2009-06-23 Paul Pluzhnikov <ppluzhnikov@google.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
4c4b4cd2 129static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 130 struct type *);
14f9c5c9 131
d2e4a39e 132static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 133 struct symbol *, struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
4c4b4cd2
PH
137static char *ada_op_name (enum exp_opcode);
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
aeb5907d
JB
149static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
4c4b4cd2 157static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 158 int, int, int *);
4c4b4cd2 159
d2e4a39e 160static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 161 int *, enum noside);
14f9c5c9 162
d2e4a39e 163static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 164
d2e4a39e 165static int is_dynamic_field (struct type *, int);
14f9c5c9 166
10a2c479 167static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 168 const gdb_byte *,
4c4b4cd2
PH
169 CORE_ADDR, struct value *);
170
171static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 172
d2e4a39e 173static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 174 struct objfile *);
14f9c5c9 175
d2e4a39e 176static struct type *to_static_fixed_type (struct type *);
f192137b 177static struct type *static_unwrap_type (struct type *type);
14f9c5c9 178
d2e4a39e 179static struct value *unwrap_value (struct value *);
14f9c5c9 180
d2e4a39e 181static struct type *packed_array_type (struct type *, long *);
14f9c5c9 182
d2e4a39e 183static struct type *decode_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *decode_packed_array (struct value *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
52ce6436
PH
190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
d2e4a39e 203static int wild_match (const char *, int, const char *);
14f9c5c9 204
d2e4a39e 205static struct value *ada_coerce_ref (struct value *);
14f9c5c9 206
4c4b4cd2
PH
207static LONGEST pos_atr (struct value *);
208
3cb382c9 209static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 210
d2e4a39e 211static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 212
4c4b4cd2
PH
213static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
14f9c5c9 215
4c4b4cd2
PH
216static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
76a01679 222static int find_struct_field (char *, struct type *, int,
52ce6436 223 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
224
225static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234static struct value *ada_coerce_to_simple_array (struct value *);
235
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *, int *, enum noside);
248
249static void aggregate_assign_from_choices (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *,
252 int, LONGEST, LONGEST);
253
254static void aggregate_assign_positional (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int *, int,
257 LONGEST, LONGEST);
258
259
260static void aggregate_assign_others (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int, LONGEST, LONGEST);
263
264
265static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266
267
268static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 int *, enum noside);
270
271static void ada_forward_operator_length (struct expression *, int, int *,
272 int *);
4c4b4cd2
PH
273\f
274
76a01679 275
4c4b4cd2 276/* Maximum-sized dynamic type. */
14f9c5c9
AS
277static unsigned int varsize_limit;
278
4c4b4cd2
PH
279/* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281static char *ada_completer_word_break_characters =
282#ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284#else
14f9c5c9 285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 286#endif
14f9c5c9 287
4c4b4cd2 288/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 289static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 290 = "__gnat_ada_main_program_name";
14f9c5c9 291
4c4b4cd2
PH
292/* Limit on the number of warnings to raise per expression evaluation. */
293static int warning_limit = 2;
294
295/* Number of warning messages issued; reset to 0 by cleanups after
296 expression evaluation. */
297static int warnings_issued = 0;
298
299static const char *known_runtime_file_name_patterns[] = {
300 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
301};
302
303static const char *known_auxiliary_function_name_patterns[] = {
304 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
305};
306
307/* Space for allocating results of ada_lookup_symbol_list. */
308static struct obstack symbol_list_obstack;
309
310 /* Utilities */
311
41d27058
JB
312/* Given DECODED_NAME a string holding a symbol name in its
313 decoded form (ie using the Ada dotted notation), returns
314 its unqualified name. */
315
316static const char *
317ada_unqualified_name (const char *decoded_name)
318{
319 const char *result = strrchr (decoded_name, '.');
320
321 if (result != NULL)
322 result++; /* Skip the dot... */
323 else
324 result = decoded_name;
325
326 return result;
327}
328
329/* Return a string starting with '<', followed by STR, and '>'.
330 The result is good until the next call. */
331
332static char *
333add_angle_brackets (const char *str)
334{
335 static char *result = NULL;
336
337 xfree (result);
88c15c34 338 result = xstrprintf ("<%s>", str);
41d27058
JB
339 return result;
340}
96d887e8 341
4c4b4cd2
PH
342static char *
343ada_get_gdb_completer_word_break_characters (void)
344{
345 return ada_completer_word_break_characters;
346}
347
e79af960
JB
348/* Print an array element index using the Ada syntax. */
349
350static void
351ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 352 const struct value_print_options *options)
e79af960 353{
79a45b7d 354 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
355 fprintf_filtered (stream, " => ");
356}
357
4c4b4cd2
PH
358/* Read the string located at ADDR from the inferior and store the
359 result into BUF. */
360
361static void
14f9c5c9
AS
362extract_string (CORE_ADDR addr, char *buf)
363{
d2e4a39e 364 int char_index = 0;
14f9c5c9 365
4c4b4cd2
PH
366 /* Loop, reading one byte at a time, until we reach the '\000'
367 end-of-string marker. */
d2e4a39e
AS
368 do
369 {
370 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 371 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
372 char_index++;
373 }
374 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
375}
376
f27cf670 377/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 378 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 379 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 380
f27cf670
AS
381void *
382grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 383{
d2e4a39e
AS
384 if (*size < min_size)
385 {
386 *size *= 2;
387 if (*size < min_size)
4c4b4cd2 388 *size = min_size;
f27cf670 389 vect = xrealloc (vect, *size * element_size);
d2e4a39e 390 }
f27cf670 391 return vect;
14f9c5c9
AS
392}
393
394/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 395 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
396
397static int
ebf56fd3 398field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
399{
400 int len = strlen (target);
d2e4a39e 401 return
4c4b4cd2
PH
402 (strncmp (field_name, target, len) == 0
403 && (field_name[len] == '\0'
404 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
405 && strcmp (field_name + strlen (field_name) - 6,
406 "___XVN") != 0)));
14f9c5c9
AS
407}
408
409
872c8b51
JB
410/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
411 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
412 and return its index. This function also handles fields whose name
413 have ___ suffixes because the compiler sometimes alters their name
414 by adding such a suffix to represent fields with certain constraints.
415 If the field could not be found, return a negative number if
416 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
417
418int
419ada_get_field_index (const struct type *type, const char *field_name,
420 int maybe_missing)
421{
422 int fieldno;
872c8b51
JB
423 struct type *struct_type = check_typedef ((struct type *) type);
424
425 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
426 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
427 return fieldno;
428
429 if (!maybe_missing)
323e0a4a 430 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 431 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
432
433 return -1;
434}
435
436/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
437
438int
d2e4a39e 439ada_name_prefix_len (const char *name)
14f9c5c9
AS
440{
441 if (name == NULL)
442 return 0;
d2e4a39e 443 else
14f9c5c9 444 {
d2e4a39e 445 const char *p = strstr (name, "___");
14f9c5c9 446 if (p == NULL)
4c4b4cd2 447 return strlen (name);
14f9c5c9 448 else
4c4b4cd2 449 return p - name;
14f9c5c9
AS
450 }
451}
452
4c4b4cd2
PH
453/* Return non-zero if SUFFIX is a suffix of STR.
454 Return zero if STR is null. */
455
14f9c5c9 456static int
d2e4a39e 457is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
458{
459 int len1, len2;
460 if (str == NULL)
461 return 0;
462 len1 = strlen (str);
463 len2 = strlen (suffix);
4c4b4cd2 464 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
465}
466
4c4b4cd2
PH
467/* The contents of value VAL, treated as a value of type TYPE. The
468 result is an lval in memory if VAL is. */
14f9c5c9 469
d2e4a39e 470static struct value *
4c4b4cd2 471coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 472{
61ee279c 473 type = ada_check_typedef (type);
df407dfe 474 if (value_type (val) == type)
4c4b4cd2 475 return val;
d2e4a39e 476 else
14f9c5c9 477 {
4c4b4cd2
PH
478 struct value *result;
479
480 /* Make sure that the object size is not unreasonable before
481 trying to allocate some memory for it. */
714e53ab 482 check_size (type);
4c4b4cd2
PH
483
484 result = allocate_value (type);
74bcbdf3 485 set_value_component_location (result, val);
9bbda503
AC
486 set_value_bitsize (result, value_bitsize (val));
487 set_value_bitpos (result, value_bitpos (val));
42ae5230 488 set_value_address (result, value_address (val));
d69fe07e 489 if (value_lazy (val)
df407dfe 490 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 491 set_value_lazy (result, 1);
d2e4a39e 492 else
0fd88904 493 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 494 TYPE_LENGTH (type));
14f9c5c9
AS
495 return result;
496 }
497}
498
fc1a4b47
AC
499static const gdb_byte *
500cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
501{
502 if (valaddr == NULL)
503 return NULL;
504 else
505 return valaddr + offset;
506}
507
508static CORE_ADDR
ebf56fd3 509cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
510{
511 if (address == 0)
512 return 0;
d2e4a39e 513 else
14f9c5c9
AS
514 return address + offset;
515}
516
4c4b4cd2
PH
517/* Issue a warning (as for the definition of warning in utils.c, but
518 with exactly one argument rather than ...), unless the limit on the
519 number of warnings has passed during the evaluation of the current
520 expression. */
a2249542 521
77109804
AC
522/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
523 provided by "complaint". */
524static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
525
14f9c5c9 526static void
a2249542 527lim_warning (const char *format, ...)
14f9c5c9 528{
a2249542
MK
529 va_list args;
530 va_start (args, format);
531
4c4b4cd2
PH
532 warnings_issued += 1;
533 if (warnings_issued <= warning_limit)
a2249542
MK
534 vwarning (format, args);
535
536 va_end (args);
4c4b4cd2
PH
537}
538
714e53ab
PH
539/* Issue an error if the size of an object of type T is unreasonable,
540 i.e. if it would be a bad idea to allocate a value of this type in
541 GDB. */
542
543static void
544check_size (const struct type *type)
545{
546 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 547 error (_("object size is larger than varsize-limit"));
714e53ab
PH
548}
549
550
c3e5cd34
PH
551/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
552 gdbtypes.h, but some of the necessary definitions in that file
553 seem to have gone missing. */
554
555/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 556static LONGEST
c3e5cd34 557max_of_size (int size)
4c4b4cd2 558{
76a01679
JB
559 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
560 return top_bit | (top_bit - 1);
4c4b4cd2
PH
561}
562
c3e5cd34 563/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 564static LONGEST
c3e5cd34 565min_of_size (int size)
4c4b4cd2 566{
c3e5cd34 567 return -max_of_size (size) - 1;
4c4b4cd2
PH
568}
569
c3e5cd34 570/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 571static ULONGEST
c3e5cd34 572umax_of_size (int size)
4c4b4cd2 573{
76a01679
JB
574 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
575 return top_bit | (top_bit - 1);
4c4b4cd2
PH
576}
577
c3e5cd34
PH
578/* Maximum value of integral type T, as a signed quantity. */
579static LONGEST
580max_of_type (struct type *t)
4c4b4cd2 581{
c3e5cd34
PH
582 if (TYPE_UNSIGNED (t))
583 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
584 else
585 return max_of_size (TYPE_LENGTH (t));
586}
587
588/* Minimum value of integral type T, as a signed quantity. */
589static LONGEST
590min_of_type (struct type *t)
591{
592 if (TYPE_UNSIGNED (t))
593 return 0;
594 else
595 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
596}
597
598/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 599static LONGEST
4c4b4cd2
PH
600discrete_type_high_bound (struct type *type)
601{
76a01679 602 switch (TYPE_CODE (type))
4c4b4cd2
PH
603 {
604 case TYPE_CODE_RANGE:
690cc4eb 605 return TYPE_HIGH_BOUND (type);
4c4b4cd2 606 case TYPE_CODE_ENUM:
690cc4eb
PH
607 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
608 case TYPE_CODE_BOOL:
609 return 1;
610 case TYPE_CODE_CHAR:
76a01679 611 case TYPE_CODE_INT:
690cc4eb 612 return max_of_type (type);
4c4b4cd2 613 default:
323e0a4a 614 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
615 }
616}
617
618/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 619static LONGEST
4c4b4cd2
PH
620discrete_type_low_bound (struct type *type)
621{
76a01679 622 switch (TYPE_CODE (type))
4c4b4cd2
PH
623 {
624 case TYPE_CODE_RANGE:
690cc4eb 625 return TYPE_LOW_BOUND (type);
4c4b4cd2 626 case TYPE_CODE_ENUM:
690cc4eb
PH
627 return TYPE_FIELD_BITPOS (type, 0);
628 case TYPE_CODE_BOOL:
629 return 0;
630 case TYPE_CODE_CHAR:
76a01679 631 case TYPE_CODE_INT:
690cc4eb 632 return min_of_type (type);
4c4b4cd2 633 default:
323e0a4a 634 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
635 }
636}
637
638/* The identity on non-range types. For range types, the underlying
76a01679 639 non-range scalar type. */
4c4b4cd2
PH
640
641static struct type *
642base_type (struct type *type)
643{
644 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
645 {
76a01679
JB
646 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
647 return type;
4c4b4cd2
PH
648 type = TYPE_TARGET_TYPE (type);
649 }
650 return type;
14f9c5c9 651}
4c4b4cd2 652\f
76a01679 653
4c4b4cd2 654 /* Language Selection */
14f9c5c9
AS
655
656/* If the main program is in Ada, return language_ada, otherwise return LANG
657 (the main program is in Ada iif the adainit symbol is found).
658
4c4b4cd2 659 MAIN_PST is not used. */
d2e4a39e 660
14f9c5c9 661enum language
d2e4a39e 662ada_update_initial_language (enum language lang,
4c4b4cd2 663 struct partial_symtab *main_pst)
14f9c5c9 664{
d2e4a39e 665 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
666 (struct objfile *) NULL) != NULL)
667 return language_ada;
14f9c5c9
AS
668
669 return lang;
670}
96d887e8
PH
671
672/* If the main procedure is written in Ada, then return its name.
673 The result is good until the next call. Return NULL if the main
674 procedure doesn't appear to be in Ada. */
675
676char *
677ada_main_name (void)
678{
679 struct minimal_symbol *msym;
f9bc20b9 680 static char *main_program_name = NULL;
6c038f32 681
96d887e8
PH
682 /* For Ada, the name of the main procedure is stored in a specific
683 string constant, generated by the binder. Look for that symbol,
684 extract its address, and then read that string. If we didn't find
685 that string, then most probably the main procedure is not written
686 in Ada. */
687 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
688
689 if (msym != NULL)
690 {
f9bc20b9
JB
691 CORE_ADDR main_program_name_addr;
692 int err_code;
693
96d887e8
PH
694 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
695 if (main_program_name_addr == 0)
323e0a4a 696 error (_("Invalid address for Ada main program name."));
96d887e8 697
f9bc20b9
JB
698 xfree (main_program_name);
699 target_read_string (main_program_name_addr, &main_program_name,
700 1024, &err_code);
701
702 if (err_code != 0)
703 return NULL;
96d887e8
PH
704 return main_program_name;
705 }
706
707 /* The main procedure doesn't seem to be in Ada. */
708 return NULL;
709}
14f9c5c9 710\f
4c4b4cd2 711 /* Symbols */
d2e4a39e 712
4c4b4cd2
PH
713/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
714 of NULLs. */
14f9c5c9 715
d2e4a39e
AS
716const struct ada_opname_map ada_opname_table[] = {
717 {"Oadd", "\"+\"", BINOP_ADD},
718 {"Osubtract", "\"-\"", BINOP_SUB},
719 {"Omultiply", "\"*\"", BINOP_MUL},
720 {"Odivide", "\"/\"", BINOP_DIV},
721 {"Omod", "\"mod\"", BINOP_MOD},
722 {"Orem", "\"rem\"", BINOP_REM},
723 {"Oexpon", "\"**\"", BINOP_EXP},
724 {"Olt", "\"<\"", BINOP_LESS},
725 {"Ole", "\"<=\"", BINOP_LEQ},
726 {"Ogt", "\">\"", BINOP_GTR},
727 {"Oge", "\">=\"", BINOP_GEQ},
728 {"Oeq", "\"=\"", BINOP_EQUAL},
729 {"One", "\"/=\"", BINOP_NOTEQUAL},
730 {"Oand", "\"and\"", BINOP_BITWISE_AND},
731 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
732 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
733 {"Oconcat", "\"&\"", BINOP_CONCAT},
734 {"Oabs", "\"abs\"", UNOP_ABS},
735 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
736 {"Oadd", "\"+\"", UNOP_PLUS},
737 {"Osubtract", "\"-\"", UNOP_NEG},
738 {NULL, NULL}
14f9c5c9
AS
739};
740
4c4b4cd2
PH
741/* The "encoded" form of DECODED, according to GNAT conventions.
742 The result is valid until the next call to ada_encode. */
743
14f9c5c9 744char *
4c4b4cd2 745ada_encode (const char *decoded)
14f9c5c9 746{
4c4b4cd2
PH
747 static char *encoding_buffer = NULL;
748 static size_t encoding_buffer_size = 0;
d2e4a39e 749 const char *p;
14f9c5c9 750 int k;
d2e4a39e 751
4c4b4cd2 752 if (decoded == NULL)
14f9c5c9
AS
753 return NULL;
754
4c4b4cd2
PH
755 GROW_VECT (encoding_buffer, encoding_buffer_size,
756 2 * strlen (decoded) + 10);
14f9c5c9
AS
757
758 k = 0;
4c4b4cd2 759 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 760 {
cdc7bb92 761 if (*p == '.')
4c4b4cd2
PH
762 {
763 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
764 k += 2;
765 }
14f9c5c9 766 else if (*p == '"')
4c4b4cd2
PH
767 {
768 const struct ada_opname_map *mapping;
769
770 for (mapping = ada_opname_table;
1265e4aa
JB
771 mapping->encoded != NULL
772 && strncmp (mapping->decoded, p,
773 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
774 ;
775 if (mapping->encoded == NULL)
323e0a4a 776 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
777 strcpy (encoding_buffer + k, mapping->encoded);
778 k += strlen (mapping->encoded);
779 break;
780 }
d2e4a39e 781 else
4c4b4cd2
PH
782 {
783 encoding_buffer[k] = *p;
784 k += 1;
785 }
14f9c5c9
AS
786 }
787
4c4b4cd2
PH
788 encoding_buffer[k] = '\0';
789 return encoding_buffer;
14f9c5c9
AS
790}
791
792/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
793 quotes, unfolded, but with the quotes stripped away. Result good
794 to next call. */
795
d2e4a39e
AS
796char *
797ada_fold_name (const char *name)
14f9c5c9 798{
d2e4a39e 799 static char *fold_buffer = NULL;
14f9c5c9
AS
800 static size_t fold_buffer_size = 0;
801
802 int len = strlen (name);
d2e4a39e 803 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
804
805 if (name[0] == '\'')
806 {
d2e4a39e
AS
807 strncpy (fold_buffer, name + 1, len - 2);
808 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
809 }
810 else
811 {
812 int i;
813 for (i = 0; i <= len; i += 1)
4c4b4cd2 814 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
815 }
816
817 return fold_buffer;
818}
819
529cad9c
PH
820/* Return nonzero if C is either a digit or a lowercase alphabet character. */
821
822static int
823is_lower_alphanum (const char c)
824{
825 return (isdigit (c) || (isalpha (c) && islower (c)));
826}
827
29480c32
JB
828/* Remove either of these suffixes:
829 . .{DIGIT}+
830 . ${DIGIT}+
831 . ___{DIGIT}+
832 . __{DIGIT}+.
833 These are suffixes introduced by the compiler for entities such as
834 nested subprogram for instance, in order to avoid name clashes.
835 They do not serve any purpose for the debugger. */
836
837static void
838ada_remove_trailing_digits (const char *encoded, int *len)
839{
840 if (*len > 1 && isdigit (encoded[*len - 1]))
841 {
842 int i = *len - 2;
843 while (i > 0 && isdigit (encoded[i]))
844 i--;
845 if (i >= 0 && encoded[i] == '.')
846 *len = i;
847 else if (i >= 0 && encoded[i] == '$')
848 *len = i;
849 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
850 *len = i - 2;
851 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
852 *len = i - 1;
853 }
854}
855
856/* Remove the suffix introduced by the compiler for protected object
857 subprograms. */
858
859static void
860ada_remove_po_subprogram_suffix (const char *encoded, int *len)
861{
862 /* Remove trailing N. */
863
864 /* Protected entry subprograms are broken into two
865 separate subprograms: The first one is unprotected, and has
866 a 'N' suffix; the second is the protected version, and has
867 the 'P' suffix. The second calls the first one after handling
868 the protection. Since the P subprograms are internally generated,
869 we leave these names undecoded, giving the user a clue that this
870 entity is internal. */
871
872 if (*len > 1
873 && encoded[*len - 1] == 'N'
874 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
875 *len = *len - 1;
876}
877
878/* If ENCODED follows the GNAT entity encoding conventions, then return
879 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
880 replaced by ENCODED.
14f9c5c9 881
4c4b4cd2 882 The resulting string is valid until the next call of ada_decode.
29480c32 883 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
884 is returned. */
885
886const char *
887ada_decode (const char *encoded)
14f9c5c9
AS
888{
889 int i, j;
890 int len0;
d2e4a39e 891 const char *p;
4c4b4cd2 892 char *decoded;
14f9c5c9 893 int at_start_name;
4c4b4cd2
PH
894 static char *decoding_buffer = NULL;
895 static size_t decoding_buffer_size = 0;
d2e4a39e 896
29480c32
JB
897 /* The name of the Ada main procedure starts with "_ada_".
898 This prefix is not part of the decoded name, so skip this part
899 if we see this prefix. */
4c4b4cd2
PH
900 if (strncmp (encoded, "_ada_", 5) == 0)
901 encoded += 5;
14f9c5c9 902
29480c32
JB
903 /* If the name starts with '_', then it is not a properly encoded
904 name, so do not attempt to decode it. Similarly, if the name
905 starts with '<', the name should not be decoded. */
4c4b4cd2 906 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
907 goto Suppress;
908
4c4b4cd2 909 len0 = strlen (encoded);
4c4b4cd2 910
29480c32
JB
911 ada_remove_trailing_digits (encoded, &len0);
912 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 913
4c4b4cd2
PH
914 /* Remove the ___X.* suffix if present. Do not forget to verify that
915 the suffix is located before the current "end" of ENCODED. We want
916 to avoid re-matching parts of ENCODED that have previously been
917 marked as discarded (by decrementing LEN0). */
918 p = strstr (encoded, "___");
919 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
920 {
921 if (p[3] == 'X')
4c4b4cd2 922 len0 = p - encoded;
14f9c5c9 923 else
4c4b4cd2 924 goto Suppress;
14f9c5c9 925 }
4c4b4cd2 926
29480c32
JB
927 /* Remove any trailing TKB suffix. It tells us that this symbol
928 is for the body of a task, but that information does not actually
929 appear in the decoded name. */
930
4c4b4cd2 931 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 932 len0 -= 3;
76a01679 933
29480c32
JB
934 /* Remove trailing "B" suffixes. */
935 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
936
4c4b4cd2 937 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
938 len0 -= 1;
939
4c4b4cd2 940 /* Make decoded big enough for possible expansion by operator name. */
29480c32 941
4c4b4cd2
PH
942 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
943 decoded = decoding_buffer;
14f9c5c9 944
29480c32
JB
945 /* Remove trailing __{digit}+ or trailing ${digit}+. */
946
4c4b4cd2 947 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 948 {
4c4b4cd2
PH
949 i = len0 - 2;
950 while ((i >= 0 && isdigit (encoded[i]))
951 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
952 i -= 1;
953 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
954 len0 = i - 1;
955 else if (encoded[i] == '$')
956 len0 = i;
d2e4a39e 957 }
14f9c5c9 958
29480c32
JB
959 /* The first few characters that are not alphabetic are not part
960 of any encoding we use, so we can copy them over verbatim. */
961
4c4b4cd2
PH
962 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
963 decoded[j] = encoded[i];
14f9c5c9
AS
964
965 at_start_name = 1;
966 while (i < len0)
967 {
29480c32 968 /* Is this a symbol function? */
4c4b4cd2
PH
969 if (at_start_name && encoded[i] == 'O')
970 {
971 int k;
972 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
973 {
974 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
975 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
976 op_len - 1) == 0)
977 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
978 {
979 strcpy (decoded + j, ada_opname_table[k].decoded);
980 at_start_name = 0;
981 i += op_len;
982 j += strlen (ada_opname_table[k].decoded);
983 break;
984 }
985 }
986 if (ada_opname_table[k].encoded != NULL)
987 continue;
988 }
14f9c5c9
AS
989 at_start_name = 0;
990
529cad9c
PH
991 /* Replace "TK__" with "__", which will eventually be translated
992 into "." (just below). */
993
4c4b4cd2
PH
994 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
995 i += 2;
529cad9c 996
29480c32
JB
997 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
998 be translated into "." (just below). These are internal names
999 generated for anonymous blocks inside which our symbol is nested. */
1000
1001 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1002 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1003 && isdigit (encoded [i+4]))
1004 {
1005 int k = i + 5;
1006
1007 while (k < len0 && isdigit (encoded[k]))
1008 k++; /* Skip any extra digit. */
1009
1010 /* Double-check that the "__B_{DIGITS}+" sequence we found
1011 is indeed followed by "__". */
1012 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1013 i = k;
1014 }
1015
529cad9c
PH
1016 /* Remove _E{DIGITS}+[sb] */
1017
1018 /* Just as for protected object subprograms, there are 2 categories
1019 of subprograms created by the compiler for each entry. The first
1020 one implements the actual entry code, and has a suffix following
1021 the convention above; the second one implements the barrier and
1022 uses the same convention as above, except that the 'E' is replaced
1023 by a 'B'.
1024
1025 Just as above, we do not decode the name of barrier functions
1026 to give the user a clue that the code he is debugging has been
1027 internally generated. */
1028
1029 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1030 && isdigit (encoded[i+2]))
1031 {
1032 int k = i + 3;
1033
1034 while (k < len0 && isdigit (encoded[k]))
1035 k++;
1036
1037 if (k < len0
1038 && (encoded[k] == 'b' || encoded[k] == 's'))
1039 {
1040 k++;
1041 /* Just as an extra precaution, make sure that if this
1042 suffix is followed by anything else, it is a '_'.
1043 Otherwise, we matched this sequence by accident. */
1044 if (k == len0
1045 || (k < len0 && encoded[k] == '_'))
1046 i = k;
1047 }
1048 }
1049
1050 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1051 the GNAT front-end in protected object subprograms. */
1052
1053 if (i < len0 + 3
1054 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1055 {
1056 /* Backtrack a bit up until we reach either the begining of
1057 the encoded name, or "__". Make sure that we only find
1058 digits or lowercase characters. */
1059 const char *ptr = encoded + i - 1;
1060
1061 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1062 ptr--;
1063 if (ptr < encoded
1064 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1065 i++;
1066 }
1067
4c4b4cd2
PH
1068 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1069 {
29480c32
JB
1070 /* This is a X[bn]* sequence not separated from the previous
1071 part of the name with a non-alpha-numeric character (in other
1072 words, immediately following an alpha-numeric character), then
1073 verify that it is placed at the end of the encoded name. If
1074 not, then the encoding is not valid and we should abort the
1075 decoding. Otherwise, just skip it, it is used in body-nested
1076 package names. */
4c4b4cd2
PH
1077 do
1078 i += 1;
1079 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1080 if (i < len0)
1081 goto Suppress;
1082 }
cdc7bb92 1083 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1084 {
29480c32 1085 /* Replace '__' by '.'. */
4c4b4cd2
PH
1086 decoded[j] = '.';
1087 at_start_name = 1;
1088 i += 2;
1089 j += 1;
1090 }
14f9c5c9 1091 else
4c4b4cd2 1092 {
29480c32
JB
1093 /* It's a character part of the decoded name, so just copy it
1094 over. */
4c4b4cd2
PH
1095 decoded[j] = encoded[i];
1096 i += 1;
1097 j += 1;
1098 }
14f9c5c9 1099 }
4c4b4cd2 1100 decoded[j] = '\000';
14f9c5c9 1101
29480c32
JB
1102 /* Decoded names should never contain any uppercase character.
1103 Double-check this, and abort the decoding if we find one. */
1104
4c4b4cd2
PH
1105 for (i = 0; decoded[i] != '\0'; i += 1)
1106 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1107 goto Suppress;
1108
4c4b4cd2
PH
1109 if (strcmp (decoded, encoded) == 0)
1110 return encoded;
1111 else
1112 return decoded;
14f9c5c9
AS
1113
1114Suppress:
4c4b4cd2
PH
1115 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1116 decoded = decoding_buffer;
1117 if (encoded[0] == '<')
1118 strcpy (decoded, encoded);
14f9c5c9 1119 else
88c15c34 1120 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1121 return decoded;
1122
1123}
1124
1125/* Table for keeping permanent unique copies of decoded names. Once
1126 allocated, names in this table are never released. While this is a
1127 storage leak, it should not be significant unless there are massive
1128 changes in the set of decoded names in successive versions of a
1129 symbol table loaded during a single session. */
1130static struct htab *decoded_names_store;
1131
1132/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1133 in the language-specific part of GSYMBOL, if it has not been
1134 previously computed. Tries to save the decoded name in the same
1135 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1136 in any case, the decoded symbol has a lifetime at least that of
1137 GSYMBOL).
1138 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1139 const, but nevertheless modified to a semantically equivalent form
1140 when a decoded name is cached in it.
76a01679 1141*/
4c4b4cd2 1142
76a01679
JB
1143char *
1144ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1145{
76a01679 1146 char **resultp =
4c4b4cd2
PH
1147 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1148 if (*resultp == NULL)
1149 {
1150 const char *decoded = ada_decode (gsymbol->name);
714835d5 1151 if (gsymbol->obj_section != NULL)
76a01679 1152 {
714835d5
UW
1153 struct objfile *objf = gsymbol->obj_section->objfile;
1154 *resultp = obsavestring (decoded, strlen (decoded),
1155 &objf->objfile_obstack);
76a01679 1156 }
4c4b4cd2 1157 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1158 case, we put the result on the heap. Since we only decode
1159 when needed, we hope this usually does not cause a
1160 significant memory leak (FIXME). */
4c4b4cd2 1161 if (*resultp == NULL)
76a01679
JB
1162 {
1163 char **slot = (char **) htab_find_slot (decoded_names_store,
1164 decoded, INSERT);
1165 if (*slot == NULL)
1166 *slot = xstrdup (decoded);
1167 *resultp = *slot;
1168 }
4c4b4cd2 1169 }
14f9c5c9 1170
4c4b4cd2
PH
1171 return *resultp;
1172}
76a01679 1173
2c0b251b 1174static char *
76a01679 1175ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1176{
1177 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1178}
1179
1180/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1181 suffixes that encode debugging information or leading _ada_ on
1182 SYM_NAME (see is_name_suffix commentary for the debugging
1183 information that is ignored). If WILD, then NAME need only match a
1184 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1185 either argument is NULL. */
14f9c5c9 1186
2c0b251b 1187static int
d2e4a39e 1188ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1189{
1190 if (sym_name == NULL || name == NULL)
1191 return 0;
1192 else if (wild)
1193 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1194 else
1195 {
1196 int len_name = strlen (name);
4c4b4cd2
PH
1197 return (strncmp (sym_name, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name))
1199 || (strncmp (sym_name, "_ada_", 5) == 0
1200 && strncmp (sym_name + 5, name, len_name) == 0
1201 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1202 }
14f9c5c9 1203}
14f9c5c9 1204\f
d2e4a39e 1205
4c4b4cd2 1206 /* Arrays */
14f9c5c9 1207
4c4b4cd2 1208/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1209
d2e4a39e
AS
1210static char *bound_name[] = {
1211 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1212 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1213};
1214
1215/* Maximum number of array dimensions we are prepared to handle. */
1216
4c4b4cd2 1217#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1218
4c4b4cd2 1219/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1220
1221static void
ebf56fd3 1222modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1223{
4c4b4cd2 1224 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1225}
1226
1227
4c4b4cd2
PH
1228/* The desc_* routines return primitive portions of array descriptors
1229 (fat pointers). */
14f9c5c9
AS
1230
1231/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1232 level of indirection, if needed. */
1233
d2e4a39e
AS
1234static struct type *
1235desc_base_type (struct type *type)
14f9c5c9
AS
1236{
1237 if (type == NULL)
1238 return NULL;
61ee279c 1239 type = ada_check_typedef (type);
1265e4aa
JB
1240 if (type != NULL
1241 && (TYPE_CODE (type) == TYPE_CODE_PTR
1242 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1243 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1244 else
1245 return type;
1246}
1247
4c4b4cd2
PH
1248/* True iff TYPE indicates a "thin" array pointer type. */
1249
14f9c5c9 1250static int
d2e4a39e 1251is_thin_pntr (struct type *type)
14f9c5c9 1252{
d2e4a39e 1253 return
14f9c5c9
AS
1254 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1255 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1256}
1257
4c4b4cd2
PH
1258/* The descriptor type for thin pointer type TYPE. */
1259
d2e4a39e
AS
1260static struct type *
1261thin_descriptor_type (struct type *type)
14f9c5c9 1262{
d2e4a39e 1263 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1264 if (base_type == NULL)
1265 return NULL;
1266 if (is_suffix (ada_type_name (base_type), "___XVE"))
1267 return base_type;
d2e4a39e 1268 else
14f9c5c9 1269 {
d2e4a39e 1270 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1271 if (alt_type == NULL)
4c4b4cd2 1272 return base_type;
14f9c5c9 1273 else
4c4b4cd2 1274 return alt_type;
14f9c5c9
AS
1275 }
1276}
1277
4c4b4cd2
PH
1278/* A pointer to the array data for thin-pointer value VAL. */
1279
d2e4a39e
AS
1280static struct value *
1281thin_data_pntr (struct value *val)
14f9c5c9 1282{
df407dfe 1283 struct type *type = value_type (val);
556bdfd4
UW
1284 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1285 data_type = lookup_pointer_type (data_type);
1286
14f9c5c9 1287 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1288 return value_cast (data_type, value_copy (val));
d2e4a39e 1289 else
42ae5230 1290 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1291}
1292
4c4b4cd2
PH
1293/* True iff TYPE indicates a "thick" array pointer type. */
1294
14f9c5c9 1295static int
d2e4a39e 1296is_thick_pntr (struct type *type)
14f9c5c9
AS
1297{
1298 type = desc_base_type (type);
1299 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1300 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1301}
1302
4c4b4cd2
PH
1303/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1304 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1305
d2e4a39e
AS
1306static struct type *
1307desc_bounds_type (struct type *type)
14f9c5c9 1308{
d2e4a39e 1309 struct type *r;
14f9c5c9
AS
1310
1311 type = desc_base_type (type);
1312
1313 if (type == NULL)
1314 return NULL;
1315 else if (is_thin_pntr (type))
1316 {
1317 type = thin_descriptor_type (type);
1318 if (type == NULL)
4c4b4cd2 1319 return NULL;
14f9c5c9
AS
1320 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1321 if (r != NULL)
61ee279c 1322 return ada_check_typedef (r);
14f9c5c9
AS
1323 }
1324 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1325 {
1326 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1327 if (r != NULL)
61ee279c 1328 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1329 }
1330 return NULL;
1331}
1332
1333/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1334 one, a pointer to its bounds data. Otherwise NULL. */
1335
d2e4a39e
AS
1336static struct value *
1337desc_bounds (struct value *arr)
14f9c5c9 1338{
df407dfe 1339 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1340 if (is_thin_pntr (type))
14f9c5c9 1341 {
d2e4a39e 1342 struct type *bounds_type =
4c4b4cd2 1343 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1344 LONGEST addr;
1345
4cdfadb1 1346 if (bounds_type == NULL)
323e0a4a 1347 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1348
1349 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1350 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1351 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1352 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1353 addr = value_as_long (arr);
d2e4a39e 1354 else
42ae5230 1355 addr = value_address (arr);
14f9c5c9 1356
d2e4a39e 1357 return
4c4b4cd2
PH
1358 value_from_longest (lookup_pointer_type (bounds_type),
1359 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1360 }
1361
1362 else if (is_thick_pntr (type))
d2e4a39e 1363 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1364 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1365 else
1366 return NULL;
1367}
1368
4c4b4cd2
PH
1369/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1370 position of the field containing the address of the bounds data. */
1371
14f9c5c9 1372static int
d2e4a39e 1373fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1374{
1375 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1376}
1377
1378/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1379 size of the field containing the address of the bounds data. */
1380
14f9c5c9 1381static int
d2e4a39e 1382fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1383{
1384 type = desc_base_type (type);
1385
d2e4a39e 1386 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1387 return TYPE_FIELD_BITSIZE (type, 1);
1388 else
61ee279c 1389 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1390}
1391
4c4b4cd2 1392/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1393 pointer to one, the type of its array data (a array-with-no-bounds type);
1394 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1395 data. */
4c4b4cd2 1396
d2e4a39e 1397static struct type *
556bdfd4 1398desc_data_target_type (struct type *type)
14f9c5c9
AS
1399{
1400 type = desc_base_type (type);
1401
4c4b4cd2 1402 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1403 if (is_thin_pntr (type))
556bdfd4 1404 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1405 else if (is_thick_pntr (type))
556bdfd4
UW
1406 {
1407 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1408
1409 if (data_type
1410 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1411 return TYPE_TARGET_TYPE (data_type);
1412 }
1413
1414 return NULL;
14f9c5c9
AS
1415}
1416
1417/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1418 its array data. */
4c4b4cd2 1419
d2e4a39e
AS
1420static struct value *
1421desc_data (struct value *arr)
14f9c5c9 1422{
df407dfe 1423 struct type *type = value_type (arr);
14f9c5c9
AS
1424 if (is_thin_pntr (type))
1425 return thin_data_pntr (arr);
1426 else if (is_thick_pntr (type))
d2e4a39e 1427 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1428 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1429 else
1430 return NULL;
1431}
1432
1433
1434/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1435 position of the field containing the address of the data. */
1436
14f9c5c9 1437static int
d2e4a39e 1438fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1439{
1440 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1441}
1442
1443/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1444 size of the field containing the address of the data. */
1445
14f9c5c9 1446static int
d2e4a39e 1447fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1448{
1449 type = desc_base_type (type);
1450
1451 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1452 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1453 else
14f9c5c9
AS
1454 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1455}
1456
4c4b4cd2 1457/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1458 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1459 bound, if WHICH is 1. The first bound is I=1. */
1460
d2e4a39e
AS
1461static struct value *
1462desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1463{
d2e4a39e 1464 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1465 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1466}
1467
1468/* If BOUNDS is an array-bounds structure type, return the bit position
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
14f9c5c9 1472static int
d2e4a39e 1473desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1474{
d2e4a39e 1475 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1476}
1477
1478/* If BOUNDS is an array-bounds structure type, return the bit field size
1479 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1480 bound, if WHICH is 1. The first bound is I=1. */
1481
76a01679 1482static int
d2e4a39e 1483desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1484{
1485 type = desc_base_type (type);
1486
d2e4a39e
AS
1487 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1489 else
1490 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1491}
1492
1493/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1494 Ith bound (numbering from 1). Otherwise, NULL. */
1495
d2e4a39e
AS
1496static struct type *
1497desc_index_type (struct type *type, int i)
14f9c5c9
AS
1498{
1499 type = desc_base_type (type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1502 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1503 else
14f9c5c9
AS
1504 return NULL;
1505}
1506
4c4b4cd2
PH
1507/* The number of index positions in the array-bounds type TYPE.
