* elf64-ppc.c (merge_got_entries): Move earlier in file.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
4c4b4cd2
PH
61/* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
50810684 69static void modify_general_field (struct type *, char *, LONGEST, int, int);
14f9c5c9 70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
4a399546
UW
103static struct value *ensure_lval (struct value *,
104 struct gdbarch *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 107 struct gdbarch *, CORE_ADDR *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
76a01679 110 struct block *, const char *,
2570f2b7 111 domain_enum, struct objfile *, int);
14f9c5c9 112
4c4b4cd2 113static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 114
76a01679 115static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 116 struct block *);
14f9c5c9 117
4c4b4cd2
PH
118static int num_defns_collected (struct obstack *);
119
120static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 121
d2e4a39e 122static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
123 *, const char *, int,
124 domain_enum, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
d2e4a39e 170static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 171 struct type *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static struct value *get_var_value (char *, char *);
14f9c5c9 199
d2e4a39e 200static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 201
d2e4a39e 202static int equiv_types (struct type *, struct type *);
14f9c5c9 203
d2e4a39e 204static int is_name_suffix (const char *);
14f9c5c9 205
d2e4a39e 206static int wild_match (const char *, int, const char *);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
4c4b4cd2
PH
219static struct value *ada_search_struct_field (char *, struct value *, int,
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
76a01679 225static int find_struct_field (char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 232
4c4b4cd2
PH
233static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237static struct value *ada_coerce_to_simple_array (struct value *);
238
239static int ada_is_direct_array_type (struct type *);
240
72d5681a
PH
241static void ada_language_arch_info (struct gdbarch *,
242 struct language_arch_info *);
714e53ab
PH
243
244static void check_size (const struct type *);
52ce6436
PH
245
246static struct value *ada_index_struct_field (int, struct value *, int,
247 struct type *);
248
249static struct value *assign_aggregate (struct value *, struct value *,
250 struct expression *, int *, enum noside);
251
252static void aggregate_assign_from_choices (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *,
255 int, LONGEST, LONGEST);
256
257static void aggregate_assign_positional (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int *, int,
260 LONGEST, LONGEST);
261
262
263static void aggregate_assign_others (struct value *, struct value *,
264 struct expression *,
265 int *, LONGEST *, int, LONGEST, LONGEST);
266
267
268static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269
270
271static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 int *, enum noside);
273
274static void ada_forward_operator_length (struct expression *, int, int *,
275 int *);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
313 /* Utilities */
314
41d27058
JB
315/* Given DECODED_NAME a string holding a symbol name in its
316 decoded form (ie using the Ada dotted notation), returns
317 its unqualified name. */
318
319static const char *
320ada_unqualified_name (const char *decoded_name)
321{
322 const char *result = strrchr (decoded_name, '.');
323
324 if (result != NULL)
325 result++; /* Skip the dot... */
326 else
327 result = decoded_name;
328
329 return result;
330}
331
332/* Return a string starting with '<', followed by STR, and '>'.
333 The result is good until the next call. */
334
335static char *
336add_angle_brackets (const char *str)
337{
338 static char *result = NULL;
339
340 xfree (result);
88c15c34 341 result = xstrprintf ("<%s>", str);
41d27058
JB
342 return result;
343}
96d887e8 344
4c4b4cd2
PH
345static char *
346ada_get_gdb_completer_word_break_characters (void)
347{
348 return ada_completer_word_break_characters;
349}
350
e79af960
JB
351/* Print an array element index using the Ada syntax. */
352
353static void
354ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 355 const struct value_print_options *options)
e79af960 356{
79a45b7d 357 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
358 fprintf_filtered (stream, " => ");
359}
360
f27cf670 361/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 362 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 363 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 364
f27cf670
AS
365void *
366grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 367{
d2e4a39e
AS
368 if (*size < min_size)
369 {
370 *size *= 2;
371 if (*size < min_size)
4c4b4cd2 372 *size = min_size;
f27cf670 373 vect = xrealloc (vect, *size * element_size);
d2e4a39e 374 }
f27cf670 375 return vect;
14f9c5c9
AS
376}
377
378/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 379 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
380
381static int
ebf56fd3 382field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
383{
384 int len = strlen (target);
d2e4a39e 385 return
4c4b4cd2
PH
386 (strncmp (field_name, target, len) == 0
387 && (field_name[len] == '\0'
388 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
389 && strcmp (field_name + strlen (field_name) - 6,
390 "___XVN") != 0)));
14f9c5c9
AS
391}
392
393
872c8b51
JB
394/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
395 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
396 and return its index. This function also handles fields whose name
397 have ___ suffixes because the compiler sometimes alters their name
398 by adding such a suffix to represent fields with certain constraints.
399 If the field could not be found, return a negative number if
400 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
401
402int
403ada_get_field_index (const struct type *type, const char *field_name,
404 int maybe_missing)
405{
406 int fieldno;
872c8b51
JB
407 struct type *struct_type = check_typedef ((struct type *) type);
408
409 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
410 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
411 return fieldno;
412
413 if (!maybe_missing)
323e0a4a 414 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 415 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
416
417 return -1;
418}
419
420/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
421
422int
d2e4a39e 423ada_name_prefix_len (const char *name)
14f9c5c9
AS
424{
425 if (name == NULL)
426 return 0;
d2e4a39e 427 else
14f9c5c9 428 {
d2e4a39e 429 const char *p = strstr (name, "___");
14f9c5c9 430 if (p == NULL)
4c4b4cd2 431 return strlen (name);
14f9c5c9 432 else
4c4b4cd2 433 return p - name;
14f9c5c9
AS
434 }
435}
436
4c4b4cd2
PH
437/* Return non-zero if SUFFIX is a suffix of STR.
438 Return zero if STR is null. */
439
14f9c5c9 440static int
d2e4a39e 441is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
442{
443 int len1, len2;
444 if (str == NULL)
445 return 0;
446 len1 = strlen (str);
447 len2 = strlen (suffix);
4c4b4cd2 448 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
449}
450
4c4b4cd2
PH
451/* The contents of value VAL, treated as a value of type TYPE. The
452 result is an lval in memory if VAL is. */
14f9c5c9 453
d2e4a39e 454static struct value *
4c4b4cd2 455coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 456{
61ee279c 457 type = ada_check_typedef (type);
df407dfe 458 if (value_type (val) == type)
4c4b4cd2 459 return val;
d2e4a39e 460 else
14f9c5c9 461 {
4c4b4cd2
PH
462 struct value *result;
463
464 /* Make sure that the object size is not unreasonable before
465 trying to allocate some memory for it. */
714e53ab 466 check_size (type);
4c4b4cd2
PH
467
468 result = allocate_value (type);
74bcbdf3 469 set_value_component_location (result, val);
9bbda503
AC
470 set_value_bitsize (result, value_bitsize (val));
471 set_value_bitpos (result, value_bitpos (val));
42ae5230 472 set_value_address (result, value_address (val));
d69fe07e 473 if (value_lazy (val)
df407dfe 474 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 475 set_value_lazy (result, 1);
d2e4a39e 476 else
0fd88904 477 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 478 TYPE_LENGTH (type));
14f9c5c9
AS
479 return result;
480 }
481}
482
fc1a4b47
AC
483static const gdb_byte *
484cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
485{
486 if (valaddr == NULL)
487 return NULL;
488 else
489 return valaddr + offset;
490}
491
492static CORE_ADDR
ebf56fd3 493cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
494{
495 if (address == 0)
496 return 0;
d2e4a39e 497 else
14f9c5c9
AS
498 return address + offset;
499}
500
4c4b4cd2
PH
501/* Issue a warning (as for the definition of warning in utils.c, but
502 with exactly one argument rather than ...), unless the limit on the
503 number of warnings has passed during the evaluation of the current
504 expression. */
a2249542 505
77109804
AC
506/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
507 provided by "complaint". */
508static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
509
14f9c5c9 510static void
a2249542 511lim_warning (const char *format, ...)
14f9c5c9 512{
a2249542
MK
513 va_list args;
514 va_start (args, format);
515
4c4b4cd2
PH
516 warnings_issued += 1;
517 if (warnings_issued <= warning_limit)
a2249542
MK
518 vwarning (format, args);
519
520 va_end (args);
4c4b4cd2
PH
521}
522
714e53ab
PH
523/* Issue an error if the size of an object of type T is unreasonable,
524 i.e. if it would be a bad idea to allocate a value of this type in
525 GDB. */
526
527static void
528check_size (const struct type *type)
529{
530 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 531 error (_("object size is larger than varsize-limit"));
714e53ab
PH
532}
533
534
c3e5cd34
PH
535/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
536 gdbtypes.h, but some of the necessary definitions in that file
537 seem to have gone missing. */
538
539/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 540static LONGEST
c3e5cd34 541max_of_size (int size)
4c4b4cd2 542{
76a01679
JB
543 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
544 return top_bit | (top_bit - 1);
4c4b4cd2
PH
545}
546
c3e5cd34 547/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 548static LONGEST
c3e5cd34 549min_of_size (int size)
4c4b4cd2 550{
c3e5cd34 551 return -max_of_size (size) - 1;
4c4b4cd2
PH
552}
553
c3e5cd34 554/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 555static ULONGEST
c3e5cd34 556umax_of_size (int size)
4c4b4cd2 557{
76a01679
JB
558 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
559 return top_bit | (top_bit - 1);
4c4b4cd2
PH
560}
561
c3e5cd34
PH
562/* Maximum value of integral type T, as a signed quantity. */
563static LONGEST
564max_of_type (struct type *t)
4c4b4cd2 565{
c3e5cd34
PH
566 if (TYPE_UNSIGNED (t))
567 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
568 else
569 return max_of_size (TYPE_LENGTH (t));
570}
571
572/* Minimum value of integral type T, as a signed quantity. */
573static LONGEST
574min_of_type (struct type *t)
575{
576 if (TYPE_UNSIGNED (t))
577 return 0;
578 else
579 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
580}
581
582/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
583LONGEST
584ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 585{
76a01679 586 switch (TYPE_CODE (type))
4c4b4cd2
PH
587 {
588 case TYPE_CODE_RANGE:
690cc4eb 589 return TYPE_HIGH_BOUND (type);
4c4b4cd2 590 case TYPE_CODE_ENUM:
690cc4eb
PH
591 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
592 case TYPE_CODE_BOOL:
593 return 1;
594 case TYPE_CODE_CHAR:
76a01679 595 case TYPE_CODE_INT:
690cc4eb 596 return max_of_type (type);
4c4b4cd2 597 default:
43bbcdc2 598 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
599 }
600}
601
602/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
603LONGEST
604ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 605{
76a01679 606 switch (TYPE_CODE (type))
4c4b4cd2
PH
607 {
608 case TYPE_CODE_RANGE:
690cc4eb 609 return TYPE_LOW_BOUND (type);
4c4b4cd2 610 case TYPE_CODE_ENUM:
690cc4eb
PH
611 return TYPE_FIELD_BITPOS (type, 0);
612 case TYPE_CODE_BOOL:
613 return 0;
614 case TYPE_CODE_CHAR:
76a01679 615 case TYPE_CODE_INT:
690cc4eb 616 return min_of_type (type);
4c4b4cd2 617 default:
43bbcdc2 618 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
619 }
620}
621
622/* The identity on non-range types. For range types, the underlying
76a01679 623 non-range scalar type. */
4c4b4cd2
PH
624
625static struct type *
626base_type (struct type *type)
627{
628 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
629 {
76a01679
JB
630 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
631 return type;
4c4b4cd2
PH
632 type = TYPE_TARGET_TYPE (type);
633 }
634 return type;
14f9c5c9 635}
4c4b4cd2 636\f
76a01679 637
4c4b4cd2 638 /* Language Selection */
14f9c5c9
AS
639
640/* If the main program is in Ada, return language_ada, otherwise return LANG
641 (the main program is in Ada iif the adainit symbol is found).
642
4c4b4cd2 643 MAIN_PST is not used. */
d2e4a39e 644
14f9c5c9 645enum language
d2e4a39e 646ada_update_initial_language (enum language lang,
4c4b4cd2 647 struct partial_symtab *main_pst)
14f9c5c9 648{
d2e4a39e 649 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
650 (struct objfile *) NULL) != NULL)
651 return language_ada;
14f9c5c9
AS
652
653 return lang;
654}
96d887e8
PH
655
656/* If the main procedure is written in Ada, then return its name.
657 The result is good until the next call. Return NULL if the main
658 procedure doesn't appear to be in Ada. */
659
660char *
661ada_main_name (void)
662{
663 struct minimal_symbol *msym;
f9bc20b9 664 static char *main_program_name = NULL;
6c038f32 665
96d887e8
PH
666 /* For Ada, the name of the main procedure is stored in a specific
667 string constant, generated by the binder. Look for that symbol,
668 extract its address, and then read that string. If we didn't find
669 that string, then most probably the main procedure is not written
670 in Ada. */
671 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
672
673 if (msym != NULL)
674 {
f9bc20b9
JB
675 CORE_ADDR main_program_name_addr;
676 int err_code;
677
96d887e8
PH
678 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
679 if (main_program_name_addr == 0)
323e0a4a 680 error (_("Invalid address for Ada main program name."));
96d887e8 681
f9bc20b9
JB
682 xfree (main_program_name);
683 target_read_string (main_program_name_addr, &main_program_name,
684 1024, &err_code);
685
686 if (err_code != 0)
687 return NULL;
96d887e8
PH
688 return main_program_name;
689 }
690
691 /* The main procedure doesn't seem to be in Ada. */
692 return NULL;
693}
14f9c5c9 694\f
4c4b4cd2 695 /* Symbols */
d2e4a39e 696
4c4b4cd2
PH
697/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
698 of NULLs. */
14f9c5c9 699
d2e4a39e
AS
700const struct ada_opname_map ada_opname_table[] = {
701 {"Oadd", "\"+\"", BINOP_ADD},
702 {"Osubtract", "\"-\"", BINOP_SUB},
703 {"Omultiply", "\"*\"", BINOP_MUL},
704 {"Odivide", "\"/\"", BINOP_DIV},
705 {"Omod", "\"mod\"", BINOP_MOD},
706 {"Orem", "\"rem\"", BINOP_REM},
707 {"Oexpon", "\"**\"", BINOP_EXP},
708 {"Olt", "\"<\"", BINOP_LESS},
709 {"Ole", "\"<=\"", BINOP_LEQ},
710 {"Ogt", "\">\"", BINOP_GTR},
711 {"Oge", "\">=\"", BINOP_GEQ},
712 {"Oeq", "\"=\"", BINOP_EQUAL},
713 {"One", "\"/=\"", BINOP_NOTEQUAL},
714 {"Oand", "\"and\"", BINOP_BITWISE_AND},
715 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
716 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
717 {"Oconcat", "\"&\"", BINOP_CONCAT},
718 {"Oabs", "\"abs\"", UNOP_ABS},
719 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
720 {"Oadd", "\"+\"", UNOP_PLUS},
721 {"Osubtract", "\"-\"", UNOP_NEG},
722 {NULL, NULL}
14f9c5c9
AS
723};
724
4c4b4cd2
PH
725/* The "encoded" form of DECODED, according to GNAT conventions.
726 The result is valid until the next call to ada_encode. */
727
14f9c5c9 728char *
4c4b4cd2 729ada_encode (const char *decoded)
14f9c5c9 730{
4c4b4cd2
PH
731 static char *encoding_buffer = NULL;
732 static size_t encoding_buffer_size = 0;
d2e4a39e 733 const char *p;
14f9c5c9 734 int k;
d2e4a39e 735
4c4b4cd2 736 if (decoded == NULL)
14f9c5c9
AS
737 return NULL;
738
4c4b4cd2
PH
739 GROW_VECT (encoding_buffer, encoding_buffer_size,
740 2 * strlen (decoded) + 10);
14f9c5c9
AS
741
742 k = 0;
4c4b4cd2 743 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 744 {
cdc7bb92 745 if (*p == '.')
4c4b4cd2
PH
746 {
747 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
748 k += 2;
749 }
14f9c5c9 750 else if (*p == '"')
4c4b4cd2
PH
751 {
752 const struct ada_opname_map *mapping;
753
754 for (mapping = ada_opname_table;
1265e4aa
JB
755 mapping->encoded != NULL
756 && strncmp (mapping->decoded, p,
757 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
758 ;
759 if (mapping->encoded == NULL)
323e0a4a 760 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
761 strcpy (encoding_buffer + k, mapping->encoded);
762 k += strlen (mapping->encoded);
763 break;
764 }
d2e4a39e 765 else
4c4b4cd2
PH
766 {
767 encoding_buffer[k] = *p;
768 k += 1;
769 }
14f9c5c9
AS
770 }
771
4c4b4cd2
PH
772 encoding_buffer[k] = '\0';
773 return encoding_buffer;
14f9c5c9
AS
774}
775
776/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
777 quotes, unfolded, but with the quotes stripped away. Result good
778 to next call. */
779
d2e4a39e
AS
780char *
781ada_fold_name (const char *name)
14f9c5c9 782{
d2e4a39e 783 static char *fold_buffer = NULL;
14f9c5c9
AS
784 static size_t fold_buffer_size = 0;
785
786 int len = strlen (name);
d2e4a39e 787 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
788
789 if (name[0] == '\'')
790 {
d2e4a39e
AS
791 strncpy (fold_buffer, name + 1, len - 2);
792 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
793 }
794 else
795 {
796 int i;
797 for (i = 0; i <= len; i += 1)
4c4b4cd2 798 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
799 }
800
801 return fold_buffer;
802}
803
529cad9c
PH
804/* Return nonzero if C is either a digit or a lowercase alphabet character. */
805
806static int
807is_lower_alphanum (const char c)
808{
809 return (isdigit (c) || (isalpha (c) && islower (c)));
810}
811
29480c32
JB
812/* Remove either of these suffixes:
813 . .{DIGIT}+
814 . ${DIGIT}+
815 . ___{DIGIT}+
816 . __{DIGIT}+.
817 These are suffixes introduced by the compiler for entities such as
818 nested subprogram for instance, in order to avoid name clashes.
819 They do not serve any purpose for the debugger. */
820
821static void
822ada_remove_trailing_digits (const char *encoded, int *len)
823{
824 if (*len > 1 && isdigit (encoded[*len - 1]))
825 {
826 int i = *len - 2;
827 while (i > 0 && isdigit (encoded[i]))
828 i--;
829 if (i >= 0 && encoded[i] == '.')
830 *len = i;
831 else if (i >= 0 && encoded[i] == '$')
832 *len = i;
833 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
834 *len = i - 2;
835 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
836 *len = i - 1;
837 }
838}
839
840/* Remove the suffix introduced by the compiler for protected object
841 subprograms. */
842
843static void
844ada_remove_po_subprogram_suffix (const char *encoded, int *len)
845{
846 /* Remove trailing N. */
847
848 /* Protected entry subprograms are broken into two
849 separate subprograms: The first one is unprotected, and has
850 a 'N' suffix; the second is the protected version, and has
851 the 'P' suffix. The second calls the first one after handling
852 the protection. Since the P subprograms are internally generated,
853 we leave these names undecoded, giving the user a clue that this
854 entity is internal. */
855
856 if (*len > 1
857 && encoded[*len - 1] == 'N'
858 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
859 *len = *len - 1;
860}
861
69fadcdf
JB
862/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
863
864static void
865ada_remove_Xbn_suffix (const char *encoded, int *len)
866{
867 int i = *len - 1;
868
869 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
870 i--;
871
872 if (encoded[i] != 'X')
873 return;
874
875 if (i == 0)
876 return;
877
878 if (isalnum (encoded[i-1]))
879 *len = i;
880}
881
29480c32
JB
882/* If ENCODED follows the GNAT entity encoding conventions, then return
883 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
884 replaced by ENCODED.
14f9c5c9 885
4c4b4cd2 886 The resulting string is valid until the next call of ada_decode.
29480c32 887 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
888 is returned. */
889
890const char *
891ada_decode (const char *encoded)
14f9c5c9
AS
892{
893 int i, j;
894 int len0;
d2e4a39e 895 const char *p;
4c4b4cd2 896 char *decoded;
14f9c5c9 897 int at_start_name;
4c4b4cd2
PH
898 static char *decoding_buffer = NULL;
899 static size_t decoding_buffer_size = 0;
d2e4a39e 900
29480c32
JB
901 /* The name of the Ada main procedure starts with "_ada_".
902 This prefix is not part of the decoded name, so skip this part
903 if we see this prefix. */
4c4b4cd2
PH
904 if (strncmp (encoded, "_ada_", 5) == 0)
905 encoded += 5;
14f9c5c9 906
29480c32
JB
907 /* If the name starts with '_', then it is not a properly encoded
908 name, so do not attempt to decode it. Similarly, if the name
909 starts with '<', the name should not be decoded. */
4c4b4cd2 910 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
911 goto Suppress;
912
4c4b4cd2 913 len0 = strlen (encoded);
4c4b4cd2 914
29480c32
JB
915 ada_remove_trailing_digits (encoded, &len0);
916 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 917
4c4b4cd2
PH
918 /* Remove the ___X.* suffix if present. Do not forget to verify that
919 the suffix is located before the current "end" of ENCODED. We want
920 to avoid re-matching parts of ENCODED that have previously been
921 marked as discarded (by decrementing LEN0). */
922 p = strstr (encoded, "___");
923 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
924 {
925 if (p[3] == 'X')
4c4b4cd2 926 len0 = p - encoded;
14f9c5c9 927 else
4c4b4cd2 928 goto Suppress;
14f9c5c9 929 }
4c4b4cd2 930
29480c32
JB
931 /* Remove any trailing TKB suffix. It tells us that this symbol
932 is for the body of a task, but that information does not actually
933 appear in the decoded name. */
934
4c4b4cd2 935 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 936 len0 -= 3;
76a01679 937
a10967fa
JB
938 /* Remove any trailing TB suffix. The TB suffix is slightly different
939 from the TKB suffix because it is used for non-anonymous task
940 bodies. */
941
942 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
943 len0 -= 2;
944
29480c32
JB
945 /* Remove trailing "B" suffixes. */
946 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
947
4c4b4cd2 948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
949 len0 -= 1;
950
4c4b4cd2 951 /* Make decoded big enough for possible expansion by operator name. */
29480c32 952
4c4b4cd2
PH
953 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
954 decoded = decoding_buffer;
14f9c5c9 955
29480c32
JB
956 /* Remove trailing __{digit}+ or trailing ${digit}+. */
957
4c4b4cd2 958 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 959 {
4c4b4cd2
PH
960 i = len0 - 2;
961 while ((i >= 0 && isdigit (encoded[i]))
962 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
963 i -= 1;
964 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
965 len0 = i - 1;
966 else if (encoded[i] == '$')
967 len0 = i;
d2e4a39e 968 }
14f9c5c9 969
29480c32
JB
970 /* The first few characters that are not alphabetic are not part
971 of any encoding we use, so we can copy them over verbatim. */
972
4c4b4cd2
PH
973 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
974 decoded[j] = encoded[i];
14f9c5c9
AS
975
976 at_start_name = 1;
977 while (i < len0)
978 {
29480c32 979 /* Is this a symbol function? */
4c4b4cd2
PH
980 if (at_start_name && encoded[i] == 'O')
981 {
982 int k;
983 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
984 {
985 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
986 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
987 op_len - 1) == 0)
988 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
989 {
990 strcpy (decoded + j, ada_opname_table[k].decoded);
991 at_start_name = 0;
992 i += op_len;
993 j += strlen (ada_opname_table[k].decoded);
994 break;
995 }
996 }
997 if (ada_opname_table[k].encoded != NULL)
998 continue;
999 }
14f9c5c9
AS
1000 at_start_name = 0;
1001
529cad9c
PH
1002 /* Replace "TK__" with "__", which will eventually be translated
1003 into "." (just below). */
1004
4c4b4cd2
PH
1005 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1006 i += 2;
529cad9c 1007
29480c32
JB
1008 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1009 be translated into "." (just below). These are internal names
1010 generated for anonymous blocks inside which our symbol is nested. */
1011
1012 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1013 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1014 && isdigit (encoded [i+4]))
1015 {
1016 int k = i + 5;
1017
1018 while (k < len0 && isdigit (encoded[k]))
1019 k++; /* Skip any extra digit. */
1020
1021 /* Double-check that the "__B_{DIGITS}+" sequence we found
1022 is indeed followed by "__". */
1023 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1024 i = k;
1025 }
1026
529cad9c
PH
1027 /* Remove _E{DIGITS}+[sb] */
1028
1029 /* Just as for protected object subprograms, there are 2 categories
1030 of subprograms created by the compiler for each entry. The first
1031 one implements the actual entry code, and has a suffix following
1032 the convention above; the second one implements the barrier and
1033 uses the same convention as above, except that the 'E' is replaced
1034 by a 'B'.
1035
1036 Just as above, we do not decode the name of barrier functions
1037 to give the user a clue that the code he is debugging has been
1038 internally generated. */
1039
1040 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1041 && isdigit (encoded[i+2]))
1042 {
1043 int k = i + 3;
1044
1045 while (k < len0 && isdigit (encoded[k]))
1046 k++;
1047
1048 if (k < len0
1049 && (encoded[k] == 'b' || encoded[k] == 's'))
1050 {
1051 k++;
1052 /* Just as an extra precaution, make sure that if this
1053 suffix is followed by anything else, it is a '_'.
