2008/01/26: We check for a field that is
7651 NOT wrapped in a struct, since the compiler sometimes
7652 generates these for unchecked variant types. Revisit
0963b4bd 7653 if the compiler changes this practice. */
0d5cff50 7654 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7655
b1f33ddd
JB
7656 if (v_field_name != NULL
7657 && field_name_match (v_field_name, name))
460efde1 7658 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7659 else
0963b4bd
MS
7660 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7661 j),
988f6b3d 7662 name, 0, 1);
b1f33ddd 7663
4c4b4cd2 7664 if (t != NULL)
988f6b3d 7665 return t;
4c4b4cd2
PH
7666 }
7667 }
14f9c5c9
AS
7668
7669 }
7670
828d5846
XR
7671 /* Field not found so far. If this is a tagged type which
7672 has a parent, try finding that field in the parent now. */
7673
7674 if (parent_offset != -1)
7675 {
7676 struct type *t;
7677
7678 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7679 name, 0, 1);
7680 if (t != NULL)
7681 return t;
7682 }
7683
14f9c5c9 7684BadName:
d2e4a39e 7685 if (!noerr)
14f9c5c9 7686 {
2b2798cc 7687 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7688
7689 error (_("Type %s has no component named %s"),
3b4de39c 7690 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7691 }
7692
7693 return NULL;
7694}
7695
b1f33ddd
JB
7696/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7697 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7698 represents an unchecked union (that is, the variant part of a
0963b4bd 7699 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7700
7701static int
7702is_unchecked_variant (struct type *var_type, struct type *outer_type)
7703{
a121b7c1 7704 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7705
988f6b3d 7706 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7707}
7708
7709
14f9c5c9
AS
7710/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7711 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7712 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7713 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7714
d2e4a39e 7715int
ebf56fd3 7716ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7717 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7718{
7719 int others_clause;
7720 int i;
a121b7c1 7721 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7722 struct value *outer;
7723 struct value *discrim;
14f9c5c9
AS
7724 LONGEST discrim_val;
7725
012370f6
TT
7726 /* Using plain value_from_contents_and_address here causes problems
7727 because we will end up trying to resolve a type that is currently
7728 being constructed. */
7729 outer = value_from_contents_and_address_unresolved (outer_type,
7730 outer_valaddr, 0);
0c281816
JB
7731 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7732 if (discrim == NULL)
14f9c5c9 7733 return -1;
0c281816 7734 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7735
7736 others_clause = -1;
7737 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7738 {
7739 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7740 others_clause = i;
14f9c5c9 7741 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7742 return i;
14f9c5c9
AS
7743 }
7744
7745 return others_clause;
7746}
d2e4a39e 7747\f
14f9c5c9
AS
7748
7749
4c4b4cd2 7750 /* Dynamic-Sized Records */
14f9c5c9
AS
7751
7752/* Strategy: The type ostensibly attached to a value with dynamic size
7753 (i.e., a size that is not statically recorded in the debugging
7754 data) does not accurately reflect the size or layout of the value.
7755 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7756 conventional types that are constructed on the fly. */
14f9c5c9
AS
7757
7758/* There is a subtle and tricky problem here. In general, we cannot
7759 determine the size of dynamic records without its data. However,
7760 the 'struct value' data structure, which GDB uses to represent
7761 quantities in the inferior process (the target), requires the size
7762 of the type at the time of its allocation in order to reserve space
7763 for GDB's internal copy of the data. That's why the
7764 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7765 rather than struct value*s.
14f9c5c9
AS
7766
7767 However, GDB's internal history variables ($1, $2, etc.) are
7768 struct value*s containing internal copies of the data that are not, in
7769 general, the same as the data at their corresponding addresses in
7770 the target. Fortunately, the types we give to these values are all
7771 conventional, fixed-size types (as per the strategy described
7772 above), so that we don't usually have to perform the
7773 'to_fixed_xxx_type' conversions to look at their values.
7774 Unfortunately, there is one exception: if one of the internal
7775 history variables is an array whose elements are unconstrained
7776 records, then we will need to create distinct fixed types for each
7777 element selected. */
7778
7779/* The upshot of all of this is that many routines take a (type, host
7780 address, target address) triple as arguments to represent a value.
7781 The host address, if non-null, is supposed to contain an internal
7782 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7783 target at the target address. */
14f9c5c9
AS
7784
7785/* Assuming that VAL0 represents a pointer value, the result of
7786 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7787 dynamic-sized types. */
14f9c5c9 7788
d2e4a39e
AS
7789struct value *
7790ada_value_ind (struct value *val0)
14f9c5c9 7791{
c48db5ca 7792 struct value *val = value_ind (val0);
5b4ee69b 7793
b50d69b5
JG
7794 if (ada_is_tagged_type (value_type (val), 0))
7795 val = ada_tag_value_at_base_address (val);
7796
4c4b4cd2 7797 return ada_to_fixed_value (val);
14f9c5c9
AS
7798}
7799
7800/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7801 qualifiers on VAL0. */
7802
d2e4a39e
AS
7803static struct value *
7804ada_coerce_ref (struct value *val0)
7805{
df407dfe 7806 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7807 {
7808 struct value *val = val0;
5b4ee69b 7809
994b9211 7810 val = coerce_ref (val);
b50d69b5
JG
7811
7812 if (ada_is_tagged_type (value_type (val), 0))
7813 val = ada_tag_value_at_base_address (val);
7814
4c4b4cd2 7815 return ada_to_fixed_value (val);
d2e4a39e
AS
7816 }
7817 else
14f9c5c9
AS
7818 return val0;
7819}
7820
7821/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7822 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7823
7824static unsigned int
ebf56fd3 7825align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7826{
7827 return (off + alignment - 1) & ~(alignment - 1);
7828}
7829
4c4b4cd2 7830/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7831
7832static unsigned int
ebf56fd3 7833field_alignment (struct type *type, int f)
14f9c5c9 7834{
d2e4a39e 7835 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7836 int len;
14f9c5c9
AS
7837 int align_offset;
7838
64a1bf19
JB
7839 /* The field name should never be null, unless the debugging information
7840 is somehow malformed. In this case, we assume the field does not
7841 require any alignment. */
7842 if (name == NULL)
7843 return 1;
7844
7845 len = strlen (name);
7846
4c4b4cd2
PH
7847 if (!isdigit (name[len - 1]))
7848 return 1;
14f9c5c9 7849
d2e4a39e 7850 if (isdigit (name[len - 2]))
14f9c5c9
AS
7851 align_offset = len - 2;
7852 else
7853 align_offset = len - 1;
7854
61012eef 7855 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7856 return TARGET_CHAR_BIT;
7857
4c4b4cd2
PH
7858 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7859}
7860
852dff6c 7861/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7862
852dff6c
JB
7863static struct symbol *
7864ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7865{
7866 struct symbol *sym;
7867
7868 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7869 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7870 return sym;
7871
4186eb54
KS
7872 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7873 return sym;
14f9c5c9
AS
7874}
7875
dddfab26
UW
7876/* Find a type named NAME. Ignores ambiguity. This routine will look
7877 solely for types defined by debug info, it will not search the GDB
7878 primitive types. */
4c4b4cd2 7879
852dff6c 7880static struct type *
ebf56fd3 7881ada_find_any_type (const char *name)
14f9c5c9 7882{
852dff6c 7883 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7884
14f9c5c9 7885 if (sym != NULL)
dddfab26 7886 return SYMBOL_TYPE (sym);
14f9c5c9 7887
dddfab26 7888 return NULL;
14f9c5c9
AS
7889}
7890
739593e0
JB
7891/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7892 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7893 symbol, in which case it is returned. Otherwise, this looks for
7894 symbols whose name is that of NAME_SYM suffixed with "___XR".
7895 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7896
c0e70c62
TT
7897static bool
7898ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7899{
739593e0 7900 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7901 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7902}
7903
14f9c5c9 7904/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7905 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7906 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7907 otherwise return 0. */
7908
14f9c5c9 7909int
d2e4a39e 7910ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7911{
7912 if (type1 == NULL)
7913 return 1;
7914 else if (type0 == NULL)
7915 return 0;
7916 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7917 return 1;
7918 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7919 return 0;
4c4b4cd2
PH
7920 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7921 return 1;
ad82864c 7922 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7923 return 1;
4c4b4cd2
PH
7924 else if (ada_is_array_descriptor_type (type0)
7925 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7926 return 1;
aeb5907d
JB
7927 else
7928 {
a737d952
TT
7929 const char *type0_name = TYPE_NAME (type0);
7930 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7931
7932 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7933 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7934 return 1;
7935 }
14f9c5c9
AS
7936 return 0;
7937}
7938
e86ca25f
TT
7939/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7940 null. */
4c4b4cd2 7941
0d5cff50 7942const char *
d2e4a39e 7943ada_type_name (struct type *type)
14f9c5c9 7944{
d2e4a39e 7945 if (type == NULL)
14f9c5c9 7946 return NULL;
e86ca25f 7947 return TYPE_NAME (type);
14f9c5c9
AS
7948}
7949
b4ba55a1
JB
7950/* Search the list of "descriptive" types associated to TYPE for a type
7951 whose name is NAME. */
7952
7953static struct type *
7954find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7955{
931e5bc3 7956 struct type *result, *tmp;
b4ba55a1 7957
c6044dd1
JB
7958 if (ada_ignore_descriptive_types_p)
7959 return NULL;
7960
b4ba55a1
JB
7961 /* If there no descriptive-type info, then there is no parallel type
7962 to be found. */
7963 if (!HAVE_GNAT_AUX_INFO (type))
7964 return NULL;
7965
7966 result = TYPE_DESCRIPTIVE_TYPE (type);
7967 while (result != NULL)
7968 {
0d5cff50 7969 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7970
7971 if (result_name == NULL)
7972 {
7973 warning (_("unexpected null name on descriptive type"));
7974 return NULL;
7975 }
7976
7977 /* If the names match, stop. */
7978 if (strcmp (result_name, name) == 0)
7979 break;
7980
7981 /* Otherwise, look at the next item on the list, if any. */
7982 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7983 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7984 else
7985 tmp = NULL;
7986
7987 /* If not found either, try after having resolved the typedef. */
7988 if (tmp != NULL)
7989 result = tmp;
b4ba55a1 7990 else
931e5bc3 7991 {
f168693b 7992 result = check_typedef (result);
931e5bc3
JG
7993 if (HAVE_GNAT_AUX_INFO (result))
7994 result = TYPE_DESCRIPTIVE_TYPE (result);
7995 else
7996 result = NULL;
7997 }
b4ba55a1
JB
7998 }
7999
8000 /* If we didn't find a match, see whether this is a packed array. With
8001 older compilers, the descriptive type information is either absent or
8002 irrelevant when it comes to packed arrays so the above lookup fails.
8003 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8004 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8005 return ada_find_any_type (name);
8006
8007 return result;
8008}
8009
8010/* Find a parallel type to TYPE with the specified NAME, using the
8011 descriptive type taken from the debugging information, if available,
8012 and otherwise using the (slower) name-based method. */
8013
8014static struct type *
8015ada_find_parallel_type_with_name (struct type *type, const char *name)
8016{
8017 struct type *result = NULL;
8018
8019 if (HAVE_GNAT_AUX_INFO (type))
8020 result = find_parallel_type_by_descriptive_type (type, name);
8021 else
8022 result = ada_find_any_type (name);
8023
8024 return result;
8025}
8026
8027/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8028 SUFFIX to the name of TYPE. */
14f9c5c9 8029
d2e4a39e 8030struct type *
ebf56fd3 8031ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8032{
0d5cff50 8033 char *name;
fe978cb0 8034 const char *type_name = ada_type_name (type);
14f9c5c9 8035 int len;
d2e4a39e 8036
fe978cb0 8037 if (type_name == NULL)
14f9c5c9
AS
8038 return NULL;
8039
fe978cb0 8040 len = strlen (type_name);
14f9c5c9 8041
b4ba55a1 8042 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8043
fe978cb0 8044 strcpy (name, type_name);
14f9c5c9
AS
8045 strcpy (name + len, suffix);
8046
b4ba55a1 8047 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8048}
8049
14f9c5c9 8050/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8051 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8052
d2e4a39e
AS
8053static struct type *
8054dynamic_template_type (struct type *type)
14f9c5c9 8055{
61ee279c 8056 type = ada_check_typedef (type);
14f9c5c9
AS
8057
8058 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8059 || ada_type_name (type) == NULL)
14f9c5c9 8060 return NULL;
d2e4a39e 8061 else
14f9c5c9
AS
8062 {
8063 int len = strlen (ada_type_name (type));
5b4ee69b 8064
4c4b4cd2
PH
8065 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8066 return type;
14f9c5c9 8067 else
4c4b4cd2 8068 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8069 }
8070}
8071
8072/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8073 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8074
d2e4a39e
AS
8075static int
8076is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8077{
8078 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8079
d2e4a39e 8080 return name != NULL
14f9c5c9
AS
8081 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8082 && strstr (name, "___XVL") != NULL;
8083}
8084
4c4b4cd2
PH
8085/* The index of the variant field of TYPE, or -1 if TYPE does not
8086 represent a variant record type. */
14f9c5c9 8087
d2e4a39e 8088static int
4c4b4cd2 8089variant_field_index (struct type *type)
14f9c5c9
AS
8090{
8091 int f;
8092
4c4b4cd2
PH
8093 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8094 return -1;
8095
8096 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8097 {
8098 if (ada_is_variant_part (type, f))
8099 return f;
8100 }
8101 return -1;
14f9c5c9
AS
8102}
8103
4c4b4cd2
PH
8104/* A record type with no fields. */
8105
d2e4a39e 8106static struct type *
fe978cb0 8107empty_record (struct type *templ)
14f9c5c9 8108{
fe978cb0 8109 struct type *type = alloc_type_copy (templ);
5b4ee69b 8110
14f9c5c9
AS
8111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8112 TYPE_NFIELDS (type) = 0;
8113 TYPE_FIELDS (type) = NULL;
8ecb59f8 8114 INIT_NONE_SPECIFIC (type);
14f9c5c9 8115 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8116 TYPE_LENGTH (type) = 0;
8117 return type;
8118}
8119
8120/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8121 the value of type TYPE at VALADDR or ADDRESS (see comments at
8122 the beginning of this section) VAL according to GNAT conventions.
8123 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8124 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8125 an outer-level type (i.e., as opposed to a branch of a variant.) A
8126 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8127 of the variant.
14f9c5c9 8128
4c4b4cd2
PH
8129 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8130 length are not statically known are discarded. As a consequence,
8131 VALADDR, ADDRESS and DVAL0 are ignored.
8132
8133 NOTE: Limitations: For now, we assume that dynamic fields and
8134 variants occupy whole numbers of bytes. However, they need not be
8135 byte-aligned. */
8136
8137struct type *
10a2c479 8138ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8139 const gdb_byte *valaddr,
4c4b4cd2
PH
8140 CORE_ADDR address, struct value *dval0,
8141 int keep_dynamic_fields)
14f9c5c9 8142{
d2e4a39e
AS
8143 struct value *mark = value_mark ();
8144 struct value *dval;
8145 struct type *rtype;
14f9c5c9 8146 int nfields, bit_len;
4c4b4cd2 8147 int variant_field;
14f9c5c9 8148 long off;
d94e4f4f 8149 int fld_bit_len;
14f9c5c9
AS
8150 int f;
8151
4c4b4cd2
PH
8152 /* Compute the number of fields in this record type that are going
8153 to be processed: unless keep_dynamic_fields, this includes only
8154 fields whose position and length are static will be processed. */
8155 if (keep_dynamic_fields)
8156 nfields = TYPE_NFIELDS (type);
8157 else
8158 {
8159 nfields = 0;
76a01679 8160 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8161 && !ada_is_variant_part (type, nfields)
8162 && !is_dynamic_field (type, nfields))
8163 nfields++;
8164 }
8165
e9bb382b 8166 rtype = alloc_type_copy (type);
14f9c5c9 8167 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8168 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8169 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8170 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8171 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8172 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8173 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8174 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8175
d2e4a39e
AS
8176 off = 0;
8177 bit_len = 0;
4c4b4cd2
PH
8178 variant_field = -1;
8179
14f9c5c9
AS
8180 for (f = 0; f < nfields; f += 1)
8181 {
6c038f32
PH
8182 off = align_value (off, field_alignment (type, f))
8183 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8184 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8185 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8186
d2e4a39e 8187 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8188 {
8189 variant_field = f;
d94e4f4f 8190 fld_bit_len = 0;
4c4b4cd2 8191 }
14f9c5c9 8192 else if (is_dynamic_field (type, f))
4c4b4cd2 8193 {
284614f0
JB
8194 const gdb_byte *field_valaddr = valaddr;
8195 CORE_ADDR field_address = address;
8196 struct type *field_type =
8197 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8198
4c4b4cd2 8199 if (dval0 == NULL)
b5304971
JG
8200 {
8201 /* rtype's length is computed based on the run-time
8202 value of discriminants. If the discriminants are not
8203 initialized, the type size may be completely bogus and
0963b4bd 8204 GDB may fail to allocate a value for it. So check the
b5304971 8205 size first before creating the value. */
c1b5a1a6 8206 ada_ensure_varsize_limit (rtype);
012370f6
TT
8207 /* Using plain value_from_contents_and_address here
8208 causes problems because we will end up trying to
8209 resolve a type that is currently being
8210 constructed. */
8211 dval = value_from_contents_and_address_unresolved (rtype,
8212 valaddr,
8213 address);
9f1f738a 8214 rtype = value_type (dval);
b5304971 8215 }
4c4b4cd2
PH
8216 else
8217 dval = dval0;
8218
284614f0
JB
8219 /* If the type referenced by this field is an aligner type, we need
8220 to unwrap that aligner type, because its size might not be set.
8221 Keeping the aligner type would cause us to compute the wrong
8222 size for this field, impacting the offset of the all the fields
8223 that follow this one. */
8224 if (ada_is_aligner_type (field_type))
8225 {
8226 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8227
8228 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8229 field_address = cond_offset_target (field_address, field_offset);
8230 field_type = ada_aligned_type (field_type);
8231 }
8232
8233 field_valaddr = cond_offset_host (field_valaddr,
8234 off / TARGET_CHAR_BIT);
8235 field_address = cond_offset_target (field_address,
8236 off / TARGET_CHAR_BIT);
8237
8238 /* Get the fixed type of the field. Note that, in this case,
8239 we do not want to get the real type out of the tag: if
8240 the current field is the parent part of a tagged record,
8241 we will get the tag of the object. Clearly wrong: the real
8242 type of the parent is not the real type of the child. We
8243 would end up in an infinite loop. */
8244 field_type = ada_get_base_type (field_type);
8245 field_type = ada_to_fixed_type (field_type, field_valaddr,
8246 field_address, dval, 0);
27f2a97b
JB
8247 /* If the field size is already larger than the maximum
8248 object size, then the record itself will necessarily
8249 be larger than the maximum object size. We need to make
8250 this check now, because the size might be so ridiculously
8251 large (due to an uninitialized variable in the inferior)
8252 that it would cause an overflow when adding it to the
8253 record size. */
c1b5a1a6 8254 ada_ensure_varsize_limit (field_type);
284614f0
JB
8255
8256 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8257 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8258 /* The multiplication can potentially overflow. But because
8259 the field length has been size-checked just above, and
8260 assuming that the maximum size is a reasonable value,
8261 an overflow should not happen in practice. So rather than
8262 adding overflow recovery code to this already complex code,
8263 we just assume that it's not going to happen. */
d94e4f4f 8264 fld_bit_len =
4c4b4cd2
PH
8265 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8266 }
14f9c5c9 8267 else
4c4b4cd2 8268 {
5ded5331
JB
8269 /* Note: If this field's type is a typedef, it is important
8270 to preserve the typedef layer.
8271
8272 Otherwise, we might be transforming a typedef to a fat
8273 pointer (encoding a pointer to an unconstrained array),
8274 into a basic fat pointer (encoding an unconstrained
8275 array). As both types are implemented using the same
8276 structure, the typedef is the only clue which allows us
8277 to distinguish between the two options. Stripping it
8278 would prevent us from printing this field appropriately. */
8279 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8280 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8281 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8282 fld_bit_len =
4c4b4cd2
PH
8283 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8284 else
5ded5331
JB
8285 {
8286 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8287
8288 /* We need to be careful of typedefs when computing
8289 the length of our field. If this is a typedef,
8290 get the length of the target type, not the length
8291 of the typedef. */
8292 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8293 field_type = ada_typedef_target_type (field_type);
8294
8295 fld_bit_len =
8296 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8297 }
4c4b4cd2 8298 }
14f9c5c9 8299 if (off + fld_bit_len > bit_len)
4c4b4cd2 8300 bit_len = off + fld_bit_len;
d94e4f4f 8301 off += fld_bit_len;
4c4b4cd2
PH
8302 TYPE_LENGTH (rtype) =
8303 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8304 }
4c4b4cd2
PH
8305
8306 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8307 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8308 the record. This can happen in the presence of representation
8309 clauses. */
8310 if (variant_field >= 0)
8311 {
8312 struct type *branch_type;
8313
8314 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8315
8316 if (dval0 == NULL)
9f1f738a 8317 {
012370f6
TT
8318 /* Using plain value_from_contents_and_address here causes
8319 problems because we will end up trying to resolve a type
8320 that is currently being constructed. */
8321 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8322 address);
9f1f738a
SA
8323 rtype = value_type (dval);
8324 }
4c4b4cd2
PH
8325 else
8326 dval = dval0;
8327
8328 branch_type =
8329 to_fixed_variant_branch_type
8330 (TYPE_FIELD_TYPE (type, variant_field),
8331 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8332 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8333 if (branch_type == NULL)
8334 {
8335 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8336 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8337 TYPE_NFIELDS (rtype) -= 1;
8338 }
8339 else
8340 {
8341 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8342 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8343 fld_bit_len =
8344 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8345 TARGET_CHAR_BIT;
8346 if (off + fld_bit_len > bit_len)
8347 bit_len = off + fld_bit_len;
8348 TYPE_LENGTH (rtype) =
8349 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8350 }
8351 }
8352
714e53ab
PH
8353 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8354 should contain the alignment of that record, which should be a strictly
8355 positive value. If null or negative, then something is wrong, most
8356 probably in the debug info. In that case, we don't round up the size
0963b4bd 8357 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8358 the current RTYPE length might be good enough for our purposes. */
8359 if (TYPE_LENGTH (type) <= 0)
8360 {
323e0a4a 8361 if (TYPE_NAME (rtype))
cc1defb1
KS
8362 warning (_("Invalid type size for `%s' detected: %s."),
8363 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8364 else
cc1defb1
KS
8365 warning (_("Invalid type size for <unnamed> detected: %s."),
8366 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8367 }
8368 else
8369 {
8370 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8371 TYPE_LENGTH (type));
8372 }
14f9c5c9
AS
8373
8374 value_free_to_mark (mark);
d2e4a39e 8375 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8376 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8377 return rtype;
8378}
8379
4c4b4cd2
PH
8380/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8381 of 1. */
14f9c5c9 8382
d2e4a39e 8383static struct type *
fc1a4b47 8384template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8385 CORE_ADDR address, struct value *dval0)
8386{
8387 return ada_template_to_fixed_record_type_1 (type, valaddr,
8388 address, dval0, 1);
8389}
8390
8391/* An ordinary record type in which ___XVL-convention fields and
8392 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8393 static approximations, containing all possible fields. Uses
8394 no runtime values. Useless for use in values, but that's OK,
8395 since the results are used only for type determinations. Works on both
8396 structs and unions. Representation note: to save space, we memorize
8397 the result of this function in the TYPE_TARGET_TYPE of the
8398 template type. */
8399
8400static struct type *
8401template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8402{
8403 struct type *type;
8404 int nfields;
8405 int f;
8406
9e195661
PMR
8407 /* No need no do anything if the input type is already fixed. */
8408 if (TYPE_FIXED_INSTANCE (type0))
8409 return type0;
8410
8411 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8412 if (TYPE_TARGET_TYPE (type0) != NULL)
8413 return TYPE_TARGET_TYPE (type0);
8414
9e195661 8415 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8416 type = type0;
9e195661
PMR
8417 nfields = TYPE_NFIELDS (type0);
8418
8419 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8420 recompute all over next time. */
8421 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8422
8423 for (f = 0; f < nfields; f += 1)
8424 {
460efde1 8425 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8426 struct type *new_type;
14f9c5c9 8427
4c4b4cd2 8428 if (is_dynamic_field (type0, f))
460efde1
JB
8429 {
8430 field_type = ada_check_typedef (field_type);
8431 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8432 }
14f9c5c9 8433 else
f192137b 8434 new_type = static_unwrap_type (field_type);
9e195661
PMR
8435
8436 if (new_type != field_type)
8437 {
8438 /* Clone TYPE0 only the first time we get a new field type. */
8439 if (type == type0)
8440 {
8441 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8442 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8443 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8444 TYPE_NFIELDS (type) = nfields;
8445 TYPE_FIELDS (type) = (struct field *)
8446 TYPE_ALLOC (type, nfields * sizeof (struct field));
8447 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8448 sizeof (struct field) * nfields);
8449 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8450 TYPE_FIXED_INSTANCE (type) = 1;
8451 TYPE_LENGTH (type) = 0;
8452 }
8453 TYPE_FIELD_TYPE (type, f) = new_type;
8454 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8455 }
14f9c5c9 8456 }
9e195661 8457
14f9c5c9
AS
8458 return type;
8459}
8460
4c4b4cd2 8461/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8462 whose address in memory is ADDRESS, returns a revision of TYPE,
8463 which should be a non-dynamic-sized record, in which the variant
8464 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8465 for discriminant values in DVAL0, which can be NULL if the record
8466 contains the necessary discriminant values. */
8467
d2e4a39e 8468static struct type *
fc1a4b47 8469to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8470 CORE_ADDR address, struct value *dval0)
14f9c5c9 8471{
d2e4a39e 8472 struct value *mark = value_mark ();
4c4b4cd2 8473 struct value *dval;
d2e4a39e 8474 struct type *rtype;
14f9c5c9
AS
8475 struct type *branch_type;
8476 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8477 int variant_field = variant_field_index (type);
14f9c5c9 8478
4c4b4cd2 8479 if (variant_field == -1)
14f9c5c9
AS
8480 return type;
8481
4c4b4cd2 8482 if (dval0 == NULL)
9f1f738a
SA
8483 {
8484 dval = value_from_contents_and_address (type, valaddr, address);
8485 type = value_type (dval);
8486 }
4c4b4cd2
PH
8487 else
8488 dval = dval0;
8489
e9bb382b 8490 rtype = alloc_type_copy (type);
14f9c5c9 8491 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8492 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8493 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8494 TYPE_FIELDS (rtype) =
8495 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8496 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8497 sizeof (struct field) * nfields);
14f9c5c9 8498 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8499 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8500 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8501
4c4b4cd2
PH
8502 branch_type = to_fixed_variant_branch_type
8503 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8504 cond_offset_host (valaddr,
4c4b4cd2
PH
8505 TYPE_FIELD_BITPOS (type, variant_field)
8506 / TARGET_CHAR_BIT),
d2e4a39e 8507 cond_offset_target (address,
4c4b4cd2
PH
8508 TYPE_FIELD_BITPOS (type, variant_field)
8509 / TARGET_CHAR_BIT), dval);
d2e4a39e 8510 if (branch_type == NULL)
14f9c5c9 8511 {
4c4b4cd2 8512 int f;
5b4ee69b 8513
4c4b4cd2
PH
8514 for (f = variant_field + 1; f < nfields; f += 1)
8515 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8516 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8517 }
8518 else
8519 {
4c4b4cd2
PH
8520 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8521 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8522 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8523 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8524 }
4c4b4cd2 8525 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8526
4c4b4cd2 8527 value_free_to_mark (mark);
14f9c5c9
AS
8528 return rtype;
8529}
8530
8531/* An ordinary record type (with fixed-length fields) that describes
8532 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8533 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8534 should be in DVAL, a record value; it may be NULL if the object
8535 at ADDR itself contains any necessary discriminant values.