1508 Return 0 if TYPE is NULL. */
1509
14f9c5c9 1510static int
d2e4a39e 1511desc_arity (struct type *type)
14f9c5c9
AS
1512{
1513 type = desc_base_type (type);
1514
1515 if (type != NULL)
1516 return TYPE_NFIELDS (type) / 2;
1517 return 0;
1518}
1519
4c4b4cd2
PH
1520/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1521 an array descriptor type (representing an unconstrained array
1522 type). */
1523
76a01679
JB
1524static int
1525ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1526{
1527 if (type == NULL)
1528 return 0;
61ee279c 1529 type = ada_check_typedef (type);
4c4b4cd2 1530 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1531 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1532}
1533
52ce6436
PH
1534/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1535 * to one. */
1536
2c0b251b 1537static int
52ce6436
PH
1538ada_is_array_type (struct type *type)
1539{
1540 while (type != NULL
1541 && (TYPE_CODE (type) == TYPE_CODE_PTR
1542 || TYPE_CODE (type) == TYPE_CODE_REF))
1543 type = TYPE_TARGET_TYPE (type);
1544 return ada_is_direct_array_type (type);
1545}
1546
4c4b4cd2 1547/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1548
14f9c5c9 1549int
4c4b4cd2 1550ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1551{
1552 if (type == NULL)
1553 return 0;
61ee279c 1554 type = ada_check_typedef (type);
14f9c5c9 1555 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1556 || (TYPE_CODE (type) == TYPE_CODE_PTR
1557 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1558}
1559
4c4b4cd2
PH
1560/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1561
14f9c5c9 1562int
4c4b4cd2 1563ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1564{
556bdfd4 1565 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1566
1567 if (type == NULL)
1568 return 0;
61ee279c 1569 type = ada_check_typedef (type);
556bdfd4
UW
1570 return (data_type != NULL
1571 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1572 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1573}
1574
1575/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1576 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1577 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1578 is still needed. */
1579
14f9c5c9 1580int
ebf56fd3 1581ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1582{
d2e4a39e 1583 return
14f9c5c9
AS
1584 type != NULL
1585 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1586 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1587 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1588 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1589}
1590
1591
4c4b4cd2 1592/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1593 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1594 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1595 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1596 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1597 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1598 a descriptor. */
d2e4a39e
AS
1599struct type *
1600ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1601{
df407dfe
AC
1602 if (ada_is_packed_array_type (value_type (arr)))
1603 return decode_packed_array_type (value_type (arr));
14f9c5c9 1604
df407dfe
AC
1605 if (!ada_is_array_descriptor_type (value_type (arr)))
1606 return value_type (arr);
d2e4a39e
AS
1607
1608 if (!bounds)
1609 return
556bdfd4 1610 ada_check_typedef (desc_data_target_type (value_type (arr)));
14f9c5c9
AS
1611 else
1612 {
d2e4a39e 1613 struct type *elt_type;
14f9c5c9 1614 int arity;
d2e4a39e 1615 struct value *descriptor;
df407dfe 1616 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1617
df407dfe
AC
1618 elt_type = ada_array_element_type (value_type (arr), -1);
1619 arity = ada_array_arity (value_type (arr));
14f9c5c9 1620
d2e4a39e 1621 if (elt_type == NULL || arity == 0)
df407dfe 1622 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1623
1624 descriptor = desc_bounds (arr);
d2e4a39e 1625 if (value_as_long (descriptor) == 0)
4c4b4cd2 1626 return NULL;
d2e4a39e 1627 while (arity > 0)
4c4b4cd2
PH
1628 {
1629 struct type *range_type = alloc_type (objf);
1630 struct type *array_type = alloc_type (objf);
1631 struct value *low = desc_one_bound (descriptor, arity, 0);
1632 struct value *high = desc_one_bound (descriptor, arity, 1);
1633 arity -= 1;
1634
df407dfe 1635 create_range_type (range_type, value_type (low),
529cad9c
PH
1636 longest_to_int (value_as_long (low)),
1637 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1638 elt_type = create_array_type (array_type, elt_type, range_type);
1639 }
14f9c5c9
AS
1640
1641 return lookup_pointer_type (elt_type);
1642 }
1643}
1644
1645/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1646 Otherwise, returns either a standard GDB array with bounds set
1647 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1648 GDB array. Returns NULL if ARR is a null fat pointer. */
1649
d2e4a39e
AS
1650struct value *
1651ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1652{
df407dfe 1653 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1654 {
d2e4a39e 1655 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1656 if (arrType == NULL)
4c4b4cd2 1657 return NULL;
14f9c5c9
AS
1658 return value_cast (arrType, value_copy (desc_data (arr)));
1659 }
df407dfe 1660 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1661 return decode_packed_array (arr);
1662 else
1663 return arr;
1664}
1665
1666/* If ARR does not represent an array, returns ARR unchanged.
1667 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1668 be ARR itself if it already is in the proper form). */
1669
1670static struct value *
d2e4a39e 1671ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1672{
df407dfe 1673 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1674 {
d2e4a39e 1675 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1676 if (arrVal == NULL)
323e0a4a 1677 error (_("Bounds unavailable for null array pointer."));
529cad9c 1678 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1679 return value_ind (arrVal);
1680 }
df407dfe 1681 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1682 return decode_packed_array (arr);
d2e4a39e 1683 else
14f9c5c9
AS
1684 return arr;
1685}
1686
1687/* If TYPE represents a GNAT array type, return it translated to an
1688 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1689 packing). For other types, is the identity. */
1690
d2e4a39e
AS
1691struct type *
1692ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1693{
17280b9f
UW
1694 if (ada_is_packed_array_type (type))
1695 return decode_packed_array_type (type);
1696
1697 if (ada_is_array_descriptor_type (type))
556bdfd4 1698 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1699
1700 return type;
14f9c5c9
AS
1701}
1702
4c4b4cd2
PH
1703/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1704
14f9c5c9 1705int
d2e4a39e 1706ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1707{
1708 if (type == NULL)
1709 return 0;
4c4b4cd2 1710 type = desc_base_type (type);
61ee279c 1711 type = ada_check_typedef (type);
d2e4a39e 1712 return
14f9c5c9
AS
1713 ada_type_name (type) != NULL
1714 && strstr (ada_type_name (type), "___XP") != NULL;
1715}
1716
1717/* Given that TYPE is a standard GDB array type with all bounds filled
1718 in, and that the element size of its ultimate scalar constituents
1719 (that is, either its elements, or, if it is an array of arrays, its
1720 elements' elements, etc.) is *ELT_BITS, return an identical type,
1721 but with the bit sizes of its elements (and those of any
1722 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1723 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1724 in bits. */
1725
d2e4a39e
AS
1726static struct type *
1727packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1728{
d2e4a39e
AS
1729 struct type *new_elt_type;
1730 struct type *new_type;
14f9c5c9
AS
1731 LONGEST low_bound, high_bound;
1732
61ee279c 1733 type = ada_check_typedef (type);
14f9c5c9
AS
1734 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1735 return type;
1736
1737 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1738 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1739 elt_bits);
262452ec 1740 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1741 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1742 TYPE_NAME (new_type) = ada_type_name (type);
1743
262452ec 1744 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1745 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1746 low_bound = high_bound = 0;
1747 if (high_bound < low_bound)
1748 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1749 else
14f9c5c9
AS
1750 {
1751 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1752 TYPE_LENGTH (new_type) =
4c4b4cd2 1753 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1754 }
1755
876cecd0 1756 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1757 return new_type;
1758}
1759
4c4b4cd2
PH
1760/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1761
d2e4a39e
AS
1762static struct type *
1763decode_packed_array_type (struct type *type)
1764{
4c4b4cd2 1765 struct symbol *sym;
d2e4a39e 1766 struct block **blocks;
727e3d2e
JB
1767 char *raw_name = ada_type_name (ada_check_typedef (type));
1768 char *name;
1769 char *tail;
d2e4a39e 1770 struct type *shadow_type;
14f9c5c9
AS
1771 long bits;
1772 int i, n;
1773
727e3d2e
JB
1774 if (!raw_name)
1775 raw_name = ada_type_name (desc_base_type (type));
1776
1777 if (!raw_name)
1778 return NULL;
1779
1780 name = (char *) alloca (strlen (raw_name) + 1);
1781 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1782 type = desc_base_type (type);
1783
14f9c5c9
AS
1784 memcpy (name, raw_name, tail - raw_name);
1785 name[tail - raw_name] = '\000';
1786
4c4b4cd2
PH
1787 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1788 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1789 {
323e0a4a 1790 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1791 return NULL;
1792 }
4c4b4cd2 1793 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1794 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1795
1796 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1797 {
323e0a4a 1798 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1799 return NULL;
1800 }
d2e4a39e 1801
14f9c5c9
AS
1802 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1803 {
4c4b4cd2 1804 lim_warning
323e0a4a 1805 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1806 return NULL;
1807 }
d2e4a39e 1808
14f9c5c9
AS
1809 return packed_array_type (shadow_type, &bits);
1810}
1811
4c4b4cd2 1812/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1813 returns a simple array that denotes that array. Its type is a
1814 standard GDB array type except that the BITSIZEs of the array
1815 target types are set to the number of bits in each element, and the
4c4b4cd2 1816 type length is set appropriately. */
14f9c5c9 1817
d2e4a39e
AS
1818static struct value *
1819decode_packed_array (struct value *arr)
14f9c5c9 1820{
4c4b4cd2 1821 struct type *type;
14f9c5c9 1822
4c4b4cd2 1823 arr = ada_coerce_ref (arr);
df407dfe 1824 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1825 arr = ada_value_ind (arr);
1826
df407dfe 1827 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1828 if (type == NULL)
1829 {
323e0a4a 1830 error (_("can't unpack array"));
14f9c5c9
AS
1831 return NULL;
1832 }
61ee279c 1833
32c9a795
MD
1834 if (gdbarch_bits_big_endian (current_gdbarch)
1835 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1836 {
1837 /* This is a (right-justified) modular type representing a packed
1838 array with no wrapper. In order to interpret the value through
1839 the (left-justified) packed array type we just built, we must
1840 first left-justify it. */
1841 int bit_size, bit_pos;
1842 ULONGEST mod;
1843
df407dfe 1844 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1845 bit_size = 0;
1846 while (mod > 0)
1847 {
1848 bit_size += 1;
1849 mod >>= 1;
1850 }
df407dfe 1851 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1852 arr = ada_value_primitive_packed_val (arr, NULL,
1853 bit_pos / HOST_CHAR_BIT,
1854 bit_pos % HOST_CHAR_BIT,
1855 bit_size,
1856 type);
1857 }
1858
4c4b4cd2 1859 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1860}
1861
1862
1863/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1864 given in IND. ARR must be a simple array. */
14f9c5c9 1865
d2e4a39e
AS
1866static struct value *
1867value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1868{
1869 int i;
1870 int bits, elt_off, bit_off;
1871 long elt_total_bit_offset;
d2e4a39e
AS
1872 struct type *elt_type;
1873 struct value *v;
14f9c5c9
AS
1874
1875 bits = 0;
1876 elt_total_bit_offset = 0;
df407dfe 1877 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1878 for (i = 0; i < arity; i += 1)
14f9c5c9 1879 {
d2e4a39e 1880 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1881 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1882 error
323e0a4a 1883 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1884 else
4c4b4cd2
PH
1885 {
1886 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1887 LONGEST lowerbound, upperbound;
1888 LONGEST idx;
1889
1890 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1891 {
323e0a4a 1892 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1893 lowerbound = upperbound = 0;
1894 }
1895
3cb382c9 1896 idx = pos_atr (ind[i]);
4c4b4cd2 1897 if (idx < lowerbound || idx > upperbound)
323e0a4a 1898 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1899 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1900 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1901 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1902 }
14f9c5c9
AS
1903 }
1904 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1905 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1906
1907 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1908 bits, elt_type);
14f9c5c9
AS
1909 return v;
1910}
1911
4c4b4cd2 1912/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1913
1914static int
d2e4a39e 1915has_negatives (struct type *type)
14f9c5c9 1916{
d2e4a39e
AS
1917 switch (TYPE_CODE (type))
1918 {
1919 default:
1920 return 0;
1921 case TYPE_CODE_INT:
1922 return !TYPE_UNSIGNED (type);
1923 case TYPE_CODE_RANGE:
1924 return TYPE_LOW_BOUND (type) < 0;
1925 }
14f9c5c9 1926}
d2e4a39e 1927
14f9c5c9
AS
1928
1929/* Create a new value of type TYPE from the contents of OBJ starting
1930 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1931 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1932 assigning through the result will set the field fetched from.
1933 VALADDR is ignored unless OBJ is NULL, in which case,
1934 VALADDR+OFFSET must address the start of storage containing the
1935 packed value. The value returned in this case is never an lval.
1936 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1937
d2e4a39e 1938struct value *
fc1a4b47 1939ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1940 long offset, int bit_offset, int bit_size,
4c4b4cd2 1941 struct type *type)
14f9c5c9 1942{
d2e4a39e 1943 struct value *v;
4c4b4cd2
PH
1944 int src, /* Index into the source area */
1945 targ, /* Index into the target area */
1946 srcBitsLeft, /* Number of source bits left to move */
1947 nsrc, ntarg, /* Number of source and target bytes */
1948 unusedLS, /* Number of bits in next significant
1949 byte of source that are unused */
1950 accumSize; /* Number of meaningful bits in accum */
1951 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1952 unsigned char *unpacked;
4c4b4cd2 1953 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1954 unsigned char sign;
1955 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1956 /* Transmit bytes from least to most significant; delta is the direction
1957 the indices move. */
32c9a795 1958 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1959
61ee279c 1960 type = ada_check_typedef (type);
14f9c5c9
AS
1961
1962 if (obj == NULL)
1963 {
1964 v = allocate_value (type);
d2e4a39e 1965 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1966 }
9214ee5f 1967 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1968 {
1969 v = value_at (type,
42ae5230 1970 value_address (obj) + offset);
d2e4a39e 1971 bytes = (unsigned char *) alloca (len);
42ae5230 1972 read_memory (value_address (v), bytes, len);
14f9c5c9 1973 }
d2e4a39e 1974 else
14f9c5c9
AS
1975 {
1976 v = allocate_value (type);
0fd88904 1977 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1978 }
d2e4a39e
AS
1979
1980 if (obj != NULL)
14f9c5c9 1981 {
42ae5230 1982 CORE_ADDR new_addr;
74bcbdf3 1983 set_value_component_location (v, obj);
42ae5230 1984 new_addr = value_address (obj) + offset;
9bbda503
AC
1985 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1986 set_value_bitsize (v, bit_size);
df407dfe 1987 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 1988 {
42ae5230 1989 ++new_addr;
9bbda503 1990 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1991 }
42ae5230 1992 set_value_address (v, new_addr);
14f9c5c9
AS
1993 }
1994 else
9bbda503 1995 set_value_bitsize (v, bit_size);
0fd88904 1996 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
1997
1998 srcBitsLeft = bit_size;
1999 nsrc = len;
2000 ntarg = TYPE_LENGTH (type);
2001 sign = 0;
2002 if (bit_size == 0)
2003 {
2004 memset (unpacked, 0, TYPE_LENGTH (type));
2005 return v;
2006 }
32c9a795 2007 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2008 {
d2e4a39e 2009 src = len - 1;
1265e4aa
JB
2010 if (has_negatives (type)
2011 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2012 sign = ~0;
d2e4a39e
AS
2013
2014 unusedLS =
4c4b4cd2
PH
2015 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2016 % HOST_CHAR_BIT;
14f9c5c9
AS
2017
2018 switch (TYPE_CODE (type))
4c4b4cd2
PH
2019 {
2020 case TYPE_CODE_ARRAY:
2021 case TYPE_CODE_UNION:
2022 case TYPE_CODE_STRUCT:
2023 /* Non-scalar values must be aligned at a byte boundary... */
2024 accumSize =
2025 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2026 /* ... And are placed at the beginning (most-significant) bytes
2027 of the target. */
529cad9c 2028 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2029 ntarg = targ + 1;
4c4b4cd2
PH
2030 break;
2031 default:
2032 accumSize = 0;
2033 targ = TYPE_LENGTH (type) - 1;
2034 break;
2035 }
14f9c5c9 2036 }
d2e4a39e 2037 else
14f9c5c9
AS
2038 {
2039 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2040
2041 src = targ = 0;
2042 unusedLS = bit_offset;
2043 accumSize = 0;
2044
d2e4a39e 2045 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2046 sign = ~0;
14f9c5c9 2047 }
d2e4a39e 2048
14f9c5c9
AS
2049 accum = 0;
2050 while (nsrc > 0)
2051 {
2052 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2053 part of the value. */
d2e4a39e 2054 unsigned int unusedMSMask =
4c4b4cd2
PH
2055 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2056 1;
2057 /* Sign-extend bits for this byte. */
14f9c5c9 2058 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2059 accum |=
4c4b4cd2 2060 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2061 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2062 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2063 {
2064 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2065 accumSize -= HOST_CHAR_BIT;
2066 accum >>= HOST_CHAR_BIT;
2067 ntarg -= 1;
2068 targ += delta;
2069 }
14f9c5c9
AS
2070 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2071 unusedLS = 0;
2072 nsrc -= 1;
2073 src += delta;
2074 }
2075 while (ntarg > 0)
2076 {
2077 accum |= sign << accumSize;
2078 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2079 accumSize -= HOST_CHAR_BIT;
2080 accum >>= HOST_CHAR_BIT;
2081 ntarg -= 1;
2082 targ += delta;
2083 }
2084
2085 return v;
2086}
d2e4a39e 2087
14f9c5c9
AS
2088/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2089 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2090 not overlap. */
14f9c5c9 2091static void
fc1a4b47 2092move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2093 int src_offset, int n)
14f9c5c9
AS
2094{
2095 unsigned int accum, mask;
2096 int accum_bits, chunk_size;
2097
2098 target += targ_offset / HOST_CHAR_BIT;
2099 targ_offset %= HOST_CHAR_BIT;
2100 source += src_offset / HOST_CHAR_BIT;
2101 src_offset %= HOST_CHAR_BIT;
32c9a795 2102 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2103 {
2104 accum = (unsigned char) *source;
2105 source += 1;
2106 accum_bits = HOST_CHAR_BIT - src_offset;
2107
d2e4a39e 2108 while (n > 0)
4c4b4cd2
PH
2109 {
2110 int unused_right;
2111 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2112 accum_bits += HOST_CHAR_BIT;
2113 source += 1;
2114 chunk_size = HOST_CHAR_BIT - targ_offset;
2115 if (chunk_size > n)
2116 chunk_size = n;
2117 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2118 mask = ((1 << chunk_size) - 1) << unused_right;
2119 *target =
2120 (*target & ~mask)
2121 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2122 n -= chunk_size;
2123 accum_bits -= chunk_size;
2124 target += 1;
2125 targ_offset = 0;
2126 }
14f9c5c9
AS
2127 }
2128 else
2129 {
2130 accum = (unsigned char) *source >> src_offset;
2131 source += 1;
2132 accum_bits = HOST_CHAR_BIT - src_offset;
2133
d2e4a39e 2134 while (n > 0)
4c4b4cd2
PH
2135 {
2136 accum = accum + ((unsigned char) *source << accum_bits);
2137 accum_bits += HOST_CHAR_BIT;
2138 source += 1;
2139 chunk_size = HOST_CHAR_BIT - targ_offset;
2140 if (chunk_size > n)
2141 chunk_size = n;
2142 mask = ((1 << chunk_size) - 1) << targ_offset;
2143 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2144 n -= chunk_size;
2145 accum_bits -= chunk_size;
2146 accum >>= chunk_size;
2147 target += 1;
2148 targ_offset = 0;
2149 }
14f9c5c9
AS
2150 }
2151}
2152
14f9c5c9
AS
2153/* Store the contents of FROMVAL into the location of TOVAL.
2154 Return a new value with the location of TOVAL and contents of
2155 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2156 floating-point or non-scalar types. */
14f9c5c9 2157
d2e4a39e
AS
2158static struct value *
2159ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2160{
df407dfe
AC
2161 struct type *type = value_type (toval);
2162 int bits = value_bitsize (toval);
14f9c5c9 2163
52ce6436
PH
2164 toval = ada_coerce_ref (toval);
2165 fromval = ada_coerce_ref (fromval);
2166
2167 if (ada_is_direct_array_type (value_type (toval)))
2168 toval = ada_coerce_to_simple_array (toval);
2169 if (ada_is_direct_array_type (value_type (fromval)))
2170 fromval = ada_coerce_to_simple_array (fromval);
2171
88e3b34b 2172 if (!deprecated_value_modifiable (toval))
323e0a4a 2173 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2174
d2e4a39e 2175 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2176 && bits > 0
d2e4a39e 2177 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2178 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2179 {
df407dfe
AC
2180 int len = (value_bitpos (toval)
2181 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2182 int from_size;
d2e4a39e
AS
2183 char *buffer = (char *) alloca (len);
2184 struct value *val;
42ae5230 2185 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2186
2187 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2188 fromval = value_cast (type, fromval);
14f9c5c9 2189
52ce6436 2190 read_memory (to_addr, buffer, len);
aced2898
PH
2191 from_size = value_bitsize (fromval);
2192 if (from_size == 0)
2193 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2194 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2195 move_bits (buffer, value_bitpos (toval),
aced2898 2196 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2197 else
0fd88904 2198 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2199 0, bits);
52ce6436
PH
2200 write_memory (to_addr, buffer, len);
2201 if (deprecated_memory_changed_hook)
2202 deprecated_memory_changed_hook (to_addr, len);
2203
14f9c5c9 2204 val = value_copy (toval);
0fd88904 2205 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2206 TYPE_LENGTH (type));
04624583 2207 deprecated_set_value_type (val, type);
d2e4a39e 2208
14f9c5c9
AS
2209 return val;
2210 }
2211
2212 return value_assign (toval, fromval);
2213}
2214
2215
52ce6436
PH
2216/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2217 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2218 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2219 * COMPONENT, and not the inferior's memory. The current contents
2220 * of COMPONENT are ignored. */
2221static void
2222value_assign_to_component (struct value *container, struct value *component,
2223 struct value *val)
2224{
2225 LONGEST offset_in_container =
42ae5230 2226 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2227 int bit_offset_in_container =
2228 value_bitpos (component) - value_bitpos (container);
2229 int bits;
2230
2231 val = value_cast (value_type (component), val);
2232
2233 if (value_bitsize (component) == 0)
2234 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2235 else
2236 bits = value_bitsize (component);
2237
32c9a795 2238 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2239 move_bits (value_contents_writeable (container) + offset_in_container,
2240 value_bitpos (container) + bit_offset_in_container,
2241 value_contents (val),
2242 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2243 bits);
2244 else
2245 move_bits (value_contents_writeable (container) + offset_in_container,
2246 value_bitpos (container) + bit_offset_in_container,
2247 value_contents (val), 0, bits);
2248}
2249
4c4b4cd2
PH
2250/* The value of the element of array ARR at the ARITY indices given in IND.
2251 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2252 thereto. */
2253
d2e4a39e
AS
2254struct value *
2255ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2256{
2257 int k;
d2e4a39e
AS
2258 struct value *elt;
2259 struct type *elt_type;
14f9c5c9
AS
2260
2261 elt = ada_coerce_to_simple_array (arr);
2262
df407dfe 2263 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2264 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2265 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2266 return value_subscript_packed (elt, arity, ind);
2267
2268 for (k = 0; k < arity; k += 1)
2269 {
2270 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2271 error (_("too many subscripts (%d expected)"), k);
3cb382c9 2272 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
14f9c5c9
AS
2273 }
2274 return elt;
2275}
2276
2277/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2278 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2279 IND. Does not read the entire array into memory. */
14f9c5c9 2280
2c0b251b 2281static struct value *
d2e4a39e 2282ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2283 struct value **ind)
14f9c5c9
AS
2284{
2285 int k;
2286
2287 for (k = 0; k < arity; k += 1)
2288 {
2289 LONGEST lwb, upb;
d2e4a39e 2290 struct value *idx;
14f9c5c9
AS
2291
2292 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2293 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2294 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2295 value_copy (arr));
14f9c5c9 2296 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
3cb382c9 2297 idx = value_pos_atr (builtin_type_int32, ind[k]);
4c4b4cd2 2298 if (lwb != 0)
89eef114
UW
2299 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2300 BINOP_SUB);
2301
2302 arr = value_ptradd (arr, idx);
14f9c5c9
AS
2303 type = TYPE_TARGET_TYPE (type);
2304 }
2305
2306 return value_ind (arr);
2307}
2308
0b5d8877 2309/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2310 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2311 elements starting at index LOW. The lower bound of this array is LOW, as
2312 per Ada rules. */
0b5d8877 2313static struct value *
f5938064
JG
2314ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2315 int low, int high)
0b5d8877 2316{
6c038f32 2317 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2318 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2319 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2320 struct type *index_type =
2321 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2322 low, high);
6c038f32 2323 struct type *slice_type =
0b5d8877 2324 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2325 return value_at_lazy (slice_type, base);
0b5d8877
PH
2326}
2327
2328
2329static struct value *
2330ada_value_slice (struct value *array, int low, int high)
2331{
df407dfe 2332 struct type *type = value_type (array);
6c038f32 2333 struct type *index_type =
0b5d8877 2334 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2335 struct type *slice_type =
0b5d8877 2336 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2337 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2338}
2339
14f9c5c9
AS
2340/* If type is a record type in the form of a standard GNAT array
2341 descriptor, returns the number of dimensions for type. If arr is a
2342 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2343 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2344
2345int
d2e4a39e 2346ada_array_arity (struct type *type)
14f9c5c9
AS
2347{
2348 int arity;
2349
2350 if (type == NULL)
2351 return 0;
2352
2353 type = desc_base_type (type);
2354
2355 arity = 0;
d2e4a39e 2356 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2357 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2358 else
2359 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2360 {
4c4b4cd2 2361 arity += 1;
61ee279c 2362 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2363 }
d2e4a39e 2364
14f9c5c9
AS
2365 return arity;
2366}
2367
2368/* If TYPE is a record type in the form of a standard GNAT array
2369 descriptor or a simple array type, returns the element type for
2370 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2371 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2372
d2e4a39e
AS
2373struct type *
2374ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2375{
2376 type = desc_base_type (type);
2377
d2e4a39e 2378 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2379 {
2380 int k;
d2e4a39e 2381 struct type *p_array_type;
14f9c5c9 2382
556bdfd4 2383 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2384
2385 k = ada_array_arity (type);
2386 if (k == 0)
4c4b4cd2 2387 return NULL;
d2e4a39e 2388
4c4b4cd2 2389 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2390 if (nindices >= 0 && k > nindices)
4c4b4cd2 2391 k = nindices;
d2e4a39e 2392 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2393 {
61ee279c 2394 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2395 k -= 1;
2396 }
14f9c5c9
AS
2397 return p_array_type;
2398 }
2399 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2400 {
2401 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2402 {
2403 type = TYPE_TARGET_TYPE (type);
2404 nindices -= 1;
2405 }
14f9c5c9
AS
2406 return type;
2407 }
2408
2409 return NULL;
2410}
2411
4c4b4cd2
PH
2412/* The type of nth index in arrays of given type (n numbering from 1).
2413 Does not examine memory. */
14f9c5c9 2414
d2e4a39e
AS
2415struct type *
2416ada_index_type (struct type *type, int n)
14f9c5c9 2417{
4c4b4cd2
PH
2418 struct type *result_type;
2419
14f9c5c9
AS
2420 type = desc_base_type (type);
2421
2422 if (n > ada_array_arity (type))
2423 return NULL;
2424
4c4b4cd2 2425 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2426 {
2427 int i;
2428
2429 for (i = 1; i < n; i += 1)
4c4b4cd2 2430 type = TYPE_TARGET_TYPE (type);
262452ec 2431 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2432 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2433 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2434 perhaps stabsread.c would make more sense. */
2435 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
6d84d3d8 2436 result_type = builtin_type_int32;
14f9c5c9 2437
4c4b4cd2 2438 return result_type;
14f9c5c9 2439 }
d2e4a39e 2440 else
14f9c5c9
AS
2441 return desc_index_type (desc_bounds_type (type), n);
2442}
2443
2444/* Given that arr is an array type, returns the lower bound of the
2445 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2446 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2447 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2448 bounds type. It works for other arrays with bounds supplied by
2449 run-time quantities other than discriminants. */
14f9c5c9 2450
abb68b3e 2451static LONGEST
d2e4a39e 2452ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2453 struct type ** typep)
14f9c5c9 2454{
262452ec
JK
2455 struct type *type, *index_type_desc, *index_type;
2456 LONGEST retval;
2457
2458 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2459
2460 if (ada_is_packed_array_type (arr_type))
2461 arr_type = decode_packed_array_type (arr_type);
2462
4c4b4cd2 2463 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2464 {
2465 if (typep != NULL)
6d84d3d8 2466 *typep = builtin_type_int32;
d2e4a39e 2467 return (LONGEST) - which;
14f9c5c9
AS
2468 }
2469
2470 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2471 type = TYPE_TARGET_TYPE (arr_type);
2472 else
2473 type = arr_type;
2474
2475 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2476 if (index_type_desc != NULL)
2477 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2478 NULL, TYPE_OBJFILE (arr_type));
2479 else
14f9c5c9 2480 {
d2e4a39e 2481 while (n > 1)
4c4b4cd2
PH
2482 {
2483 type = TYPE_TARGET_TYPE (type);
2484 n -= 1;
2485 }
14f9c5c9 2486
abb68b3e 2487 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2488 }
262452ec
JK
2489
2490 switch (TYPE_CODE (index_type))
14f9c5c9 2491 {
262452ec
JK
2492 case TYPE_CODE_RANGE:
2493 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2494 : TYPE_HIGH_BOUND (index_type);
2495 break;
2496 case TYPE_CODE_ENUM:
2497 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2498 : TYPE_FIELD_BITPOS (index_type,
2499 TYPE_NFIELDS (index_type) - 1);
2500 break;
2501 default:
2502 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2503 }
abb68b3e 2504
262452ec
JK
2505 if (typep != NULL)
2506 *typep = index_type;
abb68b3e 2507
262452ec 2508 return retval;
14f9c5c9
AS
2509}
2510
2511/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2512 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2513 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2514 supplied by run-time quantities other than discriminants. */
14f9c5c9 2515
d2e4a39e 2516struct value *
4dc81987 2517ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2518{
df407dfe 2519 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2520
2521 if (ada_is_packed_array_type (arr_type))
2522 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2523 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2524 {
d2e4a39e 2525 struct type *type;
14f9c5c9
AS
2526 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2527 return value_from_longest (type, v);
2528 }
2529 else
2530 return desc_one_bound (desc_bounds (arr), n, which);
2531}
2532
2533/* Given that arr is an array value, returns the length of the
2534 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2535 supplied by run-time quantities other than discriminants.
2536 Does not work for arrays indexed by enumeration types with representation
2537 clauses at the moment. */
14f9c5c9 2538
2c0b251b 2539static struct value *
d2e4a39e 2540ada_array_length (struct value *arr, int n)
14f9c5c9 2541{
df407dfe 2542 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2543
2544 if (ada_is_packed_array_type (arr_type))
2545 return ada_array_length (decode_packed_array (arr), n);
2546
4c4b4cd2 2547 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2548 {
d2e4a39e 2549 struct type *type;
14f9c5c9 2550 LONGEST v =
4c4b4cd2
PH
2551 ada_array_bound_from_type (arr_type, n, 1, &type) -
2552 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2553 return value_from_longest (type, v);
2554 }
2555 else
d2e4a39e 2556 return
030b4912 2557 value_from_longest (builtin_type_int32,
4c4b4cd2
PH
2558 value_as_long (desc_one_bound (desc_bounds (arr),
2559 n, 1))
2560 - value_as_long (desc_one_bound (desc_bounds (arr),
2561 n, 0)) + 1);
2562}
2563
2564/* An empty array whose type is that of ARR_TYPE (an array type),
2565 with bounds LOW to LOW-1. */
2566
2567static struct value *
2568empty_array (struct type *arr_type, int low)
2569{
6c038f32 2570 struct type *index_type =
0b5d8877
PH
2571 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2572 low, low - 1);
2573 struct type *elt_type = ada_array_element_type (arr_type, 1);
2574 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2575}
14f9c5c9 2576\f
d2e4a39e 2577
4c4b4cd2 2578 /* Name resolution */
14f9c5c9 2579
4c4b4cd2
PH
2580/* The "decoded" name for the user-definable Ada operator corresponding
2581 to OP. */
14f9c5c9 2582
d2e4a39e 2583static const char *
4c4b4cd2 2584ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2585{
2586 int i;
2587
4c4b4cd2 2588 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2589 {
2590 if (ada_opname_table[i].op == op)
4c4b4cd2 2591 return ada_opname_table[i].decoded;
14f9c5c9 2592 }
323e0a4a 2593 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2594}
2595
2596
4c4b4cd2
PH
2597/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2598 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2599 undefined namespace) and converts operators that are
2600 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2601 non-null, it provides a preferred result type [at the moment, only
2602 type void has any effect---causing procedures to be preferred over
2603 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2604 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2605
4c4b4cd2
PH
2606static void
2607resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2608{
2609 int pc;
2610 pc = 0;
4c4b4cd2 2611 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2612}
2613
4c4b4cd2
PH
2614/* Resolve the operator of the subexpression beginning at
2615 position *POS of *EXPP. "Resolving" consists of replacing
2616 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2617 with their resolutions, replacing built-in operators with
2618 function calls to user-defined operators, where appropriate, and,
2619 when DEPROCEDURE_P is non-zero, converting function-valued variables
2620 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2621 are as in ada_resolve, above. */
14f9c5c9 2622
d2e4a39e 2623static struct value *
4c4b4cd2 2624resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2625 struct type *context_type)
14f9c5c9
AS
2626{
2627 int pc = *pos;
2628 int i;
4c4b4cd2 2629 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2630 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2631 struct value **argvec; /* Vector of operand types (alloca'ed). */
2632 int nargs; /* Number of operands. */
52ce6436 2633 int oplen;
14f9c5c9
AS
2634
2635 argvec = NULL;
2636 nargs = 0;
2637 exp = *expp;
2638
52ce6436
PH
2639 /* Pass one: resolve operands, saving their types and updating *pos,
2640 if needed. */
14f9c5c9
AS
2641 switch (op)
2642 {
4c4b4cd2
PH
2643 case OP_FUNCALL:
2644 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2645 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2646 *pos += 7;
4c4b4cd2
PH
2647 else
2648 {
2649 *pos += 3;
2650 resolve_subexp (expp, pos, 0, NULL);
2651 }
2652 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2653 break;
2654
14f9c5c9 2655 case UNOP_ADDR:
4c4b4cd2
PH
2656 *pos += 1;
2657 resolve_subexp (expp, pos, 0, NULL);
2658 break;
2659
52ce6436
PH
2660 case UNOP_QUAL:
2661 *pos += 3;
17466c1a 2662 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2663 break;
2664
52ce6436 2665 case OP_ATR_MODULUS:
4c4b4cd2
PH
2666 case OP_ATR_SIZE:
2667 case OP_ATR_TAG:
4c4b4cd2
PH
2668 case OP_ATR_FIRST:
2669 case OP_ATR_LAST:
2670 case OP_ATR_LENGTH:
2671 case OP_ATR_POS:
2672 case OP_ATR_VAL:
4c4b4cd2
PH
2673 case OP_ATR_MIN:
2674 case OP_ATR_MAX:
52ce6436
PH
2675 case TERNOP_IN_RANGE:
2676 case BINOP_IN_BOUNDS:
2677 case UNOP_IN_RANGE:
2678 case OP_AGGREGATE:
2679 case OP_OTHERS:
2680 case OP_CHOICES:
2681 case OP_POSITIONAL:
2682 case OP_DISCRETE_RANGE:
2683 case OP_NAME:
2684 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2685 *pos += oplen;
14f9c5c9
AS
2686 break;
2687
2688 case BINOP_ASSIGN:
2689 {
4c4b4cd2
PH
2690 struct value *arg1;
2691
2692 *pos += 1;
2693 arg1 = resolve_subexp (expp, pos, 0, NULL);
2694 if (arg1 == NULL)
2695 resolve_subexp (expp, pos, 1, NULL);
2696 else
df407dfe 2697 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2698 break;
14f9c5c9
AS
2699 }
2700
4c4b4cd2 2701 case UNOP_CAST:
4c4b4cd2
PH
2702 *pos += 3;
2703 nargs = 1;
2704 break;
14f9c5c9 2705
4c4b4cd2
PH
2706 case BINOP_ADD:
2707 case BINOP_SUB:
2708 case BINOP_MUL:
2709 case BINOP_DIV:
2710 case BINOP_REM:
2711 case BINOP_MOD:
2712 case BINOP_EXP:
2713 case BINOP_CONCAT:
2714 case BINOP_LOGICAL_AND:
2715 case BINOP_LOGICAL_OR:
2716 case BINOP_BITWISE_AND:
2717 case BINOP_BITWISE_IOR:
2718 case BINOP_BITWISE_XOR:
14f9c5c9 2719
4c4b4cd2
PH
2720 case BINOP_EQUAL:
2721 case BINOP_NOTEQUAL:
2722 case BINOP_LESS:
2723 case BINOP_GTR:
2724 case BINOP_LEQ:
2725 case BINOP_GEQ:
14f9c5c9 2726
4c4b4cd2
PH
2727 case BINOP_REPEAT:
2728 case BINOP_SUBSCRIPT:
2729 case BINOP_COMMA:
40c8aaa9
JB
2730 *pos += 1;
2731 nargs = 2;
2732 break;
14f9c5c9 2733
4c4b4cd2
PH
2734 case UNOP_NEG:
2735 case UNOP_PLUS:
2736 case UNOP_LOGICAL_NOT:
2737 case UNOP_ABS:
2738 case UNOP_IND:
2739 *pos += 1;
2740 nargs = 1;
2741 break;
14f9c5c9 2742
4c4b4cd2
PH
2743 case OP_LONG:
2744 case OP_DOUBLE:
2745 case OP_VAR_VALUE:
2746 *pos += 4;
2747 break;
14f9c5c9 2748
4c4b4cd2
PH
2749 case OP_TYPE:
2750 case OP_BOOL:
2751 case OP_LAST:
4c4b4cd2
PH
2752 case OP_INTERNALVAR:
2753 *pos += 3;
2754 break;
14f9c5c9 2755
4c4b4cd2
PH
2756 case UNOP_MEMVAL:
2757 *pos += 3;
2758 nargs = 1;
2759 break;
2760
67f3407f
DJ
2761 case OP_REGISTER:
2762 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2763 break;
2764
4c4b4cd2
PH
2765 case STRUCTOP_STRUCT:
2766 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2767 nargs = 1;
2768 break;
2769
4c4b4cd2 2770 case TERNOP_SLICE:
4c4b4cd2
PH
2771 *pos += 1;
2772 nargs = 3;
2773 break;
2774
52ce6436 2775 case OP_STRING:
14f9c5c9 2776 break;
4c4b4cd2
PH
2777
2778 default:
323e0a4a 2779 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2780 }
2781
76a01679 2782 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2783 for (i = 0; i < nargs; i += 1)
2784 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2785 argvec[i] = NULL;
2786 exp = *expp;
2787
2788 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2789 switch (op)
2790 {
2791 default:
2792 break;
2793
14f9c5c9 2794 case OP_VAR_VALUE:
4c4b4cd2 2795 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2796 {
2797 struct ada_symbol_info *candidates;
2798 int n_candidates;
2799
2800 n_candidates =
2801 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2802 (exp->elts[pc + 2].symbol),
2803 exp->elts[pc + 1].block, VAR_DOMAIN,
2804 &candidates);
2805
2806 if (n_candidates > 1)
2807 {
2808 /* Types tend to get re-introduced locally, so if there
2809 are any local symbols that are not types, first filter
2810 out all types. */
2811 int j;
2812 for (j = 0; j < n_candidates; j += 1)
2813 switch (SYMBOL_CLASS (candidates[j].sym))
2814 {
2815 case LOC_REGISTER:
2816 case LOC_ARG:
2817 case LOC_REF_ARG:
76a01679
JB
2818 case LOC_REGPARM_ADDR:
2819 case LOC_LOCAL:
76a01679 2820 case LOC_COMPUTED:
76a01679
JB
2821 goto FoundNonType;
2822 default:
2823 break;
2824 }
2825 FoundNonType:
2826 if (j < n_candidates)
2827 {
2828 j = 0;
2829 while (j < n_candidates)
2830 {
2831 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2832 {
2833 candidates[j] = candidates[n_candidates - 1];
2834 n_candidates -= 1;
2835 }
2836 else
2837 j += 1;
2838 }
2839 }
2840 }
2841
2842 if (n_candidates == 0)
323e0a4a 2843 error (_("No definition found for %s"),
76a01679
JB
2844 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2845 else if (n_candidates == 1)
2846 i = 0;
2847 else if (deprocedure_p
2848 && !is_nonfunction (candidates, n_candidates))
2849 {
06d5cf63
JB
2850 i = ada_resolve_function
2851 (candidates, n_candidates, NULL, 0,
2852 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2853 context_type);
76a01679 2854 if (i < 0)
323e0a4a 2855 error (_("Could not find a match for %s"),
76a01679
JB
2856 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2857 }
2858 else
2859 {
323e0a4a 2860 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2861 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2862 user_select_syms (candidates, n_candidates, 1);
2863 i = 0;
2864 }
2865
2866 exp->elts[pc + 1].block = candidates[i].block;
2867 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2868 if (innermost_block == NULL
2869 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2870 innermost_block = candidates[i].block;
2871 }
2872
2873 if (deprocedure_p
2874 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2875 == TYPE_CODE_FUNC))
2876 {
2877 replace_operator_with_call (expp, pc, 0, 0,
2878 exp->elts[pc + 2].symbol,
2879 exp->elts[pc + 1].block);
2880 exp = *expp;
2881 }
14f9c5c9
AS
2882 break;
2883
2884 case OP_FUNCALL:
2885 {
4c4b4cd2 2886 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2887 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2888 {
2889 struct ada_symbol_info *candidates;
2890 int n_candidates;
2891
2892 n_candidates =
76a01679
JB
2893 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2894 (exp->elts[pc + 5].symbol),
2895 exp->elts[pc + 4].block, VAR_DOMAIN,
2896 &candidates);
4c4b4cd2
PH
2897 if (n_candidates == 1)
2898 i = 0;
2899 else
2900 {
06d5cf63
JB
2901 i = ada_resolve_function
2902 (candidates, n_candidates,
2903 argvec, nargs,
2904 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2905 context_type);
4c4b4cd2 2906 if (i < 0)
323e0a4a 2907 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2908 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2909 }
2910
2911 exp->elts[pc + 4].block = candidates[i].block;
2912 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2913 if (innermost_block == NULL
2914 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2915 innermost_block = candidates[i].block;
2916 }
14f9c5c9
AS
2917 }
2918 break;
2919 case BINOP_ADD:
2920 case BINOP_SUB:
2921 case BINOP_MUL:
2922 case BINOP_DIV:
2923 case BINOP_REM:
2924 case BINOP_MOD:
2925 case BINOP_CONCAT:
2926 case BINOP_BITWISE_AND:
2927 case BINOP_BITWISE_IOR:
2928 case BINOP_BITWISE_XOR:
2929 case BINOP_EQUAL:
2930 case BINOP_NOTEQUAL:
2931 case BINOP_LESS:
2932 case BINOP_GTR:
2933 case BINOP_LEQ:
2934 case BINOP_GEQ:
2935 case BINOP_EXP:
2936 case UNOP_NEG:
2937 case UNOP_PLUS:
2938 case UNOP_LOGICAL_NOT:
2939 case UNOP_ABS:
2940 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2941 {
2942 struct ada_symbol_info *candidates;
2943 int n_candidates;
2944
2945 n_candidates =
2946 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2947 (struct block *) NULL, VAR_DOMAIN,
2948 &candidates);
2949 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2950 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2951 if (i < 0)
2952 break;
2953
76a01679
JB
2954 replace_operator_with_call (expp, pc, nargs, 1,
2955 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2956 exp = *expp;
2957 }
14f9c5c9 2958 break;
4c4b4cd2
PH
2959
2960 case OP_TYPE:
b3dbf008 2961 case OP_REGISTER:
4c4b4cd2 2962 return NULL;
14f9c5c9
AS
2963 }
2964
2965 *pos = pc;
2966 return evaluate_subexp_type (exp, pos);
2967}
2968
2969/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2970 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2971 a non-pointer. A type of 'void' (which is never a valid expression type)
2972 by convention matches anything. */
14f9c5c9 2973/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2974 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2975
2976static int
4dc81987 2977ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2978{
61ee279c
PH
2979 ftype = ada_check_typedef (ftype);
2980 atype = ada_check_typedef (atype);
14f9c5c9
AS
2981
2982 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2983 ftype = TYPE_TARGET_TYPE (ftype);
2984 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2985 atype = TYPE_TARGET_TYPE (atype);
2986
d2e4a39e 2987 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2988 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2989 return 1;
2990
d2e4a39e 2991 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2992 {
2993 default:
2994 return 1;
2995 case TYPE_CODE_PTR:
2996 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2997 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2998 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2999 else
1265e4aa
JB
3000 return (may_deref
3001 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3002 case TYPE_CODE_INT:
3003 case TYPE_CODE_ENUM:
3004 case TYPE_CODE_RANGE:
3005 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3006 {
3007 case TYPE_CODE_INT:
3008 case TYPE_CODE_ENUM:
3009 case TYPE_CODE_RANGE:
3010 return 1;
3011 default:
3012 return 0;
3013 }
14f9c5c9
AS
3014
3015 case TYPE_CODE_ARRAY:
d2e4a39e 3016 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3017 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3018
3019 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3020 if (ada_is_array_descriptor_type (ftype))
3021 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3022 || ada_is_array_descriptor_type (atype));
14f9c5c9 3023 else
4c4b4cd2
PH
3024 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3025 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3026
3027 case TYPE_CODE_UNION:
3028 case TYPE_CODE_FLT:
3029 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3030 }
3031}
3032
3033/* Return non-zero if the formals of FUNC "sufficiently match" the
3034 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3035 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3036 argument function. */
14f9c5c9
AS
3037
3038static int
d2e4a39e 3039ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3040{
3041 int i;
d2e4a39e 3042 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3043
1265e4aa
JB
3044 if (SYMBOL_CLASS (func) == LOC_CONST
3045 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3046 return (n_actuals == 0);
3047 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3048 return 0;
3049
3050 if (TYPE_NFIELDS (func_type) != n_actuals)
3051 return 0;
3052
3053 for (i = 0; i < n_actuals; i += 1)
3054 {
4c4b4cd2 3055 if (actuals[i] == NULL)
76a01679
JB
3056 return 0;
3057 else
3058 {
61ee279c 3059 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3060 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3061
76a01679
JB
3062 if (!ada_type_match (ftype, atype, 1))
3063 return 0;
3064 }
14f9c5c9
AS
3065 }
3066 return 1;
3067}
3068
3069/* False iff function type FUNC_TYPE definitely does not produce a value
3070 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3071 FUNC_TYPE is not a valid function type with a non-null return type
3072 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3073
3074static int
d2e4a39e 3075return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3076{
d2e4a39e 3077 struct type *return_type;
14f9c5c9
AS
3078
3079 if (func_type == NULL)
3080 return 1;
3081
4c4b4cd2
PH
3082 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3083 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3084 else
3085 return_type = base_type (func_type);
14f9c5c9
AS
3086 if (return_type == NULL)
3087 return 1;
3088
4c4b4cd2 3089 context_type = base_type (context_type);
14f9c5c9
AS
3090
3091 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3092 return context_type == NULL || return_type == context_type;
3093 else if (context_type == NULL)
3094 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3095 else
3096 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3097}
3098
3099
4c4b4cd2 3100/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3101 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3102 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3103 that returns that type, then eliminate matches that don't. If
3104 CONTEXT_TYPE is void and there is at least one match that does not
3105 return void, eliminate all matches that do.