1054 Otherwise, we matched this sequence by accident. */
1055 if (k == len0
1056 || (k < len0 && encoded[k] == '_'))
1057 i = k;
1058 }
1059 }
1060
1061 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1062 the GNAT front-end in protected object subprograms. */
1063
1064 if (i < len0 + 3
1065 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1066 {
1067 /* Backtrack a bit up until we reach either the begining of
1068 the encoded name, or "__". Make sure that we only find
1069 digits or lowercase characters. */
1070 const char *ptr = encoded + i - 1;
1071
1072 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1073 ptr--;
1074 if (ptr < encoded
1075 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1076 i++;
1077 }
1078
4c4b4cd2
PH
1079 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1080 {
29480c32
JB
1081 /* This is a X[bn]* sequence not separated from the previous
1082 part of the name with a non-alpha-numeric character (in other
1083 words, immediately following an alpha-numeric character), then
1084 verify that it is placed at the end of the encoded name. If
1085 not, then the encoding is not valid and we should abort the
1086 decoding. Otherwise, just skip it, it is used in body-nested
1087 package names. */
4c4b4cd2
PH
1088 do
1089 i += 1;
1090 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1091 if (i < len0)
1092 goto Suppress;
1093 }
cdc7bb92 1094 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1095 {
29480c32 1096 /* Replace '__' by '.'. */
4c4b4cd2
PH
1097 decoded[j] = '.';
1098 at_start_name = 1;
1099 i += 2;
1100 j += 1;
1101 }
14f9c5c9 1102 else
4c4b4cd2 1103 {
29480c32
JB
1104 /* It's a character part of the decoded name, so just copy it
1105 over. */
4c4b4cd2
PH
1106 decoded[j] = encoded[i];
1107 i += 1;
1108 j += 1;
1109 }
14f9c5c9 1110 }
4c4b4cd2 1111 decoded[j] = '\000';
14f9c5c9 1112
29480c32
JB
1113 /* Decoded names should never contain any uppercase character.
1114 Double-check this, and abort the decoding if we find one. */
1115
4c4b4cd2
PH
1116 for (i = 0; decoded[i] != '\0'; i += 1)
1117 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1118 goto Suppress;
1119
4c4b4cd2
PH
1120 if (strcmp (decoded, encoded) == 0)
1121 return encoded;
1122 else
1123 return decoded;
14f9c5c9
AS
1124
1125Suppress:
4c4b4cd2
PH
1126 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1127 decoded = decoding_buffer;
1128 if (encoded[0] == '<')
1129 strcpy (decoded, encoded);
14f9c5c9 1130 else
88c15c34 1131 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1132 return decoded;
1133
1134}
1135
1136/* Table for keeping permanent unique copies of decoded names. Once
1137 allocated, names in this table are never released. While this is a
1138 storage leak, it should not be significant unless there are massive
1139 changes in the set of decoded names in successive versions of a
1140 symbol table loaded during a single session. */
1141static struct htab *decoded_names_store;
1142
1143/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1144 in the language-specific part of GSYMBOL, if it has not been
1145 previously computed. Tries to save the decoded name in the same
1146 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1147 in any case, the decoded symbol has a lifetime at least that of
1148 GSYMBOL).
1149 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1150 const, but nevertheless modified to a semantically equivalent form
1151 when a decoded name is cached in it.
76a01679 1152*/
4c4b4cd2 1153
76a01679
JB
1154char *
1155ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1156{
76a01679 1157 char **resultp =
4c4b4cd2
PH
1158 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1159 if (*resultp == NULL)
1160 {
1161 const char *decoded = ada_decode (gsymbol->name);
714835d5 1162 if (gsymbol->obj_section != NULL)
76a01679 1163 {
714835d5
UW
1164 struct objfile *objf = gsymbol->obj_section->objfile;
1165 *resultp = obsavestring (decoded, strlen (decoded),
1166 &objf->objfile_obstack);
76a01679 1167 }
4c4b4cd2 1168 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1169 case, we put the result on the heap. Since we only decode
1170 when needed, we hope this usually does not cause a
1171 significant memory leak (FIXME). */
4c4b4cd2 1172 if (*resultp == NULL)
76a01679
JB
1173 {
1174 char **slot = (char **) htab_find_slot (decoded_names_store,
1175 decoded, INSERT);
1176 if (*slot == NULL)
1177 *slot = xstrdup (decoded);
1178 *resultp = *slot;
1179 }
4c4b4cd2 1180 }
14f9c5c9 1181
4c4b4cd2
PH
1182 return *resultp;
1183}
76a01679 1184
2c0b251b 1185static char *
76a01679 1186ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1187{
1188 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1189}
1190
1191/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1192 suffixes that encode debugging information or leading _ada_ on
1193 SYM_NAME (see is_name_suffix commentary for the debugging
1194 information that is ignored). If WILD, then NAME need only match a
1195 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1196 either argument is NULL. */
14f9c5c9 1197
2c0b251b 1198static int
d2e4a39e 1199ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1200{
1201 if (sym_name == NULL || name == NULL)
1202 return 0;
1203 else if (wild)
1204 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1205 else
1206 {
1207 int len_name = strlen (name);
4c4b4cd2
PH
1208 return (strncmp (sym_name, name, len_name) == 0
1209 && is_name_suffix (sym_name + len_name))
1210 || (strncmp (sym_name, "_ada_", 5) == 0
1211 && strncmp (sym_name + 5, name, len_name) == 0
1212 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1213 }
14f9c5c9 1214}
14f9c5c9 1215\f
d2e4a39e 1216
4c4b4cd2 1217 /* Arrays */
14f9c5c9 1218
4c4b4cd2 1219/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1220
d2e4a39e
AS
1221static char *bound_name[] = {
1222 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1223 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1224};
1225
1226/* Maximum number of array dimensions we are prepared to handle. */
1227
4c4b4cd2 1228#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1229
4c4b4cd2 1230/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1231
1232static void
50810684
UW
1233modify_general_field (struct type *type, char *addr,
1234 LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1235{
50810684 1236 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1237}
1238
1239
4c4b4cd2
PH
1240/* The desc_* routines return primitive portions of array descriptors
1241 (fat pointers). */
14f9c5c9
AS
1242
1243/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1244 level of indirection, if needed. */
1245
d2e4a39e
AS
1246static struct type *
1247desc_base_type (struct type *type)
14f9c5c9
AS
1248{
1249 if (type == NULL)
1250 return NULL;
61ee279c 1251 type = ada_check_typedef (type);
1265e4aa
JB
1252 if (type != NULL
1253 && (TYPE_CODE (type) == TYPE_CODE_PTR
1254 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1255 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1256 else
1257 return type;
1258}
1259
4c4b4cd2
PH
1260/* True iff TYPE indicates a "thin" array pointer type. */
1261
14f9c5c9 1262static int
d2e4a39e 1263is_thin_pntr (struct type *type)
14f9c5c9 1264{
d2e4a39e 1265 return
14f9c5c9
AS
1266 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1267 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1268}
1269
4c4b4cd2
PH
1270/* The descriptor type for thin pointer type TYPE. */
1271
d2e4a39e
AS
1272static struct type *
1273thin_descriptor_type (struct type *type)
14f9c5c9 1274{
d2e4a39e 1275 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1276 if (base_type == NULL)
1277 return NULL;
1278 if (is_suffix (ada_type_name (base_type), "___XVE"))
1279 return base_type;
d2e4a39e 1280 else
14f9c5c9 1281 {
d2e4a39e 1282 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1283 if (alt_type == NULL)
4c4b4cd2 1284 return base_type;
14f9c5c9 1285 else
4c4b4cd2 1286 return alt_type;
14f9c5c9
AS
1287 }
1288}
1289
4c4b4cd2
PH
1290/* A pointer to the array data for thin-pointer value VAL. */
1291
d2e4a39e
AS
1292static struct value *
1293thin_data_pntr (struct value *val)
14f9c5c9 1294{
df407dfe 1295 struct type *type = value_type (val);
556bdfd4
UW
1296 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1297 data_type = lookup_pointer_type (data_type);
1298
14f9c5c9 1299 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1300 return value_cast (data_type, value_copy (val));
d2e4a39e 1301 else
42ae5230 1302 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1303}
1304
4c4b4cd2
PH
1305/* True iff TYPE indicates a "thick" array pointer type. */
1306
14f9c5c9 1307static int
d2e4a39e 1308is_thick_pntr (struct type *type)
14f9c5c9
AS
1309{
1310 type = desc_base_type (type);
1311 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1312 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1313}
1314
4c4b4cd2
PH
1315/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1316 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1317
d2e4a39e
AS
1318static struct type *
1319desc_bounds_type (struct type *type)
14f9c5c9 1320{
d2e4a39e 1321 struct type *r;
14f9c5c9
AS
1322
1323 type = desc_base_type (type);
1324
1325 if (type == NULL)
1326 return NULL;
1327 else if (is_thin_pntr (type))
1328 {
1329 type = thin_descriptor_type (type);
1330 if (type == NULL)
4c4b4cd2 1331 return NULL;
14f9c5c9
AS
1332 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1333 if (r != NULL)
61ee279c 1334 return ada_check_typedef (r);
14f9c5c9
AS
1335 }
1336 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1337 {
1338 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1339 if (r != NULL)
61ee279c 1340 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1341 }
1342 return NULL;
1343}
1344
1345/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1346 one, a pointer to its bounds data. Otherwise NULL. */
1347
d2e4a39e
AS
1348static struct value *
1349desc_bounds (struct value *arr)
14f9c5c9 1350{
df407dfe 1351 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1352 if (is_thin_pntr (type))
14f9c5c9 1353 {
d2e4a39e 1354 struct type *bounds_type =
4c4b4cd2 1355 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1356 LONGEST addr;
1357
4cdfadb1 1358 if (bounds_type == NULL)
323e0a4a 1359 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1360
1361 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1362 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1363 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1365 addr = value_as_long (arr);
d2e4a39e 1366 else
42ae5230 1367 addr = value_address (arr);
14f9c5c9 1368
d2e4a39e 1369 return
4c4b4cd2
PH
1370 value_from_longest (lookup_pointer_type (bounds_type),
1371 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1372 }
1373
1374 else if (is_thick_pntr (type))
d2e4a39e 1375 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1376 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1377 else
1378 return NULL;
1379}
1380
4c4b4cd2
PH
1381/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1382 position of the field containing the address of the bounds data. */
1383
14f9c5c9 1384static int
d2e4a39e 1385fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1386{
1387 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1388}
1389
1390/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1391 size of the field containing the address of the bounds data. */
1392
14f9c5c9 1393static int
d2e4a39e 1394fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1395{
1396 type = desc_base_type (type);
1397
d2e4a39e 1398 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1399 return TYPE_FIELD_BITSIZE (type, 1);
1400 else
61ee279c 1401 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1402}
1403
4c4b4cd2 1404/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1405 pointer to one, the type of its array data (a array-with-no-bounds type);
1406 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1407 data. */
4c4b4cd2 1408
d2e4a39e 1409static struct type *
556bdfd4 1410desc_data_target_type (struct type *type)
14f9c5c9
AS
1411{
1412 type = desc_base_type (type);
1413
4c4b4cd2 1414 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1415 if (is_thin_pntr (type))
556bdfd4 1416 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1417 else if (is_thick_pntr (type))
556bdfd4
UW
1418 {
1419 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1420
1421 if (data_type
1422 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1423 return TYPE_TARGET_TYPE (data_type);
1424 }
1425
1426 return NULL;
14f9c5c9
AS
1427}
1428
1429/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1430 its array data. */
4c4b4cd2 1431
d2e4a39e
AS
1432static struct value *
1433desc_data (struct value *arr)
14f9c5c9 1434{
df407dfe 1435 struct type *type = value_type (arr);
14f9c5c9
AS
1436 if (is_thin_pntr (type))
1437 return thin_data_pntr (arr);
1438 else if (is_thick_pntr (type))
d2e4a39e 1439 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1440 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1441 else
1442 return NULL;
1443}
1444
1445
1446/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1447 position of the field containing the address of the data. */
1448
14f9c5c9 1449static int
d2e4a39e 1450fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1451{
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1453}
1454
1455/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1456 size of the field containing the address of the data. */
1457
14f9c5c9 1458static int
d2e4a39e 1459fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1460{
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1465 else
14f9c5c9
AS
1466 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1467}
1468
4c4b4cd2 1469/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1470 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1471 bound, if WHICH is 1. The first bound is I=1. */
1472
d2e4a39e
AS
1473static struct value *
1474desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1475{
d2e4a39e 1476 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1477 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1478}
1479
1480/* If BOUNDS is an array-bounds structure type, return the bit position
1481 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1482 bound, if WHICH is 1. The first bound is I=1. */
1483
14f9c5c9 1484static int
d2e4a39e 1485desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1486{
d2e4a39e 1487 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1488}
1489
1490/* If BOUNDS is an array-bounds structure type, return the bit field size
1491 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1492 bound, if WHICH is 1. The first bound is I=1. */
1493
76a01679 1494static int
d2e4a39e 1495desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1496{
1497 type = desc_base_type (type);
1498
d2e4a39e
AS
1499 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1500 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1501 else
1502 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1503}
1504
1505/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1506 Ith bound (numbering from 1). Otherwise, NULL. */
1507
d2e4a39e
AS
1508static struct type *
1509desc_index_type (struct type *type, int i)
14f9c5c9
AS
1510{
1511 type = desc_base_type (type);
1512
1513 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1514 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1515 else
14f9c5c9
AS
1516 return NULL;
1517}
1518
4c4b4cd2
PH
1519/* The number of index positions in the array-bounds type TYPE.
1520 Return 0 if TYPE is NULL. */
1521
14f9c5c9 1522static int
d2e4a39e 1523desc_arity (struct type *type)
14f9c5c9
AS
1524{
1525 type = desc_base_type (type);
1526
1527 if (type != NULL)
1528 return TYPE_NFIELDS (type) / 2;
1529 return 0;
1530}
1531
4c4b4cd2
PH
1532/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1533 an array descriptor type (representing an unconstrained array
1534 type). */
1535
76a01679
JB
1536static int
1537ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1538{
1539 if (type == NULL)
1540 return 0;
61ee279c 1541 type = ada_check_typedef (type);
4c4b4cd2 1542 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1543 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1544}
1545
52ce6436
PH
1546/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1547 * to one. */
1548
2c0b251b 1549static int
52ce6436
PH
1550ada_is_array_type (struct type *type)
1551{
1552 while (type != NULL
1553 && (TYPE_CODE (type) == TYPE_CODE_PTR
1554 || TYPE_CODE (type) == TYPE_CODE_REF))
1555 type = TYPE_TARGET_TYPE (type);
1556 return ada_is_direct_array_type (type);
1557}
1558
4c4b4cd2 1559/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1560
14f9c5c9 1561int
4c4b4cd2 1562ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1563{
1564 if (type == NULL)
1565 return 0;
61ee279c 1566 type = ada_check_typedef (type);
14f9c5c9 1567 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1568 || (TYPE_CODE (type) == TYPE_CODE_PTR
1569 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1570}
1571
4c4b4cd2
PH
1572/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1573
14f9c5c9 1574int
4c4b4cd2 1575ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1576{
556bdfd4 1577 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1578
1579 if (type == NULL)
1580 return 0;
61ee279c 1581 type = ada_check_typedef (type);
556bdfd4
UW
1582 return (data_type != NULL
1583 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1584 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1585}
1586
1587/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1588 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1589 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1590 is still needed. */
1591
14f9c5c9 1592int
ebf56fd3 1593ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1594{
d2e4a39e 1595 return
14f9c5c9
AS
1596 type != NULL
1597 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1598 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1599 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1600 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1601}
1602
1603
4c4b4cd2 1604/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1605 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1606 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1607 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1608 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1609 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1610 a descriptor. */
d2e4a39e
AS
1611struct type *
1612ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1613{
ad82864c
JB
1614 if (ada_is_constrained_packed_array_type (value_type (arr)))
1615 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1616
df407dfe
AC
1617 if (!ada_is_array_descriptor_type (value_type (arr)))
1618 return value_type (arr);
d2e4a39e
AS
1619
1620 if (!bounds)
ad82864c
JB
1621 {
1622 struct type *array_type =
1623 ada_check_typedef (desc_data_target_type (value_type (arr)));
1624
1625 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1626 TYPE_FIELD_BITSIZE (array_type, 0) =
1627 decode_packed_array_bitsize (value_type (arr));
1628
1629 return array_type;
1630 }
14f9c5c9
AS
1631 else
1632 {
d2e4a39e 1633 struct type *elt_type;
14f9c5c9 1634 int arity;
d2e4a39e 1635 struct value *descriptor;
14f9c5c9 1636
df407dfe
AC
1637 elt_type = ada_array_element_type (value_type (arr), -1);
1638 arity = ada_array_arity (value_type (arr));
14f9c5c9 1639
d2e4a39e 1640 if (elt_type == NULL || arity == 0)
df407dfe 1641 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1642
1643 descriptor = desc_bounds (arr);
d2e4a39e 1644 if (value_as_long (descriptor) == 0)
4c4b4cd2 1645 return NULL;
d2e4a39e 1646 while (arity > 0)
4c4b4cd2 1647 {
e9bb382b
UW
1648 struct type *range_type = alloc_type_copy (value_type (arr));
1649 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1650 struct value *low = desc_one_bound (descriptor, arity, 0);
1651 struct value *high = desc_one_bound (descriptor, arity, 1);
1652 arity -= 1;
1653
df407dfe 1654 create_range_type (range_type, value_type (low),
529cad9c
PH
1655 longest_to_int (value_as_long (low)),
1656 longest_to_int (value_as_long (high)));
4c4b4cd2 1657 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1658
1659 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1660 TYPE_FIELD_BITSIZE (elt_type, 0) =
1661 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1662 }
14f9c5c9
AS
1663
1664 return lookup_pointer_type (elt_type);
1665 }
1666}
1667
1668/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1669 Otherwise, returns either a standard GDB array with bounds set
1670 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1671 GDB array. Returns NULL if ARR is a null fat pointer. */
1672
d2e4a39e
AS
1673struct value *
1674ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1675{
df407dfe 1676 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1677 {
d2e4a39e 1678 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1679 if (arrType == NULL)
4c4b4cd2 1680 return NULL;
14f9c5c9
AS
1681 return value_cast (arrType, value_copy (desc_data (arr)));
1682 }
ad82864c
JB
1683 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1684 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1685 else
1686 return arr;
1687}
1688
1689/* If ARR does not represent an array, returns ARR unchanged.
1690 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1691 be ARR itself if it already is in the proper form). */
1692
1693static struct value *
d2e4a39e 1694ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1695{
df407dfe 1696 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1697 {
d2e4a39e 1698 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1699 if (arrVal == NULL)
323e0a4a 1700 error (_("Bounds unavailable for null array pointer."));
529cad9c 1701 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1702 return value_ind (arrVal);
1703 }
ad82864c
JB
1704 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1705 return decode_constrained_packed_array (arr);
d2e4a39e 1706 else
14f9c5c9
AS
1707 return arr;
1708}
1709
1710/* If TYPE represents a GNAT array type, return it translated to an
1711 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1712 packing). For other types, is the identity. */
1713
d2e4a39e
AS
1714struct type *
1715ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1716{
ad82864c
JB
1717 if (ada_is_constrained_packed_array_type (type))
1718 return decode_constrained_packed_array_type (type);
17280b9f
UW
1719
1720 if (ada_is_array_descriptor_type (type))
556bdfd4 1721 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1722
1723 return type;
14f9c5c9
AS
1724}
1725
4c4b4cd2
PH
1726/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1727
ad82864c
JB
1728static int
1729ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1730{
1731 if (type == NULL)
1732 return 0;
4c4b4cd2 1733 type = desc_base_type (type);
61ee279c 1734 type = ada_check_typedef (type);
d2e4a39e 1735 return
14f9c5c9
AS
1736 ada_type_name (type) != NULL
1737 && strstr (ada_type_name (type), "___XP") != NULL;
1738}
1739
ad82864c
JB
1740/* Non-zero iff TYPE represents a standard GNAT constrained
1741 packed-array type. */
1742
1743int
1744ada_is_constrained_packed_array_type (struct type *type)
1745{
1746 return ada_is_packed_array_type (type)
1747 && !ada_is_array_descriptor_type (type);
1748}
1749
1750/* Non-zero iff TYPE represents an array descriptor for a
1751 unconstrained packed-array type. */
1752
1753static int
1754ada_is_unconstrained_packed_array_type (struct type *type)
1755{
1756 return ada_is_packed_array_type (type)
1757 && ada_is_array_descriptor_type (type);
1758}
1759
1760/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1761 return the size of its elements in bits. */
1762
1763static long
1764decode_packed_array_bitsize (struct type *type)
1765{
1766 char *raw_name = ada_type_name (ada_check_typedef (type));
1767 char *tail;
1768 long bits;
1769
1770 if (!raw_name)
1771 raw_name = ada_type_name (desc_base_type (type));
1772
1773 if (!raw_name)
1774 return 0;
1775
1776 tail = strstr (raw_name, "___XP");
1777
1778 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1779 {
1780 lim_warning
1781 (_("could not understand bit size information on packed array"));
1782 return 0;
1783 }
1784
1785 return bits;
1786}
1787
14f9c5c9
AS
1788/* Given that TYPE is a standard GDB array type with all bounds filled
1789 in, and that the element size of its ultimate scalar constituents
1790 (that is, either its elements, or, if it is an array of arrays, its
1791 elements' elements, etc.) is *ELT_BITS, return an identical type,
1792 but with the bit sizes of its elements (and those of any
1793 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1794 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1795 in bits. */
1796
d2e4a39e 1797static struct type *
ad82864c 1798constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1799{
d2e4a39e
AS
1800 struct type *new_elt_type;
1801 struct type *new_type;
14f9c5c9
AS
1802 LONGEST low_bound, high_bound;
1803
61ee279c 1804 type = ada_check_typedef (type);
14f9c5c9
AS
1805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1806 return type;
1807
e9bb382b 1808 new_type = alloc_type_copy (type);
ad82864c
JB
1809 new_elt_type =
1810 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1811 elt_bits);
262452ec 1812 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1813 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1814 TYPE_NAME (new_type) = ada_type_name (type);
1815
262452ec 1816 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1817 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1818 low_bound = high_bound = 0;
1819 if (high_bound < low_bound)
1820 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1821 else
14f9c5c9
AS
1822 {
1823 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1824 TYPE_LENGTH (new_type) =
4c4b4cd2 1825 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1826 }
1827
876cecd0 1828 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1829 return new_type;
1830}
1831
ad82864c
JB
1832/* The array type encoded by TYPE, where
1833 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 1834
d2e4a39e 1835static struct type *
ad82864c 1836decode_constrained_packed_array_type (struct type *type)
d2e4a39e 1837{
4c4b4cd2 1838 struct symbol *sym;
d2e4a39e 1839 struct block **blocks;
727e3d2e
JB
1840 char *raw_name = ada_type_name (ada_check_typedef (type));
1841 char *name;
1842 char *tail;
d2e4a39e 1843 struct type *shadow_type;
14f9c5c9
AS
1844 long bits;
1845 int i, n;
1846
727e3d2e
JB
1847 if (!raw_name)
1848 raw_name = ada_type_name (desc_base_type (type));
1849
1850 if (!raw_name)
1851 return NULL;
1852
1853 name = (char *) alloca (strlen (raw_name) + 1);
1854 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1855 type = desc_base_type (type);
1856
14f9c5c9
AS
1857 memcpy (name, raw_name, tail - raw_name);
1858 name[tail - raw_name] = '\000';
1859
b4ba55a1
JB
1860 shadow_type = ada_find_parallel_type_with_name (type, name);
1861
1862 if (shadow_type == NULL)
14f9c5c9 1863 {
323e0a4a 1864 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1865 return NULL;
1866 }
cb249c71 1867 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1868
1869 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1870 {
323e0a4a 1871 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1872 return NULL;
1873 }
d2e4a39e 1874
ad82864c
JB
1875 bits = decode_packed_array_bitsize (type);
1876 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
1877}
1878
ad82864c
JB
1879/* Given that ARR is a struct value *indicating a GNAT constrained packed
1880 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
1881 standard GDB array type except that the BITSIZEs of the array
1882 target types are set to the number of bits in each element, and the
4c4b4cd2 1883 type length is set appropriately. */
14f9c5c9 1884
d2e4a39e 1885static struct value *
ad82864c 1886decode_constrained_packed_array (struct value *arr)
14f9c5c9 1887{
4c4b4cd2 1888 struct type *type;
14f9c5c9 1889
4c4b4cd2 1890 arr = ada_coerce_ref (arr);
284614f0
JB
1891
1892 /* If our value is a pointer, then dererence it. Make sure that
1893 this operation does not cause the target type to be fixed, as
1894 this would indirectly cause this array to be decoded. The rest
1895 of the routine assumes that the array hasn't been decoded yet,
1896 so we use the basic "value_ind" routine to perform the dereferencing,
1897 as opposed to using "ada_value_ind". */
df407dfe 1898 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1899 arr = value_ind (arr);
4c4b4cd2 1900
ad82864c 1901 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
1902 if (type == NULL)
1903 {
323e0a4a 1904 error (_("can't unpack array"));
14f9c5c9
AS
1905 return NULL;
1906 }
61ee279c 1907
50810684 1908 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 1909 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1910 {
1911 /* This is a (right-justified) modular type representing a packed
1912 array with no wrapper. In order to interpret the value through
1913 the (left-justified) packed array type we just built, we must
1914 first left-justify it. */
1915 int bit_size, bit_pos;
1916 ULONGEST mod;
1917
df407dfe 1918 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1919 bit_size = 0;
1920 while (mod > 0)
1921 {
1922 bit_size += 1;
1923 mod >>= 1;
1924 }
df407dfe 1925 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1926 arr = ada_value_primitive_packed_val (arr, NULL,
1927 bit_pos / HOST_CHAR_BIT,
1928 bit_pos % HOST_CHAR_BIT,
1929 bit_size,
1930 type);
1931 }
1932
4c4b4cd2 1933 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1934}
1935
1936
1937/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1938 given in IND. ARR must be a simple array. */
14f9c5c9 1939
d2e4a39e
AS
1940static struct value *
1941value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1942{
1943 int i;
1944 int bits, elt_off, bit_off;
1945 long elt_total_bit_offset;
d2e4a39e
AS
1946 struct type *elt_type;
1947 struct value *v;
14f9c5c9
AS
1948
1949 bits = 0;
1950 elt_total_bit_offset = 0;
df407dfe 1951 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1952 for (i = 0; i < arity; i += 1)
14f9c5c9 1953 {
d2e4a39e 1954 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1955 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1956 error
323e0a4a 1957 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1958 else
4c4b4cd2
PH
1959 {
1960 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1961 LONGEST lowerbound, upperbound;
1962 LONGEST idx;
1963
1964 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1965 {
323e0a4a 1966 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1967 lowerbound = upperbound = 0;
1968 }
1969
3cb382c9 1970 idx = pos_atr (ind[i]);
4c4b4cd2 1971 if (idx < lowerbound || idx > upperbound)
323e0a4a 1972 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1973 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1974 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1975 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1976 }
14f9c5c9
AS
1977 }
1978 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1979 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1980
1981 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1982 bits, elt_type);
14f9c5c9
AS
1983 return v;
1984}
1985
4c4b4cd2 1986/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1987
1988static int
d2e4a39e 1989has_negatives (struct type *type)
14f9c5c9 1990{
d2e4a39e
AS
1991 switch (TYPE_CODE (type))
1992 {
1993 default:
1994 return 0;
1995 case TYPE_CODE_INT:
1996 return !TYPE_UNSIGNED (type);
1997 case TYPE_CODE_RANGE:
1998 return TYPE_LOW_BOUND (type) < 0;
1999 }
14f9c5c9 2000}
d2e4a39e 2001
14f9c5c9
AS
2002
2003/* Create a new value of type TYPE from the contents of OBJ starting
2004 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2005 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2006 assigning through the result will set the field fetched from.