8536 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8537 values from the record are needed. Except in the case that DVAL,
8538 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8539 unchecked) is replaced by a particular branch of the variant.
8540
8541 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8542 is questionable and may be removed. It can arise during the
8543 processing of an unconstrained-array-of-record type where all the
8544 variant branches have exactly the same size. This is because in
8545 such cases, the compiler does not bother to use the XVS convention
8546 when encoding the record. I am currently dubious of this
8547 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8548
d2e4a39e 8549static struct type *
fc1a4b47 8550to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8551 CORE_ADDR address, struct value *dval)
14f9c5c9 8552{
d2e4a39e 8553 struct type *templ_type;
14f9c5c9 8554
876cecd0 8555 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8556 return type0;
8557
d2e4a39e 8558 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8559
8560 if (templ_type != NULL)
8561 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8562 else if (variant_field_index (type0) >= 0)
8563 {
8564 if (dval == NULL && valaddr == NULL && address == 0)
8565 return type0;
8566 return to_record_with_fixed_variant_part (type0, valaddr, address,
8567 dval);
8568 }
14f9c5c9
AS
8569 else
8570 {
876cecd0 8571 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8572 return type0;
8573 }
8574
8575}
8576
8577/* An ordinary record type (with fixed-length fields) that describes
8578 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8579 union type. Any necessary discriminants' values should be in DVAL,
8580 a record value. That is, this routine selects the appropriate
8581 branch of the union at ADDR according to the discriminant value
b1f33ddd 8582 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8583 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8584
d2e4a39e 8585static struct type *
fc1a4b47 8586to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8587 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8588{
8589 int which;
d2e4a39e
AS
8590 struct type *templ_type;
8591 struct type *var_type;
14f9c5c9
AS
8592
8593 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8594 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8595 else
14f9c5c9
AS
8596 var_type = var_type0;
8597
8598 templ_type = ada_find_parallel_type (var_type, "___XVU");
8599
8600 if (templ_type != NULL)
8601 var_type = templ_type;
8602
b1f33ddd
JB
8603 if (is_unchecked_variant (var_type, value_type (dval)))
8604 return var_type0;
d2e4a39e
AS
8605 which =
8606 ada_which_variant_applies (var_type,
0fd88904 8607 value_type (dval), value_contents (dval));
14f9c5c9
AS
8608
8609 if (which < 0)
e9bb382b 8610 return empty_record (var_type);
14f9c5c9 8611 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8612 return to_fixed_record_type
d2e4a39e
AS
8613 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8614 valaddr, address, dval);
4c4b4cd2 8615 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8616 return
8617 to_fixed_record_type
8618 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8619 else
8620 return TYPE_FIELD_TYPE (var_type, which);
8621}
8622
8908fca5
JB
8623/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8624 ENCODING_TYPE, a type following the GNAT conventions for discrete
8625 type encodings, only carries redundant information. */
8626
8627static int
8628ada_is_redundant_range_encoding (struct type *range_type,
8629 struct type *encoding_type)
8630{
108d56a4 8631 const char *bounds_str;
8908fca5
JB
8632 int n;
8633 LONGEST lo, hi;
8634
8635 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8636
005e2509
JB
8637 if (TYPE_CODE (get_base_type (range_type))
8638 != TYPE_CODE (get_base_type (encoding_type)))
8639 {
8640 /* The compiler probably used a simple base type to describe
8641 the range type instead of the range's actual base type,
8642 expecting us to get the real base type from the encoding
8643 anyway. In this situation, the encoding cannot be ignored
8644 as redundant. */
8645 return 0;
8646 }
8647
8908fca5
JB
8648 if (is_dynamic_type (range_type))
8649 return 0;
8650
8651 if (TYPE_NAME (encoding_type) == NULL)
8652 return 0;
8653
8654 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8655 if (bounds_str == NULL)
8656 return 0;
8657
8658 n = 8; /* Skip "___XDLU_". */
8659 if (!ada_scan_number (bounds_str, n, &lo, &n))
8660 return 0;
8661 if (TYPE_LOW_BOUND (range_type) != lo)
8662 return 0;
8663
8664 n += 2; /* Skip the "__" separator between the two bounds. */
8665 if (!ada_scan_number (bounds_str, n, &hi, &n))
8666 return 0;
8667 if (TYPE_HIGH_BOUND (range_type) != hi)
8668 return 0;
8669
8670 return 1;
8671}
8672
8673/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8674 a type following the GNAT encoding for describing array type
8675 indices, only carries redundant information. */
8676
8677static int
8678ada_is_redundant_index_type_desc (struct type *array_type,
8679 struct type *desc_type)
8680{
8681 struct type *this_layer = check_typedef (array_type);
8682 int i;
8683
8684 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8685 {
8686 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8687 TYPE_FIELD_TYPE (desc_type, i)))
8688 return 0;
8689 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8690 }
8691
8692 return 1;
8693}
8694
14f9c5c9
AS
8695/* Assuming that TYPE0 is an array type describing the type of a value
8696 at ADDR, and that DVAL describes a record containing any
8697 discriminants used in TYPE0, returns a type for the value that
8698 contains no dynamic components (that is, no components whose sizes
8699 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8700 true, gives an error message if the resulting type's size is over
4c4b4cd2 8701 varsize_limit. */
14f9c5c9 8702
d2e4a39e
AS
8703static struct type *
8704to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8705 int ignore_too_big)
14f9c5c9 8706{
d2e4a39e
AS
8707 struct type *index_type_desc;
8708 struct type *result;
ad82864c 8709 int constrained_packed_array_p;
931e5bc3 8710 static const char *xa_suffix = "___XA";
14f9c5c9 8711
b0dd7688 8712 type0 = ada_check_typedef (type0);
284614f0 8713 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8714 return type0;
14f9c5c9 8715
ad82864c
JB
8716 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8717 if (constrained_packed_array_p)
8718 type0 = decode_constrained_packed_array_type (type0);
284614f0 8719
931e5bc3
JG
8720 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8721
8722 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8723 encoding suffixed with 'P' may still be generated. If so,
8724 it should be used to find the XA type. */
8725
8726 if (index_type_desc == NULL)
8727 {
1da0522e 8728 const char *type_name = ada_type_name (type0);
931e5bc3 8729
1da0522e 8730 if (type_name != NULL)
931e5bc3 8731 {
1da0522e 8732 const int len = strlen (type_name);
931e5bc3
JG
8733 char *name = (char *) alloca (len + strlen (xa_suffix));
8734
1da0522e 8735 if (type_name[len - 1] == 'P')
931e5bc3 8736 {
1da0522e 8737 strcpy (name, type_name);
931e5bc3
JG
8738 strcpy (name + len - 1, xa_suffix);
8739 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8740 }
8741 }
8742 }
8743
28c85d6c 8744 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8745 if (index_type_desc != NULL
8746 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8747 {
8748 /* Ignore this ___XA parallel type, as it does not bring any
8749 useful information. This allows us to avoid creating fixed
8750 versions of the array's index types, which would be identical
8751 to the original ones. This, in turn, can also help avoid
8752 the creation of fixed versions of the array itself. */
8753 index_type_desc = NULL;
8754 }
8755
14f9c5c9
AS
8756 if (index_type_desc == NULL)
8757 {
61ee279c 8758 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8759
14f9c5c9 8760 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8761 depend on the contents of the array in properly constructed
8762 debugging data. */
529cad9c
PH
8763 /* Create a fixed version of the array element type.
8764 We're not providing the address of an element here,
e1d5a0d2 8765 and thus the actual object value cannot be inspected to do
529cad9c
PH
8766 the conversion. This should not be a problem, since arrays of
8767 unconstrained objects are not allowed. In particular, all
8768 the elements of an array of a tagged type should all be of
8769 the same type specified in the debugging info. No need to
8770 consult the object tag. */
1ed6ede0 8771 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8772
284614f0
JB
8773 /* Make sure we always create a new array type when dealing with
8774 packed array types, since we're going to fix-up the array
8775 type length and element bitsize a little further down. */
ad82864c 8776 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8777 result = type0;
14f9c5c9 8778 else
e9bb382b 8779 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8780 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8781 }
8782 else
8783 {
8784 int i;
8785 struct type *elt_type0;
8786
8787 elt_type0 = type0;
8788 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8789 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8790
8791 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8792 depend on the contents of the array in properly constructed
8793 debugging data. */
529cad9c
PH
8794 /* Create a fixed version of the array element type.
8795 We're not providing the address of an element here,
e1d5a0d2 8796 and thus the actual object value cannot be inspected to do
529cad9c
PH
8797 the conversion. This should not be a problem, since arrays of
8798 unconstrained objects are not allowed. In particular, all
8799 the elements of an array of a tagged type should all be of
8800 the same type specified in the debugging info. No need to
8801 consult the object tag. */
1ed6ede0
JB
8802 result =
8803 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8804
8805 elt_type0 = type0;
14f9c5c9 8806 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8807 {
8808 struct type *range_type =
28c85d6c 8809 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8810
e9bb382b 8811 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8812 result, range_type);
1ce677a4 8813 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8814 }
d2e4a39e 8815 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8816 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8817 }
8818
2e6fda7d
JB
8819 /* We want to preserve the type name. This can be useful when
8820 trying to get the type name of a value that has already been
8821 printed (for instance, if the user did "print VAR; whatis $". */
8822 TYPE_NAME (result) = TYPE_NAME (type0);
8823
ad82864c 8824 if (constrained_packed_array_p)
284614f0
JB
8825 {
8826 /* So far, the resulting type has been created as if the original
8827 type was a regular (non-packed) array type. As a result, the
8828 bitsize of the array elements needs to be set again, and the array
8829 length needs to be recomputed based on that bitsize. */
8830 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8831 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8832
8833 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8834 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8835 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8836 TYPE_LENGTH (result)++;
8837 }
8838
876cecd0 8839 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8840 return result;
d2e4a39e 8841}
14f9c5c9
AS
8842
8843
8844/* A standard type (containing no dynamically sized components)
8845 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8846 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8847 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8848 ADDRESS or in VALADDR contains these discriminants.
8849
1ed6ede0
JB
8850 If CHECK_TAG is not null, in the case of tagged types, this function
8851 attempts to locate the object's tag and use it to compute the actual
8852 type. However, when ADDRESS is null, we cannot use it to determine the
8853 location of the tag, and therefore compute the tagged type's actual type.
8854 So we return the tagged type without consulting the tag. */
529cad9c 8855
f192137b
JB
8856static struct type *
8857ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8858 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8859{
61ee279c 8860 type = ada_check_typedef (type);
8ecb59f8
TT
8861
8862 /* Only un-fixed types need to be handled here. */
8863 if (!HAVE_GNAT_AUX_INFO (type))
8864 return type;
8865
d2e4a39e
AS
8866 switch (TYPE_CODE (type))
8867 {
8868 default:
14f9c5c9 8869 return type;
d2e4a39e 8870 case TYPE_CODE_STRUCT:
4c4b4cd2 8871 {
76a01679 8872 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8873 struct type *fixed_record_type =
8874 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8875
529cad9c
PH
8876 /* If STATIC_TYPE is a tagged type and we know the object's address,
8877 then we can determine its tag, and compute the object's actual
0963b4bd 8878 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8879 type (the parent part of the record may have dynamic fields
8880 and the way the location of _tag is expressed may depend on
8881 them). */
529cad9c 8882
1ed6ede0 8883 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8884 {
b50d69b5
JG
8885 struct value *tag =
8886 value_tag_from_contents_and_address
8887 (fixed_record_type,
8888 valaddr,
8889 address);
8890 struct type *real_type = type_from_tag (tag);
8891 struct value *obj =
8892 value_from_contents_and_address (fixed_record_type,
8893 valaddr,
8894 address);
9f1f738a 8895 fixed_record_type = value_type (obj);
76a01679 8896 if (real_type != NULL)
b50d69b5
JG
8897 return to_fixed_record_type
8898 (real_type, NULL,
8899 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8900 }
4af88198
JB
8901
8902 /* Check to see if there is a parallel ___XVZ variable.
8903 If there is, then it provides the actual size of our type. */
8904 else if (ada_type_name (fixed_record_type) != NULL)
8905 {
0d5cff50 8906 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8907 char *xvz_name
8908 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8909 bool xvz_found = false;
4af88198
JB
8910 LONGEST size;
8911
88c15c34 8912 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8913 try
eccab96d
JB
8914 {
8915 xvz_found = get_int_var_value (xvz_name, size);
8916 }
230d2906 8917 catch (const gdb_exception_error &except)
eccab96d
JB
8918 {
8919 /* We found the variable, but somehow failed to read
8920 its value. Rethrow the same error, but with a little
8921 bit more information, to help the user understand
8922 what went wrong (Eg: the variable might have been
8923 optimized out). */
8924 throw_error (except.error,
8925 _("unable to read value of %s (%s)"),
3d6e9d23 8926 xvz_name, except.what ());
eccab96d 8927 }
eccab96d
JB
8928
8929 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8930 {
8931 fixed_record_type = copy_type (fixed_record_type);
8932 TYPE_LENGTH (fixed_record_type) = size;
8933
8934 /* The FIXED_RECORD_TYPE may have be a stub. We have
8935 observed this when the debugging info is STABS, and
8936 apparently it is something that is hard to fix.
8937
8938 In practice, we don't need the actual type definition
8939 at all, because the presence of the XVZ variable allows us
8940 to assume that there must be a XVS type as well, which we
8941 should be able to use later, when we need the actual type
8942 definition.
8943
8944 In the meantime, pretend that the "fixed" type we are
8945 returning is NOT a stub, because this can cause trouble
8946 when using this type to create new types targeting it.
8947 Indeed, the associated creation routines often check
8948 whether the target type is a stub and will try to replace
0963b4bd 8949 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8950 might cause the new type to have the wrong size too.
8951 Consider the case of an array, for instance, where the size
8952 of the array is computed from the number of elements in
8953 our array multiplied by the size of its element. */
8954 TYPE_STUB (fixed_record_type) = 0;
8955 }
8956 }
1ed6ede0 8957 return fixed_record_type;
4c4b4cd2 8958 }
d2e4a39e 8959 case TYPE_CODE_ARRAY:
4c4b4cd2 8960 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8961 case TYPE_CODE_UNION:
8962 if (dval == NULL)
4c4b4cd2 8963 return type;
d2e4a39e 8964 else
4c4b4cd2 8965 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8966 }
14f9c5c9
AS
8967}
8968
f192137b
JB
8969/* The same as ada_to_fixed_type_1, except that it preserves the type
8970 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8971
8972 The typedef layer needs be preserved in order to differentiate between
8973 arrays and array pointers when both types are implemented using the same
8974 fat pointer. In the array pointer case, the pointer is encoded as
8975 a typedef of the pointer type. For instance, considering:
8976
8977 type String_Access is access String;
8978 S1 : String_Access := null;
8979
8980 To the debugger, S1 is defined as a typedef of type String. But
8981 to the user, it is a pointer. So if the user tries to print S1,
8982 we should not dereference the array, but print the array address
8983 instead.
8984
8985 If we didn't preserve the typedef layer, we would lose the fact that
8986 the type is to be presented as a pointer (needs de-reference before
8987 being printed). And we would also use the source-level type name. */
f192137b
JB
8988
8989struct type *
8990ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8991 CORE_ADDR address, struct value *dval, int check_tag)
8992
8993{
8994 struct type *fixed_type =
8995 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8996
96dbd2c1
JB
8997 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8998 then preserve the typedef layer.
8999
9000 Implementation note: We can only check the main-type portion of
9001 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9002 from TYPE now returns a type that has the same instance flags
9003 as TYPE. For instance, if TYPE is a "typedef const", and its
9004 target type is a "struct", then the typedef elimination will return
9005 a "const" version of the target type. See check_typedef for more
9006 details about how the typedef layer elimination is done.
9007
9008 brobecker/2010-11-19: It seems to me that the only case where it is
9009 useful to preserve the typedef layer is when dealing with fat pointers.
9010 Perhaps, we could add a check for that and preserve the typedef layer
9011 only in that situation. But this seems unecessary so far, probably
9012 because we call check_typedef/ada_check_typedef pretty much everywhere.
9013 */
f192137b 9014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9015 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9016 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9017 return type;
9018
9019 return fixed_type;
9020}
9021
14f9c5c9 9022/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9023 TYPE0, but based on no runtime data. */
14f9c5c9 9024
d2e4a39e
AS
9025static struct type *
9026to_static_fixed_type (struct type *type0)
14f9c5c9 9027{
d2e4a39e 9028 struct type *type;
14f9c5c9
AS
9029
9030 if (type0 == NULL)
9031 return NULL;
9032
876cecd0 9033 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9034 return type0;
9035
61ee279c 9036 type0 = ada_check_typedef (type0);
d2e4a39e 9037
14f9c5c9
AS
9038 switch (TYPE_CODE (type0))
9039 {
9040 default:
9041 return type0;
9042 case TYPE_CODE_STRUCT:
9043 type = dynamic_template_type (type0);
d2e4a39e 9044 if (type != NULL)
4c4b4cd2
PH
9045 return template_to_static_fixed_type (type);
9046 else
9047 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9048 case TYPE_CODE_UNION:
9049 type = ada_find_parallel_type (type0, "___XVU");
9050 if (type != NULL)
4c4b4cd2
PH
9051 return template_to_static_fixed_type (type);
9052 else
9053 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9054 }
9055}
9056
4c4b4cd2
PH
9057/* A static approximation of TYPE with all type wrappers removed. */
9058
d2e4a39e
AS
9059static struct type *
9060static_unwrap_type (struct type *type)
14f9c5c9
AS
9061{
9062 if (ada_is_aligner_type (type))
9063 {
61ee279c 9064 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9065 if (ada_type_name (type1) == NULL)
4c4b4cd2 9066 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9067
9068 return static_unwrap_type (type1);
9069 }
d2e4a39e 9070 else
14f9c5c9 9071 {
d2e4a39e 9072 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9073
d2e4a39e 9074 if (raw_real_type == type)
4c4b4cd2 9075 return type;
14f9c5c9 9076 else
4c4b4cd2 9077 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9078 }
9079}
9080
9081/* In some cases, incomplete and private types require
4c4b4cd2 9082 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9083 type Foo;
9084 type FooP is access Foo;
9085 V: FooP;
9086 type Foo is array ...;
4c4b4cd2 9087 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9088 cross-references to such types, we instead substitute for FooP a
9089 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9090 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9091
9092/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9093 exists, otherwise TYPE. */
9094
d2e4a39e 9095struct type *
61ee279c 9096ada_check_typedef (struct type *type)
14f9c5c9 9097{
727e3d2e
JB
9098 if (type == NULL)
9099 return NULL;
9100
736ade86
XR
9101 /* If our type is an access to an unconstrained array, which is encoded
9102 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9103 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9104 what allows us to distinguish between fat pointers that represent
9105 array types, and fat pointers that represent array access types
9106 (in both cases, the compiler implements them as fat pointers). */
736ade86 9107 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9108 return type;
9109
f168693b 9110 type = check_typedef (type);
14f9c5c9 9111 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9112 || !TYPE_STUB (type)
e86ca25f 9113 || TYPE_NAME (type) == NULL)
14f9c5c9 9114 return type;
d2e4a39e 9115 else
14f9c5c9 9116 {
e86ca25f 9117 const char *name = TYPE_NAME (type);
d2e4a39e 9118 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9119
05e522ef
JB
9120 if (type1 == NULL)
9121 return type;
9122
9123 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9124 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9125 types, only for the typedef-to-array types). If that's the case,
9126 strip the typedef layer. */
9127 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9128 type1 = ada_check_typedef (type1);
9129
9130 return type1;
14f9c5c9
AS
9131 }
9132}
9133
9134/* A value representing the data at VALADDR/ADDRESS as described by
9135 type TYPE0, but with a standard (static-sized) type that correctly
9136 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9137 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9138 creation of struct values]. */
14f9c5c9 9139
4c4b4cd2
PH
9140static struct value *
9141ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9142 struct value *val0)
14f9c5c9 9143{
1ed6ede0 9144 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9145
14f9c5c9
AS
9146 if (type == type0 && val0 != NULL)
9147 return val0;
cc0e770c
JB
9148
9149 if (VALUE_LVAL (val0) != lval_memory)
9150 {
9151 /* Our value does not live in memory; it could be a convenience
9152 variable, for instance. Create a not_lval value using val0's
9153 contents. */
9154 return value_from_contents (type, value_contents (val0));
9155 }
9156
9157 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9158}
9159
9160/* A value representing VAL, but with a standard (static-sized) type
9161 that correctly describes it. Does not necessarily create a new
9162 value. */
9163
0c3acc09 9164struct value *
4c4b4cd2
PH
9165ada_to_fixed_value (struct value *val)
9166{
c48db5ca 9167 val = unwrap_value (val);
d8ce9127 9168 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9169 return val;
14f9c5c9 9170}
d2e4a39e 9171\f
14f9c5c9 9172
14f9c5c9
AS
9173/* Attributes */
9174
4c4b4cd2
PH
9175/* Table mapping attribute numbers to names.
9176 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9177
d2e4a39e 9178static const char *attribute_names[] = {
14f9c5c9
AS
9179 "<?>",
9180
d2e4a39e 9181 "first",
14f9c5c9
AS
9182 "last",
9183 "length",
9184 "image",
14f9c5c9
AS
9185 "max",
9186 "min",
4c4b4cd2
PH
9187 "modulus",
9188 "pos",
9189 "size",
9190 "tag",
14f9c5c9 9191 "val",
14f9c5c9
AS
9192 0
9193};
9194
d2e4a39e 9195const char *
4c4b4cd2 9196ada_attribute_name (enum exp_opcode n)
14f9c5c9 9197{
4c4b4cd2
PH
9198 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9199 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9200 else
9201 return attribute_names[0];
9202}
9203
4c4b4cd2 9204/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9205
4c4b4cd2
PH
9206static LONGEST
9207pos_atr (struct value *arg)
14f9c5c9 9208{
24209737
PH
9209 struct value *val = coerce_ref (arg);
9210 struct type *type = value_type (val);
aa715135 9211 LONGEST result;
14f9c5c9 9212
d2e4a39e 9213 if (!discrete_type_p (type))
323e0a4a 9214 error (_("'POS only defined on discrete types"));
14f9c5c9 9215
aa715135
JG
9216 if (!discrete_position (type, value_as_long (val), &result))
9217 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9218
aa715135 9219 return result;
4c4b4cd2
PH
9220}
9221
9222static struct value *
3cb382c9 9223value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9224{
3cb382c9 9225 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9226}
9227
4c4b4cd2 9228/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9229
d2e4a39e
AS
9230static struct value *
9231value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9232{
d2e4a39e 9233 if (!discrete_type_p (type))
323e0a4a 9234 error (_("'VAL only defined on discrete types"));
df407dfe 9235 if (!integer_type_p (value_type (arg)))
323e0a4a 9236 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9237
9238 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9239 {
9240 long pos = value_as_long (arg);
5b4ee69b 9241
14f9c5c9 9242 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9243 error (_("argument to 'VAL out of range"));
14e75d8e 9244 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9245 }
9246 else
9247 return value_from_longest (type, value_as_long (arg));
9248}
14f9c5c9 9249\f
d2e4a39e 9250
4c4b4cd2 9251 /* Evaluation */
14f9c5c9 9252
4c4b4cd2
PH
9253/* True if TYPE appears to be an Ada character type.
9254 [At the moment, this is true only for Character and Wide_Character;
9255 It is a heuristic test that could stand improvement]. */
14f9c5c9 9256
fc913e53 9257bool
d2e4a39e 9258ada_is_character_type (struct type *type)
14f9c5c9 9259{
7b9f71f2
JB
9260 const char *name;
9261
9262 /* If the type code says it's a character, then assume it really is,
9263 and don't check any further. */
9264 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9265 return true;
7b9f71f2
JB
9266
9267 /* Otherwise, assume it's a character type iff it is a discrete type
9268 with a known character type name. */
9269 name = ada_type_name (type);
9270 return (name != NULL
9271 && (TYPE_CODE (type) == TYPE_CODE_INT
9272 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9273 && (strcmp (name, "character") == 0
9274 || strcmp (name, "wide_character") == 0
5a517ebd 9275 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9276 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9277}
9278
4c4b4cd2 9279/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9280
fc913e53 9281bool
ebf56fd3 9282ada_is_string_type (struct type *type)
14f9c5c9 9283{
61ee279c 9284 type = ada_check_typedef (type);
d2e4a39e 9285 if (type != NULL
14f9c5c9 9286 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9287 && (ada_is_simple_array_type (type)
9288 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9289 && ada_array_arity (type) == 1)
9290 {
9291 struct type *elttype = ada_array_element_type (type, 1);
9292
9293 return ada_is_character_type (elttype);
9294 }
d2e4a39e 9295 else
fc913e53 9296 return false;
14f9c5c9
AS
9297}
9298
5bf03f13
JB
9299/* The compiler sometimes provides a parallel XVS type for a given
9300 PAD type. Normally, it is safe to follow the PAD type directly,
9301 but older versions of the compiler have a bug that causes the offset
9302 of its "F" field to be wrong. Following that field in that case
9303 would lead to incorrect results, but this can be worked around
9304 by ignoring the PAD type and using the associated XVS type instead.
9305
9306 Set to True if the debugger should trust the contents of PAD types.
9307 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9308static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9309
9310/* True if TYPE is a struct type introduced by the compiler to force the
9311 alignment of a value. Such types have a single field with a
4c4b4cd2 9312 distinctive name. */
14f9c5c9
AS
9313
9314int
ebf56fd3 9315ada_is_aligner_type (struct type *type)
14f9c5c9 9316{
61ee279c 9317 type = ada_check_typedef (type);
714e53ab 9318
5bf03f13 9319 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9320 return 0;
9321
14f9c5c9 9322 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9323 && TYPE_NFIELDS (type) == 1
9324 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9325}
9326
9327/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9328 the parallel type. */
14f9c5c9 9329
d2e4a39e
AS
9330struct type *
9331ada_get_base_type (struct type *raw_type)
14f9c5c9 9332{
d2e4a39e
AS
9333 struct type *real_type_namer;
9334 struct type *raw_real_type;
14f9c5c9
AS
9335
9336 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9337 return raw_type;
9338
284614f0
JB
9339 if (ada_is_aligner_type (raw_type))
9340 /* The encoding specifies that we should always use the aligner type.
9341 So, even if this aligner type has an associated XVS type, we should
9342 simply ignore it.
9343
9344 According to the compiler gurus, an XVS type parallel to an aligner
9345 type may exist because of a stabs limitation. In stabs, aligner
9346 types are empty because the field has a variable-sized type, and
9347 thus cannot actually be used as an aligner type. As a result,
9348 we need the associated parallel XVS type to decode the type.