3106
14f9c5c9
AS
3107 Asks the user if there is more than one match remaining. Returns -1
3108 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3109 solely for messages. May re-arrange and modify SYMS in
3110 the process; the index returned is for the modified vector. */
14f9c5c9 3111
4c4b4cd2
PH
3112static int
3113ada_resolve_function (struct ada_symbol_info syms[],
3114 int nsyms, struct value **args, int nargs,
3115 const char *name, struct type *context_type)
14f9c5c9
AS
3116{
3117 int k;
4c4b4cd2 3118 int m; /* Number of hits */
d2e4a39e
AS
3119 struct type *fallback;
3120 struct type *return_type;
14f9c5c9
AS
3121
3122 return_type = context_type;
3123 if (context_type == NULL)
3124 fallback = builtin_type_void;
3125 else
3126 fallback = NULL;
3127
d2e4a39e 3128 m = 0;
14f9c5c9
AS
3129 while (1)
3130 {
3131 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3132 {
61ee279c 3133 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3134
3135 if (ada_args_match (syms[k].sym, args, nargs)
3136 && return_match (type, return_type))
3137 {
3138 syms[m] = syms[k];
3139 m += 1;
3140 }
3141 }
14f9c5c9 3142 if (m > 0 || return_type == fallback)
4c4b4cd2 3143 break;
14f9c5c9 3144 else
4c4b4cd2 3145 return_type = fallback;
14f9c5c9
AS
3146 }
3147
3148 if (m == 0)
3149 return -1;
3150 else if (m > 1)
3151 {
323e0a4a 3152 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3153 user_select_syms (syms, m, 1);
14f9c5c9
AS
3154 return 0;
3155 }
3156 return 0;
3157}
3158
4c4b4cd2
PH
3159/* Returns true (non-zero) iff decoded name N0 should appear before N1
3160 in a listing of choices during disambiguation (see sort_choices, below).
3161 The idea is that overloadings of a subprogram name from the
3162 same package should sort in their source order. We settle for ordering
3163 such symbols by their trailing number (__N or $N). */
3164
14f9c5c9 3165static int
4c4b4cd2 3166encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3167{
3168 if (N1 == NULL)
3169 return 0;
3170 else if (N0 == NULL)
3171 return 1;
3172 else
3173 {
3174 int k0, k1;
d2e4a39e 3175 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3176 ;
d2e4a39e 3177 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3178 ;
d2e4a39e 3179 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3180 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3181 {
3182 int n0, n1;
3183 n0 = k0;
3184 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3185 n0 -= 1;
3186 n1 = k1;
3187 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3188 n1 -= 1;
3189 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3190 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3191 }
14f9c5c9
AS
3192 return (strcmp (N0, N1) < 0);
3193 }
3194}
d2e4a39e 3195
4c4b4cd2
PH
3196/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3197 encoded names. */
3198
d2e4a39e 3199static void
4c4b4cd2 3200sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3201{
4c4b4cd2 3202 int i;
d2e4a39e 3203 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3204 {
4c4b4cd2 3205 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3206 int j;
3207
d2e4a39e 3208 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3209 {
3210 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3211 SYMBOL_LINKAGE_NAME (sym.sym)))
3212 break;
3213 syms[j + 1] = syms[j];
3214 }
d2e4a39e 3215 syms[j + 1] = sym;
14f9c5c9
AS
3216 }
3217}
3218
4c4b4cd2
PH
3219/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3220 by asking the user (if necessary), returning the number selected,
3221 and setting the first elements of SYMS items. Error if no symbols
3222 selected. */
14f9c5c9
AS
3223
3224/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3225 to be re-integrated one of these days. */
14f9c5c9
AS
3226
3227int
4c4b4cd2 3228user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3229{
3230 int i;
d2e4a39e 3231 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3232 int n_chosen;
3233 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3234 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3235
3236 if (max_results < 1)
323e0a4a 3237 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3238 if (nsyms <= 1)
3239 return nsyms;
3240
717d2f5a
JB
3241 if (select_mode == multiple_symbols_cancel)
3242 error (_("\
3243canceled because the command is ambiguous\n\
3244See set/show multiple-symbol."));
3245
3246 /* If select_mode is "all", then return all possible symbols.
3247 Only do that if more than one symbol can be selected, of course.
3248 Otherwise, display the menu as usual. */
3249 if (select_mode == multiple_symbols_all && max_results > 1)
3250 return nsyms;
3251
323e0a4a 3252 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3253 if (max_results > 1)
323e0a4a 3254 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3255
4c4b4cd2 3256 sort_choices (syms, nsyms);
14f9c5c9
AS
3257
3258 for (i = 0; i < nsyms; i += 1)
3259 {
4c4b4cd2
PH
3260 if (syms[i].sym == NULL)
3261 continue;
3262
3263 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3264 {
76a01679
JB
3265 struct symtab_and_line sal =
3266 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3267 if (sal.symtab == NULL)
3268 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3269 i + first_choice,
3270 SYMBOL_PRINT_NAME (syms[i].sym),
3271 sal.line);
3272 else
3273 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3274 SYMBOL_PRINT_NAME (syms[i].sym),
3275 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3276 continue;
3277 }
d2e4a39e 3278 else
4c4b4cd2
PH
3279 {
3280 int is_enumeral =
3281 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3282 && SYMBOL_TYPE (syms[i].sym) != NULL
3283 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3284 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3285
3286 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3287 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3288 i + first_choice,
3289 SYMBOL_PRINT_NAME (syms[i].sym),
3290 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3291 else if (is_enumeral
3292 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3293 {
a3f17187 3294 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3295 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3296 gdb_stdout, -1, 0);
323e0a4a 3297 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3298 SYMBOL_PRINT_NAME (syms[i].sym));
3299 }
3300 else if (symtab != NULL)
3301 printf_unfiltered (is_enumeral
323e0a4a
AC
3302 ? _("[%d] %s in %s (enumeral)\n")
3303 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3304 i + first_choice,
3305 SYMBOL_PRINT_NAME (syms[i].sym),
3306 symtab->filename);
3307 else
3308 printf_unfiltered (is_enumeral
323e0a4a
AC
3309 ? _("[%d] %s (enumeral)\n")
3310 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3311 i + first_choice,
3312 SYMBOL_PRINT_NAME (syms[i].sym));
3313 }
14f9c5c9 3314 }
d2e4a39e 3315
14f9c5c9 3316 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3317 "overload-choice");
14f9c5c9
AS
3318
3319 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3320 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3321
3322 return n_chosen;
3323}
3324
3325/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3326 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3327 order in CHOICES[0 .. N-1], and return N.
3328
3329 The user types choices as a sequence of numbers on one line
3330 separated by blanks, encoding them as follows:
3331
4c4b4cd2 3332 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3333 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3334 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3335
4c4b4cd2 3336 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3337
3338 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3339 prompts (for use with the -f switch). */
14f9c5c9
AS
3340
3341int
d2e4a39e 3342get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3343 int is_all_choice, char *annotation_suffix)
14f9c5c9 3344{
d2e4a39e 3345 char *args;
0bcd0149 3346 char *prompt;
14f9c5c9
AS
3347 int n_chosen;
3348 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3349
14f9c5c9
AS
3350 prompt = getenv ("PS2");
3351 if (prompt == NULL)
0bcd0149 3352 prompt = "> ";
14f9c5c9 3353
0bcd0149 3354 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3355
14f9c5c9 3356 if (args == NULL)
323e0a4a 3357 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3358
3359 n_chosen = 0;
76a01679 3360
4c4b4cd2
PH
3361 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3362 order, as given in args. Choices are validated. */
14f9c5c9
AS
3363 while (1)
3364 {
d2e4a39e 3365 char *args2;
14f9c5c9
AS
3366 int choice, j;
3367
3368 while (isspace (*args))
4c4b4cd2 3369 args += 1;
14f9c5c9 3370 if (*args == '\0' && n_chosen == 0)
323e0a4a 3371 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3372 else if (*args == '\0')
4c4b4cd2 3373 break;
14f9c5c9
AS
3374
3375 choice = strtol (args, &args2, 10);
d2e4a39e 3376 if (args == args2 || choice < 0
4c4b4cd2 3377 || choice > n_choices + first_choice - 1)
323e0a4a 3378 error (_("Argument must be choice number"));
14f9c5c9
AS
3379 args = args2;
3380
d2e4a39e 3381 if (choice == 0)
323e0a4a 3382 error (_("cancelled"));
14f9c5c9
AS
3383
3384 if (choice < first_choice)
4c4b4cd2
PH
3385 {
3386 n_chosen = n_choices;
3387 for (j = 0; j < n_choices; j += 1)
3388 choices[j] = j;
3389 break;
3390 }
14f9c5c9
AS
3391 choice -= first_choice;
3392
d2e4a39e 3393 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3394 {
3395 }
14f9c5c9
AS
3396
3397 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3398 {
3399 int k;
3400 for (k = n_chosen - 1; k > j; k -= 1)
3401 choices[k + 1] = choices[k];
3402 choices[j + 1] = choice;
3403 n_chosen += 1;
3404 }
14f9c5c9
AS
3405 }
3406
3407 if (n_chosen > max_results)
323e0a4a 3408 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3409
14f9c5c9
AS
3410 return n_chosen;
3411}
3412
4c4b4cd2
PH
3413/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3414 on the function identified by SYM and BLOCK, and taking NARGS
3415 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3416
3417static void
d2e4a39e 3418replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3419 int oplen, struct symbol *sym,
3420 struct block *block)
14f9c5c9
AS
3421{
3422 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3423 symbol, -oplen for operator being replaced). */
d2e4a39e 3424 struct expression *newexp = (struct expression *)
14f9c5c9 3425 xmalloc (sizeof (struct expression)
4c4b4cd2 3426 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3427 struct expression *exp = *expp;
14f9c5c9
AS
3428
3429 newexp->nelts = exp->nelts + 7 - oplen;
3430 newexp->language_defn = exp->language_defn;
3431 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3432 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3433 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3434
3435 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3436 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3437
3438 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3439 newexp->elts[pc + 4].block = block;
3440 newexp->elts[pc + 5].symbol = sym;
3441
3442 *expp = newexp;
aacb1f0a 3443 xfree (exp);
d2e4a39e 3444}
14f9c5c9
AS
3445
3446/* Type-class predicates */
3447
4c4b4cd2
PH
3448/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3449 or FLOAT). */
14f9c5c9
AS
3450
3451static int
d2e4a39e 3452numeric_type_p (struct type *type)
14f9c5c9
AS
3453{
3454 if (type == NULL)
3455 return 0;
d2e4a39e
AS
3456 else
3457 {
3458 switch (TYPE_CODE (type))
4c4b4cd2
PH
3459 {
3460 case TYPE_CODE_INT:
3461 case TYPE_CODE_FLT:
3462 return 1;
3463 case TYPE_CODE_RANGE:
3464 return (type == TYPE_TARGET_TYPE (type)
3465 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3466 default:
3467 return 0;
3468 }
d2e4a39e 3469 }
14f9c5c9
AS
3470}
3471
4c4b4cd2 3472/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3473
3474static int
d2e4a39e 3475integer_type_p (struct type *type)
14f9c5c9
AS
3476{
3477 if (type == NULL)
3478 return 0;
d2e4a39e
AS
3479 else
3480 {
3481 switch (TYPE_CODE (type))
4c4b4cd2
PH
3482 {
3483 case TYPE_CODE_INT:
3484 return 1;
3485 case TYPE_CODE_RANGE:
3486 return (type == TYPE_TARGET_TYPE (type)
3487 || integer_type_p (TYPE_TARGET_TYPE (type)));
3488 default:
3489 return 0;
3490 }
d2e4a39e 3491 }
14f9c5c9
AS
3492}
3493
4c4b4cd2 3494/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3495
3496static int
d2e4a39e 3497scalar_type_p (struct type *type)
14f9c5c9
AS
3498{
3499 if (type == NULL)
3500 return 0;
d2e4a39e
AS
3501 else
3502 {
3503 switch (TYPE_CODE (type))
4c4b4cd2
PH
3504 {
3505 case TYPE_CODE_INT:
3506 case TYPE_CODE_RANGE:
3507 case TYPE_CODE_ENUM:
3508 case TYPE_CODE_FLT:
3509 return 1;
3510 default:
3511 return 0;
3512 }
d2e4a39e 3513 }
14f9c5c9
AS
3514}
3515
4c4b4cd2 3516/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3517
3518static int
d2e4a39e 3519discrete_type_p (struct type *type)
14f9c5c9
AS
3520{
3521 if (type == NULL)
3522 return 0;
d2e4a39e
AS
3523 else
3524 {
3525 switch (TYPE_CODE (type))
4c4b4cd2
PH
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_RANGE:
3529 case TYPE_CODE_ENUM:
3530 return 1;
3531 default:
3532 return 0;
3533 }
d2e4a39e 3534 }
14f9c5c9
AS
3535}
3536
4c4b4cd2
PH
3537/* Returns non-zero if OP with operands in the vector ARGS could be
3538 a user-defined function. Errs on the side of pre-defined operators
3539 (i.e., result 0). */
14f9c5c9
AS
3540
3541static int
d2e4a39e 3542possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3543{
76a01679 3544 struct type *type0 =
df407dfe 3545 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3546 struct type *type1 =
df407dfe 3547 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3548
4c4b4cd2
PH
3549 if (type0 == NULL)
3550 return 0;
3551
14f9c5c9
AS
3552 switch (op)
3553 {
3554 default:
3555 return 0;
3556
3557 case BINOP_ADD:
3558 case BINOP_SUB:
3559 case BINOP_MUL:
3560 case BINOP_DIV:
d2e4a39e 3561 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3562
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
d2e4a39e 3568 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3569
3570 case BINOP_EQUAL:
3571 case BINOP_NOTEQUAL:
3572 case BINOP_LESS:
3573 case BINOP_GTR:
3574 case BINOP_LEQ:
3575 case BINOP_GEQ:
d2e4a39e 3576 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3577
3578 case BINOP_CONCAT:
ee90b9ab 3579 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3580
3581 case BINOP_EXP:
d2e4a39e 3582 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3583
3584 case UNOP_NEG:
3585 case UNOP_PLUS:
3586 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3587 case UNOP_ABS:
3588 return (!numeric_type_p (type0));
14f9c5c9
AS
3589
3590 }
3591}
3592\f
4c4b4cd2 3593 /* Renaming */
14f9c5c9 3594
aeb5907d
JB
3595/* NOTES:
3596
3597 1. In the following, we assume that a renaming type's name may
3598 have an ___XD suffix. It would be nice if this went away at some
3599 point.
3600 2. We handle both the (old) purely type-based representation of
3601 renamings and the (new) variable-based encoding. At some point,
3602 it is devoutly to be hoped that the former goes away
3603 (FIXME: hilfinger-2007-07-09).
3604 3. Subprogram renamings are not implemented, although the XRS
3605 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3606
3607/* If SYM encodes a renaming,
3608
3609 <renaming> renames <renamed entity>,
3610
3611 sets *LEN to the length of the renamed entity's name,
3612 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3613 the string describing the subcomponent selected from the renamed
3614 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3615 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3616 are undefined). Otherwise, returns a value indicating the category
3617 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3618 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3619 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3620 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3621 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3622 may be NULL, in which case they are not assigned.
3623
3624 [Currently, however, GCC does not generate subprogram renamings.] */
3625
3626enum ada_renaming_category
3627ada_parse_renaming (struct symbol *sym,
3628 const char **renamed_entity, int *len,
3629 const char **renaming_expr)
3630{
3631 enum ada_renaming_category kind;
3632 const char *info;
3633 const char *suffix;
3634
3635 if (sym == NULL)
3636 return ADA_NOT_RENAMING;
3637 switch (SYMBOL_CLASS (sym))
14f9c5c9 3638 {
aeb5907d
JB
3639 default:
3640 return ADA_NOT_RENAMING;
3641 case LOC_TYPEDEF:
3642 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3643 renamed_entity, len, renaming_expr);
3644 case LOC_LOCAL:
3645 case LOC_STATIC:
3646 case LOC_COMPUTED:
3647 case LOC_OPTIMIZED_OUT:
3648 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3649 if (info == NULL)
3650 return ADA_NOT_RENAMING;
3651 switch (info[5])
3652 {
3653 case '_':
3654 kind = ADA_OBJECT_RENAMING;
3655 info += 6;
3656 break;
3657 case 'E':
3658 kind = ADA_EXCEPTION_RENAMING;
3659 info += 7;
3660 break;
3661 case 'P':
3662 kind = ADA_PACKAGE_RENAMING;
3663 info += 7;
3664 break;
3665 case 'S':
3666 kind = ADA_SUBPROGRAM_RENAMING;
3667 info += 7;
3668 break;
3669 default:
3670 return ADA_NOT_RENAMING;
3671 }
14f9c5c9 3672 }
4c4b4cd2 3673
aeb5907d
JB
3674 if (renamed_entity != NULL)
3675 *renamed_entity = info;
3676 suffix = strstr (info, "___XE");
3677 if (suffix == NULL || suffix == info)
3678 return ADA_NOT_RENAMING;
3679 if (len != NULL)
3680 *len = strlen (info) - strlen (suffix);
3681 suffix += 5;
3682 if (renaming_expr != NULL)
3683 *renaming_expr = suffix;
3684 return kind;
3685}
3686
3687/* Assuming TYPE encodes a renaming according to the old encoding in
3688 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3689 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3690 ADA_NOT_RENAMING otherwise. */
3691static enum ada_renaming_category
3692parse_old_style_renaming (struct type *type,
3693 const char **renamed_entity, int *len,
3694 const char **renaming_expr)
3695{
3696 enum ada_renaming_category kind;
3697 const char *name;
3698 const char *info;
3699 const char *suffix;
14f9c5c9 3700
aeb5907d
JB
3701 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3702 || TYPE_NFIELDS (type) != 1)
3703 return ADA_NOT_RENAMING;
14f9c5c9 3704
aeb5907d
JB
3705 name = type_name_no_tag (type);
3706 if (name == NULL)
3707 return ADA_NOT_RENAMING;
3708
3709 name = strstr (name, "___XR");
3710 if (name == NULL)
3711 return ADA_NOT_RENAMING;
3712 switch (name[5])
3713 {
3714 case '\0':
3715 case '_':
3716 kind = ADA_OBJECT_RENAMING;
3717 break;
3718 case 'E':
3719 kind = ADA_EXCEPTION_RENAMING;
3720 break;
3721 case 'P':
3722 kind = ADA_PACKAGE_RENAMING;
3723 break;
3724 case 'S':
3725 kind = ADA_SUBPROGRAM_RENAMING;
3726 break;
3727 default:
3728 return ADA_NOT_RENAMING;
3729 }
14f9c5c9 3730
aeb5907d
JB
3731 info = TYPE_FIELD_NAME (type, 0);
3732 if (info == NULL)
3733 return ADA_NOT_RENAMING;
3734 if (renamed_entity != NULL)
3735 *renamed_entity = info;
3736 suffix = strstr (info, "___XE");
3737 if (renaming_expr != NULL)
3738 *renaming_expr = suffix + 5;
3739 if (suffix == NULL || suffix == info)
3740 return ADA_NOT_RENAMING;
3741 if (len != NULL)
3742 *len = suffix - info;
3743 return kind;
3744}
52ce6436 3745
14f9c5c9 3746\f
d2e4a39e 3747
4c4b4cd2 3748 /* Evaluation: Function Calls */
14f9c5c9 3749
4c4b4cd2
PH
3750/* Return an lvalue containing the value VAL. This is the identity on
3751 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3752 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3753 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3754
d2e4a39e 3755static struct value *
4c4b4cd2 3756ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3757{
c3e5cd34
PH
3758 if (! VALUE_LVAL (val))
3759 {
df407dfe 3760 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3761
3762 /* The following is taken from the structure-return code in
3763 call_function_by_hand. FIXME: Therefore, some refactoring seems
3764 indicated. */
4d1e7dd1 3765 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34 3766 {
42ae5230 3767 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3768 reserving sufficient space. */
3769 *sp -= len;
3770 if (gdbarch_frame_align_p (current_gdbarch))
3771 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3772 set_value_address (val, *sp);
c3e5cd34
PH
3773 }
3774 else
3775 {
3776 /* Stack grows upward. Align the frame, allocate space, and
3777 then again, re-align the frame. */
3778 if (gdbarch_frame_align_p (current_gdbarch))
3779 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3780 set_value_address (val, *sp);
c3e5cd34
PH
3781 *sp += len;
3782 if (gdbarch_frame_align_p (current_gdbarch))
3783 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3784 }
a84a8a0d 3785 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3786
42ae5230 3787 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3788 }
14f9c5c9
AS
3789
3790 return val;
3791}
3792
3793/* Return the value ACTUAL, converted to be an appropriate value for a
3794 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3795 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3796 values not residing in memory, updating it as needed. */
14f9c5c9 3797
a93c0eb6
JB
3798struct value *
3799ada_convert_actual (struct value *actual, struct type *formal_type0,
3800 CORE_ADDR *sp)
14f9c5c9 3801{
df407dfe 3802 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3803 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3804 struct type *formal_target =
3805 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3806 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3807 struct type *actual_target =
3808 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3809 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3810
4c4b4cd2 3811 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3812 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3813 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3814 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3815 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3816 {
a84a8a0d 3817 struct value *result;
14f9c5c9 3818 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3819 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3820 result = desc_data (actual);
14f9c5c9 3821 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3822 {
3823 if (VALUE_LVAL (actual) != lval_memory)
3824 {
3825 struct value *val;
df407dfe 3826 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3827 val = allocate_value (actual_type);
990a07ab 3828 memcpy ((char *) value_contents_raw (val),
0fd88904 3829 (char *) value_contents (actual),
4c4b4cd2
PH
3830 TYPE_LENGTH (actual_type));
3831 actual = ensure_lval (val, sp);
3832 }
a84a8a0d 3833 result = value_addr (actual);
4c4b4cd2 3834 }
a84a8a0d
JB
3835 else
3836 return actual;
3837 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3838 }
3839 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3840 return ada_value_ind (actual);
3841
3842 return actual;
3843}
3844
3845
4c4b4cd2
PH
3846/* Push a descriptor of type TYPE for array value ARR on the stack at
3847 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3848 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3849 to-descriptor type rather than a descriptor type), a struct value *
3850 representing a pointer to this descriptor. */
14f9c5c9 3851
d2e4a39e
AS
3852static struct value *
3853make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3854{
d2e4a39e
AS
3855 struct type *bounds_type = desc_bounds_type (type);
3856 struct type *desc_type = desc_base_type (type);
3857 struct value *descriptor = allocate_value (desc_type);
3858 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3859 int i;
d2e4a39e 3860
df407dfe 3861 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3862 {
0fd88904 3863 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3864 value_as_long (ada_array_bound (arr, i, 0)),
3865 desc_bound_bitpos (bounds_type, i, 0),
3866 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3867 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3868 value_as_long (ada_array_bound (arr, i, 1)),
3869 desc_bound_bitpos (bounds_type, i, 1),
3870 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3871 }
d2e4a39e 3872
4c4b4cd2 3873 bounds = ensure_lval (bounds, sp);
d2e4a39e 3874
0fd88904 3875 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3876 value_address (ensure_lval (arr, sp)),
76a01679
JB
3877 fat_pntr_data_bitpos (desc_type),
3878 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3879
0fd88904 3880 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3881 value_address (bounds),
4c4b4cd2
PH
3882 fat_pntr_bounds_bitpos (desc_type),
3883 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3884
4c4b4cd2 3885 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3886
3887 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3888 return value_addr (descriptor);
3889 else
3890 return descriptor;
3891}
14f9c5c9 3892\f
963a6417
PH
3893/* Dummy definitions for an experimental caching module that is not
3894 * used in the public sources. */
96d887e8 3895
96d887e8
PH
3896static int
3897lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3898 struct symbol **sym, struct block **block)
96d887e8
PH
3899{
3900 return 0;
3901}
3902
3903static void
3904cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3905 struct block *block)
96d887e8
PH
3906{
3907}
4c4b4cd2
PH
3908\f
3909 /* Symbol Lookup */
3910
3911/* Return the result of a standard (literal, C-like) lookup of NAME in
3912 given DOMAIN, visible from lexical block BLOCK. */
3913
3914static struct symbol *
3915standard_lookup (const char *name, const struct block *block,
3916 domain_enum domain)
3917{
3918 struct symbol *sym;
4c4b4cd2 3919
2570f2b7 3920 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3921 return sym;
2570f2b7
UW
3922 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3923 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3924 return sym;
3925}
3926
3927
3928/* Non-zero iff there is at least one non-function/non-enumeral symbol
3929 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3930 since they contend in overloading in the same way. */
3931static int
3932is_nonfunction (struct ada_symbol_info syms[], int n)
3933{
3934 int i;
3935
3936 for (i = 0; i < n; i += 1)
3937 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3938 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3939 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3940 return 1;
3941
3942 return 0;
3943}
3944
3945/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3946 struct types. Otherwise, they may not. */
14f9c5c9
AS
3947
3948static int
d2e4a39e 3949equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3950{
d2e4a39e 3951 if (type0 == type1)
14f9c5c9 3952 return 1;
d2e4a39e 3953 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3954 || TYPE_CODE (type0) != TYPE_CODE (type1))
3955 return 0;
d2e4a39e 3956 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3957 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3958 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3959 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3960 return 1;
d2e4a39e 3961
14f9c5c9
AS
3962 return 0;
3963}
3964
3965/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3966 no more defined than that of SYM1. */
14f9c5c9
AS
3967
3968static int
d2e4a39e 3969lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3970{
3971 if (sym0 == sym1)
3972 return 1;
176620f1 3973 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3974 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3975 return 0;
3976
d2e4a39e 3977 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3978 {
3979 case LOC_UNDEF:
3980 return 1;
3981 case LOC_TYPEDEF:
3982 {
4c4b4cd2
PH
3983 struct type *type0 = SYMBOL_TYPE (sym0);
3984 struct type *type1 = SYMBOL_TYPE (sym1);
3985 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3986 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3987 int len0 = strlen (name0);
3988 return
3989 TYPE_CODE (type0) == TYPE_CODE (type1)
3990 && (equiv_types (type0, type1)
3991 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3992 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3993 }
3994 case LOC_CONST:
3995 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3996 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3997 default:
3998 return 0;
14f9c5c9
AS
3999 }
4000}
4001
4c4b4cd2
PH
4002/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4003 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4004
4005static void
76a01679
JB
4006add_defn_to_vec (struct obstack *obstackp,
4007 struct symbol *sym,
2570f2b7 4008 struct block *block)
14f9c5c9
AS
4009{
4010 int i;
4011 size_t tmp;
4c4b4cd2 4012 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4013
529cad9c
PH
4014 /* Do not try to complete stub types, as the debugger is probably
4015 already scanning all symbols matching a certain name at the
4016 time when this function is called. Trying to replace the stub
4017 type by its associated full type will cause us to restart a scan
4018 which may lead to an infinite recursion. Instead, the client
4019 collecting the matching symbols will end up collecting several
4020 matches, with at least one of them complete. It can then filter
4021 out the stub ones if needed. */
4022
4c4b4cd2
PH
4023 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4024 {
4025 if (lesseq_defined_than (sym, prevDefns[i].sym))
4026 return;
4027 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4028 {
4029 prevDefns[i].sym = sym;
4030 prevDefns[i].block = block;
4c4b4cd2 4031 return;
76a01679 4032 }
4c4b4cd2
PH
4033 }
4034
4035 {
4036 struct ada_symbol_info info;
4037
4038 info.sym = sym;
4039 info.block = block;
4c4b4cd2
PH
4040 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4041 }
4042}
4043
4044/* Number of ada_symbol_info structures currently collected in
4045 current vector in *OBSTACKP. */
4046
76a01679
JB
4047static int
4048num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4049{
4050 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4051}
4052
4053/* Vector of ada_symbol_info structures currently collected in current
4054 vector in *OBSTACKP. If FINISH, close off the vector and return
4055 its final address. */
4056
76a01679 4057static struct ada_symbol_info *
4c4b4cd2
PH
4058defns_collected (struct obstack *obstackp, int finish)
4059{
4060 if (finish)
4061 return obstack_finish (obstackp);
4062 else
4063 return (struct ada_symbol_info *) obstack_base (obstackp);
4064}
4065
96d887e8
PH
4066/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4067 Check the global symbols if GLOBAL, the static symbols if not.
4068 Do wild-card match if WILD. */
4c4b4cd2 4069
96d887e8
PH
4070static struct partial_symbol *
4071ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4072 int global, domain_enum namespace, int wild)
4c4b4cd2 4073{
96d887e8
PH
4074 struct partial_symbol **start;
4075 int name_len = strlen (name);
4076 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4077 int i;
4c4b4cd2 4078
96d887e8 4079 if (length == 0)
4c4b4cd2 4080 {
96d887e8 4081 return (NULL);
4c4b4cd2
PH
4082 }
4083
96d887e8
PH
4084 start = (global ?
4085 pst->objfile->global_psymbols.list + pst->globals_offset :
4086 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4087
96d887e8 4088 if (wild)
4c4b4cd2 4089 {
96d887e8
PH
4090 for (i = 0; i < length; i += 1)
4091 {
4092 struct partial_symbol *psym = start[i];
4c4b4cd2 4093
5eeb2539
AR
4094 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4095 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4096 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4097 return psym;
4098 }
4099 return NULL;
4c4b4cd2 4100 }
96d887e8
PH
4101 else
4102 {
4103 if (global)
4104 {
4105 int U;
4106 i = 0;
4107 U = length - 1;
4108 while (U - i > 4)
4109 {
4110 int M = (U + i) >> 1;
4111 struct partial_symbol *psym = start[M];
4112 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4113 i = M + 1;
4114 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4115 U = M - 1;
4116 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4117 i = M + 1;
4118 else
4119 U = M;
4120 }
4121 }
4122 else
4123 i = 0;
4c4b4cd2 4124
96d887e8
PH
4125 while (i < length)
4126 {
4127 struct partial_symbol *psym = start[i];
4c4b4cd2 4128
5eeb2539
AR
4129 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4130 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4131 {
4132 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4133
96d887e8
PH
4134 if (cmp < 0)
4135 {
4136 if (global)
4137 break;
4138 }
4139 else if (cmp == 0
4140 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4141 + name_len))
96d887e8
PH
4142 return psym;
4143 }
4144 i += 1;
4145 }
4c4b4cd2 4146
96d887e8
PH
4147 if (global)
4148 {
4149 int U;
4150 i = 0;
4151 U = length - 1;
4152 while (U - i > 4)
4153 {
4154 int M = (U + i) >> 1;
4155 struct partial_symbol *psym = start[M];
4156 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4157 i = M + 1;
4158 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4159 U = M - 1;
4160 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4161 i = M + 1;
4162 else
4163 U = M;
4164 }
4165 }
4166 else
4167 i = 0;
4c4b4cd2 4168
96d887e8
PH
4169 while (i < length)
4170 {
4171 struct partial_symbol *psym = start[i];
4c4b4cd2 4172
5eeb2539
AR
4173 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4174 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4175 {
4176 int cmp;
4c4b4cd2 4177
96d887e8
PH
4178 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4179 if (cmp == 0)
4180 {
4181 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4182 if (cmp == 0)
4183 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4184 name_len);
96d887e8 4185 }
4c4b4cd2 4186
96d887e8
PH
4187 if (cmp < 0)
4188 {
4189 if (global)
4190 break;
4191 }
4192 else if (cmp == 0
4193 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4194 + name_len + 5))
96d887e8
PH
4195 return psym;
4196 }
4197 i += 1;
4198 }
4199 }
4200 return NULL;
4c4b4cd2
PH
4201}
4202
96d887e8
PH
4203/* Return a minimal symbol matching NAME according to Ada decoding
4204 rules. Returns NULL if there is no such minimal symbol. Names
4205 prefixed with "standard__" are handled specially: "standard__" is
4206 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4207
96d887e8
PH
4208struct minimal_symbol *
4209ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4210{
4c4b4cd2 4211 struct objfile *objfile;
96d887e8
PH
4212 struct minimal_symbol *msymbol;
4213 int wild_match;
4c4b4cd2 4214
96d887e8 4215 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4216 {
96d887e8 4217 name += sizeof ("standard__") - 1;
4c4b4cd2 4218 wild_match = 0;
4c4b4cd2
PH
4219 }
4220 else
96d887e8 4221 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4222
96d887e8
PH
4223 ALL_MSYMBOLS (objfile, msymbol)
4224 {
4225 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4226 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4227 return msymbol;
4228 }
4c4b4cd2 4229
96d887e8
PH
4230 return NULL;
4231}
4c4b4cd2 4232
96d887e8
PH
4233/* For all subprograms that statically enclose the subprogram of the
4234 selected frame, add symbols matching identifier NAME in DOMAIN
4235 and their blocks to the list of data in OBSTACKP, as for
4236 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4237 wildcard prefix. */
4c4b4cd2 4238
96d887e8
PH
4239static void
4240add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4241 const char *name, domain_enum namespace,
96d887e8
PH
4242 int wild_match)
4243{
96d887e8 4244}
14f9c5c9 4245
96d887e8
PH
4246/* True if TYPE is definitely an artificial type supplied to a symbol
4247 for which no debugging information was given in the symbol file. */
14f9c5c9 4248
96d887e8
PH
4249static int
4250is_nondebugging_type (struct type *type)
4251{
4252 char *name = ada_type_name (type);
4253 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4254}
4c4b4cd2 4255
96d887e8
PH
4256/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4257 duplicate other symbols in the list (The only case I know of where
4258 this happens is when object files containing stabs-in-ecoff are
4259 linked with files containing ordinary ecoff debugging symbols (or no
4260 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4261 Returns the number of items in the modified list. */
4c4b4cd2 4262
96d887e8
PH
4263static int
4264remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4265{
4266 int i, j;
4c4b4cd2 4267
96d887e8
PH
4268 i = 0;
4269 while (i < nsyms)
4270 {
339c13b6
JB
4271 int remove = 0;
4272
4273 /* If two symbols have the same name and one of them is a stub type,
4274 the get rid of the stub. */
4275
4276 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4277 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4278 {
4279 for (j = 0; j < nsyms; j++)
4280 {
4281 if (j != i
4282 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4283 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4284 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4285 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4286 remove = 1;
4287 }
4288 }
4289
4290 /* Two symbols with the same name, same class and same address
4291 should be identical. */
4292
4293 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4294 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4295 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4296 {
4297 for (j = 0; j < nsyms; j += 1)
4298 {
4299 if (i != j
4300 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4301 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4302 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4303 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4304 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4305 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4306 remove = 1;
4c4b4cd2 4307 }
4c4b4cd2 4308 }
339c13b6
JB
4309
4310 if (remove)
4311 {
4312 for (j = i + 1; j < nsyms; j += 1)
4313 syms[j - 1] = syms[j];
4314 nsyms -= 1;
4315 }
4316
96d887e8 4317 i += 1;
14f9c5c9 4318 }
96d887e8 4319 return nsyms;
14f9c5c9
AS
4320}
4321
96d887e8
PH
4322/* Given a type that corresponds to a renaming entity, use the type name
4323 to extract the scope (package name or function name, fully qualified,
4324 and following the GNAT encoding convention) where this renaming has been
4325 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4326
96d887e8
PH
4327static char *
4328xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4329{
96d887e8
PH
4330 /* The renaming types adhere to the following convention:
4331 <scope>__<rename>___<XR extension>.