2007 VALADDR is ignored unless OBJ is NULL, in which case,
2008 VALADDR+OFFSET must address the start of storage containing the
2009 packed value. The value returned in this case is never an lval.
2010 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2011
d2e4a39e 2012struct value *
fc1a4b47 2013ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2014 long offset, int bit_offset, int bit_size,
4c4b4cd2 2015 struct type *type)
14f9c5c9 2016{
d2e4a39e 2017 struct value *v;
4c4b4cd2
PH
2018 int src, /* Index into the source area */
2019 targ, /* Index into the target area */
2020 srcBitsLeft, /* Number of source bits left to move */
2021 nsrc, ntarg, /* Number of source and target bytes */
2022 unusedLS, /* Number of bits in next significant
2023 byte of source that are unused */
2024 accumSize; /* Number of meaningful bits in accum */
2025 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2026 unsigned char *unpacked;
4c4b4cd2 2027 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2028 unsigned char sign;
2029 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2030 /* Transmit bytes from least to most significant; delta is the direction
2031 the indices move. */
50810684 2032 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2033
61ee279c 2034 type = ada_check_typedef (type);
14f9c5c9
AS
2035
2036 if (obj == NULL)
2037 {
2038 v = allocate_value (type);
d2e4a39e 2039 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2040 }
9214ee5f 2041 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2042 {
2043 v = value_at (type,
42ae5230 2044 value_address (obj) + offset);
d2e4a39e 2045 bytes = (unsigned char *) alloca (len);
42ae5230 2046 read_memory (value_address (v), bytes, len);
14f9c5c9 2047 }
d2e4a39e 2048 else
14f9c5c9
AS
2049 {
2050 v = allocate_value (type);
0fd88904 2051 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2052 }
d2e4a39e
AS
2053
2054 if (obj != NULL)
14f9c5c9 2055 {
42ae5230 2056 CORE_ADDR new_addr;
74bcbdf3 2057 set_value_component_location (v, obj);
42ae5230 2058 new_addr = value_address (obj) + offset;
9bbda503
AC
2059 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2060 set_value_bitsize (v, bit_size);
df407dfe 2061 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2062 {
42ae5230 2063 ++new_addr;
9bbda503 2064 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2065 }
42ae5230 2066 set_value_address (v, new_addr);
14f9c5c9
AS
2067 }
2068 else
9bbda503 2069 set_value_bitsize (v, bit_size);
0fd88904 2070 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2071
2072 srcBitsLeft = bit_size;
2073 nsrc = len;
2074 ntarg = TYPE_LENGTH (type);
2075 sign = 0;
2076 if (bit_size == 0)
2077 {
2078 memset (unpacked, 0, TYPE_LENGTH (type));
2079 return v;
2080 }
50810684 2081 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2082 {
d2e4a39e 2083 src = len - 1;
1265e4aa
JB
2084 if (has_negatives (type)
2085 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2086 sign = ~0;
d2e4a39e
AS
2087
2088 unusedLS =
4c4b4cd2
PH
2089 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2090 % HOST_CHAR_BIT;
14f9c5c9
AS
2091
2092 switch (TYPE_CODE (type))
4c4b4cd2
PH
2093 {
2094 case TYPE_CODE_ARRAY:
2095 case TYPE_CODE_UNION:
2096 case TYPE_CODE_STRUCT:
2097 /* Non-scalar values must be aligned at a byte boundary... */
2098 accumSize =
2099 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2100 /* ... And are placed at the beginning (most-significant) bytes
2101 of the target. */
529cad9c 2102 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2103 ntarg = targ + 1;
4c4b4cd2
PH
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
14f9c5c9 2110 }
d2e4a39e 2111 else
14f9c5c9
AS
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
d2e4a39e 2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2120 sign = ~0;
14f9c5c9 2121 }
d2e4a39e 2122
14f9c5c9
AS
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2127 part of the value. */
d2e4a39e 2128 unsigned int unusedMSMask =
4c4b4cd2
PH
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
14f9c5c9 2132 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2133 accum |=
4c4b4cd2 2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2135 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2136 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
14f9c5c9
AS
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160}
d2e4a39e 2161
14f9c5c9
AS
2162/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2164 not overlap. */
14f9c5c9 2165static void
fc1a4b47 2166move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2167 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2168{
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
50810684 2176 if (bits_big_endian_p)
14f9c5c9
AS
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
d2e4a39e 2182 while (n > 0)
4c4b4cd2
PH
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
14f9c5c9
AS
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
d2e4a39e 2208 while (n > 0)
4c4b4cd2
PH
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
14f9c5c9
AS
2224 }
2225}
2226
14f9c5c9
AS
2227/* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2230 floating-point or non-scalar types. */
14f9c5c9 2231
d2e4a39e
AS
2232static struct value *
2233ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2234{
df407dfe
AC
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
14f9c5c9 2237
52ce6436
PH
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
88e3b34b 2246 if (!deprecated_value_modifiable (toval))
323e0a4a 2247 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2248
d2e4a39e 2249 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2250 && bits > 0
d2e4a39e 2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2253 {
df407dfe
AC
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2256 int from_size;
d2e4a39e
AS
2257 char *buffer = (char *) alloca (len);
2258 struct value *val;
42ae5230 2259 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2260
2261 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2262 fromval = value_cast (type, fromval);
14f9c5c9 2263
52ce6436 2264 read_memory (to_addr, buffer, len);
aced2898
PH
2265 from_size = value_bitsize (fromval);
2266 if (from_size == 0)
2267 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2268 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2269 move_bits (buffer, value_bitpos (toval),
50810684 2270 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2271 else
50810684
UW
2272 move_bits (buffer, value_bitpos (toval),
2273 value_contents (fromval), 0, bits, 0);
52ce6436 2274 write_memory (to_addr, buffer, len);
8cebebb9
PP
2275 observer_notify_memory_changed (to_addr, len, buffer);
2276
14f9c5c9 2277 val = value_copy (toval);
0fd88904 2278 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2279 TYPE_LENGTH (type));
04624583 2280 deprecated_set_value_type (val, type);
d2e4a39e 2281
14f9c5c9
AS
2282 return val;
2283 }
2284
2285 return value_assign (toval, fromval);
2286}
2287
2288
52ce6436
PH
2289/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2290 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2291 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2292 * COMPONENT, and not the inferior's memory. The current contents
2293 * of COMPONENT are ignored. */
2294static void
2295value_assign_to_component (struct value *container, struct value *component,
2296 struct value *val)
2297{
2298 LONGEST offset_in_container =
42ae5230 2299 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
50810684 2311 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2316 bits, 1);
52ce6436
PH
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
50810684 2320 value_contents (val), 0, bits, 0);
52ce6436
PH
2321}
2322
4c4b4cd2
PH
2323/* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2325 thereto. */
2326
d2e4a39e
AS
2327struct value *
2328ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2329{
2330 int k;
d2e4a39e
AS
2331 struct value *elt;
2332 struct type *elt_type;
14f9c5c9
AS
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
df407dfe 2336 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2344 error (_("too many subscripts (%d expected)"), k);
2497b498 2345 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2346 }
2347 return elt;
2348}
2349
2350/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2352 IND. Does not read the entire array into memory. */
14f9c5c9 2353
2c0b251b 2354static struct value *
d2e4a39e 2355ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2356 struct value **ind)
14f9c5c9
AS
2357{
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
14f9c5c9
AS
2363
2364 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2365 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2366 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2367 value_copy (arr));
14f9c5c9 2368 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2369 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2370 type = TYPE_TARGET_TYPE (type);
2371 }
2372
2373 return value_ind (arr);
2374}
2375
0b5d8877 2376/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2377 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2378 elements starting at index LOW. The lower bound of this array is LOW, as
2379 per Ada rules. */
0b5d8877 2380static struct value *
f5938064
JG
2381ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2382 int low, int high)
0b5d8877 2383{
6c038f32 2384 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2385 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2386 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2387 struct type *index_type =
2388 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2389 low, high);
6c038f32 2390 struct type *slice_type =
0b5d8877 2391 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2392 return value_at_lazy (slice_type, base);
0b5d8877
PH
2393}
2394
2395
2396static struct value *
2397ada_value_slice (struct value *array, int low, int high)
2398{
df407dfe 2399 struct type *type = value_type (array);
6c038f32 2400 struct type *index_type =
0b5d8877 2401 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2402 struct type *slice_type =
0b5d8877 2403 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2404 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2405}
2406
14f9c5c9
AS
2407/* If type is a record type in the form of a standard GNAT array
2408 descriptor, returns the number of dimensions for type. If arr is a
2409 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2410 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2411
2412int
d2e4a39e 2413ada_array_arity (struct type *type)
14f9c5c9
AS
2414{
2415 int arity;
2416
2417 if (type == NULL)
2418 return 0;
2419
2420 type = desc_base_type (type);
2421
2422 arity = 0;
d2e4a39e 2423 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2424 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2425 else
2426 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2427 {
4c4b4cd2 2428 arity += 1;
61ee279c 2429 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2430 }
d2e4a39e 2431
14f9c5c9
AS
2432 return arity;
2433}
2434
2435/* If TYPE is a record type in the form of a standard GNAT array
2436 descriptor or a simple array type, returns the element type for
2437 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2438 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2439
d2e4a39e
AS
2440struct type *
2441ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2442{
2443 type = desc_base_type (type);
2444
d2e4a39e 2445 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2446 {
2447 int k;
d2e4a39e 2448 struct type *p_array_type;
14f9c5c9 2449
556bdfd4 2450 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2451
2452 k = ada_array_arity (type);
2453 if (k == 0)
4c4b4cd2 2454 return NULL;
d2e4a39e 2455
4c4b4cd2 2456 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2457 if (nindices >= 0 && k > nindices)
4c4b4cd2 2458 k = nindices;
d2e4a39e 2459 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2460 {
61ee279c 2461 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2462 k -= 1;
2463 }
14f9c5c9
AS
2464 return p_array_type;
2465 }
2466 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2467 {
2468 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2469 {
2470 type = TYPE_TARGET_TYPE (type);
2471 nindices -= 1;
2472 }
14f9c5c9
AS
2473 return type;
2474 }
2475
2476 return NULL;
2477}
2478
4c4b4cd2 2479/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2480 Does not examine memory. Throws an error if N is invalid or TYPE
2481 is not an array type. NAME is the name of the Ada attribute being
2482 evaluated ('range, 'first, 'last, or 'length); it is used in building
2483 the error message. */
14f9c5c9 2484
1eea4ebd
UW
2485static struct type *
2486ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2487{
4c4b4cd2
PH
2488 struct type *result_type;
2489
14f9c5c9
AS
2490 type = desc_base_type (type);
2491
1eea4ebd
UW
2492 if (n < 0 || n > ada_array_arity (type))
2493 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2494
4c4b4cd2 2495 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2496 {
2497 int i;
2498
2499 for (i = 1; i < n; i += 1)
4c4b4cd2 2500 type = TYPE_TARGET_TYPE (type);
262452ec 2501 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2502 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2503 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2504 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2505 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2506 result_type = NULL;
14f9c5c9 2507 }
d2e4a39e 2508 else
1eea4ebd
UW
2509 {
2510 result_type = desc_index_type (desc_bounds_type (type), n);
2511 if (result_type == NULL)
2512 error (_("attempt to take bound of something that is not an array"));
2513 }
2514
2515 return result_type;
14f9c5c9
AS
2516}
2517
2518/* Given that arr is an array type, returns the lower bound of the
2519 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2520 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2521 array-descriptor type. It works for other arrays with bounds supplied
2522 by run-time quantities other than discriminants. */
14f9c5c9 2523
abb68b3e 2524static LONGEST
1eea4ebd 2525ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2526{
1ce677a4 2527 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2528 int i;
262452ec
JK
2529
2530 gdb_assert (which == 0 || which == 1);
14f9c5c9 2531
ad82864c
JB
2532 if (ada_is_constrained_packed_array_type (arr_type))
2533 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2534
4c4b4cd2 2535 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2536 return (LONGEST) - which;
14f9c5c9
AS
2537
2538 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2539 type = TYPE_TARGET_TYPE (arr_type);
2540 else
2541 type = arr_type;
2542
1ce677a4
UW
2543 elt_type = type;
2544 for (i = n; i > 1; i--)
2545 elt_type = TYPE_TARGET_TYPE (type);
2546
14f9c5c9 2547 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2548 if (index_type_desc != NULL)
2549 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2550 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2551 else
1ce677a4 2552 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2553
43bbcdc2
PH
2554 return
2555 (LONGEST) (which == 0
2556 ? ada_discrete_type_low_bound (index_type)
2557 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2558}
2559
2560/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2561 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2562 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2563 supplied by run-time quantities other than discriminants. */
14f9c5c9 2564
1eea4ebd 2565static LONGEST
4dc81987 2566ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2567{
df407dfe 2568 struct type *arr_type = value_type (arr);
14f9c5c9 2569
ad82864c
JB
2570 if (ada_is_constrained_packed_array_type (arr_type))
2571 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2572 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2573 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2574 else
1eea4ebd 2575 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2576}
2577
2578/* Given that arr is an array value, returns the length of the
2579 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2580 supplied by run-time quantities other than discriminants.
2581 Does not work for arrays indexed by enumeration types with representation
2582 clauses at the moment. */
14f9c5c9 2583
1eea4ebd 2584static LONGEST
d2e4a39e 2585ada_array_length (struct value *arr, int n)
14f9c5c9 2586{
df407dfe 2587 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2588
ad82864c
JB
2589 if (ada_is_constrained_packed_array_type (arr_type))
2590 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2591
4c4b4cd2 2592 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2593 return (ada_array_bound_from_type (arr_type, n, 1)
2594 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2595 else
1eea4ebd
UW
2596 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2597 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2598}
2599
2600/* An empty array whose type is that of ARR_TYPE (an array type),
2601 with bounds LOW to LOW-1. */
2602
2603static struct value *
2604empty_array (struct type *arr_type, int low)
2605{
6c038f32 2606 struct type *index_type =
0b5d8877
PH
2607 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2608 low, low - 1);
2609 struct type *elt_type = ada_array_element_type (arr_type, 1);
2610 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2611}
14f9c5c9 2612\f
d2e4a39e 2613
4c4b4cd2 2614 /* Name resolution */
14f9c5c9 2615
4c4b4cd2
PH
2616/* The "decoded" name for the user-definable Ada operator corresponding
2617 to OP. */
14f9c5c9 2618
d2e4a39e 2619static const char *
4c4b4cd2 2620ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2621{
2622 int i;
2623
4c4b4cd2 2624 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2625 {
2626 if (ada_opname_table[i].op == op)
4c4b4cd2 2627 return ada_opname_table[i].decoded;
14f9c5c9 2628 }
323e0a4a 2629 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2630}
2631
2632
4c4b4cd2
PH
2633/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2634 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2635 undefined namespace) and converts operators that are
2636 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2637 non-null, it provides a preferred result type [at the moment, only
2638 type void has any effect---causing procedures to be preferred over
2639 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2640 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2641
4c4b4cd2
PH
2642static void
2643resolve (struct expression **expp, int void_context_p)
14f9c5c9 2644{
30b15541
UW
2645 struct type *context_type = NULL;
2646 int pc = 0;
2647
2648 if (void_context_p)
2649 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2650
2651 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2652}
2653
4c4b4cd2
PH
2654/* Resolve the operator of the subexpression beginning at
2655 position *POS of *EXPP. "Resolving" consists of replacing
2656 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2657 with their resolutions, replacing built-in operators with
2658 function calls to user-defined operators, where appropriate, and,
2659 when DEPROCEDURE_P is non-zero, converting function-valued variables
2660 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2661 are as in ada_resolve, above. */
14f9c5c9 2662
d2e4a39e 2663static struct value *
4c4b4cd2 2664resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2665 struct type *context_type)
14f9c5c9
AS
2666{
2667 int pc = *pos;
2668 int i;
4c4b4cd2 2669 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2670 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2671 struct value **argvec; /* Vector of operand types (alloca'ed). */
2672 int nargs; /* Number of operands. */
52ce6436 2673 int oplen;
14f9c5c9
AS
2674
2675 argvec = NULL;
2676 nargs = 0;
2677 exp = *expp;
2678
52ce6436
PH
2679 /* Pass one: resolve operands, saving their types and updating *pos,
2680 if needed. */
14f9c5c9
AS
2681 switch (op)
2682 {
4c4b4cd2
PH
2683 case OP_FUNCALL:
2684 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2685 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2686 *pos += 7;
4c4b4cd2
PH
2687 else
2688 {
2689 *pos += 3;
2690 resolve_subexp (expp, pos, 0, NULL);
2691 }
2692 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2693 break;
2694
14f9c5c9 2695 case UNOP_ADDR:
4c4b4cd2
PH
2696 *pos += 1;
2697 resolve_subexp (expp, pos, 0, NULL);
2698 break;
2699
52ce6436
PH
2700 case UNOP_QUAL:
2701 *pos += 3;
17466c1a 2702 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2703 break;
2704
52ce6436 2705 case OP_ATR_MODULUS:
4c4b4cd2
PH
2706 case OP_ATR_SIZE:
2707 case OP_ATR_TAG:
4c4b4cd2
PH
2708 case OP_ATR_FIRST:
2709 case OP_ATR_LAST:
2710 case OP_ATR_LENGTH:
2711 case OP_ATR_POS:
2712 case OP_ATR_VAL:
4c4b4cd2
PH
2713 case OP_ATR_MIN:
2714 case OP_ATR_MAX:
52ce6436
PH
2715 case TERNOP_IN_RANGE:
2716 case BINOP_IN_BOUNDS:
2717 case UNOP_IN_RANGE:
2718 case OP_AGGREGATE:
2719 case OP_OTHERS:
2720 case OP_CHOICES:
2721 case OP_POSITIONAL:
2722 case OP_DISCRETE_RANGE:
2723 case OP_NAME:
2724 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2725 *pos += oplen;
14f9c5c9
AS
2726 break;
2727
2728 case BINOP_ASSIGN:
2729 {
4c4b4cd2
PH
2730 struct value *arg1;
2731
2732 *pos += 1;
2733 arg1 = resolve_subexp (expp, pos, 0, NULL);
2734 if (arg1 == NULL)
2735 resolve_subexp (expp, pos, 1, NULL);
2736 else
df407dfe 2737 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2738 break;
14f9c5c9
AS
2739 }
2740
4c4b4cd2 2741 case UNOP_CAST:
4c4b4cd2
PH
2742 *pos += 3;
2743 nargs = 1;
2744 break;
14f9c5c9 2745
4c4b4cd2
PH
2746 case BINOP_ADD:
2747 case BINOP_SUB:
2748 case BINOP_MUL:
2749 case BINOP_DIV:
2750 case BINOP_REM:
2751 case BINOP_MOD:
2752 case BINOP_EXP:
2753 case BINOP_CONCAT:
2754 case BINOP_LOGICAL_AND:
2755 case BINOP_LOGICAL_OR:
2756 case BINOP_BITWISE_AND:
2757 case BINOP_BITWISE_IOR:
2758 case BINOP_BITWISE_XOR:
14f9c5c9 2759
4c4b4cd2
PH
2760 case BINOP_EQUAL:
2761 case BINOP_NOTEQUAL:
2762 case BINOP_LESS:
2763 case BINOP_GTR:
2764 case BINOP_LEQ:
2765 case BINOP_GEQ:
14f9c5c9 2766
4c4b4cd2
PH
2767 case BINOP_REPEAT:
2768 case BINOP_SUBSCRIPT:
2769 case BINOP_COMMA:
40c8aaa9
JB
2770 *pos += 1;
2771 nargs = 2;
2772 break;
14f9c5c9 2773
4c4b4cd2
PH
2774 case UNOP_NEG:
2775 case UNOP_PLUS:
2776 case UNOP_LOGICAL_NOT:
2777 case UNOP_ABS:
2778 case UNOP_IND:
2779 *pos += 1;
2780 nargs = 1;
2781 break;
14f9c5c9 2782
4c4b4cd2
PH
2783 case OP_LONG:
2784 case OP_DOUBLE:
2785 case OP_VAR_VALUE:
2786 *pos += 4;
2787 break;
14f9c5c9 2788
4c4b4cd2
PH
2789 case OP_TYPE:
2790 case OP_BOOL:
2791 case OP_LAST:
4c4b4cd2
PH
2792 case OP_INTERNALVAR:
2793 *pos += 3;
2794 break;
14f9c5c9 2795
4c4b4cd2
PH
2796 case UNOP_MEMVAL:
2797 *pos += 3;
2798 nargs = 1;
2799 break;
2800
67f3407f
DJ
2801 case OP_REGISTER:
2802 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2803 break;
2804
4c4b4cd2
PH
2805 case STRUCTOP_STRUCT:
2806 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2807 nargs = 1;
2808 break;
2809
4c4b4cd2 2810 case TERNOP_SLICE:
4c4b4cd2
PH
2811 *pos += 1;
2812 nargs = 3;
2813 break;
2814
52ce6436 2815 case OP_STRING:
14f9c5c9 2816 break;
4c4b4cd2
PH
2817
2818 default:
323e0a4a 2819 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2820 }
2821
76a01679 2822 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2823 for (i = 0; i < nargs; i += 1)
2824 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2825 argvec[i] = NULL;
2826 exp = *expp;
2827
2828 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2829 switch (op)
2830 {
2831 default:
2832 break;
2833
14f9c5c9 2834 case OP_VAR_VALUE:
4c4b4cd2 2835 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2836 {
2837 struct ada_symbol_info *candidates;
2838 int n_candidates;
2839
2840 n_candidates =
2841 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2842 (exp->elts[pc + 2].symbol),
2843 exp->elts[pc + 1].block, VAR_DOMAIN,
2844 &candidates);
2845
2846 if (n_candidates > 1)
2847 {
2848 /* Types tend to get re-introduced locally, so if there
2849 are any local symbols that are not types, first filter
2850 out all types. */
2851 int j;
2852 for (j = 0; j < n_candidates; j += 1)
2853 switch (SYMBOL_CLASS (candidates[j].sym))
2854 {
2855 case LOC_REGISTER:
2856 case LOC_ARG:
2857 case LOC_REF_ARG:
76a01679
JB
2858 case LOC_REGPARM_ADDR:
2859 case LOC_LOCAL:
76a01679 2860 case LOC_COMPUTED:
76a01679
JB
2861 goto FoundNonType;
2862 default:
2863 break;
2864 }
2865 FoundNonType:
2866 if (j < n_candidates)
2867 {
2868 j = 0;
2869 while (j < n_candidates)
2870 {
2871 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2872 {
2873 candidates[j] = candidates[n_candidates - 1];
2874 n_candidates -= 1;
2875 }
2876 else
2877 j += 1;
2878 }
2879 }
2880 }
2881
2882 if (n_candidates == 0)
323e0a4a 2883 error (_("No definition found for %s"),
76a01679
JB
2884 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2885 else if (n_candidates == 1)
2886 i = 0;
2887 else if (deprocedure_p
2888 && !is_nonfunction (candidates, n_candidates))
2889 {
06d5cf63
JB
2890 i = ada_resolve_function
2891 (candidates, n_candidates, NULL, 0,
2892 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2893 context_type);
76a01679 2894 if (i < 0)
323e0a4a 2895 error (_("Could not find a match for %s"),
76a01679
JB
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 }
2898 else
2899 {
323e0a4a 2900 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2901 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2902 user_select_syms (candidates, n_candidates, 1);
2903 i = 0;
2904 }
2905
2906 exp->elts[pc + 1].block = candidates[i].block;
2907 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2908 if (innermost_block == NULL
2909 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2910 innermost_block = candidates[i].block;
2911 }
2912
2913 if (deprocedure_p
2914 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2915 == TYPE_CODE_FUNC))
2916 {
2917 replace_operator_with_call (expp, pc, 0, 0,
2918 exp->elts[pc + 2].symbol,
2919 exp->elts[pc + 1].block);
2920 exp = *expp;
2921 }
14f9c5c9
AS
2922 break;
2923
2924 case OP_FUNCALL:
2925 {
4c4b4cd2 2926 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2927 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2928 {
2929 struct ada_symbol_info *candidates;
2930 int n_candidates;
2931
2932 n_candidates =
76a01679
JB
2933 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2934 (exp->elts[pc + 5].symbol),
2935 exp->elts[pc + 4].block, VAR_DOMAIN,
2936 &candidates);
4c4b4cd2
PH
2937 if (n_candidates == 1)
2938 i = 0;
2939 else
2940 {
06d5cf63
JB
2941 i = ada_resolve_function
2942 (candidates, n_candidates,
2943 argvec, nargs,
2944 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2945 context_type);
4c4b4cd2 2946 if (i < 0)
323e0a4a 2947 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2948 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2949 }
2950
2951 exp->elts[pc + 4].block = candidates[i].block;
2952 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2953 if (innermost_block == NULL
2954 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2955 innermost_block = candidates[i].block;
2956 }
14f9c5c9
AS
2957 }
2958 break;
2959 case BINOP_ADD:
2960 case BINOP_SUB:
2961 case BINOP_MUL:
2962 case BINOP_DIV:
2963 case BINOP_REM:
2964 case BINOP_MOD:
2965 case BINOP_CONCAT:
2966 case BINOP_BITWISE_AND:
2967 case BINOP_BITWISE_IOR:
2968 case BINOP_BITWISE_XOR:
2969 case BINOP_EQUAL:
2970 case BINOP_NOTEQUAL:
2971 case BINOP_LESS:
2972 case BINOP_GTR:
2973 case BINOP_LEQ:
2974 case BINOP_GEQ:
2975 case BINOP_EXP:
2976 case UNOP_NEG:
2977 case UNOP_PLUS:
2978 case UNOP_LOGICAL_NOT:
2979 case UNOP_ABS:
2980 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2981 {
2982 struct ada_symbol_info *candidates;
2983 int n_candidates;
2984
2985 n_candidates =
2986 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2987 (struct block *) NULL, VAR_DOMAIN,
2988 &candidates);
2989 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2990 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2991 if (i < 0)
2992 break;
2993
76a01679
JB
2994 replace_operator_with_call (expp, pc, nargs, 1,
2995 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2996 exp = *expp;
2997 }
14f9c5c9 2998 break;
4c4b4cd2
PH
2999
3000 case OP_TYPE:
b3dbf008 3001 case OP_REGISTER:
4c4b4cd2 3002 return NULL;
14f9c5c9
AS
3003 }
3004
3005 *pos = pc;
3006 return evaluate_subexp_type (exp, pos);
3007}
3008
3009/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3010 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3011 a non-pointer. */
14f9c5c9 3012/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3013 liberal. */
14f9c5c9
AS
3014
3015static int
4dc81987 3016ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3017{
61ee279c
PH
3018 ftype = ada_check_typedef (ftype);
3019 atype = ada_check_typedef (atype);
14f9c5c9
AS
3020
3021 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3022 ftype = TYPE_TARGET_TYPE (ftype);
3023 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3024 atype = TYPE_TARGET_TYPE (atype);
3025
d2e4a39e 3026 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3027 {
3028 default:
5b3d5b7d 3029 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3030 case TYPE_CODE_PTR:
3031 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3032 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3033 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3034 else
1265e4aa
JB
3035 return (may_deref
3036 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3041 {
3042 case TYPE_CODE_INT:
3043 case TYPE_CODE_ENUM:
3044 case TYPE_CODE_RANGE:
3045 return 1;
3046 default:
3047 return 0;
3048 }
14f9c5c9
AS
3049
3050 case TYPE_CODE_ARRAY:
d2e4a39e 3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3052 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3053
3054 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3055 if (ada_is_array_descriptor_type (ftype))
3056 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3057 || ada_is_array_descriptor_type (atype));
14f9c5c9 3058 else
4c4b4cd2
PH
3059 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3060 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3061
3062 case TYPE_CODE_UNION:
3063 case TYPE_CODE_FLT:
3064 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3065 }
3066}
3067
3068/* Return non-zero if the formals of FUNC "sufficiently match" the
3069 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3070 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3071 argument function. */
14f9c5c9
AS
3072
3073static int
d2e4a39e 3074ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3075{
3076 int i;
d2e4a39e 3077 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3078
1265e4aa
JB
3079 if (SYMBOL_CLASS (func) == LOC_CONST
3080 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3081 return (n_actuals == 0);
3082 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3083 return 0;
3084
3085 if (TYPE_NFIELDS (func_type) != n_actuals)
3086 return 0;
3087
3088 for (i = 0; i < n_actuals; i += 1)
3089 {
4c4b4cd2 3090 if (actuals[i] == NULL)
76a01679
JB
3091 return 0;
3092 else
3093 {
61ee279c 3094 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3095 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3096
76a01679
JB
3097 if (!ada_type_match (ftype, atype, 1))
3098 return 0;
3099 }
14f9c5c9
AS
3100 }
3101 return 1;
3102}
3103
3104/* False iff function type FUNC_TYPE definitely does not produce a value
3105 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3106 FUNC_TYPE is not a valid function type with a non-null return type
3107 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3108
3109static int
d2e4a39e 3110return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3111{
d2e4a39e 3112 struct type *return_type;
14f9c5c9
AS
3113
3114 if (func_type == NULL)
3115 return 1;
3116
4c4b4cd2
PH
3117 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3118 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3119 else
3120 return_type = base_type (func_type);
14f9c5c9
AS
3121 if (return_type == NULL)
3122 return 1;
3123
4c4b4cd2 3124 context_type = base_type (context_type);
14f9c5c9
AS
3125
3126 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3127 return context_type == NULL || return_type == context_type;
3128 else if (context_type == NULL)
3129 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3130 else
3131 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3132}
3133
3134
4c4b4cd2 3135/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3136 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3137 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3138 that returns that type, then eliminate matches that don't. If
3139 CONTEXT_TYPE is void and there is at least one match that does not
3140 return void, eliminate all matches that do.