9349 Since the policy in the compiler is to not change the internal
9350 representation based on the debugging info format, we sometimes
9351 end up having a redundant XVS type parallel to the aligner type. */
9352 return raw_type;
9353
14f9c5c9 9354 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9355 if (real_type_namer == NULL
14f9c5c9
AS
9356 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9357 || TYPE_NFIELDS (real_type_namer) != 1)
9358 return raw_type;
9359
f80d3ff2
JB
9360 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9361 {
9362 /* This is an older encoding form where the base type needs to be
9363 looked up by name. We prefer the newer enconding because it is
9364 more efficient. */
9365 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9366 if (raw_real_type == NULL)
9367 return raw_type;
9368 else
9369 return raw_real_type;
9370 }
9371
9372 /* The field in our XVS type is a reference to the base type. */
9373 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9374}
14f9c5c9 9375
4c4b4cd2 9376/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9377
d2e4a39e
AS
9378struct type *
9379ada_aligned_type (struct type *type)
14f9c5c9
AS
9380{
9381 if (ada_is_aligner_type (type))
9382 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9383 else
9384 return ada_get_base_type (type);
9385}
9386
9387
9388/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9389 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9390
fc1a4b47
AC
9391const gdb_byte *
9392ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9393{
d2e4a39e 9394 if (ada_is_aligner_type (type))
14f9c5c9 9395 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9396 valaddr +
9397 TYPE_FIELD_BITPOS (type,
9398 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9399 else
9400 return valaddr;
9401}
9402
4c4b4cd2
PH
9403
9404
14f9c5c9 9405/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9406 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9407const char *
9408ada_enum_name (const char *name)
14f9c5c9 9409{
4c4b4cd2
PH
9410 static char *result;
9411 static size_t result_len = 0;
e6a959d6 9412 const char *tmp;
14f9c5c9 9413
4c4b4cd2
PH
9414 /* First, unqualify the enumeration name:
9415 1. Search for the last '.' character. If we find one, then skip
177b42fe 9416 all the preceding characters, the unqualified name starts
76a01679 9417 right after that dot.
4c4b4cd2 9418 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9419 translates dots into "__". Search forward for double underscores,
9420 but stop searching when we hit an overloading suffix, which is
9421 of the form "__" followed by digits. */
4c4b4cd2 9422
c3e5cd34
PH
9423 tmp = strrchr (name, '.');
9424 if (tmp != NULL)
4c4b4cd2
PH
9425 name = tmp + 1;
9426 else
14f9c5c9 9427 {
4c4b4cd2
PH
9428 while ((tmp = strstr (name, "__")) != NULL)
9429 {
9430 if (isdigit (tmp[2]))
9431 break;
9432 else
9433 name = tmp + 2;
9434 }
14f9c5c9
AS
9435 }
9436
9437 if (name[0] == 'Q')
9438 {
14f9c5c9 9439 int v;
5b4ee69b 9440
14f9c5c9 9441 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9442 {
9443 if (sscanf (name + 2, "%x", &v) != 1)
9444 return name;
9445 }
272560b5
TT
9446 else if (((name[1] >= '0' && name[1] <= '9')
9447 || (name[1] >= 'a' && name[1] <= 'z'))
9448 && name[2] == '\0')
9449 {
9450 GROW_VECT (result, result_len, 4);
9451 xsnprintf (result, result_len, "'%c'", name[1]);
9452 return result;
9453 }
14f9c5c9 9454 else
4c4b4cd2 9455 return name;
14f9c5c9 9456
4c4b4cd2 9457 GROW_VECT (result, result_len, 16);
14f9c5c9 9458 if (isascii (v) && isprint (v))
88c15c34 9459 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9460 else if (name[1] == 'U')
88c15c34 9461 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9462 else
88c15c34 9463 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9464
9465 return result;
9466 }
d2e4a39e 9467 else
4c4b4cd2 9468 {
c3e5cd34
PH
9469 tmp = strstr (name, "__");
9470 if (tmp == NULL)
9471 tmp = strstr (name, "$");
9472 if (tmp != NULL)
4c4b4cd2
PH
9473 {
9474 GROW_VECT (result, result_len, tmp - name + 1);
9475 strncpy (result, name, tmp - name);
9476 result[tmp - name] = '\0';
9477 return result;
9478 }
9479
9480 return name;
9481 }
14f9c5c9
AS
9482}
9483
14f9c5c9
AS
9484/* Evaluate the subexpression of EXP starting at *POS as for
9485 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9486 expression. */
14f9c5c9 9487
d2e4a39e
AS
9488static struct value *
9489evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9490{
4b27a620 9491 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9492}
9493
9494/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9495 value it wraps. */
14f9c5c9 9496
d2e4a39e
AS
9497static struct value *
9498unwrap_value (struct value *val)
14f9c5c9 9499{
df407dfe 9500 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9501
14f9c5c9
AS
9502 if (ada_is_aligner_type (type))
9503 {
de4d072f 9504 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9505 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9506
14f9c5c9 9507 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9508 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9509
9510 return unwrap_value (v);
9511 }
d2e4a39e 9512 else
14f9c5c9 9513 {
d2e4a39e 9514 struct type *raw_real_type =
61ee279c 9515 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9516
5bf03f13
JB
9517 /* If there is no parallel XVS or XVE type, then the value is
9518 already unwrapped. Return it without further modification. */
9519 if ((type == raw_real_type)
9520 && ada_find_parallel_type (type, "___XVE") == NULL)
9521 return val;
14f9c5c9 9522
d2e4a39e 9523 return
4c4b4cd2
PH
9524 coerce_unspec_val_to_type
9525 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9526 value_address (val),
1ed6ede0 9527 NULL, 1));
14f9c5c9
AS
9528 }
9529}
d2e4a39e
AS
9530
9531static struct value *
50eff16b 9532cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9533{
50eff16b
UW
9534 struct value *scale = ada_scaling_factor (value_type (arg));
9535 arg = value_cast (value_type (scale), arg);
14f9c5c9 9536
50eff16b
UW
9537 arg = value_binop (arg, scale, BINOP_MUL);
9538 return value_cast (type, arg);
14f9c5c9
AS
9539}
9540
d2e4a39e 9541static struct value *
50eff16b 9542cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9543{
50eff16b
UW
9544 if (type == value_type (arg))
9545 return arg;
5b4ee69b 9546
50eff16b
UW
9547 struct value *scale = ada_scaling_factor (type);
9548 if (ada_is_fixed_point_type (value_type (arg)))
9549 arg = cast_from_fixed (value_type (scale), arg);
9550 else
9551 arg = value_cast (value_type (scale), arg);
9552
9553 arg = value_binop (arg, scale, BINOP_DIV);
9554 return value_cast (type, arg);
14f9c5c9
AS
9555}
9556
d99dcf51
JB
9557/* Given two array types T1 and T2, return nonzero iff both arrays
9558 contain the same number of elements. */
9559
9560static int
9561ada_same_array_size_p (struct type *t1, struct type *t2)
9562{
9563 LONGEST lo1, hi1, lo2, hi2;
9564
9565 /* Get the array bounds in order to verify that the size of
9566 the two arrays match. */
9567 if (!get_array_bounds (t1, &lo1, &hi1)
9568 || !get_array_bounds (t2, &lo2, &hi2))
9569 error (_("unable to determine array bounds"));
9570
9571 /* To make things easier for size comparison, normalize a bit
9572 the case of empty arrays by making sure that the difference
9573 between upper bound and lower bound is always -1. */
9574 if (lo1 > hi1)
9575 hi1 = lo1 - 1;
9576 if (lo2 > hi2)
9577 hi2 = lo2 - 1;
9578
9579 return (hi1 - lo1 == hi2 - lo2);
9580}
9581
9582/* Assuming that VAL is an array of integrals, and TYPE represents
9583 an array with the same number of elements, but with wider integral
9584 elements, return an array "casted" to TYPE. In practice, this
9585 means that the returned array is built by casting each element
9586 of the original array into TYPE's (wider) element type. */
9587
9588static struct value *
9589ada_promote_array_of_integrals (struct type *type, struct value *val)
9590{
9591 struct type *elt_type = TYPE_TARGET_TYPE (type);
9592 LONGEST lo, hi;
9593 struct value *res;
9594 LONGEST i;
9595
9596 /* Verify that both val and type are arrays of scalars, and
9597 that the size of val's elements is smaller than the size
9598 of type's element. */
9599 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9600 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9601 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9602 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9603 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9604 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9605
9606 if (!get_array_bounds (type, &lo, &hi))
9607 error (_("unable to determine array bounds"));
9608
9609 res = allocate_value (type);
9610
9611 /* Promote each array element. */
9612 for (i = 0; i < hi - lo + 1; i++)
9613 {
9614 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9615
9616 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9617 value_contents_all (elt), TYPE_LENGTH (elt_type));
9618 }
9619
9620 return res;
9621}
9622
4c4b4cd2
PH
9623/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9624 return the converted value. */
9625
d2e4a39e
AS
9626static struct value *
9627coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9628{
df407dfe 9629 struct type *type2 = value_type (val);
5b4ee69b 9630
14f9c5c9
AS
9631 if (type == type2)
9632 return val;
9633
61ee279c
PH
9634 type2 = ada_check_typedef (type2);
9635 type = ada_check_typedef (type);
14f9c5c9 9636
d2e4a39e
AS
9637 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9638 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9639 {
9640 val = ada_value_ind (val);
df407dfe 9641 type2 = value_type (val);
14f9c5c9
AS
9642 }
9643
d2e4a39e 9644 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9645 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9646 {
d99dcf51
JB
9647 if (!ada_same_array_size_p (type, type2))
9648 error (_("cannot assign arrays of different length"));
9649
9650 if (is_integral_type (TYPE_TARGET_TYPE (type))
9651 && is_integral_type (TYPE_TARGET_TYPE (type2))
9652 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9653 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9654 {
9655 /* Allow implicit promotion of the array elements to
9656 a wider type. */
9657 return ada_promote_array_of_integrals (type, val);
9658 }
9659
9660 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9661 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9662 error (_("Incompatible types in assignment"));
04624583 9663 deprecated_set_value_type (val, type);
14f9c5c9 9664 }
d2e4a39e 9665 return val;
14f9c5c9
AS
9666}
9667
4c4b4cd2
PH
9668static struct value *
9669ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9670{
9671 struct value *val;
9672 struct type *type1, *type2;
9673 LONGEST v, v1, v2;
9674
994b9211
AC
9675 arg1 = coerce_ref (arg1);
9676 arg2 = coerce_ref (arg2);
18af8284
JB
9677 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9678 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9679
76a01679
JB
9680 if (TYPE_CODE (type1) != TYPE_CODE_INT
9681 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9682 return value_binop (arg1, arg2, op);
9683
76a01679 9684 switch (op)
4c4b4cd2
PH
9685 {
9686 case BINOP_MOD:
9687 case BINOP_DIV:
9688 case BINOP_REM:
9689 break;
9690 default:
9691 return value_binop (arg1, arg2, op);
9692 }
9693
9694 v2 = value_as_long (arg2);
9695 if (v2 == 0)
323e0a4a 9696 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9697
9698 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9699 return value_binop (arg1, arg2, op);
9700
9701 v1 = value_as_long (arg1);
9702 switch (op)
9703 {
9704 case BINOP_DIV:
9705 v = v1 / v2;
76a01679
JB
9706 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9707 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9708 break;
9709 case BINOP_REM:
9710 v = v1 % v2;
76a01679
JB
9711 if (v * v1 < 0)
9712 v -= v2;
4c4b4cd2
PH
9713 break;
9714 default:
9715 /* Should not reach this point. */
9716 v = 0;
9717 }
9718
9719 val = allocate_value (type1);
990a07ab 9720 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9721 TYPE_LENGTH (value_type (val)),
9722 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9723 return val;
9724}
9725
9726static int
9727ada_value_equal (struct value *arg1, struct value *arg2)
9728{
df407dfe
AC
9729 if (ada_is_direct_array_type (value_type (arg1))
9730 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9731 {
79e8fcaa
JB
9732 struct type *arg1_type, *arg2_type;
9733
f58b38bf
JB
9734 /* Automatically dereference any array reference before
9735 we attempt to perform the comparison. */
9736 arg1 = ada_coerce_ref (arg1);
9737 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9738
4c4b4cd2
PH
9739 arg1 = ada_coerce_to_simple_array (arg1);
9740 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9741
9742 arg1_type = ada_check_typedef (value_type (arg1));
9743 arg2_type = ada_check_typedef (value_type (arg2));
9744
9745 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9746 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9747 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9748 /* FIXME: The following works only for types whose
76a01679
JB
9749 representations use all bits (no padding or undefined bits)
9750 and do not have user-defined equality. */
79e8fcaa
JB
9751 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9752 && memcmp (value_contents (arg1), value_contents (arg2),
9753 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9754 }
9755 return value_equal (arg1, arg2);
9756}
9757
52ce6436
PH
9758/* Total number of component associations in the aggregate starting at
9759 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9760 OP_AGGREGATE. */
52ce6436
PH
9761
9762static int
9763num_component_specs (struct expression *exp, int pc)
9764{
9765 int n, m, i;
5b4ee69b 9766
52ce6436
PH
9767 m = exp->elts[pc + 1].longconst;
9768 pc += 3;
9769 n = 0;
9770 for (i = 0; i < m; i += 1)
9771 {
9772 switch (exp->elts[pc].opcode)
9773 {
9774 default:
9775 n += 1;
9776 break;
9777 case OP_CHOICES:
9778 n += exp->elts[pc + 1].longconst;
9779 break;
9780 }
9781 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9782 }
9783 return n;
9784}
9785
9786/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9787 component of LHS (a simple array or a record), updating *POS past
9788 the expression, assuming that LHS is contained in CONTAINER. Does
9789 not modify the inferior's memory, nor does it modify LHS (unless
9790 LHS == CONTAINER). */
9791
9792static void
9793assign_component (struct value *container, struct value *lhs, LONGEST index,
9794 struct expression *exp, int *pos)
9795{
9796 struct value *mark = value_mark ();
9797 struct value *elt;
0e2da9f0 9798 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9799
0e2da9f0 9800 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9801 {
22601c15
UW
9802 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9803 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9804
52ce6436
PH
9805 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9806 }
9807 else
9808 {
9809 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9810 elt = ada_to_fixed_value (elt);
52ce6436
PH
9811 }
9812
9813 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9814 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9815 else
9816 value_assign_to_component (container, elt,
9817 ada_evaluate_subexp (NULL, exp, pos,
9818 EVAL_NORMAL));
9819
9820 value_free_to_mark (mark);
9821}
9822
9823/* Assuming that LHS represents an lvalue having a record or array
9824 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9825 of that aggregate's value to LHS, advancing *POS past the
9826 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9827 lvalue containing LHS (possibly LHS itself). Does not modify
9828 the inferior's memory, nor does it modify the contents of
0963b4bd 9829 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9830
9831static struct value *
9832assign_aggregate (struct value *container,
9833 struct value *lhs, struct expression *exp,
9834 int *pos, enum noside noside)
9835{
9836 struct type *lhs_type;
9837 int n = exp->elts[*pos+1].longconst;
9838 LONGEST low_index, high_index;
9839 int num_specs;
9840 LONGEST *indices;
9841 int max_indices, num_indices;
52ce6436 9842 int i;
52ce6436
PH
9843
9844 *pos += 3;
9845 if (noside != EVAL_NORMAL)
9846 {
52ce6436
PH
9847 for (i = 0; i < n; i += 1)
9848 ada_evaluate_subexp (NULL, exp, pos, noside);
9849 return container;
9850 }
9851
9852 container = ada_coerce_ref (container);
9853 if (ada_is_direct_array_type (value_type (container)))
9854 container = ada_coerce_to_simple_array (container);
9855 lhs = ada_coerce_ref (lhs);
9856 if (!deprecated_value_modifiable (lhs))
9857 error (_("Left operand of assignment is not a modifiable lvalue."));
9858
0e2da9f0 9859 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9860 if (ada_is_direct_array_type (lhs_type))
9861 {
9862 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9863 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9864 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9865 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9866 }
9867 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9868 {
9869 low_index = 0;
9870 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9871 }
9872 else
9873 error (_("Left-hand side must be array or record."));
9874
9875 num_specs = num_component_specs (exp, *pos - 3);
9876 max_indices = 4 * num_specs + 4;
8d749320 9877 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9878 indices[0] = indices[1] = low_index - 1;
9879 indices[2] = indices[3] = high_index + 1;
9880 num_indices = 4;
9881
9882 for (i = 0; i < n; i += 1)
9883 {
9884 switch (exp->elts[*pos].opcode)
9885 {
1fbf5ada
JB
9886 case OP_CHOICES:
9887 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9888 &num_indices, max_indices,
9889 low_index, high_index);
9890 break;
9891 case OP_POSITIONAL:
9892 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9893 &num_indices, max_indices,
9894 low_index, high_index);
1fbf5ada
JB
9895 break;
9896 case OP_OTHERS:
9897 if (i != n-1)
9898 error (_("Misplaced 'others' clause"));
9899 aggregate_assign_others (container, lhs, exp, pos, indices,
9900 num_indices, low_index, high_index);
9901 break;
9902 default:
9903 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9904 }
9905 }
9906
9907 return container;
9908}
9909
9910/* Assign into the component of LHS indexed by the OP_POSITIONAL
9911 construct at *POS, updating *POS past the construct, given that
9912 the positions are relative to lower bound LOW, where HIGH is the
9913 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9914 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9915 assign_aggregate. */
52ce6436
PH
9916static void
9917aggregate_assign_positional (struct value *container,
9918 struct value *lhs, struct expression *exp,
9919 int *pos, LONGEST *indices, int *num_indices,
9920 int max_indices, LONGEST low, LONGEST high)
9921{
9922 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9923
9924 if (ind - 1 == high)
e1d5a0d2 9925 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9926 if (ind <= high)
9927 {
9928 add_component_interval (ind, ind, indices, num_indices, max_indices);
9929 *pos += 3;
9930 assign_component (container, lhs, ind, exp, pos);
9931 }
9932 else
9933 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9934}
9935
9936/* Assign into the components of LHS indexed by the OP_CHOICES
9937 construct at *POS, updating *POS past the construct, given that
9938 the allowable indices are LOW..HIGH. Record the indices assigned
9939 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9940 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9941static void
9942aggregate_assign_from_choices (struct value *container,
9943 struct value *lhs, struct expression *exp,
9944 int *pos, LONGEST *indices, int *num_indices,
9945 int max_indices, LONGEST low, LONGEST high)
9946{
9947 int j;
9948 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9949 int choice_pos, expr_pc;
9950 int is_array = ada_is_direct_array_type (value_type (lhs));
9951
9952 choice_pos = *pos += 3;
9953
9954 for (j = 0; j < n_choices; j += 1)
9955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956 expr_pc = *pos;
9957 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9958
9959 for (j = 0; j < n_choices; j += 1)
9960 {
9961 LONGEST lower, upper;
9962 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9963
52ce6436
PH
9964 if (op == OP_DISCRETE_RANGE)
9965 {
9966 choice_pos += 1;
9967 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9968 EVAL_NORMAL));
9969 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9970 EVAL_NORMAL));
9971 }
9972 else if (is_array)
9973 {
9974 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9975 EVAL_NORMAL));
9976 upper = lower;
9977 }
9978 else
9979 {
9980 int ind;
0d5cff50 9981 const char *name;
5b4ee69b 9982
52ce6436
PH
9983 switch (op)
9984 {
9985 case OP_NAME:
9986 name = &exp->elts[choice_pos + 2].string;
9987 break;
9988 case OP_VAR_VALUE:
9989 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9990 break;
9991 default:
9992 error (_("Invalid record component association."));
9993 }
9994 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9995 ind = 0;
9996 if (! find_struct_field (name, value_type (lhs), 0,
9997 NULL, NULL, NULL, NULL, &ind))
9998 error (_("Unknown component name: %s."), name);
9999 lower = upper = ind;
10000 }
10001
10002 if (lower <= upper && (lower < low || upper > high))
10003 error (_("Index in component association out of bounds."));
10004
10005 add_component_interval (lower, upper, indices, num_indices,
10006 max_indices);
10007 while (lower <= upper)
10008 {
10009 int pos1;
5b4ee69b 10010
52ce6436
PH
10011 pos1 = expr_pc;
10012 assign_component (container, lhs, lower, exp, &pos1);
10013 lower += 1;
10014 }
10015 }
10016}
10017
10018/* Assign the value of the expression in the OP_OTHERS construct in
10019 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10020 have not been previously assigned. The index intervals already assigned
10021 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10022 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10023static void
10024aggregate_assign_others (struct value *container,
10025 struct value *lhs, struct expression *exp,
10026 int *pos, LONGEST *indices, int num_indices,
10027 LONGEST low, LONGEST high)
10028{
10029 int i;
5ce64950 10030 int expr_pc = *pos + 1;
52ce6436
PH
10031
10032 for (i = 0; i < num_indices - 2; i += 2)
10033 {
10034 LONGEST ind;
5b4ee69b 10035
52ce6436
PH
10036 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10037 {
5ce64950 10038 int localpos;
5b4ee69b 10039
5ce64950
MS
10040 localpos = expr_pc;
10041 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10042 }
10043 }
10044 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10045}
10046
10047/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10048 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10049 modifying *SIZE as needed. It is an error if *SIZE exceeds
10050 MAX_SIZE. The resulting intervals do not overlap. */
10051static void
10052add_component_interval (LONGEST low, LONGEST high,
10053 LONGEST* indices, int *size, int max_size)
10054{
10055 int i, j;
5b4ee69b 10056
52ce6436
PH
10057 for (i = 0; i < *size; i += 2) {
10058 if (high >= indices[i] && low <= indices[i + 1])
10059 {
10060 int kh;
5b4ee69b 10061
52ce6436
PH
10062 for (kh = i + 2; kh < *size; kh += 2)
10063 if (high < indices[kh])
10064 break;
10065 if (low < indices[i])
10066 indices[i] = low;
10067 indices[i + 1] = indices[kh - 1];
10068 if (high > indices[i + 1])
10069 indices[i + 1] = high;
10070 memcpy (indices + i + 2, indices + kh, *size - kh);
10071 *size -= kh - i - 2;
10072 return;
10073 }
10074 else if (high < indices[i])
10075 break;
10076 }
10077
10078 if (*size == max_size)
10079 error (_("Internal error: miscounted aggregate components."));
10080 *size += 2;
10081 for (j = *size-1; j >= i+2; j -= 1)
10082 indices[j] = indices[j - 2];
10083 indices[i] = low;
10084 indices[i + 1] = high;
10085}
10086
6e48bd2c
JB
10087/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10088 is different. */
10089
10090static struct value *
b7e22850 10091ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10092{
10093 if (type == ada_check_typedef (value_type (arg2)))
10094 return arg2;
10095
10096 if (ada_is_fixed_point_type (type))
95f39a5b 10097 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10098
10099 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10100 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10101
10102 return value_cast (type, arg2);
10103}
10104
284614f0
JB
10105/* Evaluating Ada expressions, and printing their result.
10106 ------------------------------------------------------
10107
21649b50
JB
10108 1. Introduction:
10109 ----------------
10110
284614f0
JB
10111 We usually evaluate an Ada expression in order to print its value.
10112 We also evaluate an expression in order to print its type, which
10113 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10114 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10115 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10116 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10117 similar.
10118
10119 Evaluating expressions is a little more complicated for Ada entities
10120 than it is for entities in languages such as C. The main reason for
10121 this is that Ada provides types whose definition might be dynamic.
10122 One example of such types is variant records. Or another example
10123 would be an array whose bounds can only be known at run time.
10124
10125 The following description is a general guide as to what should be
10126 done (and what should NOT be done) in order to evaluate an expression
10127 involving such types, and when. This does not cover how the semantic
10128 information is encoded by GNAT as this is covered separatly. For the
10129 document used as the reference for the GNAT encoding, see exp_dbug.ads
10130 in the GNAT sources.
10131
10132 Ideally, we should embed each part of this description next to its
10133 associated code. Unfortunately, the amount of code is so vast right
10134 now that it's hard to see whether the code handling a particular
10135 situation might be duplicated or not. One day, when the code is
10136 cleaned up, this guide might become redundant with the comments
10137 inserted in the code, and we might want to remove it.
10138
21649b50
JB
10139 2. ``Fixing'' an Entity, the Simple Case:
10140 -----------------------------------------
10141
284614f0
JB
10142 When evaluating Ada expressions, the tricky issue is that they may
10143 reference entities whose type contents and size are not statically
10144 known. Consider for instance a variant record:
10145
10146 type Rec (Empty : Boolean := True) is record
10147 case Empty is
10148 when True => null;
10149 when False => Value : Integer;
10150 end case;
10151 end record;
10152 Yes : Rec := (Empty => False, Value => 1);
10153 No : Rec := (empty => True);
10154
10155 The size and contents of that record depends on the value of the
10156 descriminant (Rec.Empty). At this point, neither the debugging
10157 information nor the associated type structure in GDB are able to
10158 express such dynamic types. So what the debugger does is to create
10159 "fixed" versions of the type that applies to the specific object.
10160 We also informally refer to this opperation as "fixing" an object,
10161 which means creating its associated fixed type.
10162
10163 Example: when printing the value of variable "Yes" above, its fixed
10164 type would look like this:
10165
10166 type Rec is record
10167 Empty : Boolean;
10168 Value : Integer;
10169 end record;
10170
10171 On the other hand, if we printed the value of "No", its fixed type
10172 would become:
10173
10174 type Rec is record
10175 Empty : Boolean;
10176 end record;
10177
10178 Things become a little more complicated when trying to fix an entity
10179 with a dynamic type that directly contains another dynamic type,
10180 such as an array of variant records, for instance. There are
10181 two possible cases: Arrays, and records.
10182
21649b50
JB
10183 3. ``Fixing'' Arrays:
10184 ---------------------
10185
10186 The type structure in GDB describes an array in terms of its bounds,
10187 and the type of its elements. By design, all elements in the array
10188 have the same type and we cannot represent an array of variant elements
10189 using the current type structure in GDB. When fixing an array,
10190 we cannot fix the array element, as we would potentially need one
10191 fixed type per element of the array. As a result, the best we can do
10192 when fixing an array is to produce an array whose bounds and size
10193 are correct (allowing us to read it from memory), but without having
10194 touched its element type. Fixing each element will be done later,
10195 when (if) necessary.
10196
10197 Arrays are a little simpler to handle than records, because the same
10198 amount of memory is allocated for each element of the array, even if
1b536f04 10199 the amount of space actually used by each element differs from element
21649b50 10200 to element. Consider for instance the following array of type Rec:
284614f0
JB
10201
10202 type Rec_Array is array (1 .. 2) of Rec;
10203
1b536f04
JB
10204 The actual amount of memory occupied by each element might be different
10205 from element to element, depending on the value of their discriminant.
21649b50 10206 But the amount of space reserved for each element in the array remains
1b536f04 10207 fixed regardless. So we simply need to compute that size using
21649b50
JB
10208 the debugging information available, from which we can then determine
10209 the array size (we multiply the number of elements of the array by
10210 the size of each element).
10211
10212 The simplest case is when we have an array of a constrained element
10213 type. For instance, consider the following type declarations:
10214
10215 type Bounded_String (Max_Size : Integer) is
10216 Length : Integer;
10217 Buffer : String (1 .. Max_Size);
10218 end record;
10219 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10220
10221 In this case, the compiler describes the array as an array of
10222 variable-size elements (identified by its XVS suffix) for which
10223 the size can be read in the parallel XVZ variable.
10224
10225 In the case of an array of an unconstrained element type, the compiler
10226 wraps the array element inside a private PAD type. This type should not
10227 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10228 that we also use the adjective "aligner" in our code to designate
10229 these wrapper types.
10230
1b536f04 10231 In some cases, the size allocated for each element is statically
21649b50
JB
10232 known. In that case, the PAD type already has the correct size,
10233 and the array element should remain unfixed.
10234
10235 But there are cases when this size is not statically known.
10236 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10237
10238 type Dynamic is array (1 .. Five) of Integer;
10239 type Wrapper (Has_Length : Boolean := False) is record
10240 Data : Dynamic;
10241 case Has_Length is
10242 when True => Length : Integer;
10243 when False => null;
10244 end case;
10245 end record;
10246 type Wrapper_Array is array (1 .. 2) of Wrapper;
10247
10248 Hello : Wrapper_Array := (others => (Has_Length => True,
10249 Data => (others => 17),
10250 Length => 1));
10251
10252
10253 The debugging info would describe variable Hello as being an
10254 array of a PAD type. The size of that PAD type is not statically
10255 known, but can be determined using a parallel XVZ variable.