4332 So, to extract the scope, we search for the "___XR" extension,
4333 and then backtrack until we find the first "__". */
76a01679 4334
96d887e8
PH
4335 const char *name = type_name_no_tag (renaming_type);
4336 char *suffix = strstr (name, "___XR");
4337 char *last;
4338 int scope_len;
4339 char *scope;
14f9c5c9 4340
96d887e8
PH
4341 /* Now, backtrack a bit until we find the first "__". Start looking
4342 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4343
96d887e8
PH
4344 for (last = suffix - 3; last > name; last--)
4345 if (last[0] == '_' && last[1] == '_')
4346 break;
76a01679 4347
96d887e8 4348 /* Make a copy of scope and return it. */
14f9c5c9 4349
96d887e8
PH
4350 scope_len = last - name;
4351 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4352
96d887e8
PH
4353 strncpy (scope, name, scope_len);
4354 scope[scope_len] = '\0';
4c4b4cd2 4355
96d887e8 4356 return scope;
4c4b4cd2
PH
4357}
4358
96d887e8 4359/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4360
96d887e8
PH
4361static int
4362is_package_name (const char *name)
4c4b4cd2 4363{
96d887e8
PH
4364 /* Here, We take advantage of the fact that no symbols are generated
4365 for packages, while symbols are generated for each function.
4366 So the condition for NAME represent a package becomes equivalent
4367 to NAME not existing in our list of symbols. There is only one
4368 small complication with library-level functions (see below). */
4c4b4cd2 4369
96d887e8 4370 char *fun_name;
76a01679 4371
96d887e8
PH
4372 /* If it is a function that has not been defined at library level,
4373 then we should be able to look it up in the symbols. */
4374 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4375 return 0;
14f9c5c9 4376
96d887e8
PH
4377 /* Library-level function names start with "_ada_". See if function
4378 "_ada_" followed by NAME can be found. */
14f9c5c9 4379
96d887e8 4380 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4381 functions names cannot contain "__" in them. */
96d887e8
PH
4382 if (strstr (name, "__") != NULL)
4383 return 0;
4c4b4cd2 4384
b435e160 4385 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4386
96d887e8
PH
4387 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4388}
14f9c5c9 4389
96d887e8 4390/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4391 not visible from FUNCTION_NAME. */
14f9c5c9 4392
96d887e8 4393static int
aeb5907d 4394old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4395{
aeb5907d
JB
4396 char *scope;
4397
4398 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4399 return 0;
4400
4401 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4402
96d887e8 4403 make_cleanup (xfree, scope);
14f9c5c9 4404
96d887e8
PH
4405 /* If the rename has been defined in a package, then it is visible. */
4406 if (is_package_name (scope))
aeb5907d 4407 return 0;
14f9c5c9 4408
96d887e8
PH
4409 /* Check that the rename is in the current function scope by checking
4410 that its name starts with SCOPE. */
76a01679 4411
96d887e8
PH
4412 /* If the function name starts with "_ada_", it means that it is
4413 a library-level function. Strip this prefix before doing the
4414 comparison, as the encoding for the renaming does not contain
4415 this prefix. */
4416 if (strncmp (function_name, "_ada_", 5) == 0)
4417 function_name += 5;
f26caa11 4418
aeb5907d 4419 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4420}
4421
aeb5907d
JB
4422/* Remove entries from SYMS that corresponds to a renaming entity that
4423 is not visible from the function associated with CURRENT_BLOCK or
4424 that is superfluous due to the presence of more specific renaming
4425 information. Places surviving symbols in the initial entries of
4426 SYMS and returns the number of surviving symbols.
96d887e8
PH
4427
4428 Rationale:
aeb5907d
JB
4429 First, in cases where an object renaming is implemented as a
4430 reference variable, GNAT may produce both the actual reference
4431 variable and the renaming encoding. In this case, we discard the
4432 latter.
4433
4434 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4435 entity. Unfortunately, STABS currently does not support the definition
4436 of types that are local to a given lexical block, so all renamings types
4437 are emitted at library level. As a consequence, if an application
4438 contains two renaming entities using the same name, and a user tries to
4439 print the value of one of these entities, the result of the ada symbol
4440 lookup will also contain the wrong renaming type.
f26caa11 4441
96d887e8
PH
4442 This function partially covers for this limitation by attempting to
4443 remove from the SYMS list renaming symbols that should be visible
4444 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4445 method with the current information available. The implementation
4446 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4447
4448 - When the user tries to print a rename in a function while there
4449 is another rename entity defined in a package: Normally, the
4450 rename in the function has precedence over the rename in the
4451 package, so the latter should be removed from the list. This is
4452 currently not the case.
4453
4454 - This function will incorrectly remove valid renames if
4455 the CURRENT_BLOCK corresponds to a function which symbol name
4456 has been changed by an "Export" pragma. As a consequence,
4457 the user will be unable to print such rename entities. */
4c4b4cd2 4458
14f9c5c9 4459static int
aeb5907d
JB
4460remove_irrelevant_renamings (struct ada_symbol_info *syms,
4461 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4462{
4463 struct symbol *current_function;
4464 char *current_function_name;
4465 int i;
aeb5907d
JB
4466 int is_new_style_renaming;
4467
4468 /* If there is both a renaming foo___XR... encoded as a variable and
4469 a simple variable foo in the same block, discard the latter.
4470 First, zero out such symbols, then compress. */
4471 is_new_style_renaming = 0;
4472 for (i = 0; i < nsyms; i += 1)
4473 {
4474 struct symbol *sym = syms[i].sym;
4475 struct block *block = syms[i].block;
4476 const char *name;
4477 const char *suffix;
4478
4479 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4480 continue;
4481 name = SYMBOL_LINKAGE_NAME (sym);
4482 suffix = strstr (name, "___XR");
4483
4484 if (suffix != NULL)
4485 {
4486 int name_len = suffix - name;
4487 int j;
4488 is_new_style_renaming = 1;
4489 for (j = 0; j < nsyms; j += 1)
4490 if (i != j && syms[j].sym != NULL
4491 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4492 name_len) == 0
4493 && block == syms[j].block)
4494 syms[j].sym = NULL;
4495 }
4496 }
4497 if (is_new_style_renaming)
4498 {
4499 int j, k;
4500
4501 for (j = k = 0; j < nsyms; j += 1)
4502 if (syms[j].sym != NULL)
4503 {
4504 syms[k] = syms[j];
4505 k += 1;
4506 }
4507 return k;
4508 }
4c4b4cd2
PH
4509
4510 /* Extract the function name associated to CURRENT_BLOCK.
4511 Abort if unable to do so. */
76a01679 4512
4c4b4cd2
PH
4513 if (current_block == NULL)
4514 return nsyms;
76a01679 4515
7f0df278 4516 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4517 if (current_function == NULL)
4518 return nsyms;
4519
4520 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4521 if (current_function_name == NULL)
4522 return nsyms;
4523
4524 /* Check each of the symbols, and remove it from the list if it is
4525 a type corresponding to a renaming that is out of the scope of
4526 the current block. */
4527
4528 i = 0;
4529 while (i < nsyms)
4530 {
aeb5907d
JB
4531 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4532 == ADA_OBJECT_RENAMING
4533 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4534 {
4535 int j;
aeb5907d 4536 for (j = i + 1; j < nsyms; j += 1)
76a01679 4537 syms[j - 1] = syms[j];
4c4b4cd2
PH
4538 nsyms -= 1;
4539 }
4540 else
4541 i += 1;
4542 }
4543
4544 return nsyms;
4545}
4546
339c13b6
JB
4547/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4548 whose name and domain match NAME and DOMAIN respectively.
4549 If no match was found, then extend the search to "enclosing"
4550 routines (in other words, if we're inside a nested function,
4551 search the symbols defined inside the enclosing functions).
4552
4553 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4554
4555static void
4556ada_add_local_symbols (struct obstack *obstackp, const char *name,
4557 struct block *block, domain_enum domain,
4558 int wild_match)
4559{
4560 int block_depth = 0;
4561
4562 while (block != NULL)
4563 {
4564 block_depth += 1;
4565 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4566
4567 /* If we found a non-function match, assume that's the one. */
4568 if (is_nonfunction (defns_collected (obstackp, 0),
4569 num_defns_collected (obstackp)))
4570 return;
4571
4572 block = BLOCK_SUPERBLOCK (block);
4573 }
4574
4575 /* If no luck so far, try to find NAME as a local symbol in some lexically
4576 enclosing subprogram. */
4577 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4578 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4579}
4580
4581/* Add to OBSTACKP all non-local symbols whose name and domain match
4582 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4583 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4584
4585static void
4586ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4587 domain_enum domain, int global,
4588 int wild_match)
4589{
4590 struct objfile *objfile;
4591 struct partial_symtab *ps;
4592
4593 ALL_PSYMTABS (objfile, ps)
4594 {
4595 QUIT;
4596 if (ps->readin
4597 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4598 {
4599 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4600 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4601
4602 if (s == NULL || !s->primary)
4603 continue;
4604 ada_add_block_symbols (obstackp,
4605 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4606 name, domain, objfile, wild_match);
4607 }
4608 }
4609}
4610
4c4b4cd2
PH
4611/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4612 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4613 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4614 indicating the symbols found and the blocks and symbol tables (if
4615 any) in which they were found. This vector are transient---good only to
4616 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4617 symbol match within the nest of blocks whose innermost member is BLOCK0,
4618 is the one match returned (no other matches in that or
4619 enclosing blocks is returned). If there are any matches in or
4620 surrounding BLOCK0, then these alone are returned. Otherwise, the
4621 search extends to global and file-scope (static) symbol tables.
4622 Names prefixed with "standard__" are handled specially: "standard__"
4623 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4624
4625int
4c4b4cd2 4626ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4627 domain_enum namespace,
4628 struct ada_symbol_info **results)
14f9c5c9
AS
4629{
4630 struct symbol *sym;
14f9c5c9 4631 struct block *block;
4c4b4cd2 4632 const char *name;
4c4b4cd2 4633 int wild_match;
14f9c5c9 4634 int cacheIfUnique;
4c4b4cd2 4635 int ndefns;
14f9c5c9 4636
4c4b4cd2
PH
4637 obstack_free (&symbol_list_obstack, NULL);
4638 obstack_init (&symbol_list_obstack);
14f9c5c9 4639
14f9c5c9
AS
4640 cacheIfUnique = 0;
4641
4642 /* Search specified block and its superiors. */
4643
4c4b4cd2
PH
4644 wild_match = (strstr (name0, "__") == NULL);
4645 name = name0;
76a01679
JB
4646 block = (struct block *) block0; /* FIXME: No cast ought to be
4647 needed, but adding const will
4648 have a cascade effect. */
339c13b6
JB
4649
4650 /* Special case: If the user specifies a symbol name inside package
4651 Standard, do a non-wild matching of the symbol name without
4652 the "standard__" prefix. This was primarily introduced in order
4653 to allow the user to specifically access the standard exceptions
4654 using, for instance, Standard.Constraint_Error when Constraint_Error
4655 is ambiguous (due to the user defining its own Constraint_Error
4656 entity inside its program). */
4c4b4cd2
PH
4657 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4658 {
4659 wild_match = 0;
4660 block = NULL;
4661 name = name0 + sizeof ("standard__") - 1;
4662 }
4663
339c13b6 4664 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4665
339c13b6
JB
4666 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4667 wild_match);
4c4b4cd2 4668 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4669 goto done;
d2e4a39e 4670
339c13b6
JB
4671 /* No non-global symbols found. Check our cache to see if we have
4672 already performed this search before. If we have, then return
4673 the same result. */
4674
14f9c5c9 4675 cacheIfUnique = 1;
2570f2b7 4676 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4677 {
4678 if (sym != NULL)
2570f2b7 4679 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4680 goto done;
4681 }
14f9c5c9 4682
339c13b6
JB
4683 /* Search symbols from all global blocks. */
4684
4685 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4686 wild_match);
d2e4a39e 4687
4c4b4cd2 4688 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4689 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4690
4c4b4cd2 4691 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4692 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4693 wild_match);
14f9c5c9 4694
4c4b4cd2
PH
4695done:
4696 ndefns = num_defns_collected (&symbol_list_obstack);
4697 *results = defns_collected (&symbol_list_obstack, 1);
4698
4699 ndefns = remove_extra_symbols (*results, ndefns);
4700
d2e4a39e 4701 if (ndefns == 0)
2570f2b7 4702 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4703
4c4b4cd2 4704 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4705 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4706
aeb5907d 4707 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4708
14f9c5c9
AS
4709 return ndefns;
4710}
4711
d2e4a39e 4712struct symbol *
aeb5907d 4713ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4714 domain_enum namespace, struct block **block_found)
14f9c5c9 4715{
4c4b4cd2 4716 struct ada_symbol_info *candidates;
14f9c5c9
AS
4717 int n_candidates;
4718
aeb5907d 4719 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4720
4721 if (n_candidates == 0)
4722 return NULL;
4c4b4cd2 4723
aeb5907d
JB
4724 if (block_found != NULL)
4725 *block_found = candidates[0].block;
4c4b4cd2 4726
21b556f4 4727 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4728}
4729
4730/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4731 scope and in global scopes, or NULL if none. NAME is folded and
4732 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4733 choosing the first symbol if there are multiple choices.
4734 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4735 table in which the symbol was found (in both cases, these
4736 assignments occur only if the pointers are non-null). */
4737struct symbol *
4738ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4739 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4740{
4741 if (is_a_field_of_this != NULL)
4742 *is_a_field_of_this = 0;
4743
4744 return
4745 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4746 block0, namespace, NULL);
4c4b4cd2 4747}
14f9c5c9 4748
4c4b4cd2
PH
4749static struct symbol *
4750ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4751 const char *linkage_name,
4752 const struct block *block,
21b556f4 4753 const domain_enum domain)
4c4b4cd2
PH
4754{
4755 if (linkage_name == NULL)
4756 linkage_name = name;
76a01679 4757 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4758 NULL);
14f9c5c9
AS
4759}
4760
4761
4c4b4cd2
PH
4762/* True iff STR is a possible encoded suffix of a normal Ada name
4763 that is to be ignored for matching purposes. Suffixes of parallel
4764 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4765 are given by any of the regular expressions:
4c4b4cd2 4766
babe1480
JB
4767 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4768 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4769 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4770 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4771
4772 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4773 match is performed. This sequence is used to differentiate homonyms,
4774 is an optional part of a valid name suffix. */
4c4b4cd2 4775
14f9c5c9 4776static int
d2e4a39e 4777is_name_suffix (const char *str)
14f9c5c9
AS
4778{
4779 int k;
4c4b4cd2
PH
4780 const char *matching;
4781 const int len = strlen (str);
4782
babe1480
JB
4783 /* Skip optional leading __[0-9]+. */
4784
4c4b4cd2
PH
4785 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4786 {
babe1480
JB
4787 str += 3;
4788 while (isdigit (str[0]))
4789 str += 1;
4c4b4cd2 4790 }
babe1480
JB
4791
4792 /* [.$][0-9]+ */
4c4b4cd2 4793
babe1480 4794 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4795 {
babe1480 4796 matching = str + 1;
4c4b4cd2
PH
4797 while (isdigit (matching[0]))
4798 matching += 1;
4799 if (matching[0] == '\0')
4800 return 1;
4801 }
4802
4803 /* ___[0-9]+ */
babe1480 4804
4c4b4cd2
PH
4805 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4806 {
4807 matching = str + 3;
4808 while (isdigit (matching[0]))
4809 matching += 1;
4810 if (matching[0] == '\0')
4811 return 1;
4812 }
4813
529cad9c
PH
4814#if 0
4815 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4816 with a N at the end. Unfortunately, the compiler uses the same
4817 convention for other internal types it creates. So treating
4818 all entity names that end with an "N" as a name suffix causes
4819 some regressions. For instance, consider the case of an enumerated
4820 type. To support the 'Image attribute, it creates an array whose
4821 name ends with N.
4822 Having a single character like this as a suffix carrying some
4823 information is a bit risky. Perhaps we should change the encoding
4824 to be something like "_N" instead. In the meantime, do not do
4825 the following check. */
4826 /* Protected Object Subprograms */
4827 if (len == 1 && str [0] == 'N')
4828 return 1;
4829#endif
4830
4831 /* _E[0-9]+[bs]$ */
4832 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4833 {
4834 matching = str + 3;
4835 while (isdigit (matching[0]))
4836 matching += 1;
4837 if ((matching[0] == 'b' || matching[0] == 's')
4838 && matching [1] == '\0')
4839 return 1;
4840 }
4841
4c4b4cd2
PH
4842 /* ??? We should not modify STR directly, as we are doing below. This
4843 is fine in this case, but may become problematic later if we find
4844 that this alternative did not work, and want to try matching
4845 another one from the begining of STR. Since we modified it, we
4846 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4847 if (str[0] == 'X')
4848 {
4849 str += 1;
d2e4a39e 4850 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4851 {
4852 if (str[0] != 'n' && str[0] != 'b')
4853 return 0;
4854 str += 1;
4855 }
14f9c5c9 4856 }
babe1480 4857
14f9c5c9
AS
4858 if (str[0] == '\000')
4859 return 1;
babe1480 4860
d2e4a39e 4861 if (str[0] == '_')
14f9c5c9
AS
4862 {
4863 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4864 return 0;
d2e4a39e 4865 if (str[2] == '_')
4c4b4cd2 4866 {
61ee279c
PH
4867 if (strcmp (str + 3, "JM") == 0)
4868 return 1;
4869 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4870 the LJM suffix in favor of the JM one. But we will
4871 still accept LJM as a valid suffix for a reasonable
4872 amount of time, just to allow ourselves to debug programs
4873 compiled using an older version of GNAT. */
4c4b4cd2
PH
4874 if (strcmp (str + 3, "LJM") == 0)
4875 return 1;
4876 if (str[3] != 'X')
4877 return 0;
1265e4aa
JB
4878 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4879 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4880 return 1;
4881 if (str[4] == 'R' && str[5] != 'T')
4882 return 1;
4883 return 0;
4884 }
4885 if (!isdigit (str[2]))
4886 return 0;
4887 for (k = 3; str[k] != '\0'; k += 1)
4888 if (!isdigit (str[k]) && str[k] != '_')
4889 return 0;
14f9c5c9
AS
4890 return 1;
4891 }
4c4b4cd2 4892 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4893 {
4c4b4cd2
PH
4894 for (k = 2; str[k] != '\0'; k += 1)
4895 if (!isdigit (str[k]) && str[k] != '_')
4896 return 0;
14f9c5c9
AS
4897 return 1;
4898 }
4899 return 0;
4900}
d2e4a39e 4901
aeb5907d
JB
4902/* Return non-zero if the string starting at NAME and ending before
4903 NAME_END contains no capital letters. */
529cad9c
PH
4904
4905static int
4906is_valid_name_for_wild_match (const char *name0)
4907{
4908 const char *decoded_name = ada_decode (name0);
4909 int i;
4910
5823c3ef
JB
4911 /* If the decoded name starts with an angle bracket, it means that
4912 NAME0 does not follow the GNAT encoding format. It should then
4913 not be allowed as a possible wild match. */
4914 if (decoded_name[0] == '<')
4915 return 0;
4916
529cad9c
PH
4917 for (i=0; decoded_name[i] != '\0'; i++)
4918 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4919 return 0;
4920
4921 return 1;
4922}
4923
4c4b4cd2
PH
4924/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4925 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4926 informational suffixes of NAME (i.e., for which is_name_suffix is
4927 true). */
4928
14f9c5c9 4929static int
4c4b4cd2 4930wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4931{
5823c3ef
JB
4932 char* match;
4933 const char* start;
4934 start = name0;
4935 while (1)
14f9c5c9 4936 {
5823c3ef
JB
4937 match = strstr (start, patn0);
4938 if (match == NULL)
4939 return 0;
4940 if ((match == name0
4941 || match[-1] == '.'
4942 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4943 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4944 && is_name_suffix (match + patn_len))
4945 return (match == name0 || is_valid_name_for_wild_match (name0));
4946 start = match + 1;
96d887e8 4947 }
96d887e8
PH
4948}
4949
96d887e8
PH
4950/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4951 vector *defn_symbols, updating the list of symbols in OBSTACKP
4952 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4953 OBJFILE is the section containing BLOCK.
4954 SYMTAB is recorded with each symbol added. */
4955
4956static void
4957ada_add_block_symbols (struct obstack *obstackp,
76a01679 4958 struct block *block, const char *name,
96d887e8 4959 domain_enum domain, struct objfile *objfile,
2570f2b7 4960 int wild)
96d887e8
PH
4961{
4962 struct dict_iterator iter;
4963 int name_len = strlen (name);
4964 /* A matching argument symbol, if any. */
4965 struct symbol *arg_sym;
4966 /* Set true when we find a matching non-argument symbol. */
4967 int found_sym;
4968 struct symbol *sym;
4969
4970 arg_sym = NULL;
4971 found_sym = 0;
4972 if (wild)
4973 {
4974 struct symbol *sym;
4975 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4976 {
5eeb2539
AR
4977 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4978 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4979 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4980 {
2a2d4dc3
AS
4981 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4982 continue;
4983 else if (SYMBOL_IS_ARGUMENT (sym))
4984 arg_sym = sym;
4985 else
4986 {
76a01679
JB
4987 found_sym = 1;
4988 add_defn_to_vec (obstackp,
4989 fixup_symbol_section (sym, objfile),
2570f2b7 4990 block);
76a01679
JB
4991 }
4992 }
4993 }
96d887e8
PH
4994 }
4995 else
4996 {
4997 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4998 {
5eeb2539
AR
4999 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5000 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5001 {
5002 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5003 if (cmp == 0
5004 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5005 {
2a2d4dc3
AS
5006 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5007 {
5008 if (SYMBOL_IS_ARGUMENT (sym))
5009 arg_sym = sym;
5010 else
5011 {
5012 found_sym = 1;
5013 add_defn_to_vec (obstackp,
5014 fixup_symbol_section (sym, objfile),
5015 block);
5016 }
5017 }
76a01679
JB
5018 }
5019 }
5020 }
96d887e8
PH
5021 }
5022
5023 if (!found_sym && arg_sym != NULL)
5024 {
76a01679
JB
5025 add_defn_to_vec (obstackp,
5026 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5027 block);
96d887e8
PH
5028 }
5029
5030 if (!wild)
5031 {
5032 arg_sym = NULL;
5033 found_sym = 0;
5034
5035 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5036 {
5eeb2539
AR
5037 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5038 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5039 {
5040 int cmp;
5041
5042 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5043 if (cmp == 0)
5044 {
5045 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5046 if (cmp == 0)
5047 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5048 name_len);
5049 }
5050
5051 if (cmp == 0
5052 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5053 {
2a2d4dc3
AS
5054 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5055 {
5056 if (SYMBOL_IS_ARGUMENT (sym))
5057 arg_sym = sym;
5058 else
5059 {
5060 found_sym = 1;
5061 add_defn_to_vec (obstackp,
5062 fixup_symbol_section (sym, objfile),
5063 block);
5064 }
5065 }
76a01679
JB
5066 }
5067 }
76a01679 5068 }
96d887e8
PH
5069
5070 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5071 They aren't parameters, right? */
5072 if (!found_sym && arg_sym != NULL)
5073 {
5074 add_defn_to_vec (obstackp,
76a01679 5075 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5076 block);
96d887e8
PH
5077 }
5078 }
5079}
5080\f
41d27058
JB
5081
5082 /* Symbol Completion */
5083
5084/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5085 name in a form that's appropriate for the completion. The result
5086 does not need to be deallocated, but is only good until the next call.
5087
5088 TEXT_LEN is equal to the length of TEXT.
5089 Perform a wild match if WILD_MATCH is set.
5090 ENCODED should be set if TEXT represents the start of a symbol name
5091 in its encoded form. */
5092
5093static const char *
5094symbol_completion_match (const char *sym_name,
5095 const char *text, int text_len,
5096 int wild_match, int encoded)
5097{
5098 char *result;
5099 const int verbatim_match = (text[0] == '<');
5100 int match = 0;
5101
5102 if (verbatim_match)
5103 {
5104 /* Strip the leading angle bracket. */
5105 text = text + 1;
5106 text_len--;
5107 }
5108
5109 /* First, test against the fully qualified name of the symbol. */
5110
5111 if (strncmp (sym_name, text, text_len) == 0)
5112 match = 1;
5113
5114 if (match && !encoded)
5115 {
5116 /* One needed check before declaring a positive match is to verify
5117 that iff we are doing a verbatim match, the decoded version
5118 of the symbol name starts with '<'. Otherwise, this symbol name
5119 is not a suitable completion. */
5120 const char *sym_name_copy = sym_name;
5121 int has_angle_bracket;
5122
5123 sym_name = ada_decode (sym_name);
5124 has_angle_bracket = (sym_name[0] == '<');
5125 match = (has_angle_bracket == verbatim_match);
5126 sym_name = sym_name_copy;
5127 }
5128
5129 if (match && !verbatim_match)
5130 {
5131 /* When doing non-verbatim match, another check that needs to
5132 be done is to verify that the potentially matching symbol name
5133 does not include capital letters, because the ada-mode would
5134 not be able to understand these symbol names without the
5135 angle bracket notation. */
5136 const char *tmp;
5137
5138 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5139 if (*tmp != '\0')
5140 match = 0;
5141 }
5142
5143 /* Second: Try wild matching... */
5144
5145 if (!match && wild_match)
5146 {
5147 /* Since we are doing wild matching, this means that TEXT
5148 may represent an unqualified symbol name. We therefore must
5149 also compare TEXT against the unqualified name of the symbol. */
5150 sym_name = ada_unqualified_name (ada_decode (sym_name));
5151
5152 if (strncmp (sym_name, text, text_len) == 0)
5153 match = 1;
5154 }
5155
5156 /* Finally: If we found a mach, prepare the result to return. */
5157
5158 if (!match)
5159 return NULL;
5160
5161 if (verbatim_match)
5162 sym_name = add_angle_brackets (sym_name);
5163
5164 if (!encoded)
5165 sym_name = ada_decode (sym_name);
5166
5167 return sym_name;
5168}
5169
2ba95b9b
JB
5170typedef char *char_ptr;
5171DEF_VEC_P (char_ptr);
5172
41d27058
JB
5173/* A companion function to ada_make_symbol_completion_list().
5174 Check if SYM_NAME represents a symbol which name would be suitable
5175 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5176 it is appended at the end of the given string vector SV.
5177
5178 ORIG_TEXT is the string original string from the user command
5179 that needs to be completed. WORD is the entire command on which
5180 completion should be performed. These two parameters are used to
5181 determine which part of the symbol name should be added to the
5182 completion vector.
5183 if WILD_MATCH is set, then wild matching is performed.
5184 ENCODED should be set if TEXT represents a symbol name in its
5185 encoded formed (in which case the completion should also be
5186 encoded). */
5187
5188static void
d6565258 5189symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5190 const char *sym_name,
5191 const char *text, int text_len,
5192 const char *orig_text, const char *word,
5193 int wild_match, int encoded)
5194{
5195 const char *match = symbol_completion_match (sym_name, text, text_len,
5196 wild_match, encoded);
5197 char *completion;
5198
5199 if (match == NULL)
5200 return;
5201
5202 /* We found a match, so add the appropriate completion to the given
5203 string vector. */
5204
5205 if (word == orig_text)
5206 {
5207 completion = xmalloc (strlen (match) + 5);
5208 strcpy (completion, match);
5209 }
5210 else if (word > orig_text)
5211 {
5212 /* Return some portion of sym_name. */
5213 completion = xmalloc (strlen (match) + 5);
5214 strcpy (completion, match + (word - orig_text));
5215 }
5216 else
5217 {
5218 /* Return some of ORIG_TEXT plus sym_name. */
5219 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5220 strncpy (completion, word, orig_text - word);
5221 completion[orig_text - word] = '\0';
5222 strcat (completion, match);
5223 }
5224
d6565258 5225 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5226}
5227
5228/* Return a list of possible symbol names completing TEXT0. The list
5229 is NULL terminated. WORD is the entire command on which completion
5230 is made. */
5231
5232static char **
5233ada_make_symbol_completion_list (char *text0, char *word)
5234{
5235 char *text;
5236 int text_len;
5237 int wild_match;
5238 int encoded;
2ba95b9b 5239 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5240 struct symbol *sym;
5241 struct symtab *s;
5242 struct partial_symtab *ps;
5243 struct minimal_symbol *msymbol;
5244 struct objfile *objfile;
5245 struct block *b, *surrounding_static_block = 0;
5246 int i;
5247 struct dict_iterator iter;
5248
5249 if (text0[0] == '<')
5250 {
5251 text = xstrdup (text0);
5252 make_cleanup (xfree, text);
5253 text_len = strlen (text);
5254 wild_match = 0;
5255 encoded = 1;
5256 }
5257 else
5258 {
5259 text = xstrdup (ada_encode (text0));
5260 make_cleanup (xfree, text);
5261 text_len = strlen (text);
5262 for (i = 0; i < text_len; i++)
5263 text[i] = tolower (text[i]);
5264
5265 encoded = (strstr (text0, "__") != NULL);
5266 /* If the name contains a ".", then the user is entering a fully
5267 qualified entity name, and the match must not be done in wild
5268 mode. Similarly, if the user wants to complete what looks like
5269 an encoded name, the match must not be done in wild mode. */
5270 wild_match = (strchr (text0, '.') == NULL && !encoded);
5271 }
5272
5273 /* First, look at the partial symtab symbols. */
5274 ALL_PSYMTABS (objfile, ps)
5275 {
5276 struct partial_symbol **psym;
5277
5278 /* If the psymtab's been read in we'll get it when we search
5279 through the blockvector. */
5280 if (ps->readin)
5281 continue;
5282
5283 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5284 psym < (objfile->global_psymbols.list + ps->globals_offset
5285 + ps->n_global_syms); psym++)
5286 {
5287 QUIT;
d6565258 5288 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5289 text, text_len, text0, word,
5290 wild_match, encoded);
5291 }
5292
5293 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5294 psym < (objfile->static_psymbols.list + ps->statics_offset
5295 + ps->n_static_syms); psym++)
5296 {
5297 QUIT;
d6565258 5298 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5299 text, text_len, text0, word,
5300 wild_match, encoded);
5301 }
5302 }
5303
5304 /* At this point scan through the misc symbol vectors and add each
5305 symbol you find to the list. Eventually we want to ignore
5306 anything that isn't a text symbol (everything else will be
5307 handled by the psymtab code above). */
5308
5309 ALL_MSYMBOLS (objfile, msymbol)
5310 {
5311 QUIT;
d6565258 5312 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5313 text, text_len, text0, word, wild_match, encoded);
5314 }
5315
5316 /* Search upwards from currently selected frame (so that we can
5317 complete on local vars. */
5318
5319 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5320 {
5321 if (!BLOCK_SUPERBLOCK (b))
5322 surrounding_static_block = b; /* For elmin of dups */
5323
5324 ALL_BLOCK_SYMBOLS (b, iter, sym)
5325 {
d6565258 5326 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5327 text, text_len, text0, word,
5328 wild_match, encoded);
5329 }
5330 }
5331
5332 /* Go through the symtabs and check the externs and statics for
5333 symbols which match. */
5334
5335 ALL_SYMTABS (objfile, s)
5336 {
5337 QUIT;
5338 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5339 ALL_BLOCK_SYMBOLS (b, iter, sym)
5340 {
d6565258 5341 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5342 text, text_len, text0, word,
5343 wild_match, encoded);
5344 }
5345 }
5346
5347 ALL_SYMTABS (objfile, s)
5348 {
5349 QUIT;
5350 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5351 /* Don't do this block twice. */
5352 if (b == surrounding_static_block)
5353 continue;
5354 ALL_BLOCK_SYMBOLS (b, iter, sym)
5355 {
d6565258 5356 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5357 text, text_len, text0, word,
5358 wild_match, encoded);
5359 }
5360 }
5361
5362 /* Append the closing NULL entry. */
2ba95b9b 5363 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5364
2ba95b9b
JB
5365 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5366 return the copy. It's unfortunate that we have to make a copy
5367 of an array that we're about to destroy, but there is nothing much
5368 we can do about it. Fortunately, it's typically not a very large
5369 array. */
5370 {
5371 const size_t completions_size =
5372 VEC_length (char_ptr, completions) * sizeof (char *);
5373 char **result = malloc (completions_size);
5374
5375 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5376
5377 VEC_free (char_ptr, completions);
5378 return result;
5379 }
41d27058
JB
5380}
5381
963a6417 5382 /* Field Access */
96d887e8 5383
73fb9985
JB
5384/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5385 for tagged types. */
5386
5387static int
5388ada_is_dispatch_table_ptr_type (struct type *type)
5389{
5390 char *name;
5391
5392 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5393 return 0;
5394
5395 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5396 if (name == NULL)
5397 return 0;
5398
5399 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5400}
5401
963a6417
PH
5402/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5403 to be invisible to users. */
96d887e8 5404
963a6417
PH
5405int
5406ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5407{
963a6417
PH
5408 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5409 return 1;
73fb9985
JB
5410
5411 /* Check the name of that field. */
5412 {
5413 const char *name = TYPE_FIELD_NAME (type, field_num);
5414
5415 /* Anonymous field names should not be printed.
5416 brobecker/2007-02-20: I don't think this can actually happen
5417 but we don't want to print the value of annonymous fields anyway. */
5418 if (name == NULL)
5419 return 1;
5420
5421 /* A field named "_parent" is internally generated by GNAT for
5422 tagged types, and should not be printed either. */
5423 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5424 return 1;
5425 }
5426
5427 /* If this is the dispatch table of a tagged type, then ignore. */
5428 if (ada_is_tagged_type (type, 1)
5429 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5430 return 1;
5431
5432 /* Not a special field, so it should not be ignored. */
5433 return 0;
963a6417 5434}
96d887e8 5435
963a6417
PH
5436/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5437 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5438
963a6417
PH
5439int
5440ada_is_tagged_type (struct type *type, int refok)
5441{
5442 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5443}
96d887e8 5444
963a6417 5445/* True iff TYPE represents the type of X'Tag */
96d887e8 5446
963a6417
PH
5447int
5448ada_is_tag_type (struct type *type)
5449{
5450 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5451 return 0;
5452 else
96d887e8 5453 {
963a6417
PH
5454 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5455 return (name != NULL
5456 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5457 }
96d887e8
PH
5458}
5459
963a6417 5460/* The type of the tag on VAL. */
76a01679 5461
963a6417
PH
5462struct type *
5463ada_tag_type (struct value *val)
96d887e8 5464{
df407dfe 5465 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5466}
96d887e8 5467
963a6417 5468/* The value of the tag on VAL. */
96d887e8 5469
963a6417
PH
5470struct value *
5471ada_value_tag (struct value *val)
5472{
03ee6b2e 5473 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5474}
5475
963a6417
PH
5476/* The value of the tag on the object of type TYPE whose contents are
5477 saved at VALADDR, if it is non-null, or is at memory address
5478 ADDRESS. */
96d887e8 5479
963a6417 5480static struct value *
10a2c479 5481value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5482 const gdb_byte *valaddr,
963a6417 5483 CORE_ADDR address)
96d887e8 5484{
963a6417
PH
5485 int tag_byte_offset, dummy1, dummy2;
5486 struct type *tag_type;
5487 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5488 NULL, NULL, NULL))
96d887e8 5489 {
fc1a4b47 5490 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5491 ? NULL
5492 : valaddr + tag_byte_offset);
963a6417 5493 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5494
963a6417 5495 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5496 }
963a6417
PH
5497 return NULL;
5498}
96d887e8 5499
963a6417
PH
5500static struct type *
5501type_from_tag (struct value *tag)
5502{
5503 const char *type_name = ada_tag_name (tag);
5504 if (type_name != NULL)
5505 return ada_find_any_type (ada_encode (type_name));
5506 return NULL;
5507}
96d887e8 5508
963a6417
PH
5509struct tag_args
5510{
5511 struct value *tag;
5512 char *name;
5513};
4c4b4cd2 5514
529cad9c
PH
5515
5516static int ada_tag_name_1 (void *);
5517static int ada_tag_name_2 (struct tag_args *);
5518
4c4b4cd2
PH
5519/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5520 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5521 The value stored in ARGS->name is valid until the next call to
5522 ada_tag_name_1. */
5523
5524static int
5525ada_tag_name_1 (void *args0)
5526{
5527 struct tag_args *args = (struct tag_args *) args0;
5528 static char name[1024];
76a01679 5529 char *p;
4c4b4cd2
PH
5530 struct value *val;
5531 args->name = NULL;
03ee6b2e 5532 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5533 if (val == NULL)
5534 return ada_tag_name_2 (args);
03ee6b2e 5535 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5536 if (val == NULL)
5537 return 0;
5538 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5539 for (p = name; *p != '\0'; p += 1)
5540 if (isalpha (*p))
5541 *p = tolower (*p);
5542 args->name = name;
5543 return 0;
5544}
5545
5546/* Utility function for ada_tag_name_1 that tries the second
5547 representation for the dispatch table (in which there is no
5548 explicit 'tsd' field in the referent of the tag pointer, and instead
5549 the tsd pointer is stored just before the dispatch table. */
5550
5551static int
5552ada_tag_name_2 (struct tag_args *args)
5553{
5554 struct type *info_type;
5555 static char name[1024];
5556 char *p;
5557 struct value *val, *valp;
5558
5559 args->name = NULL;
5560 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5561 if (info_type == NULL)
5562 return 0;
5563 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5564 valp = value_cast (info_type, args->tag);
5565 if (valp == NULL)
5566 return 0;
89eef114
UW
5567 val = value_ind (value_ptradd (valp,
5568 value_from_longest (builtin_type_int8, -1)));
4c4b4cd2
PH
5569 if (val == NULL)
5570 return 0;
03ee6b2e 5571 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5572 if (val == NULL)
5573 return 0;
5574 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5575 for (p = name; *p != '\0'; p += 1)
5576 if (isalpha (*p))
5577 *p = tolower (*p);
5578 args->name = name;
5579 return 0;
5580}
5581
5582/* The type name of the dynamic type denoted by the 'tag value TAG, as
5583 * a C string. */
5584
5585const char *
5586ada_tag_name (struct value *tag)
5587{
5588 struct tag_args args;
df407dfe 5589 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5590 return NULL;
76a01679 5591 args.tag = tag;
4c4b4cd2
PH
5592 args.name = NULL;
5593 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5594 return args.name;
5595}
5596
5597/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5598
d2e4a39e 5599struct type *
ebf56fd3 5600ada_parent_type (struct type *type)
14f9c5c9
AS
5601{
5602 int i;
5603
61ee279c 5604 type = ada_check_typedef (type);
14f9c5c9
AS
5605
5606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5607 return NULL;
5608
5609 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5610 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5611 {
5612 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5613
5614 /* If the _parent field is a pointer, then dereference it. */
5615 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5616 parent_type = TYPE_TARGET_TYPE (parent_type);
5617 /* If there is a parallel XVS type, get the actual base type. */
5618 parent_type = ada_get_base_type (parent_type);
5619
5620 return ada_check_typedef (parent_type);
5621 }
14f9c5c9
AS
5622
5623 return NULL;
5624}
5625
4c4b4cd2
PH
5626/* True iff field number FIELD_NUM of structure type TYPE contains the
5627 parent-type (inherited) fields of a derived type. Assumes TYPE is
5628 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5629
5630int
ebf56fd3 5631ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5632{
61ee279c 5633 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5634 return (name != NULL
5635 && (strncmp (name, "PARENT", 6) == 0
5636 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5637}
5638
4c4b4cd2 5639/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5640 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5641 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5642 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5643 structures. */
14f9c5c9
AS
5644
5645int
ebf56fd3 5646ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5647{
d2e4a39e
AS
5648 const char *name = TYPE_FIELD_NAME (type, field_num);
5649 return (name != NULL
4c4b4cd2
PH
5650 && (strncmp (name, "PARENT", 6) == 0
5651 || strcmp (name, "REP") == 0
5652 || strncmp (name, "_parent", 7) == 0
5653 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5654}
5655
4c4b4cd2
PH
5656/* True iff field number FIELD_NUM of structure or union type TYPE
5657 is a variant wrapper. Assumes TYPE is a structure type with at least
5658 FIELD_NUM+1 fields. */
14f9c5c9
AS
5659
5660int
ebf56fd3 5661ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5662{
d2e4a39e 5663 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5664 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5665 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5666 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5667 == TYPE_CODE_UNION)));
14f9c5c9
AS
5668}
5669
5670/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5671 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5672 returns the type of the controlling discriminant for the variant. */
5673
d2e4a39e 5674struct type *
ebf56fd3 5675ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5676{
d2e4a39e 5677 char *name = ada_variant_discrim_name (var_type);
76a01679 5678 struct type *type =
4c4b4cd2 5679 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5680 if (type == NULL)
6d84d3d8 5681 return builtin_type_int32;
14f9c5c9
AS
5682 else
5683 return type;
5684}
5685
4c4b4cd2 5686/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5687 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5688 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5689
5690int
ebf56fd3 5691ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5692{
d2e4a39e 5693 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5694 return (name != NULL && name[0] == 'O');
5695}
5696
5697/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5698 returns the name of the discriminant controlling the variant.