3141
14f9c5c9
AS
3142 Asks the user if there is more than one match remaining. Returns -1
3143 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3144 solely for messages. May re-arrange and modify SYMS in
3145 the process; the index returned is for the modified vector. */
14f9c5c9 3146
4c4b4cd2
PH
3147static int
3148ada_resolve_function (struct ada_symbol_info syms[],
3149 int nsyms, struct value **args, int nargs,
3150 const char *name, struct type *context_type)
14f9c5c9 3151{
30b15541 3152 int fallback;
14f9c5c9 3153 int k;
4c4b4cd2 3154 int m; /* Number of hits */
14f9c5c9 3155
d2e4a39e 3156 m = 0;
30b15541
UW
3157 /* In the first pass of the loop, we only accept functions matching
3158 context_type. If none are found, we add a second pass of the loop
3159 where every function is accepted. */
3160 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3161 {
3162 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3163 {
61ee279c 3164 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3165
3166 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3167 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3168 {
3169 syms[m] = syms[k];
3170 m += 1;
3171 }
3172 }
14f9c5c9
AS
3173 }
3174
3175 if (m == 0)
3176 return -1;
3177 else if (m > 1)
3178 {
323e0a4a 3179 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3180 user_select_syms (syms, m, 1);
14f9c5c9
AS
3181 return 0;
3182 }
3183 return 0;
3184}
3185
4c4b4cd2
PH
3186/* Returns true (non-zero) iff decoded name N0 should appear before N1
3187 in a listing of choices during disambiguation (see sort_choices, below).
3188 The idea is that overloadings of a subprogram name from the
3189 same package should sort in their source order. We settle for ordering
3190 such symbols by their trailing number (__N or $N). */
3191
14f9c5c9 3192static int
4c4b4cd2 3193encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3194{
3195 if (N1 == NULL)
3196 return 0;
3197 else if (N0 == NULL)
3198 return 1;
3199 else
3200 {
3201 int k0, k1;
d2e4a39e 3202 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3203 ;
d2e4a39e 3204 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3205 ;
d2e4a39e 3206 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3207 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3208 {
3209 int n0, n1;
3210 n0 = k0;
3211 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3212 n0 -= 1;
3213 n1 = k1;
3214 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3215 n1 -= 1;
3216 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3217 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3218 }
14f9c5c9
AS
3219 return (strcmp (N0, N1) < 0);
3220 }
3221}
d2e4a39e 3222
4c4b4cd2
PH
3223/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3224 encoded names. */
3225
d2e4a39e 3226static void
4c4b4cd2 3227sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3228{
4c4b4cd2 3229 int i;
d2e4a39e 3230 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3231 {
4c4b4cd2 3232 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3233 int j;
3234
d2e4a39e 3235 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3236 {
3237 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3238 SYMBOL_LINKAGE_NAME (sym.sym)))
3239 break;
3240 syms[j + 1] = syms[j];
3241 }
d2e4a39e 3242 syms[j + 1] = sym;
14f9c5c9
AS
3243 }
3244}
3245
4c4b4cd2
PH
3246/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3247 by asking the user (if necessary), returning the number selected,
3248 and setting the first elements of SYMS items. Error if no symbols
3249 selected. */
14f9c5c9
AS
3250
3251/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3252 to be re-integrated one of these days. */
14f9c5c9
AS
3253
3254int
4c4b4cd2 3255user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3256{
3257 int i;
d2e4a39e 3258 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3259 int n_chosen;
3260 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3261 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3262
3263 if (max_results < 1)
323e0a4a 3264 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3265 if (nsyms <= 1)
3266 return nsyms;
3267
717d2f5a
JB
3268 if (select_mode == multiple_symbols_cancel)
3269 error (_("\
3270canceled because the command is ambiguous\n\
3271See set/show multiple-symbol."));
3272
3273 /* If select_mode is "all", then return all possible symbols.
3274 Only do that if more than one symbol can be selected, of course.
3275 Otherwise, display the menu as usual. */
3276 if (select_mode == multiple_symbols_all && max_results > 1)
3277 return nsyms;
3278
323e0a4a 3279 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3280 if (max_results > 1)
323e0a4a 3281 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3282
4c4b4cd2 3283 sort_choices (syms, nsyms);
14f9c5c9
AS
3284
3285 for (i = 0; i < nsyms; i += 1)
3286 {
4c4b4cd2
PH
3287 if (syms[i].sym == NULL)
3288 continue;
3289
3290 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3291 {
76a01679
JB
3292 struct symtab_and_line sal =
3293 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3294 if (sal.symtab == NULL)
3295 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3296 i + first_choice,
3297 SYMBOL_PRINT_NAME (syms[i].sym),
3298 sal.line);
3299 else
3300 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3301 SYMBOL_PRINT_NAME (syms[i].sym),
3302 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3303 continue;
3304 }
d2e4a39e 3305 else
4c4b4cd2
PH
3306 {
3307 int is_enumeral =
3308 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3309 && SYMBOL_TYPE (syms[i].sym) != NULL
3310 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3311 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3312
3313 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3314 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3315 i + first_choice,
3316 SYMBOL_PRINT_NAME (syms[i].sym),
3317 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3318 else if (is_enumeral
3319 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3320 {
a3f17187 3321 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3322 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3323 gdb_stdout, -1, 0);
323e0a4a 3324 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3325 SYMBOL_PRINT_NAME (syms[i].sym));
3326 }
3327 else if (symtab != NULL)
3328 printf_unfiltered (is_enumeral
323e0a4a
AC
3329 ? _("[%d] %s in %s (enumeral)\n")
3330 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3331 i + first_choice,
3332 SYMBOL_PRINT_NAME (syms[i].sym),
3333 symtab->filename);
3334 else
3335 printf_unfiltered (is_enumeral
323e0a4a
AC
3336 ? _("[%d] %s (enumeral)\n")
3337 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3338 i + first_choice,
3339 SYMBOL_PRINT_NAME (syms[i].sym));
3340 }
14f9c5c9 3341 }
d2e4a39e 3342
14f9c5c9 3343 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3344 "overload-choice");
14f9c5c9
AS
3345
3346 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3347 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3348
3349 return n_chosen;
3350}
3351
3352/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3353 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3354 order in CHOICES[0 .. N-1], and return N.
3355
3356 The user types choices as a sequence of numbers on one line
3357 separated by blanks, encoding them as follows:
3358
4c4b4cd2 3359 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3360 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3361 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3362
4c4b4cd2 3363 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3364
3365 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3366 prompts (for use with the -f switch). */
14f9c5c9
AS
3367
3368int
d2e4a39e 3369get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3370 int is_all_choice, char *annotation_suffix)
14f9c5c9 3371{
d2e4a39e 3372 char *args;
0bcd0149 3373 char *prompt;
14f9c5c9
AS
3374 int n_chosen;
3375 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3376
14f9c5c9
AS
3377 prompt = getenv ("PS2");
3378 if (prompt == NULL)
0bcd0149 3379 prompt = "> ";
14f9c5c9 3380
0bcd0149 3381 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3382
14f9c5c9 3383 if (args == NULL)
323e0a4a 3384 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3385
3386 n_chosen = 0;
76a01679 3387
4c4b4cd2
PH
3388 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3389 order, as given in args. Choices are validated. */
14f9c5c9
AS
3390 while (1)
3391 {
d2e4a39e 3392 char *args2;
14f9c5c9
AS
3393 int choice, j;
3394
3395 while (isspace (*args))
4c4b4cd2 3396 args += 1;
14f9c5c9 3397 if (*args == '\0' && n_chosen == 0)
323e0a4a 3398 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3399 else if (*args == '\0')
4c4b4cd2 3400 break;
14f9c5c9
AS
3401
3402 choice = strtol (args, &args2, 10);
d2e4a39e 3403 if (args == args2 || choice < 0
4c4b4cd2 3404 || choice > n_choices + first_choice - 1)
323e0a4a 3405 error (_("Argument must be choice number"));
14f9c5c9
AS
3406 args = args2;
3407
d2e4a39e 3408 if (choice == 0)
323e0a4a 3409 error (_("cancelled"));
14f9c5c9
AS
3410
3411 if (choice < first_choice)
4c4b4cd2
PH
3412 {
3413 n_chosen = n_choices;
3414 for (j = 0; j < n_choices; j += 1)
3415 choices[j] = j;
3416 break;
3417 }
14f9c5c9
AS
3418 choice -= first_choice;
3419
d2e4a39e 3420 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3421 {
3422 }
14f9c5c9
AS
3423
3424 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3425 {
3426 int k;
3427 for (k = n_chosen - 1; k > j; k -= 1)
3428 choices[k + 1] = choices[k];
3429 choices[j + 1] = choice;
3430 n_chosen += 1;
3431 }
14f9c5c9
AS
3432 }
3433
3434 if (n_chosen > max_results)
323e0a4a 3435 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3436
14f9c5c9
AS
3437 return n_chosen;
3438}
3439
4c4b4cd2
PH
3440/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3441 on the function identified by SYM and BLOCK, and taking NARGS
3442 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3443
3444static void
d2e4a39e 3445replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3446 int oplen, struct symbol *sym,
3447 struct block *block)
14f9c5c9
AS
3448{
3449 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3450 symbol, -oplen for operator being replaced). */
d2e4a39e 3451 struct expression *newexp = (struct expression *)
14f9c5c9 3452 xmalloc (sizeof (struct expression)
4c4b4cd2 3453 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3454 struct expression *exp = *expp;
14f9c5c9
AS
3455
3456 newexp->nelts = exp->nelts + 7 - oplen;
3457 newexp->language_defn = exp->language_defn;
3458 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3459 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3460 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3461
3462 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3463 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3464
3465 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3466 newexp->elts[pc + 4].block = block;
3467 newexp->elts[pc + 5].symbol = sym;
3468
3469 *expp = newexp;
aacb1f0a 3470 xfree (exp);
d2e4a39e 3471}
14f9c5c9
AS
3472
3473/* Type-class predicates */
3474
4c4b4cd2
PH
3475/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3476 or FLOAT). */
14f9c5c9
AS
3477
3478static int
d2e4a39e 3479numeric_type_p (struct type *type)
14f9c5c9
AS
3480{
3481 if (type == NULL)
3482 return 0;
d2e4a39e
AS
3483 else
3484 {
3485 switch (TYPE_CODE (type))
4c4b4cd2
PH
3486 {
3487 case TYPE_CODE_INT:
3488 case TYPE_CODE_FLT:
3489 return 1;
3490 case TYPE_CODE_RANGE:
3491 return (type == TYPE_TARGET_TYPE (type)
3492 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3493 default:
3494 return 0;
3495 }
d2e4a39e 3496 }
14f9c5c9
AS
3497}
3498
4c4b4cd2 3499/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3500
3501static int
d2e4a39e 3502integer_type_p (struct type *type)
14f9c5c9
AS
3503{
3504 if (type == NULL)
3505 return 0;
d2e4a39e
AS
3506 else
3507 {
3508 switch (TYPE_CODE (type))
4c4b4cd2
PH
3509 {
3510 case TYPE_CODE_INT:
3511 return 1;
3512 case TYPE_CODE_RANGE:
3513 return (type == TYPE_TARGET_TYPE (type)
3514 || integer_type_p (TYPE_TARGET_TYPE (type)));
3515 default:
3516 return 0;
3517 }
d2e4a39e 3518 }
14f9c5c9
AS
3519}
3520
4c4b4cd2 3521/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3522
3523static int
d2e4a39e 3524scalar_type_p (struct type *type)
14f9c5c9
AS
3525{
3526 if (type == NULL)
3527 return 0;
d2e4a39e
AS
3528 else
3529 {
3530 switch (TYPE_CODE (type))
4c4b4cd2
PH
3531 {
3532 case TYPE_CODE_INT:
3533 case TYPE_CODE_RANGE:
3534 case TYPE_CODE_ENUM:
3535 case TYPE_CODE_FLT:
3536 return 1;
3537 default:
3538 return 0;
3539 }
d2e4a39e 3540 }
14f9c5c9
AS
3541}
3542
4c4b4cd2 3543/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3544
3545static int
d2e4a39e 3546discrete_type_p (struct type *type)
14f9c5c9
AS
3547{
3548 if (type == NULL)
3549 return 0;
d2e4a39e
AS
3550 else
3551 {
3552 switch (TYPE_CODE (type))
4c4b4cd2
PH
3553 {
3554 case TYPE_CODE_INT:
3555 case TYPE_CODE_RANGE:
3556 case TYPE_CODE_ENUM:
872f0337 3557 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3558 return 1;
3559 default:
3560 return 0;
3561 }
d2e4a39e 3562 }
14f9c5c9
AS
3563}
3564
4c4b4cd2
PH
3565/* Returns non-zero if OP with operands in the vector ARGS could be
3566 a user-defined function. Errs on the side of pre-defined operators
3567 (i.e., result 0). */
14f9c5c9
AS
3568
3569static int
d2e4a39e 3570possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3571{
76a01679 3572 struct type *type0 =
df407dfe 3573 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3574 struct type *type1 =
df407dfe 3575 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3576
4c4b4cd2
PH
3577 if (type0 == NULL)
3578 return 0;
3579
14f9c5c9
AS
3580 switch (op)
3581 {
3582 default:
3583 return 0;
3584
3585 case BINOP_ADD:
3586 case BINOP_SUB:
3587 case BINOP_MUL:
3588 case BINOP_DIV:
d2e4a39e 3589 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3590
3591 case BINOP_REM:
3592 case BINOP_MOD:
3593 case BINOP_BITWISE_AND:
3594 case BINOP_BITWISE_IOR:
3595 case BINOP_BITWISE_XOR:
d2e4a39e 3596 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3597
3598 case BINOP_EQUAL:
3599 case BINOP_NOTEQUAL:
3600 case BINOP_LESS:
3601 case BINOP_GTR:
3602 case BINOP_LEQ:
3603 case BINOP_GEQ:
d2e4a39e 3604 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3605
3606 case BINOP_CONCAT:
ee90b9ab 3607 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3608
3609 case BINOP_EXP:
d2e4a39e 3610 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3611
3612 case UNOP_NEG:
3613 case UNOP_PLUS:
3614 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3615 case UNOP_ABS:
3616 return (!numeric_type_p (type0));
14f9c5c9
AS
3617
3618 }
3619}
3620\f
4c4b4cd2 3621 /* Renaming */
14f9c5c9 3622
aeb5907d
JB
3623/* NOTES:
3624
3625 1. In the following, we assume that a renaming type's name may
3626 have an ___XD suffix. It would be nice if this went away at some
3627 point.
3628 2. We handle both the (old) purely type-based representation of
3629 renamings and the (new) variable-based encoding. At some point,
3630 it is devoutly to be hoped that the former goes away
3631 (FIXME: hilfinger-2007-07-09).
3632 3. Subprogram renamings are not implemented, although the XRS
3633 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3634
3635/* If SYM encodes a renaming,
3636
3637 <renaming> renames <renamed entity>,
3638
3639 sets *LEN to the length of the renamed entity's name,
3640 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3641 the string describing the subcomponent selected from the renamed
3642 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3643 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3644 are undefined). Otherwise, returns a value indicating the category
3645 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3646 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3647 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3648 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3649 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3650 may be NULL, in which case they are not assigned.