10256 In that case, a copy of the PAD type with the correct size should
10257 be used for the fixed array.
10258
21649b50
JB
10259 3. ``Fixing'' record type objects:
10260 ----------------------------------
10261
10262 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10263 record types. In this case, in order to compute the associated
10264 fixed type, we need to determine the size and offset of each of
10265 its components. This, in turn, requires us to compute the fixed
10266 type of each of these components.
10267
10268 Consider for instance the example:
10269
10270 type Bounded_String (Max_Size : Natural) is record
10271 Str : String (1 .. Max_Size);
10272 Length : Natural;
10273 end record;
10274 My_String : Bounded_String (Max_Size => 10);
10275
10276 In that case, the position of field "Length" depends on the size
10277 of field Str, which itself depends on the value of the Max_Size
21649b50 10278 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10279 we need to fix the type of field Str. Therefore, fixing a variant
10280 record requires us to fix each of its components.
10281
10282 However, if a component does not have a dynamic size, the component
10283 should not be fixed. In particular, fields that use a PAD type
10284 should not fixed. Here is an example where this might happen
10285 (assuming type Rec above):
10286
10287 type Container (Big : Boolean) is record
10288 First : Rec;
10289 After : Integer;
10290 case Big is
10291 when True => Another : Integer;
10292 when False => null;
10293 end case;
10294 end record;
10295 My_Container : Container := (Big => False,
10296 First => (Empty => True),
10297 After => 42);
10298
10299 In that example, the compiler creates a PAD type for component First,
10300 whose size is constant, and then positions the component After just
10301 right after it. The offset of component After is therefore constant
10302 in this case.
10303
10304 The debugger computes the position of each field based on an algorithm
10305 that uses, among other things, the actual position and size of the field
21649b50
JB
10306 preceding it. Let's now imagine that the user is trying to print
10307 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10308 end up computing the offset of field After based on the size of the
10309 fixed version of field First. And since in our example First has
10310 only one actual field, the size of the fixed type is actually smaller
10311 than the amount of space allocated to that field, and thus we would
10312 compute the wrong offset of field After.
10313
21649b50
JB
10314 To make things more complicated, we need to watch out for dynamic
10315 components of variant records (identified by the ___XVL suffix in
10316 the component name). Even if the target type is a PAD type, the size
10317 of that type might not be statically known. So the PAD type needs
10318 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10319 we might end up with the wrong size for our component. This can be
10320 observed with the following type declarations:
284614f0
JB
10321
10322 type Octal is new Integer range 0 .. 7;
10323 type Octal_Array is array (Positive range <>) of Octal;
10324 pragma Pack (Octal_Array);
10325
10326 type Octal_Buffer (Size : Positive) is record
10327 Buffer : Octal_Array (1 .. Size);
10328 Length : Integer;
10329 end record;
10330
10331 In that case, Buffer is a PAD type whose size is unset and needs
10332 to be computed by fixing the unwrapped type.
10333
21649b50
JB
10334 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10335 ----------------------------------------------------------
10336
10337 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10338 thus far, be actually fixed?
10339
10340 The answer is: Only when referencing that element. For instance
10341 when selecting one component of a record, this specific component
10342 should be fixed at that point in time. Or when printing the value
10343 of a record, each component should be fixed before its value gets
10344 printed. Similarly for arrays, the element of the array should be
10345 fixed when printing each element of the array, or when extracting
10346 one element out of that array. On the other hand, fixing should
10347 not be performed on the elements when taking a slice of an array!
10348
31432a67 10349 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10350 size of each field is that we end up also miscomputing the size
10351 of the containing type. This can have adverse results when computing
10352 the value of an entity. GDB fetches the value of an entity based
10353 on the size of its type, and thus a wrong size causes GDB to fetch
10354 the wrong amount of memory. In the case where the computed size is
10355 too small, GDB fetches too little data to print the value of our
31432a67 10356 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10357 past the buffer containing the data =:-o. */
10358
ced9779b
JB
10359/* Evaluate a subexpression of EXP, at index *POS, and return a value
10360 for that subexpression cast to TO_TYPE. Advance *POS over the
10361 subexpression. */
10362
10363static value *
10364ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10365 enum noside noside, struct type *to_type)
10366{
10367 int pc = *pos;
10368
10369 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10370 || exp->elts[pc].opcode == OP_VAR_VALUE)
10371 {
10372 (*pos) += 4;
10373
10374 value *val;
10375 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10376 {
10377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10378 return value_zero (to_type, not_lval);
10379
10380 val = evaluate_var_msym_value (noside,
10381 exp->elts[pc + 1].objfile,
10382 exp->elts[pc + 2].msymbol);
10383 }
10384 else
10385 val = evaluate_var_value (noside,
10386 exp->elts[pc + 1].block,
10387 exp->elts[pc + 2].symbol);
10388
10389 if (noside == EVAL_SKIP)
10390 return eval_skip_value (exp);
10391
10392 val = ada_value_cast (to_type, val);
10393
10394 /* Follow the Ada language semantics that do not allow taking
10395 an address of the result of a cast (view conversion in Ada). */
10396 if (VALUE_LVAL (val) == lval_memory)
10397 {
10398 if (value_lazy (val))
10399 value_fetch_lazy (val);
10400 VALUE_LVAL (val) = not_lval;
10401 }
10402 return val;
10403 }
10404
10405 value *val = evaluate_subexp (to_type, exp, pos, noside);
10406 if (noside == EVAL_SKIP)
10407 return eval_skip_value (exp);
10408 return ada_value_cast (to_type, val);
10409}
10410
284614f0
JB
10411/* Implement the evaluate_exp routine in the exp_descriptor structure
10412 for the Ada language. */
10413
52ce6436 10414static struct value *
ebf56fd3 10415ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10416 int *pos, enum noside noside)
14f9c5c9
AS
10417{
10418 enum exp_opcode op;
b5385fc0 10419 int tem;
14f9c5c9 10420 int pc;
5ec18f2b 10421 int preeval_pos;
14f9c5c9
AS
10422 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10423 struct type *type;
52ce6436 10424 int nargs, oplen;
d2e4a39e 10425 struct value **argvec;
14f9c5c9 10426
d2e4a39e
AS
10427 pc = *pos;
10428 *pos += 1;
14f9c5c9
AS
10429 op = exp->elts[pc].opcode;
10430
d2e4a39e 10431 switch (op)
14f9c5c9
AS
10432 {
10433 default:
10434 *pos -= 1;
6e48bd2c 10435 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10436
10437 if (noside == EVAL_NORMAL)
10438 arg1 = unwrap_value (arg1);
6e48bd2c 10439
edd079d9 10440 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10441 then we need to perform the conversion manually, because
10442 evaluate_subexp_standard doesn't do it. This conversion is
10443 necessary in Ada because the different kinds of float/fixed
10444 types in Ada have different representations.
10445
10446 Similarly, we need to perform the conversion from OP_LONG
10447 ourselves. */
edd079d9 10448 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10449 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10450
10451 return arg1;
4c4b4cd2
PH
10452
10453 case OP_STRING:
10454 {
76a01679 10455 struct value *result;
5b4ee69b 10456
76a01679
JB
10457 *pos -= 1;
10458 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10459 /* The result type will have code OP_STRING, bashed there from
10460 OP_ARRAY. Bash it back. */
df407dfe
AC
10461 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10462 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10463 return result;
4c4b4cd2 10464 }
14f9c5c9
AS
10465
10466 case UNOP_CAST:
10467 (*pos) += 2;
10468 type = exp->elts[pc + 1].type;
ced9779b 10469 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10470
4c4b4cd2
PH
10471 case UNOP_QUAL:
10472 (*pos) += 2;
10473 type = exp->elts[pc + 1].type;
10474 return ada_evaluate_subexp (type, exp, pos, noside);
10475
14f9c5c9
AS
10476 case BINOP_ASSIGN:
10477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10478 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10479 {
10480 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10481 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10482 return arg1;
10483 return ada_value_assign (arg1, arg1);
10484 }
003f3813
JB
10485 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10486 except if the lhs of our assignment is a convenience variable.
10487 In the case of assigning to a convenience variable, the lhs
10488 should be exactly the result of the evaluation of the rhs. */
10489 type = value_type (arg1);
10490 if (VALUE_LVAL (arg1) == lval_internalvar)
10491 type = NULL;
10492 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10493 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10494 return arg1;
f411722c
TT
10495 if (VALUE_LVAL (arg1) == lval_internalvar)
10496 {
10497 /* Nothing. */
10498 }
10499 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10500 arg2 = cast_to_fixed (value_type (arg1), arg2);
10501 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10502 error
323e0a4a 10503 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10504 else
df407dfe 10505 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10506 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10507
10508 case BINOP_ADD:
10509 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10510 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10511 if (noside == EVAL_SKIP)
4c4b4cd2 10512 goto nosideret;
2ac8a782
JB
10513 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg1),
10516 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10517 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10518 return (value_from_longest
10519 (value_type (arg2),
10520 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10521 if ((ada_is_fixed_point_type (value_type (arg1))
10522 || ada_is_fixed_point_type (value_type (arg2)))
10523 && value_type (arg1) != value_type (arg2))
323e0a4a 10524 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10525 /* Do the addition, and cast the result to the type of the first
10526 argument. We cannot cast the result to a reference type, so if
10527 ARG1 is a reference type, find its underlying type. */
10528 type = value_type (arg1);
10529 while (TYPE_CODE (type) == TYPE_CODE_REF)
10530 type = TYPE_TARGET_TYPE (type);
f44316fa 10531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10532 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10533
10534 case BINOP_SUB:
10535 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10536 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10537 if (noside == EVAL_SKIP)
4c4b4cd2 10538 goto nosideret;
2ac8a782
JB
10539 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10540 return (value_from_longest
10541 (value_type (arg1),
10542 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10543 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10544 return (value_from_longest
10545 (value_type (arg2),
10546 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10547 if ((ada_is_fixed_point_type (value_type (arg1))
10548 || ada_is_fixed_point_type (value_type (arg2)))
10549 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10550 error (_("Operands of fixed-point subtraction "
10551 "must have the same type"));
b7789565
JB
10552 /* Do the substraction, and cast the result to the type of the first
10553 argument. We cannot cast the result to a reference type, so if
10554 ARG1 is a reference type, find its underlying type. */
10555 type = value_type (arg1);
10556 while (TYPE_CODE (type) == TYPE_CODE_REF)
10557 type = TYPE_TARGET_TYPE (type);
f44316fa 10558 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10559 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10560
10561 case BINOP_MUL:
10562 case BINOP_DIV:
e1578042
JB
10563 case BINOP_REM:
10564 case BINOP_MOD:
14f9c5c9
AS
10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10567 if (noside == EVAL_SKIP)
4c4b4cd2 10568 goto nosideret;
e1578042 10569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10570 {
10571 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10572 return value_zero (value_type (arg1), not_lval);
10573 }
14f9c5c9 10574 else
4c4b4cd2 10575 {
a53b7a21 10576 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10577 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10578 arg1 = cast_from_fixed (type, arg1);
df407dfe 10579 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10580 arg2 = cast_from_fixed (type, arg2);
f44316fa 10581 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10582 return ada_value_binop (arg1, arg2, op);
10583 }
10584
4c4b4cd2
PH
10585 case BINOP_EQUAL:
10586 case BINOP_NOTEQUAL:
14f9c5c9 10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10588 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10589 if (noside == EVAL_SKIP)
76a01679 10590 goto nosideret;
4c4b4cd2 10591 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10592 tem = 0;
4c4b4cd2 10593 else
f44316fa
UW
10594 {
10595 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10596 tem = ada_value_equal (arg1, arg2);
10597 }
4c4b4cd2 10598 if (op == BINOP_NOTEQUAL)
76a01679 10599 tem = !tem;
fbb06eb1
UW
10600 type = language_bool_type (exp->language_defn, exp->gdbarch);
10601 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10602
10603 case UNOP_NEG:
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605 if (noside == EVAL_SKIP)
10606 goto nosideret;
df407dfe
AC
10607 else if (ada_is_fixed_point_type (value_type (arg1)))
10608 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10609 else
f44316fa
UW
10610 {
10611 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10612 return value_neg (arg1);
10613 }
4c4b4cd2 10614
2330c6c6
JB
10615 case BINOP_LOGICAL_AND:
10616 case BINOP_LOGICAL_OR:
10617 case UNOP_LOGICAL_NOT:
000d5124
JB
10618 {
10619 struct value *val;
10620
10621 *pos -= 1;
10622 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10623 type = language_bool_type (exp->language_defn, exp->gdbarch);
10624 return value_cast (type, val);
000d5124 10625 }
2330c6c6
JB
10626
10627 case BINOP_BITWISE_AND:
10628 case BINOP_BITWISE_IOR:
10629 case BINOP_BITWISE_XOR:
000d5124
JB
10630 {
10631 struct value *val;
10632
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10634 *pos = pc;
10635 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636
10637 return value_cast (value_type (arg1), val);
10638 }
2330c6c6 10639
14f9c5c9
AS
10640 case OP_VAR_VALUE:
10641 *pos -= 1;
6799def4 10642
14f9c5c9 10643 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10644 {
10645 *pos += 4;
10646 goto nosideret;
10647 }
da5c522f
JB
10648
10649 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10650 /* Only encountered when an unresolved symbol occurs in a
10651 context other than a function call, in which case, it is
52ce6436 10652 invalid. */
323e0a4a 10653 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10654 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10655
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10657 {
0c1f74cf 10658 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10659 /* Check to see if this is a tagged type. We also need to handle
10660 the case where the type is a reference to a tagged type, but
10661 we have to be careful to exclude pointers to tagged types.
10662 The latter should be shown as usual (as a pointer), whereas
10663 a reference should mostly be transparent to the user. */
10664 if (ada_is_tagged_type (type, 0)
023db19c 10665 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10666 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10667 {
10668 /* Tagged types are a little special in the fact that the real
10669 type is dynamic and can only be determined by inspecting the
10670 object's tag. This means that we need to get the object's
10671 value first (EVAL_NORMAL) and then extract the actual object
10672 type from its tag.
10673
10674 Note that we cannot skip the final step where we extract
10675 the object type from its tag, because the EVAL_NORMAL phase
10676 results in dynamic components being resolved into fixed ones.
10677 This can cause problems when trying to print the type
10678 description of tagged types whose parent has a dynamic size:
10679 We use the type name of the "_parent" component in order
10680 to print the name of the ancestor type in the type description.
10681 If that component had a dynamic size, the resolution into
10682 a fixed type would result in the loss of that type name,
10683 thus preventing us from printing the name of the ancestor
10684 type in the type description. */
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10686
10687 if (TYPE_CODE (type) != TYPE_CODE_REF)
10688 {
10689 struct type *actual_type;
10690
10691 actual_type = type_from_tag (ada_value_tag (arg1));
10692 if (actual_type == NULL)
10693 /* If, for some reason, we were unable to determine
10694 the actual type from the tag, then use the static
10695 approximation that we just computed as a fallback.
10696 This can happen if the debugging information is
10697 incomplete, for instance. */
10698 actual_type = type;
10699 return value_zero (actual_type, not_lval);
10700 }
10701 else
10702 {
10703 /* In the case of a ref, ada_coerce_ref takes care
10704 of determining the actual type. But the evaluation
10705 should return a ref as it should be valid to ask
10706 for its address; so rebuild a ref after coerce. */
10707 arg1 = ada_coerce_ref (arg1);
a65cfae5 10708 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10709 }
10710 }
0c1f74cf 10711
84754697
JB
10712 /* Records and unions for which GNAT encodings have been
10713 generated need to be statically fixed as well.
10714 Otherwise, non-static fixing produces a type where
10715 all dynamic properties are removed, which prevents "ptype"
10716 from being able to completely describe the type.
10717 For instance, a case statement in a variant record would be
10718 replaced by the relevant components based on the actual
10719 value of the discriminants. */
10720 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10721 && dynamic_template_type (type) != NULL)
10722 || (TYPE_CODE (type) == TYPE_CODE_UNION
10723 && ada_find_parallel_type (type, "___XVU") != NULL))
10724 {
10725 *pos += 4;
10726 return value_zero (to_static_fixed_type (type), not_lval);
10727 }
4c4b4cd2 10728 }
da5c522f
JB
10729
10730 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10731 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10732
10733 case OP_FUNCALL:
10734 (*pos) += 2;
10735
10736 /* Allocate arg vector, including space for the function to be
10737 called in argvec[0] and a terminating NULL. */
10738 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10739 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10740
10741 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10742 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10743 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10744 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10745 else
10746 {
10747 for (tem = 0; tem <= nargs; tem += 1)
10748 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749 argvec[tem] = 0;
10750
10751 if (noside == EVAL_SKIP)
10752 goto nosideret;
10753 }
10754
ad82864c
JB
10755 if (ada_is_constrained_packed_array_type
10756 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10757 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10758 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10759 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10760 /* This is a packed array that has already been fixed, and
10761 therefore already coerced to a simple array. Nothing further
10762 to do. */
10763 ;
e6c2c623
PMR
10764 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10765 {
10766 /* Make sure we dereference references so that all the code below
10767 feels like it's really handling the referenced value. Wrapping
10768 types (for alignment) may be there, so make sure we strip them as
10769 well. */
10770 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10771 }
10772 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10773 && VALUE_LVAL (argvec[0]) == lval_memory)
10774 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10775
df407dfe 10776 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10777
10778 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10779 them. So, if this is an array typedef (encoding use for array
10780 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10781 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10782 type = ada_typedef_target_type (type);
10783
4c4b4cd2
PH
10784 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10785 {
61ee279c 10786 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10787 {
10788 case TYPE_CODE_FUNC:
61ee279c 10789 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10790 break;
10791 case TYPE_CODE_ARRAY:
10792 break;
10793 case TYPE_CODE_STRUCT:
10794 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10795 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10796 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10797 break;
10798 default:
323e0a4a 10799 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10800 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10801 break;
10802 }
10803 }
10804
10805 switch (TYPE_CODE (type))
10806 {
10807 case TYPE_CODE_FUNC:
10808 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10809 {
7022349d
PA
10810 if (TYPE_TARGET_TYPE (type) == NULL)
10811 error_call_unknown_return_type (NULL);
10812 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10813 }
e71585ff
PA
10814 return call_function_by_hand (argvec[0], NULL,
10815 gdb::make_array_view (argvec + 1,
10816 nargs));
c8ea1972
PH
10817 case TYPE_CODE_INTERNAL_FUNCTION:
10818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10819 /* We don't know anything about what the internal
10820 function might return, but we have to return
10821 something. */
10822 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10823 not_lval);
10824 else
10825 return call_internal_function (exp->gdbarch, exp->language_defn,
10826 argvec[0], nargs, argvec + 1);
10827
4c4b4cd2
PH
10828 case TYPE_CODE_STRUCT:
10829 {
10830 int arity;
10831
4c4b4cd2
PH
10832 arity = ada_array_arity (type);
10833 type = ada_array_element_type (type, nargs);
10834 if (type == NULL)
323e0a4a 10835 error (_("cannot subscript or call a record"));
4c4b4cd2 10836 if (arity != nargs)
323e0a4a 10837 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10839 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10840 return
10841 unwrap_value (ada_value_subscript
10842 (argvec[0], nargs, argvec + 1));
10843 }
10844 case TYPE_CODE_ARRAY:
10845 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10846 {
10847 type = ada_array_element_type (type, nargs);
10848 if (type == NULL)
323e0a4a 10849 error (_("element type of array unknown"));
4c4b4cd2 10850 else
0a07e705 10851 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10852 }
10853 return
10854 unwrap_value (ada_value_subscript
10855 (ada_coerce_to_simple_array (argvec[0]),
10856 nargs, argvec + 1));
10857 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10859 {
deede10c 10860 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10861 type = ada_array_element_type (type, nargs);
10862 if (type == NULL)
323e0a4a 10863 error (_("element type of array unknown"));
4c4b4cd2 10864 else
0a07e705 10865 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10866 }
10867 return
deede10c
JB
10868 unwrap_value (ada_value_ptr_subscript (argvec[0],
10869 nargs, argvec + 1));
4c4b4cd2
PH
10870
10871 default:
e1d5a0d2
PH
10872 error (_("Attempt to index or call something other than an "
10873 "array or function"));
4c4b4cd2
PH
10874 }
10875
10876 case TERNOP_SLICE:
10877 {
10878 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 struct value *low_bound_val =
10880 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10881 struct value *high_bound_val =
10882 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883 LONGEST low_bound;
10884 LONGEST high_bound;
5b4ee69b 10885
994b9211
AC
10886 low_bound_val = coerce_ref (low_bound_val);
10887 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10888 low_bound = value_as_long (low_bound_val);
10889 high_bound = value_as_long (high_bound_val);
963a6417 10890
4c4b4cd2
PH
10891 if (noside == EVAL_SKIP)
10892 goto nosideret;
10893
4c4b4cd2
PH
10894 /* If this is a reference to an aligner type, then remove all
10895 the aligners. */
df407dfe
AC
10896 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10897 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10898 TYPE_TARGET_TYPE (value_type (array)) =
10899 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10900
ad82864c 10901 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10902 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10903
10904 /* If this is a reference to an array or an array lvalue,
10905 convert to a pointer. */
df407dfe
AC
10906 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10907 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10908 && VALUE_LVAL (array) == lval_memory))
10909 array = value_addr (array);
10910
1265e4aa 10911 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10912 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10913 (value_type (array))))
bff8c71f
TT
10914 return empty_array (ada_type_of_array (array, 0), low_bound,
10915 high_bound);
4c4b4cd2
PH
10916
10917 array = ada_coerce_to_simple_array_ptr (array);
10918
714e53ab
PH
10919 /* If we have more than one level of pointer indirection,
10920 dereference the value until we get only one level. */
df407dfe
AC
10921 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10922 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10923 == TYPE_CODE_PTR))
10924 array = value_ind (array);
10925
10926 /* Make sure we really do have an array type before going further,
10927 to avoid a SEGV when trying to get the index type or the target
10928 type later down the road if the debug info generated by
10929 the compiler is incorrect or incomplete. */
df407dfe 10930 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10931 error (_("cannot take slice of non-array"));
714e53ab 10932
828292f2
JB
10933 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10934 == TYPE_CODE_PTR)
4c4b4cd2 10935 {
828292f2
JB
10936 struct type *type0 = ada_check_typedef (value_type (array));
10937
0b5d8877 10938 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10939 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10940 else
10941 {
10942 struct type *arr_type0 =
828292f2 10943 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10944
f5938064
JG
10945 return ada_value_slice_from_ptr (array, arr_type0,
10946 longest_to_int (low_bound),
10947 longest_to_int (high_bound));
4c4b4cd2
PH
10948 }
10949 }
10950 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10951 return array;
10952 else if (high_bound < low_bound)
bff8c71f 10953 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10954 else
529cad9c
PH
10955 return ada_value_slice (array, longest_to_int (low_bound),
10956 longest_to_int (high_bound));
4c4b4cd2 10957 }
14f9c5c9 10958
4c4b4cd2
PH
10959 case UNOP_IN_RANGE:
10960 (*pos) += 2;
10961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10962 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10963
14f9c5c9 10964 if (noside == EVAL_SKIP)
4c4b4cd2 10965 goto nosideret;
14f9c5c9 10966
4c4b4cd2
PH
10967 switch (TYPE_CODE (type))
10968 {
10969 default:
e1d5a0d2
PH
10970 lim_warning (_("Membership test incompletely implemented; "
10971 "always returns true"));
fbb06eb1
UW
10972 type = language_bool_type (exp->language_defn, exp->gdbarch);
10973 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10974
10975 case TYPE_CODE_RANGE:
030b4912
UW
10976 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10977 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10978 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10979 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10980 type = language_bool_type (exp->language_defn, exp->gdbarch);
10981 return
10982 value_from_longest (type,
4c4b4cd2
PH
10983 (value_less (arg1, arg3)
10984 || value_equal (arg1, arg3))
10985 && (value_less (arg2, arg1)
10986 || value_equal (arg2, arg1)));
10987 }
10988
10989 case BINOP_IN_BOUNDS:
14f9c5c9 10990 (*pos) += 2;
4c4b4cd2
PH
10991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10992 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10993
4c4b4cd2
PH
10994 if (noside == EVAL_SKIP)
10995 goto nosideret;
14f9c5c9 10996
4c4b4cd2 10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10998 {
10999 type = language_bool_type (exp->language_defn, exp->gdbarch);
11000 return value_zero (type, not_lval);
11001 }
14f9c5c9 11002
4c4b4cd2 11003 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11004
1eea4ebd
UW
11005 type = ada_index_type (value_type (arg2), tem, "range");
11006 if (!type)
11007 type = value_type (arg1);
14f9c5c9 11008
1eea4ebd
UW
11009 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11010 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11011
f44316fa
UW
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11014 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11015 return
fbb06eb1 11016 value_from_longest (type,
4c4b4cd2
PH
11017 (value_less (arg1, arg3)
11018 || value_equal (arg1, arg3))
11019 && (value_less (arg2, arg1)
11020 || value_equal (arg2, arg1)));
11021
11022 case TERNOP_IN_RANGE:
11023 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11025 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026
11027 if (noside == EVAL_SKIP)
11028 goto nosideret;
11029
f44316fa
UW
11030 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11031 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11032 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11033 return
fbb06eb1 11034 value_from_longest (type,
4c4b4cd2
PH
11035 (value_less (arg1, arg3)
11036 || value_equal (arg1, arg3))
11037 && (value_less (arg2, arg1)
11038 || value_equal (arg2, arg1)));
11039
11040 case OP_ATR_FIRST:
11041 case OP_ATR_LAST:
11042 case OP_ATR_LENGTH:
11043 {
76a01679 11044 struct type *type_arg;
5b4ee69b 11045
76a01679
JB
11046 if (exp->elts[*pos].opcode == OP_TYPE)
11047 {
11048 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11049 arg1 = NULL;
5bc23cb3 11050 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11051 }
11052 else
11053 {
11054 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 type_arg = NULL;
11056 }
11057
11058 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11059 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11060 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11061 *pos += 4;
11062
11063 if (noside == EVAL_SKIP)
11064 goto nosideret;
680e1bee
TT
11065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11066 {
11067 if (type_arg == NULL)
11068 type_arg = value_type (arg1);
76a01679 11069
680e1bee
TT
11070 if (ada_is_constrained_packed_array_type (type_arg))
11071 type_arg = decode_constrained_packed_array_type (type_arg);
11072
11073 if (!discrete_type_p (type_arg))
11074 {
11075 switch (op)
11076 {
11077 default: /* Should never happen. */
11078 error (_("unexpected attribute encountered"));
11079 case OP_ATR_FIRST:
11080 case OP_ATR_LAST:
11081 type_arg = ada_index_type (type_arg, tem,
11082 ada_attribute_name (op));
11083 break;
11084 case OP_ATR_LENGTH:
11085 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11086 break;
11087 }
11088 }
11089
11090 return value_zero (type_arg, not_lval);
11091 }
11092 else if (type_arg == NULL)
76a01679
JB
11093 {
11094 arg1 = ada_coerce_ref (arg1);
11095
ad82864c 11096 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11097 arg1 = ada_coerce_to_simple_array (arg1);
11098
aa4fb036 11099 if (op == OP_ATR_LENGTH)
1eea4ebd 11100 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11101 else
11102 {
11103 type = ada_index_type (value_type (arg1), tem,
11104 ada_attribute_name (op));
11105 if (type == NULL)
11106 type = builtin_type (exp->gdbarch)->builtin_int;
11107 }
76a01679 11108
76a01679
JB
11109 switch (op)
11110 {
11111 default: /* Should never happen. */
323e0a4a 11112 error (_("unexpected attribute encountered"));
76a01679 11113 case OP_ATR_FIRST:
1eea4ebd
UW
11114 return value_from_longest
11115 (type, ada_array_bound (arg1, tem, 0));
76a01679 11116 case OP_ATR_LAST:
1eea4ebd
UW
11117 return value_from_longest
11118 (type, ada_array_bound (arg1, tem, 1));
76a01679 11119 case OP_ATR_LENGTH:
1eea4ebd
UW
11120 return value_from_longest
11121 (type, ada_array_length (arg1, tem));
76a01679
JB
11122 }
11123 }
11124 else if (discrete_type_p (type_arg))
11125 {
11126 struct type *range_type;
0d5cff50 11127 const char *name = ada_type_name (type_arg);
5b4ee69b 11128
76a01679
JB
11129 range_type = NULL;
11130 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11131 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11132 if (range_type == NULL)
11133 range_type = type_arg;
11134 switch (op)
11135 {
11136 default:
323e0a4a 11137 error (_("unexpected attribute encountered"));
76a01679 11138 case OP_ATR_FIRST:
690cc4eb 11139 return value_from_longest
43bbcdc2 11140 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11141 case OP_ATR_LAST:
690cc4eb 11142 return value_from_longest
43bbcdc2 11143 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11144 case OP_ATR_LENGTH:
323e0a4a 11145 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11146 }
11147 }
11148 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11149 error (_("unimplemented type attribute"));
76a01679
JB
11150 else
11151 {
11152 LONGEST low, high;
11153
ad82864c
JB
11154 if (ada_is_constrained_packed_array_type (type_arg))
11155 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11156
aa4fb036 11157 if (op == OP_ATR_LENGTH)
1eea4ebd 11158 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11159 else
11160 {
11161 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11162 if (type == NULL)
11163 type = builtin_type (exp->gdbarch)->builtin_int;
11164 }
1eea4ebd 11165
76a01679
JB
11166 switch (op)
11167 {
11168 default:
323e0a4a 11169 error (_("unexpected attribute encountered"));
76a01679 11170 case OP_ATR_FIRST:
1eea4ebd 11171 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11172 return value_from_longest (type, low);
11173 case OP_ATR_LAST:
1eea4ebd 11174 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11175 return value_from_longest (type, high);
11176 case OP_ATR_LENGTH:
1eea4ebd
UW
11177 low = ada_array_bound_from_type (type_arg, tem, 0);
11178 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11179 return value_from_longest (type, high - low + 1);
11180 }
11181 }
14f9c5c9
AS
11182 }
11183
4c4b4cd2
PH
11184 case OP_ATR_TAG:
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 if (noside == EVAL_SKIP)
76a01679 11187 goto nosideret;
4c4b4cd2
PH
11188
11189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11190 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11191
11192 return ada_value_tag (arg1);
11193
11194 case OP_ATR_MIN:
11195 case OP_ATR_MAX:
11196 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 if (noside == EVAL_SKIP)
76a01679 11200 goto nosideret;
d2e4a39e 11201 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11202 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11203 else
f44316fa
UW
11204 {
11205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11206 return value_binop (arg1, arg2,
11207 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11208 }
14f9c5c9 11209
4c4b4cd2
PH
11210 case OP_ATR_MODULUS:
11211 {
31dedfee 11212 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11213
5b4ee69b 11214 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11215 if (noside == EVAL_SKIP)
11216 goto nosideret;
4c4b4cd2 11217
76a01679 11218 if (!ada_is_modular_type (type_arg))
323e0a4a 11219 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11220
76a01679
JB
11221 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11222 ada_modulus (type_arg));
4c4b4cd2
PH
11223 }
11224
11225
11226 case OP_ATR_POS:
11227 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
76a01679 11230 goto nosideret;
3cb382c9
UW
11231 type = builtin_type (exp->gdbarch)->builtin_int;
11232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11233 return value_zero (type, not_lval);
14f9c5c9 11234 else
3cb382c9 11235 return value_pos_atr (type, arg1);
14f9c5c9 11236
4c4b4cd2
PH
11237 case OP_ATR_SIZE:
11238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11239 type = value_type (arg1);
11240
11241 /* If the argument is a reference, then dereference its type, since
11242 the user is really asking for the size of the actual object,
11243 not the size of the pointer. */
11244 if (TYPE_CODE (type) == TYPE_CODE_REF)
11245 type = TYPE_TARGET_TYPE (type);
11246
4c4b4cd2 11247 if (noside == EVAL_SKIP)
76a01679 11248 goto nosideret;
4c4b4cd2 11249 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11250 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11251 else
22601c15 11252 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11253 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11254
11255 case OP_ATR_VAL:
11256 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11258 type = exp->elts[pc + 2].type;
14f9c5c9 11259 if (noside == EVAL_SKIP)
76a01679 11260 goto nosideret;
4c4b4cd2 11261 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11262 return value_zero (type, not_lval);
4c4b4cd2 11263 else
76a01679 11264 return value_val_atr (type, arg1);
4c4b4cd2
PH
11265
11266 case BINOP_EXP:
11267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11268 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11269 if (noside == EVAL_SKIP)
11270 goto nosideret;
11271 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11272 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11273 else
f44316fa
UW
11274 {
11275 /* For integer exponentiation operations,
11276 only promote the first argument. */
11277 if (is_integral_type (value_type (arg2)))
11278 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11279 else
11280 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11281
11282 return value_binop (arg1, arg2, op);
11283 }
4c4b4cd2
PH
11284
11285 case UNOP_PLUS:
11286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11287 if (noside == EVAL_SKIP)
11288 goto nosideret;
11289 else
11290 return arg1;
11291
11292 case UNOP_ABS:
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11294 if (noside == EVAL_SKIP)
11295 goto nosideret;
f44316fa 11296 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11297 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11298 return value_neg (arg1);
14f9c5c9 11299 else
4c4b4cd2 11300 return arg1;
14f9c5c9
AS
11301
11302 case UNOP_IND:
5ec18f2b 11303 preeval_pos = *pos;
6b0d7253 11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11305 if (noside == EVAL_SKIP)
4c4b4cd2 11306 goto nosideret;
df407dfe 11307 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11309 {
11310 if (ada_is_array_descriptor_type (type))
11311 /* GDB allows dereferencing GNAT array descriptors. */
11312 {
11313 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11314
4c4b4cd2 11315 if (arrType == NULL)
323e0a4a 11316 error (_("Attempt to dereference null array pointer."));
00a4c844 11317 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11318 }
11319 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11320 || TYPE_CODE (type) == TYPE_CODE_REF
11321 /* In C you can dereference an array to get the 1st elt. */
11322 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11323 {
5ec18f2b
JG
11324 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11325 only be determined by inspecting the object's tag.