5699 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5700
d2e4a39e 5701char *
ebf56fd3 5702ada_variant_discrim_name (struct type *type0)
14f9c5c9 5703{
d2e4a39e 5704 static char *result = NULL;
14f9c5c9 5705 static size_t result_len = 0;
d2e4a39e
AS
5706 struct type *type;
5707 const char *name;
5708 const char *discrim_end;
5709 const char *discrim_start;
14f9c5c9
AS
5710
5711 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5712 type = TYPE_TARGET_TYPE (type0);
5713 else
5714 type = type0;
5715
5716 name = ada_type_name (type);
5717
5718 if (name == NULL || name[0] == '\000')
5719 return "";
5720
5721 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5722 discrim_end -= 1)
5723 {
4c4b4cd2
PH
5724 if (strncmp (discrim_end, "___XVN", 6) == 0)
5725 break;
14f9c5c9
AS
5726 }
5727 if (discrim_end == name)
5728 return "";
5729
d2e4a39e 5730 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5731 discrim_start -= 1)
5732 {
d2e4a39e 5733 if (discrim_start == name + 1)
4c4b4cd2 5734 return "";
76a01679 5735 if ((discrim_start > name + 3
4c4b4cd2
PH
5736 && strncmp (discrim_start - 3, "___", 3) == 0)
5737 || discrim_start[-1] == '.')
5738 break;
14f9c5c9
AS
5739 }
5740
5741 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5742 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5743 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5744 return result;
5745}
5746
4c4b4cd2
PH
5747/* Scan STR for a subtype-encoded number, beginning at position K.
5748 Put the position of the character just past the number scanned in
5749 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5750 Return 1 if there was a valid number at the given position, and 0
5751 otherwise. A "subtype-encoded" number consists of the absolute value
5752 in decimal, followed by the letter 'm' to indicate a negative number.
5753 Assumes 0m does not occur. */
14f9c5c9
AS
5754
5755int
d2e4a39e 5756ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5757{
5758 ULONGEST RU;
5759
d2e4a39e 5760 if (!isdigit (str[k]))
14f9c5c9
AS
5761 return 0;
5762
4c4b4cd2 5763 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5764 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5765 LONGEST. */
14f9c5c9
AS
5766 RU = 0;
5767 while (isdigit (str[k]))
5768 {
d2e4a39e 5769 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5770 k += 1;
5771 }
5772
d2e4a39e 5773 if (str[k] == 'm')
14f9c5c9
AS
5774 {
5775 if (R != NULL)
4c4b4cd2 5776 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5777 k += 1;
5778 }
5779 else if (R != NULL)
5780 *R = (LONGEST) RU;
5781
4c4b4cd2 5782 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5783 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5784 number representable as a LONGEST (although either would probably work
5785 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5786 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5787
5788 if (new_k != NULL)
5789 *new_k = k;
5790 return 1;
5791}
5792
4c4b4cd2
PH
5793/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5794 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5795 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5796
d2e4a39e 5797int
ebf56fd3 5798ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5799{
d2e4a39e 5800 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5801 int p;
5802
5803 p = 0;
5804 while (1)
5805 {
d2e4a39e 5806 switch (name[p])
4c4b4cd2
PH
5807 {
5808 case '\0':
5809 return 0;
5810 case 'S':
5811 {
5812 LONGEST W;
5813 if (!ada_scan_number (name, p + 1, &W, &p))
5814 return 0;
5815 if (val == W)
5816 return 1;
5817 break;
5818 }
5819 case 'R':
5820 {
5821 LONGEST L, U;
5822 if (!ada_scan_number (name, p + 1, &L, &p)
5823 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5824 return 0;
5825 if (val >= L && val <= U)
5826 return 1;
5827 break;
5828 }
5829 case 'O':
5830 return 1;
5831 default:
5832 return 0;
5833 }
5834 }
5835}
5836
5837/* FIXME: Lots of redundancy below. Try to consolidate. */
5838
5839/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5840 ARG_TYPE, extract and return the value of one of its (non-static)
5841 fields. FIELDNO says which field. Differs from value_primitive_field
5842 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5843
4c4b4cd2 5844static struct value *
d2e4a39e 5845ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5846 struct type *arg_type)
14f9c5c9 5847{
14f9c5c9
AS
5848 struct type *type;
5849
61ee279c 5850 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5851 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5852
4c4b4cd2 5853 /* Handle packed fields. */
14f9c5c9
AS
5854
5855 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5856 {
5857 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5858 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5859
0fd88904 5860 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5861 offset + bit_pos / 8,
5862 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5863 }
5864 else
5865 return value_primitive_field (arg1, offset, fieldno, arg_type);
5866}
5867
52ce6436
PH
5868/* Find field with name NAME in object of type TYPE. If found,
5869 set the following for each argument that is non-null:
5870 - *FIELD_TYPE_P to the field's type;
5871 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5872 an object of that type;
5873 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5874 - *BIT_SIZE_P to its size in bits if the field is packed, and
5875 0 otherwise;
5876 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5877 fields up to but not including the desired field, or by the total
5878 number of fields if not found. A NULL value of NAME never
5879 matches; the function just counts visible fields in this case.
5880
5881 Returns 1 if found, 0 otherwise. */
5882
4c4b4cd2 5883static int
76a01679
JB
5884find_struct_field (char *name, struct type *type, int offset,
5885 struct type **field_type_p,
52ce6436
PH
5886 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5887 int *index_p)
4c4b4cd2
PH
5888{
5889 int i;
5890
61ee279c 5891 type = ada_check_typedef (type);
76a01679 5892
52ce6436
PH
5893 if (field_type_p != NULL)
5894 *field_type_p = NULL;
5895 if (byte_offset_p != NULL)
d5d6fca5 5896 *byte_offset_p = 0;
52ce6436
PH
5897 if (bit_offset_p != NULL)
5898 *bit_offset_p = 0;
5899 if (bit_size_p != NULL)
5900 *bit_size_p = 0;
5901
5902 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5903 {
5904 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5905 int fld_offset = offset + bit_pos / 8;
5906 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5907
4c4b4cd2
PH
5908 if (t_field_name == NULL)
5909 continue;
5910
52ce6436 5911 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5912 {
5913 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5914 if (field_type_p != NULL)
5915 *field_type_p = TYPE_FIELD_TYPE (type, i);
5916 if (byte_offset_p != NULL)
5917 *byte_offset_p = fld_offset;
5918 if (bit_offset_p != NULL)
5919 *bit_offset_p = bit_pos % 8;
5920 if (bit_size_p != NULL)
5921 *bit_size_p = bit_size;
76a01679
JB
5922 return 1;
5923 }
4c4b4cd2
PH
5924 else if (ada_is_wrapper_field (type, i))
5925 {
52ce6436
PH
5926 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5927 field_type_p, byte_offset_p, bit_offset_p,
5928 bit_size_p, index_p))
76a01679
JB
5929 return 1;
5930 }
4c4b4cd2
PH
5931 else if (ada_is_variant_part (type, i))
5932 {
52ce6436
PH
5933 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5934 fixed type?? */
4c4b4cd2 5935 int j;
52ce6436
PH
5936 struct type *field_type
5937 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5938
52ce6436 5939 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5940 {
76a01679
JB
5941 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5942 fld_offset
5943 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5944 field_type_p, byte_offset_p,
52ce6436 5945 bit_offset_p, bit_size_p, index_p))
76a01679 5946 return 1;
4c4b4cd2
PH
5947 }
5948 }
52ce6436
PH
5949 else if (index_p != NULL)
5950 *index_p += 1;
4c4b4cd2
PH
5951 }
5952 return 0;
5953}
5954
52ce6436 5955/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5956
52ce6436
PH
5957static int
5958num_visible_fields (struct type *type)
5959{
5960 int n;
5961 n = 0;
5962 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5963 return n;
5964}
14f9c5c9 5965
4c4b4cd2 5966/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5967 and search in it assuming it has (class) type TYPE.
5968 If found, return value, else return NULL.
5969
4c4b4cd2 5970 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5971
4c4b4cd2 5972static struct value *
d2e4a39e 5973ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5974 struct type *type)
14f9c5c9
AS
5975{
5976 int i;
61ee279c 5977 type = ada_check_typedef (type);
14f9c5c9 5978
52ce6436 5979 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5980 {
5981 char *t_field_name = TYPE_FIELD_NAME (type, i);
5982
5983 if (t_field_name == NULL)
4c4b4cd2 5984 continue;
14f9c5c9
AS
5985
5986 else if (field_name_match (t_field_name, name))
4c4b4cd2 5987 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5988
5989 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5990 {
06d5cf63
JB
5991 struct value *v = /* Do not let indent join lines here. */
5992 ada_search_struct_field (name, arg,
5993 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5994 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5995 if (v != NULL)
5996 return v;
5997 }
14f9c5c9
AS
5998
5999 else if (ada_is_variant_part (type, i))
4c4b4cd2 6000 {
52ce6436 6001 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6002 int j;
61ee279c 6003 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6004 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6005
52ce6436 6006 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6007 {
06d5cf63
JB
6008 struct value *v = ada_search_struct_field /* Force line break. */
6009 (name, arg,
6010 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6011 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6012 if (v != NULL)
6013 return v;
6014 }
6015 }
14f9c5c9
AS
6016 }
6017 return NULL;
6018}
d2e4a39e 6019
52ce6436
PH
6020static struct value *ada_index_struct_field_1 (int *, struct value *,
6021 int, struct type *);
6022
6023
6024/* Return field #INDEX in ARG, where the index is that returned by
6025 * find_struct_field through its INDEX_P argument. Adjust the address
6026 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6027 * If found, return value, else return NULL. */
6028
6029static struct value *
6030ada_index_struct_field (int index, struct value *arg, int offset,
6031 struct type *type)
6032{
6033 return ada_index_struct_field_1 (&index, arg, offset, type);
6034}
6035
6036
6037/* Auxiliary function for ada_index_struct_field. Like
6038 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6039 * *INDEX_P. */
6040
6041static struct value *
6042ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6043 struct type *type)
6044{
6045 int i;
6046 type = ada_check_typedef (type);
6047
6048 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6049 {
6050 if (TYPE_FIELD_NAME (type, i) == NULL)
6051 continue;
6052 else if (ada_is_wrapper_field (type, i))
6053 {
6054 struct value *v = /* Do not let indent join lines here. */
6055 ada_index_struct_field_1 (index_p, arg,
6056 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6057 TYPE_FIELD_TYPE (type, i));
6058 if (v != NULL)
6059 return v;
6060 }
6061
6062 else if (ada_is_variant_part (type, i))
6063 {
6064 /* PNH: Do we ever get here? See ada_search_struct_field,
6065 find_struct_field. */
6066 error (_("Cannot assign this kind of variant record"));
6067 }
6068 else if (*index_p == 0)
6069 return ada_value_primitive_field (arg, offset, i, type);
6070 else
6071 *index_p -= 1;
6072 }
6073 return NULL;
6074}
6075
4c4b4cd2
PH
6076/* Given ARG, a value of type (pointer or reference to a)*
6077 structure/union, extract the component named NAME from the ultimate
6078 target structure/union and return it as a value with its
f5938064 6079 appropriate type.
14f9c5c9 6080
4c4b4cd2
PH
6081 The routine searches for NAME among all members of the structure itself
6082 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6083 (e.g., '_parent').
6084
03ee6b2e
PH
6085 If NO_ERR, then simply return NULL in case of error, rather than
6086 calling error. */
14f9c5c9 6087
d2e4a39e 6088struct value *
03ee6b2e 6089ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6090{
4c4b4cd2 6091 struct type *t, *t1;
d2e4a39e 6092 struct value *v;
14f9c5c9 6093
4c4b4cd2 6094 v = NULL;
df407dfe 6095 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6096 if (TYPE_CODE (t) == TYPE_CODE_REF)
6097 {
6098 t1 = TYPE_TARGET_TYPE (t);
6099 if (t1 == NULL)
03ee6b2e 6100 goto BadValue;
61ee279c 6101 t1 = ada_check_typedef (t1);
4c4b4cd2 6102 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6103 {
994b9211 6104 arg = coerce_ref (arg);
76a01679
JB
6105 t = t1;
6106 }
4c4b4cd2 6107 }
14f9c5c9 6108
4c4b4cd2
PH
6109 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6110 {
6111 t1 = TYPE_TARGET_TYPE (t);
6112 if (t1 == NULL)
03ee6b2e 6113 goto BadValue;
61ee279c 6114 t1 = ada_check_typedef (t1);
4c4b4cd2 6115 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6116 {
6117 arg = value_ind (arg);
6118 t = t1;
6119 }
4c4b4cd2 6120 else
76a01679 6121 break;
4c4b4cd2 6122 }
14f9c5c9 6123
4c4b4cd2 6124 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6125 goto BadValue;
14f9c5c9 6126
4c4b4cd2
PH
6127 if (t1 == t)
6128 v = ada_search_struct_field (name, arg, 0, t);
6129 else
6130 {
6131 int bit_offset, bit_size, byte_offset;
6132 struct type *field_type;
6133 CORE_ADDR address;
6134
76a01679
JB
6135 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6136 address = value_as_address (arg);
4c4b4cd2 6137 else
0fd88904 6138 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6139
1ed6ede0 6140 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6141 if (find_struct_field (name, t1, 0,
6142 &field_type, &byte_offset, &bit_offset,
52ce6436 6143 &bit_size, NULL))
76a01679
JB
6144 {
6145 if (bit_size != 0)
6146 {
714e53ab
PH
6147 if (TYPE_CODE (t) == TYPE_CODE_REF)
6148 arg = ada_coerce_ref (arg);
6149 else
6150 arg = ada_value_ind (arg);
76a01679
JB
6151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6152 bit_offset, bit_size,
6153 field_type);
6154 }
6155 else
f5938064 6156 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6157 }
6158 }
6159
03ee6b2e
PH
6160 if (v != NULL || no_err)
6161 return v;
6162 else
323e0a4a 6163 error (_("There is no member named %s."), name);
14f9c5c9 6164
03ee6b2e
PH
6165 BadValue:
6166 if (no_err)
6167 return NULL;
6168 else
6169 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6170}
6171
6172/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6173 If DISPP is non-null, add its byte displacement from the beginning of a
6174 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6175 work for packed fields).
6176
6177 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6178 followed by "___".
14f9c5c9 6179
4c4b4cd2
PH
6180 TYPE can be either a struct or union. If REFOK, TYPE may also
6181 be a (pointer or reference)+ to a struct or union, and the
6182 ultimate target type will be searched.
14f9c5c9
AS
6183
6184 Looks recursively into variant clauses and parent types.
6185
4c4b4cd2
PH
6186 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6187 TYPE is not a type of the right kind. */
14f9c5c9 6188
4c4b4cd2 6189static struct type *
76a01679
JB
6190ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6191 int noerr, int *dispp)
14f9c5c9
AS
6192{
6193 int i;
6194
6195 if (name == NULL)
6196 goto BadName;
6197
76a01679 6198 if (refok && type != NULL)
4c4b4cd2
PH
6199 while (1)
6200 {
61ee279c 6201 type = ada_check_typedef (type);
76a01679
JB
6202 if (TYPE_CODE (type) != TYPE_CODE_PTR
6203 && TYPE_CODE (type) != TYPE_CODE_REF)
6204 break;
6205 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6206 }
14f9c5c9 6207
76a01679 6208 if (type == NULL
1265e4aa
JB
6209 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6210 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6211 {
4c4b4cd2 6212 if (noerr)
76a01679 6213 return NULL;
4c4b4cd2 6214 else
76a01679
JB
6215 {
6216 target_terminal_ours ();
6217 gdb_flush (gdb_stdout);
323e0a4a
AC
6218 if (type == NULL)
6219 error (_("Type (null) is not a structure or union type"));
6220 else
6221 {
6222 /* XXX: type_sprint */
6223 fprintf_unfiltered (gdb_stderr, _("Type "));
6224 type_print (type, "", gdb_stderr, -1);
6225 error (_(" is not a structure or union type"));
6226 }
76a01679 6227 }
14f9c5c9
AS
6228 }
6229
6230 type = to_static_fixed_type (type);
6231
6232 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6233 {
6234 char *t_field_name = TYPE_FIELD_NAME (type, i);
6235 struct type *t;
6236 int disp;
d2e4a39e 6237
14f9c5c9 6238 if (t_field_name == NULL)
4c4b4cd2 6239 continue;
14f9c5c9
AS
6240
6241 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6242 {
6243 if (dispp != NULL)
6244 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6245 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6246 }
14f9c5c9
AS
6247
6248 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6249 {
6250 disp = 0;
6251 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6252 0, 1, &disp);
6253 if (t != NULL)
6254 {
6255 if (dispp != NULL)
6256 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6257 return t;
6258 }
6259 }
14f9c5c9
AS
6260
6261 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6262 {
6263 int j;
61ee279c 6264 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6265
6266 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6267 {
b1f33ddd
JB
6268 /* FIXME pnh 2008/01/26: We check for a field that is
6269 NOT wrapped in a struct, since the compiler sometimes
6270 generates these for unchecked variant types. Revisit
6271 if the compiler changes this practice. */
6272 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6273 disp = 0;
b1f33ddd
JB
6274 if (v_field_name != NULL
6275 && field_name_match (v_field_name, name))
6276 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6277 else
6278 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6279 name, 0, 1, &disp);
6280
4c4b4cd2
PH
6281 if (t != NULL)
6282 {
6283 if (dispp != NULL)
6284 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6285 return t;
6286 }
6287 }
6288 }
14f9c5c9
AS
6289
6290 }
6291
6292BadName:
d2e4a39e 6293 if (!noerr)
14f9c5c9
AS
6294 {
6295 target_terminal_ours ();
6296 gdb_flush (gdb_stdout);
323e0a4a
AC
6297 if (name == NULL)
6298 {
6299 /* XXX: type_sprint */
6300 fprintf_unfiltered (gdb_stderr, _("Type "));
6301 type_print (type, "", gdb_stderr, -1);
6302 error (_(" has no component named <null>"));
6303 }
6304 else
6305 {
6306 /* XXX: type_sprint */
6307 fprintf_unfiltered (gdb_stderr, _("Type "));
6308 type_print (type, "", gdb_stderr, -1);
6309 error (_(" has no component named %s"), name);
6310 }
14f9c5c9
AS
6311 }
6312
6313 return NULL;
6314}
6315
b1f33ddd
JB
6316/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6317 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6318 represents an unchecked union (that is, the variant part of a
6319 record that is named in an Unchecked_Union pragma). */
6320
6321static int
6322is_unchecked_variant (struct type *var_type, struct type *outer_type)
6323{
6324 char *discrim_name = ada_variant_discrim_name (var_type);
6325 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6326 == NULL);
6327}
6328
6329
14f9c5c9
AS
6330/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6331 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6332 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6333 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6334
d2e4a39e 6335int
ebf56fd3 6336ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6337 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6338{
6339 int others_clause;
6340 int i;
d2e4a39e 6341 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6342 struct value *outer;
6343 struct value *discrim;
14f9c5c9
AS
6344 LONGEST discrim_val;
6345
0c281816
JB
6346 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6347 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6348 if (discrim == NULL)
14f9c5c9 6349 return -1;
0c281816 6350 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6351
6352 others_clause = -1;
6353 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6354 {
6355 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6356 others_clause = i;
14f9c5c9 6357 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6358 return i;
14f9c5c9
AS
6359 }
6360
6361 return others_clause;
6362}
d2e4a39e 6363\f
14f9c5c9
AS
6364
6365
4c4b4cd2 6366 /* Dynamic-Sized Records */
14f9c5c9
AS
6367
6368/* Strategy: The type ostensibly attached to a value with dynamic size
6369 (i.e., a size that is not statically recorded in the debugging
6370 data) does not accurately reflect the size or layout of the value.
6371 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6372 conventional types that are constructed on the fly. */
14f9c5c9
AS
6373
6374/* There is a subtle and tricky problem here. In general, we cannot
6375 determine the size of dynamic records without its data. However,
6376 the 'struct value' data structure, which GDB uses to represent
6377 quantities in the inferior process (the target), requires the size
6378 of the type at the time of its allocation in order to reserve space
6379 for GDB's internal copy of the data. That's why the
6380 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6381 rather than struct value*s.
14f9c5c9
AS
6382
6383 However, GDB's internal history variables ($1, $2, etc.) are
6384 struct value*s containing internal copies of the data that are not, in
6385 general, the same as the data at their corresponding addresses in
6386 the target. Fortunately, the types we give to these values are all
6387 conventional, fixed-size types (as per the strategy described
6388 above), so that we don't usually have to perform the
6389 'to_fixed_xxx_type' conversions to look at their values.
6390 Unfortunately, there is one exception: if one of the internal
6391 history variables is an array whose elements are unconstrained
6392 records, then we will need to create distinct fixed types for each
6393 element selected. */
6394
6395/* The upshot of all of this is that many routines take a (type, host
6396 address, target address) triple as arguments to represent a value.
6397 The host address, if non-null, is supposed to contain an internal
6398 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6399 target at the target address. */
14f9c5c9
AS
6400
6401/* Assuming that VAL0 represents a pointer value, the result of
6402 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6403 dynamic-sized types. */
14f9c5c9 6404
d2e4a39e
AS
6405struct value *
6406ada_value_ind (struct value *val0)
14f9c5c9 6407{
d2e4a39e 6408 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6409 return ada_to_fixed_value (val);
14f9c5c9
AS
6410}
6411
6412/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6413 qualifiers on VAL0. */
6414
d2e4a39e
AS
6415static struct value *
6416ada_coerce_ref (struct value *val0)
6417{
df407dfe 6418 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6419 {
6420 struct value *val = val0;
994b9211 6421 val = coerce_ref (val);
d2e4a39e 6422 val = unwrap_value (val);
4c4b4cd2 6423 return ada_to_fixed_value (val);
d2e4a39e
AS
6424 }
6425 else
14f9c5c9
AS
6426 return val0;
6427}
6428
6429/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6430 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6431
6432static unsigned int
ebf56fd3 6433align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6434{
6435 return (off + alignment - 1) & ~(alignment - 1);
6436}
6437
4c4b4cd2 6438/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6439
6440static unsigned int
ebf56fd3 6441field_alignment (struct type *type, int f)
14f9c5c9 6442{
d2e4a39e 6443 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6444 int len;
14f9c5c9
AS
6445 int align_offset;
6446
64a1bf19
JB
6447 /* The field name should never be null, unless the debugging information
6448 is somehow malformed. In this case, we assume the field does not
6449 require any alignment. */
6450 if (name == NULL)
6451 return 1;
6452
6453 len = strlen (name);
6454
4c4b4cd2
PH
6455 if (!isdigit (name[len - 1]))
6456 return 1;
14f9c5c9 6457
d2e4a39e 6458 if (isdigit (name[len - 2]))
14f9c5c9
AS
6459 align_offset = len - 2;
6460 else
6461 align_offset = len - 1;
6462
4c4b4cd2 6463 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6464 return TARGET_CHAR_BIT;
6465
4c4b4cd2
PH
6466 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6467}
6468
6469/* Find a symbol named NAME. Ignores ambiguity. */
6470
6471struct symbol *
6472ada_find_any_symbol (const char *name)
6473{
6474 struct symbol *sym;
6475
6476 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6477 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6478 return sym;
6479
6480 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6481 return sym;
14f9c5c9
AS
6482}
6483
dddfab26
UW
6484/* Find a type named NAME. Ignores ambiguity. This routine will look
6485 solely for types defined by debug info, it will not search the GDB
6486 primitive types. */
4c4b4cd2 6487
d2e4a39e 6488struct type *
ebf56fd3 6489ada_find_any_type (const char *name)
14f9c5c9 6490{
4c4b4cd2 6491 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6492
14f9c5c9 6493 if (sym != NULL)
dddfab26 6494 return SYMBOL_TYPE (sym);
14f9c5c9 6495
dddfab26 6496 return NULL;
14f9c5c9
AS
6497}
6498
aeb5907d
JB
6499/* Given NAME and an associated BLOCK, search all symbols for
6500 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6501 associated to NAME. Return this symbol if found, return
6502 NULL otherwise. */
6503
6504struct symbol *
6505ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6506{
6507 struct symbol *sym;
6508
6509 sym = find_old_style_renaming_symbol (name, block);
6510
6511 if (sym != NULL)
6512 return sym;
6513
6514 /* Not right yet. FIXME pnh 7/20/2007. */
6515 sym = ada_find_any_symbol (name);
6516 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6517 return sym;
6518 else
6519 return NULL;
6520}
6521
6522static struct symbol *
6523find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6524{
7f0df278 6525 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6526 char *rename;
6527
6528 if (function_sym != NULL)
6529 {
6530 /* If the symbol is defined inside a function, NAME is not fully
6531 qualified. This means we need to prepend the function name
6532 as well as adding the ``___XR'' suffix to build the name of
6533 the associated renaming symbol. */
6534 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6535 /* Function names sometimes contain suffixes used
6536 for instance to qualify nested subprograms. When building
6537 the XR type name, we need to make sure that this suffix is
6538 not included. So do not include any suffix in the function
6539 name length below. */
6540 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6541 const int rename_len = function_name_len + 2 /* "__" */
6542 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6543
529cad9c
PH
6544 /* Strip the suffix if necessary. */
6545 function_name[function_name_len] = '\0';
6546
4c4b4cd2
PH
6547 /* Library-level functions are a special case, as GNAT adds
6548 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6549 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6550 have this prefix, so we need to skip this prefix if present. */
6551 if (function_name_len > 5 /* "_ada_" */
6552 && strstr (function_name, "_ada_") == function_name)
6553 function_name = function_name + 5;
6554
6555 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34
PM
6556 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6557 function_name, name);
4c4b4cd2
PH
6558 }
6559 else
6560 {
6561 const int rename_len = strlen (name) + 6;
6562 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6563 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6564 }
6565
6566 return ada_find_any_symbol (rename);
6567}
6568
14f9c5c9 6569/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6570 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6571 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6572 otherwise return 0. */
6573
14f9c5c9 6574int
d2e4a39e 6575ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6576{
6577 if (type1 == NULL)
6578 return 1;
6579 else if (type0 == NULL)
6580 return 0;
6581 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6582 return 1;
6583 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6584 return 0;
4c4b4cd2
PH
6585 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6586 return 1;
14f9c5c9
AS
6587 else if (ada_is_packed_array_type (type0))
6588 return 1;
4c4b4cd2
PH
6589 else if (ada_is_array_descriptor_type (type0)
6590 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6591 return 1;
aeb5907d
JB
6592 else
6593 {
6594 const char *type0_name = type_name_no_tag (type0);
6595 const char *type1_name = type_name_no_tag (type1);
6596
6597 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6598 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6599 return 1;
6600 }
14f9c5c9
AS
6601 return 0;
6602}
6603
6604/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6605 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6606
d2e4a39e
AS
6607char *
6608ada_type_name (struct type *type)
14f9c5c9 6609{
d2e4a39e 6610 if (type == NULL)
14f9c5c9
AS
6611 return NULL;
6612 else if (TYPE_NAME (type) != NULL)
6613 return TYPE_NAME (type);
6614 else
6615 return TYPE_TAG_NAME (type);
6616}
6617
6618/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6619 SUFFIX to the name of TYPE. */
14f9c5c9 6620
d2e4a39e 6621struct type *
ebf56fd3 6622ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6623{
d2e4a39e 6624 static char *name;
14f9c5c9 6625 static size_t name_len = 0;
14f9c5c9 6626 int len;
d2e4a39e
AS
6627 char *typename = ada_type_name (type);
6628
14f9c5c9
AS
6629 if (typename == NULL)
6630 return NULL;
6631
6632 len = strlen (typename);
6633
d2e4a39e 6634 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6635
6636 strcpy (name, typename);
6637 strcpy (name + len, suffix);
6638
6639 return ada_find_any_type (name);
6640}
6641
6642
6643/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6644 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6645
d2e4a39e
AS
6646static struct type *
6647dynamic_template_type (struct type *type)
14f9c5c9 6648{
61ee279c 6649 type = ada_check_typedef (type);
14f9c5c9
AS
6650
6651 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6652 || ada_type_name (type) == NULL)
14f9c5c9 6653 return NULL;
d2e4a39e 6654 else
14f9c5c9
AS
6655 {
6656 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6657 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6658 return type;
14f9c5c9 6659 else
4c4b4cd2 6660 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6661 }
6662}
6663
6664/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6665 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6666
d2e4a39e
AS
6667static int
6668is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6669{
6670 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6671 return name != NULL
14f9c5c9
AS
6672 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6673 && strstr (name, "___XVL") != NULL;
6674}
6675
4c4b4cd2
PH
6676/* The index of the variant field of TYPE, or -1 if TYPE does not
6677 represent a variant record type. */
14f9c5c9 6678
d2e4a39e 6679static int
4c4b4cd2 6680variant_field_index (struct type *type)
14f9c5c9
AS
6681{
6682 int f;
6683
4c4b4cd2
PH
6684 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6685 return -1;
6686
6687 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6688 {
6689 if (ada_is_variant_part (type, f))
6690 return f;
6691 }
6692 return -1;
14f9c5c9
AS
6693}
6694
4c4b4cd2
PH
6695/* A record type with no fields. */
6696
d2e4a39e
AS
6697static struct type *
6698empty_record (struct objfile *objfile)
14f9c5c9 6699{
d2e4a39e 6700 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6701 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6702 TYPE_NFIELDS (type) = 0;
6703 TYPE_FIELDS (type) = NULL;
b1f33ddd 6704 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6705 TYPE_NAME (type) = "<empty>";
6706 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6707 TYPE_LENGTH (type) = 0;
6708 return type;
6709}
6710
6711/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6712 the value of type TYPE at VALADDR or ADDRESS (see comments at
6713 the beginning of this section) VAL according to GNAT conventions.
6714 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6715 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6716 an outer-level type (i.e., as opposed to a branch of a variant.) A
6717 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6718 of the variant.
14f9c5c9 6719
4c4b4cd2
PH
6720 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6721 length are not statically known are discarded. As a consequence,
6722 VALADDR, ADDRESS and DVAL0 are ignored.
6723
6724 NOTE: Limitations: For now, we assume that dynamic fields and
6725 variants occupy whole numbers of bytes. However, they need not be
6726 byte-aligned. */
6727
6728struct type *
10a2c479 6729ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6730 const gdb_byte *valaddr,
4c4b4cd2
PH
6731 CORE_ADDR address, struct value *dval0,
6732 int keep_dynamic_fields)
14f9c5c9 6733{
d2e4a39e
AS
6734 struct value *mark = value_mark ();
6735 struct value *dval;
6736 struct type *rtype;
14f9c5c9 6737 int nfields, bit_len;
4c4b4cd2 6738 int variant_field;
14f9c5c9 6739 long off;
4c4b4cd2 6740 int fld_bit_len, bit_incr;
14f9c5c9
AS
6741 int f;
6742
4c4b4cd2
PH
6743 /* Compute the number of fields in this record type that are going
6744 to be processed: unless keep_dynamic_fields, this includes only
6745 fields whose position and length are static will be processed. */
6746 if (keep_dynamic_fields)
6747 nfields = TYPE_NFIELDS (type);
6748 else
6749 {
6750 nfields = 0;
76a01679 6751 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6752 && !ada_is_variant_part (type, nfields)
6753 && !is_dynamic_field (type, nfields))
6754 nfields++;
6755 }
6756
14f9c5c9
AS
6757 rtype = alloc_type (TYPE_OBJFILE (type));
6758 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6759 INIT_CPLUS_SPECIFIC (rtype);
6760 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6761 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6762 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6763 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6764 TYPE_NAME (rtype) = ada_type_name (type);
6765 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6766 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6767
d2e4a39e
AS
6768 off = 0;
6769 bit_len = 0;
4c4b4cd2
PH
6770 variant_field = -1;
6771
14f9c5c9
AS
6772 for (f = 0; f < nfields; f += 1)
6773 {
6c038f32
PH
6774 off = align_value (off, field_alignment (type, f))
6775 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6776 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6777 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6778
d2e4a39e 6779 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6780 {
6781 variant_field = f;
6782 fld_bit_len = bit_incr = 0;
6783 }
14f9c5c9 6784 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
6785 {
6786 if (dval0 == NULL)
b5304971
JG
6787 {
6788 /* rtype's length is computed based on the run-time
6789 value of discriminants. If the discriminants are not
6790 initialized, the type size may be completely bogus and
6791 GDB may fail to allocate a value for it. So check the
6792 size first before creating the value. */
6793 check_size (rtype);
6794 dval = value_from_contents_and_address (rtype, valaddr, address);
6795 }
4c4b4cd2
PH
6796 else
6797 dval = dval0;
6798
1ed6ede0
JB
6799 /* Get the fixed type of the field. Note that, in this case, we
6800 do not want to get the real type out of the tag: if the current
6801 field is the parent part of a tagged record, we will get the
6802 tag of the object. Clearly wrong: the real type of the parent
6803 is not the real type of the child. We would end up in an infinite
6804 loop. */
4c4b4cd2
PH
6805 TYPE_FIELD_TYPE (rtype, f) =
6806 ada_to_fixed_type
6807 (ada_get_base_type
6808 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6809 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 6810 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
6811 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6812 bit_incr = fld_bit_len =
6813 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6814 }
14f9c5c9 6815 else
4c4b4cd2
PH
6816 {
6817 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6818 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6819 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6820 bit_incr = fld_bit_len =
6821 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6822 else
6823 bit_incr = fld_bit_len =
6824 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6825 }
14f9c5c9 6826 if (off + fld_bit_len > bit_len)
4c4b4cd2 6827 bit_len = off + fld_bit_len;
14f9c5c9 6828 off += bit_incr;
4c4b4cd2
PH
6829 TYPE_LENGTH (rtype) =
6830 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6831 }
4c4b4cd2
PH
6832
6833 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6834 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6835 the record. This can happen in the presence of representation
6836 clauses. */
6837 if (variant_field >= 0)
6838 {
6839 struct type *branch_type;
6840
6841 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6842
6843 if (dval0 == NULL)
6844 dval = value_from_contents_and_address (rtype, valaddr, address);
6845 else
6846 dval = dval0;
6847
6848 branch_type =
6849 to_fixed_variant_branch_type
6850 (TYPE_FIELD_TYPE (type, variant_field),
6851 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6852 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6853 if (branch_type == NULL)
6854 {
6855 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6856 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6857 TYPE_NFIELDS (rtype) -= 1;
6858 }
6859 else
6860 {
6861 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6862 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6863 fld_bit_len =
6864 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6865 TARGET_CHAR_BIT;
6866 if (off + fld_bit_len > bit_len)
6867 bit_len = off + fld_bit_len;
6868 TYPE_LENGTH (rtype) =
6869 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6870 }
6871 }
6872
714e53ab
PH
6873 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6874 should contain the alignment of that record, which should be a strictly
6875 positive value. If null or negative, then something is wrong, most
6876 probably in the debug info. In that case, we don't round up the size
6877 of the resulting type. If this record is not part of another structure,
6878 the current RTYPE length might be good enough for our purposes. */
6879 if (TYPE_LENGTH (type) <= 0)
6880 {
323e0a4a
AC
6881 if (TYPE_NAME (rtype))
6882 warning (_("Invalid type size for `%s' detected: %d."),
6883 TYPE_NAME (rtype), TYPE_LENGTH (type));
6884 else
6885 warning (_("Invalid type size for <unnamed> detected: %d."),
6886 TYPE_LENGTH (type));
714e53ab
PH
6887 }
6888 else
6889 {
6890 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6891 TYPE_LENGTH (type));
6892 }
14f9c5c9
AS
6893
6894 value_free_to_mark (mark);
d2e4a39e 6895 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6896 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6897 return rtype;
6898}
6899
4c4b4cd2
PH
6900/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6901 of 1. */
14f9c5c9 6902
d2e4a39e 6903static struct type *
fc1a4b47 6904template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6905 CORE_ADDR address, struct value *dval0)
6906{
6907 return ada_template_to_fixed_record_type_1 (type, valaddr,
6908 address, dval0, 1);
6909}
6910
6911/* An ordinary record type in which ___XVL-convention fields and
6912 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6913 static approximations, containing all possible fields. Uses
6914 no runtime values. Useless for use in values, but that's OK,
6915 since the results are used only for type determinations. Works on both
6916 structs and unions. Representation note: to save space, we memorize
6917 the result of this function in the TYPE_TARGET_TYPE of the
6918 template type. */
6919
6920static struct type *
6921template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6922{
6923 struct type *type;
6924 int nfields;
6925 int f;
6926
4c4b4cd2
PH
6927 if (TYPE_TARGET_TYPE (type0) != NULL)
6928 return TYPE_TARGET_TYPE (type0);
6929
6930 nfields = TYPE_NFIELDS (type0);
6931 type = type0;
14f9c5c9
AS
6932
6933 for (f = 0; f < nfields; f += 1)
6934 {
61ee279c 6935 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6936 struct type *new_type;
14f9c5c9 6937
4c4b4cd2
PH
6938 if (is_dynamic_field (type0, f))
6939 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6940 else
f192137b 6941 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6942 if (type == type0 && new_type != field_type)
6943 {
6944 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6945 TYPE_CODE (type) = TYPE_CODE (type0);
6946 INIT_CPLUS_SPECIFIC (type);
6947 TYPE_NFIELDS (type) = nfields;
6948 TYPE_FIELDS (type) = (struct field *)
6949 TYPE_ALLOC (type, nfields * sizeof (struct field));
6950 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6951 sizeof (struct field) * nfields);
6952 TYPE_NAME (type) = ada_type_name (type0);
6953 TYPE_TAG_NAME (type) = NULL;
876cecd0 6954 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6955 TYPE_LENGTH (type) = 0;
6956 }
6957 TYPE_FIELD_TYPE (type, f) = new_type;
6958 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6959 }
14f9c5c9
AS
6960 return type;
6961}
6962
4c4b4cd2 6963/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6964 whose address in memory is ADDRESS, returns a revision of TYPE,
6965 which should be a non-dynamic-sized record, in which the variant
6966 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6967 for discriminant values in DVAL0, which can be NULL if the record
6968 contains the necessary discriminant values. */
6969
d2e4a39e 6970static struct type *
fc1a4b47 6971to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6972 CORE_ADDR address, struct value *dval0)
14f9c5c9 6973{
d2e4a39e 6974 struct value *mark = value_mark ();
4c4b4cd2 6975 struct value *dval;
d2e4a39e 6976 struct type *rtype;
14f9c5c9
AS
6977 struct type *branch_type;
6978 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6979 int variant_field = variant_field_index (type);
14f9c5c9 6980
4c4b4cd2 6981 if (variant_field == -1)
14f9c5c9
AS
6982 return type;
6983
4c4b4cd2
PH
6984 if (dval0 == NULL)
6985 dval = value_from_contents_and_address (type, valaddr, address);
6986 else
6987 dval = dval0;
6988
14f9c5c9
AS
6989 rtype = alloc_type (TYPE_OBJFILE (type));
6990 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6991 INIT_CPLUS_SPECIFIC (rtype);
6992 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6993 TYPE_FIELDS (rtype) =
6994 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6995 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6996 sizeof (struct field) * nfields);
14f9c5c9
AS
6997 TYPE_NAME (rtype) = ada_type_name (type);
6998 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6999 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7000 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7001
4c4b4cd2
PH
7002 branch_type = to_fixed_variant_branch_type
7003 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7004 cond_offset_host (valaddr,
4c4b4cd2
PH
7005 TYPE_FIELD_BITPOS (type, variant_field)
7006 / TARGET_CHAR_BIT),
d2e4a39e 7007 cond_offset_target (address,
4c4b4cd2
PH
7008 TYPE_FIELD_BITPOS (type, variant_field)
7009 / TARGET_CHAR_BIT), dval);
d2e4a39e 7010 if (branch_type == NULL)
14f9c5c9 7011 {
4c4b4cd2
PH
7012 int f;
7013 for (f = variant_field + 1; f < nfields; f += 1)
7014 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7015 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7016 }
7017 else
7018 {
4c4b4cd2
PH
7019 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7020 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7021 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7022 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7023 }
4c4b4cd2 7024 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7025
4c4b4cd2 7026 value_free_to_mark (mark);
14f9c5c9
AS
7027 return rtype;
7028}
7029
7030/* An ordinary record type (with fixed-length fields) that describes
7031 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7032 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7033 should be in DVAL, a record value; it may be NULL if the object
7034 at ADDR itself contains any necessary discriminant values.
7035 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7036 values from the record are needed. Except in the case that DVAL,
7037 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7038 unchecked) is replaced by a particular branch of the variant.