3651
3652 [Currently, however, GCC does not generate subprogram renamings.] */
3653
3654enum ada_renaming_category
3655ada_parse_renaming (struct symbol *sym,
3656 const char **renamed_entity, int *len,
3657 const char **renaming_expr)
3658{
3659 enum ada_renaming_category kind;
3660 const char *info;
3661 const char *suffix;
3662
3663 if (sym == NULL)
3664 return ADA_NOT_RENAMING;
3665 switch (SYMBOL_CLASS (sym))
14f9c5c9 3666 {
aeb5907d
JB
3667 default:
3668 return ADA_NOT_RENAMING;
3669 case LOC_TYPEDEF:
3670 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3671 renamed_entity, len, renaming_expr);
3672 case LOC_LOCAL:
3673 case LOC_STATIC:
3674 case LOC_COMPUTED:
3675 case LOC_OPTIMIZED_OUT:
3676 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3677 if (info == NULL)
3678 return ADA_NOT_RENAMING;
3679 switch (info[5])
3680 {
3681 case '_':
3682 kind = ADA_OBJECT_RENAMING;
3683 info += 6;
3684 break;
3685 case 'E':
3686 kind = ADA_EXCEPTION_RENAMING;
3687 info += 7;
3688 break;
3689 case 'P':
3690 kind = ADA_PACKAGE_RENAMING;
3691 info += 7;
3692 break;
3693 case 'S':
3694 kind = ADA_SUBPROGRAM_RENAMING;
3695 info += 7;
3696 break;
3697 default:
3698 return ADA_NOT_RENAMING;
3699 }
14f9c5c9 3700 }
4c4b4cd2 3701
aeb5907d
JB
3702 if (renamed_entity != NULL)
3703 *renamed_entity = info;
3704 suffix = strstr (info, "___XE");
3705 if (suffix == NULL || suffix == info)
3706 return ADA_NOT_RENAMING;
3707 if (len != NULL)
3708 *len = strlen (info) - strlen (suffix);
3709 suffix += 5;
3710 if (renaming_expr != NULL)
3711 *renaming_expr = suffix;
3712 return kind;
3713}
3714
3715/* Assuming TYPE encodes a renaming according to the old encoding in
3716 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3717 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3718 ADA_NOT_RENAMING otherwise. */
3719static enum ada_renaming_category
3720parse_old_style_renaming (struct type *type,
3721 const char **renamed_entity, int *len,
3722 const char **renaming_expr)
3723{
3724 enum ada_renaming_category kind;
3725 const char *name;
3726 const char *info;
3727 const char *suffix;
14f9c5c9 3728
aeb5907d
JB
3729 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3730 || TYPE_NFIELDS (type) != 1)
3731 return ADA_NOT_RENAMING;
14f9c5c9 3732
aeb5907d
JB
3733 name = type_name_no_tag (type);
3734 if (name == NULL)
3735 return ADA_NOT_RENAMING;
3736
3737 name = strstr (name, "___XR");
3738 if (name == NULL)
3739 return ADA_NOT_RENAMING;
3740 switch (name[5])
3741 {
3742 case '\0':
3743 case '_':
3744 kind = ADA_OBJECT_RENAMING;
3745 break;
3746 case 'E':
3747 kind = ADA_EXCEPTION_RENAMING;
3748 break;
3749 case 'P':
3750 kind = ADA_PACKAGE_RENAMING;
3751 break;
3752 case 'S':
3753 kind = ADA_SUBPROGRAM_RENAMING;
3754 break;
3755 default:
3756 return ADA_NOT_RENAMING;
3757 }
14f9c5c9 3758
aeb5907d
JB
3759 info = TYPE_FIELD_NAME (type, 0);
3760 if (info == NULL)
3761 return ADA_NOT_RENAMING;
3762 if (renamed_entity != NULL)
3763 *renamed_entity = info;
3764 suffix = strstr (info, "___XE");
3765 if (renaming_expr != NULL)
3766 *renaming_expr = suffix + 5;
3767 if (suffix == NULL || suffix == info)
3768 return ADA_NOT_RENAMING;
3769 if (len != NULL)
3770 *len = suffix - info;
3771 return kind;
3772}
52ce6436 3773
14f9c5c9 3774\f
d2e4a39e 3775
4c4b4cd2 3776 /* Evaluation: Function Calls */
14f9c5c9 3777
4c4b4cd2
PH
3778/* Return an lvalue containing the value VAL. This is the identity on
3779 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3780 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3781 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3782
d2e4a39e 3783static struct value *
4a399546 3784ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3785{
c3e5cd34
PH
3786 if (! VALUE_LVAL (val))
3787 {
df407dfe 3788 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3789
3790 /* The following is taken from the structure-return code in
3791 call_function_by_hand. FIXME: Therefore, some refactoring seems
3792 indicated. */
4a399546 3793 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3794 {
42ae5230 3795 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3796 reserving sufficient space. */
3797 *sp -= len;
4a399546
UW
3798 if (gdbarch_frame_align_p (gdbarch))
3799 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3800 set_value_address (val, *sp);
c3e5cd34
PH
3801 }
3802 else
3803 {
3804 /* Stack grows upward. Align the frame, allocate space, and
3805 then again, re-align the frame. */
4a399546
UW
3806 if (gdbarch_frame_align_p (gdbarch))
3807 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3808 set_value_address (val, *sp);
c3e5cd34 3809 *sp += len;
4a399546
UW
3810 if (gdbarch_frame_align_p (gdbarch))
3811 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3812 }
a84a8a0d 3813 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3814
42ae5230 3815 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3816 }
14f9c5c9
AS
3817
3818 return val;
3819}
3820
3821/* Return the value ACTUAL, converted to be an appropriate value for a
3822 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3823 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3824 values not residing in memory, updating it as needed. */
14f9c5c9 3825
a93c0eb6
JB
3826struct value *
3827ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3829{
df407dfe 3830 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3831 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3832 struct type *formal_target =
3833 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3834 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3835 struct type *actual_target =
3836 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3837 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3838
4c4b4cd2 3839 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3840 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3841 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3842 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3843 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3844 {
a84a8a0d 3845 struct value *result;
14f9c5c9 3846 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3847 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3848 result = desc_data (actual);
14f9c5c9 3849 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3850 {
3851 if (VALUE_LVAL (actual) != lval_memory)
3852 {
3853 struct value *val;
df407dfe 3854 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3855 val = allocate_value (actual_type);
990a07ab 3856 memcpy ((char *) value_contents_raw (val),
0fd88904 3857 (char *) value_contents (actual),
4c4b4cd2 3858 TYPE_LENGTH (actual_type));
4a399546 3859 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3860 }
a84a8a0d 3861 result = value_addr (actual);
4c4b4cd2 3862 }
a84a8a0d
JB
3863 else
3864 return actual;
3865 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3866 }
3867 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3868 return ada_value_ind (actual);
3869
3870 return actual;
3871}
3872
3873
4c4b4cd2
PH
3874/* Push a descriptor of type TYPE for array value ARR on the stack at
3875 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3876 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3877 to-descriptor type rather than a descriptor type), a struct value *
3878 representing a pointer to this descriptor. */
14f9c5c9 3879
d2e4a39e 3880static struct value *
4a399546
UW
3881make_array_descriptor (struct type *type, struct value *arr,
3882 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3883{
d2e4a39e
AS
3884 struct type *bounds_type = desc_bounds_type (type);
3885 struct type *desc_type = desc_base_type (type);
3886 struct value *descriptor = allocate_value (desc_type);
3887 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3888 int i;
d2e4a39e 3889
df407dfe 3890 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3891 {
50810684
UW
3892 modify_general_field (value_type (bounds),
3893 value_contents_writeable (bounds),
1eea4ebd 3894 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3895 desc_bound_bitpos (bounds_type, i, 0),
3896 desc_bound_bitsize (bounds_type, i, 0));
50810684
UW
3897 modify_general_field (value_type (bounds),
3898 value_contents_writeable (bounds),
1eea4ebd 3899 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3900 desc_bound_bitpos (bounds_type, i, 1),
3901 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3902 }
d2e4a39e 3903
4a399546 3904 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3905
50810684
UW
3906 modify_general_field (value_type (descriptor),
3907 value_contents_writeable (descriptor),
4a399546 3908 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3909 fat_pntr_data_bitpos (desc_type),
3910 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3911
50810684
UW
3912 modify_general_field (value_type (descriptor),
3913 value_contents_writeable (descriptor),
42ae5230 3914 value_address (bounds),
4c4b4cd2
PH
3915 fat_pntr_bounds_bitpos (desc_type),
3916 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3917
4a399546 3918 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3919
3920 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3921 return value_addr (descriptor);
3922 else
3923 return descriptor;
3924}
14f9c5c9 3925\f
963a6417
PH
3926/* Dummy definitions for an experimental caching module that is not
3927 * used in the public sources. */
96d887e8 3928
96d887e8
PH
3929static int
3930lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3931 struct symbol **sym, struct block **block)
96d887e8
PH
3932{
3933 return 0;
3934}
3935
3936static void
3937cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3938 struct block *block)
96d887e8
PH
3939{
3940}
4c4b4cd2
PH
3941\f
3942 /* Symbol Lookup */
3943
3944/* Return the result of a standard (literal, C-like) lookup of NAME in
3945 given DOMAIN, visible from lexical block BLOCK. */
3946
3947static struct symbol *
3948standard_lookup (const char *name, const struct block *block,
3949 domain_enum domain)
3950{
3951 struct symbol *sym;
4c4b4cd2 3952
2570f2b7 3953 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3954 return sym;
2570f2b7
UW
3955 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3956 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3957 return sym;
3958}
3959
3960
3961/* Non-zero iff there is at least one non-function/non-enumeral symbol
3962 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3963 since they contend in overloading in the same way. */
3964static int
3965is_nonfunction (struct ada_symbol_info syms[], int n)
3966{
3967 int i;
3968
3969 for (i = 0; i < n; i += 1)
3970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3971 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3972 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3973 return 1;
3974
3975 return 0;
3976}
3977
3978/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3979 struct types. Otherwise, they may not. */
14f9c5c9
AS
3980
3981static int
d2e4a39e 3982equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3983{
d2e4a39e 3984 if (type0 == type1)
14f9c5c9 3985 return 1;
d2e4a39e 3986 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3987 || TYPE_CODE (type0) != TYPE_CODE (type1))
3988 return 0;
d2e4a39e 3989 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3990 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3991 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3992 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3993 return 1;
d2e4a39e 3994
14f9c5c9
AS
3995 return 0;
3996}
3997
3998/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3999 no more defined than that of SYM1. */
14f9c5c9
AS
4000
4001static int
d2e4a39e 4002lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4003{
4004 if (sym0 == sym1)
4005 return 1;
176620f1 4006 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4007 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4008 return 0;
4009
d2e4a39e 4010 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4011 {
4012 case LOC_UNDEF:
4013 return 1;
4014 case LOC_TYPEDEF:
4015 {
4c4b4cd2
PH
4016 struct type *type0 = SYMBOL_TYPE (sym0);
4017 struct type *type1 = SYMBOL_TYPE (sym1);
4018 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4019 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4020 int len0 = strlen (name0);
4021 return
4022 TYPE_CODE (type0) == TYPE_CODE (type1)
4023 && (equiv_types (type0, type1)
4024 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4025 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4026 }
4027 case LOC_CONST:
4028 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4029 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4030 default:
4031 return 0;
14f9c5c9
AS
4032 }
4033}
4034
4c4b4cd2
PH
4035/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4036 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4037
4038static void
76a01679
JB
4039add_defn_to_vec (struct obstack *obstackp,
4040 struct symbol *sym,
2570f2b7 4041 struct block *block)
14f9c5c9
AS
4042{
4043 int i;
4044 size_t tmp;
4c4b4cd2 4045 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4046
529cad9c
PH
4047 /* Do not try to complete stub types, as the debugger is probably
4048 already scanning all symbols matching a certain name at the
4049 time when this function is called. Trying to replace the stub
4050 type by its associated full type will cause us to restart a scan
4051 which may lead to an infinite recursion. Instead, the client
4052 collecting the matching symbols will end up collecting several
4053 matches, with at least one of them complete. It can then filter
4054 out the stub ones if needed. */
4055
4c4b4cd2
PH
4056 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4057 {
4058 if (lesseq_defined_than (sym, prevDefns[i].sym))
4059 return;
4060 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4061 {
4062 prevDefns[i].sym = sym;
4063 prevDefns[i].block = block;
4c4b4cd2 4064 return;
76a01679 4065 }
4c4b4cd2
PH
4066 }
4067
4068 {
4069 struct ada_symbol_info info;
4070
4071 info.sym = sym;
4072 info.block = block;
4c4b4cd2
PH
4073 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4074 }
4075}
4076
4077/* Number of ada_symbol_info structures currently collected in
4078 current vector in *OBSTACKP. */
4079
76a01679
JB
4080static int
4081num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4082{
4083 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4084}
4085
4086/* Vector of ada_symbol_info structures currently collected in current
4087 vector in *OBSTACKP. If FINISH, close off the vector and return
4088 its final address. */
4089
76a01679 4090static struct ada_symbol_info *
4c4b4cd2
PH
4091defns_collected (struct obstack *obstackp, int finish)
4092{
4093 if (finish)
4094 return obstack_finish (obstackp);
4095 else
4096 return (struct ada_symbol_info *) obstack_base (obstackp);
4097}
4098
96d887e8
PH
4099/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4100 Check the global symbols if GLOBAL, the static symbols if not.
4101 Do wild-card match if WILD. */
4c4b4cd2 4102
96d887e8
PH
4103static struct partial_symbol *
4104ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4105 int global, domain_enum namespace, int wild)
4c4b4cd2 4106{
96d887e8
PH
4107 struct partial_symbol **start;
4108 int name_len = strlen (name);
4109 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4110 int i;
4c4b4cd2 4111
96d887e8 4112 if (length == 0)
4c4b4cd2 4113 {
96d887e8 4114 return (NULL);
4c4b4cd2
PH
4115 }
4116
96d887e8
PH
4117 start = (global ?
4118 pst->objfile->global_psymbols.list + pst->globals_offset :
4119 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4120
96d887e8 4121 if (wild)
4c4b4cd2 4122 {
96d887e8
PH
4123 for (i = 0; i < length; i += 1)
4124 {
4125 struct partial_symbol *psym = start[i];
4c4b4cd2 4126
5eeb2539
AR
4127 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4128 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4129 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4130 return psym;
4131 }
4132 return NULL;
4c4b4cd2 4133 }
96d887e8
PH
4134 else
4135 {
4136 if (global)
4137 {
4138 int U;
4139 i = 0;
4140 U = length - 1;
4141 while (U - i > 4)
4142 {
4143 int M = (U + i) >> 1;
4144 struct partial_symbol *psym = start[M];
4145 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4146 i = M + 1;
4147 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4148 U = M - 1;
4149 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4150 i = M + 1;
4151 else
4152 U = M;
4153 }
4154 }
4155 else
4156 i = 0;
4c4b4cd2 4157
96d887e8
PH
4158 while (i < length)
4159 {
4160 struct partial_symbol *psym = start[i];
4c4b4cd2 4161
5eeb2539
AR
4162 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4163 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4164 {
4165 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4166
96d887e8
PH
4167 if (cmp < 0)
4168 {
4169 if (global)
4170 break;
4171 }
4172 else if (cmp == 0
4173 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4174 + name_len))
96d887e8
PH
4175 return psym;
4176 }
4177 i += 1;
4178 }
4c4b4cd2 4179
96d887e8
PH
4180 if (global)
4181 {
4182 int U;
4183 i = 0;
4184 U = length - 1;
4185 while (U - i > 4)
4186 {
4187 int M = (U + i) >> 1;
4188 struct partial_symbol *psym = start[M];
4189 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4190 i = M + 1;
4191 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4192 U = M - 1;
4193 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4194 i = M + 1;
4195 else
4196 U = M;
4197 }
4198 }
4199 else
4200 i = 0;
4c4b4cd2 4201
96d887e8
PH
4202 while (i < length)
4203 {
4204 struct partial_symbol *psym = start[i];
4c4b4cd2 4205
5eeb2539
AR
4206 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4207 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4208 {
4209 int cmp;
4c4b4cd2 4210
96d887e8
PH
4211 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4212 if (cmp == 0)
4213 {
4214 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4215 if (cmp == 0)
4216 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4217 name_len);
96d887e8 4218 }
4c4b4cd2 4219
96d887e8
PH
4220 if (cmp < 0)
4221 {
4222 if (global)
4223 break;
4224 }
4225 else if (cmp == 0
4226 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4227 + name_len + 5))
96d887e8
PH
4228 return psym;
4229 }
4230 i += 1;
4231 }
4232 }
4233 return NULL;
4c4b4cd2
PH
4234}
4235
96d887e8
PH
4236/* Return a minimal symbol matching NAME according to Ada decoding
4237 rules. Returns NULL if there is no such minimal symbol. Names
4238 prefixed with "standard__" are handled specially: "standard__" is
4239 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4240
96d887e8
PH
4241struct minimal_symbol *
4242ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4243{
4c4b4cd2 4244 struct objfile *objfile;
96d887e8
PH
4245 struct minimal_symbol *msymbol;
4246 int wild_match;
4c4b4cd2 4247
96d887e8 4248 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4249 {
96d887e8 4250 name += sizeof ("standard__") - 1;
4c4b4cd2 4251 wild_match = 0;
4c4b4cd2
PH
4252 }
4253 else
96d887e8 4254 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4255
96d887e8
PH
4256 ALL_MSYMBOLS (objfile, msymbol)
4257 {
4258 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4259 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4260 return msymbol;
4261 }
4c4b4cd2 4262
96d887e8
PH
4263 return NULL;
4264}
4c4b4cd2 4265
96d887e8
PH
4266/* For all subprograms that statically enclose the subprogram of the
4267 selected frame, add symbols matching identifier NAME in DOMAIN
4268 and their blocks to the list of data in OBSTACKP, as for
4269 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4270 wildcard prefix. */
4c4b4cd2 4271
96d887e8
PH
4272static void
4273add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4274 const char *name, domain_enum namespace,
96d887e8
PH
4275 int wild_match)
4276{
96d887e8 4277}
14f9c5c9 4278
96d887e8
PH
4279/* True if TYPE is definitely an artificial type supplied to a symbol
4280 for which no debugging information was given in the symbol file. */
14f9c5c9 4281
96d887e8
PH
4282static int
4283is_nondebugging_type (struct type *type)
4284{
4285 char *name = ada_type_name (type);
4286 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4287}
4c4b4cd2 4288
96d887e8
PH
4289/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4290 duplicate other symbols in the list (The only case I know of where
4291 this happens is when object files containing stabs-in-ecoff are
4292 linked with files containing ordinary ecoff debugging symbols (or no
4293 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4294 Returns the number of items in the modified list. */
4c4b4cd2 4295
96d887e8
PH
4296static int
4297remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4298{
4299 int i, j;
4c4b4cd2 4300
96d887e8
PH
4301 i = 0;
4302 while (i < nsyms)
4303 {
339c13b6
JB
4304 int remove = 0;
4305
4306 /* If two symbols have the same name and one of them is a stub type,
4307 the get rid of the stub. */
4308
4309 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4310 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4311 {
4312 for (j = 0; j < nsyms; j++)
4313 {
4314 if (j != i
4315 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4316 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4317 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4318 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4319 remove = 1;
4320 }
4321 }
4322
4323 /* Two symbols with the same name, same class and same address
4324 should be identical. */
4325
4326 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4327 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4328 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4329 {
4330 for (j = 0; j < nsyms; j += 1)
4331 {
4332 if (i != j
4333 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4334 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4335 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4336 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4337 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4338 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4339 remove = 1;
4c4b4cd2 4340 }
4c4b4cd2 4341 }
339c13b6
JB
4342
4343 if (remove)
4344 {
4345 for (j = i + 1; j < nsyms; j += 1)
4346 syms[j - 1] = syms[j];
4347 nsyms -= 1;
4348 }
4349
96d887e8 4350 i += 1;
14f9c5c9 4351 }
96d887e8 4352 return nsyms;
14f9c5c9
AS
4353}
4354
96d887e8
PH
4355/* Given a type that corresponds to a renaming entity, use the type name
4356 to extract the scope (package name or function name, fully qualified,
4357 and following the GNAT encoding convention) where this renaming has been
4358 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4359
96d887e8
PH
4360static char *
4361xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4362{
96d887e8
PH
4363 /* The renaming types adhere to the following convention:
4364 <scope>__<rename>___<XR extension>.
4365 So, to extract the scope, we search for the "___XR" extension,
4366 and then backtrack until we find the first "__". */
76a01679 4367
96d887e8
PH
4368 const char *name = type_name_no_tag (renaming_type);
4369 char *suffix = strstr (name, "___XR");
4370 char *last;
4371 int scope_len;
4372 char *scope;
14f9c5c9 4373
96d887e8
PH
4374 /* Now, backtrack a bit until we find the first "__". Start looking
4375 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4376
96d887e8
PH
4377 for (last = suffix - 3; last > name; last--)
4378 if (last[0] == '_' && last[1] == '_')
4379 break;
76a01679 4380
96d887e8 4381 /* Make a copy of scope and return it. */
14f9c5c9 4382
96d887e8
PH
4383 scope_len = last - name;
4384 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4385
96d887e8
PH
4386 strncpy (scope, name, scope_len);
4387 scope[scope_len] = '\0';
4c4b4cd2 4388
96d887e8 4389 return scope;
4c4b4cd2
PH
4390}
4391
96d887e8 4392/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4393
96d887e8
PH
4394static int
4395is_package_name (const char *name)
4c4b4cd2 4396{
96d887e8
PH
4397 /* Here, We take advantage of the fact that no symbols are generated
4398 for packages, while symbols are generated for each function.
4399 So the condition for NAME represent a package becomes equivalent
4400 to NAME not existing in our list of symbols. There is only one
4401 small complication with library-level functions (see below). */
4c4b4cd2 4402
96d887e8 4403 char *fun_name;
76a01679 4404
96d887e8
PH
4405 /* If it is a function that has not been defined at library level,
4406 then we should be able to look it up in the symbols. */
4407 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4408 return 0;
14f9c5c9 4409
96d887e8
PH
4410 /* Library-level function names start with "_ada_". See if function
4411 "_ada_" followed by NAME can be found. */
14f9c5c9 4412
96d887e8 4413 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4414 functions names cannot contain "__" in them. */
96d887e8
PH
4415 if (strstr (name, "__") != NULL)
4416 return 0;
4c4b4cd2 4417
b435e160 4418 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4419
96d887e8
PH
4420 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4421}
14f9c5c9 4422
96d887e8 4423/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4424 not visible from FUNCTION_NAME. */
14f9c5c9 4425
96d887e8 4426static int
aeb5907d 4427old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4428{
aeb5907d
JB
4429 char *scope;
4430
4431 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4432 return 0;
4433
4434 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4435
96d887e8 4436 make_cleanup (xfree, scope);
14f9c5c9 4437
96d887e8
PH
4438 /* If the rename has been defined in a package, then it is visible. */
4439 if (is_package_name (scope))
aeb5907d 4440 return 0;
14f9c5c9 4441
96d887e8
PH
4442 /* Check that the rename is in the current function scope by checking
4443 that its name starts with SCOPE. */
76a01679 4444
96d887e8
PH
4445 /* If the function name starts with "_ada_", it means that it is
4446 a library-level function. Strip this prefix before doing the
4447 comparison, as the encoding for the renaming does not contain
4448 this prefix. */
4449 if (strncmp (function_name, "_ada_", 5) == 0)
4450 function_name += 5;
f26caa11 4451
aeb5907d 4452 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4453}
4454
aeb5907d
JB
4455/* Remove entries from SYMS that corresponds to a renaming entity that
4456 is not visible from the function associated with CURRENT_BLOCK or
4457 that is superfluous due to the presence of more specific renaming
4458 information. Places surviving symbols in the initial entries of
4459 SYMS and returns the number of surviving symbols.
96d887e8
PH
4460
4461 Rationale:
aeb5907d
JB
4462 First, in cases where an object renaming is implemented as a
4463 reference variable, GNAT may produce both the actual reference
4464 variable and the renaming encoding. In this case, we discard the
4465 latter.
4466
4467 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4468 entity. Unfortunately, STABS currently does not support the definition
4469 of types that are local to a given lexical block, so all renamings types
4470 are emitted at library level. As a consequence, if an application
4471 contains two renaming entities using the same name, and a user tries to
4472 print the value of one of these entities, the result of the ada symbol
4473 lookup will also contain the wrong renaming type.
f26caa11 4474
96d887e8
PH
4475 This function partially covers for this limitation by attempting to
4476 remove from the SYMS list renaming symbols that should be visible
4477 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4478 method with the current information available. The implementation
4479 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4480
4481 - When the user tries to print a rename in a function while there
4482 is another rename entity defined in a package: Normally, the
4483 rename in the function has precedence over the rename in the
4484 package, so the latter should be removed from the list. This is
4485 currently not the case.
4486
4487 - This function will incorrectly remove valid renames if
4488 the CURRENT_BLOCK corresponds to a function which symbol name
4489 has been changed by an "Export" pragma. As a consequence,
4490 the user will be unable to print such rename entities. */
4c4b4cd2 4491
14f9c5c9 4492static int
aeb5907d
JB
4493remove_irrelevant_renamings (struct ada_symbol_info *syms,
4494 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4495{
4496 struct symbol *current_function;
4497 char *current_function_name;
4498 int i;
aeb5907d
JB
4499 int is_new_style_renaming;
4500
4501 /* If there is both a renaming foo___XR... encoded as a variable and
4502 a simple variable foo in the same block, discard the latter.
4503 First, zero out such symbols, then compress. */
4504 is_new_style_renaming = 0;
4505 for (i = 0; i < nsyms; i += 1)
4506 {
4507 struct symbol *sym = syms[i].sym;
4508 struct block *block = syms[i].block;
4509 const char *name;
4510 const char *suffix;
4511
4512 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4513 continue;
4514 name = SYMBOL_LINKAGE_NAME (sym);
4515 suffix = strstr (name, "___XR");
4516
4517 if (suffix != NULL)
4518 {
4519 int name_len = suffix - name;
4520 int j;
4521 is_new_style_renaming = 1;
4522 for (j = 0; j < nsyms; j += 1)
4523 if (i != j && syms[j].sym != NULL
4524 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4525 name_len) == 0
4526 && block == syms[j].block)
4527 syms[j].sym = NULL;
4528 }
4529 }
4530 if (is_new_style_renaming)
4531 {
4532 int j, k;
4533
4534 for (j = k = 0; j < nsyms; j += 1)
4535 if (syms[j].sym != NULL)
4536 {
4537 syms[k] = syms[j];
4538 k += 1;
4539 }
4540 return k;
4541 }
4c4b4cd2
PH
4542
4543 /* Extract the function name associated to CURRENT_BLOCK.
4544 Abort if unable to do so. */
76a01679 4545
4c4b4cd2
PH
4546 if (current_block == NULL)
4547 return nsyms;
76a01679 4548
7f0df278 4549 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4550 if (current_function == NULL)
4551 return nsyms;
4552
4553 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4554 if (current_function_name == NULL)
4555 return nsyms;
4556
4557 /* Check each of the symbols, and remove it from the list if it is
4558 a type corresponding to a renaming that is out of the scope of
4559 the current block. */
4560
4561 i = 0;
4562 while (i < nsyms)
4563 {
aeb5907d
JB
4564 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4565 == ADA_OBJECT_RENAMING
4566 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4567 {
4568 int j;
aeb5907d 4569 for (j = i + 1; j < nsyms; j += 1)
76a01679 4570 syms[j - 1] = syms[j];
4c4b4cd2
PH
4571 nsyms -= 1;
4572 }
4573 else
4574 i += 1;
4575 }
4576
4577 return nsyms;
4578}
4579
339c13b6
JB
4580/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4581 whose name and domain match NAME and DOMAIN respectively.
4582 If no match was found, then extend the search to "enclosing"
4583 routines (in other words, if we're inside a nested function,
4584 search the symbols defined inside the enclosing functions).
4585
4586 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4587
4588static void
4589ada_add_local_symbols (struct obstack *obstackp, const char *name,
4590 struct block *block, domain_enum domain,
4591 int wild_match)
4592{
4593 int block_depth = 0;
4594
4595 while (block != NULL)
4596 {
4597 block_depth += 1;
4598 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4599
4600 /* If we found a non-function match, assume that's the one. */
4601 if (is_nonfunction (defns_collected (obstackp, 0),
4602 num_defns_collected (obstackp)))
4603 return;
4604
4605 block = BLOCK_SUPERBLOCK (block);
4606 }
4607
4608 /* If no luck so far, try to find NAME as a local symbol in some lexically
4609 enclosing subprogram. */
4610 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4611 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4612}
4613
4614/* Add to OBSTACKP all non-local symbols whose name and domain match
4615 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4616 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4617
4618static void
4619ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4620 domain_enum domain, int global,
4621 int wild_match)
4622{
4623 struct objfile *objfile;
4624 struct partial_symtab *ps;
4625
4626 ALL_PSYMTABS (objfile, ps)
4627 {
4628 QUIT;
4629 if (ps->readin
4630 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4631 {
4632 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4633 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4634
4635 if (s == NULL || !s->primary)
4636 continue;
4637 ada_add_block_symbols (obstackp,
4638 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4639 name, domain, objfile, wild_match);
4640 }
4641 }
4642}
4643
4c4b4cd2
PH
4644/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4645 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4646 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4647 indicating the symbols found and the blocks and symbol tables (if
4648 any) in which they were found. This vector are transient---good only to
4649 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4650 symbol match within the nest of blocks whose innermost member is BLOCK0,
4651 is the one match returned (no other matches in that or
4652 enclosing blocks is returned). If there are any matches in or
4653 surrounding BLOCK0, then these alone are returned. Otherwise, the
4654 search extends to global and file-scope (static) symbol tables.
4655 Names prefixed with "standard__" are handled specially: "standard__"
4656 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4657
4658int
4c4b4cd2 4659ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4660 domain_enum namespace,
4661 struct ada_symbol_info **results)
14f9c5c9
AS
4662{
4663 struct symbol *sym;
14f9c5c9 4664 struct block *block;
4c4b4cd2 4665 const char *name;
4c4b4cd2 4666 int wild_match;
14f9c5c9 4667 int cacheIfUnique;
4c4b4cd2 4668 int ndefns;
14f9c5c9 4669
4c4b4cd2
PH
4670 obstack_free (&symbol_list_obstack, NULL);
4671 obstack_init (&symbol_list_obstack);
14f9c5c9 4672
14f9c5c9
AS
4673 cacheIfUnique = 0;
4674
4675 /* Search specified block and its superiors. */
4676
4c4b4cd2
PH
4677 wild_match = (strstr (name0, "__") == NULL);
4678 name = name0;
76a01679
JB
4679 block = (struct block *) block0; /* FIXME: No cast ought to be
4680 needed, but adding const will
4681 have a cascade effect. */
339c13b6
JB
4682
4683 /* Special case: If the user specifies a symbol name inside package
4684 Standard, do a non-wild matching of the symbol name without
4685 the "standard__" prefix. This was primarily introduced in order
4686 to allow the user to specifically access the standard exceptions
4687 using, for instance, Standard.Constraint_Error when Constraint_Error
4688 is ambiguous (due to the user defining its own Constraint_Error
4689 entity inside its program). */
4c4b4cd2
PH
4690 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4691 {
4692 wild_match = 0;
4693 block = NULL;
4694 name = name0 + sizeof ("standard__") - 1;
4695 }
4696
339c13b6 4697 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4698
339c13b6
JB
4699 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4700 wild_match);
4c4b4cd2 4701 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4702 goto done;
d2e4a39e 4703
339c13b6
JB
4704 /* No non-global symbols found. Check our cache to see if we have
4705 already performed this search before. If we have, then return
4706 the same result. */
4707
14f9c5c9 4708 cacheIfUnique = 1;
2570f2b7 4709 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4710 {
4711 if (sym != NULL)
2570f2b7 4712 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4713 goto done;
4714 }
14f9c5c9 4715
339c13b6
JB
4716 /* Search symbols from all global blocks. */
4717
4718 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4719 wild_match);
d2e4a39e 4720
4c4b4cd2 4721 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4722 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4723
4c4b4cd2 4724 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4725 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4726 wild_match);
14f9c5c9 4727
4c4b4cd2
PH
4728done:
4729 ndefns = num_defns_collected (&symbol_list_obstack);
4730 *results = defns_collected (&symbol_list_obstack, 1);
4731
4732 ndefns = remove_extra_symbols (*results, ndefns);
4733
d2e4a39e 4734 if (ndefns == 0)
2570f2b7 4735 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4736
4c4b4cd2 4737 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4738 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4739
aeb5907d 4740 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4741
14f9c5c9
AS
4742 return ndefns;
4743}
4744
d2e4a39e 4745struct symbol *
aeb5907d 4746ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4747 domain_enum namespace, struct block **block_found)
14f9c5c9 4748{
4c4b4cd2 4749 struct ada_symbol_info *candidates;
14f9c5c9
AS
4750 int n_candidates;
4751
aeb5907d 4752 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4753
4754 if (n_candidates == 0)
4755 return NULL;
4c4b4cd2 4756
aeb5907d
JB
4757 if (block_found != NULL)
4758 *block_found = candidates[0].block;
4c4b4cd2 4759
21b556f4 4760 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4761}
4762
4763/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4764 scope and in global scopes, or NULL if none. NAME is folded and
4765 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4766 choosing the first symbol if there are multiple choices.