11326 This means that we need to evaluate completely the
11327 expression in order to get its type. */
11328
023db19c
JB
11329 if ((TYPE_CODE (type) == TYPE_CODE_REF
11330 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11331 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11332 {
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11334 EVAL_NORMAL);
11335 type = value_type (ada_value_ind (arg1));
11336 }
11337 else
11338 {
11339 type = to_static_fixed_type
11340 (ada_aligned_type
11341 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11342 }
c1b5a1a6 11343 ada_ensure_varsize_limit (type);
714e53ab
PH
11344 return value_zero (type, lval_memory);
11345 }
4c4b4cd2 11346 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11347 {
11348 /* GDB allows dereferencing an int. */
11349 if (expect_type == NULL)
11350 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11351 lval_memory);
11352 else
11353 {
11354 expect_type =
11355 to_static_fixed_type (ada_aligned_type (expect_type));
11356 return value_zero (expect_type, lval_memory);
11357 }
11358 }
4c4b4cd2 11359 else
323e0a4a 11360 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11361 }
0963b4bd 11362 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11363 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11364
96967637
JB
11365 if (TYPE_CODE (type) == TYPE_CODE_INT)
11366 /* GDB allows dereferencing an int. If we were given
11367 the expect_type, then use that as the target type.
11368 Otherwise, assume that the target type is an int. */
11369 {
11370 if (expect_type != NULL)
11371 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11372 arg1));
11373 else
11374 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11375 (CORE_ADDR) value_as_address (arg1));
11376 }
6b0d7253 11377
4c4b4cd2
PH
11378 if (ada_is_array_descriptor_type (type))
11379 /* GDB allows dereferencing GNAT array descriptors. */
11380 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11381 else
4c4b4cd2 11382 return ada_value_ind (arg1);
14f9c5c9
AS
11383
11384 case STRUCTOP_STRUCT:
11385 tem = longest_to_int (exp->elts[pc + 1].longconst);
11386 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11387 preeval_pos = *pos;
14f9c5c9
AS
11388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11389 if (noside == EVAL_SKIP)
4c4b4cd2 11390 goto nosideret;
14f9c5c9 11391 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11392 {
df407dfe 11393 struct type *type1 = value_type (arg1);
5b4ee69b 11394
76a01679
JB
11395 if (ada_is_tagged_type (type1, 1))
11396 {
11397 type = ada_lookup_struct_elt_type (type1,
11398 &exp->elts[pc + 2].string,
988f6b3d 11399 1, 1);
5ec18f2b
JG
11400
11401 /* If the field is not found, check if it exists in the
11402 extension of this object's type. This means that we
11403 need to evaluate completely the expression. */
11404
76a01679 11405 if (type == NULL)
5ec18f2b
JG
11406 {
11407 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11408 EVAL_NORMAL);
11409 arg1 = ada_value_struct_elt (arg1,
11410 &exp->elts[pc + 2].string,
11411 0);
11412 arg1 = unwrap_value (arg1);
11413 type = value_type (ada_to_fixed_value (arg1));
11414 }
76a01679
JB
11415 }
11416 else
11417 type =
11418 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11419 0);
76a01679
JB
11420
11421 return value_zero (ada_aligned_type (type), lval_memory);
11422 }
14f9c5c9 11423 else
a579cd9a
MW
11424 {
11425 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11426 arg1 = unwrap_value (arg1);
11427 return ada_to_fixed_value (arg1);
11428 }
284614f0 11429
14f9c5c9 11430 case OP_TYPE:
4c4b4cd2
PH
11431 /* The value is not supposed to be used. This is here to make it
11432 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11433 (*pos) += 2;
11434 if (noside == EVAL_SKIP)
4c4b4cd2 11435 goto nosideret;
14f9c5c9 11436 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11437 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11438 else
323e0a4a 11439 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11440
11441 case OP_AGGREGATE:
11442 case OP_CHOICES:
11443 case OP_OTHERS:
11444 case OP_DISCRETE_RANGE:
11445 case OP_POSITIONAL:
11446 case OP_NAME:
11447 if (noside == EVAL_NORMAL)
11448 switch (op)
11449 {
11450 case OP_NAME:
11451 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11452 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11453 case OP_AGGREGATE:
11454 error (_("Aggregates only allowed on the right of an assignment"));
11455 default:
0963b4bd
MS
11456 internal_error (__FILE__, __LINE__,
11457 _("aggregate apparently mangled"));
52ce6436
PH
11458 }
11459
11460 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11461 *pos += oplen - 1;
11462 for (tem = 0; tem < nargs; tem += 1)
11463 ada_evaluate_subexp (NULL, exp, pos, noside);
11464 goto nosideret;
14f9c5c9
AS
11465 }
11466
11467nosideret:
ced9779b 11468 return eval_skip_value (exp);
14f9c5c9 11469}
14f9c5c9 11470\f
d2e4a39e 11471
4c4b4cd2 11472 /* Fixed point */
14f9c5c9
AS
11473
11474/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11475 type name that encodes the 'small and 'delta information.
4c4b4cd2 11476 Otherwise, return NULL. */
14f9c5c9 11477
d2e4a39e 11478static const char *
ebf56fd3 11479fixed_type_info (struct type *type)
14f9c5c9 11480{
d2e4a39e 11481 const char *name = ada_type_name (type);
14f9c5c9
AS
11482 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11483
d2e4a39e
AS
11484 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11485 {
14f9c5c9 11486 const char *tail = strstr (name, "___XF_");
5b4ee69b 11487
14f9c5c9 11488 if (tail == NULL)
4c4b4cd2 11489 return NULL;
d2e4a39e 11490 else
4c4b4cd2 11491 return tail + 5;
14f9c5c9
AS
11492 }
11493 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11494 return fixed_type_info (TYPE_TARGET_TYPE (type));
11495 else
11496 return NULL;
11497}
11498
4c4b4cd2 11499/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11500
11501int
ebf56fd3 11502ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11503{
11504 return fixed_type_info (type) != NULL;
11505}
11506
4c4b4cd2
PH
11507/* Return non-zero iff TYPE represents a System.Address type. */
11508
11509int
11510ada_is_system_address_type (struct type *type)
11511{
11512 return (TYPE_NAME (type)
11513 && strcmp (TYPE_NAME (type), "system__address") == 0);
11514}
11515
14f9c5c9 11516/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11517 type, return the target floating-point type to be used to represent
11518 of this type during internal computation. */
11519
11520static struct type *
11521ada_scaling_type (struct type *type)
11522{
11523 return builtin_type (get_type_arch (type))->builtin_long_double;
11524}
11525
11526/* Assuming that TYPE is the representation of an Ada fixed-point
11527 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11528 delta cannot be determined. */
14f9c5c9 11529
50eff16b 11530struct value *
ebf56fd3 11531ada_delta (struct type *type)
14f9c5c9
AS
11532{
11533 const char *encoding = fixed_type_info (type);
50eff16b
UW
11534 struct type *scale_type = ada_scaling_type (type);
11535
11536 long long num, den;
11537
11538 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11539 return nullptr;
d2e4a39e 11540 else
50eff16b
UW
11541 return value_binop (value_from_longest (scale_type, num),
11542 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11543}
11544
11545/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11546 factor ('SMALL value) associated with the type. */
14f9c5c9 11547
50eff16b
UW
11548struct value *
11549ada_scaling_factor (struct type *type)
14f9c5c9
AS
11550{
11551 const char *encoding = fixed_type_info (type);
50eff16b
UW
11552 struct type *scale_type = ada_scaling_type (type);
11553
11554 long long num0, den0, num1, den1;
14f9c5c9 11555 int n;
d2e4a39e 11556
50eff16b 11557 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11558 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11559
11560 if (n < 2)
50eff16b 11561 return value_from_longest (scale_type, 1);
14f9c5c9 11562 else if (n == 4)
50eff16b
UW
11563 return value_binop (value_from_longest (scale_type, num1),
11564 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11565 else
50eff16b
UW
11566 return value_binop (value_from_longest (scale_type, num0),
11567 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11568}
11569
14f9c5c9 11570\f
d2e4a39e 11571
4c4b4cd2 11572 /* Range types */
14f9c5c9
AS
11573
11574/* Scan STR beginning at position K for a discriminant name, and
11575 return the value of that discriminant field of DVAL in *PX. If
11576 PNEW_K is not null, put the position of the character beyond the
11577 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11578 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11579
11580static int
108d56a4 11581scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11582 int *pnew_k)
14f9c5c9
AS
11583{
11584 static char *bound_buffer = NULL;
11585 static size_t bound_buffer_len = 0;
5da1a4d3 11586 const char *pstart, *pend, *bound;
d2e4a39e 11587 struct value *bound_val;
14f9c5c9
AS
11588
11589 if (dval == NULL || str == NULL || str[k] == '\0')
11590 return 0;
11591
5da1a4d3
SM
11592 pstart = str + k;
11593 pend = strstr (pstart, "__");
14f9c5c9
AS
11594 if (pend == NULL)
11595 {
5da1a4d3 11596 bound = pstart;
14f9c5c9
AS
11597 k += strlen (bound);
11598 }
d2e4a39e 11599 else
14f9c5c9 11600 {
5da1a4d3
SM
11601 int len = pend - pstart;
11602
11603 /* Strip __ and beyond. */
11604 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11605 strncpy (bound_buffer, pstart, len);
11606 bound_buffer[len] = '\0';
11607
14f9c5c9 11608 bound = bound_buffer;
d2e4a39e 11609 k = pend - str;
14f9c5c9 11610 }
d2e4a39e 11611
df407dfe 11612 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11613 if (bound_val == NULL)
11614 return 0;
11615
11616 *px = value_as_long (bound_val);
11617 if (pnew_k != NULL)
11618 *pnew_k = k;
11619 return 1;
11620}
11621
11622/* Value of variable named NAME in the current environment. If
11623 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11624 otherwise causes an error with message ERR_MSG. */
11625
d2e4a39e 11626static struct value *
edb0c9cb 11627get_var_value (const char *name, const char *err_msg)
14f9c5c9 11628{
b5ec771e 11629 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11630
54d343a2 11631 std::vector<struct block_symbol> syms;
b5ec771e
PA
11632 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11633 get_selected_block (0),
11634 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11635
11636 if (nsyms != 1)
11637 {
11638 if (err_msg == NULL)
4c4b4cd2 11639 return 0;
14f9c5c9 11640 else
8a3fe4f8 11641 error (("%s"), err_msg);
14f9c5c9
AS
11642 }
11643
54d343a2 11644 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11645}
d2e4a39e 11646
edb0c9cb
PA
11647/* Value of integer variable named NAME in the current environment.
11648 If no such variable is found, returns false. Otherwise, sets VALUE
11649 to the variable's value and returns true. */
4c4b4cd2 11650
edb0c9cb
PA
11651bool
11652get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11653{
4c4b4cd2 11654 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11655
14f9c5c9 11656 if (var_val == 0)
edb0c9cb
PA
11657 return false;
11658
11659 value = value_as_long (var_val);
11660 return true;
14f9c5c9 11661}
d2e4a39e 11662
14f9c5c9
AS
11663
11664/* Return a range type whose base type is that of the range type named
11665 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11666 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11667 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11668 corresponding range type from debug information; fall back to using it
11669 if symbol lookup fails. If a new type must be created, allocate it
11670 like ORIG_TYPE was. The bounds information, in general, is encoded
11671 in NAME, the base type given in the named range type. */
14f9c5c9 11672
d2e4a39e 11673static struct type *
28c85d6c 11674to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11675{
0d5cff50 11676 const char *name;
14f9c5c9 11677 struct type *base_type;
108d56a4 11678 const char *subtype_info;
14f9c5c9 11679
28c85d6c
JB
11680 gdb_assert (raw_type != NULL);
11681 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11682
1ce677a4 11683 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11684 base_type = TYPE_TARGET_TYPE (raw_type);
11685 else
11686 base_type = raw_type;
11687
28c85d6c 11688 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11689 subtype_info = strstr (name, "___XD");
11690 if (subtype_info == NULL)
690cc4eb 11691 {
43bbcdc2
PH
11692 LONGEST L = ada_discrete_type_low_bound (raw_type);
11693 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11694
690cc4eb
PH
11695 if (L < INT_MIN || U > INT_MAX)
11696 return raw_type;
11697 else
0c9c3474
SA
11698 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11699 L, U);
690cc4eb 11700 }
14f9c5c9
AS
11701 else
11702 {
11703 static char *name_buf = NULL;
11704 static size_t name_len = 0;
11705 int prefix_len = subtype_info - name;
11706 LONGEST L, U;
11707 struct type *type;
108d56a4 11708 const char *bounds_str;
14f9c5c9
AS
11709 int n;
11710
11711 GROW_VECT (name_buf, name_len, prefix_len + 5);
11712 strncpy (name_buf, name, prefix_len);
11713 name_buf[prefix_len] = '\0';
11714
11715 subtype_info += 5;
11716 bounds_str = strchr (subtype_info, '_');
11717 n = 1;
11718
d2e4a39e 11719 if (*subtype_info == 'L')
4c4b4cd2
PH
11720 {
11721 if (!ada_scan_number (bounds_str, n, &L, &n)
11722 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11723 return raw_type;
11724 if (bounds_str[n] == '_')
11725 n += 2;
0963b4bd 11726 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11727 n += 1;
11728 subtype_info += 1;
11729 }
d2e4a39e 11730 else
4c4b4cd2 11731 {
4c4b4cd2 11732 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11733 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11734 {
323e0a4a 11735 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11736 L = 1;
11737 }
11738 }
14f9c5c9 11739
d2e4a39e 11740 if (*subtype_info == 'U')
4c4b4cd2
PH
11741 {
11742 if (!ada_scan_number (bounds_str, n, &U, &n)
11743 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11744 return raw_type;
11745 }
d2e4a39e 11746 else
4c4b4cd2 11747 {
4c4b4cd2 11748 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11749 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11750 {
323e0a4a 11751 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11752 U = L;
11753 }
11754 }
14f9c5c9 11755
0c9c3474
SA
11756 type = create_static_range_type (alloc_type_copy (raw_type),
11757 base_type, L, U);
f5a91472
JB
11758 /* create_static_range_type alters the resulting type's length
11759 to match the size of the base_type, which is not what we want.
11760 Set it back to the original range type's length. */
11761 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11762 TYPE_NAME (type) = name;
14f9c5c9
AS
11763 return type;
11764 }
11765}
11766
4c4b4cd2
PH
11767/* True iff NAME is the name of a range type. */
11768
14f9c5c9 11769int
d2e4a39e 11770ada_is_range_type_name (const char *name)
14f9c5c9
AS
11771{
11772 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11773}
14f9c5c9 11774\f
d2e4a39e 11775
4c4b4cd2
PH
11776 /* Modular types */
11777
11778/* True iff TYPE is an Ada modular type. */
14f9c5c9 11779
14f9c5c9 11780int
d2e4a39e 11781ada_is_modular_type (struct type *type)
14f9c5c9 11782{
18af8284 11783 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11784
11785 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11786 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11787 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11788}
11789
4c4b4cd2
PH
11790/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11791
61ee279c 11792ULONGEST
0056e4d5 11793ada_modulus (struct type *type)
14f9c5c9 11794{
43bbcdc2 11795 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11796}
d2e4a39e 11797\f
f7f9143b
JB
11798
11799/* Ada exception catchpoint support:
11800 ---------------------------------
11801
11802 We support 3 kinds of exception catchpoints:
11803 . catchpoints on Ada exceptions
11804 . catchpoints on unhandled Ada exceptions
11805 . catchpoints on failed assertions
11806
11807 Exceptions raised during failed assertions, or unhandled exceptions
11808 could perfectly be caught with the general catchpoint on Ada exceptions.
11809 However, we can easily differentiate these two special cases, and having
11810 the option to distinguish these two cases from the rest can be useful
11811 to zero-in on certain situations.
11812
11813 Exception catchpoints are a specialized form of breakpoint,
11814 since they rely on inserting breakpoints inside known routines
11815 of the GNAT runtime. The implementation therefore uses a standard
11816 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11817 of breakpoint_ops.
11818
0259addd
JB
11819 Support in the runtime for exception catchpoints have been changed
11820 a few times already, and these changes affect the implementation
11821 of these catchpoints. In order to be able to support several
11822 variants of the runtime, we use a sniffer that will determine
28010a5d 11823 the runtime variant used by the program being debugged. */
f7f9143b 11824
82eacd52
JB
11825/* Ada's standard exceptions.
11826
11827 The Ada 83 standard also defined Numeric_Error. But there so many
11828 situations where it was unclear from the Ada 83 Reference Manual
11829 (RM) whether Constraint_Error or Numeric_Error should be raised,
11830 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11831 Interpretation saying that anytime the RM says that Numeric_Error
11832 should be raised, the implementation may raise Constraint_Error.
11833 Ada 95 went one step further and pretty much removed Numeric_Error
11834 from the list of standard exceptions (it made it a renaming of
11835 Constraint_Error, to help preserve compatibility when compiling
11836 an Ada83 compiler). As such, we do not include Numeric_Error from
11837 this list of standard exceptions. */
3d0b0fa3 11838
a121b7c1 11839static const char *standard_exc[] = {
3d0b0fa3
JB
11840 "constraint_error",
11841 "program_error",
11842 "storage_error",
11843 "tasking_error"
11844};
11845
0259addd
JB
11846typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11847
11848/* A structure that describes how to support exception catchpoints
11849 for a given executable. */
11850
11851struct exception_support_info
11852{
11853 /* The name of the symbol to break on in order to insert
11854 a catchpoint on exceptions. */
11855 const char *catch_exception_sym;
11856
11857 /* The name of the symbol to break on in order to insert
11858 a catchpoint on unhandled exceptions. */
11859 const char *catch_exception_unhandled_sym;
11860
11861 /* The name of the symbol to break on in order to insert
11862 a catchpoint on failed assertions. */
11863 const char *catch_assert_sym;
11864
9f757bf7
XR
11865 /* The name of the symbol to break on in order to insert
11866 a catchpoint on exception handling. */
11867 const char *catch_handlers_sym;
11868
0259addd
JB
11869 /* Assuming that the inferior just triggered an unhandled exception
11870 catchpoint, this function is responsible for returning the address
11871 in inferior memory where the name of that exception is stored.
11872 Return zero if the address could not be computed. */
11873 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11874};
11875
11876static CORE_ADDR ada_unhandled_exception_name_addr (void);
11877static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11878
11879/* The following exception support info structure describes how to
11880 implement exception catchpoints with the latest version of the
ca683e3a 11881 Ada runtime (as of 2019-08-??). */
0259addd
JB
11882
11883static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11884{
11885 "__gnat_debug_raise_exception", /* catch_exception_sym */
11886 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11887 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11888 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11889 ada_unhandled_exception_name_addr
11890};
11891
11892/* The following exception support info structure describes how to
11893 implement exception catchpoints with an earlier version of the
11894 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11895
11896static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11897{
11898 "__gnat_debug_raise_exception", /* catch_exception_sym */
11899 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11900 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11901 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11902 ada_unhandled_exception_name_addr
11903};
11904
11905/* The following exception support info structure describes how to
11906 implement exception catchpoints with a slightly older version
11907 of the Ada runtime. */
11908
11909static const struct exception_support_info exception_support_info_fallback =
11910{
11911 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11912 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11913 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11914 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11915 ada_unhandled_exception_name_addr_from_raise
11916};
11917
f17011e0
JB
11918/* Return nonzero if we can detect the exception support routines
11919 described in EINFO.
11920
11921 This function errors out if an abnormal situation is detected
11922 (for instance, if we find the exception support routines, but
11923 that support is found to be incomplete). */
11924
11925static int
11926ada_has_this_exception_support (const struct exception_support_info *einfo)
11927{
11928 struct symbol *sym;
11929
11930 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11931 that should be compiled with debugging information. As a result, we
11932 expect to find that symbol in the symtabs. */
11933
11934 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11935 if (sym == NULL)
a6af7abe
JB
11936 {
11937 /* Perhaps we did not find our symbol because the Ada runtime was
11938 compiled without debugging info, or simply stripped of it.
11939 It happens on some GNU/Linux distributions for instance, where
11940 users have to install a separate debug package in order to get
11941 the runtime's debugging info. In that situation, let the user
11942 know why we cannot insert an Ada exception catchpoint.
11943
11944 Note: Just for the purpose of inserting our Ada exception
11945 catchpoint, we could rely purely on the associated minimal symbol.