7039
7040 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7041 is questionable and may be removed. It can arise during the
7042 processing of an unconstrained-array-of-record type where all the
7043 variant branches have exactly the same size. This is because in
7044 such cases, the compiler does not bother to use the XVS convention
7045 when encoding the record. I am currently dubious of this
7046 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7047
d2e4a39e 7048static struct type *
fc1a4b47 7049to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7050 CORE_ADDR address, struct value *dval)
14f9c5c9 7051{
d2e4a39e 7052 struct type *templ_type;
14f9c5c9 7053
876cecd0 7054 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7055 return type0;
7056
d2e4a39e 7057 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7058
7059 if (templ_type != NULL)
7060 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7061 else if (variant_field_index (type0) >= 0)
7062 {
7063 if (dval == NULL && valaddr == NULL && address == 0)
7064 return type0;
7065 return to_record_with_fixed_variant_part (type0, valaddr, address,
7066 dval);
7067 }
14f9c5c9
AS
7068 else
7069 {
876cecd0 7070 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7071 return type0;
7072 }
7073
7074}
7075
7076/* An ordinary record type (with fixed-length fields) that describes
7077 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7078 union type. Any necessary discriminants' values should be in DVAL,
7079 a record value. That is, this routine selects the appropriate
7080 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7081 indicated in the union's type name. Returns VAR_TYPE0 itself if
7082 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7083
d2e4a39e 7084static struct type *
fc1a4b47 7085to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7086 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7087{
7088 int which;
d2e4a39e
AS
7089 struct type *templ_type;
7090 struct type *var_type;
14f9c5c9
AS
7091
7092 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7093 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7094 else
14f9c5c9
AS
7095 var_type = var_type0;
7096
7097 templ_type = ada_find_parallel_type (var_type, "___XVU");
7098
7099 if (templ_type != NULL)
7100 var_type = templ_type;
7101
b1f33ddd
JB
7102 if (is_unchecked_variant (var_type, value_type (dval)))
7103 return var_type0;
d2e4a39e
AS
7104 which =
7105 ada_which_variant_applies (var_type,
0fd88904 7106 value_type (dval), value_contents (dval));
14f9c5c9
AS
7107
7108 if (which < 0)
7109 return empty_record (TYPE_OBJFILE (var_type));
7110 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7111 return to_fixed_record_type
d2e4a39e
AS
7112 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7113 valaddr, address, dval);
4c4b4cd2 7114 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7115 return
7116 to_fixed_record_type
7117 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7118 else
7119 return TYPE_FIELD_TYPE (var_type, which);
7120}
7121
7122/* Assuming that TYPE0 is an array type describing the type of a value
7123 at ADDR, and that DVAL describes a record containing any
7124 discriminants used in TYPE0, returns a type for the value that
7125 contains no dynamic components (that is, no components whose sizes
7126 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7127 true, gives an error message if the resulting type's size is over
4c4b4cd2 7128 varsize_limit. */
14f9c5c9 7129
d2e4a39e
AS
7130static struct type *
7131to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7132 int ignore_too_big)
14f9c5c9 7133{
d2e4a39e
AS
7134 struct type *index_type_desc;
7135 struct type *result;
14f9c5c9 7136
4c4b4cd2 7137 if (ada_is_packed_array_type (type0) /* revisit? */
876cecd0 7138 || TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7139 return type0;
14f9c5c9
AS
7140
7141 index_type_desc = ada_find_parallel_type (type0, "___XA");
7142 if (index_type_desc == NULL)
7143 {
61ee279c 7144 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7145 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7146 depend on the contents of the array in properly constructed
7147 debugging data. */
529cad9c
PH
7148 /* Create a fixed version of the array element type.
7149 We're not providing the address of an element here,
e1d5a0d2 7150 and thus the actual object value cannot be inspected to do
529cad9c
PH
7151 the conversion. This should not be a problem, since arrays of
7152 unconstrained objects are not allowed. In particular, all
7153 the elements of an array of a tagged type should all be of
7154 the same type specified in the debugging info. No need to
7155 consult the object tag. */
1ed6ede0 7156 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7157
7158 if (elt_type0 == elt_type)
4c4b4cd2 7159 result = type0;
14f9c5c9 7160 else
4c4b4cd2
PH
7161 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7162 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7163 }
7164 else
7165 {
7166 int i;
7167 struct type *elt_type0;
7168
7169 elt_type0 = type0;
7170 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7171 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7172
7173 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7174 depend on the contents of the array in properly constructed
7175 debugging data. */
529cad9c
PH
7176 /* Create a fixed version of the array element type.
7177 We're not providing the address of an element here,
e1d5a0d2 7178 and thus the actual object value cannot be inspected to do
529cad9c
PH
7179 the conversion. This should not be a problem, since arrays of
7180 unconstrained objects are not allowed. In particular, all
7181 the elements of an array of a tagged type should all be of
7182 the same type specified in the debugging info. No need to
7183 consult the object tag. */
1ed6ede0
JB
7184 result =
7185 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7186 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7187 {
7188 struct type *range_type =
7189 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7190 dval, TYPE_OBJFILE (type0));
7191 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7192 result, range_type);
7193 }
d2e4a39e 7194 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7195 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7196 }
7197
876cecd0 7198 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7199 return result;
d2e4a39e 7200}
14f9c5c9
AS
7201
7202
7203/* A standard type (containing no dynamically sized components)
7204 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7205 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7206 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7207 ADDRESS or in VALADDR contains these discriminants.
7208
1ed6ede0
JB
7209 If CHECK_TAG is not null, in the case of tagged types, this function
7210 attempts to locate the object's tag and use it to compute the actual
7211 type. However, when ADDRESS is null, we cannot use it to determine the
7212 location of the tag, and therefore compute the tagged type's actual type.
7213 So we return the tagged type without consulting the tag. */
529cad9c 7214
f192137b
JB
7215static struct type *
7216ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7217 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7218{
61ee279c 7219 type = ada_check_typedef (type);
d2e4a39e
AS
7220 switch (TYPE_CODE (type))
7221 {
7222 default:
14f9c5c9 7223 return type;
d2e4a39e 7224 case TYPE_CODE_STRUCT:
4c4b4cd2 7225 {
76a01679 7226 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7227 struct type *fixed_record_type =
7228 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7229 /* If STATIC_TYPE is a tagged type and we know the object's address,
7230 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7231 type from there. Note that we have to use the fixed record
7232 type (the parent part of the record may have dynamic fields
7233 and the way the location of _tag is expressed may depend on
7234 them). */
529cad9c 7235
1ed6ede0 7236 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7237 {
7238 struct type *real_type =
1ed6ede0
JB
7239 type_from_tag (value_tag_from_contents_and_address
7240 (fixed_record_type,
7241 valaddr,
7242 address));
76a01679 7243 if (real_type != NULL)
1ed6ede0 7244 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7245 }
4af88198
JB
7246
7247 /* Check to see if there is a parallel ___XVZ variable.
7248 If there is, then it provides the actual size of our type. */
7249 else if (ada_type_name (fixed_record_type) != NULL)
7250 {
7251 char *name = ada_type_name (fixed_record_type);
7252 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7253 int xvz_found = 0;
7254 LONGEST size;
7255
88c15c34 7256 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7257 size = get_int_var_value (xvz_name, &xvz_found);
7258 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7259 {
7260 fixed_record_type = copy_type (fixed_record_type);
7261 TYPE_LENGTH (fixed_record_type) = size;
7262
7263 /* The FIXED_RECORD_TYPE may have be a stub. We have
7264 observed this when the debugging info is STABS, and
7265 apparently it is something that is hard to fix.
7266
7267 In practice, we don't need the actual type definition
7268 at all, because the presence of the XVZ variable allows us
7269 to assume that there must be a XVS type as well, which we
7270 should be able to use later, when we need the actual type
7271 definition.
7272
7273 In the meantime, pretend that the "fixed" type we are
7274 returning is NOT a stub, because this can cause trouble
7275 when using this type to create new types targeting it.
7276 Indeed, the associated creation routines often check
7277 whether the target type is a stub and will try to replace
7278 it, thus using a type with the wrong size. This, in turn,
7279 might cause the new type to have the wrong size too.
7280 Consider the case of an array, for instance, where the size
7281 of the array is computed from the number of elements in
7282 our array multiplied by the size of its element. */
7283 TYPE_STUB (fixed_record_type) = 0;
7284 }
7285 }
1ed6ede0 7286 return fixed_record_type;
4c4b4cd2 7287 }
d2e4a39e 7288 case TYPE_CODE_ARRAY:
4c4b4cd2 7289 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7290 case TYPE_CODE_UNION:
7291 if (dval == NULL)
4c4b4cd2 7292 return type;
d2e4a39e 7293 else
4c4b4cd2 7294 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7295 }
14f9c5c9
AS
7296}
7297
f192137b
JB
7298/* The same as ada_to_fixed_type_1, except that it preserves the type
7299 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7300 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7301
7302struct type *
7303ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7304 CORE_ADDR address, struct value *dval, int check_tag)
7305
7306{
7307 struct type *fixed_type =
7308 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7309
7310 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7311 && TYPE_TARGET_TYPE (type) == fixed_type)
7312 return type;
7313
7314 return fixed_type;
7315}
7316
14f9c5c9 7317/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7318 TYPE0, but based on no runtime data. */
14f9c5c9 7319
d2e4a39e
AS
7320static struct type *
7321to_static_fixed_type (struct type *type0)
14f9c5c9 7322{
d2e4a39e 7323 struct type *type;
14f9c5c9
AS
7324
7325 if (type0 == NULL)
7326 return NULL;
7327
876cecd0 7328 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7329 return type0;
7330
61ee279c 7331 type0 = ada_check_typedef (type0);
d2e4a39e 7332
14f9c5c9
AS
7333 switch (TYPE_CODE (type0))
7334 {
7335 default:
7336 return type0;
7337 case TYPE_CODE_STRUCT:
7338 type = dynamic_template_type (type0);
d2e4a39e 7339 if (type != NULL)
4c4b4cd2
PH
7340 return template_to_static_fixed_type (type);
7341 else
7342 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7343 case TYPE_CODE_UNION:
7344 type = ada_find_parallel_type (type0, "___XVU");
7345 if (type != NULL)
4c4b4cd2
PH
7346 return template_to_static_fixed_type (type);
7347 else
7348 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7349 }
7350}
7351
4c4b4cd2
PH
7352/* A static approximation of TYPE with all type wrappers removed. */
7353
d2e4a39e
AS
7354static struct type *
7355static_unwrap_type (struct type *type)
14f9c5c9
AS
7356{
7357 if (ada_is_aligner_type (type))
7358 {
61ee279c 7359 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7360 if (ada_type_name (type1) == NULL)
4c4b4cd2 7361 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7362
7363 return static_unwrap_type (type1);
7364 }
d2e4a39e 7365 else
14f9c5c9 7366 {
d2e4a39e
AS
7367 struct type *raw_real_type = ada_get_base_type (type);
7368 if (raw_real_type == type)
4c4b4cd2 7369 return type;
14f9c5c9 7370 else
4c4b4cd2 7371 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7372 }
7373}
7374
7375/* In some cases, incomplete and private types require
4c4b4cd2 7376 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7377 type Foo;
7378 type FooP is access Foo;
7379 V: FooP;
7380 type Foo is array ...;
4c4b4cd2 7381 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7382 cross-references to such types, we instead substitute for FooP a
7383 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7384 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7385
7386/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7387 exists, otherwise TYPE. */
7388
d2e4a39e 7389struct type *
61ee279c 7390ada_check_typedef (struct type *type)
14f9c5c9 7391{
727e3d2e
JB
7392 if (type == NULL)
7393 return NULL;
7394
14f9c5c9
AS
7395 CHECK_TYPEDEF (type);
7396 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7397 || !TYPE_STUB (type)
14f9c5c9
AS
7398 || TYPE_TAG_NAME (type) == NULL)
7399 return type;
d2e4a39e 7400 else
14f9c5c9 7401 {
d2e4a39e
AS
7402 char *name = TYPE_TAG_NAME (type);
7403 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7404 return (type1 == NULL) ? type : type1;
7405 }
7406}
7407
7408/* A value representing the data at VALADDR/ADDRESS as described by
7409 type TYPE0, but with a standard (static-sized) type that correctly
7410 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7411 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7412 creation of struct values]. */
14f9c5c9 7413
4c4b4cd2
PH
7414static struct value *
7415ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7416 struct value *val0)
14f9c5c9 7417{
1ed6ede0 7418 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7419 if (type == type0 && val0 != NULL)
7420 return val0;
d2e4a39e 7421 else
4c4b4cd2
PH
7422 return value_from_contents_and_address (type, 0, address);
7423}
7424
7425/* A value representing VAL, but with a standard (static-sized) type
7426 that correctly describes it. Does not necessarily create a new
7427 value. */
7428
7429static struct value *
7430ada_to_fixed_value (struct value *val)
7431{
df407dfe 7432 return ada_to_fixed_value_create (value_type (val),
42ae5230 7433 value_address (val),
4c4b4cd2 7434 val);
14f9c5c9
AS
7435}
7436
4c4b4cd2 7437/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7438 chosen to approximate the real type of VAL as well as possible, but
7439 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7440 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7441
2c0b251b 7442static struct value *
d2e4a39e 7443ada_to_static_fixed_value (struct value *val)
14f9c5c9 7444{
d2e4a39e 7445 struct type *type =
df407dfe
AC
7446 to_static_fixed_type (static_unwrap_type (value_type (val)));
7447 if (type == value_type (val))
14f9c5c9
AS
7448 return val;
7449 else
4c4b4cd2 7450 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7451}
d2e4a39e 7452\f
14f9c5c9 7453
14f9c5c9
AS
7454/* Attributes */
7455
4c4b4cd2
PH
7456/* Table mapping attribute numbers to names.
7457 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7458
d2e4a39e 7459static const char *attribute_names[] = {
14f9c5c9
AS
7460 "<?>",
7461
d2e4a39e 7462 "first",
14f9c5c9
AS
7463 "last",
7464 "length",
7465 "image",
14f9c5c9
AS
7466 "max",
7467 "min",
4c4b4cd2
PH
7468 "modulus",
7469 "pos",
7470 "size",
7471 "tag",
14f9c5c9 7472 "val",
14f9c5c9
AS
7473 0
7474};
7475
d2e4a39e 7476const char *
4c4b4cd2 7477ada_attribute_name (enum exp_opcode n)
14f9c5c9 7478{
4c4b4cd2
PH
7479 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7480 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7481 else
7482 return attribute_names[0];
7483}
7484
4c4b4cd2 7485/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7486
4c4b4cd2
PH
7487static LONGEST
7488pos_atr (struct value *arg)
14f9c5c9 7489{
24209737
PH
7490 struct value *val = coerce_ref (arg);
7491 struct type *type = value_type (val);
14f9c5c9 7492
d2e4a39e 7493 if (!discrete_type_p (type))
323e0a4a 7494 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7495
7496 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7497 {
7498 int i;
24209737 7499 LONGEST v = value_as_long (val);
14f9c5c9 7500
d2e4a39e 7501 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7502 {
7503 if (v == TYPE_FIELD_BITPOS (type, i))
7504 return i;
7505 }
323e0a4a 7506 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7507 }
7508 else
24209737 7509 return value_as_long (val);
4c4b4cd2
PH
7510}
7511
7512static struct value *
3cb382c9 7513value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7514{
3cb382c9 7515 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7516}
7517
4c4b4cd2 7518/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7519
d2e4a39e
AS
7520static struct value *
7521value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7522{
d2e4a39e 7523 if (!discrete_type_p (type))
323e0a4a 7524 error (_("'VAL only defined on discrete types"));
df407dfe 7525 if (!integer_type_p (value_type (arg)))
323e0a4a 7526 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7527
7528 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7529 {
7530 long pos = value_as_long (arg);
7531 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7532 error (_("argument to 'VAL out of range"));
d2e4a39e 7533 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7534 }
7535 else
7536 return value_from_longest (type, value_as_long (arg));
7537}
14f9c5c9 7538\f
d2e4a39e 7539
4c4b4cd2 7540 /* Evaluation */
14f9c5c9 7541
4c4b4cd2
PH
7542/* True if TYPE appears to be an Ada character type.
7543 [At the moment, this is true only for Character and Wide_Character;
7544 It is a heuristic test that could stand improvement]. */
14f9c5c9 7545
d2e4a39e
AS
7546int
7547ada_is_character_type (struct type *type)
14f9c5c9 7548{
7b9f71f2
JB
7549 const char *name;
7550
7551 /* If the type code says it's a character, then assume it really is,
7552 and don't check any further. */
7553 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7554 return 1;
7555
7556 /* Otherwise, assume it's a character type iff it is a discrete type
7557 with a known character type name. */
7558 name = ada_type_name (type);
7559 return (name != NULL
7560 && (TYPE_CODE (type) == TYPE_CODE_INT
7561 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7562 && (strcmp (name, "character") == 0
7563 || strcmp (name, "wide_character") == 0
5a517ebd 7564 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7565 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7566}
7567
4c4b4cd2 7568/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7569
7570int
ebf56fd3 7571ada_is_string_type (struct type *type)
14f9c5c9 7572{
61ee279c 7573 type = ada_check_typedef (type);
d2e4a39e 7574 if (type != NULL
14f9c5c9 7575 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7576 && (ada_is_simple_array_type (type)
7577 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7578 && ada_array_arity (type) == 1)
7579 {
7580 struct type *elttype = ada_array_element_type (type, 1);
7581
7582 return ada_is_character_type (elttype);
7583 }
d2e4a39e 7584 else
14f9c5c9
AS
7585 return 0;
7586}
7587
7588
7589/* True if TYPE is a struct type introduced by the compiler to force the
7590 alignment of a value. Such types have a single field with a
4c4b4cd2 7591 distinctive name. */
14f9c5c9
AS
7592
7593int
ebf56fd3 7594ada_is_aligner_type (struct type *type)
14f9c5c9 7595{
61ee279c 7596 type = ada_check_typedef (type);
714e53ab
PH
7597
7598 /* If we can find a parallel XVS type, then the XVS type should
7599 be used instead of this type. And hence, this is not an aligner
7600 type. */
7601 if (ada_find_parallel_type (type, "___XVS") != NULL)
7602 return 0;
7603
14f9c5c9 7604 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7605 && TYPE_NFIELDS (type) == 1
7606 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7607}
7608
7609/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7610 the parallel type. */
14f9c5c9 7611
d2e4a39e
AS
7612struct type *
7613ada_get_base_type (struct type *raw_type)
14f9c5c9 7614{
d2e4a39e
AS
7615 struct type *real_type_namer;
7616 struct type *raw_real_type;
14f9c5c9
AS
7617
7618 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7619 return raw_type;
7620
7621 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7622 if (real_type_namer == NULL
14f9c5c9
AS
7623 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7624 || TYPE_NFIELDS (real_type_namer) != 1)
7625 return raw_type;
7626
7627 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7628 if (raw_real_type == NULL)
14f9c5c9
AS
7629 return raw_type;
7630 else
7631 return raw_real_type;
d2e4a39e 7632}
14f9c5c9 7633
4c4b4cd2 7634/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7635
d2e4a39e
AS
7636struct type *
7637ada_aligned_type (struct type *type)
14f9c5c9
AS
7638{
7639 if (ada_is_aligner_type (type))
7640 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7641 else
7642 return ada_get_base_type (type);
7643}
7644
7645
7646/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7647 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7648
fc1a4b47
AC
7649const gdb_byte *
7650ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7651{
d2e4a39e 7652 if (ada_is_aligner_type (type))
14f9c5c9 7653 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7654 valaddr +
7655 TYPE_FIELD_BITPOS (type,
7656 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7657 else
7658 return valaddr;
7659}
7660
4c4b4cd2
PH
7661
7662
14f9c5c9 7663/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7664 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7665const char *
7666ada_enum_name (const char *name)
14f9c5c9 7667{
4c4b4cd2
PH
7668 static char *result;
7669 static size_t result_len = 0;
d2e4a39e 7670 char *tmp;
14f9c5c9 7671
4c4b4cd2
PH
7672 /* First, unqualify the enumeration name:
7673 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7674 all the preceeding characters, the unqualified name starts
7675 right after that dot.
4c4b4cd2 7676 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7677 translates dots into "__". Search forward for double underscores,
7678 but stop searching when we hit an overloading suffix, which is
7679 of the form "__" followed by digits. */
4c4b4cd2 7680
c3e5cd34
PH
7681 tmp = strrchr (name, '.');
7682 if (tmp != NULL)
4c4b4cd2
PH
7683 name = tmp + 1;
7684 else
14f9c5c9 7685 {
4c4b4cd2
PH
7686 while ((tmp = strstr (name, "__")) != NULL)
7687 {
7688 if (isdigit (tmp[2]))
7689 break;
7690 else
7691 name = tmp + 2;
7692 }
14f9c5c9
AS
7693 }
7694
7695 if (name[0] == 'Q')
7696 {
14f9c5c9
AS
7697 int v;
7698 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7699 {
7700 if (sscanf (name + 2, "%x", &v) != 1)
7701 return name;
7702 }
14f9c5c9 7703 else
4c4b4cd2 7704 return name;
14f9c5c9 7705
4c4b4cd2 7706 GROW_VECT (result, result_len, 16);
14f9c5c9 7707 if (isascii (v) && isprint (v))
88c15c34 7708 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7709 else if (name[1] == 'U')
88c15c34 7710 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7711 else
88c15c34 7712 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7713
7714 return result;
7715 }
d2e4a39e 7716 else
4c4b4cd2 7717 {
c3e5cd34
PH
7718 tmp = strstr (name, "__");
7719 if (tmp == NULL)
7720 tmp = strstr (name, "$");
7721 if (tmp != NULL)
4c4b4cd2
PH
7722 {
7723 GROW_VECT (result, result_len, tmp - name + 1);
7724 strncpy (result, name, tmp - name);
7725 result[tmp - name] = '\0';
7726 return result;
7727 }
7728
7729 return name;
7730 }
14f9c5c9
AS
7731}
7732
d2e4a39e 7733static struct value *
ebf56fd3 7734evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7735 enum noside noside)
14f9c5c9 7736{
76a01679 7737 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7738 (expect_type, exp, pos, noside);
14f9c5c9
AS
7739}
7740
7741/* Evaluate the subexpression of EXP starting at *POS as for
7742 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7743 expression. */
14f9c5c9 7744
d2e4a39e
AS
7745static struct value *
7746evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7747{
4c4b4cd2 7748 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7749 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7750}
7751
7752/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7753 value it wraps. */
14f9c5c9 7754
d2e4a39e
AS
7755static struct value *
7756unwrap_value (struct value *val)
14f9c5c9 7757{
df407dfe 7758 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7759 if (ada_is_aligner_type (type))
7760 {
de4d072f 7761 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7762 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7763 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7764 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7765
7766 return unwrap_value (v);
7767 }
d2e4a39e 7768 else
14f9c5c9 7769 {
d2e4a39e 7770 struct type *raw_real_type =
61ee279c 7771 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7772
14f9c5c9 7773 if (type == raw_real_type)
4c4b4cd2 7774 return val;
14f9c5c9 7775
d2e4a39e 7776 return
4c4b4cd2
PH
7777 coerce_unspec_val_to_type
7778 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7779 value_address (val),
1ed6ede0 7780 NULL, 1));
14f9c5c9
AS
7781 }
7782}
d2e4a39e
AS
7783
7784static struct value *
7785cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7786{
7787 LONGEST val;
7788
df407dfe 7789 if (type == value_type (arg))
14f9c5c9 7790 return arg;
df407dfe 7791 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7792 val = ada_float_to_fixed (type,
df407dfe 7793 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7794 value_as_long (arg)));
d2e4a39e 7795 else
14f9c5c9 7796 {
a53b7a21 7797 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7798 val = ada_float_to_fixed (type, argd);
7799 }
7800
7801 return value_from_longest (type, val);
7802}
7803
d2e4a39e 7804static struct value *
a53b7a21 7805cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7806{
df407dfe 7807 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7808 value_as_long (arg));
a53b7a21 7809 return value_from_double (type, val);
14f9c5c9
AS
7810}
7811
4c4b4cd2
PH
7812/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7813 return the converted value. */
7814
d2e4a39e
AS
7815static struct value *
7816coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7817{
df407dfe 7818 struct type *type2 = value_type (val);
14f9c5c9
AS
7819 if (type == type2)
7820 return val;
7821
61ee279c
PH
7822 type2 = ada_check_typedef (type2);
7823 type = ada_check_typedef (type);
14f9c5c9 7824
d2e4a39e
AS
7825 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7826 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7827 {
7828 val = ada_value_ind (val);
df407dfe 7829 type2 = value_type (val);
14f9c5c9
AS
7830 }
7831
d2e4a39e 7832 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7833 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7834 {
7835 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7836 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7837 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7838 error (_("Incompatible types in assignment"));
04624583 7839 deprecated_set_value_type (val, type);
14f9c5c9 7840 }
d2e4a39e 7841 return val;
14f9c5c9
AS
7842}
7843
4c4b4cd2
PH
7844static struct value *
7845ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7846{
7847 struct value *val;
7848 struct type *type1, *type2;
7849 LONGEST v, v1, v2;
7850
994b9211
AC
7851 arg1 = coerce_ref (arg1);
7852 arg2 = coerce_ref (arg2);
df407dfe
AC
7853 type1 = base_type (ada_check_typedef (value_type (arg1)));
7854 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7855
76a01679
JB
7856 if (TYPE_CODE (type1) != TYPE_CODE_INT
7857 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7858 return value_binop (arg1, arg2, op);
7859
76a01679 7860 switch (op)
4c4b4cd2
PH
7861 {
7862 case BINOP_MOD:
7863 case BINOP_DIV:
7864 case BINOP_REM:
7865 break;
7866 default:
7867 return value_binop (arg1, arg2, op);
7868 }
7869
7870 v2 = value_as_long (arg2);
7871 if (v2 == 0)
323e0a4a 7872 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7873
7874 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7875 return value_binop (arg1, arg2, op);
7876
7877 v1 = value_as_long (arg1);
7878 switch (op)
7879 {
7880 case BINOP_DIV:
7881 v = v1 / v2;
76a01679
JB
7882 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7883 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7884 break;
7885 case BINOP_REM:
7886 v = v1 % v2;
76a01679
JB
7887 if (v * v1 < 0)
7888 v -= v2;
4c4b4cd2
PH
7889 break;
7890 default:
7891 /* Should not reach this point. */
7892 v = 0;
7893 }
7894
7895 val = allocate_value (type1);
990a07ab 7896 store_unsigned_integer (value_contents_raw (val),
df407dfe 7897 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7898 return val;
7899}
7900
7901static int
7902ada_value_equal (struct value *arg1, struct value *arg2)
7903{
df407dfe
AC
7904 if (ada_is_direct_array_type (value_type (arg1))
7905 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7906 {
f58b38bf
JB
7907 /* Automatically dereference any array reference before
7908 we attempt to perform the comparison. */
7909 arg1 = ada_coerce_ref (arg1);
7910 arg2 = ada_coerce_ref (arg2);
7911
4c4b4cd2
PH
7912 arg1 = ada_coerce_to_simple_array (arg1);
7913 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7914 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7915 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7916 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7917 /* FIXME: The following works only for types whose
76a01679
JB
7918 representations use all bits (no padding or undefined bits)
7919 and do not have user-defined equality. */
7920 return
df407dfe 7921 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7922 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7923 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7924 }
7925 return value_equal (arg1, arg2);
7926}
7927
52ce6436
PH
7928/* Total number of component associations in the aggregate starting at
7929 index PC in EXP. Assumes that index PC is the start of an
7930 OP_AGGREGATE. */
7931
7932static int
7933num_component_specs (struct expression *exp, int pc)
7934{
7935 int n, m, i;
7936 m = exp->elts[pc + 1].longconst;
7937 pc += 3;
7938 n = 0;
7939 for (i = 0; i < m; i += 1)
7940 {
7941 switch (exp->elts[pc].opcode)
7942 {
7943 default:
7944 n += 1;
7945 break;
7946 case OP_CHOICES:
7947 n += exp->elts[pc + 1].longconst;
7948 break;
7949 }
7950 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7951 }
7952 return n;
7953}
7954
7955/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7956 component of LHS (a simple array or a record), updating *POS past
7957 the expression, assuming that LHS is contained in CONTAINER. Does
7958 not modify the inferior's memory, nor does it modify LHS (unless
7959 LHS == CONTAINER). */
7960
7961static void
7962assign_component (struct value *container, struct value *lhs, LONGEST index,
7963 struct expression *exp, int *pos)
7964{
7965 struct value *mark = value_mark ();
7966 struct value *elt;
7967 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7968 {
6d84d3d8 7969 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
7970 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7971 }
7972 else
7973 {
7974 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7975 elt = ada_to_fixed_value (unwrap_value (elt));
7976 }
7977
7978 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7979 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7980 else
7981 value_assign_to_component (container, elt,
7982 ada_evaluate_subexp (NULL, exp, pos,
7983 EVAL_NORMAL));
7984
7985 value_free_to_mark (mark);
7986}
7987
7988/* Assuming that LHS represents an lvalue having a record or array
7989 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7990 of that aggregate's value to LHS, advancing *POS past the
7991 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7992 lvalue containing LHS (possibly LHS itself). Does not modify
7993 the inferior's memory, nor does it modify the contents of
7994 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7995
7996static struct value *
7997assign_aggregate (struct value *container,
7998 struct value *lhs, struct expression *exp,
7999 int *pos, enum noside noside)
8000{
8001 struct type *lhs_type;
8002 int n = exp->elts[*pos+1].longconst;
8003 LONGEST low_index, high_index;
8004 int num_specs;
8005 LONGEST *indices;
8006 int max_indices, num_indices;
8007 int is_array_aggregate;
8008 int i;
8009 struct value *mark = value_mark ();
8010
8011 *pos += 3;
8012 if (noside != EVAL_NORMAL)
8013 {
8014 int i;
8015 for (i = 0; i < n; i += 1)
8016 ada_evaluate_subexp (NULL, exp, pos, noside);
8017 return container;
8018 }
8019
8020 container = ada_coerce_ref (container);
8021 if (ada_is_direct_array_type (value_type (container)))
8022 container = ada_coerce_to_simple_array (container);
8023 lhs = ada_coerce_ref (lhs);
8024 if (!deprecated_value_modifiable (lhs))
8025 error (_("Left operand of assignment is not a modifiable lvalue."));
8026
8027 lhs_type = value_type (lhs);
8028 if (ada_is_direct_array_type (lhs_type))
8029 {
8030 lhs = ada_coerce_to_simple_array (lhs);
8031 lhs_type = value_type (lhs);
8032 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8033 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8034 is_array_aggregate = 1;
8035 }
8036 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8037 {
8038 low_index = 0;
8039 high_index = num_visible_fields (lhs_type) - 1;
8040 is_array_aggregate = 0;
8041 }
8042 else
8043 error (_("Left-hand side must be array or record."));
8044
8045 num_specs = num_component_specs (exp, *pos - 3);
8046 max_indices = 4 * num_specs + 4;
8047 indices = alloca (max_indices * sizeof (indices[0]));
8048 indices[0] = indices[1] = low_index - 1;
8049 indices[2] = indices[3] = high_index + 1;
8050 num_indices = 4;
8051
8052 for (i = 0; i < n; i += 1)
8053 {
8054 switch (exp->elts[*pos].opcode)
8055 {
8056 case OP_CHOICES:
8057 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8058 &num_indices, max_indices,
8059 low_index, high_index);
8060 break;
8061 case OP_POSITIONAL:
8062 aggregate_assign_positional (container, lhs, exp, pos, indices,
8063 &num_indices, max_indices,
8064 low_index, high_index);
8065 break;
8066 case OP_OTHERS:
8067 if (i != n-1)
8068 error (_("Misplaced 'others' clause"));
8069 aggregate_assign_others (container, lhs, exp, pos, indices,
8070 num_indices, low_index, high_index);
8071 break;
8072 default:
8073 error (_("Internal error: bad aggregate clause"));
8074 }
8075 }
8076
8077 return container;
8078}
8079
8080/* Assign into the component of LHS indexed by the OP_POSITIONAL
8081 construct at *POS, updating *POS past the construct, given that
8082 the positions are relative to lower bound LOW, where HIGH is the
8083 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8084 updating *NUM_INDICES as needed. CONTAINER is as for
8085 assign_aggregate. */
8086static void
8087aggregate_assign_positional (struct value *container,
8088 struct value *lhs, struct expression *exp,
8089 int *pos, LONGEST *indices, int *num_indices,
8090 int max_indices, LONGEST low, LONGEST high)
8091{
8092 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8093
8094 if (ind - 1 == high)
e1d5a0d2 8095 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8096 if (ind <= high)
8097 {
8098 add_component_interval (ind, ind, indices, num_indices, max_indices);
8099 *pos += 3;
8100 assign_component (container, lhs, ind, exp, pos);
8101 }
8102 else
8103 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8104}
8105
8106/* Assign into the components of LHS indexed by the OP_CHOICES
8107 construct at *POS, updating *POS past the construct, given that
8108 the allowable indices are LOW..HIGH. Record the indices assigned
8109 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8110 needed. CONTAINER is as for assign_aggregate. */
8111static void
8112aggregate_assign_from_choices (struct value *container,
8113 struct value *lhs, struct expression *exp,
8114 int *pos, LONGEST *indices, int *num_indices,
8115 int max_indices, LONGEST low, LONGEST high)
8116{
8117 int j;
8118 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8119 int choice_pos, expr_pc;
8120 int is_array = ada_is_direct_array_type (value_type (lhs));
8121
8122 choice_pos = *pos += 3;
8123
8124 for (j = 0; j < n_choices; j += 1)
8125 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8126 expr_pc = *pos;
8127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8128
8129 for (j = 0; j < n_choices; j += 1)
8130 {
8131 LONGEST lower, upper;
8132 enum exp_opcode op = exp->elts[choice_pos].opcode;
8133 if (op == OP_DISCRETE_RANGE)
8134 {
8135 choice_pos += 1;
8136 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8137 EVAL_NORMAL));
8138 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8139 EVAL_NORMAL));
8140 }
8141 else if (is_array)
8142 {
8143 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8144 EVAL_NORMAL));
8145 upper = lower;
8146 }
8147 else
8148 {
8149 int ind;
8150 char *name;
8151 switch (op)
8152 {
8153 case OP_NAME:
8154 name = &exp->elts[choice_pos + 2].string;
8155 break;
8156 case OP_VAR_VALUE:
8157 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8158 break;
8159 default:
8160 error (_("Invalid record component association."));
8161 }
8162 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8163 ind = 0;
8164 if (! find_struct_field (name, value_type (lhs), 0,
8165 NULL, NULL, NULL, NULL, &ind))
8166 error (_("Unknown component name: %s."), name);
8167 lower = upper = ind;
8168 }
8169
8170 if (lower <= upper && (lower < low || upper > high))
8171 error (_("Index in component association out of bounds."));
8172
8173 add_component_interval (lower, upper, indices, num_indices,
8174 max_indices);
8175 while (lower <= upper)
8176 {
8177 int pos1;
8178 pos1 = expr_pc;
8179 assign_component (container, lhs, lower, exp, &pos1);
8180 lower += 1;
8181 }
8182 }
8183}
8184
8185/* Assign the value of the expression in the OP_OTHERS construct in
8186 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8187 have not been previously assigned. The index intervals already assigned
8188 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8189 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8190static void
8191aggregate_assign_others (struct value *container,
8192 struct value *lhs, struct expression *exp,
8193 int *pos, LONGEST *indices, int num_indices,
8194 LONGEST low, LONGEST high)
8195{
8196 int i;
8197 int expr_pc = *pos+1;
8198
8199 for (i = 0; i < num_indices - 2; i += 2)
8200 {
8201 LONGEST ind;
8202 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8203 {
8204 int pos;
8205 pos = expr_pc;
8206 assign_component (container, lhs, ind, exp, &pos);
8207 }
8208 }
8209 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8210}
8211
8212/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8213 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8214 modifying *SIZE as needed. It is an error if *SIZE exceeds
8215 MAX_SIZE. The resulting intervals do not overlap. */
8216static void
8217add_component_interval (LONGEST low, LONGEST high,
8218 LONGEST* indices, int *size, int max_size)
8219{
8220 int i, j;
8221 for (i = 0; i < *size; i += 2) {
8222 if (high >= indices[i] && low <= indices[i + 1])
8223 {
8224 int kh;
8225 for (kh = i + 2; kh < *size; kh += 2)
8226 if (high < indices[kh])
8227 break;
8228 if (low < indices[i])
8229 indices[i] = low;
8230 indices[i + 1] = indices[kh - 1];
8231 if (high > indices[i + 1])
8232 indices[i + 1] = high;
8233 memcpy (indices + i + 2, indices + kh, *size - kh);
8234 *size -= kh - i - 2;
8235 return;
8236 }
8237 else if (high < indices[i])
8238 break;
8239 }
8240
8241 if (*size == max_size)
8242 error (_("Internal error: miscounted aggregate components."));
8243 *size += 2;
8244 for (j = *size-1; j >= i+2; j -= 1)
8245 indices[j] = indices[j - 2];
8246 indices[i] = low;
8247 indices[i + 1] = high;
8248}
8249
6e48bd2c
JB
8250/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8251 is different. */
8252
8253static struct value *
8254ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8255{
8256 if (type == ada_check_typedef (value_type (arg2)))
8257 return arg2;
8258
8259 if (ada_is_fixed_point_type (type))
8260 return (cast_to_fixed (type, arg2));
8261
8262 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8263 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8264
8265 return value_cast (type, arg2);
8266}
8267
52ce6436 8268static struct value *
ebf56fd3 8269ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8270 int *pos, enum noside noside)
14f9c5c9
AS
8271{
8272 enum exp_opcode op;
14f9c5c9
AS
8273 int tem, tem2, tem3;
8274 int pc;
8275 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8276 struct type *type;
52ce6436 8277 int nargs, oplen;
d2e4a39e 8278 struct value **argvec;
14f9c5c9 8279
d2e4a39e
AS
8280 pc = *pos;
8281 *pos += 1;
14f9c5c9
AS
8282 op = exp->elts[pc].opcode;
8283
d2e4a39e 8284 switch (op)
14f9c5c9
AS
8285 {
8286 default:
8287 *pos -= 1;
6e48bd2c
JB
8288 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8289 arg1 = unwrap_value (arg1);
8290
8291 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8292 then we need to perform the conversion manually, because
8293 evaluate_subexp_standard doesn't do it. This conversion is
8294 necessary in Ada because the different kinds of float/fixed
8295 types in Ada have different representations.
8296
8297 Similarly, we need to perform the conversion from OP_LONG
8298 ourselves. */
8299 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8300 arg1 = ada_value_cast (expect_type, arg1, noside);
8301
8302 return arg1;
4c4b4cd2
PH
8303
8304 case OP_STRING:
8305 {
76a01679
JB
8306 struct value *result;
8307 *pos -= 1;
8308 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8309 /* The result type will have code OP_STRING, bashed there from
8310 OP_ARRAY. Bash it back. */
df407dfe
AC
8311 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8312 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8313 return result;
4c4b4cd2 8314 }
14f9c5c9
AS
8315
8316 case UNOP_CAST:
8317 (*pos) += 2;
8318 type = exp->elts[pc + 1].type;
8319 arg1 = evaluate_subexp (type, exp, pos, noside);
8320 if (noside == EVAL_SKIP)
4c4b4cd2 8321 goto nosideret;
6e48bd2c 8322 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8323 return arg1;
8324
4c4b4cd2
PH
8325 case UNOP_QUAL:
8326 (*pos) += 2;
8327 type = exp->elts[pc + 1].type;
8328 return ada_evaluate_subexp (type, exp, pos, noside);
8329
14f9c5c9
AS
8330 case BINOP_ASSIGN:
8331 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8332 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8333 {
8334 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8335 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8336 return arg1;
8337 return ada_value_assign (arg1, arg1);
8338 }
003f3813
JB
8339 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8340 except if the lhs of our assignment is a convenience variable.