4767 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4768 table in which the symbol was found (in both cases, these
4769 assignments occur only if the pointers are non-null). */
4770struct symbol *
4771ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4772 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4773{
4774 if (is_a_field_of_this != NULL)
4775 *is_a_field_of_this = 0;
4776
4777 return
4778 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4779 block0, namespace, NULL);
4c4b4cd2 4780}
14f9c5c9 4781
4c4b4cd2
PH
4782static struct symbol *
4783ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4784 const char *linkage_name,
4785 const struct block *block,
21b556f4 4786 const domain_enum domain)
4c4b4cd2
PH
4787{
4788 if (linkage_name == NULL)
4789 linkage_name = name;
76a01679 4790 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4791 NULL);
14f9c5c9
AS
4792}
4793
4794
4c4b4cd2
PH
4795/* True iff STR is a possible encoded suffix of a normal Ada name
4796 that is to be ignored for matching purposes. Suffixes of parallel
4797 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4798 are given by any of the regular expressions:
4c4b4cd2 4799
babe1480
JB
4800 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4801 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4802 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4803 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4804
4805 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4806 match is performed. This sequence is used to differentiate homonyms,
4807 is an optional part of a valid name suffix. */
4c4b4cd2 4808
14f9c5c9 4809static int
d2e4a39e 4810is_name_suffix (const char *str)
14f9c5c9
AS
4811{
4812 int k;
4c4b4cd2
PH
4813 const char *matching;
4814 const int len = strlen (str);
4815
babe1480
JB
4816 /* Skip optional leading __[0-9]+. */
4817
4c4b4cd2
PH
4818 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4819 {
babe1480
JB
4820 str += 3;
4821 while (isdigit (str[0]))
4822 str += 1;
4c4b4cd2 4823 }
babe1480
JB
4824
4825 /* [.$][0-9]+ */
4c4b4cd2 4826
babe1480 4827 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4828 {
babe1480 4829 matching = str + 1;
4c4b4cd2
PH
4830 while (isdigit (matching[0]))
4831 matching += 1;
4832 if (matching[0] == '\0')
4833 return 1;
4834 }
4835
4836 /* ___[0-9]+ */
babe1480 4837
4c4b4cd2
PH
4838 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4839 {
4840 matching = str + 3;
4841 while (isdigit (matching[0]))
4842 matching += 1;
4843 if (matching[0] == '\0')
4844 return 1;
4845 }
4846
529cad9c
PH
4847#if 0
4848 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4849 with a N at the end. Unfortunately, the compiler uses the same
4850 convention for other internal types it creates. So treating
4851 all entity names that end with an "N" as a name suffix causes
4852 some regressions. For instance, consider the case of an enumerated
4853 type. To support the 'Image attribute, it creates an array whose
4854 name ends with N.
4855 Having a single character like this as a suffix carrying some
4856 information is a bit risky. Perhaps we should change the encoding
4857 to be something like "_N" instead. In the meantime, do not do
4858 the following check. */
4859 /* Protected Object Subprograms */
4860 if (len == 1 && str [0] == 'N')
4861 return 1;
4862#endif
4863
4864 /* _E[0-9]+[bs]$ */
4865 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4866 {
4867 matching = str + 3;
4868 while (isdigit (matching[0]))
4869 matching += 1;
4870 if ((matching[0] == 'b' || matching[0] == 's')
4871 && matching [1] == '\0')
4872 return 1;
4873 }
4874
4c4b4cd2
PH
4875 /* ??? We should not modify STR directly, as we are doing below. This
4876 is fine in this case, but may become problematic later if we find
4877 that this alternative did not work, and want to try matching
4878 another one from the begining of STR. Since we modified it, we
4879 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4880 if (str[0] == 'X')
4881 {
4882 str += 1;
d2e4a39e 4883 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4884 {
4885 if (str[0] != 'n' && str[0] != 'b')
4886 return 0;
4887 str += 1;
4888 }
14f9c5c9 4889 }
babe1480 4890
14f9c5c9
AS
4891 if (str[0] == '\000')
4892 return 1;
babe1480 4893
d2e4a39e 4894 if (str[0] == '_')
14f9c5c9
AS
4895 {
4896 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4897 return 0;
d2e4a39e 4898 if (str[2] == '_')
4c4b4cd2 4899 {
61ee279c
PH
4900 if (strcmp (str + 3, "JM") == 0)
4901 return 1;
4902 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4903 the LJM suffix in favor of the JM one. But we will
4904 still accept LJM as a valid suffix for a reasonable
4905 amount of time, just to allow ourselves to debug programs
4906 compiled using an older version of GNAT. */
4c4b4cd2
PH
4907 if (strcmp (str + 3, "LJM") == 0)
4908 return 1;
4909 if (str[3] != 'X')
4910 return 0;
1265e4aa
JB
4911 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4912 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4913 return 1;
4914 if (str[4] == 'R' && str[5] != 'T')
4915 return 1;
4916 return 0;
4917 }
4918 if (!isdigit (str[2]))
4919 return 0;
4920 for (k = 3; str[k] != '\0'; k += 1)
4921 if (!isdigit (str[k]) && str[k] != '_')
4922 return 0;
14f9c5c9
AS
4923 return 1;
4924 }
4c4b4cd2 4925 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4926 {
4c4b4cd2
PH
4927 for (k = 2; str[k] != '\0'; k += 1)
4928 if (!isdigit (str[k]) && str[k] != '_')
4929 return 0;
14f9c5c9
AS
4930 return 1;
4931 }
4932 return 0;
4933}
d2e4a39e 4934
aeb5907d
JB
4935/* Return non-zero if the string starting at NAME and ending before
4936 NAME_END contains no capital letters. */
529cad9c
PH
4937
4938static int
4939is_valid_name_for_wild_match (const char *name0)
4940{
4941 const char *decoded_name = ada_decode (name0);
4942 int i;
4943
5823c3ef
JB
4944 /* If the decoded name starts with an angle bracket, it means that
4945 NAME0 does not follow the GNAT encoding format. It should then
4946 not be allowed as a possible wild match. */
4947 if (decoded_name[0] == '<')
4948 return 0;
4949
529cad9c
PH
4950 for (i=0; decoded_name[i] != '\0'; i++)
4951 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4952 return 0;
4953
4954 return 1;
4955}
4956
4c4b4cd2
PH
4957/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4958 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4959 informational suffixes of NAME (i.e., for which is_name_suffix is
4960 true). */
4961
14f9c5c9 4962static int
4c4b4cd2 4963wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4964{
5823c3ef
JB
4965 char* match;
4966 const char* start;
4967 start = name0;
4968 while (1)
14f9c5c9 4969 {
5823c3ef
JB
4970 match = strstr (start, patn0);
4971 if (match == NULL)
4972 return 0;
4973 if ((match == name0
4974 || match[-1] == '.'
4975 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4976 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4977 && is_name_suffix (match + patn_len))
4978 return (match == name0 || is_valid_name_for_wild_match (name0));
4979 start = match + 1;
96d887e8 4980 }
96d887e8
PH
4981}
4982
96d887e8
PH
4983/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4984 vector *defn_symbols, updating the list of symbols in OBSTACKP
4985 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4986 OBJFILE is the section containing BLOCK.
4987 SYMTAB is recorded with each symbol added. */
4988
4989static void
4990ada_add_block_symbols (struct obstack *obstackp,
76a01679 4991 struct block *block, const char *name,
96d887e8 4992 domain_enum domain, struct objfile *objfile,
2570f2b7 4993 int wild)
96d887e8
PH
4994{
4995 struct dict_iterator iter;
4996 int name_len = strlen (name);
4997 /* A matching argument symbol, if any. */
4998 struct symbol *arg_sym;
4999 /* Set true when we find a matching non-argument symbol. */
5000 int found_sym;
5001 struct symbol *sym;
5002
5003 arg_sym = NULL;
5004 found_sym = 0;
5005 if (wild)
5006 {
5007 struct symbol *sym;
5008 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5009 {
5eeb2539
AR
5010 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5011 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5012 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5013 {
2a2d4dc3
AS
5014 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5015 continue;
5016 else if (SYMBOL_IS_ARGUMENT (sym))
5017 arg_sym = sym;
5018 else
5019 {
76a01679
JB
5020 found_sym = 1;
5021 add_defn_to_vec (obstackp,
5022 fixup_symbol_section (sym, objfile),
2570f2b7 5023 block);
76a01679
JB
5024 }
5025 }
5026 }
96d887e8
PH
5027 }
5028 else
5029 {
5030 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5031 {
5eeb2539
AR
5032 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5033 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5034 {
5035 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5036 if (cmp == 0
5037 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5038 {
2a2d4dc3
AS
5039 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5040 {
5041 if (SYMBOL_IS_ARGUMENT (sym))
5042 arg_sym = sym;
5043 else
5044 {
5045 found_sym = 1;
5046 add_defn_to_vec (obstackp,
5047 fixup_symbol_section (sym, objfile),
5048 block);
5049 }
5050 }
76a01679
JB
5051 }
5052 }
5053 }
96d887e8
PH
5054 }
5055
5056 if (!found_sym && arg_sym != NULL)
5057 {
76a01679
JB
5058 add_defn_to_vec (obstackp,
5059 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5060 block);
96d887e8
PH
5061 }
5062
5063 if (!wild)
5064 {
5065 arg_sym = NULL;
5066 found_sym = 0;
5067
5068 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5069 {
5eeb2539
AR
5070 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5071 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5072 {
5073 int cmp;
5074
5075 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5076 if (cmp == 0)
5077 {
5078 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5079 if (cmp == 0)
5080 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5081 name_len);
5082 }
5083
5084 if (cmp == 0
5085 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5086 {
2a2d4dc3
AS
5087 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5088 {
5089 if (SYMBOL_IS_ARGUMENT (sym))
5090 arg_sym = sym;
5091 else
5092 {
5093 found_sym = 1;
5094 add_defn_to_vec (obstackp,
5095 fixup_symbol_section (sym, objfile),
5096 block);
5097 }
5098 }
76a01679
JB
5099 }
5100 }
76a01679 5101 }
96d887e8
PH
5102
5103 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5104 They aren't parameters, right? */
5105 if (!found_sym && arg_sym != NULL)
5106 {
5107 add_defn_to_vec (obstackp,
76a01679 5108 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5109 block);
96d887e8
PH
5110 }
5111 }
5112}
5113\f
41d27058
JB
5114
5115 /* Symbol Completion */
5116
5117/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5118 name in a form that's appropriate for the completion. The result
5119 does not need to be deallocated, but is only good until the next call.
5120
5121 TEXT_LEN is equal to the length of TEXT.
5122 Perform a wild match if WILD_MATCH is set.
5123 ENCODED should be set if TEXT represents the start of a symbol name
5124 in its encoded form. */
5125
5126static const char *
5127symbol_completion_match (const char *sym_name,
5128 const char *text, int text_len,
5129 int wild_match, int encoded)
5130{
5131 char *result;
5132 const int verbatim_match = (text[0] == '<');
5133 int match = 0;
5134
5135 if (verbatim_match)
5136 {
5137 /* Strip the leading angle bracket. */
5138 text = text + 1;
5139 text_len--;
5140 }
5141
5142 /* First, test against the fully qualified name of the symbol. */
5143
5144 if (strncmp (sym_name, text, text_len) == 0)
5145 match = 1;
5146
5147 if (match && !encoded)
5148 {
5149 /* One needed check before declaring a positive match is to verify
5150 that iff we are doing a verbatim match, the decoded version
5151 of the symbol name starts with '<'. Otherwise, this symbol name
5152 is not a suitable completion. */
5153 const char *sym_name_copy = sym_name;
5154 int has_angle_bracket;
5155
5156 sym_name = ada_decode (sym_name);
5157 has_angle_bracket = (sym_name[0] == '<');
5158 match = (has_angle_bracket == verbatim_match);
5159 sym_name = sym_name_copy;
5160 }
5161
5162 if (match && !verbatim_match)
5163 {
5164 /* When doing non-verbatim match, another check that needs to
5165 be done is to verify that the potentially matching symbol name
5166 does not include capital letters, because the ada-mode would
5167 not be able to understand these symbol names without the
5168 angle bracket notation. */
5169 const char *tmp;
5170
5171 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5172 if (*tmp != '\0')
5173 match = 0;
5174 }
5175
5176 /* Second: Try wild matching... */
5177
5178 if (!match && wild_match)
5179 {
5180 /* Since we are doing wild matching, this means that TEXT
5181 may represent an unqualified symbol name. We therefore must
5182 also compare TEXT against the unqualified name of the symbol. */
5183 sym_name = ada_unqualified_name (ada_decode (sym_name));
5184
5185 if (strncmp (sym_name, text, text_len) == 0)
5186 match = 1;
5187 }
5188
5189 /* Finally: If we found a mach, prepare the result to return. */
5190
5191 if (!match)
5192 return NULL;
5193
5194 if (verbatim_match)
5195 sym_name = add_angle_brackets (sym_name);
5196
5197 if (!encoded)
5198 sym_name = ada_decode (sym_name);
5199
5200 return sym_name;
5201}
5202
2ba95b9b
JB
5203typedef char *char_ptr;
5204DEF_VEC_P (char_ptr);
5205
41d27058
JB
5206/* A companion function to ada_make_symbol_completion_list().
5207 Check if SYM_NAME represents a symbol which name would be suitable
5208 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5209 it is appended at the end of the given string vector SV.
5210
5211 ORIG_TEXT is the string original string from the user command
5212 that needs to be completed. WORD is the entire command on which
5213 completion should be performed. These two parameters are used to
5214 determine which part of the symbol name should be added to the
5215 completion vector.
5216 if WILD_MATCH is set, then wild matching is performed.
5217 ENCODED should be set if TEXT represents a symbol name in its
5218 encoded formed (in which case the completion should also be
5219 encoded). */
5220
5221static void
d6565258 5222symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5223 const char *sym_name,
5224 const char *text, int text_len,
5225 const char *orig_text, const char *word,
5226 int wild_match, int encoded)
5227{
5228 const char *match = symbol_completion_match (sym_name, text, text_len,
5229 wild_match, encoded);
5230 char *completion;
5231
5232 if (match == NULL)
5233 return;
5234
5235 /* We found a match, so add the appropriate completion to the given
5236 string vector. */
5237
5238 if (word == orig_text)
5239 {
5240 completion = xmalloc (strlen (match) + 5);
5241 strcpy (completion, match);
5242 }
5243 else if (word > orig_text)
5244 {
5245 /* Return some portion of sym_name. */
5246 completion = xmalloc (strlen (match) + 5);
5247 strcpy (completion, match + (word - orig_text));
5248 }
5249 else
5250 {
5251 /* Return some of ORIG_TEXT plus sym_name. */
5252 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5253 strncpy (completion, word, orig_text - word);
5254 completion[orig_text - word] = '\0';
5255 strcat (completion, match);
5256 }
5257
d6565258 5258 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5259}
5260
5261/* Return a list of possible symbol names completing TEXT0. The list
5262 is NULL terminated. WORD is the entire command on which completion
5263 is made. */
5264
5265static char **
5266ada_make_symbol_completion_list (char *text0, char *word)
5267{
5268 char *text;
5269 int text_len;
5270 int wild_match;
5271 int encoded;
2ba95b9b 5272 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5273 struct symbol *sym;
5274 struct symtab *s;
5275 struct partial_symtab *ps;
5276 struct minimal_symbol *msymbol;
5277 struct objfile *objfile;
5278 struct block *b, *surrounding_static_block = 0;
5279 int i;
5280 struct dict_iterator iter;
5281
5282 if (text0[0] == '<')
5283 {
5284 text = xstrdup (text0);
5285 make_cleanup (xfree, text);
5286 text_len = strlen (text);
5287 wild_match = 0;
5288 encoded = 1;
5289 }
5290 else
5291 {
5292 text = xstrdup (ada_encode (text0));
5293 make_cleanup (xfree, text);
5294 text_len = strlen (text);
5295 for (i = 0; i < text_len; i++)
5296 text[i] = tolower (text[i]);
5297
5298 encoded = (strstr (text0, "__") != NULL);
5299 /* If the name contains a ".", then the user is entering a fully
5300 qualified entity name, and the match must not be done in wild
5301 mode. Similarly, if the user wants to complete what looks like
5302 an encoded name, the match must not be done in wild mode. */
5303 wild_match = (strchr (text0, '.') == NULL && !encoded);
5304 }
5305
5306 /* First, look at the partial symtab symbols. */
5307 ALL_PSYMTABS (objfile, ps)
5308 {
5309 struct partial_symbol **psym;
5310
5311 /* If the psymtab's been read in we'll get it when we search
5312 through the blockvector. */
5313 if (ps->readin)
5314 continue;
5315
5316 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5317 psym < (objfile->global_psymbols.list + ps->globals_offset
5318 + ps->n_global_syms); psym++)
5319 {
5320 QUIT;
d6565258 5321 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5322 text, text_len, text0, word,
5323 wild_match, encoded);
5324 }
5325
5326 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5327 psym < (objfile->static_psymbols.list + ps->statics_offset
5328 + ps->n_static_syms); psym++)
5329 {
5330 QUIT;
d6565258 5331 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5332 text, text_len, text0, word,
5333 wild_match, encoded);
5334 }
5335 }
5336
5337 /* At this point scan through the misc symbol vectors and add each
5338 symbol you find to the list. Eventually we want to ignore
5339 anything that isn't a text symbol (everything else will be
5340 handled by the psymtab code above). */
5341
5342 ALL_MSYMBOLS (objfile, msymbol)
5343 {
5344 QUIT;
d6565258 5345 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5346 text, text_len, text0, word, wild_match, encoded);
5347 }
5348
5349 /* Search upwards from currently selected frame (so that we can
5350 complete on local vars. */
5351
5352 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5353 {
5354 if (!BLOCK_SUPERBLOCK (b))
5355 surrounding_static_block = b; /* For elmin of dups */
5356
5357 ALL_BLOCK_SYMBOLS (b, iter, sym)
5358 {
d6565258 5359 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5360 text, text_len, text0, word,
5361 wild_match, encoded);
5362 }
5363 }
5364
5365 /* Go through the symtabs and check the externs and statics for
5366 symbols which match. */
5367
5368 ALL_SYMTABS (objfile, s)
5369 {
5370 QUIT;
5371 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5372 ALL_BLOCK_SYMBOLS (b, iter, sym)
5373 {
d6565258 5374 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5375 text, text_len, text0, word,
5376 wild_match, encoded);
5377 }
5378 }
5379
5380 ALL_SYMTABS (objfile, s)
5381 {
5382 QUIT;
5383 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5384 /* Don't do this block twice. */
5385 if (b == surrounding_static_block)
5386 continue;
5387 ALL_BLOCK_SYMBOLS (b, iter, sym)
5388 {
d6565258 5389 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5390 text, text_len, text0, word,
5391 wild_match, encoded);
5392 }
5393 }
5394
5395 /* Append the closing NULL entry. */
2ba95b9b 5396 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5397
2ba95b9b
JB
5398 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5399 return the copy. It's unfortunate that we have to make a copy
5400 of an array that we're about to destroy, but there is nothing much
5401 we can do about it. Fortunately, it's typically not a very large
5402 array. */
5403 {
5404 const size_t completions_size =
5405 VEC_length (char_ptr, completions) * sizeof (char *);
5406 char **result = malloc (completions_size);
5407
5408 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5409
5410 VEC_free (char_ptr, completions);
5411 return result;
5412 }
41d27058
JB
5413}
5414
963a6417 5415 /* Field Access */
96d887e8 5416
73fb9985
JB
5417/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5418 for tagged types. */
5419
5420static int
5421ada_is_dispatch_table_ptr_type (struct type *type)
5422{
5423 char *name;
5424
5425 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5426 return 0;
5427
5428 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5429 if (name == NULL)
5430 return 0;
5431
5432 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5433}
5434
963a6417
PH
5435/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5436 to be invisible to users. */
96d887e8 5437
963a6417
PH
5438int
5439ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5440{
963a6417
PH
5441 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5442 return 1;
73fb9985
JB
5443
5444 /* Check the name of that field. */
5445 {
5446 const char *name = TYPE_FIELD_NAME (type, field_num);
5447
5448 /* Anonymous field names should not be printed.
5449 brobecker/2007-02-20: I don't think this can actually happen
5450 but we don't want to print the value of annonymous fields anyway. */
5451 if (name == NULL)
5452 return 1;
5453
5454 /* A field named "_parent" is internally generated by GNAT for
5455 tagged types, and should not be printed either. */
5456 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5457 return 1;
5458 }
5459
5460 /* If this is the dispatch table of a tagged type, then ignore. */
5461 if (ada_is_tagged_type (type, 1)
5462 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5463 return 1;
5464
5465 /* Not a special field, so it should not be ignored. */
5466 return 0;
963a6417 5467}
96d887e8 5468
963a6417
PH
5469/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5470 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5471
963a6417
PH
5472int
5473ada_is_tagged_type (struct type *type, int refok)
5474{
5475 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5476}
96d887e8 5477
963a6417 5478/* True iff TYPE represents the type of X'Tag */
96d887e8 5479
963a6417
PH
5480int
5481ada_is_tag_type (struct type *type)
5482{
5483 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5484 return 0;
5485 else
96d887e8 5486 {
963a6417
PH
5487 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5488 return (name != NULL
5489 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5490 }
96d887e8
PH
5491}
5492
963a6417 5493/* The type of the tag on VAL. */
76a01679 5494
963a6417
PH
5495struct type *
5496ada_tag_type (struct value *val)
96d887e8 5497{
df407dfe 5498 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5499}
96d887e8 5500
963a6417 5501/* The value of the tag on VAL. */
96d887e8 5502
963a6417
PH
5503struct value *
5504ada_value_tag (struct value *val)
5505{
03ee6b2e 5506 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5507}
5508
963a6417
PH
5509/* The value of the tag on the object of type TYPE whose contents are
5510 saved at VALADDR, if it is non-null, or is at memory address
5511 ADDRESS. */
96d887e8 5512
963a6417 5513static struct value *
10a2c479 5514value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5515 const gdb_byte *valaddr,
963a6417 5516 CORE_ADDR address)
96d887e8 5517{
963a6417
PH
5518 int tag_byte_offset, dummy1, dummy2;
5519 struct type *tag_type;
5520 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5521 NULL, NULL, NULL))
96d887e8 5522 {
fc1a4b47 5523 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5524 ? NULL
5525 : valaddr + tag_byte_offset);
963a6417 5526 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5527
963a6417 5528 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5529 }
963a6417
PH
5530 return NULL;
5531}
96d887e8 5532
963a6417
PH
5533static struct type *
5534type_from_tag (struct value *tag)
5535{
5536 const char *type_name = ada_tag_name (tag);
5537 if (type_name != NULL)
5538 return ada_find_any_type (ada_encode (type_name));
5539 return NULL;
5540}
96d887e8 5541
963a6417
PH
5542struct tag_args
5543{
5544 struct value *tag;
5545 char *name;
5546};
4c4b4cd2 5547
529cad9c
PH
5548
5549static int ada_tag_name_1 (void *);
5550static int ada_tag_name_2 (struct tag_args *);
5551
4c4b4cd2
PH
5552/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5553 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5554 The value stored in ARGS->name is valid until the next call to
5555 ada_tag_name_1. */
5556
5557static int
5558ada_tag_name_1 (void *args0)
5559{
5560 struct tag_args *args = (struct tag_args *) args0;
5561 static char name[1024];
76a01679 5562 char *p;
4c4b4cd2
PH
5563 struct value *val;
5564 args->name = NULL;
03ee6b2e 5565 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5566 if (val == NULL)
5567 return ada_tag_name_2 (args);
03ee6b2e 5568 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5569 if (val == NULL)
5570 return 0;
5571 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5572 for (p = name; *p != '\0'; p += 1)
5573 if (isalpha (*p))
5574 *p = tolower (*p);
5575 args->name = name;
5576 return 0;
5577}
5578
5579/* Utility function for ada_tag_name_1 that tries the second
5580 representation for the dispatch table (in which there is no
5581 explicit 'tsd' field in the referent of the tag pointer, and instead
5582 the tsd pointer is stored just before the dispatch table. */
5583
5584static int
5585ada_tag_name_2 (struct tag_args *args)
5586{
5587 struct type *info_type;
5588 static char name[1024];
5589 char *p;
5590 struct value *val, *valp;
5591
5592 args->name = NULL;
5593 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5594 if (info_type == NULL)
5595 return 0;
5596 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5597 valp = value_cast (info_type, args->tag);
5598 if (valp == NULL)
5599 return 0;
2497b498 5600 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5601 if (val == NULL)
5602 return 0;
03ee6b2e 5603 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5604 if (val == NULL)
5605 return 0;
5606 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5607 for (p = name; *p != '\0'; p += 1)
5608 if (isalpha (*p))
5609 *p = tolower (*p);
5610 args->name = name;
5611 return 0;
5612}
5613
5614/* The type name of the dynamic type denoted by the 'tag value TAG, as
5615 * a C string. */
5616
5617const char *
5618ada_tag_name (struct value *tag)
5619{
5620 struct tag_args args;
df407dfe 5621 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5622 return NULL;
76a01679 5623 args.tag = tag;
4c4b4cd2
PH
5624 args.name = NULL;
5625 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5626 return args.name;
5627}
5628
5629/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5630
d2e4a39e 5631struct type *
ebf56fd3 5632ada_parent_type (struct type *type)
14f9c5c9
AS
5633{
5634 int i;
5635
61ee279c 5636 type = ada_check_typedef (type);
14f9c5c9
AS
5637
5638 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5639 return NULL;
5640
5641 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5642 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5643 {
5644 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5645
5646 /* If the _parent field is a pointer, then dereference it. */
5647 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5648 parent_type = TYPE_TARGET_TYPE (parent_type);
5649 /* If there is a parallel XVS type, get the actual base type. */
5650 parent_type = ada_get_base_type (parent_type);
5651
5652 return ada_check_typedef (parent_type);
5653 }
14f9c5c9
AS
5654
5655 return NULL;
5656}
5657
4c4b4cd2
PH
5658/* True iff field number FIELD_NUM of structure type TYPE contains the
5659 parent-type (inherited) fields of a derived type. Assumes TYPE is
5660 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5661
5662int
ebf56fd3 5663ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5664{
61ee279c 5665 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5666 return (name != NULL
5667 && (strncmp (name, "PARENT", 6) == 0
5668 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5669}
5670
4c4b4cd2 5671/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5672 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5673 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5674 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5675 structures. */
14f9c5c9
AS
5676
5677int
ebf56fd3 5678ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5679{
d2e4a39e
AS
5680 const char *name = TYPE_FIELD_NAME (type, field_num);
5681 return (name != NULL
4c4b4cd2
PH
5682 && (strncmp (name, "PARENT", 6) == 0
5683 || strcmp (name, "REP") == 0
5684 || strncmp (name, "_parent", 7) == 0
5685 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5686}
5687
4c4b4cd2
PH
5688/* True iff field number FIELD_NUM of structure or union type TYPE
5689 is a variant wrapper. Assumes TYPE is a structure type with at least
5690 FIELD_NUM+1 fields. */
14f9c5c9
AS
5691
5692int
ebf56fd3 5693ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5694{
d2e4a39e 5695 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5696 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5697 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5698 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5699 == TYPE_CODE_UNION)));
14f9c5c9
AS
5700}
5701
5702/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5703 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5704 returns the type of the controlling discriminant for the variant.