11946 But we would be operating in degraded mode anyway, since we are
11947 still lacking the debugging info needed later on to extract
11948 the name of the exception being raised (this name is printed in
11949 the catchpoint message, and is also used when trying to catch
11950 a specific exception). We do not handle this case for now. */
3b7344d5 11951 struct bound_minimal_symbol msym
1c8e84b0
JB
11952 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11953
3b7344d5 11954 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11955 error (_("Your Ada runtime appears to be missing some debugging "
11956 "information.\nCannot insert Ada exception catchpoint "
11957 "in this configuration."));
11958
11959 return 0;
11960 }
f17011e0
JB
11961
11962 /* Make sure that the symbol we found corresponds to a function. */
11963
11964 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11965 {
11966 error (_("Symbol \"%s\" is not a function (class = %d)"),
11967 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11968 return 0;
11969 }
11970
11971 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11972 if (sym == NULL)
11973 {
11974 struct bound_minimal_symbol msym
11975 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11976
11977 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11978 error (_("Your Ada runtime appears to be missing some debugging "
11979 "information.\nCannot insert Ada exception catchpoint "
11980 "in this configuration."));
11981
11982 return 0;
11983 }
11984
11985 /* Make sure that the symbol we found corresponds to a function. */
11986
11987 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11988 {
11989 error (_("Symbol \"%s\" is not a function (class = %d)"),
11990 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11991 return 0;
11992 }
f17011e0
JB
11993
11994 return 1;
11995}
11996
0259addd
JB
11997/* Inspect the Ada runtime and determine which exception info structure
11998 should be used to provide support for exception catchpoints.
11999
3eecfa55
JB
12000 This function will always set the per-inferior exception_info,
12001 or raise an error. */
0259addd
JB
12002
12003static void
12004ada_exception_support_info_sniffer (void)
12005{
3eecfa55 12006 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12007
12008 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12009 if (data->exception_info != NULL)
0259addd
JB
12010 return;
12011
12012 /* Check the latest (default) exception support info. */
f17011e0 12013 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12014 {
3eecfa55 12015 data->exception_info = &default_exception_support_info;
0259addd
JB
12016 return;
12017 }
12018
ca683e3a
AO
12019 /* Try the v0 exception suport info. */
12020 if (ada_has_this_exception_support (&exception_support_info_v0))
12021 {
12022 data->exception_info = &exception_support_info_v0;
12023 return;
12024 }
12025
0259addd 12026 /* Try our fallback exception suport info. */
f17011e0 12027 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12028 {
3eecfa55 12029 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12030 return;
12031 }
12032
12033 /* Sometimes, it is normal for us to not be able to find the routine
12034 we are looking for. This happens when the program is linked with
12035 the shared version of the GNAT runtime, and the program has not been
12036 started yet. Inform the user of these two possible causes if
12037 applicable. */
12038
ccefe4c4 12039 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12040 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12041
12042 /* If the symbol does not exist, then check that the program is
12043 already started, to make sure that shared libraries have been
12044 loaded. If it is not started, this may mean that the symbol is
12045 in a shared library. */
12046
e99b03dc 12047 if (inferior_ptid.pid () == 0)
0259addd
JB
12048 error (_("Unable to insert catchpoint. Try to start the program first."));
12049
12050 /* At this point, we know that we are debugging an Ada program and
12051 that the inferior has been started, but we still are not able to
0963b4bd 12052 find the run-time symbols. That can mean that we are in
0259addd
JB
12053 configurable run time mode, or that a-except as been optimized
12054 out by the linker... In any case, at this point it is not worth
12055 supporting this feature. */
12056
7dda8cff 12057 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12058}
12059
f7f9143b
JB
12060/* True iff FRAME is very likely to be that of a function that is
12061 part of the runtime system. This is all very heuristic, but is
12062 intended to be used as advice as to what frames are uninteresting
12063 to most users. */
12064
12065static int
12066is_known_support_routine (struct frame_info *frame)
12067{
692465f1 12068 enum language func_lang;
f7f9143b 12069 int i;
f35a17b5 12070 const char *fullname;
f7f9143b 12071
4ed6b5be
JB
12072 /* If this code does not have any debugging information (no symtab),
12073 This cannot be any user code. */
f7f9143b 12074
51abb421 12075 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12076 if (sal.symtab == NULL)
12077 return 1;
12078
4ed6b5be
JB
12079 /* If there is a symtab, but the associated source file cannot be
12080 located, then assume this is not user code: Selecting a frame
12081 for which we cannot display the code would not be very helpful
12082 for the user. This should also take care of case such as VxWorks
12083 where the kernel has some debugging info provided for a few units. */
f7f9143b 12084
f35a17b5
JK
12085 fullname = symtab_to_fullname (sal.symtab);
12086 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12087 return 1;
12088
4ed6b5be
JB
12089 /* Check the unit filename againt the Ada runtime file naming.
12090 We also check the name of the objfile against the name of some
12091 known system libraries that sometimes come with debugging info
12092 too. */
12093
f7f9143b
JB
12094 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12095 {
12096 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12097 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12098 return 1;
eb822aa6
DE
12099 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12100 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12101 return 1;
f7f9143b
JB
12102 }
12103
4ed6b5be 12104 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12105
c6dc63a1
TT
12106 gdb::unique_xmalloc_ptr<char> func_name
12107 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12108 if (func_name == NULL)
12109 return 1;
12110
12111 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12112 {
12113 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12114 if (re_exec (func_name.get ()))
12115 return 1;
f7f9143b
JB
12116 }
12117
12118 return 0;
12119}
12120
12121/* Find the first frame that contains debugging information and that is not
12122 part of the Ada run-time, starting from FI and moving upward. */
12123
0ef643c8 12124void
f7f9143b
JB
12125ada_find_printable_frame (struct frame_info *fi)
12126{
12127 for (; fi != NULL; fi = get_prev_frame (fi))
12128 {
12129 if (!is_known_support_routine (fi))
12130 {
12131 select_frame (fi);
12132 break;
12133 }
12134 }
12135
12136}
12137
12138/* Assuming that the inferior just triggered an unhandled exception
12139 catchpoint, return the address in inferior memory where the name
12140 of the exception is stored.
12141
12142 Return zero if the address could not be computed. */
12143
12144static CORE_ADDR
12145ada_unhandled_exception_name_addr (void)
0259addd
JB
12146{
12147 return parse_and_eval_address ("e.full_name");
12148}
12149
12150/* Same as ada_unhandled_exception_name_addr, except that this function
12151 should be used when the inferior uses an older version of the runtime,
12152 where the exception name needs to be extracted from a specific frame
12153 several frames up in the callstack. */
12154
12155static CORE_ADDR
12156ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12157{
12158 int frame_level;
12159 struct frame_info *fi;
3eecfa55 12160 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12161
12162 /* To determine the name of this exception, we need to select
12163 the frame corresponding to RAISE_SYM_NAME. This frame is
12164 at least 3 levels up, so we simply skip the first 3 frames
12165 without checking the name of their associated function. */
12166 fi = get_current_frame ();
12167 for (frame_level = 0; frame_level < 3; frame_level += 1)
12168 if (fi != NULL)
12169 fi = get_prev_frame (fi);
12170
12171 while (fi != NULL)
12172 {
692465f1
JB
12173 enum language func_lang;
12174
c6dc63a1
TT
12175 gdb::unique_xmalloc_ptr<char> func_name
12176 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12177 if (func_name != NULL)
12178 {
c6dc63a1 12179 if (strcmp (func_name.get (),
55b87a52
KS
12180 data->exception_info->catch_exception_sym) == 0)
12181 break; /* We found the frame we were looking for... */
55b87a52 12182 }
fb44b1a7 12183 fi = get_prev_frame (fi);
f7f9143b
JB
12184 }
12185
12186 if (fi == NULL)
12187 return 0;
12188
12189 select_frame (fi);
12190 return parse_and_eval_address ("id.full_name");
12191}
12192
12193/* Assuming the inferior just triggered an Ada exception catchpoint
12194 (of any type), return the address in inferior memory where the name
12195 of the exception is stored, if applicable.
12196
45db7c09
PA
12197 Assumes the selected frame is the current frame.
12198
f7f9143b
JB
12199 Return zero if the address could not be computed, or if not relevant. */
12200
12201static CORE_ADDR
761269c8 12202ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12203 struct breakpoint *b)
12204{
3eecfa55
JB
12205 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12206
f7f9143b
JB
12207 switch (ex)
12208 {
761269c8 12209 case ada_catch_exception:
f7f9143b
JB
12210 return (parse_and_eval_address ("e.full_name"));
12211 break;
12212
761269c8 12213 case ada_catch_exception_unhandled:
3eecfa55 12214 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12215 break;
9f757bf7
XR
12216
12217 case ada_catch_handlers:
12218 return 0; /* The runtimes does not provide access to the exception
12219 name. */
12220 break;
12221
761269c8 12222 case ada_catch_assert:
f7f9143b
JB
12223 return 0; /* Exception name is not relevant in this case. */
12224 break;
12225
12226 default:
12227 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12228 break;
12229 }
12230
12231 return 0; /* Should never be reached. */
12232}
12233
e547c119
JB
12234/* Assuming the inferior is stopped at an exception catchpoint,
12235 return the message which was associated to the exception, if
12236 available. Return NULL if the message could not be retrieved.
12237
e547c119
JB
12238 Note: The exception message can be associated to an exception
12239 either through the use of the Raise_Exception function, or
12240 more simply (Ada 2005 and later), via:
12241
12242 raise Exception_Name with "exception message";
12243
12244 */
12245
6f46ac85 12246static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12247ada_exception_message_1 (void)
12248{
12249 struct value *e_msg_val;
e547c119 12250 int e_msg_len;
e547c119
JB
12251
12252 /* For runtimes that support this feature, the exception message
12253 is passed as an unbounded string argument called "message". */
12254 e_msg_val = parse_and_eval ("message");
12255 if (e_msg_val == NULL)
12256 return NULL; /* Exception message not supported. */
12257
12258 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12259 gdb_assert (e_msg_val != NULL);
12260 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12261
12262 /* If the message string is empty, then treat it as if there was
12263 no exception message. */
12264 if (e_msg_len <= 0)
12265 return NULL;
12266
6f46ac85
TT
12267 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12268 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12269 e_msg.get ()[e_msg_len] = '\0';
e547c119 12270
e547c119
JB
12271 return e_msg;
12272}
12273
12274/* Same as ada_exception_message_1, except that all exceptions are
12275 contained here (returning NULL instead). */
12276
6f46ac85 12277static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12278ada_exception_message (void)
12279{
6f46ac85 12280 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12281
a70b8144 12282 try
e547c119
JB
12283 {
12284 e_msg = ada_exception_message_1 ();
12285 }
230d2906 12286 catch (const gdb_exception_error &e)
e547c119 12287 {
6f46ac85 12288 e_msg.reset (nullptr);
e547c119 12289 }
e547c119
JB
12290
12291 return e_msg;
12292}
12293
f7f9143b
JB
12294/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12295 any error that ada_exception_name_addr_1 might cause to be thrown.
12296 When an error is intercepted, a warning with the error message is printed,
12297 and zero is returned. */
12298
12299static CORE_ADDR
761269c8 12300ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12301 struct breakpoint *b)
12302{
f7f9143b
JB
12303 CORE_ADDR result = 0;
12304
a70b8144 12305 try
f7f9143b
JB
12306 {
12307 result = ada_exception_name_addr_1 (ex, b);
12308 }
12309
230d2906 12310 catch (const gdb_exception_error &e)
f7f9143b 12311 {
3d6e9d23 12312 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12313 return 0;
12314 }
12315
12316 return result;
12317}
12318
cb7de75e 12319static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12320 (const char *excep_string,
12321 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12322
12323/* Ada catchpoints.
12324
12325 In the case of catchpoints on Ada exceptions, the catchpoint will
12326 stop the target on every exception the program throws. When a user
12327 specifies the name of a specific exception, we translate this
12328 request into a condition expression (in text form), and then parse
12329 it into an expression stored in each of the catchpoint's locations.
12330 We then use this condition to check whether the exception that was
12331 raised is the one the user is interested in. If not, then the
12332 target is resumed again. We store the name of the requested
12333 exception, in order to be able to re-set the condition expression
12334 when symbols change. */
12335
12336/* An instance of this type is used to represent an Ada catchpoint
5625a286 12337 breakpoint location. */
28010a5d 12338
5625a286 12339class ada_catchpoint_location : public bp_location
28010a5d 12340{
5625a286 12341public:
5f486660 12342 ada_catchpoint_location (breakpoint *owner)
f06f1252 12343 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12344 {}
28010a5d
PA
12345
12346 /* The condition that checks whether the exception that was raised
12347 is the specific exception the user specified on catchpoint
12348 creation. */
4d01a485 12349 expression_up excep_cond_expr;
28010a5d
PA
12350};
12351
c1fc2657 12352/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12353
c1fc2657 12354struct ada_catchpoint : public breakpoint
28010a5d 12355{
28010a5d 12356 /* The name of the specific exception the user specified. */
bc18fbb5 12357 std::string excep_string;
28010a5d
PA
12358};
12359
12360/* Parse the exception condition string in the context of each of the
12361 catchpoint's locations, and store them for later evaluation. */
12362
12363static void
9f757bf7
XR
12364create_excep_cond_exprs (struct ada_catchpoint *c,
12365 enum ada_exception_catchpoint_kind ex)
28010a5d 12366{
28010a5d 12367 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12368 if (c->excep_string.empty ())
28010a5d
PA
12369 return;
12370
12371 /* Same if there are no locations... */
c1fc2657 12372 if (c->loc == NULL)
28010a5d
PA
12373 return;
12374
2ff0a947
TT
12375 /* We have to compute the expression once for each program space,
12376 because the expression may hold the addresses of multiple symbols
12377 in some cases. */
12378 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12379 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12380 loc_map.emplace (bl->pspace, bl);
28010a5d 12381
2ff0a947
TT
12382 scoped_restore_current_program_space save_pspace;
12383
12384 std::string cond_string;
12385 program_space *last_ps = nullptr;
12386 for (auto iter : loc_map)
28010a5d
PA
12387 {
12388 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12389 = (struct ada_catchpoint_location *) iter.second;
12390
12391 if (ada_loc->pspace != last_ps)
12392 {
12393 last_ps = ada_loc->pspace;
12394 set_current_program_space (last_ps);
12395
12396 /* Compute the condition expression in text form, from the
12397 specific expection we want to catch. */
12398 cond_string
12399 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12400 ex);
12401 }
12402
4d01a485 12403 expression_up exp;
28010a5d 12404
2ff0a947 12405 if (!ada_loc->shlib_disabled)
28010a5d 12406 {
bbc13ae3 12407 const char *s;
28010a5d 12408
cb7de75e 12409 s = cond_string.c_str ();
a70b8144 12410 try
28010a5d 12411 {
2ff0a947
TT
12412 exp = parse_exp_1 (&s, ada_loc->address,
12413 block_for_pc (ada_loc->address),
036e657b 12414 0);
28010a5d 12415 }
230d2906 12416 catch (const gdb_exception_error &e)
849f2b52
JB
12417 {
12418 warning (_("failed to reevaluate internal exception condition "
12419 "for catchpoint %d: %s"),
3d6e9d23 12420 c->number, e.what ());
849f2b52 12421 }
28010a5d
PA
12422 }
12423
b22e99fd 12424 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12425 }
28010a5d
PA
12426}
12427
28010a5d
PA
12428/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12429 structure for all exception catchpoint kinds. */
12430
12431static struct bp_location *
761269c8 12432allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12433 struct breakpoint *self)
12434{
5f486660 12435 return new ada_catchpoint_location (self);
28010a5d
PA
12436}
12437
12438/* Implement the RE_SET method in the breakpoint_ops structure for all
12439 exception catchpoint kinds. */
12440
12441static void
761269c8 12442re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12443{
12444 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12445
12446 /* Call the base class's method. This updates the catchpoint's
12447 locations. */
2060206e 12448 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12449
12450 /* Reparse the exception conditional expressions. One for each
12451 location. */
9f757bf7 12452 create_excep_cond_exprs (c, ex);
28010a5d
PA
12453}
12454
12455/* Returns true if we should stop for this breakpoint hit. If the
12456 user specified a specific exception, we only want to cause a stop
12457 if the program thrown that exception. */
12458
12459static int
12460should_stop_exception (const struct bp_location *bl)
12461{
12462 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12463 const struct ada_catchpoint_location *ada_loc
12464 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12465 int stop;
12466
12467 /* With no specific exception, should always stop. */
bc18fbb5 12468 if (c->excep_string.empty ())
28010a5d
PA
12469 return 1;
12470
12471 if (ada_loc->excep_cond_expr == NULL)
12472 {
12473 /* We will have a NULL expression if back when we were creating
12474 the expressions, this location's had failed to parse. */
12475 return 1;
12476 }
12477
12478 stop = 1;
a70b8144 12479 try
28010a5d
PA
12480 {
12481 struct value *mark;
12482
12483 mark = value_mark ();
4d01a485 12484 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12485 value_free_to_mark (mark);
12486 }
230d2906 12487 catch (const gdb_exception &ex)
492d29ea
PA
12488 {
12489 exception_fprintf (gdb_stderr, ex,
12490 _("Error in testing exception condition:\n"));
12491 }
492d29ea 12492
28010a5d
PA
12493 return stop;
12494}
12495
12496/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12497 for all exception catchpoint kinds. */
12498
12499static void
761269c8 12500check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12501{
12502 bs->stop = should_stop_exception (bs->bp_location_at);
12503}
12504
f7f9143b
JB
12505/* Implement the PRINT_IT method in the breakpoint_ops structure
12506 for all exception catchpoint kinds. */
12507
12508static enum print_stop_action
761269c8 12509print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12510{
79a45e25 12511 struct ui_out *uiout = current_uiout;
348d480f
PA
12512 struct breakpoint *b = bs->breakpoint_at;
12513
956a9fb9 12514 annotate_catchpoint (b->number);
f7f9143b 12515
112e8700 12516 if (uiout->is_mi_like_p ())
f7f9143b 12517 {
112e8700 12518 uiout->field_string ("reason",
956a9fb9 12519 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12520 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12521 }
12522
112e8700
SM
12523 uiout->text (b->disposition == disp_del
12524 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12525 uiout->field_signed ("bkptno", b->number);
112e8700 12526 uiout->text (", ");
f7f9143b 12527
45db7c09
PA
12528 /* ada_exception_name_addr relies on the selected frame being the
12529 current frame. Need to do this here because this function may be
12530 called more than once when printing a stop, and below, we'll
12531 select the first frame past the Ada run-time (see
12532 ada_find_printable_frame). */
12533 select_frame (get_current_frame ());
12534
f7f9143b
JB
12535 switch (ex)
12536 {
761269c8
JB
12537 case ada_catch_exception:
12538 case ada_catch_exception_unhandled:
9f757bf7 12539 case ada_catch_handlers:
956a9fb9
JB
12540 {
12541 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12542 char exception_name[256];
12543
12544 if (addr != 0)
12545 {
c714b426
PA
12546 read_memory (addr, (gdb_byte *) exception_name,
12547 sizeof (exception_name) - 1);
956a9fb9
JB
12548 exception_name [sizeof (exception_name) - 1] = '\0';
12549 }
12550 else
12551 {
12552 /* For some reason, we were unable to read the exception
12553 name. This could happen if the Runtime was compiled
12554 without debugging info, for instance. In that case,
12555 just replace the exception name by the generic string
12556 "exception" - it will read as "an exception" in the
12557 notification we are about to print. */
967cff16 12558 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12559 }
12560 /* In the case of unhandled exception breakpoints, we print
12561 the exception name as "unhandled EXCEPTION_NAME", to make
12562 it clearer to the user which kind of catchpoint just got
12563 hit. We used ui_out_text to make sure that this extra
12564 info does not pollute the exception name in the MI case. */
761269c8 12565 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12566 uiout->text ("unhandled ");
12567 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12568 }
12569 break;
761269c8 12570 case ada_catch_assert:
956a9fb9
JB
12571 /* In this case, the name of the exception is not really
12572 important. Just print "failed assertion" to make it clearer
12573 that his program just hit an assertion-failure catchpoint.
12574 We used ui_out_text because this info does not belong in
12575 the MI output. */
112e8700 12576 uiout->text ("failed assertion");
956a9fb9 12577 break;
f7f9143b 12578 }
e547c119 12579
6f46ac85 12580 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12581 if (exception_message != NULL)
12582 {
e547c119 12583 uiout->text (" (");
6f46ac85 12584 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12585 uiout->text (")");
e547c119
JB
12586 }
12587
112e8700 12588 uiout->text (" at ");
956a9fb9 12589 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12590
12591 return PRINT_SRC_AND_LOC;
12592}
12593
12594/* Implement the PRINT_ONE method in the breakpoint_ops structure
12595 for all exception catchpoint kinds. */
12596
12597static void
761269c8 12598print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12599 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12600{
79a45e25 12601 struct ui_out *uiout = current_uiout;
28010a5d 12602 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12603 struct value_print_options opts;
12604
12605 get_user_print_options (&opts);
f06f1252 12606
79a45b7d 12607 if (opts.addressprint)
f06f1252 12608 uiout->field_skip ("addr");
f7f9143b
JB
12609
12610 annotate_field (5);
f7f9143b
JB
12611 switch (ex)
12612 {
761269c8 12613 case ada_catch_exception:
bc18fbb5 12614 if (!c->excep_string.empty ())
f7f9143b 12615 {
bc18fbb5
TT
12616 std::string msg = string_printf (_("`%s' Ada exception"),
12617 c->excep_string.c_str ());
28010a5d 12618
112e8700 12619 uiout->field_string ("what", msg);
f7f9143b
JB
12620 }
12621 else
112e8700 12622 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12623
12624 break;
12625
761269c8 12626 case ada_catch_exception_unhandled:
112e8700 12627 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12628 break;
12629
9f757bf7 12630 case ada_catch_handlers:
bc18fbb5 12631 if (!c->excep_string.empty ())
9f757bf7
XR
12632 {
12633 uiout->field_fmt ("what",
12634 _("`%s' Ada exception handlers"),
bc18fbb5 12635 c->excep_string.c_str ());
9f757bf7
XR
12636 }
12637 else
12638 uiout->field_string ("what", "all Ada exceptions handlers");
12639 break;
12640
761269c8 12641 case ada_catch_assert:
112e8700 12642 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12643 break;
12644
12645 default:
12646 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12647 break;
12648 }
12649}
12650
12651/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12652 for all exception catchpoint kinds. */
12653
12654static void
761269c8 12655print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12656 struct breakpoint *b)
12657{
28010a5d 12658 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12659 struct ui_out *uiout = current_uiout;
28010a5d 12660
112e8700 12661 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12662 : _("Catchpoint "));
381befee 12663 uiout->field_signed ("bkptno", b->number);
112e8700 12664 uiout->text (": ");
00eb2c4a 12665
f7f9143b
JB
12666 switch (ex)
12667 {
761269c8 12668 case ada_catch_exception:
bc18fbb5 12669 if (!c->excep_string.empty ())
00eb2c4a 12670 {
862d101a 12671 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12672 c->excep_string.c_str ());
862d101a 12673 uiout->text (info.c_str ());
00eb2c4a 12674 }
f7f9143b 12675 else
112e8700 12676 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12677 break;
12678
761269c8 12679 case ada_catch_exception_unhandled:
112e8700 12680 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12681 break;
9f757bf7
XR
12682
12683 case ada_catch_handlers:
bc18fbb5 12684 if (!c->excep_string.empty ())
9f757bf7
XR
12685 {
12686 std::string info
12687 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12688 c->excep_string.c_str ());
9f757bf7
XR
12689 uiout->text (info.c_str ());
12690 }
12691 else
12692 uiout->text (_("all Ada exceptions handlers"));
12693 break;
12694
761269c8 12695 case ada_catch_assert:
112e8700 12696 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12697 break;
12698
12699 default:
12700 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12701 break;
12702 }
12703}
12704
6149aea9
PA
12705/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12706 for all exception catchpoint kinds. */
12707
12708static void
761269c8 12709print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12710 struct breakpoint *b, struct ui_file *fp)
12711{
28010a5d
PA
12712 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12713
6149aea9
PA
12714 switch (ex)
12715 {
761269c8 12716 case ada_catch_exception:
6149aea9 12717 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12718 if (!c->excep_string.empty ())
12719 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12720 break;
12721
761269c8 12722 case ada_catch_exception_unhandled:
78076abc 12723 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12724 break;
12725
9f757bf7
XR
12726 case ada_catch_handlers:
12727 fprintf_filtered (fp, "catch handlers");
12728 break;
12729
761269c8 12730 case ada_catch_assert:
6149aea9
PA
12731 fprintf_filtered (fp, "catch assert");
12732 break;
12733
12734 default:
12735 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12736 }
d9b3f62e 12737 print_recreate_thread (b, fp);
6149aea9
PA
12738}
12739
f7f9143b
JB
12740/* Virtual table for "catch exception" breakpoints. */
12741
28010a5d
PA
12742static struct bp_location *
12743allocate_location_catch_exception (struct breakpoint *self)
12744{
761269c8 12745 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12746}
12747
12748static void
12749re_set_catch_exception (struct breakpoint *b)
12750{
761269c8 12751 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12752}
12753
12754static void
12755check_status_catch_exception (bpstat bs)
12756{
761269c8 12757 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12758}
12759
f7f9143b 12760static enum print_stop_action
348d480f 12761print_it_catch_exception (bpstat bs)
f7f9143b 12762{
761269c8 12763 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12764}
12765
12766static void
a6d9a66e 12767print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12768{
761269c8 12769 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12770}
12771
12772static void
12773print_mention_catch_exception (struct breakpoint *b)
12774{
761269c8 12775 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12776}
12777
6149aea9
PA
12778static void
12779print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12780{
761269c8 12781 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12782}
12783
2060206e 12784static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12785
12786/* Virtual table for "catch exception unhandled" breakpoints. */
12787
28010a5d
PA
12788static struct bp_location *
12789allocate_location_catch_exception_unhandled (struct breakpoint *self)
12790{
761269c8 12791 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12792}
12793
12794static void
12795re_set_catch_exception_unhandled (struct breakpoint *b)
12796{
761269c8 12797 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12798}
12799
12800static void
12801check_status_catch_exception_unhandled (bpstat bs)
12802{
761269c8 12803 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12804}
12805
f7f9143b 12806static enum print_stop_action
348d480f 12807print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12808{
761269c8 12809 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12810}
12811
12812static void
a6d9a66e
UW
12813print_one_catch_exception_unhandled (struct breakpoint *b,
12814 struct bp_location **last_loc)
f7f9143b 12815{
761269c8 12816 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12817}
12818
12819static void
12820print_mention_catch_exception_unhandled (struct breakpoint *b)
12821{
761269c8 12822 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12823}
12824
6149aea9
PA
12825static void
12826print_recreate_catch_exception_unhandled (struct breakpoint *b,
12827 struct ui_file *fp)
12828{
761269c8 12829 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12830}
12831
2060206e 12832static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12833
12834/* Virtual table for "catch assert" breakpoints. */
12835
28010a5d
PA
12836static struct bp_location *
12837allocate_location_catch_assert (struct breakpoint *self)
12838{
761269c8 12839 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12840}
12841
12842static void
12843re_set_catch_assert (struct breakpoint *b)
12844{
761269c8 12845 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12846}
12847
12848static void
12849check_status_catch_assert (bpstat bs)
12850{
761269c8 12851 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12852}
12853
f7f9143b 12854static enum print_stop_action
348d480f 12855print_it_catch_assert (bpstat bs)
f7f9143b 12856{
761269c8 12857 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12858}
12859
12860static void
a6d9a66e 12861print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12862{
761269c8 12863 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12864}
12865
12866static void
12867print_mention_catch_assert (struct breakpoint *b)
12868{
761269c8 12869 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12870}
12871
6149aea9
PA
12872static void
12873print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12874{
761269c8 12875 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12876}
12877
2060206e 12878static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12879
9f757bf7
XR
12880/* Virtual table for "catch handlers" breakpoints. */
12881
12882static struct bp_location *
12883allocate_location_catch_handlers (struct breakpoint *self)
12884{
12885 return allocate_location_exception (ada_catch_handlers, self);
12886}
12887
12888static void
12889re_set_catch_handlers (struct breakpoint *b)
12890{
12891 re_set_exception (ada_catch_handlers, b);
12892}
12893
12894static void
12895check_status_catch_handlers (bpstat bs)
12896{
12897 check_status_exception (ada_catch_handlers, bs);
12898}
12899
12900static enum print_stop_action
12901print_it_catch_handlers (bpstat bs)
12902{
12903 return print_it_exception (ada_catch_handlers, bs);
12904}
12905
12906static void
12907print_one_catch_handlers (struct breakpoint *b,
12908 struct bp_location **last_loc)
12909{
12910 print_one_exception (ada_catch_handlers, b, last_loc);
12911}
12912
12913static void
12914print_mention_catch_handlers (struct breakpoint *b)
12915{
12916 print_mention_exception (ada_catch_handlers, b);
12917}
12918
12919static void
12920print_recreate_catch_handlers (struct breakpoint *b,
12921 struct ui_file *fp)
12922{
12923 print_recreate_exception (ada_catch_handlers, b, fp);
12924}
12925
12926static struct breakpoint_ops catch_handlers_breakpoint_ops;
12927
f06f1252
TT
12928/* See ada-lang.h. */
12929
12930bool
12931is_ada_exception_catchpoint (breakpoint *bp)
12932{
12933 return (bp->ops == &catch_exception_breakpoint_ops
12934 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12935 || bp->ops == &catch_assert_breakpoint_ops
12936 || bp->ops == &catch_handlers_breakpoint_ops);
12937}
12938
f7f9143b
JB
12939/* Split the arguments specified in a "catch exception" command.