8341 In the case of assigning to a convenience variable, the lhs
8342 should be exactly the result of the evaluation of the rhs. */
8343 type = value_type (arg1);
8344 if (VALUE_LVAL (arg1) == lval_internalvar)
8345 type = NULL;
8346 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8347 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8348 return arg1;
df407dfe
AC
8349 if (ada_is_fixed_point_type (value_type (arg1)))
8350 arg2 = cast_to_fixed (value_type (arg1), arg2);
8351 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8352 error
323e0a4a 8353 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8354 else
df407dfe 8355 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8356 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8357
8358 case BINOP_ADD:
8359 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8360 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8361 if (noside == EVAL_SKIP)
4c4b4cd2 8362 goto nosideret;
2ac8a782
JB
8363 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8364 return (value_from_longest
8365 (value_type (arg1),
8366 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8367 if ((ada_is_fixed_point_type (value_type (arg1))
8368 || ada_is_fixed_point_type (value_type (arg2)))
8369 && value_type (arg1) != value_type (arg2))
323e0a4a 8370 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8371 /* Do the addition, and cast the result to the type of the first
8372 argument. We cannot cast the result to a reference type, so if
8373 ARG1 is a reference type, find its underlying type. */
8374 type = value_type (arg1);
8375 while (TYPE_CODE (type) == TYPE_CODE_REF)
8376 type = TYPE_TARGET_TYPE (type);
f44316fa 8377 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8378 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8379
8380 case BINOP_SUB:
8381 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8382 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8383 if (noside == EVAL_SKIP)
4c4b4cd2 8384 goto nosideret;
2ac8a782
JB
8385 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8386 return (value_from_longest
8387 (value_type (arg1),
8388 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8389 if ((ada_is_fixed_point_type (value_type (arg1))
8390 || ada_is_fixed_point_type (value_type (arg2)))
8391 && value_type (arg1) != value_type (arg2))
323e0a4a 8392 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8393 /* Do the substraction, and cast the result to the type of the first
8394 argument. We cannot cast the result to a reference type, so if
8395 ARG1 is a reference type, find its underlying type. */
8396 type = value_type (arg1);
8397 while (TYPE_CODE (type) == TYPE_CODE_REF)
8398 type = TYPE_TARGET_TYPE (type);
f44316fa 8399 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8400 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8401
8402 case BINOP_MUL:
8403 case BINOP_DIV:
e1578042
JB
8404 case BINOP_REM:
8405 case BINOP_MOD:
14f9c5c9
AS
8406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8407 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8408 if (noside == EVAL_SKIP)
4c4b4cd2 8409 goto nosideret;
e1578042 8410 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8411 {
8412 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8413 return value_zero (value_type (arg1), not_lval);
8414 }
14f9c5c9 8415 else
4c4b4cd2 8416 {
a53b7a21 8417 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8418 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8419 arg1 = cast_from_fixed (type, arg1);
df407dfe 8420 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8421 arg2 = cast_from_fixed (type, arg2);
f44316fa 8422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8423 return ada_value_binop (arg1, arg2, op);
8424 }
8425
4c4b4cd2
PH
8426 case BINOP_EQUAL:
8427 case BINOP_NOTEQUAL:
14f9c5c9 8428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8429 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8430 if (noside == EVAL_SKIP)
76a01679 8431 goto nosideret;
4c4b4cd2 8432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8433 tem = 0;
4c4b4cd2 8434 else
f44316fa
UW
8435 {
8436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8437 tem = ada_value_equal (arg1, arg2);
8438 }
4c4b4cd2 8439 if (op == BINOP_NOTEQUAL)
76a01679 8440 tem = !tem;
fbb06eb1
UW
8441 type = language_bool_type (exp->language_defn, exp->gdbarch);
8442 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8443
8444 case UNOP_NEG:
8445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8446 if (noside == EVAL_SKIP)
8447 goto nosideret;
df407dfe
AC
8448 else if (ada_is_fixed_point_type (value_type (arg1)))
8449 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8450 else
f44316fa
UW
8451 {
8452 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8453 return value_neg (arg1);
8454 }
4c4b4cd2 8455
2330c6c6
JB
8456 case BINOP_LOGICAL_AND:
8457 case BINOP_LOGICAL_OR:
8458 case UNOP_LOGICAL_NOT:
000d5124
JB
8459 {
8460 struct value *val;
8461
8462 *pos -= 1;
8463 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8464 type = language_bool_type (exp->language_defn, exp->gdbarch);
8465 return value_cast (type, val);
000d5124 8466 }
2330c6c6
JB
8467
8468 case BINOP_BITWISE_AND:
8469 case BINOP_BITWISE_IOR:
8470 case BINOP_BITWISE_XOR:
000d5124
JB
8471 {
8472 struct value *val;
8473
8474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8475 *pos = pc;
8476 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8477
8478 return value_cast (value_type (arg1), val);
8479 }
2330c6c6 8480
14f9c5c9
AS
8481 case OP_VAR_VALUE:
8482 *pos -= 1;
6799def4 8483
14f9c5c9 8484 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8485 {
8486 *pos += 4;
8487 goto nosideret;
8488 }
8489 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8490 /* Only encountered when an unresolved symbol occurs in a
8491 context other than a function call, in which case, it is
52ce6436 8492 invalid. */
323e0a4a 8493 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8495 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8496 {
0c1f74cf
JB
8497 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8498 if (ada_is_tagged_type (type, 0))
8499 {
8500 /* Tagged types are a little special in the fact that the real
8501 type is dynamic and can only be determined by inspecting the
8502 object's tag. This means that we need to get the object's
8503 value first (EVAL_NORMAL) and then extract the actual object
8504 type from its tag.
8505
8506 Note that we cannot skip the final step where we extract
8507 the object type from its tag, because the EVAL_NORMAL phase
8508 results in dynamic components being resolved into fixed ones.
8509 This can cause problems when trying to print the type
8510 description of tagged types whose parent has a dynamic size:
8511 We use the type name of the "_parent" component in order
8512 to print the name of the ancestor type in the type description.
8513 If that component had a dynamic size, the resolution into
8514 a fixed type would result in the loss of that type name,
8515 thus preventing us from printing the name of the ancestor
8516 type in the type description. */
b79819ba
JB
8517 struct type *actual_type;
8518
0c1f74cf 8519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8520 actual_type = type_from_tag (ada_value_tag (arg1));
8521 if (actual_type == NULL)
8522 /* If, for some reason, we were unable to determine
8523 the actual type from the tag, then use the static
8524 approximation that we just computed as a fallback.
8525 This can happen if the debugging information is
8526 incomplete, for instance. */
8527 actual_type = type;
8528
8529 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8530 }
8531
4c4b4cd2
PH
8532 *pos += 4;
8533 return value_zero
8534 (to_static_fixed_type
8535 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8536 not_lval);
8537 }
d2e4a39e 8538 else
4c4b4cd2
PH
8539 {
8540 arg1 =
8541 unwrap_value (evaluate_subexp_standard
8542 (expect_type, exp, pos, noside));
8543 return ada_to_fixed_value (arg1);
8544 }
8545
8546 case OP_FUNCALL:
8547 (*pos) += 2;
8548
8549 /* Allocate arg vector, including space for the function to be
8550 called in argvec[0] and a terminating NULL. */
8551 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8552 argvec =
8553 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8554
8555 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8556 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8557 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8558 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8559 else
8560 {
8561 for (tem = 0; tem <= nargs; tem += 1)
8562 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8563 argvec[tem] = 0;
8564
8565 if (noside == EVAL_SKIP)
8566 goto nosideret;
8567 }
8568
df407dfe 8569 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8570 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8571 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8572 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8573 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8574 argvec[0] = value_addr (argvec[0]);
8575
df407dfe 8576 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8577 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8578 {
61ee279c 8579 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8580 {
8581 case TYPE_CODE_FUNC:
61ee279c 8582 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8583 break;
8584 case TYPE_CODE_ARRAY:
8585 break;
8586 case TYPE_CODE_STRUCT:
8587 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8588 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8589 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8590 break;
8591 default:
323e0a4a 8592 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8593 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8594 break;
8595 }
8596 }
8597
8598 switch (TYPE_CODE (type))
8599 {
8600 case TYPE_CODE_FUNC:
8601 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8602 return allocate_value (TYPE_TARGET_TYPE (type));
8603 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8604 case TYPE_CODE_STRUCT:
8605 {
8606 int arity;
8607
4c4b4cd2
PH
8608 arity = ada_array_arity (type);
8609 type = ada_array_element_type (type, nargs);
8610 if (type == NULL)
323e0a4a 8611 error (_("cannot subscript or call a record"));
4c4b4cd2 8612 if (arity != nargs)
323e0a4a 8613 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8614 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8615 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8616 return
8617 unwrap_value (ada_value_subscript
8618 (argvec[0], nargs, argvec + 1));
8619 }
8620 case TYPE_CODE_ARRAY:
8621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8622 {
8623 type = ada_array_element_type (type, nargs);
8624 if (type == NULL)
323e0a4a 8625 error (_("element type of array unknown"));
4c4b4cd2 8626 else
0a07e705 8627 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8628 }
8629 return
8630 unwrap_value (ada_value_subscript
8631 (ada_coerce_to_simple_array (argvec[0]),
8632 nargs, argvec + 1));
8633 case TYPE_CODE_PTR: /* Pointer to array */
8634 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8636 {
8637 type = ada_array_element_type (type, nargs);
8638 if (type == NULL)
323e0a4a 8639 error (_("element type of array unknown"));
4c4b4cd2 8640 else
0a07e705 8641 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8642 }
8643 return
8644 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8645 nargs, argvec + 1));
8646
8647 default:
e1d5a0d2
PH
8648 error (_("Attempt to index or call something other than an "
8649 "array or function"));
4c4b4cd2
PH
8650 }
8651
8652 case TERNOP_SLICE:
8653 {
8654 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8655 struct value *low_bound_val =
8656 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8657 struct value *high_bound_val =
8658 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8659 LONGEST low_bound;
8660 LONGEST high_bound;
994b9211
AC
8661 low_bound_val = coerce_ref (low_bound_val);
8662 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8663 low_bound = pos_atr (low_bound_val);
8664 high_bound = pos_atr (high_bound_val);
963a6417 8665
4c4b4cd2
PH
8666 if (noside == EVAL_SKIP)
8667 goto nosideret;
8668
4c4b4cd2
PH
8669 /* If this is a reference to an aligner type, then remove all
8670 the aligners. */
df407dfe
AC
8671 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8672 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8673 TYPE_TARGET_TYPE (value_type (array)) =
8674 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8675
df407dfe 8676 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8677 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8678
8679 /* If this is a reference to an array or an array lvalue,
8680 convert to a pointer. */
df407dfe
AC
8681 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8682 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8683 && VALUE_LVAL (array) == lval_memory))
8684 array = value_addr (array);
8685
1265e4aa 8686 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8687 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8688 (value_type (array))))
0b5d8877 8689 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8690
8691 array = ada_coerce_to_simple_array_ptr (array);
8692
714e53ab
PH
8693 /* If we have more than one level of pointer indirection,
8694 dereference the value until we get only one level. */
df407dfe
AC
8695 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8696 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8697 == TYPE_CODE_PTR))
8698 array = value_ind (array);
8699
8700 /* Make sure we really do have an array type before going further,
8701 to avoid a SEGV when trying to get the index type or the target
8702 type later down the road if the debug info generated by
8703 the compiler is incorrect or incomplete. */
df407dfe 8704 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8705 error (_("cannot take slice of non-array"));
714e53ab 8706
df407dfe 8707 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8708 {
0b5d8877 8709 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8710 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8711 low_bound);
8712 else
8713 {
8714 struct type *arr_type0 =
df407dfe 8715 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8716 NULL, 1);
f5938064
JG
8717 return ada_value_slice_from_ptr (array, arr_type0,
8718 longest_to_int (low_bound),
8719 longest_to_int (high_bound));
4c4b4cd2
PH
8720 }
8721 }
8722 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8723 return array;
8724 else if (high_bound < low_bound)
df407dfe 8725 return empty_array (value_type (array), low_bound);
4c4b4cd2 8726 else
529cad9c
PH
8727 return ada_value_slice (array, longest_to_int (low_bound),
8728 longest_to_int (high_bound));
4c4b4cd2 8729 }
14f9c5c9 8730
4c4b4cd2
PH
8731 case UNOP_IN_RANGE:
8732 (*pos) += 2;
8733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 8734 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 8735
14f9c5c9 8736 if (noside == EVAL_SKIP)
4c4b4cd2 8737 goto nosideret;
14f9c5c9 8738
4c4b4cd2
PH
8739 switch (TYPE_CODE (type))
8740 {
8741 default:
e1d5a0d2
PH
8742 lim_warning (_("Membership test incompletely implemented; "
8743 "always returns true"));
fbb06eb1
UW
8744 type = language_bool_type (exp->language_defn, exp->gdbarch);
8745 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8746
8747 case TYPE_CODE_RANGE:
030b4912
UW
8748 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8749 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8750 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8751 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
8752 type = language_bool_type (exp->language_defn, exp->gdbarch);
8753 return
8754 value_from_longest (type,
4c4b4cd2
PH
8755 (value_less (arg1, arg3)
8756 || value_equal (arg1, arg3))
8757 && (value_less (arg2, arg1)
8758 || value_equal (arg2, arg1)));
8759 }
8760
8761 case BINOP_IN_BOUNDS:
14f9c5c9 8762 (*pos) += 2;
4c4b4cd2
PH
8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8764 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8765
4c4b4cd2
PH
8766 if (noside == EVAL_SKIP)
8767 goto nosideret;
14f9c5c9 8768
4c4b4cd2 8769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
8770 {
8771 type = language_bool_type (exp->language_defn, exp->gdbarch);
8772 return value_zero (type, not_lval);
8773 }
14f9c5c9 8774
4c4b4cd2 8775 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8776
df407dfe 8777 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8778 error (_("invalid dimension number to 'range"));
14f9c5c9 8779
4c4b4cd2
PH
8780 arg3 = ada_array_bound (arg2, tem, 1);
8781 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8782
f44316fa
UW
8783 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8784 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8785 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8786 return
fbb06eb1 8787 value_from_longest (type,
4c4b4cd2
PH
8788 (value_less (arg1, arg3)
8789 || value_equal (arg1, arg3))
8790 && (value_less (arg2, arg1)
8791 || value_equal (arg2, arg1)));
8792
8793 case TERNOP_IN_RANGE:
8794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8795 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8797
8798 if (noside == EVAL_SKIP)
8799 goto nosideret;
8800
f44316fa
UW
8801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8802 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8803 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8804 return
fbb06eb1 8805 value_from_longest (type,
4c4b4cd2
PH
8806 (value_less (arg1, arg3)
8807 || value_equal (arg1, arg3))
8808 && (value_less (arg2, arg1)
8809 || value_equal (arg2, arg1)));
8810
8811 case OP_ATR_FIRST:
8812 case OP_ATR_LAST:
8813 case OP_ATR_LENGTH:
8814 {
76a01679
JB
8815 struct type *type_arg;
8816 if (exp->elts[*pos].opcode == OP_TYPE)
8817 {
8818 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8819 arg1 = NULL;
5bc23cb3 8820 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
8821 }
8822 else
8823 {
8824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8825 type_arg = NULL;
8826 }
8827
8828 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8829 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8830 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8831 *pos += 4;
8832
8833 if (noside == EVAL_SKIP)
8834 goto nosideret;
8835
8836 if (type_arg == NULL)
8837 {
8838 arg1 = ada_coerce_ref (arg1);
8839
df407dfe 8840 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8841 arg1 = ada_coerce_to_simple_array (arg1);
8842
df407dfe 8843 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8844 error (_("invalid dimension number to '%s"),
76a01679
JB
8845 ada_attribute_name (op));
8846
8847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8848 {
df407dfe 8849 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
8850 if (type == NULL)
8851 error
323e0a4a 8852 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8853 return allocate_value (type);
8854 }
8855
8856 switch (op)
8857 {
8858 default: /* Should never happen. */
323e0a4a 8859 error (_("unexpected attribute encountered"));
76a01679
JB
8860 case OP_ATR_FIRST:
8861 return ada_array_bound (arg1, tem, 0);
8862 case OP_ATR_LAST:
8863 return ada_array_bound (arg1, tem, 1);
8864 case OP_ATR_LENGTH:
8865 return ada_array_length (arg1, tem);
8866 }
8867 }
8868 else if (discrete_type_p (type_arg))
8869 {
8870 struct type *range_type;
8871 char *name = ada_type_name (type_arg);
8872 range_type = NULL;
8873 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8874 range_type =
8875 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8876 if (range_type == NULL)
8877 range_type = type_arg;
8878 switch (op)
8879 {
8880 default:
323e0a4a 8881 error (_("unexpected attribute encountered"));
76a01679 8882 case OP_ATR_FIRST:
690cc4eb
PH
8883 return value_from_longest
8884 (range_type, discrete_type_low_bound (range_type));
76a01679 8885 case OP_ATR_LAST:
690cc4eb
PH
8886 return value_from_longest
8887 (range_type, discrete_type_high_bound (range_type));
76a01679 8888 case OP_ATR_LENGTH:
323e0a4a 8889 error (_("the 'length attribute applies only to array types"));
76a01679
JB
8890 }
8891 }
8892 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 8893 error (_("unimplemented type attribute"));
76a01679
JB
8894 else
8895 {
8896 LONGEST low, high;
8897
8898 if (ada_is_packed_array_type (type_arg))
8899 type_arg = decode_packed_array_type (type_arg);
8900
8901 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 8902 error (_("invalid dimension number to '%s"),
76a01679
JB
8903 ada_attribute_name (op));
8904
8905 type = ada_index_type (type_arg, tem);
8906 if (type == NULL)
8907 error
323e0a4a 8908 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8909 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8910 return allocate_value (type);
8911
8912 switch (op)
8913 {
8914 default:
323e0a4a 8915 error (_("unexpected attribute encountered"));
76a01679
JB
8916 case OP_ATR_FIRST:
8917 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8918 return value_from_longest (type, low);
8919 case OP_ATR_LAST:
8920 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8921 return value_from_longest (type, high);
8922 case OP_ATR_LENGTH:
8923 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8924 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8925 return value_from_longest (type, high - low + 1);
8926 }
8927 }
14f9c5c9
AS
8928 }
8929
4c4b4cd2
PH
8930 case OP_ATR_TAG:
8931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8932 if (noside == EVAL_SKIP)
76a01679 8933 goto nosideret;
4c4b4cd2
PH
8934
8935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8936 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
8937
8938 return ada_value_tag (arg1);
8939
8940 case OP_ATR_MIN:
8941 case OP_ATR_MAX:
8942 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
8943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8944 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8945 if (noside == EVAL_SKIP)
76a01679 8946 goto nosideret;
d2e4a39e 8947 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8948 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8949 else
f44316fa
UW
8950 {
8951 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8952 return value_binop (arg1, arg2,
8953 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8954 }
14f9c5c9 8955
4c4b4cd2
PH
8956 case OP_ATR_MODULUS:
8957 {
31dedfee 8958 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 8959 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 8960
76a01679
JB
8961 if (noside == EVAL_SKIP)
8962 goto nosideret;
4c4b4cd2 8963
76a01679 8964 if (!ada_is_modular_type (type_arg))
323e0a4a 8965 error (_("'modulus must be applied to modular type"));
4c4b4cd2 8966
76a01679
JB
8967 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8968 ada_modulus (type_arg));
4c4b4cd2
PH
8969 }
8970
8971
8972 case OP_ATR_POS:
8973 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
8974 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8975 if (noside == EVAL_SKIP)
76a01679 8976 goto nosideret;
3cb382c9
UW
8977 type = builtin_type (exp->gdbarch)->builtin_int;
8978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8979 return value_zero (type, not_lval);
14f9c5c9 8980 else
3cb382c9 8981 return value_pos_atr (type, arg1);
14f9c5c9 8982
4c4b4cd2
PH
8983 case OP_ATR_SIZE:
8984 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
8985 type = value_type (arg1);
8986
8987 /* If the argument is a reference, then dereference its type, since
8988 the user is really asking for the size of the actual object,
8989 not the size of the pointer. */
8990 if (TYPE_CODE (type) == TYPE_CODE_REF)
8991 type = TYPE_TARGET_TYPE (type);
8992
4c4b4cd2 8993 if (noside == EVAL_SKIP)
76a01679 8994 goto nosideret;
4c4b4cd2 8995 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 8996 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 8997 else
6d2e05aa 8998 return value_from_longest (builtin_type_int32,
8c1c099f 8999 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9000
9001 case OP_ATR_VAL:
9002 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9004 type = exp->elts[pc + 2].type;
14f9c5c9 9005 if (noside == EVAL_SKIP)
76a01679 9006 goto nosideret;
4c4b4cd2 9007 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9008 return value_zero (type, not_lval);
4c4b4cd2 9009 else
76a01679 9010 return value_val_atr (type, arg1);
4c4b4cd2
PH
9011
9012 case BINOP_EXP:
9013 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9014 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9015 if (noside == EVAL_SKIP)
9016 goto nosideret;
9017 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9018 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9019 else
f44316fa
UW
9020 {
9021 /* For integer exponentiation operations,
9022 only promote the first argument. */
9023 if (is_integral_type (value_type (arg2)))
9024 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9025 else
9026 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9027
9028 return value_binop (arg1, arg2, op);
9029 }
4c4b4cd2
PH
9030
9031 case UNOP_PLUS:
9032 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9033 if (noside == EVAL_SKIP)
9034 goto nosideret;
9035 else
9036 return arg1;
9037
9038 case UNOP_ABS:
9039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9040 if (noside == EVAL_SKIP)
9041 goto nosideret;
f44316fa 9042 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9043 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9044 return value_neg (arg1);
14f9c5c9 9045 else
4c4b4cd2 9046 return arg1;
14f9c5c9
AS
9047
9048 case UNOP_IND:
6b0d7253 9049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9050 if (noside == EVAL_SKIP)
4c4b4cd2 9051 goto nosideret;
df407dfe 9052 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9054 {
9055 if (ada_is_array_descriptor_type (type))
9056 /* GDB allows dereferencing GNAT array descriptors. */
9057 {
9058 struct type *arrType = ada_type_of_array (arg1, 0);
9059 if (arrType == NULL)
323e0a4a 9060 error (_("Attempt to dereference null array pointer."));
00a4c844 9061 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9062 }
9063 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9064 || TYPE_CODE (type) == TYPE_CODE_REF
9065 /* In C you can dereference an array to get the 1st elt. */
9066 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9067 {
9068 type = to_static_fixed_type
9069 (ada_aligned_type
9070 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9071 check_size (type);
9072 return value_zero (type, lval_memory);
9073 }
4c4b4cd2 9074 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9075 {
9076 /* GDB allows dereferencing an int. */
9077 if (expect_type == NULL)
9078 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9079 lval_memory);
9080 else
9081 {
9082 expect_type =
9083 to_static_fixed_type (ada_aligned_type (expect_type));
9084 return value_zero (expect_type, lval_memory);
9085 }
9086 }
4c4b4cd2 9087 else
323e0a4a 9088 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9089 }
76a01679 9090 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9091 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9092
96967637
JB
9093 if (TYPE_CODE (type) == TYPE_CODE_INT)
9094 /* GDB allows dereferencing an int. If we were given
9095 the expect_type, then use that as the target type.
9096 Otherwise, assume that the target type is an int. */
9097 {
9098 if (expect_type != NULL)
9099 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9100 arg1));
9101 else
9102 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9103 (CORE_ADDR) value_as_address (arg1));
9104 }
6b0d7253 9105
4c4b4cd2
PH
9106 if (ada_is_array_descriptor_type (type))
9107 /* GDB allows dereferencing GNAT array descriptors. */
9108 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9109 else
4c4b4cd2 9110 return ada_value_ind (arg1);
14f9c5c9
AS
9111
9112 case STRUCTOP_STRUCT:
9113 tem = longest_to_int (exp->elts[pc + 1].longconst);
9114 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9115 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9116 if (noside == EVAL_SKIP)
4c4b4cd2 9117 goto nosideret;
14f9c5c9 9118 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9119 {
df407dfe 9120 struct type *type1 = value_type (arg1);
76a01679
JB
9121 if (ada_is_tagged_type (type1, 1))
9122 {
9123 type = ada_lookup_struct_elt_type (type1,
9124 &exp->elts[pc + 2].string,
9125 1, 1, NULL);
9126 if (type == NULL)
9127 /* In this case, we assume that the field COULD exist
9128 in some extension of the type. Return an object of
9129 "type" void, which will match any formal
9130 (see ada_type_match). */
9131 return value_zero (builtin_type_void, lval_memory);
9132 }
9133 else
9134 type =
9135 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9136 0, NULL);
9137
9138 return value_zero (ada_aligned_type (type), lval_memory);
9139 }
14f9c5c9 9140 else
76a01679
JB
9141 return
9142 ada_to_fixed_value (unwrap_value
9143 (ada_value_struct_elt
03ee6b2e 9144 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9145 case OP_TYPE:
4c4b4cd2
PH
9146 /* The value is not supposed to be used. This is here to make it
9147 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9148 (*pos) += 2;
9149 if (noside == EVAL_SKIP)
4c4b4cd2 9150 goto nosideret;
14f9c5c9 9151 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9152 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9153 else
323e0a4a 9154 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9155
9156 case OP_AGGREGATE:
9157 case OP_CHOICES:
9158 case OP_OTHERS:
9159 case OP_DISCRETE_RANGE:
9160 case OP_POSITIONAL:
9161 case OP_NAME:
9162 if (noside == EVAL_NORMAL)
9163 switch (op)
9164 {
9165 case OP_NAME:
9166 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9167 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9168 case OP_AGGREGATE:
9169 error (_("Aggregates only allowed on the right of an assignment"));
9170 default:
e1d5a0d2 9171 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9172 }
9173
9174 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9175 *pos += oplen - 1;
9176 for (tem = 0; tem < nargs; tem += 1)
9177 ada_evaluate_subexp (NULL, exp, pos, noside);
9178 goto nosideret;
14f9c5c9
AS
9179 }
9180
9181nosideret:
cb18ec49 9182 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9183}
14f9c5c9 9184\f
d2e4a39e 9185
4c4b4cd2 9186 /* Fixed point */
14f9c5c9
AS
9187
9188/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9189 type name that encodes the 'small and 'delta information.
4c4b4cd2 9190 Otherwise, return NULL. */
14f9c5c9 9191
d2e4a39e 9192static const char *
ebf56fd3 9193fixed_type_info (struct type *type)
14f9c5c9 9194{
d2e4a39e 9195 const char *name = ada_type_name (type);
14f9c5c9
AS
9196 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9197
d2e4a39e
AS
9198 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9199 {
14f9c5c9
AS
9200 const char *tail = strstr (name, "___XF_");
9201 if (tail == NULL)
4c4b4cd2 9202 return NULL;
d2e4a39e 9203 else
4c4b4cd2 9204 return tail + 5;
14f9c5c9
AS
9205 }
9206 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9207 return fixed_type_info (TYPE_TARGET_TYPE (type));
9208 else
9209 return NULL;
9210}
9211
4c4b4cd2 9212/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9213
9214int
ebf56fd3 9215ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9216{
9217 return fixed_type_info (type) != NULL;
9218}
9219
4c4b4cd2
PH
9220/* Return non-zero iff TYPE represents a System.Address type. */
9221
9222int
9223ada_is_system_address_type (struct type *type)
9224{
9225 return (TYPE_NAME (type)
9226 && strcmp (TYPE_NAME (type), "system__address") == 0);
9227}
9228
14f9c5c9
AS
9229/* Assuming that TYPE is the representation of an Ada fixed-point
9230 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9231 delta cannot be determined. */
14f9c5c9
AS
9232
9233DOUBLEST
ebf56fd3 9234ada_delta (struct type *type)
14f9c5c9
AS
9235{
9236 const char *encoding = fixed_type_info (type);
facc390f 9237 DOUBLEST num, den;
14f9c5c9 9238
facc390f
JB
9239 /* Strictly speaking, num and den are encoded as integer. However,
9240 they may not fit into a long, and they will have to be converted
9241 to DOUBLEST anyway. So scan them as DOUBLEST. */
9242 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9243 &num, &den) < 2)
14f9c5c9 9244 return -1.0;
d2e4a39e 9245 else
facc390f 9246 return num / den;
14f9c5c9
AS
9247}
9248
9249/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9250 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9251
9252static DOUBLEST
ebf56fd3 9253scaling_factor (struct type *type)
14f9c5c9
AS
9254{
9255 const char *encoding = fixed_type_info (type);
facc390f 9256 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9257 int n;
d2e4a39e 9258
facc390f
JB
9259 /* Strictly speaking, num's and den's are encoded as integer. However,
9260 they may not fit into a long, and they will have to be converted
9261 to DOUBLEST anyway. So scan them as DOUBLEST. */
9262 n = sscanf (encoding,
9263 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9264 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9265 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9266
9267 if (n < 2)
9268 return 1.0;
9269 else if (n == 4)
facc390f 9270 return num1 / den1;
d2e4a39e 9271 else
facc390f 9272 return num0 / den0;
14f9c5c9
AS
9273}
9274
9275
9276/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9277 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9278
9279DOUBLEST
ebf56fd3 9280ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9281{
d2e4a39e 9282 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9283}
9284
4c4b4cd2
PH
9285/* The representation of a fixed-point value of type TYPE
9286 corresponding to the value X. */
14f9c5c9
AS
9287
9288LONGEST
ebf56fd3 9289ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9290{
9291 return (LONGEST) (x / scaling_factor (type) + 0.5);
9292}
9293
9294
4c4b4cd2 9295 /* VAX floating formats */
14f9c5c9
AS
9296
9297/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9298 types. */
9299
14f9c5c9 9300int
d2e4a39e 9301ada_is_vax_floating_type (struct type *type)
14f9c5c9 9302{
d2e4a39e 9303 int name_len =
14f9c5c9 9304 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9305 return
14f9c5c9 9306 name_len > 6
d2e4a39e 9307 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9308 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9309 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9310}
9311
9312/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9313 ada_is_vax_floating_point. */
9314
14f9c5c9 9315int
d2e4a39e 9316ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9317{
d2e4a39e 9318 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9319}
9320
4c4b4cd2 9321/* A value representing the special debugging function that outputs
14f9c5c9 9322 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9323 ada_is_vax_floating_type (TYPE). */
9324
d2e4a39e
AS
9325struct value *
9326ada_vax_float_print_function (struct type *type)
9327{
9328 switch (ada_vax_float_type_suffix (type))
9329 {
9330 case 'F':
9331 return get_var_value ("DEBUG_STRING_F", 0);
9332 case 'D':
9333 return get_var_value ("DEBUG_STRING_D", 0);
9334 case 'G':
9335 return get_var_value ("DEBUG_STRING_G", 0);
9336 default:
323e0a4a 9337 error (_("invalid VAX floating-point type"));
d2e4a39e 9338 }
14f9c5c9 9339}
14f9c5c9 9340\f
d2e4a39e 9341
4c4b4cd2 9342 /* Range types */
14f9c5c9
AS
9343
9344/* Scan STR beginning at position K for a discriminant name, and
9345 return the value of that discriminant field of DVAL in *PX. If
9346 PNEW_K is not null, put the position of the character beyond the
9347 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9348 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9349
9350static int
07d8f827 9351scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9352 int *pnew_k)
14f9c5c9
AS
9353{
9354 static char *bound_buffer = NULL;
9355 static size_t bound_buffer_len = 0;
9356 char *bound;
9357 char *pend;
d2e4a39e 9358 struct value *bound_val;
14f9c5c9
AS
9359
9360 if (dval == NULL || str == NULL || str[k] == '\0')
9361 return 0;
9362
d2e4a39e 9363 pend = strstr (str + k, "__");
14f9c5c9
AS
9364 if (pend == NULL)
9365 {
d2e4a39e 9366 bound = str + k;
14f9c5c9
AS
9367 k += strlen (bound);
9368 }
d2e4a39e 9369 else
14f9c5c9 9370 {
d2e4a39e 9371 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9372 bound = bound_buffer;
d2e4a39e
AS
9373 strncpy (bound_buffer, str + k, pend - (str + k));
9374 bound[pend - (str + k)] = '\0';
9375 k = pend - str;
14f9c5c9 9376 }
d2e4a39e 9377
df407dfe 9378 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9379 if (bound_val == NULL)
9380 return 0;
9381
9382 *px = value_as_long (bound_val);
9383 if (pnew_k != NULL)
9384 *pnew_k = k;
9385 return 1;
9386}
9387
9388/* Value of variable named NAME in the current environment. If
9389 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9390 otherwise causes an error with message ERR_MSG. */
9391
d2e4a39e
AS
9392static struct value *
9393get_var_value (char *name, char *err_msg)
14f9c5c9 9394{
4c4b4cd2 9395 struct ada_symbol_info *syms;
14f9c5c9
AS
9396 int nsyms;
9397
4c4b4cd2
PH
9398 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9399 &syms);
14f9c5c9
AS
9400
9401 if (nsyms != 1)
9402 {
9403 if (err_msg == NULL)
4c4b4cd2 9404 return 0;
14f9c5c9 9405 else
8a3fe4f8 9406 error (("%s"), err_msg);
14f9c5c9
AS
9407 }
9408
4c4b4cd2 9409 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9410}
d2e4a39e 9411
14f9c5c9 9412/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9413 no such variable found, returns 0, and sets *FLAG to 0. If
9414 successful, sets *FLAG to 1. */
9415
14f9c5c9 9416LONGEST
4c4b4cd2 9417get_int_var_value (char *name, int *flag)
14f9c5c9 9418{
4c4b4cd2 9419 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9420
14f9c5c9
AS
9421 if (var_val == 0)
9422 {
9423 if (flag != NULL)
4c4b4cd2 9424 *flag = 0;
14f9c5c9
AS
9425 return 0;
9426 }
9427 else
9428 {
9429 if (flag != NULL)
4c4b4cd2 9430 *flag = 1;
14f9c5c9
AS
9431 return value_as_long (var_val);
9432 }
9433}
d2e4a39e 9434
14f9c5c9
AS
9435
9436/* Return a range type whose base type is that of the range type named
9437 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9438 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9439 Extract discriminant values, if needed, from DVAL. If a new type
9440 must be created, allocate in OBJFILE's space. The bounds
9441 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9442 the named range type. */
14f9c5c9 9443
d2e4a39e 9444static struct type *
ebf56fd3 9445to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9446{
9447 struct type *raw_type = ada_find_any_type (name);
9448 struct type *base_type;
d2e4a39e 9449 char *subtype_info;
14f9c5c9 9450
dddfab26
UW
9451 /* Also search primitive types if type symbol could not be found. */
9452 if (raw_type == NULL)
9453 raw_type = language_lookup_primitive_type_by_name
9454 (language_def (language_ada), current_gdbarch, name);
9455
14f9c5c9 9456 if (raw_type == NULL)
6d84d3d8 9457 base_type = builtin_type_int32;
14f9c5c9
AS
9458 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9459 base_type = TYPE_TARGET_TYPE (raw_type);
9460 else
9461 base_type = raw_type;
9462
9463 subtype_info = strstr (name, "___XD");
9464 if (subtype_info == NULL)
690cc4eb
PH
9465 {
9466 LONGEST L = discrete_type_low_bound (raw_type);
9467 LONGEST U = discrete_type_high_bound (raw_type);
9468 if (L < INT_MIN || U > INT_MAX)
9469 return raw_type;
9470 else
9471 return create_range_type (alloc_type (objfile), raw_type,
9472 discrete_type_low_bound (raw_type),
9473 discrete_type_high_bound (raw_type));
9474 }
14f9c5c9
AS
9475 else
9476 {
9477 static char *name_buf = NULL;
9478 static size_t name_len = 0;
9479 int prefix_len = subtype_info - name;
9480 LONGEST L, U;
9481 struct type *type;
9482 char *bounds_str;
9483 int n;
9484
9485 GROW_VECT (name_buf, name_len, prefix_len + 5);
9486 strncpy (name_buf, name, prefix_len);
9487 name_buf[prefix_len] = '\0';
9488
9489 subtype_info += 5;
9490 bounds_str = strchr (subtype_info, '_');
9491 n = 1;
9492
d2e4a39e 9493 if (*subtype_info == 'L')
4c4b4cd2
PH
9494 {
9495 if (!ada_scan_number (bounds_str, n, &L, &n)
9496 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9497 return raw_type;
9498 if (bounds_str[n] == '_')
9499 n += 2;
9500 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9501 n += 1;
9502 subtype_info += 1;
9503 }
d2e4a39e 9504 else
4c4b4cd2
PH
9505 {
9506 int ok;
9507 strcpy (name_buf + prefix_len, "___L");
9508 L = get_int_var_value (name_buf, &ok);
9509 if (!ok)
9510 {
323e0a4a 9511 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9512 L = 1;
9513 }
9514 }
14f9c5c9 9515
d2e4a39e 9516 if (*subtype_info == 'U')
4c4b4cd2
PH
9517 {
9518 if (!ada_scan_number (bounds_str, n, &U, &n)
9519 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9520 return raw_type;
9521 }
d2e4a39e 9522 else
4c4b4cd2
PH
9523 {
9524 int ok;
9525 strcpy (name_buf + prefix_len, "___U");
9526 U = get_int_var_value (name_buf, &ok);
9527 if (!ok)
9528 {
323e0a4a 9529 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9530 U = L;
9531 }
9532 }
14f9c5c9 9533
d2e4a39e 9534 if (objfile == NULL)
4c4b4cd2 9535 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9536 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9537 TYPE_NAME (type) = name;
14f9c5c9
AS
9538 return type;
9539 }
9540}
9541
4c4b4cd2
PH
9542/* True iff NAME is the name of a range type. */
9543
14f9c5c9 9544int
d2e4a39e 9545ada_is_range_type_name (const char *name)
14f9c5c9
AS
9546{
9547 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9548}
14f9c5c9 9549\f
d2e4a39e 9550
4c4b4cd2
PH
9551 /* Modular types */
9552
9553/* True iff TYPE is an Ada modular type. */
14f9c5c9 9554
14f9c5c9 9555int
d2e4a39e 9556ada_is_modular_type (struct type *type)
14f9c5c9 9557{
4c4b4cd2 9558 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9559
9560 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9561 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9562 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9563}
9564
0056e4d5
JB
9565/* Try to determine the lower and upper bounds of the given modular type
9566 using the type name only. Return non-zero and set L and U as the lower
9567 and upper bounds (respectively) if successful. */
9568
9569int
9570ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9571{
9572 char *name = ada_type_name (type);
9573 char *suffix;
9574 int k;
9575 LONGEST U;
9576
9577 if (name == NULL)
9578 return 0;
9579
9580 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9581 we are looking for static bounds, which means an __XDLU suffix.
9582 Moreover, we know that the lower bound of modular types is always
9583 zero, so the actual suffix should start with "__XDLU_0__", and
9584 then be followed by the upper bound value. */
9585 suffix = strstr (name, "__XDLU_0__");
9586 if (suffix == NULL)
9587 return 0;
9588 k = 10;
9589 if (!ada_scan_number (suffix, k, &U, NULL))
9590 return 0;
9591
9592 *modulus = (ULONGEST) U + 1;
9593 return 1;
9594}
9595
4c4b4cd2
PH
9596/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9597
61ee279c 9598ULONGEST
0056e4d5 9599ada_modulus (struct type *type)
14f9c5c9 9600{
0056e4d5
JB
9601 ULONGEST modulus;
9602
9603 /* Normally, the modulus of a modular type is equal to the value of
9604 its upper bound + 1. However, the upper bound is currently stored
9605 as an int, which is not always big enough to hold the actual bound
9606 value. To workaround this, try to take advantage of the encoding
9607 that GNAT uses with with discrete types. To avoid some unnecessary
9608 parsing, we do this only when the size of TYPE is greater than
9609 the size of the field holding the bound. */
9610 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9611 && ada_modulus_from_name (type, &modulus))
9612 return modulus;
9613
d37209fd 9614 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9615}
d2e4a39e 9616\f
f7f9143b
JB
9617
9618/* Ada exception catchpoint support:
9619 ---------------------------------
9620
9621 We support 3 kinds of exception catchpoints:
9622 . catchpoints on Ada exceptions
9623 . catchpoints on unhandled Ada exceptions
9624 . catchpoints on failed assertions
9625
9626 Exceptions raised during failed assertions, or unhandled exceptions
9627 could perfectly be caught with the general catchpoint on Ada exceptions.
9628 However, we can easily differentiate these two special cases, and having
9629 the option to distinguish these two cases from the rest can be useful
9630 to zero-in on certain situations.
9631
9632 Exception catchpoints are a specialized form of breakpoint,
9633 since they rely on inserting breakpoints inside known routines
9634 of the GNAT runtime. The implementation therefore uses a standard
9635 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9636 of breakpoint_ops.
9637
0259addd
JB
9638 Support in the runtime for exception catchpoints have been changed
9639 a few times already, and these changes affect the implementation
9640 of these catchpoints. In order to be able to support several
9641 variants of the runtime, we use a sniffer that will determine
9642 the runtime variant used by the program being debugged.
9643
f7f9143b
JB
9644 At this time, we do not support the use of conditions on Ada exception
9645 catchpoints. The COND and COND_STRING fields are therefore set
9646 to NULL (most of the time, see below).
9647
9648 Conditions where EXP_STRING, COND, and COND_STRING are used:
9649
9650 When a user specifies the name of a specific exception in the case
9651 of catchpoints on Ada exceptions, we store the name of that exception
9652 in the EXP_STRING. We then translate this request into an actual
9653 condition stored in COND_STRING, and then parse it into an expression
9654 stored in COND. */
9655
9656/* The different types of catchpoints that we introduced for catching
9657 Ada exceptions. */
9658
9659enum exception_catchpoint_kind
9660{
9661 ex_catch_exception,
9662 ex_catch_exception_unhandled,
9663 ex_catch_assert
9664};
9665
3d0b0fa3
JB
9666/* Ada's standard exceptions. */
9667
9668static char *standard_exc[] = {
9669 "constraint_error",
9670 "program_error",
9671 "storage_error",
9672 "tasking_error"
9673};
9674
0259addd
JB
9675typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9676
9677/* A structure that describes how to support exception catchpoints
9678 for a given executable. */
9679
9680struct exception_support_info
9681{
9682 /* The name of the symbol to break on in order to insert
9683 a catchpoint on exceptions. */
9684 const char *catch_exception_sym;
9685
9686 /* The name of the symbol to break on in order to insert
9687 a catchpoint on unhandled exceptions. */
9688 const char *catch_exception_unhandled_sym;
9689
9690 /* The name of the symbol to break on in order to insert
9691 a catchpoint on failed assertions. */
9692 const char *catch_assert_sym;
9693
9694 /* Assuming that the inferior just triggered an unhandled exception
9695 catchpoint, this function is responsible for returning the address
9696 in inferior memory where the name of that exception is stored.