5705 May return NULL if the type could not be found. */
14f9c5c9 5706
d2e4a39e 5707struct type *
ebf56fd3 5708ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5709{
d2e4a39e 5710 char *name = ada_variant_discrim_name (var_type);
7c964f07 5711 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5712}
5713
4c4b4cd2 5714/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5715 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5716 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5717
5718int
ebf56fd3 5719ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5720{
d2e4a39e 5721 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5722 return (name != NULL && name[0] == 'O');
5723}
5724
5725/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5726 returns the name of the discriminant controlling the variant.
5727 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5728
d2e4a39e 5729char *
ebf56fd3 5730ada_variant_discrim_name (struct type *type0)
14f9c5c9 5731{
d2e4a39e 5732 static char *result = NULL;
14f9c5c9 5733 static size_t result_len = 0;
d2e4a39e
AS
5734 struct type *type;
5735 const char *name;
5736 const char *discrim_end;
5737 const char *discrim_start;
14f9c5c9
AS
5738
5739 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5740 type = TYPE_TARGET_TYPE (type0);
5741 else
5742 type = type0;
5743
5744 name = ada_type_name (type);
5745
5746 if (name == NULL || name[0] == '\000')
5747 return "";
5748
5749 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5750 discrim_end -= 1)
5751 {
4c4b4cd2
PH
5752 if (strncmp (discrim_end, "___XVN", 6) == 0)
5753 break;
14f9c5c9
AS
5754 }
5755 if (discrim_end == name)
5756 return "";
5757
d2e4a39e 5758 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5759 discrim_start -= 1)
5760 {
d2e4a39e 5761 if (discrim_start == name + 1)
4c4b4cd2 5762 return "";
76a01679 5763 if ((discrim_start > name + 3
4c4b4cd2
PH
5764 && strncmp (discrim_start - 3, "___", 3) == 0)
5765 || discrim_start[-1] == '.')
5766 break;
14f9c5c9
AS
5767 }
5768
5769 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5770 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5771 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5772 return result;
5773}
5774
4c4b4cd2
PH
5775/* Scan STR for a subtype-encoded number, beginning at position K.
5776 Put the position of the character just past the number scanned in
5777 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5778 Return 1 if there was a valid number at the given position, and 0
5779 otherwise. A "subtype-encoded" number consists of the absolute value
5780 in decimal, followed by the letter 'm' to indicate a negative number.
5781 Assumes 0m does not occur. */
14f9c5c9
AS
5782
5783int
d2e4a39e 5784ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5785{
5786 ULONGEST RU;
5787
d2e4a39e 5788 if (!isdigit (str[k]))
14f9c5c9
AS
5789 return 0;
5790
4c4b4cd2 5791 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5792 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5793 LONGEST. */
14f9c5c9
AS
5794 RU = 0;
5795 while (isdigit (str[k]))
5796 {
d2e4a39e 5797 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5798 k += 1;
5799 }
5800
d2e4a39e 5801 if (str[k] == 'm')
14f9c5c9
AS
5802 {
5803 if (R != NULL)
4c4b4cd2 5804 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5805 k += 1;
5806 }
5807 else if (R != NULL)
5808 *R = (LONGEST) RU;
5809
4c4b4cd2 5810 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5811 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5812 number representable as a LONGEST (although either would probably work
5813 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5814 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5815
5816 if (new_k != NULL)
5817 *new_k = k;
5818 return 1;
5819}
5820
4c4b4cd2
PH
5821/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5822 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5823 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5824
d2e4a39e 5825int
ebf56fd3 5826ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5827{
d2e4a39e 5828 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5829 int p;
5830
5831 p = 0;
5832 while (1)
5833 {
d2e4a39e 5834 switch (name[p])
4c4b4cd2
PH
5835 {
5836 case '\0':
5837 return 0;
5838 case 'S':
5839 {
5840 LONGEST W;
5841 if (!ada_scan_number (name, p + 1, &W, &p))
5842 return 0;
5843 if (val == W)
5844 return 1;
5845 break;
5846 }
5847 case 'R':
5848 {
5849 LONGEST L, U;
5850 if (!ada_scan_number (name, p + 1, &L, &p)
5851 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5852 return 0;
5853 if (val >= L && val <= U)
5854 return 1;
5855 break;
5856 }
5857 case 'O':
5858 return 1;
5859 default:
5860 return 0;
5861 }
5862 }
5863}
5864
5865/* FIXME: Lots of redundancy below. Try to consolidate. */
5866
5867/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5868 ARG_TYPE, extract and return the value of one of its (non-static)
5869 fields. FIELDNO says which field. Differs from value_primitive_field
5870 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5871
4c4b4cd2 5872static struct value *
d2e4a39e 5873ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5874 struct type *arg_type)
14f9c5c9 5875{
14f9c5c9
AS
5876 struct type *type;
5877
61ee279c 5878 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5879 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5880
4c4b4cd2 5881 /* Handle packed fields. */
14f9c5c9
AS
5882
5883 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5884 {
5885 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5886 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5887
0fd88904 5888 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5889 offset + bit_pos / 8,
5890 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5891 }
5892 else
5893 return value_primitive_field (arg1, offset, fieldno, arg_type);
5894}
5895
52ce6436
PH
5896/* Find field with name NAME in object of type TYPE. If found,
5897 set the following for each argument that is non-null:
5898 - *FIELD_TYPE_P to the field's type;
5899 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5900 an object of that type;
5901 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5902 - *BIT_SIZE_P to its size in bits if the field is packed, and
5903 0 otherwise;
5904 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5905 fields up to but not including the desired field, or by the total
5906 number of fields if not found. A NULL value of NAME never
5907 matches; the function just counts visible fields in this case.
5908
5909 Returns 1 if found, 0 otherwise. */
5910
4c4b4cd2 5911static int
76a01679
JB
5912find_struct_field (char *name, struct type *type, int offset,
5913 struct type **field_type_p,
52ce6436
PH
5914 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5915 int *index_p)
4c4b4cd2
PH
5916{
5917 int i;
5918
61ee279c 5919 type = ada_check_typedef (type);
76a01679 5920
52ce6436
PH
5921 if (field_type_p != NULL)
5922 *field_type_p = NULL;
5923 if (byte_offset_p != NULL)
d5d6fca5 5924 *byte_offset_p = 0;
52ce6436
PH
5925 if (bit_offset_p != NULL)
5926 *bit_offset_p = 0;
5927 if (bit_size_p != NULL)
5928 *bit_size_p = 0;
5929
5930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5931 {
5932 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5933 int fld_offset = offset + bit_pos / 8;
5934 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5935
4c4b4cd2
PH
5936 if (t_field_name == NULL)
5937 continue;
5938
52ce6436 5939 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5940 {
5941 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5942 if (field_type_p != NULL)
5943 *field_type_p = TYPE_FIELD_TYPE (type, i);
5944 if (byte_offset_p != NULL)
5945 *byte_offset_p = fld_offset;
5946 if (bit_offset_p != NULL)
5947 *bit_offset_p = bit_pos % 8;
5948 if (bit_size_p != NULL)
5949 *bit_size_p = bit_size;
76a01679
JB
5950 return 1;
5951 }
4c4b4cd2
PH
5952 else if (ada_is_wrapper_field (type, i))
5953 {
52ce6436
PH
5954 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5955 field_type_p, byte_offset_p, bit_offset_p,
5956 bit_size_p, index_p))
76a01679
JB
5957 return 1;
5958 }
4c4b4cd2
PH
5959 else if (ada_is_variant_part (type, i))
5960 {
52ce6436
PH
5961 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5962 fixed type?? */
4c4b4cd2 5963 int j;
52ce6436
PH
5964 struct type *field_type
5965 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5966
52ce6436 5967 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5968 {
76a01679
JB
5969 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5970 fld_offset
5971 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5972 field_type_p, byte_offset_p,
52ce6436 5973 bit_offset_p, bit_size_p, index_p))
76a01679 5974 return 1;
4c4b4cd2
PH
5975 }
5976 }
52ce6436
PH
5977 else if (index_p != NULL)
5978 *index_p += 1;
4c4b4cd2
PH
5979 }
5980 return 0;
5981}
5982
52ce6436 5983/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5984
52ce6436
PH
5985static int
5986num_visible_fields (struct type *type)
5987{
5988 int n;
5989 n = 0;
5990 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5991 return n;
5992}
14f9c5c9 5993
4c4b4cd2 5994/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5995 and search in it assuming it has (class) type TYPE.
5996 If found, return value, else return NULL.
5997
4c4b4cd2 5998 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5999
4c4b4cd2 6000static struct value *
d2e4a39e 6001ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6002 struct type *type)
14f9c5c9
AS
6003{
6004 int i;
61ee279c 6005 type = ada_check_typedef (type);
14f9c5c9 6006
52ce6436 6007 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6008 {
6009 char *t_field_name = TYPE_FIELD_NAME (type, i);
6010
6011 if (t_field_name == NULL)
4c4b4cd2 6012 continue;
14f9c5c9
AS
6013
6014 else if (field_name_match (t_field_name, name))
4c4b4cd2 6015 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6016
6017 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6018 {
06d5cf63
JB
6019 struct value *v = /* Do not let indent join lines here. */
6020 ada_search_struct_field (name, arg,
6021 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6022 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6023 if (v != NULL)
6024 return v;
6025 }
14f9c5c9
AS
6026
6027 else if (ada_is_variant_part (type, i))
4c4b4cd2 6028 {
52ce6436 6029 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6030 int j;
61ee279c 6031 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6032 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6033
52ce6436 6034 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6035 {
06d5cf63
JB
6036 struct value *v = ada_search_struct_field /* Force line break. */
6037 (name, arg,
6038 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6039 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6040 if (v != NULL)
6041 return v;
6042 }
6043 }
14f9c5c9
AS
6044 }
6045 return NULL;
6046}
d2e4a39e 6047
52ce6436
PH
6048static struct value *ada_index_struct_field_1 (int *, struct value *,
6049 int, struct type *);
6050
6051
6052/* Return field #INDEX in ARG, where the index is that returned by
6053 * find_struct_field through its INDEX_P argument. Adjust the address
6054 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6055 * If found, return value, else return NULL. */
6056
6057static struct value *
6058ada_index_struct_field (int index, struct value *arg, int offset,
6059 struct type *type)
6060{
6061 return ada_index_struct_field_1 (&index, arg, offset, type);
6062}
6063
6064
6065/* Auxiliary function for ada_index_struct_field. Like
6066 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6067 * *INDEX_P. */
6068
6069static struct value *
6070ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6071 struct type *type)
6072{
6073 int i;
6074 type = ada_check_typedef (type);
6075
6076 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6077 {
6078 if (TYPE_FIELD_NAME (type, i) == NULL)
6079 continue;
6080 else if (ada_is_wrapper_field (type, i))
6081 {
6082 struct value *v = /* Do not let indent join lines here. */
6083 ada_index_struct_field_1 (index_p, arg,
6084 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6085 TYPE_FIELD_TYPE (type, i));
6086 if (v != NULL)
6087 return v;
6088 }
6089
6090 else if (ada_is_variant_part (type, i))
6091 {
6092 /* PNH: Do we ever get here? See ada_search_struct_field,
6093 find_struct_field. */
6094 error (_("Cannot assign this kind of variant record"));
6095 }
6096 else if (*index_p == 0)
6097 return ada_value_primitive_field (arg, offset, i, type);
6098 else
6099 *index_p -= 1;
6100 }
6101 return NULL;
6102}
6103
4c4b4cd2
PH
6104/* Given ARG, a value of type (pointer or reference to a)*
6105 structure/union, extract the component named NAME from the ultimate
6106 target structure/union and return it as a value with its
f5938064 6107 appropriate type.
14f9c5c9 6108
4c4b4cd2
PH
6109 The routine searches for NAME among all members of the structure itself
6110 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6111 (e.g., '_parent').
6112
03ee6b2e
PH
6113 If NO_ERR, then simply return NULL in case of error, rather than
6114 calling error. */
14f9c5c9 6115
d2e4a39e 6116struct value *
03ee6b2e 6117ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6118{
4c4b4cd2 6119 struct type *t, *t1;
d2e4a39e 6120 struct value *v;
14f9c5c9 6121
4c4b4cd2 6122 v = NULL;
df407dfe 6123 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6124 if (TYPE_CODE (t) == TYPE_CODE_REF)
6125 {
6126 t1 = TYPE_TARGET_TYPE (t);
6127 if (t1 == NULL)
03ee6b2e 6128 goto BadValue;
61ee279c 6129 t1 = ada_check_typedef (t1);
4c4b4cd2 6130 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6131 {
994b9211 6132 arg = coerce_ref (arg);
76a01679
JB
6133 t = t1;
6134 }
4c4b4cd2 6135 }
14f9c5c9 6136
4c4b4cd2
PH
6137 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6138 {
6139 t1 = TYPE_TARGET_TYPE (t);
6140 if (t1 == NULL)
03ee6b2e 6141 goto BadValue;
61ee279c 6142 t1 = ada_check_typedef (t1);
4c4b4cd2 6143 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6144 {
6145 arg = value_ind (arg);
6146 t = t1;
6147 }
4c4b4cd2 6148 else
76a01679 6149 break;
4c4b4cd2 6150 }
14f9c5c9 6151
4c4b4cd2 6152 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6153 goto BadValue;
14f9c5c9 6154
4c4b4cd2
PH
6155 if (t1 == t)
6156 v = ada_search_struct_field (name, arg, 0, t);
6157 else
6158 {
6159 int bit_offset, bit_size, byte_offset;
6160 struct type *field_type;
6161 CORE_ADDR address;
6162
76a01679
JB
6163 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6164 address = value_as_address (arg);
4c4b4cd2 6165 else
0fd88904 6166 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6167
1ed6ede0 6168 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6169 if (find_struct_field (name, t1, 0,
6170 &field_type, &byte_offset, &bit_offset,
52ce6436 6171 &bit_size, NULL))
76a01679
JB
6172 {
6173 if (bit_size != 0)
6174 {
714e53ab
PH
6175 if (TYPE_CODE (t) == TYPE_CODE_REF)
6176 arg = ada_coerce_ref (arg);
6177 else
6178 arg = ada_value_ind (arg);
76a01679
JB
6179 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6180 bit_offset, bit_size,
6181 field_type);
6182 }
6183 else
f5938064 6184 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6185 }
6186 }
6187
03ee6b2e
PH
6188 if (v != NULL || no_err)
6189 return v;
6190 else
323e0a4a 6191 error (_("There is no member named %s."), name);
14f9c5c9 6192
03ee6b2e
PH
6193 BadValue:
6194 if (no_err)
6195 return NULL;
6196 else
6197 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6198}
6199
6200/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6201 If DISPP is non-null, add its byte displacement from the beginning of a
6202 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6203 work for packed fields).
6204
6205 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6206 followed by "___".
14f9c5c9 6207
4c4b4cd2
PH
6208 TYPE can be either a struct or union. If REFOK, TYPE may also
6209 be a (pointer or reference)+ to a struct or union, and the
6210 ultimate target type will be searched.
14f9c5c9
AS
6211
6212 Looks recursively into variant clauses and parent types.
6213
4c4b4cd2
PH
6214 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6215 TYPE is not a type of the right kind. */
14f9c5c9 6216
4c4b4cd2 6217static struct type *
76a01679
JB
6218ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6219 int noerr, int *dispp)
14f9c5c9
AS
6220{
6221 int i;
6222
6223 if (name == NULL)
6224 goto BadName;
6225
76a01679 6226 if (refok && type != NULL)
4c4b4cd2
PH
6227 while (1)
6228 {
61ee279c 6229 type = ada_check_typedef (type);
76a01679
JB
6230 if (TYPE_CODE (type) != TYPE_CODE_PTR
6231 && TYPE_CODE (type) != TYPE_CODE_REF)
6232 break;
6233 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6234 }
14f9c5c9 6235
76a01679 6236 if (type == NULL
1265e4aa
JB
6237 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6238 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6239 {
4c4b4cd2 6240 if (noerr)
76a01679 6241 return NULL;
4c4b4cd2 6242 else
76a01679
JB
6243 {
6244 target_terminal_ours ();
6245 gdb_flush (gdb_stdout);
323e0a4a
AC
6246 if (type == NULL)
6247 error (_("Type (null) is not a structure or union type"));
6248 else
6249 {
6250 /* XXX: type_sprint */
6251 fprintf_unfiltered (gdb_stderr, _("Type "));
6252 type_print (type, "", gdb_stderr, -1);
6253 error (_(" is not a structure or union type"));
6254 }
76a01679 6255 }
14f9c5c9
AS
6256 }
6257
6258 type = to_static_fixed_type (type);
6259
6260 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6261 {
6262 char *t_field_name = TYPE_FIELD_NAME (type, i);
6263 struct type *t;
6264 int disp;
d2e4a39e 6265
14f9c5c9 6266 if (t_field_name == NULL)
4c4b4cd2 6267 continue;
14f9c5c9
AS
6268
6269 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6270 {
6271 if (dispp != NULL)
6272 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6273 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6274 }
14f9c5c9
AS
6275
6276 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6277 {
6278 disp = 0;
6279 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6280 0, 1, &disp);
6281 if (t != NULL)
6282 {
6283 if (dispp != NULL)
6284 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6285 return t;
6286 }
6287 }
14f9c5c9
AS
6288
6289 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6290 {
6291 int j;
61ee279c 6292 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6293
6294 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6295 {
b1f33ddd
JB
6296 /* FIXME pnh 2008/01/26: We check for a field that is
6297 NOT wrapped in a struct, since the compiler sometimes
6298 generates these for unchecked variant types. Revisit
6299 if the compiler changes this practice. */
6300 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6301 disp = 0;
b1f33ddd
JB
6302 if (v_field_name != NULL
6303 && field_name_match (v_field_name, name))
6304 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6305 else
6306 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6307 name, 0, 1, &disp);
6308
4c4b4cd2
PH
6309 if (t != NULL)
6310 {
6311 if (dispp != NULL)
6312 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6313 return t;
6314 }
6315 }
6316 }
14f9c5c9
AS
6317
6318 }
6319
6320BadName:
d2e4a39e 6321 if (!noerr)
14f9c5c9
AS
6322 {
6323 target_terminal_ours ();
6324 gdb_flush (gdb_stdout);
323e0a4a
AC
6325 if (name == NULL)
6326 {
6327 /* XXX: type_sprint */
6328 fprintf_unfiltered (gdb_stderr, _("Type "));
6329 type_print (type, "", gdb_stderr, -1);
6330 error (_(" has no component named <null>"));
6331 }
6332 else
6333 {
6334 /* XXX: type_sprint */
6335 fprintf_unfiltered (gdb_stderr, _("Type "));
6336 type_print (type, "", gdb_stderr, -1);
6337 error (_(" has no component named %s"), name);
6338 }
14f9c5c9
AS
6339 }
6340
6341 return NULL;
6342}
6343
b1f33ddd
JB
6344/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6345 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6346 represents an unchecked union (that is, the variant part of a
6347 record that is named in an Unchecked_Union pragma). */
6348
6349static int
6350is_unchecked_variant (struct type *var_type, struct type *outer_type)
6351{
6352 char *discrim_name = ada_variant_discrim_name (var_type);
6353 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6354 == NULL);
6355}
6356
6357
14f9c5c9
AS
6358/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6359 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6360 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6361 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6362
d2e4a39e 6363int
ebf56fd3 6364ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6365 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6366{
6367 int others_clause;
6368 int i;
d2e4a39e 6369 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6370 struct value *outer;
6371 struct value *discrim;
14f9c5c9
AS
6372 LONGEST discrim_val;
6373
0c281816
JB
6374 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6375 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6376 if (discrim == NULL)
14f9c5c9 6377 return -1;
0c281816 6378 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6379
6380 others_clause = -1;
6381 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6382 {
6383 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6384 others_clause = i;
14f9c5c9 6385 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6386 return i;
14f9c5c9
AS
6387 }
6388
6389 return others_clause;
6390}
d2e4a39e 6391\f
14f9c5c9
AS
6392
6393
4c4b4cd2 6394 /* Dynamic-Sized Records */
14f9c5c9
AS
6395
6396/* Strategy: The type ostensibly attached to a value with dynamic size
6397 (i.e., a size that is not statically recorded in the debugging
6398 data) does not accurately reflect the size or layout of the value.
6399 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6400 conventional types that are constructed on the fly. */
14f9c5c9
AS
6401
6402/* There is a subtle and tricky problem here. In general, we cannot
6403 determine the size of dynamic records without its data. However,
6404 the 'struct value' data structure, which GDB uses to represent
6405 quantities in the inferior process (the target), requires the size
6406 of the type at the time of its allocation in order to reserve space
6407 for GDB's internal copy of the data. That's why the
6408 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6409 rather than struct value*s.
14f9c5c9
AS
6410
6411 However, GDB's internal history variables ($1, $2, etc.) are
6412 struct value*s containing internal copies of the data that are not, in
6413 general, the same as the data at their corresponding addresses in
6414 the target. Fortunately, the types we give to these values are all
6415 conventional, fixed-size types (as per the strategy described
6416 above), so that we don't usually have to perform the
6417 'to_fixed_xxx_type' conversions to look at their values.
6418 Unfortunately, there is one exception: if one of the internal
6419 history variables is an array whose elements are unconstrained
6420 records, then we will need to create distinct fixed types for each
6421 element selected. */
6422
6423/* The upshot of all of this is that many routines take a (type, host
6424 address, target address) triple as arguments to represent a value.