12940 Set EX to the appropriate catchpoint type.
28010a5d 12941 Set EXCEP_STRING to the name of the specific exception if
5845583d 12942 specified by the user.
9f757bf7
XR
12943 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12944 "catch handlers" command. False otherwise.
5845583d
JB
12945 If a condition is found at the end of the arguments, the condition
12946 expression is stored in COND_STRING (memory must be deallocated
12947 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12948
12949static void
a121b7c1 12950catch_ada_exception_command_split (const char *args,
9f757bf7 12951 bool is_catch_handlers_cmd,
761269c8 12952 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12953 std::string *excep_string,
12954 std::string *cond_string)
f7f9143b 12955{
bc18fbb5 12956 std::string exception_name;
f7f9143b 12957
bc18fbb5
TT
12958 exception_name = extract_arg (&args);
12959 if (exception_name == "if")
5845583d
JB
12960 {
12961 /* This is not an exception name; this is the start of a condition
12962 expression for a catchpoint on all exceptions. So, "un-get"
12963 this token, and set exception_name to NULL. */
bc18fbb5 12964 exception_name.clear ();
5845583d
JB
12965 args -= 2;
12966 }
f7f9143b 12967
5845583d 12968 /* Check to see if we have a condition. */
f7f9143b 12969
f1735a53 12970 args = skip_spaces (args);
61012eef 12971 if (startswith (args, "if")
5845583d
JB
12972 && (isspace (args[2]) || args[2] == '\0'))
12973 {
12974 args += 2;
f1735a53 12975 args = skip_spaces (args);
5845583d
JB
12976
12977 if (args[0] == '\0')
12978 error (_("Condition missing after `if' keyword"));
bc18fbb5 12979 *cond_string = args;
5845583d
JB
12980
12981 args += strlen (args);
12982 }
12983
12984 /* Check that we do not have any more arguments. Anything else
12985 is unexpected. */
f7f9143b
JB
12986
12987 if (args[0] != '\0')
12988 error (_("Junk at end of expression"));
12989
9f757bf7
XR
12990 if (is_catch_handlers_cmd)
12991 {
12992 /* Catch handling of exceptions. */
12993 *ex = ada_catch_handlers;
12994 *excep_string = exception_name;
12995 }
bc18fbb5 12996 else if (exception_name.empty ())
f7f9143b
JB
12997 {
12998 /* Catch all exceptions. */
761269c8 12999 *ex = ada_catch_exception;
bc18fbb5 13000 excep_string->clear ();
f7f9143b 13001 }
bc18fbb5 13002 else if (exception_name == "unhandled")
f7f9143b
JB
13003 {
13004 /* Catch unhandled exceptions. */
761269c8 13005 *ex = ada_catch_exception_unhandled;
bc18fbb5 13006 excep_string->clear ();
f7f9143b
JB
13007 }
13008 else
13009 {
13010 /* Catch a specific exception. */
761269c8 13011 *ex = ada_catch_exception;
28010a5d 13012 *excep_string = exception_name;
f7f9143b
JB
13013 }
13014}
13015
13016/* Return the name of the symbol on which we should break in order to
13017 implement a catchpoint of the EX kind. */
13018
13019static const char *
761269c8 13020ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13021{
3eecfa55
JB
13022 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13023
13024 gdb_assert (data->exception_info != NULL);
0259addd 13025
f7f9143b
JB
13026 switch (ex)
13027 {
761269c8 13028 case ada_catch_exception:
3eecfa55 13029 return (data->exception_info->catch_exception_sym);
f7f9143b 13030 break;
761269c8 13031 case ada_catch_exception_unhandled:
3eecfa55 13032 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13033 break;
761269c8 13034 case ada_catch_assert:
3eecfa55 13035 return (data->exception_info->catch_assert_sym);
f7f9143b 13036 break;
9f757bf7
XR
13037 case ada_catch_handlers:
13038 return (data->exception_info->catch_handlers_sym);
13039 break;
f7f9143b
JB
13040 default:
13041 internal_error (__FILE__, __LINE__,
13042 _("unexpected catchpoint kind (%d)"), ex);
13043 }
13044}
13045
13046/* Return the breakpoint ops "virtual table" used for catchpoints
13047 of the EX kind. */
13048
c0a91b2b 13049static const struct breakpoint_ops *
761269c8 13050ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13051{
13052 switch (ex)
13053 {
761269c8 13054 case ada_catch_exception:
f7f9143b
JB
13055 return (&catch_exception_breakpoint_ops);
13056 break;
761269c8 13057 case ada_catch_exception_unhandled:
f7f9143b
JB
13058 return (&catch_exception_unhandled_breakpoint_ops);
13059 break;
761269c8 13060 case ada_catch_assert:
f7f9143b
JB
13061 return (&catch_assert_breakpoint_ops);
13062 break;
9f757bf7
XR
13063 case ada_catch_handlers:
13064 return (&catch_handlers_breakpoint_ops);
13065 break;
f7f9143b
JB
13066 default:
13067 internal_error (__FILE__, __LINE__,
13068 _("unexpected catchpoint kind (%d)"), ex);
13069 }
13070}
13071
13072/* Return the condition that will be used to match the current exception
13073 being raised with the exception that the user wants to catch. This
13074 assumes that this condition is used when the inferior just triggered
13075 an exception catchpoint.
cb7de75e 13076 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13077
cb7de75e 13078static std::string
9f757bf7
XR
13079ada_exception_catchpoint_cond_string (const char *excep_string,
13080 enum ada_exception_catchpoint_kind ex)
f7f9143b 13081{
3d0b0fa3 13082 int i;
cb7de75e 13083 std::string result;
2ff0a947 13084 const char *name;
9f757bf7
XR
13085
13086 if (ex == ada_catch_handlers)
13087 {
13088 /* For exception handlers catchpoints, the condition string does
13089 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13090 name = ("long_integer (GNAT_GCC_exception_Access"
13091 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13092 }
13093 else
2ff0a947 13094 name = "long_integer (e)";
3d0b0fa3 13095
0963b4bd 13096 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13097 runtime units that have been compiled without debugging info; if
28010a5d 13098 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13099 exception (e.g. "constraint_error") then, during the evaluation
13100 of the condition expression, the symbol lookup on this name would
0963b4bd 13101 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13102 may then be set only on user-defined exceptions which have the
13103 same not-fully-qualified name (e.g. my_package.constraint_error).
13104
13105 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13106 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13107 exception constraint_error" is rewritten into "catch exception
13108 standard.constraint_error".
13109
13110 If an exception named contraint_error is defined in another package of
13111 the inferior program, then the only way to specify this exception as a
13112 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13113 e.g. my_package.constraint_error.
13114
13115 Furthermore, in some situations a standard exception's symbol may
13116 be present in more than one objfile, because the compiler may
13117 choose to emit copy relocations for them. So, we have to compare
13118 against all the possible addresses. */
3d0b0fa3 13119
2ff0a947
TT
13120 /* Storage for a rewritten symbol name. */
13121 std::string std_name;
3d0b0fa3
JB
13122 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13123 {
28010a5d 13124 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13125 {
2ff0a947
TT
13126 std_name = std::string ("standard.") + excep_string;
13127 excep_string = std_name.c_str ();
9f757bf7 13128 break;
3d0b0fa3
JB
13129 }
13130 }
9f757bf7 13131
2ff0a947
TT
13132 excep_string = ada_encode (excep_string);
13133 std::vector<struct bound_minimal_symbol> symbols
13134 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13135 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13136 {
13137 if (!result.empty ())
13138 result += " or ";
13139 string_appendf (result, "%s = %s", name,
13140 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13141 }
9f757bf7 13142
9f757bf7 13143 return result;
f7f9143b
JB
13144}
13145
13146/* Return the symtab_and_line that should be used to insert an exception
13147 catchpoint of the TYPE kind.
13148
28010a5d
PA
13149 ADDR_STRING returns the name of the function where the real
13150 breakpoint that implements the catchpoints is set, depending on the
13151 type of catchpoint we need to create. */
f7f9143b
JB
13152
13153static struct symtab_and_line
bc18fbb5 13154ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13155 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13156{
13157 const char *sym_name;
13158 struct symbol *sym;
f7f9143b 13159
0259addd
JB
13160 /* First, find out which exception support info to use. */
13161 ada_exception_support_info_sniffer ();
13162
13163 /* Then lookup the function on which we will break in order to catch
f7f9143b 13164 the Ada exceptions requested by the user. */
f7f9143b
JB
13165 sym_name = ada_exception_sym_name (ex);
13166 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13167
57aff202
JB
13168 if (sym == NULL)
13169 error (_("Catchpoint symbol not found: %s"), sym_name);
13170
13171 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13172 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13173
13174 /* Set ADDR_STRING. */
cc12f4a8 13175 *addr_string = sym_name;
f7f9143b 13176
f7f9143b 13177 /* Set OPS. */
4b9eee8c 13178 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13179
f17011e0 13180 return find_function_start_sal (sym, 1);
f7f9143b
JB
13181}
13182
b4a5b78b 13183/* Create an Ada exception catchpoint.
f7f9143b 13184
b4a5b78b 13185 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13186
bc18fbb5 13187 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13188 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13189 of the exception to which this catchpoint applies.
2df4d1d5 13190
bc18fbb5 13191 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13192
b4a5b78b
JB
13193 TEMPFLAG, if nonzero, means that the underlying breakpoint
13194 should be temporary.
28010a5d 13195
b4a5b78b 13196 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13197
349774ef 13198void
28010a5d 13199create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13200 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13201 const std::string &excep_string,
56ecd069 13202 const std::string &cond_string,
28010a5d 13203 int tempflag,
349774ef 13204 int disabled,
28010a5d
PA
13205 int from_tty)
13206{
cc12f4a8 13207 std::string addr_string;
b4a5b78b 13208 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13209 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13210
b270e6f9 13211 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13212 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13213 ops, tempflag, disabled, from_tty);
28010a5d 13214 c->excep_string = excep_string;
9f757bf7 13215 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13216 if (!cond_string.empty ())
13217 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13218 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13219}
13220
9ac4176b
PA
13221/* Implement the "catch exception" command. */
13222
13223static void
eb4c3f4a 13224catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13225 struct cmd_list_element *command)
13226{
a121b7c1 13227 const char *arg = arg_entry;
9ac4176b
PA
13228 struct gdbarch *gdbarch = get_current_arch ();
13229 int tempflag;
761269c8 13230 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13231 std::string excep_string;
56ecd069 13232 std::string cond_string;
9ac4176b
PA
13233
13234 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13235
13236 if (!arg)
13237 arg = "";
9f757bf7 13238 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13239 &cond_string);
9f757bf7
XR
13240 create_ada_exception_catchpoint (gdbarch, ex_kind,
13241 excep_string, cond_string,
13242 tempflag, 1 /* enabled */,
13243 from_tty);
13244}
13245
13246/* Implement the "catch handlers" command. */
13247
13248static void
13249catch_ada_handlers_command (const char *arg_entry, int from_tty,
13250 struct cmd_list_element *command)
13251{
13252 const char *arg = arg_entry;
13253 struct gdbarch *gdbarch = get_current_arch ();
13254 int tempflag;
13255 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13256 std::string excep_string;
56ecd069 13257 std::string cond_string;
9f757bf7
XR
13258
13259 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13260
13261 if (!arg)
13262 arg = "";
13263 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13264 &cond_string);
b4a5b78b
JB
13265 create_ada_exception_catchpoint (gdbarch, ex_kind,
13266 excep_string, cond_string,
349774ef
JB
13267 tempflag, 1 /* enabled */,
13268 from_tty);
9ac4176b
PA
13269}
13270
71bed2db
TT
13271/* Completion function for the Ada "catch" commands. */
13272
13273static void
13274catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13275 const char *text, const char *word)
13276{
13277 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13278
13279 for (const ada_exc_info &info : exceptions)
13280 {
13281 if (startswith (info.name, word))
b02f78f9 13282 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13283 }
13284}
13285
b4a5b78b 13286/* Split the arguments specified in a "catch assert" command.
5845583d 13287
b4a5b78b
JB
13288 ARGS contains the command's arguments (or the empty string if
13289 no arguments were passed).
5845583d
JB
13290
13291 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13292 (the memory needs to be deallocated after use). */
5845583d 13293
b4a5b78b 13294static void
56ecd069 13295catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13296{
f1735a53 13297 args = skip_spaces (args);
f7f9143b 13298
5845583d 13299 /* Check whether a condition was provided. */
61012eef 13300 if (startswith (args, "if")
5845583d 13301 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13302 {
5845583d 13303 args += 2;
f1735a53 13304 args = skip_spaces (args);
5845583d
JB
13305 if (args[0] == '\0')
13306 error (_("condition missing after `if' keyword"));
56ecd069 13307 cond_string.assign (args);
f7f9143b
JB
13308 }
13309
5845583d
JB
13310 /* Otherwise, there should be no other argument at the end of
13311 the command. */
13312 else if (args[0] != '\0')
13313 error (_("Junk at end of arguments."));
f7f9143b
JB
13314}
13315
9ac4176b
PA
13316/* Implement the "catch assert" command. */
13317
13318static void
eb4c3f4a 13319catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13320 struct cmd_list_element *command)
13321{
a121b7c1 13322 const char *arg = arg_entry;
9ac4176b
PA
13323 struct gdbarch *gdbarch = get_current_arch ();
13324 int tempflag;
56ecd069 13325 std::string cond_string;
9ac4176b
PA
13326
13327 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13328
13329 if (!arg)
13330 arg = "";
56ecd069 13331 catch_ada_assert_command_split (arg, cond_string);
761269c8 13332 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13333 "", cond_string,
349774ef
JB
13334 tempflag, 1 /* enabled */,
13335 from_tty);
9ac4176b 13336}
778865d3
JB
13337
13338/* Return non-zero if the symbol SYM is an Ada exception object. */
13339
13340static int
13341ada_is_exception_sym (struct symbol *sym)
13342{
a737d952 13343 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13344
13345 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13346 && SYMBOL_CLASS (sym) != LOC_BLOCK
13347 && SYMBOL_CLASS (sym) != LOC_CONST
13348 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13349 && type_name != NULL && strcmp (type_name, "exception") == 0);
13350}
13351
13352/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13353 Ada exception object. This matches all exceptions except the ones
13354 defined by the Ada language. */
13355
13356static int
13357ada_is_non_standard_exception_sym (struct symbol *sym)
13358{
13359 int i;
13360
13361 if (!ada_is_exception_sym (sym))
13362 return 0;
13363
13364 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13365 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13366 return 0; /* A standard exception. */
13367
13368 /* Numeric_Error is also a standard exception, so exclude it.
13369 See the STANDARD_EXC description for more details as to why
13370 this exception is not listed in that array. */
13371 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13372 return 0;
13373
13374 return 1;
13375}
13376
ab816a27 13377/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13378 objects.
13379
13380 The comparison is determined first by exception name, and then
13381 by exception address. */
13382
ab816a27 13383bool
cc536b21 13384ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13385{
778865d3
JB
13386 int result;
13387
ab816a27
TT
13388 result = strcmp (name, other.name);
13389 if (result < 0)
13390 return true;
13391 if (result == 0 && addr < other.addr)
13392 return true;
13393 return false;
13394}
778865d3 13395
ab816a27 13396bool
cc536b21 13397ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13398{
13399 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13400}
13401
13402/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13403 routine, but keeping the first SKIP elements untouched.
13404
13405 All duplicates are also removed. */
13406
13407static void
ab816a27 13408sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13409 int skip)
13410{
ab816a27
TT
13411 std::sort (exceptions->begin () + skip, exceptions->end ());
13412 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13413 exceptions->end ());
778865d3
JB
13414}
13415
778865d3
JB
13416/* Add all exceptions defined by the Ada standard whose name match
13417 a regular expression.
13418
13419 If PREG is not NULL, then this regexp_t object is used to
13420 perform the symbol name matching. Otherwise, no name-based
13421 filtering is performed.
13422
13423 EXCEPTIONS is a vector of exceptions to which matching exceptions
13424 gets pushed. */
13425
13426static void
2d7cc5c7 13427ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13428 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13429{
13430 int i;
13431
13432 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13433 {
13434 if (preg == NULL
2d7cc5c7 13435 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13436 {
13437 struct bound_minimal_symbol msymbol
13438 = ada_lookup_simple_minsym (standard_exc[i]);
13439
13440 if (msymbol.minsym != NULL)
13441 {
13442 struct ada_exc_info info
77e371c0 13443 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13444
ab816a27 13445 exceptions->push_back (info);
778865d3
JB
13446 }
13447 }
13448 }
13449}
13450
13451/* Add all Ada exceptions defined locally and accessible from the given
13452 FRAME.
13453
13454 If PREG is not NULL, then this regexp_t object is used to
13455 perform the symbol name matching. Otherwise, no name-based
13456 filtering is performed.
13457
13458 EXCEPTIONS is a vector of exceptions to which matching exceptions
13459 gets pushed. */
13460
13461static void
2d7cc5c7
PA
13462ada_add_exceptions_from_frame (compiled_regex *preg,
13463 struct frame_info *frame,
ab816a27 13464 std::vector<ada_exc_info> *exceptions)
778865d3 13465{
3977b71f 13466 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13467
13468 while (block != 0)
13469 {
13470 struct block_iterator iter;
13471 struct symbol *sym;
13472
13473 ALL_BLOCK_SYMBOLS (block, iter, sym)
13474 {
13475 switch (SYMBOL_CLASS (sym))
13476 {
13477 case LOC_TYPEDEF:
13478 case LOC_BLOCK:
13479 case LOC_CONST:
13480 break;
13481 default:
13482 if (ada_is_exception_sym (sym))
13483 {
13484 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13485 SYMBOL_VALUE_ADDRESS (sym)};
13486
ab816a27 13487 exceptions->push_back (info);
778865d3
JB
13488 }
13489 }
13490 }
13491 if (BLOCK_FUNCTION (block) != NULL)
13492 break;
13493 block = BLOCK_SUPERBLOCK (block);
13494 }
13495}
13496
14bc53a8
PA
13497/* Return true if NAME matches PREG or if PREG is NULL. */
13498
13499static bool
2d7cc5c7 13500name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13501{
13502 return (preg == NULL
2d7cc5c7 13503 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13504}
13505
778865d3
JB
13506/* Add all exceptions defined globally whose name name match
13507 a regular expression, excluding standard exceptions.
13508
13509 The reason we exclude standard exceptions is that they need
13510 to be handled separately: Standard exceptions are defined inside
13511 a runtime unit which is normally not compiled with debugging info,
13512 and thus usually do not show up in our symbol search. However,
13513 if the unit was in fact built with debugging info, we need to
13514 exclude them because they would duplicate the entry we found
13515 during the special loop that specifically searches for those
13516 standard exceptions.
13517
13518 If PREG is not NULL, then this regexp_t object is used to
13519 perform the symbol name matching. Otherwise, no name-based
13520 filtering is performed.
13521
13522 EXCEPTIONS is a vector of exceptions to which matching exceptions
13523 gets pushed. */
13524
13525static void
2d7cc5c7 13526ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13527 std::vector<ada_exc_info> *exceptions)
778865d3 13528{
14bc53a8
PA
13529 /* In Ada, the symbol "search name" is a linkage name, whereas the
13530 regular expression used to do the matching refers to the natural
13531 name. So match against the decoded name. */
13532 expand_symtabs_matching (NULL,
b5ec771e 13533 lookup_name_info::match_any (),
14bc53a8
PA
13534 [&] (const char *search_name)
13535 {
13536 const char *decoded = ada_decode (search_name);
13537 return name_matches_regex (decoded, preg);
13538 },
13539 NULL,
13540 VARIABLES_DOMAIN);
778865d3 13541
2030c079 13542 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13543 {
b669c953 13544 for (compunit_symtab *s : objfile->compunits ())
778865d3 13545 {
d8aeb77f
TT
13546 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13547 int i;
778865d3 13548
d8aeb77f
TT
13549 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13550 {
582942f4 13551 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13552 struct block_iterator iter;
13553 struct symbol *sym;
778865d3 13554
d8aeb77f
TT
13555 ALL_BLOCK_SYMBOLS (b, iter, sym)
13556 if (ada_is_non_standard_exception_sym (sym)
13557 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13558 {
13559 struct ada_exc_info info
13560 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13561
13562 exceptions->push_back (info);
13563 }
13564 }
778865d3
JB
13565 }
13566 }
13567}
13568
13569/* Implements ada_exceptions_list with the regular expression passed
13570 as a regex_t, rather than a string.
13571
13572 If not NULL, PREG is used to filter out exceptions whose names
13573 do not match. Otherwise, all exceptions are listed. */
13574
ab816a27 13575static std::vector<ada_exc_info>
2d7cc5c7 13576ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13577{
ab816a27 13578 std::vector<ada_exc_info> result;
778865d3
JB
13579 int prev_len;
13580
13581 /* First, list the known standard exceptions. These exceptions
13582 need to be handled separately, as they are usually defined in
13583 runtime units that have been compiled without debugging info. */
13584
13585 ada_add_standard_exceptions (preg, &result);
13586
13587 /* Next, find all exceptions whose scope is local and accessible
13588 from the currently selected frame. */
13589
13590 if (has_stack_frames ())
13591 {
ab816a27 13592 prev_len = result.size ();
778865d3
JB
13593 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13594 &result);
ab816a27 13595 if (result.size () > prev_len)
778865d3
JB
13596 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13597 }
13598
13599 /* Add all exceptions whose scope is global. */
13600
ab816a27 13601 prev_len = result.size ();
778865d3 13602 ada_add_global_exceptions (preg, &result);
ab816a27 13603 if (result.size () > prev_len)
778865d3
JB
13604 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13605
778865d3
JB
13606 return result;
13607}
13608
13609/* Return a vector of ada_exc_info.
13610
13611 If REGEXP is NULL, all exceptions are included in the result.
13612 Otherwise, it should contain a valid regular expression,
13613 and only the exceptions whose names match that regular expression
13614 are included in the result.