9697 Return zero if the address could not be computed. */
9698 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9699};
9700
9701static CORE_ADDR ada_unhandled_exception_name_addr (void);
9702static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9703
9704/* The following exception support info structure describes how to
9705 implement exception catchpoints with the latest version of the
9706 Ada runtime (as of 2007-03-06). */
9707
9708static const struct exception_support_info default_exception_support_info =
9709{
9710 "__gnat_debug_raise_exception", /* catch_exception_sym */
9711 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9712 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9713 ada_unhandled_exception_name_addr
9714};
9715
9716/* The following exception support info structure describes how to
9717 implement exception catchpoints with a slightly older version
9718 of the Ada runtime. */
9719
9720static const struct exception_support_info exception_support_info_fallback =
9721{
9722 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9723 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9724 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9725 ada_unhandled_exception_name_addr_from_raise
9726};
9727
9728/* For each executable, we sniff which exception info structure to use
9729 and cache it in the following global variable. */
9730
9731static const struct exception_support_info *exception_info = NULL;
9732
9733/* Inspect the Ada runtime and determine which exception info structure
9734 should be used to provide support for exception catchpoints.
9735
9736 This function will always set exception_info, or raise an error. */
9737
9738static void
9739ada_exception_support_info_sniffer (void)
9740{
9741 struct symbol *sym;
9742
9743 /* If the exception info is already known, then no need to recompute it. */
9744 if (exception_info != NULL)
9745 return;
9746
9747 /* Check the latest (default) exception support info. */
9748 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9749 NULL, VAR_DOMAIN);
9750 if (sym != NULL)
9751 {
9752 exception_info = &default_exception_support_info;
9753 return;
9754 }
9755
9756 /* Try our fallback exception suport info. */
9757 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9758 NULL, VAR_DOMAIN);
9759 if (sym != NULL)
9760 {
9761 exception_info = &exception_support_info_fallback;
9762 return;
9763 }
9764
9765 /* Sometimes, it is normal for us to not be able to find the routine
9766 we are looking for. This happens when the program is linked with
9767 the shared version of the GNAT runtime, and the program has not been
9768 started yet. Inform the user of these two possible causes if
9769 applicable. */
9770
9771 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9772 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9773
9774 /* If the symbol does not exist, then check that the program is
9775 already started, to make sure that shared libraries have been
9776 loaded. If it is not started, this may mean that the symbol is
9777 in a shared library. */
9778
9779 if (ptid_get_pid (inferior_ptid) == 0)
9780 error (_("Unable to insert catchpoint. Try to start the program first."));
9781
9782 /* At this point, we know that we are debugging an Ada program and
9783 that the inferior has been started, but we still are not able to
9784 find the run-time symbols. That can mean that we are in
9785 configurable run time mode, or that a-except as been optimized
9786 out by the linker... In any case, at this point it is not worth
9787 supporting this feature. */
9788
9789 error (_("Cannot insert catchpoints in this configuration."));
9790}
9791
9792/* An observer of "executable_changed" events.
9793 Its role is to clear certain cached values that need to be recomputed
9794 each time a new executable is loaded by GDB. */
9795
9796static void
781b42b0 9797ada_executable_changed_observer (void)
0259addd
JB
9798{
9799 /* If the executable changed, then it is possible that the Ada runtime
9800 is different. So we need to invalidate the exception support info
9801 cache. */
9802 exception_info = NULL;
9803}
9804
f7f9143b
JB
9805/* Return the name of the function at PC, NULL if could not find it.
9806 This function only checks the debugging information, not the symbol
9807 table. */
9808
9809static char *
9810function_name_from_pc (CORE_ADDR pc)
9811{
9812 char *func_name;
9813
9814 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9815 return NULL;
9816
9817 return func_name;
9818}
9819
9820/* True iff FRAME is very likely to be that of a function that is
9821 part of the runtime system. This is all very heuristic, but is
9822 intended to be used as advice as to what frames are uninteresting
9823 to most users. */
9824
9825static int
9826is_known_support_routine (struct frame_info *frame)
9827{
4ed6b5be 9828 struct symtab_and_line sal;
f7f9143b
JB
9829 char *func_name;
9830 int i;
f7f9143b 9831
4ed6b5be
JB
9832 /* If this code does not have any debugging information (no symtab),
9833 This cannot be any user code. */
f7f9143b 9834
4ed6b5be 9835 find_frame_sal (frame, &sal);
f7f9143b
JB
9836 if (sal.symtab == NULL)
9837 return 1;
9838
4ed6b5be
JB
9839 /* If there is a symtab, but the associated source file cannot be
9840 located, then assume this is not user code: Selecting a frame
9841 for which we cannot display the code would not be very helpful
9842 for the user. This should also take care of case such as VxWorks
9843 where the kernel has some debugging info provided for a few units. */
f7f9143b 9844
9bbc9174 9845 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9846 return 1;
9847
4ed6b5be
JB
9848 /* Check the unit filename againt the Ada runtime file naming.
9849 We also check the name of the objfile against the name of some
9850 known system libraries that sometimes come with debugging info
9851 too. */
9852
f7f9143b
JB
9853 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9854 {
9855 re_comp (known_runtime_file_name_patterns[i]);
9856 if (re_exec (sal.symtab->filename))
9857 return 1;
4ed6b5be
JB
9858 if (sal.symtab->objfile != NULL
9859 && re_exec (sal.symtab->objfile->name))
9860 return 1;
f7f9143b
JB
9861 }
9862
4ed6b5be 9863 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9864
4ed6b5be 9865 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9866 if (func_name == NULL)
9867 return 1;
9868
9869 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9870 {
9871 re_comp (known_auxiliary_function_name_patterns[i]);
9872 if (re_exec (func_name))
9873 return 1;
9874 }
9875
9876 return 0;
9877}
9878
9879/* Find the first frame that contains debugging information and that is not
9880 part of the Ada run-time, starting from FI and moving upward. */
9881
0ef643c8 9882void
f7f9143b
JB
9883ada_find_printable_frame (struct frame_info *fi)
9884{
9885 for (; fi != NULL; fi = get_prev_frame (fi))
9886 {
9887 if (!is_known_support_routine (fi))
9888 {
9889 select_frame (fi);
9890 break;
9891 }
9892 }
9893
9894}
9895
9896/* Assuming that the inferior just triggered an unhandled exception
9897 catchpoint, return the address in inferior memory where the name
9898 of the exception is stored.
9899
9900 Return zero if the address could not be computed. */
9901
9902static CORE_ADDR
9903ada_unhandled_exception_name_addr (void)
0259addd
JB
9904{
9905 return parse_and_eval_address ("e.full_name");
9906}
9907
9908/* Same as ada_unhandled_exception_name_addr, except that this function
9909 should be used when the inferior uses an older version of the runtime,
9910 where the exception name needs to be extracted from a specific frame
9911 several frames up in the callstack. */
9912
9913static CORE_ADDR
9914ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9915{
9916 int frame_level;
9917 struct frame_info *fi;
9918
9919 /* To determine the name of this exception, we need to select
9920 the frame corresponding to RAISE_SYM_NAME. This frame is
9921 at least 3 levels up, so we simply skip the first 3 frames
9922 without checking the name of their associated function. */
9923 fi = get_current_frame ();
9924 for (frame_level = 0; frame_level < 3; frame_level += 1)
9925 if (fi != NULL)
9926 fi = get_prev_frame (fi);
9927
9928 while (fi != NULL)
9929 {
9930 const char *func_name =
9931 function_name_from_pc (get_frame_address_in_block (fi));
9932 if (func_name != NULL
0259addd 9933 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9934 break; /* We found the frame we were looking for... */
9935 fi = get_prev_frame (fi);
9936 }
9937
9938 if (fi == NULL)
9939 return 0;
9940
9941 select_frame (fi);
9942 return parse_and_eval_address ("id.full_name");
9943}
9944
9945/* Assuming the inferior just triggered an Ada exception catchpoint
9946 (of any type), return the address in inferior memory where the name
9947 of the exception is stored, if applicable.
9948
9949 Return zero if the address could not be computed, or if not relevant. */
9950
9951static CORE_ADDR
9952ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9953 struct breakpoint *b)
9954{
9955 switch (ex)
9956 {
9957 case ex_catch_exception:
9958 return (parse_and_eval_address ("e.full_name"));
9959 break;
9960
9961 case ex_catch_exception_unhandled:
0259addd 9962 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
9963 break;
9964
9965 case ex_catch_assert:
9966 return 0; /* Exception name is not relevant in this case. */
9967 break;
9968
9969 default:
9970 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9971 break;
9972 }
9973
9974 return 0; /* Should never be reached. */
9975}
9976
9977/* Same as ada_exception_name_addr_1, except that it intercepts and contains
9978 any error that ada_exception_name_addr_1 might cause to be thrown.
9979 When an error is intercepted, a warning with the error message is printed,
9980 and zero is returned. */
9981
9982static CORE_ADDR
9983ada_exception_name_addr (enum exception_catchpoint_kind ex,
9984 struct breakpoint *b)
9985{
9986 struct gdb_exception e;
9987 CORE_ADDR result = 0;
9988
9989 TRY_CATCH (e, RETURN_MASK_ERROR)
9990 {
9991 result = ada_exception_name_addr_1 (ex, b);
9992 }
9993
9994 if (e.reason < 0)
9995 {
9996 warning (_("failed to get exception name: %s"), e.message);
9997 return 0;
9998 }
9999
10000 return result;
10001}
10002
10003/* Implement the PRINT_IT method in the breakpoint_ops structure
10004 for all exception catchpoint kinds. */
10005
10006static enum print_stop_action
10007print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10008{
10009 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10010 char exception_name[256];
10011
10012 if (addr != 0)
10013 {
10014 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10015 exception_name [sizeof (exception_name) - 1] = '\0';
10016 }
10017
10018 ada_find_printable_frame (get_current_frame ());
10019
10020 annotate_catchpoint (b->number);
10021 switch (ex)
10022 {
10023 case ex_catch_exception:
10024 if (addr != 0)
10025 printf_filtered (_("\nCatchpoint %d, %s at "),
10026 b->number, exception_name);
10027 else
10028 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10029 break;
10030 case ex_catch_exception_unhandled:
10031 if (addr != 0)
10032 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10033 b->number, exception_name);
10034 else
10035 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10036 b->number);
10037 break;
10038 case ex_catch_assert:
10039 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10040 b->number);
10041 break;
10042 }
10043
10044 return PRINT_SRC_AND_LOC;
10045}
10046
10047/* Implement the PRINT_ONE method in the breakpoint_ops structure
10048 for all exception catchpoint kinds. */
10049
10050static void
10051print_one_exception (enum exception_catchpoint_kind ex,
10052 struct breakpoint *b, CORE_ADDR *last_addr)
10053{
79a45b7d
TT
10054 struct value_print_options opts;
10055
10056 get_user_print_options (&opts);
10057 if (opts.addressprint)
f7f9143b
JB
10058 {
10059 annotate_field (4);
10060 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10061 }
10062
10063 annotate_field (5);
10064 *last_addr = b->loc->address;
10065 switch (ex)
10066 {
10067 case ex_catch_exception:
10068 if (b->exp_string != NULL)
10069 {
10070 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10071
10072 ui_out_field_string (uiout, "what", msg);
10073 xfree (msg);
10074 }
10075 else
10076 ui_out_field_string (uiout, "what", "all Ada exceptions");
10077
10078 break;
10079
10080 case ex_catch_exception_unhandled:
10081 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10082 break;
10083
10084 case ex_catch_assert:
10085 ui_out_field_string (uiout, "what", "failed Ada assertions");
10086 break;
10087
10088 default:
10089 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10090 break;
10091 }
10092}
10093
10094/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10095 for all exception catchpoint kinds. */
10096
10097static void
10098print_mention_exception (enum exception_catchpoint_kind ex,
10099 struct breakpoint *b)
10100{
10101 switch (ex)
10102 {
10103 case ex_catch_exception:
10104 if (b->exp_string != NULL)
10105 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10106 b->number, b->exp_string);
10107 else
10108 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10109
10110 break;
10111
10112 case ex_catch_exception_unhandled:
10113 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10114 b->number);
10115 break;
10116
10117 case ex_catch_assert:
10118 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10119 break;
10120
10121 default:
10122 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10123 break;
10124 }
10125}
10126
10127/* Virtual table for "catch exception" breakpoints. */
10128
10129static enum print_stop_action
10130print_it_catch_exception (struct breakpoint *b)
10131{
10132 return print_it_exception (ex_catch_exception, b);
10133}
10134
10135static void
10136print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10137{
10138 print_one_exception (ex_catch_exception, b, last_addr);
10139}
10140
10141static void
10142print_mention_catch_exception (struct breakpoint *b)
10143{
10144 print_mention_exception (ex_catch_exception, b);
10145}
10146
10147static struct breakpoint_ops catch_exception_breakpoint_ops =
10148{
ce78b96d
JB
10149 NULL, /* insert */
10150 NULL, /* remove */
10151 NULL, /* breakpoint_hit */
f7f9143b
JB
10152 print_it_catch_exception,
10153 print_one_catch_exception,
10154 print_mention_catch_exception
10155};
10156
10157/* Virtual table for "catch exception unhandled" breakpoints. */
10158
10159static enum print_stop_action
10160print_it_catch_exception_unhandled (struct breakpoint *b)
10161{
10162 return print_it_exception (ex_catch_exception_unhandled, b);
10163}
10164
10165static void
10166print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10167{
10168 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10169}
10170
10171static void
10172print_mention_catch_exception_unhandled (struct breakpoint *b)
10173{
10174 print_mention_exception (ex_catch_exception_unhandled, b);
10175}
10176
10177static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10178 NULL, /* insert */
10179 NULL, /* remove */
10180 NULL, /* breakpoint_hit */
f7f9143b
JB
10181 print_it_catch_exception_unhandled,
10182 print_one_catch_exception_unhandled,
10183 print_mention_catch_exception_unhandled
10184};
10185
10186/* Virtual table for "catch assert" breakpoints. */
10187
10188static enum print_stop_action
10189print_it_catch_assert (struct breakpoint *b)
10190{
10191 return print_it_exception (ex_catch_assert, b);
10192}
10193
10194static void
10195print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10196{
10197 print_one_exception (ex_catch_assert, b, last_addr);
10198}
10199
10200static void
10201print_mention_catch_assert (struct breakpoint *b)
10202{
10203 print_mention_exception (ex_catch_assert, b);
10204}
10205
10206static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10207 NULL, /* insert */
10208 NULL, /* remove */
10209 NULL, /* breakpoint_hit */
f7f9143b
JB
10210 print_it_catch_assert,
10211 print_one_catch_assert,
10212 print_mention_catch_assert
10213};
10214
10215/* Return non-zero if B is an Ada exception catchpoint. */
10216
10217int
10218ada_exception_catchpoint_p (struct breakpoint *b)
10219{
10220 return (b->ops == &catch_exception_breakpoint_ops
10221 || b->ops == &catch_exception_unhandled_breakpoint_ops
10222 || b->ops == &catch_assert_breakpoint_ops);
10223}
10224
f7f9143b
JB
10225/* Return a newly allocated copy of the first space-separated token
10226 in ARGSP, and then adjust ARGSP to point immediately after that
10227 token.
10228
10229 Return NULL if ARGPS does not contain any more tokens. */
10230
10231static char *
10232ada_get_next_arg (char **argsp)
10233{
10234 char *args = *argsp;
10235 char *end;
10236 char *result;
10237
10238 /* Skip any leading white space. */
10239
10240 while (isspace (*args))
10241 args++;
10242
10243 if (args[0] == '\0')
10244 return NULL; /* No more arguments. */
10245
10246 /* Find the end of the current argument. */
10247
10248 end = args;
10249 while (*end != '\0' && !isspace (*end))
10250 end++;
10251
10252 /* Adjust ARGSP to point to the start of the next argument. */
10253
10254 *argsp = end;
10255
10256 /* Make a copy of the current argument and return it. */
10257
10258 result = xmalloc (end - args + 1);
10259 strncpy (result, args, end - args);
10260 result[end - args] = '\0';
10261
10262 return result;
10263}
10264
10265/* Split the arguments specified in a "catch exception" command.
10266 Set EX to the appropriate catchpoint type.
10267 Set EXP_STRING to the name of the specific exception if
10268 specified by the user. */
10269
10270static void
10271catch_ada_exception_command_split (char *args,
10272 enum exception_catchpoint_kind *ex,
10273 char **exp_string)
10274{
10275 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10276 char *exception_name;
10277
10278 exception_name = ada_get_next_arg (&args);
10279 make_cleanup (xfree, exception_name);
10280
10281 /* Check that we do not have any more arguments. Anything else
10282 is unexpected. */
10283
10284 while (isspace (*args))
10285 args++;
10286
10287 if (args[0] != '\0')
10288 error (_("Junk at end of expression"));
10289
10290 discard_cleanups (old_chain);
10291
10292 if (exception_name == NULL)
10293 {
10294 /* Catch all exceptions. */
10295 *ex = ex_catch_exception;
10296 *exp_string = NULL;
10297 }
10298 else if (strcmp (exception_name, "unhandled") == 0)
10299 {
10300 /* Catch unhandled exceptions. */
10301 *ex = ex_catch_exception_unhandled;
10302 *exp_string = NULL;
10303 }
10304 else
10305 {
10306 /* Catch a specific exception. */
10307 *ex = ex_catch_exception;
10308 *exp_string = exception_name;
10309 }
10310}
10311
10312/* Return the name of the symbol on which we should break in order to
10313 implement a catchpoint of the EX kind. */
10314
10315static const char *
10316ada_exception_sym_name (enum exception_catchpoint_kind ex)
10317{
0259addd
JB
10318 gdb_assert (exception_info != NULL);
10319
f7f9143b
JB
10320 switch (ex)
10321 {
10322 case ex_catch_exception:
0259addd 10323 return (exception_info->catch_exception_sym);
f7f9143b
JB
10324 break;
10325 case ex_catch_exception_unhandled:
0259addd 10326 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10327 break;
10328 case ex_catch_assert:
0259addd 10329 return (exception_info->catch_assert_sym);
f7f9143b
JB
10330 break;
10331 default:
10332 internal_error (__FILE__, __LINE__,
10333 _("unexpected catchpoint kind (%d)"), ex);
10334 }
10335}
10336
10337/* Return the breakpoint ops "virtual table" used for catchpoints
10338 of the EX kind. */
10339
10340static struct breakpoint_ops *
4b9eee8c 10341ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10342{
10343 switch (ex)
10344 {
10345 case ex_catch_exception:
10346 return (&catch_exception_breakpoint_ops);
10347 break;
10348 case ex_catch_exception_unhandled:
10349 return (&catch_exception_unhandled_breakpoint_ops);
10350 break;
10351 case ex_catch_assert:
10352 return (&catch_assert_breakpoint_ops);
10353 break;
10354 default:
10355 internal_error (__FILE__, __LINE__,
10356 _("unexpected catchpoint kind (%d)"), ex);
10357 }
10358}
10359
10360/* Return the condition that will be used to match the current exception
10361 being raised with the exception that the user wants to catch. This
10362 assumes that this condition is used when the inferior just triggered
10363 an exception catchpoint.
10364
10365 The string returned is a newly allocated string that needs to be
10366 deallocated later. */
10367
10368static char *
10369ada_exception_catchpoint_cond_string (const char *exp_string)
10370{
3d0b0fa3
JB
10371 int i;
10372
10373 /* The standard exceptions are a special case. They are defined in
10374 runtime units that have been compiled without debugging info; if
10375 EXP_STRING is the not-fully-qualified name of a standard
10376 exception (e.g. "constraint_error") then, during the evaluation
10377 of the condition expression, the symbol lookup on this name would
10378 *not* return this standard exception. The catchpoint condition
10379 may then be set only on user-defined exceptions which have the
10380 same not-fully-qualified name (e.g. my_package.constraint_error).
10381
10382 To avoid this unexcepted behavior, these standard exceptions are
10383 systematically prefixed by "standard". This means that "catch
10384 exception constraint_error" is rewritten into "catch exception
10385 standard.constraint_error".
10386
10387 If an exception named contraint_error is defined in another package of
10388 the inferior program, then the only way to specify this exception as a
10389 breakpoint condition is to use its fully-qualified named:
10390 e.g. my_package.constraint_error. */
10391
10392 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10393 {
10394 if (strcmp (standard_exc [i], exp_string) == 0)
10395 {
10396 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10397 exp_string);
10398 }
10399 }
f7f9143b
JB
10400 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10401}
10402
10403/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10404
10405static struct expression *
10406ada_parse_catchpoint_condition (char *cond_string,
10407 struct symtab_and_line sal)
10408{
10409 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10410}
10411
10412/* Return the symtab_and_line that should be used to insert an exception
10413 catchpoint of the TYPE kind.
10414
10415 EX_STRING should contain the name of a specific exception
10416 that the catchpoint should catch, or NULL otherwise.
10417
10418 The idea behind all the remaining parameters is that their names match
10419 the name of certain fields in the breakpoint structure that are used to
10420 handle exception catchpoints. This function returns the value to which
10421 these fields should be set, depending on the type of catchpoint we need
10422 to create.
10423
10424 If COND and COND_STRING are both non-NULL, any value they might
10425 hold will be free'ed, and then replaced by newly allocated ones.
10426 These parameters are left untouched otherwise. */
10427
10428static struct symtab_and_line
10429ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10430 char **addr_string, char **cond_string,
10431 struct expression **cond, struct breakpoint_ops **ops)
10432{
10433 const char *sym_name;
10434 struct symbol *sym;
10435 struct symtab_and_line sal;
10436
0259addd
JB
10437 /* First, find out which exception support info to use. */
10438 ada_exception_support_info_sniffer ();
10439
10440 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10441 the Ada exceptions requested by the user. */
10442
10443 sym_name = ada_exception_sym_name (ex);
10444 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10445
10446 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10447 that should be compiled with debugging information. As a result, we
10448 expect to find that symbol in the symtabs. If we don't find it, then
10449 the target most likely does not support Ada exceptions, or we cannot
10450 insert exception breakpoints yet, because the GNAT runtime hasn't been
10451 loaded yet. */
10452
10453 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10454 in such a way that no debugging information is produced for the symbol
10455 we are looking for. In this case, we could search the minimal symbols
10456 as a fall-back mechanism. This would still be operating in degraded
10457 mode, however, as we would still be missing the debugging information
10458 that is needed in order to extract the name of the exception being
10459 raised (this name is printed in the catchpoint message, and is also
10460 used when trying to catch a specific exception). We do not handle
10461 this case for now. */
10462
10463 if (sym == NULL)
0259addd 10464 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10465
10466 /* Make sure that the symbol we found corresponds to a function. */
10467 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10468 error (_("Symbol \"%s\" is not a function (class = %d)"),
10469 sym_name, SYMBOL_CLASS (sym));
10470
10471 sal = find_function_start_sal (sym, 1);
10472
10473 /* Set ADDR_STRING. */
10474
10475 *addr_string = xstrdup (sym_name);
10476
10477 /* Set the COND and COND_STRING (if not NULL). */
10478
10479 if (cond_string != NULL && cond != NULL)
10480 {
10481 if (*cond_string != NULL)
10482 {
10483 xfree (*cond_string);
10484 *cond_string = NULL;
10485 }
10486 if (*cond != NULL)
10487 {
10488 xfree (*cond);
10489 *cond = NULL;
10490 }
10491 if (exp_string != NULL)
10492 {
10493 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10494 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10495 }
10496 }
10497
10498 /* Set OPS. */
4b9eee8c 10499 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10500
10501 return sal;
10502}
10503
10504/* Parse the arguments (ARGS) of the "catch exception" command.
10505
10506 Set TYPE to the appropriate exception catchpoint type.
10507 If the user asked the catchpoint to catch only a specific
10508 exception, then save the exception name in ADDR_STRING.
10509
10510 See ada_exception_sal for a description of all the remaining
10511 function arguments of this function. */
10512
10513struct symtab_and_line
10514ada_decode_exception_location (char *args, char **addr_string,
10515 char **exp_string, char **cond_string,
10516 struct expression **cond,
10517 struct breakpoint_ops **ops)
10518{
10519 enum exception_catchpoint_kind ex;
10520
10521 catch_ada_exception_command_split (args, &ex, exp_string);
10522 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10523 cond, ops);
10524}
10525
10526struct symtab_and_line
10527ada_decode_assert_location (char *args, char **addr_string,
10528 struct breakpoint_ops **ops)
10529{
10530 /* Check that no argument where provided at the end of the command. */
10531
10532 if (args != NULL)
10533 {
10534 while (isspace (*args))
10535 args++;
10536 if (*args != '\0')
10537 error (_("Junk at end of arguments."));
10538 }
10539
10540 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10541 ops);
10542}
10543
4c4b4cd2
PH
10544 /* Operators */
10545/* Information about operators given special treatment in functions
10546 below. */
10547/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10548
10549#define ADA_OPERATORS \
10550 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10551 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10552 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10553 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10554 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10555 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10556 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10557 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10558 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10559 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10560 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10561 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10562 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10563 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10564 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10565 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10566 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10567 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10568 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10569
10570static void
10571ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10572{
10573 switch (exp->elts[pc - 1].opcode)
10574 {
76a01679 10575 default:
4c4b4cd2
PH
10576 operator_length_standard (exp, pc, oplenp, argsp);
10577 break;
10578
10579#define OP_DEFN(op, len, args, binop) \
10580 case op: *oplenp = len; *argsp = args; break;
10581 ADA_OPERATORS;
10582#undef OP_DEFN
52ce6436
PH
10583
10584 case OP_AGGREGATE:
10585 *oplenp = 3;
10586 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10587 break;
10588
10589 case OP_CHOICES:
10590 *oplenp = 3;
10591 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10592 break;
4c4b4cd2
PH
10593 }
10594}
10595
10596static char *
10597ada_op_name (enum exp_opcode opcode)
10598{
10599 switch (opcode)
10600 {
76a01679 10601 default:
4c4b4cd2 10602 return op_name_standard (opcode);
52ce6436 10603
4c4b4cd2
PH
10604#define OP_DEFN(op, len, args, binop) case op: return #op;
10605 ADA_OPERATORS;
10606#undef OP_DEFN
52ce6436
PH
10607
10608 case OP_AGGREGATE:
10609 return "OP_AGGREGATE";
10610 case OP_CHOICES:
10611 return "OP_CHOICES";
10612 case OP_NAME:
10613 return "OP_NAME";
4c4b4cd2
PH
10614 }
10615}
10616
10617/* As for operator_length, but assumes PC is pointing at the first
10618 element of the operator, and gives meaningful results only for the
52ce6436 10619 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10620
10621static void
76a01679
JB
10622ada_forward_operator_length (struct expression *exp, int pc,
10623 int *oplenp, int *argsp)
4c4b4cd2 10624{
76a01679 10625 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10626 {
10627 default:
10628 *oplenp = *argsp = 0;
10629 break;
52ce6436 10630
4c4b4cd2
PH
10631#define OP_DEFN(op, len, args, binop) \
10632 case op: *oplenp = len; *argsp = args; break;
10633 ADA_OPERATORS;
10634#undef OP_DEFN
52ce6436
PH
10635
10636 case OP_AGGREGATE:
10637 *oplenp = 3;
10638 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10639 break;
10640
10641 case OP_CHOICES:
10642 *oplenp = 3;
10643 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10644 break;
10645
10646 case OP_STRING:
10647 case OP_NAME:
10648 {
10649 int len = longest_to_int (exp->elts[pc + 1].longconst);
10650 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10651 *argsp = 0;
10652 break;
10653 }
4c4b4cd2
PH
10654 }
10655}
10656
10657static int
10658ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10659{
10660 enum exp_opcode op = exp->elts[elt].opcode;
10661 int oplen, nargs;
10662 int pc = elt;
10663 int i;
76a01679 10664
4c4b4cd2
PH
10665 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10666
76a01679 10667 switch (op)
4c4b4cd2 10668 {
76a01679 10669 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10670 case OP_ATR_FIRST:
10671 case OP_ATR_LAST:
10672 case OP_ATR_LENGTH:
10673 case OP_ATR_IMAGE:
10674 case OP_ATR_MAX:
10675 case OP_ATR_MIN:
10676 case OP_ATR_MODULUS:
10677 case OP_ATR_POS:
10678 case OP_ATR_SIZE:
10679 case OP_ATR_TAG:
10680 case OP_ATR_VAL:
10681 break;
10682
10683 case UNOP_IN_RANGE:
10684 case UNOP_QUAL:
323e0a4a
AC
10685 /* XXX: gdb_sprint_host_address, type_sprint */
10686 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10687 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10688 fprintf_filtered (stream, " (");
10689 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10690 fprintf_filtered (stream, ")");
10691 break;
10692 case BINOP_IN_BOUNDS:
52ce6436
PH
10693 fprintf_filtered (stream, " (%d)",
10694 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10695 break;
10696 case TERNOP_IN_RANGE:
10697 break;
10698
52ce6436
PH
10699 case OP_AGGREGATE:
10700 case OP_OTHERS:
10701 case OP_DISCRETE_RANGE:
10702 case OP_POSITIONAL:
10703 case OP_CHOICES:
10704 break;
10705
10706 case OP_NAME:
10707 case OP_STRING:
10708 {
10709 char *name = &exp->elts[elt + 2].string;
10710 int len = longest_to_int (exp->elts[elt + 1].longconst);
10711 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10712 break;
10713 }
10714
4c4b4cd2
PH
10715 default:
10716 return dump_subexp_body_standard (exp, stream, elt);
10717 }
10718
10719 elt += oplen;
10720 for (i = 0; i < nargs; i += 1)
10721 elt = dump_subexp (exp, stream, elt);
10722
10723 return elt;
10724}
10725
10726/* The Ada extension of print_subexp (q.v.). */
10727
76a01679
JB
10728static void
10729ada_print_subexp (struct expression *exp, int *pos,
10730 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10731{
52ce6436 10732 int oplen, nargs, i;
4c4b4cd2
PH
10733 int pc = *pos;
10734 enum exp_opcode op = exp->elts[pc].opcode;
10735
10736 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10737
52ce6436 10738 *pos += oplen;
4c4b4cd2
PH
10739 switch (op)
10740 {
10741 default:
52ce6436 10742 *pos -= oplen;
4c4b4cd2
PH
10743 print_subexp_standard (exp, pos, stream, prec);
10744 return;
10745
10746 case OP_VAR_VALUE:
4c4b4cd2
PH
10747 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10748 return;
10749
10750 case BINOP_IN_BOUNDS:
323e0a4a 10751 /* XXX: sprint_subexp */
4c4b4cd2 10752 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10753 fputs_filtered (" in ", stream);
4c4b4cd2 10754 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10755 fputs_filtered ("'range", stream);
4c4b4cd2 10756 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10757 fprintf_filtered (stream, "(%ld)",
10758 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10759 return;
10760
10761 case TERNOP_IN_RANGE:
4c4b4cd2 10762 if (prec >= PREC_EQUAL)
76a01679 10763 fputs_filtered ("(", stream);
323e0a4a 10764 /* XXX: sprint_subexp */
4c4b4cd2 10765 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10766 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10767 print_subexp (exp, pos, stream, PREC_EQUAL);
10768 fputs_filtered (" .. ", stream);
10769 print_subexp (exp, pos, stream, PREC_EQUAL);
10770 if (prec >= PREC_EQUAL)
76a01679
JB
10771 fputs_filtered (")", stream);
10772 return;
4c4b4cd2
PH
10773
10774 case OP_ATR_FIRST:
10775 case OP_ATR_LAST:
10776 case OP_ATR_LENGTH:
10777 case OP_ATR_IMAGE:
10778 case OP_ATR_MAX:
10779 case OP_ATR_MIN:
10780 case OP_ATR_MODULUS:
10781 case OP_ATR_POS:
10782 case OP_ATR_SIZE:
10783 case OP_ATR_TAG:
10784 case OP_ATR_VAL:
4c4b4cd2 10785 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10786 {
10787 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10788 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10789 *pos += 3;
10790 }
4c4b4cd2 10791 else
76a01679 10792 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10793 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10794 if (nargs > 1)
76a01679
JB
10795 {
10796 int tem;
10797 for (tem = 1; tem < nargs; tem += 1)
10798 {
10799 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10800 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10801 }
10802 fputs_filtered (")", stream);
10803 }
4c4b4cd2 10804 return;
14f9c5c9 10805
4c4b4cd2 10806 case UNOP_QUAL:
4c4b4cd2
PH
10807 type_print (exp->elts[pc + 1].type, "", stream, 0);
10808 fputs_filtered ("'(", stream);
10809 print_subexp (exp, pos, stream, PREC_PREFIX);
10810 fputs_filtered (")", stream);
10811 return;
14f9c5c9 10812
4c4b4cd2 10813 case UNOP_IN_RANGE:
323e0a4a 10814 /* XXX: sprint_subexp */
4c4b4cd2 10815 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10816 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10817 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10818 return;
52ce6436
PH
10819
10820 case OP_DISCRETE_RANGE:
10821 print_subexp (exp, pos, stream, PREC_SUFFIX);
10822 fputs_filtered ("..", stream);
10823 print_subexp (exp, pos, stream, PREC_SUFFIX);
10824 return;
10825
10826 case OP_OTHERS:
10827 fputs_filtered ("others => ", stream);
10828 print_subexp (exp, pos, stream, PREC_SUFFIX);
10829 return;
10830
10831 case OP_CHOICES:
10832 for (i = 0; i < nargs-1; i += 1)
10833 {
10834 if (i > 0)
10835 fputs_filtered ("|", stream);
10836 print_subexp (exp, pos, stream, PREC_SUFFIX);
10837 }
10838 fputs_filtered (" => ", stream);
10839 print_subexp (exp, pos, stream, PREC_SUFFIX);
10840 return;
10841
10842 case OP_POSITIONAL:
10843 print_subexp (exp, pos, stream, PREC_SUFFIX);
10844 return;
10845
10846 case OP_AGGREGATE:
10847 fputs_filtered ("(", stream);
10848 for (i = 0; i < nargs; i += 1)
10849 {
10850 if (i > 0)
10851 fputs_filtered (", ", stream);
10852 print_subexp (exp, pos, stream, PREC_SUFFIX);
10853 }
10854 fputs_filtered (")", stream);
10855 return;
4c4b4cd2
PH
10856 }
10857}
14f9c5c9
AS
10858
10859/* Table mapping opcodes into strings for printing operators
10860 and precedences of the operators. */
10861
d2e4a39e
AS
10862static const struct op_print ada_op_print_tab[] = {
10863 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10864 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10865 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10866 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10867 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10868 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10869 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10870 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10871 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10872 {">=", BINOP_GEQ, PREC_ORDER, 0},
10873 {">", BINOP_GTR, PREC_ORDER, 0},
10874 {"<", BINOP_LESS, PREC_ORDER, 0},
10875 {">>", BINOP_RSH, PREC_SHIFT, 0},
10876 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10877 {"+", BINOP_ADD, PREC_ADD, 0},
10878 {"-", BINOP_SUB, PREC_ADD, 0},
10879 {"&", BINOP_CONCAT, PREC_ADD, 0},
10880 {"*", BINOP_MUL, PREC_MUL, 0},
10881 {"/", BINOP_DIV, PREC_MUL, 0},
10882 {"rem", BINOP_REM, PREC_MUL, 0},
10883 {"mod", BINOP_MOD, PREC_MUL, 0},
10884 {"**", BINOP_EXP, PREC_REPEAT, 0},
10885 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10886 {"-", UNOP_NEG, PREC_PREFIX, 0},
10887 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10888 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10889 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10890 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10891 {".all", UNOP_IND, PREC_SUFFIX, 1},
10892 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10893 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10894 {NULL, 0, 0, 0}
14f9c5c9
AS
10895};
10896\f
72d5681a
PH
10897enum ada_primitive_types {
10898 ada_primitive_type_int,
10899 ada_primitive_type_long,
10900 ada_primitive_type_short,
10901 ada_primitive_type_char,
10902 ada_primitive_type_float,
10903 ada_primitive_type_double,
10904 ada_primitive_type_void,
10905 ada_primitive_type_long_long,
10906 ada_primitive_type_long_double,
10907 ada_primitive_type_natural,
10908 ada_primitive_type_positive,
10909 ada_primitive_type_system_address,
10910 nr_ada_primitive_types
10911};
6c038f32
PH
10912
10913static void
d4a9a881 10914ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10915 struct language_arch_info *lai)
10916{
d4a9a881 10917 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10918 lai->primitive_type_vector
d4a9a881 10919 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10920 struct type *);
10921 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10922 init_type (TYPE_CODE_INT,
d4a9a881 10923 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10924 0, "integer", (struct objfile *) NULL);
72d5681a 10925 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10926 init_type (TYPE_CODE_INT,
d4a9a881 10927 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10928 0, "long_integer", (struct objfile *) NULL);
72d5681a 10929 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10930 init_type (TYPE_CODE_INT,
d4a9a881 10931 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10932 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10933 lai->string_char_type =
10934 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10935 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10936 0, "character", (struct objfile *) NULL);
72d5681a 10937 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10938 init_type (TYPE_CODE_FLT,
d4a9a881 10939 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10940 0, "float", (struct objfile *) NULL);
72d5681a 10941 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 10942 init_type (TYPE_CODE_FLT,
d4a9a881 10943 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10944 0, "long_float", (struct objfile *) NULL);
72d5681a 10945 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 10946 init_type (TYPE_CODE_INT,
d4a9a881 10947 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10948 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10949 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 10950 init_type (TYPE_CODE_FLT,
d4a9a881 10951 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10952 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10953 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 10954 init_type (TYPE_CODE_INT,
d4a9a881 10955 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10956 0, "natural", (struct objfile *) NULL);
72d5681a 10957 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 10958 init_type (TYPE_CODE_INT,
d4a9a881 10959 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10960 0, "positive", (struct objfile *) NULL);
72d5681a 10961 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10962
72d5681a 10963 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10964 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10965 (struct objfile *) NULL));
72d5681a
PH
10966 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10967 = "system__address";
fbb06eb1 10968
47e729a8 10969 lai->bool_type_symbol = NULL;
fbb06eb1 10970 lai->bool_type_default = builtin->builtin_bool;
6c038f32 10971}
6c038f32
PH
10972\f
10973 /* Language vector */
10974
10975/* Not really used, but needed in the ada_language_defn. */
10976
10977static void
6c7a06a3 10978emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 10979{
6c7a06a3 10980 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
10981}
10982
10983static int
10984parse (void)
10985{
10986 warnings_issued = 0;
10987 return ada_parse ();
10988}
10989
10990static const struct exp_descriptor ada_exp_descriptor = {
10991 ada_print_subexp,
10992 ada_operator_length,
10993 ada_op_name,
10994 ada_dump_subexp_body,
10995 ada_evaluate_subexp
10996};
10997
10998const struct language_defn ada_language_defn = {
10999 "ada", /* Language name */
11000 language_ada,
6c038f32
PH
11001 range_check_off,
11002 type_check_off,
11003 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11004 that's not quite what this means. */
6c038f32 11005 array_row_major,
9a044a89 11006 macro_expansion_no,
6c038f32
PH
11007 &ada_exp_descriptor,
11008 parse,
11009 ada_error,
11010 resolve,
11011 ada_printchar, /* Print a character constant */
11012 ada_printstr, /* Function to print string constant */
11013 emit_char, /* Function to print single char (not used) */
6c038f32 11014 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11015 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11016 ada_val_print, /* Print a value using appropriate syntax */
11017 ada_value_print, /* Print a top-level value */
11018 NULL, /* Language specific skip_trampoline */
2b2d9e11 11019 NULL, /* name_of_this */
6c038f32
PH
11020 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11021 basic_lookup_transparent_type, /* lookup_transparent_type */
11022 ada_la_decode, /* Language specific symbol demangler */
11023 NULL, /* Language specific class_name_from_physname */
11024 ada_op_print_tab, /* expression operators for printing */
11025 0, /* c-style arrays */
11026 1, /* String lower bound */
6c038f32 11027 ada_get_gdb_completer_word_break_characters,
41d27058 11028 ada_make_symbol_completion_list,
72d5681a 11029 ada_language_arch_info,
e79af960 11030 ada_print_array_index,
41f1b697 11031 default_pass_by_reference,
ae6a3a4c 11032 c_get_string,
6c038f32
PH
11033 LANG_MAGIC
11034};
11035
2c0b251b
PA
11036/* Provide a prototype to silence -Wmissing-prototypes. */
11037extern initialize_file_ftype _initialize_ada_language;
11038
d2e4a39e 11039void
6c038f32 11040_initialize_ada_language (void)
14f9c5c9 11041{
6c038f32
PH
11042 add_language (&ada_language_defn);
11043
11044 varsize_limit = 65536;
6c038f32
PH
11045
11046 obstack_init (&symbol_list_obstack);
11047
11048 decoded_names_store = htab_create_alloc
11049 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11050 NULL, xcalloc, xfree);
6b69afc4
JB
11051
11052 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11053}
This page took 1.198819 seconds and 4 git commands to generate.