13615
13616 The exceptions are sorted in the following order:
13617 - Standard exceptions (defined by the Ada language), in
13618 alphabetical order;
13619 - Exceptions only visible from the current frame, in
13620 alphabetical order;
13621 - Exceptions whose scope is global, in alphabetical order. */
13622
ab816a27 13623std::vector<ada_exc_info>
778865d3
JB
13624ada_exceptions_list (const char *regexp)
13625{
2d7cc5c7
PA
13626 if (regexp == NULL)
13627 return ada_exceptions_list_1 (NULL);
778865d3 13628
2d7cc5c7
PA
13629 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13630 return ada_exceptions_list_1 (&reg);
778865d3
JB
13631}
13632
13633/* Implement the "info exceptions" command. */
13634
13635static void
1d12d88f 13636info_exceptions_command (const char *regexp, int from_tty)
778865d3 13637{
778865d3 13638 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13639
ab816a27 13640 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13641
13642 if (regexp != NULL)
13643 printf_filtered
13644 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13645 else
13646 printf_filtered (_("All defined Ada exceptions:\n"));
13647
ab816a27
TT
13648 for (const ada_exc_info &info : exceptions)
13649 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13650}
13651
4c4b4cd2
PH
13652 /* Operators */
13653/* Information about operators given special treatment in functions
13654 below. */
13655/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13656
13657#define ADA_OPERATORS \
13658 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13659 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13660 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13661 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13662 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13663 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13664 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13665 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13666 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13667 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13668 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13669 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13670 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13671 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13672 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13673 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13674 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13675 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13676 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13677
13678static void
554794dc
SDJ
13679ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13680 int *argsp)
4c4b4cd2
PH
13681{
13682 switch (exp->elts[pc - 1].opcode)
13683 {
76a01679 13684 default:
4c4b4cd2
PH
13685 operator_length_standard (exp, pc, oplenp, argsp);
13686 break;
13687
13688#define OP_DEFN(op, len, args, binop) \
13689 case op: *oplenp = len; *argsp = args; break;
13690 ADA_OPERATORS;
13691#undef OP_DEFN
52ce6436
PH
13692
13693 case OP_AGGREGATE:
13694 *oplenp = 3;
13695 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13696 break;
13697
13698 case OP_CHOICES:
13699 *oplenp = 3;
13700 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13701 break;
4c4b4cd2
PH
13702 }
13703}
13704
c0201579
JK
13705/* Implementation of the exp_descriptor method operator_check. */
13706
13707static int
13708ada_operator_check (struct expression *exp, int pos,
13709 int (*objfile_func) (struct objfile *objfile, void *data),
13710 void *data)
13711{
13712 const union exp_element *const elts = exp->elts;
13713 struct type *type = NULL;
13714
13715 switch (elts[pos].opcode)
13716 {
13717 case UNOP_IN_RANGE:
13718 case UNOP_QUAL:
13719 type = elts[pos + 1].type;
13720 break;
13721
13722 default:
13723 return operator_check_standard (exp, pos, objfile_func, data);
13724 }
13725
13726 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13727
13728 if (type && TYPE_OBJFILE (type)
13729 && (*objfile_func) (TYPE_OBJFILE (type), data))
13730 return 1;
13731
13732 return 0;
13733}
13734
a121b7c1 13735static const char *
4c4b4cd2
PH
13736ada_op_name (enum exp_opcode opcode)
13737{
13738 switch (opcode)
13739 {
76a01679 13740 default:
4c4b4cd2 13741 return op_name_standard (opcode);
52ce6436 13742
4c4b4cd2
PH
13743#define OP_DEFN(op, len, args, binop) case op: return #op;
13744 ADA_OPERATORS;
13745#undef OP_DEFN
52ce6436
PH
13746
13747 case OP_AGGREGATE:
13748 return "OP_AGGREGATE";
13749 case OP_CHOICES:
13750 return "OP_CHOICES";
13751 case OP_NAME:
13752 return "OP_NAME";
4c4b4cd2
PH
13753 }
13754}
13755
13756/* As for operator_length, but assumes PC is pointing at the first
13757 element of the operator, and gives meaningful results only for the
52ce6436 13758 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13759
13760static void
76a01679
JB
13761ada_forward_operator_length (struct expression *exp, int pc,
13762 int *oplenp, int *argsp)
4c4b4cd2 13763{
76a01679 13764 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13765 {
13766 default:
13767 *oplenp = *argsp = 0;
13768 break;
52ce6436 13769
4c4b4cd2
PH
13770#define OP_DEFN(op, len, args, binop) \
13771 case op: *oplenp = len; *argsp = args; break;
13772 ADA_OPERATORS;
13773#undef OP_DEFN
52ce6436
PH
13774
13775 case OP_AGGREGATE:
13776 *oplenp = 3;
13777 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13778 break;
13779
13780 case OP_CHOICES:
13781 *oplenp = 3;
13782 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13783 break;
13784
13785 case OP_STRING:
13786 case OP_NAME:
13787 {
13788 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13789
52ce6436
PH
13790 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13791 *argsp = 0;
13792 break;
13793 }
4c4b4cd2
PH
13794 }
13795}
13796
13797static int
13798ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13799{
13800 enum exp_opcode op = exp->elts[elt].opcode;
13801 int oplen, nargs;
13802 int pc = elt;
13803 int i;
76a01679 13804
4c4b4cd2
PH
13805 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13806
76a01679 13807 switch (op)
4c4b4cd2 13808 {
76a01679 13809 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13810 case OP_ATR_FIRST:
13811 case OP_ATR_LAST:
13812 case OP_ATR_LENGTH:
13813 case OP_ATR_IMAGE:
13814 case OP_ATR_MAX:
13815 case OP_ATR_MIN:
13816 case OP_ATR_MODULUS:
13817 case OP_ATR_POS:
13818 case OP_ATR_SIZE:
13819 case OP_ATR_TAG:
13820 case OP_ATR_VAL:
13821 break;
13822
13823 case UNOP_IN_RANGE:
13824 case UNOP_QUAL:
323e0a4a
AC
13825 /* XXX: gdb_sprint_host_address, type_sprint */
13826 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13827 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13828 fprintf_filtered (stream, " (");
13829 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13830 fprintf_filtered (stream, ")");
13831 break;
13832 case BINOP_IN_BOUNDS:
52ce6436
PH
13833 fprintf_filtered (stream, " (%d)",
13834 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13835 break;
13836 case TERNOP_IN_RANGE:
13837 break;
13838
52ce6436
PH
13839 case OP_AGGREGATE:
13840 case OP_OTHERS:
13841 case OP_DISCRETE_RANGE:
13842 case OP_POSITIONAL:
13843 case OP_CHOICES:
13844 break;
13845
13846 case OP_NAME:
13847 case OP_STRING:
13848 {
13849 char *name = &exp->elts[elt + 2].string;
13850 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13851
52ce6436
PH
13852 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13853 break;
13854 }
13855
4c4b4cd2
PH
13856 default:
13857 return dump_subexp_body_standard (exp, stream, elt);
13858 }
13859
13860 elt += oplen;
13861 for (i = 0; i < nargs; i += 1)
13862 elt = dump_subexp (exp, stream, elt);
13863
13864 return elt;
13865}
13866
13867/* The Ada extension of print_subexp (q.v.). */
13868
76a01679
JB
13869static void
13870ada_print_subexp (struct expression *exp, int *pos,
13871 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13872{
52ce6436 13873 int oplen, nargs, i;
4c4b4cd2
PH
13874 int pc = *pos;
13875 enum exp_opcode op = exp->elts[pc].opcode;
13876
13877 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13878
52ce6436 13879 *pos += oplen;
4c4b4cd2
PH
13880 switch (op)
13881 {
13882 default:
52ce6436 13883 *pos -= oplen;
4c4b4cd2
PH
13884 print_subexp_standard (exp, pos, stream, prec);
13885 return;
13886
13887 case OP_VAR_VALUE:
4c4b4cd2
PH
13888 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13889 return;
13890
13891 case BINOP_IN_BOUNDS:
323e0a4a 13892 /* XXX: sprint_subexp */
4c4b4cd2 13893 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13894 fputs_filtered (" in ", stream);
4c4b4cd2 13895 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13896 fputs_filtered ("'range", stream);
4c4b4cd2 13897 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13898 fprintf_filtered (stream, "(%ld)",
13899 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13900 return;
13901
13902 case TERNOP_IN_RANGE:
4c4b4cd2 13903 if (prec >= PREC_EQUAL)
76a01679 13904 fputs_filtered ("(", stream);
323e0a4a 13905 /* XXX: sprint_subexp */
4c4b4cd2 13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13907 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13908 print_subexp (exp, pos, stream, PREC_EQUAL);
13909 fputs_filtered (" .. ", stream);
13910 print_subexp (exp, pos, stream, PREC_EQUAL);
13911 if (prec >= PREC_EQUAL)
76a01679
JB
13912 fputs_filtered (")", stream);
13913 return;
4c4b4cd2
PH
13914
13915 case OP_ATR_FIRST:
13916 case OP_ATR_LAST:
13917 case OP_ATR_LENGTH:
13918 case OP_ATR_IMAGE:
13919 case OP_ATR_MAX:
13920 case OP_ATR_MIN:
13921 case OP_ATR_MODULUS:
13922 case OP_ATR_POS:
13923 case OP_ATR_SIZE:
13924 case OP_ATR_TAG:
13925 case OP_ATR_VAL:
4c4b4cd2 13926 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13927 {
13928 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13929 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13930 &type_print_raw_options);
76a01679
JB
13931 *pos += 3;
13932 }
4c4b4cd2 13933 else
76a01679 13934 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13935 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13936 if (nargs > 1)
76a01679
JB
13937 {
13938 int tem;
5b4ee69b 13939
76a01679
JB
13940 for (tem = 1; tem < nargs; tem += 1)
13941 {
13942 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13943 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13944 }
13945 fputs_filtered (")", stream);
13946 }
4c4b4cd2 13947 return;
14f9c5c9 13948
4c4b4cd2 13949 case UNOP_QUAL:
4c4b4cd2
PH
13950 type_print (exp->elts[pc + 1].type, "", stream, 0);
13951 fputs_filtered ("'(", stream);
13952 print_subexp (exp, pos, stream, PREC_PREFIX);
13953 fputs_filtered (")", stream);
13954 return;
14f9c5c9 13955
4c4b4cd2 13956 case UNOP_IN_RANGE:
323e0a4a 13957 /* XXX: sprint_subexp */
4c4b4cd2 13958 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13959 fputs_filtered (" in ", stream);
79d43c61
TT
13960 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13961 &type_print_raw_options);
4c4b4cd2 13962 return;
52ce6436
PH
13963
13964 case OP_DISCRETE_RANGE:
13965 print_subexp (exp, pos, stream, PREC_SUFFIX);
13966 fputs_filtered ("..", stream);
13967 print_subexp (exp, pos, stream, PREC_SUFFIX);
13968 return;
13969
13970 case OP_OTHERS:
13971 fputs_filtered ("others => ", stream);
13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
13973 return;
13974
13975 case OP_CHOICES:
13976 for (i = 0; i < nargs-1; i += 1)
13977 {
13978 if (i > 0)
13979 fputs_filtered ("|", stream);
13980 print_subexp (exp, pos, stream, PREC_SUFFIX);
13981 }
13982 fputs_filtered (" => ", stream);
13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
13984 return;
13985
13986 case OP_POSITIONAL:
13987 print_subexp (exp, pos, stream, PREC_SUFFIX);
13988 return;
13989
13990 case OP_AGGREGATE:
13991 fputs_filtered ("(", stream);
13992 for (i = 0; i < nargs; i += 1)
13993 {
13994 if (i > 0)
13995 fputs_filtered (", ", stream);
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 }
13998 fputs_filtered (")", stream);
13999 return;
4c4b4cd2
PH
14000 }
14001}
14f9c5c9
AS
14002
14003/* Table mapping opcodes into strings for printing operators
14004 and precedences of the operators. */
14005
d2e4a39e
AS
14006static const struct op_print ada_op_print_tab[] = {
14007 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14008 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14009 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14010 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14011 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14012 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14013 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14014 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14015 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14016 {">=", BINOP_GEQ, PREC_ORDER, 0},
14017 {">", BINOP_GTR, PREC_ORDER, 0},
14018 {"<", BINOP_LESS, PREC_ORDER, 0},
14019 {">>", BINOP_RSH, PREC_SHIFT, 0},
14020 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14021 {"+", BINOP_ADD, PREC_ADD, 0},
14022 {"-", BINOP_SUB, PREC_ADD, 0},
14023 {"&", BINOP_CONCAT, PREC_ADD, 0},
14024 {"*", BINOP_MUL, PREC_MUL, 0},
14025 {"/", BINOP_DIV, PREC_MUL, 0},
14026 {"rem", BINOP_REM, PREC_MUL, 0},
14027 {"mod", BINOP_MOD, PREC_MUL, 0},
14028 {"**", BINOP_EXP, PREC_REPEAT, 0},
14029 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14030 {"-", UNOP_NEG, PREC_PREFIX, 0},
14031 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14032 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14033 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14034 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14035 {".all", UNOP_IND, PREC_SUFFIX, 1},
14036 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14037 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14038 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14039};
14040\f
72d5681a
PH
14041enum ada_primitive_types {
14042 ada_primitive_type_int,
14043 ada_primitive_type_long,
14044 ada_primitive_type_short,
14045 ada_primitive_type_char,
14046 ada_primitive_type_float,
14047 ada_primitive_type_double,
14048 ada_primitive_type_void,
14049 ada_primitive_type_long_long,
14050 ada_primitive_type_long_double,
14051 ada_primitive_type_natural,
14052 ada_primitive_type_positive,
14053 ada_primitive_type_system_address,
08f49010 14054 ada_primitive_type_storage_offset,
72d5681a
PH
14055 nr_ada_primitive_types
14056};
6c038f32
PH
14057
14058static void
d4a9a881 14059ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14060 struct language_arch_info *lai)
14061{
d4a9a881 14062 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14063
72d5681a 14064 lai->primitive_type_vector
d4a9a881 14065 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14066 struct type *);
e9bb382b
UW
14067
14068 lai->primitive_type_vector [ada_primitive_type_int]
14069 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14070 0, "integer");
14071 lai->primitive_type_vector [ada_primitive_type_long]
14072 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14073 0, "long_integer");
14074 lai->primitive_type_vector [ada_primitive_type_short]
14075 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14076 0, "short_integer");
14077 lai->string_char_type
14078 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14079 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14080 lai->primitive_type_vector [ada_primitive_type_float]
14081 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14082 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14083 lai->primitive_type_vector [ada_primitive_type_double]
14084 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14085 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14086 lai->primitive_type_vector [ada_primitive_type_long_long]
14087 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14088 0, "long_long_integer");
14089 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14090 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14091 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14092 lai->primitive_type_vector [ada_primitive_type_natural]
14093 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14094 0, "natural");
14095 lai->primitive_type_vector [ada_primitive_type_positive]
14096 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14097 0, "positive");
14098 lai->primitive_type_vector [ada_primitive_type_void]
14099 = builtin->builtin_void;
14100
14101 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14102 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14103 "void"));
72d5681a
PH
14104 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14105 = "system__address";
fbb06eb1 14106
08f49010
XR
14107 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14108 type. This is a signed integral type whose size is the same as
14109 the size of addresses. */
14110 {
14111 unsigned int addr_length = TYPE_LENGTH
14112 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14113
14114 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14115 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14116 "storage_offset");
14117 }
14118
47e729a8 14119 lai->bool_type_symbol = NULL;
fbb06eb1 14120 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14121}
6c038f32
PH
14122\f
14123 /* Language vector */
14124
14125/* Not really used, but needed in the ada_language_defn. */
14126
14127static void
6c7a06a3 14128emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14129{
6c7a06a3 14130 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14131}
14132
14133static int
410a0ff2 14134parse (struct parser_state *ps)
6c038f32
PH
14135{
14136 warnings_issued = 0;
410a0ff2 14137 return ada_parse (ps);
6c038f32
PH
14138}
14139
14140static const struct exp_descriptor ada_exp_descriptor = {
14141 ada_print_subexp,
14142 ada_operator_length,
c0201579 14143 ada_operator_check,
6c038f32
PH
14144 ada_op_name,
14145 ada_dump_subexp_body,
14146 ada_evaluate_subexp
14147};
14148
b5ec771e
PA
14149/* symbol_name_matcher_ftype adapter for wild_match. */
14150
14151static bool
14152do_wild_match (const char *symbol_search_name,
14153 const lookup_name_info &lookup_name,
a207cff2 14154 completion_match_result *comp_match_res)
b5ec771e
PA
14155{
14156 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14157}
14158
14159/* symbol_name_matcher_ftype adapter for full_match. */
14160
14161static bool
14162do_full_match (const char *symbol_search_name,
14163 const lookup_name_info &lookup_name,
a207cff2 14164 completion_match_result *comp_match_res)
b5ec771e
PA
14165{
14166 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14167}
14168
a2cd4f14
JB
14169/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14170
14171static bool
14172do_exact_match (const char *symbol_search_name,
14173 const lookup_name_info &lookup_name,
14174 completion_match_result *comp_match_res)
14175{
14176 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14177}
14178
b5ec771e
PA
14179/* Build the Ada lookup name for LOOKUP_NAME. */
14180
14181ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14182{
14183 const std::string &user_name = lookup_name.name ();
14184
14185 if (user_name[0] == '<')
14186 {
14187 if (user_name.back () == '>')
14188 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14189 else
14190 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14191 m_encoded_p = true;
14192 m_verbatim_p = true;
14193 m_wild_match_p = false;
14194 m_standard_p = false;
14195 }
14196 else
14197 {
14198 m_verbatim_p = false;
14199
14200 m_encoded_p = user_name.find ("__") != std::string::npos;
14201
14202 if (!m_encoded_p)
14203 {
14204 const char *folded = ada_fold_name (user_name.c_str ());
14205 const char *encoded = ada_encode_1 (folded, false);
14206 if (encoded != NULL)
14207 m_encoded_name = encoded;
14208 else
14209 m_encoded_name = user_name;
14210 }
14211 else
14212 m_encoded_name = user_name;
14213
14214 /* Handle the 'package Standard' special case. See description
14215 of m_standard_p. */
14216 if (startswith (m_encoded_name.c_str (), "standard__"))
14217 {
14218 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14219 m_standard_p = true;
14220 }
14221 else
14222 m_standard_p = false;
74ccd7f5 14223
b5ec771e
PA
14224 /* If the name contains a ".", then the user is entering a fully
14225 qualified entity name, and the match must not be done in wild
14226 mode. Similarly, if the user wants to complete what looks
14227 like an encoded name, the match must not be done in wild
14228 mode. Also, in the standard__ special case always do
14229 non-wild matching. */
14230 m_wild_match_p
14231 = (lookup_name.match_type () != symbol_name_match_type::FULL
14232 && !m_encoded_p
14233 && !m_standard_p
14234 && user_name.find ('.') == std::string::npos);
14235 }
14236}
14237
14238/* symbol_name_matcher_ftype method for Ada. This only handles
14239 completion mode. */
14240
14241static bool
14242ada_symbol_name_matches (const char *symbol_search_name,
14243 const lookup_name_info &lookup_name,
a207cff2 14244 completion_match_result *comp_match_res)
74ccd7f5 14245{
b5ec771e
PA
14246 return lookup_name.ada ().matches (symbol_search_name,
14247 lookup_name.match_type (),
a207cff2 14248 comp_match_res);
b5ec771e
PA
14249}
14250
de63c46b
PA
14251/* A name matcher that matches the symbol name exactly, with
14252 strcmp. */
14253
14254static bool
14255literal_symbol_name_matcher (const char *symbol_search_name,
14256 const lookup_name_info &lookup_name,
14257 completion_match_result *comp_match_res)
14258{
14259 const std::string &name = lookup_name.name ();
14260
14261 int cmp = (lookup_name.completion_mode ()
14262 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14263 : strcmp (symbol_search_name, name.c_str ()));
14264 if (cmp == 0)
14265 {
14266 if (comp_match_res != NULL)
14267 comp_match_res->set_match (symbol_search_name);
14268 return true;
14269 }
14270 else
14271 return false;
14272}
14273
b5ec771e
PA
14274/* Implement the "la_get_symbol_name_matcher" language_defn method for
14275 Ada. */
14276
14277static symbol_name_matcher_ftype *
14278ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14279{
de63c46b
PA
14280 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14281 return literal_symbol_name_matcher;
14282
b5ec771e
PA
14283 if (lookup_name.completion_mode ())
14284 return ada_symbol_name_matches;
74ccd7f5 14285 else
b5ec771e
PA
14286 {
14287 if (lookup_name.ada ().wild_match_p ())
14288 return do_wild_match;
a2cd4f14
JB
14289 else if (lookup_name.ada ().verbatim_p ())
14290 return do_exact_match;
b5ec771e
PA
14291 else
14292 return do_full_match;
14293 }
74ccd7f5
JB
14294}
14295
a5ee536b
JB
14296/* Implement the "la_read_var_value" language_defn method for Ada. */
14297
14298static struct value *
63e43d3a
PMR
14299ada_read_var_value (struct symbol *var, const struct block *var_block,
14300 struct frame_info *frame)
a5ee536b 14301{
a5ee536b
JB
14302 /* The only case where default_read_var_value is not sufficient
14303 is when VAR is a renaming... */
c0e70c62
TT
14304 if (frame != nullptr)
14305 {
14306 const struct block *frame_block = get_frame_block (frame, NULL);
14307 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14308 return ada_read_renaming_var_value (var, frame_block);
14309 }
a5ee536b
JB
14310
14311 /* This is a typical case where we expect the default_read_var_value
14312 function to work. */
63e43d3a 14313 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14314}
14315
56618e20
TT
14316static const char *ada_extensions[] =
14317{
14318 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14319};
14320
47e77640 14321extern const struct language_defn ada_language_defn = {
6c038f32 14322 "ada", /* Language name */
6abde28f 14323 "Ada",
6c038f32 14324 language_ada,
6c038f32 14325 range_check_off,
6c038f32
PH
14326 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14327 that's not quite what this means. */
6c038f32 14328 array_row_major,
9a044a89 14329 macro_expansion_no,
56618e20 14330 ada_extensions,
6c038f32
PH
14331 &ada_exp_descriptor,
14332 parse,
6c038f32
PH
14333 resolve,
14334 ada_printchar, /* Print a character constant */
14335 ada_printstr, /* Function to print string constant */
14336 emit_char, /* Function to print single char (not used) */
6c038f32 14337 ada_print_type, /* Print a type using appropriate syntax */
be942545 14338 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14339 ada_val_print, /* Print a value using appropriate syntax */
14340 ada_value_print, /* Print a top-level value */
a5ee536b 14341 ada_read_var_value, /* la_read_var_value */
6c038f32 14342 NULL, /* Language specific skip_trampoline */
2b2d9e11 14343 NULL, /* name_of_this */
59cc4834 14344 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14345 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14346 basic_lookup_transparent_type, /* lookup_transparent_type */
14347 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14348 ada_sniff_from_mangled_name,
0963b4bd
MS
14349 NULL, /* Language specific
14350 class_name_from_physname */
6c038f32
PH
14351 ada_op_print_tab, /* expression operators for printing */
14352 0, /* c-style arrays */
14353 1, /* String lower bound */
6c038f32 14354 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14355 ada_collect_symbol_completion_matches,
72d5681a 14356 ada_language_arch_info,
e79af960 14357 ada_print_array_index,
41f1b697 14358 default_pass_by_reference,
ae6a3a4c 14359 c_get_string,
e2b7af72 14360 ada_watch_location_expression,
b5ec771e 14361 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14362 ada_iterate_over_symbols,
5ffa0793 14363 default_search_name_hash,
a53b64ea 14364 &ada_varobj_ops,
bb2ec1b3 14365 NULL,
721b08c6 14366 NULL,
4be290b2 14367 ada_is_string_type,
721b08c6 14368 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14369};
14370
5bf03f13
JB
14371/* Command-list for the "set/show ada" prefix command. */
14372static struct cmd_list_element *set_ada_list;
14373static struct cmd_list_element *show_ada_list;
14374
14375/* Implement the "set ada" prefix command. */
14376
14377static void
981a3fb3 14378set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14379{
14380 printf_unfiltered (_(\
14381"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14382 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14383}
14384
14385/* Implement the "show ada" prefix command. */
14386
14387static void
981a3fb3 14388show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14389{
14390 cmd_show_list (show_ada_list, from_tty, "");
14391}
14392
2060206e
PA
14393static void
14394initialize_ada_catchpoint_ops (void)
14395{
14396 struct breakpoint_ops *ops;
14397
14398 initialize_breakpoint_ops ();
14399
14400 ops = &catch_exception_breakpoint_ops;
14401 *ops = bkpt_breakpoint_ops;
2060206e
PA
14402 ops->allocate_location = allocate_location_catch_exception;
14403 ops->re_set = re_set_catch_exception;
14404 ops->check_status = check_status_catch_exception;
14405 ops->print_it = print_it_catch_exception;
14406 ops->print_one = print_one_catch_exception;
14407 ops->print_mention = print_mention_catch_exception;
14408 ops->print_recreate = print_recreate_catch_exception;
14409
14410 ops = &catch_exception_unhandled_breakpoint_ops;
14411 *ops = bkpt_breakpoint_ops;
2060206e
PA
14412 ops->allocate_location = allocate_location_catch_exception_unhandled;
14413 ops->re_set = re_set_catch_exception_unhandled;
14414 ops->check_status = check_status_catch_exception_unhandled;
14415 ops->print_it = print_it_catch_exception_unhandled;
14416 ops->print_one = print_one_catch_exception_unhandled;
14417 ops->print_mention = print_mention_catch_exception_unhandled;
14418 ops->print_recreate = print_recreate_catch_exception_unhandled;
14419
14420 ops = &catch_assert_breakpoint_ops;
14421 *ops = bkpt_breakpoint_ops;
2060206e
PA
14422 ops->allocate_location = allocate_location_catch_assert;
14423 ops->re_set = re_set_catch_assert;
14424 ops->check_status = check_status_catch_assert;
14425 ops->print_it = print_it_catch_assert;
14426 ops->print_one = print_one_catch_assert;
14427 ops->print_mention = print_mention_catch_assert;
14428 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14429
14430 ops = &catch_handlers_breakpoint_ops;
14431 *ops = bkpt_breakpoint_ops;
14432 ops->allocate_location = allocate_location_catch_handlers;
14433 ops->re_set = re_set_catch_handlers;
14434 ops->check_status = check_status_catch_handlers;
14435 ops->print_it = print_it_catch_handlers;
14436 ops->print_one = print_one_catch_handlers;
14437 ops->print_mention = print_mention_catch_handlers;
14438 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14439}
14440
3d9434b5
JB
14441/* This module's 'new_objfile' observer. */
14442
14443static void
14444ada_new_objfile_observer (struct objfile *objfile)
14445{
14446 ada_clear_symbol_cache ();
14447}
14448
14449/* This module's 'free_objfile' observer. */
14450
14451static void
14452ada_free_objfile_observer (struct objfile *objfile)
14453{
14454 ada_clear_symbol_cache ();
14455}
14456
d2e4a39e 14457void
6c038f32 14458_initialize_ada_language (void)
14f9c5c9 14459{
2060206e
PA
14460 initialize_ada_catchpoint_ops ();
14461
5bf03f13 14462 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14463 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14464 &set_ada_list, "set ada ", 0, &setlist);
14465
14466 add_prefix_cmd ("ada", no_class, show_ada_command,
14467 _("Generic command for showing Ada-specific settings."),
14468 &show_ada_list, "show ada ", 0, &showlist);
14469
14470 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14471 &trust_pad_over_xvs, _("\
590042fc
PW
14472Enable or disable an optimization trusting PAD types over XVS types."), _("\
14473Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14474 _("\
14475This is related to the encoding used by the GNAT compiler. The debugger\n\
14476should normally trust the contents of PAD types, but certain older versions\n\
14477of GNAT have a bug that sometimes causes the information in the PAD type\n\
14478to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14479work around this bug. It is always safe to turn this option \"off\", but\n\
14480this incurs a slight performance penalty, so it is recommended to NOT change\n\
14481this option to \"off\" unless necessary."),
14482 NULL, NULL, &set_ada_list, &show_ada_list);
14483
d72413e6
PMR
14484 add_setshow_boolean_cmd ("print-signatures", class_vars,
14485 &print_signatures, _("\
14486Enable or disable the output of formal and return types for functions in the \
590042fc 14487overloads selection menu."), _("\
d72413e6 14488Show whether the output of formal and return types for functions in the \
590042fc 14489overloads selection menu is activated."),
d72413e6
PMR
14490 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14491
9ac4176b
PA
14492 add_catch_command ("exception", _("\
14493Catch Ada exceptions, when raised.\n\
9bf7038b 14494Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14495Without any argument, stop when any Ada exception is raised.\n\
14496If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14497being raised does not have a handler (and will therefore lead to the task's\n\
14498termination).\n\
14499Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14500raised is the same as ARG.\n\
14501CONDITION is a boolean expression that is evaluated to see whether the\n\
14502exception should cause a stop."),
9ac4176b 14503 catch_ada_exception_command,
71bed2db 14504 catch_ada_completer,
9ac4176b
PA
14505 CATCH_PERMANENT,
14506 CATCH_TEMPORARY);
9f757bf7
XR
14507
14508 add_catch_command ("handlers", _("\
14509Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14510Usage: catch handlers [ARG] [if CONDITION]\n\
14511Without any argument, stop when any Ada exception is handled.\n\
14512With an argument, catch only exceptions with the given name.\n\
14513CONDITION is a boolean expression that is evaluated to see whether the\n\
14514exception should cause a stop."),
9f757bf7 14515 catch_ada_handlers_command,
71bed2db 14516 catch_ada_completer,
9f757bf7
XR
14517 CATCH_PERMANENT,
14518 CATCH_TEMPORARY);
9ac4176b
PA
14519 add_catch_command ("assert", _("\
14520Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14521Usage: catch assert [if CONDITION]\n\
14522CONDITION is a boolean expression that is evaluated to see whether the\n\
14523exception should cause a stop."),
9ac4176b
PA
14524 catch_assert_command,
14525 NULL,
14526 CATCH_PERMANENT,
14527 CATCH_TEMPORARY);
14528
6c038f32 14529 varsize_limit = 65536;
3fcded8f
JB
14530 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14531 &varsize_limit, _("\
14532Set the maximum number of bytes allowed in a variable-size object."), _("\
14533Show the maximum number of bytes allowed in a variable-size object."), _("\
14534Attempts to access an object whose size is not a compile-time constant\n\
14535and exceeds this limit will cause an error."),
14536 NULL, NULL, &setlist, &showlist);
6c038f32 14537
778865d3
JB
14538 add_info ("exceptions", info_exceptions_command,
14539 _("\
14540List all Ada exception names.\n\
9bf7038b 14541Usage: info exceptions [REGEXP]\n\
778865d3
JB
14542If a regular expression is passed as an argument, only those matching\n\
14543the regular expression are listed."));
14544
c6044dd1
JB
14545 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14546 _("Set Ada maintenance-related variables."),
14547 &maint_set_ada_cmdlist, "maintenance set ada ",
14548 0/*allow-unknown*/, &maintenance_set_cmdlist);
14549
14550 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14551 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14552 &maint_show_ada_cmdlist, "maintenance show ada ",
14553 0/*allow-unknown*/, &maintenance_show_cmdlist);
14554
14555 add_setshow_boolean_cmd
14556 ("ignore-descriptive-types", class_maintenance,
14557 &ada_ignore_descriptive_types_p,
14558 _("Set whether descriptive types generated by GNAT should be ignored."),
14559 _("Show whether descriptive types generated by GNAT should be ignored."),
14560 _("\
14561When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14562DWARF attribute."),
14563 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14564
459a2e4c
TT
14565 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14566 NULL, xcalloc, xfree);
6b69afc4 14567
3d9434b5 14568 /* The ada-lang observers. */
76727919
TT
14569 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14570 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14571 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14572}
This page took 3.01665 seconds and 4 git commands to generate.