6425 The host address, if non-null, is supposed to contain an internal
6426 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6427 target at the target address. */
14f9c5c9
AS
6428
6429/* Assuming that VAL0 represents a pointer value, the result of
6430 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6431 dynamic-sized types. */
14f9c5c9 6432
d2e4a39e
AS
6433struct value *
6434ada_value_ind (struct value *val0)
14f9c5c9 6435{
d2e4a39e 6436 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6437 return ada_to_fixed_value (val);
14f9c5c9
AS
6438}
6439
6440/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6441 qualifiers on VAL0. */
6442
d2e4a39e
AS
6443static struct value *
6444ada_coerce_ref (struct value *val0)
6445{
df407dfe 6446 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6447 {
6448 struct value *val = val0;
994b9211 6449 val = coerce_ref (val);
d2e4a39e 6450 val = unwrap_value (val);
4c4b4cd2 6451 return ada_to_fixed_value (val);
d2e4a39e
AS
6452 }
6453 else
14f9c5c9
AS
6454 return val0;
6455}
6456
6457/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6458 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6459
6460static unsigned int
ebf56fd3 6461align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6462{
6463 return (off + alignment - 1) & ~(alignment - 1);
6464}
6465
4c4b4cd2 6466/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6467
6468static unsigned int
ebf56fd3 6469field_alignment (struct type *type, int f)
14f9c5c9 6470{
d2e4a39e 6471 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6472 int len;
14f9c5c9
AS
6473 int align_offset;
6474
64a1bf19
JB
6475 /* The field name should never be null, unless the debugging information
6476 is somehow malformed. In this case, we assume the field does not
6477 require any alignment. */
6478 if (name == NULL)
6479 return 1;
6480
6481 len = strlen (name);
6482
4c4b4cd2
PH
6483 if (!isdigit (name[len - 1]))
6484 return 1;
14f9c5c9 6485
d2e4a39e 6486 if (isdigit (name[len - 2]))
14f9c5c9
AS
6487 align_offset = len - 2;
6488 else
6489 align_offset = len - 1;
6490
4c4b4cd2 6491 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6492 return TARGET_CHAR_BIT;
6493
4c4b4cd2
PH
6494 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6495}
6496
6497/* Find a symbol named NAME. Ignores ambiguity. */
6498
6499struct symbol *
6500ada_find_any_symbol (const char *name)
6501{
6502 struct symbol *sym;
6503
6504 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6505 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6506 return sym;
6507
6508 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6509 return sym;
14f9c5c9
AS
6510}
6511
dddfab26
UW
6512/* Find a type named NAME. Ignores ambiguity. This routine will look
6513 solely for types defined by debug info, it will not search the GDB
6514 primitive types. */
4c4b4cd2 6515
d2e4a39e 6516struct type *
ebf56fd3 6517ada_find_any_type (const char *name)
14f9c5c9 6518{
4c4b4cd2 6519 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6520
14f9c5c9 6521 if (sym != NULL)
dddfab26 6522 return SYMBOL_TYPE (sym);
14f9c5c9 6523
dddfab26 6524 return NULL;
14f9c5c9
AS
6525}
6526
aeb5907d
JB
6527/* Given NAME and an associated BLOCK, search all symbols for
6528 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6529 associated to NAME. Return this symbol if found, return
6530 NULL otherwise. */
6531
6532struct symbol *
6533ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6534{
6535 struct symbol *sym;
6536
6537 sym = find_old_style_renaming_symbol (name, block);
6538
6539 if (sym != NULL)
6540 return sym;
6541
6542 /* Not right yet. FIXME pnh 7/20/2007. */
6543 sym = ada_find_any_symbol (name);
6544 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6545 return sym;
6546 else
6547 return NULL;
6548}
6549
6550static struct symbol *
6551find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6552{
7f0df278 6553 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6554 char *rename;
6555
6556 if (function_sym != NULL)
6557 {
6558 /* If the symbol is defined inside a function, NAME is not fully
6559 qualified. This means we need to prepend the function name
6560 as well as adding the ``___XR'' suffix to build the name of
6561 the associated renaming symbol. */
6562 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6563 /* Function names sometimes contain suffixes used
6564 for instance to qualify nested subprograms. When building
6565 the XR type name, we need to make sure that this suffix is
6566 not included. So do not include any suffix in the function
6567 name length below. */
69fadcdf 6568 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6569 const int rename_len = function_name_len + 2 /* "__" */
6570 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6571
529cad9c 6572 /* Strip the suffix if necessary. */
69fadcdf
JB
6573 ada_remove_trailing_digits (function_name, &function_name_len);
6574 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6575 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6576
4c4b4cd2
PH
6577 /* Library-level functions are a special case, as GNAT adds
6578 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6579 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6580 have this prefix, so we need to skip this prefix if present. */
6581 if (function_name_len > 5 /* "_ada_" */
6582 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6583 {
6584 function_name += 5;
6585 function_name_len -= 5;
6586 }
4c4b4cd2
PH
6587
6588 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6589 strncpy (rename, function_name, function_name_len);
6590 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6591 "__%s___XR", name);
4c4b4cd2
PH
6592 }
6593 else
6594 {
6595 const int rename_len = strlen (name) + 6;
6596 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6597 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6598 }
6599
6600 return ada_find_any_symbol (rename);
6601}
6602
14f9c5c9 6603/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6604 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6605 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6606 otherwise return 0. */
6607
14f9c5c9 6608int
d2e4a39e 6609ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6610{
6611 if (type1 == NULL)
6612 return 1;
6613 else if (type0 == NULL)
6614 return 0;
6615 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6616 return 1;
6617 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6618 return 0;
4c4b4cd2
PH
6619 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6620 return 1;
ad82864c 6621 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6622 return 1;
4c4b4cd2
PH
6623 else if (ada_is_array_descriptor_type (type0)
6624 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6625 return 1;
aeb5907d
JB
6626 else
6627 {
6628 const char *type0_name = type_name_no_tag (type0);
6629 const char *type1_name = type_name_no_tag (type1);
6630
6631 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6632 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6633 return 1;
6634 }
14f9c5c9
AS
6635 return 0;
6636}
6637
6638/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6639 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6640
d2e4a39e
AS
6641char *
6642ada_type_name (struct type *type)
14f9c5c9 6643{
d2e4a39e 6644 if (type == NULL)
14f9c5c9
AS
6645 return NULL;
6646 else if (TYPE_NAME (type) != NULL)
6647 return TYPE_NAME (type);
6648 else
6649 return TYPE_TAG_NAME (type);
6650}
6651
b4ba55a1
JB
6652/* Search the list of "descriptive" types associated to TYPE for a type
6653 whose name is NAME. */
6654
6655static struct type *
6656find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6657{
6658 struct type *result;
6659
6660 /* If there no descriptive-type info, then there is no parallel type
6661 to be found. */
6662 if (!HAVE_GNAT_AUX_INFO (type))
6663 return NULL;
6664
6665 result = TYPE_DESCRIPTIVE_TYPE (type);
6666 while (result != NULL)
6667 {
6668 char *result_name = ada_type_name (result);
6669
6670 if (result_name == NULL)
6671 {
6672 warning (_("unexpected null name on descriptive type"));
6673 return NULL;
6674 }
6675
6676 /* If the names match, stop. */
6677 if (strcmp (result_name, name) == 0)
6678 break;
6679
6680 /* Otherwise, look at the next item on the list, if any. */
6681 if (HAVE_GNAT_AUX_INFO (result))
6682 result = TYPE_DESCRIPTIVE_TYPE (result);
6683 else
6684 result = NULL;
6685 }
6686
6687 /* If we didn't find a match, see whether this is a packed array. With
6688 older compilers, the descriptive type information is either absent or
6689 irrelevant when it comes to packed arrays so the above lookup fails.
6690 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6691 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6692 return ada_find_any_type (name);
6693
6694 return result;
6695}
6696
6697/* Find a parallel type to TYPE with the specified NAME, using the
6698 descriptive type taken from the debugging information, if available,
6699 and otherwise using the (slower) name-based method. */
6700
6701static struct type *
6702ada_find_parallel_type_with_name (struct type *type, const char *name)
6703{
6704 struct type *result = NULL;
6705
6706 if (HAVE_GNAT_AUX_INFO (type))
6707 result = find_parallel_type_by_descriptive_type (type, name);
6708 else
6709 result = ada_find_any_type (name);
6710
6711 return result;
6712}
6713
6714/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6715 SUFFIX to the name of TYPE. */
14f9c5c9 6716
d2e4a39e 6717struct type *
ebf56fd3 6718ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6719{
b4ba55a1 6720 char *name, *typename = ada_type_name (type);
14f9c5c9 6721 int len;
d2e4a39e 6722
14f9c5c9
AS
6723 if (typename == NULL)
6724 return NULL;
6725
6726 len = strlen (typename);
6727
b4ba55a1 6728 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6729
6730 strcpy (name, typename);
6731 strcpy (name + len, suffix);
6732
b4ba55a1 6733 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
6734}
6735
14f9c5c9 6736/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6737 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6738
d2e4a39e
AS
6739static struct type *
6740dynamic_template_type (struct type *type)
14f9c5c9 6741{
61ee279c 6742 type = ada_check_typedef (type);
14f9c5c9
AS
6743
6744 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6745 || ada_type_name (type) == NULL)
14f9c5c9 6746 return NULL;
d2e4a39e 6747 else
14f9c5c9
AS
6748 {
6749 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6750 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6751 return type;
14f9c5c9 6752 else
4c4b4cd2 6753 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6754 }
6755}
6756
6757/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6758 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6759
d2e4a39e
AS
6760static int
6761is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6762{
6763 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6764 return name != NULL
14f9c5c9
AS
6765 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6766 && strstr (name, "___XVL") != NULL;
6767}
6768
4c4b4cd2
PH
6769/* The index of the variant field of TYPE, or -1 if TYPE does not
6770 represent a variant record type. */
14f9c5c9 6771
d2e4a39e 6772static int
4c4b4cd2 6773variant_field_index (struct type *type)
14f9c5c9
AS
6774{
6775 int f;
6776
4c4b4cd2
PH
6777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6778 return -1;
6779
6780 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6781 {
6782 if (ada_is_variant_part (type, f))
6783 return f;
6784 }
6785 return -1;
14f9c5c9
AS
6786}
6787
4c4b4cd2
PH
6788/* A record type with no fields. */
6789
d2e4a39e 6790static struct type *
e9bb382b 6791empty_record (struct type *template)
14f9c5c9 6792{
e9bb382b 6793 struct type *type = alloc_type_copy (template);
14f9c5c9
AS
6794 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6795 TYPE_NFIELDS (type) = 0;
6796 TYPE_FIELDS (type) = NULL;
b1f33ddd 6797 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6798 TYPE_NAME (type) = "<empty>";
6799 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6800 TYPE_LENGTH (type) = 0;
6801 return type;
6802}
6803
6804/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6805 the value of type TYPE at VALADDR or ADDRESS (see comments at
6806 the beginning of this section) VAL according to GNAT conventions.
6807 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6808 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6809 an outer-level type (i.e., as opposed to a branch of a variant.) A
6810 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6811 of the variant.
14f9c5c9 6812
4c4b4cd2
PH
6813 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6814 length are not statically known are discarded. As a consequence,
6815 VALADDR, ADDRESS and DVAL0 are ignored.
6816
6817 NOTE: Limitations: For now, we assume that dynamic fields and
6818 variants occupy whole numbers of bytes. However, they need not be
6819 byte-aligned. */
6820
6821struct type *
10a2c479 6822ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6823 const gdb_byte *valaddr,
4c4b4cd2
PH
6824 CORE_ADDR address, struct value *dval0,
6825 int keep_dynamic_fields)
14f9c5c9 6826{
d2e4a39e
AS
6827 struct value *mark = value_mark ();
6828 struct value *dval;
6829 struct type *rtype;
14f9c5c9 6830 int nfields, bit_len;
4c4b4cd2 6831 int variant_field;
14f9c5c9 6832 long off;
4c4b4cd2 6833 int fld_bit_len, bit_incr;
14f9c5c9
AS
6834 int f;
6835
4c4b4cd2
PH
6836 /* Compute the number of fields in this record type that are going
6837 to be processed: unless keep_dynamic_fields, this includes only
6838 fields whose position and length are static will be processed. */
6839 if (keep_dynamic_fields)
6840 nfields = TYPE_NFIELDS (type);
6841 else
6842 {
6843 nfields = 0;
76a01679 6844 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6845 && !ada_is_variant_part (type, nfields)
6846 && !is_dynamic_field (type, nfields))
6847 nfields++;
6848 }
6849
e9bb382b 6850 rtype = alloc_type_copy (type);
14f9c5c9
AS
6851 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6852 INIT_CPLUS_SPECIFIC (rtype);
6853 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6854 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6855 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6856 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6857 TYPE_NAME (rtype) = ada_type_name (type);
6858 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6859 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6860
d2e4a39e
AS
6861 off = 0;
6862 bit_len = 0;
4c4b4cd2
PH
6863 variant_field = -1;
6864
14f9c5c9
AS
6865 for (f = 0; f < nfields; f += 1)
6866 {
6c038f32
PH
6867 off = align_value (off, field_alignment (type, f))
6868 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6869 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6870 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6871
d2e4a39e 6872 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6873 {
6874 variant_field = f;
6875 fld_bit_len = bit_incr = 0;
6876 }
14f9c5c9 6877 else if (is_dynamic_field (type, f))
4c4b4cd2 6878 {
284614f0
JB
6879 const gdb_byte *field_valaddr = valaddr;
6880 CORE_ADDR field_address = address;
6881 struct type *field_type =
6882 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6883
4c4b4cd2 6884 if (dval0 == NULL)
b5304971
JG
6885 {
6886 /* rtype's length is computed based on the run-time
6887 value of discriminants. If the discriminants are not
6888 initialized, the type size may be completely bogus and
6889 GDB may fail to allocate a value for it. So check the
6890 size first before creating the value. */
6891 check_size (rtype);
6892 dval = value_from_contents_and_address (rtype, valaddr, address);
6893 }
4c4b4cd2
PH
6894 else
6895 dval = dval0;
6896
284614f0
JB
6897 /* If the type referenced by this field is an aligner type, we need
6898 to unwrap that aligner type, because its size might not be set.
6899 Keeping the aligner type would cause us to compute the wrong
6900 size for this field, impacting the offset of the all the fields
6901 that follow this one. */
6902 if (ada_is_aligner_type (field_type))
6903 {
6904 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6905
6906 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6907 field_address = cond_offset_target (field_address, field_offset);
6908 field_type = ada_aligned_type (field_type);
6909 }
6910
6911 field_valaddr = cond_offset_host (field_valaddr,
6912 off / TARGET_CHAR_BIT);
6913 field_address = cond_offset_target (field_address,
6914 off / TARGET_CHAR_BIT);
6915
6916 /* Get the fixed type of the field. Note that, in this case,
6917 we do not want to get the real type out of the tag: if
6918 the current field is the parent part of a tagged record,
6919 we will get the tag of the object. Clearly wrong: the real
6920 type of the parent is not the real type of the child. We
6921 would end up in an infinite loop. */
6922 field_type = ada_get_base_type (field_type);
6923 field_type = ada_to_fixed_type (field_type, field_valaddr,
6924 field_address, dval, 0);
6925
6926 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6927 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6928 bit_incr = fld_bit_len =
6929 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6930 }
14f9c5c9 6931 else
4c4b4cd2 6932 {
9f0dec2d
JB
6933 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6934
6935 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6936 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6937 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6938 bit_incr = fld_bit_len =
6939 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6940 else
6941 bit_incr = fld_bit_len =
9f0dec2d 6942 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 6943 }
14f9c5c9 6944 if (off + fld_bit_len > bit_len)
4c4b4cd2 6945 bit_len = off + fld_bit_len;
14f9c5c9 6946 off += bit_incr;
4c4b4cd2
PH
6947 TYPE_LENGTH (rtype) =
6948 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6949 }
4c4b4cd2
PH
6950
6951 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6952 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6953 the record. This can happen in the presence of representation
6954 clauses. */
6955 if (variant_field >= 0)
6956 {
6957 struct type *branch_type;
6958
6959 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6960
6961 if (dval0 == NULL)
6962 dval = value_from_contents_and_address (rtype, valaddr, address);
6963 else
6964 dval = dval0;
6965
6966 branch_type =
6967 to_fixed_variant_branch_type
6968 (TYPE_FIELD_TYPE (type, variant_field),
6969 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6970 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6971 if (branch_type == NULL)
6972 {
6973 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6974 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6975 TYPE_NFIELDS (rtype) -= 1;
6976 }
6977 else
6978 {
6979 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6980 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6981 fld_bit_len =
6982 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6983 TARGET_CHAR_BIT;
6984 if (off + fld_bit_len > bit_len)
6985 bit_len = off + fld_bit_len;
6986 TYPE_LENGTH (rtype) =
6987 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6988 }
6989 }
6990
714e53ab
PH
6991 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6992 should contain the alignment of that record, which should be a strictly
6993 positive value. If null or negative, then something is wrong, most
6994 probably in the debug info. In that case, we don't round up the size
6995 of the resulting type. If this record is not part of another structure,
6996 the current RTYPE length might be good enough for our purposes. */
6997 if (TYPE_LENGTH (type) <= 0)
6998 {
323e0a4a
AC
6999 if (TYPE_NAME (rtype))
7000 warning (_("Invalid type size for `%s' detected: %d."),
7001 TYPE_NAME (rtype), TYPE_LENGTH (type));
7002 else
7003 warning (_("Invalid type size for <unnamed> detected: %d."),
7004 TYPE_LENGTH (type));
714e53ab
PH
7005 }
7006 else
7007 {
7008 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7009 TYPE_LENGTH (type));
7010 }
14f9c5c9
AS
7011
7012 value_free_to_mark (mark);
d2e4a39e 7013 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7014 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7015 return rtype;
7016}
7017
4c4b4cd2
PH
7018/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7019 of 1. */
14f9c5c9 7020
d2e4a39e 7021static struct type *
fc1a4b47 7022template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7023 CORE_ADDR address, struct value *dval0)
7024{
7025 return ada_template_to_fixed_record_type_1 (type, valaddr,
7026 address, dval0, 1);
7027}
7028
7029/* An ordinary record type in which ___XVL-convention fields and
7030 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7031 static approximations, containing all possible fields. Uses
7032 no runtime values. Useless for use in values, but that's OK,
7033 since the results are used only for type determinations. Works on both
7034 structs and unions. Representation note: to save space, we memorize
7035 the result of this function in the TYPE_TARGET_TYPE of the
7036 template type. */
7037
7038static struct type *
7039template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7040{
7041 struct type *type;
7042 int nfields;
7043 int f;
7044
4c4b4cd2
PH
7045 if (TYPE_TARGET_TYPE (type0) != NULL)
7046 return TYPE_TARGET_TYPE (type0);
7047
7048 nfields = TYPE_NFIELDS (type0);
7049 type = type0;
14f9c5c9
AS
7050
7051 for (f = 0; f < nfields; f += 1)
7052 {
61ee279c 7053 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7054 struct type *new_type;
14f9c5c9 7055
4c4b4cd2
PH
7056 if (is_dynamic_field (type0, f))
7057 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7058 else
f192137b 7059 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7060 if (type == type0 && new_type != field_type)
7061 {
e9bb382b 7062 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7063 TYPE_CODE (type) = TYPE_CODE (type0);
7064 INIT_CPLUS_SPECIFIC (type);
7065 TYPE_NFIELDS (type) = nfields;
7066 TYPE_FIELDS (type) = (struct field *)
7067 TYPE_ALLOC (type, nfields * sizeof (struct field));
7068 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7069 sizeof (struct field) * nfields);
7070 TYPE_NAME (type) = ada_type_name (type0);
7071 TYPE_TAG_NAME (type) = NULL;
876cecd0 7072 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7073 TYPE_LENGTH (type) = 0;
7074 }
7075 TYPE_FIELD_TYPE (type, f) = new_type;
7076 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7077 }
14f9c5c9
AS
7078 return type;
7079}
7080
4c4b4cd2 7081/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7082 whose address in memory is ADDRESS, returns a revision of TYPE,
7083 which should be a non-dynamic-sized record, in which the variant
7084 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7085 for discriminant values in DVAL0, which can be NULL if the record
7086 contains the necessary discriminant values. */
7087
d2e4a39e 7088static struct type *
fc1a4b47 7089to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7090 CORE_ADDR address, struct value *dval0)
14f9c5c9 7091{
d2e4a39e 7092 struct value *mark = value_mark ();
4c4b4cd2 7093 struct value *dval;
d2e4a39e 7094 struct type *rtype;
14f9c5c9
AS
7095 struct type *branch_type;
7096 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7097 int variant_field = variant_field_index (type);
14f9c5c9 7098
4c4b4cd2 7099 if (variant_field == -1)
14f9c5c9
AS
7100 return type;
7101
4c4b4cd2
PH
7102 if (dval0 == NULL)
7103 dval = value_from_contents_and_address (type, valaddr, address);
7104 else
7105 dval = dval0;
7106
e9bb382b 7107 rtype = alloc_type_copy (type);
14f9c5c9 7108 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7109 INIT_CPLUS_SPECIFIC (rtype);
7110 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7111 TYPE_FIELDS (rtype) =
7112 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7113 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7114 sizeof (struct field) * nfields);
14f9c5c9
AS
7115 TYPE_NAME (rtype) = ada_type_name (type);
7116 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7117 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7118 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7119
4c4b4cd2
PH
7120 branch_type = to_fixed_variant_branch_type
7121 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7122 cond_offset_host (valaddr,
4c4b4cd2
PH
7123 TYPE_FIELD_BITPOS (type, variant_field)
7124 / TARGET_CHAR_BIT),
d2e4a39e 7125 cond_offset_target (address,
4c4b4cd2
PH
7126 TYPE_FIELD_BITPOS (type, variant_field)
7127 / TARGET_CHAR_BIT), dval);
d2e4a39e 7128 if (branch_type == NULL)
14f9c5c9 7129 {
4c4b4cd2
PH
7130 int f;
7131 for (f = variant_field + 1; f < nfields; f += 1)
7132 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7133 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7134 }
7135 else
7136 {
4c4b4cd2
PH
7137 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7138 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7139 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7140 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7141 }
4c4b4cd2 7142 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7143
4c4b4cd2 7144 value_free_to_mark (mark);
14f9c5c9
AS
7145 return rtype;
7146}
7147
7148/* An ordinary record type (with fixed-length fields) that describes
7149 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7150 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7151 should be in DVAL, a record value; it may be NULL if the object
7152 at ADDR itself contains any necessary discriminant values.
7153 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7154 values from the record are needed. Except in the case that DVAL,
7155 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7156 unchecked) is replaced by a particular branch of the variant.
7157
7158 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7159 is questionable and may be removed. It can arise during the
7160 processing of an unconstrained-array-of-record type where all the
7161 variant branches have exactly the same size. This is because in
7162 such cases, the compiler does not bother to use the XVS convention
7163 when encoding the record. I am currently dubious of this
7164 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7165
d2e4a39e 7166static struct type *
fc1a4b47 7167to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7168 CORE_ADDR address, struct value *dval)
14f9c5c9 7169{
d2e4a39e 7170 struct type *templ_type;
14f9c5c9 7171
876cecd0 7172 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7173 return type0;
7174
d2e4a39e 7175 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7176
7177 if (templ_type != NULL)
7178 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7179 else if (variant_field_index (type0) >= 0)
7180 {
7181 if (dval == NULL && valaddr == NULL && address == 0)
7182 return type0;
7183 return to_record_with_fixed_variant_part (type0, valaddr, address,
7184 dval);
7185 }
14f9c5c9
AS
7186 else
7187 {
876cecd0 7188 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7189 return type0;
7190 }
7191
7192}
7193
7194/* An ordinary record type (with fixed-length fields) that describes
7195 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7196 union type. Any necessary discriminants' values should be in DVAL,
7197 a record value. That is, this routine selects the appropriate
7198 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7199 indicated in the union's type name. Returns VAR_TYPE0 itself if
7200 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7201
d2e4a39e 7202static struct type *
fc1a4b47 7203to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7204 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7205{
7206 int which;
d2e4a39e
AS
7207 struct type *templ_type;
7208 struct type *var_type;
14f9c5c9
AS
7209
7210 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7211 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7212 else
14f9c5c9
AS
7213 var_type = var_type0;
7214
7215 templ_type = ada_find_parallel_type (var_type, "___XVU");
7216
7217 if (templ_type != NULL)
7218 var_type = templ_type;
7219
b1f33ddd
JB
7220 if (is_unchecked_variant (var_type, value_type (dval)))
7221 return var_type0;
d2e4a39e
AS
7222 which =
7223 ada_which_variant_applies (var_type,
0fd88904 7224 value_type (dval), value_contents (dval));
14f9c5c9
AS
7225
7226 if (which < 0)
e9bb382b 7227 return empty_record (var_type);
14f9c5c9 7228 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7229 return to_fixed_record_type
d2e4a39e
AS
7230 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7231 valaddr, address, dval);
4c4b4cd2 7232 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7233 return
7234 to_fixed_record_type
7235 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7236 else
7237 return TYPE_FIELD_TYPE (var_type, which);
7238}
7239
7240/* Assuming that TYPE0 is an array type describing the type of a value
7241 at ADDR, and that DVAL describes a record containing any
7242 discriminants used in TYPE0, returns a type for the value that
7243 contains no dynamic components (that is, no components whose sizes
7244 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7245 true, gives an error message if the resulting type's size is over
4c4b4cd2 7246 varsize_limit. */
14f9c5c9 7247
d2e4a39e
AS
7248static struct type *
7249to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7250 int ignore_too_big)
14f9c5c9 7251{
d2e4a39e
AS
7252 struct type *index_type_desc;
7253 struct type *result;
ad82864c 7254 int constrained_packed_array_p;
14f9c5c9 7255
284614f0 7256 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7257 return type0;
14f9c5c9 7258
ad82864c
JB
7259 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7260 if (constrained_packed_array_p)
7261 type0 = decode_constrained_packed_array_type (type0);
284614f0 7262
14f9c5c9
AS
7263 index_type_desc = ada_find_parallel_type (type0, "___XA");
7264 if (index_type_desc == NULL)
7265 {
61ee279c 7266 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7267 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7268 depend on the contents of the array in properly constructed
7269 debugging data. */
529cad9c
PH
7270 /* Create a fixed version of the array element type.
7271 We're not providing the address of an element here,
e1d5a0d2 7272 and thus the actual object value cannot be inspected to do
529cad9c
PH
7273 the conversion. This should not be a problem, since arrays of
7274 unconstrained objects are not allowed. In particular, all
7275 the elements of an array of a tagged type should all be of
7276 the same type specified in the debugging info. No need to
7277 consult the object tag. */
1ed6ede0 7278 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7279
284614f0
JB
7280 /* Make sure we always create a new array type when dealing with
7281 packed array types, since we're going to fix-up the array
7282 type length and element bitsize a little further down. */
ad82864c 7283 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7284 result = type0;
14f9c5c9 7285 else
e9bb382b 7286 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7287 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7288 }
7289 else
7290 {
7291 int i;
7292 struct type *elt_type0;
7293
7294 elt_type0 = type0;
7295 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7296 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7297
7298 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7299 depend on the contents of the array in properly constructed
7300 debugging data. */
529cad9c
PH
7301 /* Create a fixed version of the array element type.
7302 We're not providing the address of an element here,
e1d5a0d2 7303 and thus the actual object value cannot be inspected to do
529cad9c
PH
7304 the conversion. This should not be a problem, since arrays of
7305 unconstrained objects are not allowed. In particular, all
7306 the elements of an array of a tagged type should all be of
7307 the same type specified in the debugging info. No need to
7308 consult the object tag. */
1ed6ede0
JB
7309 result =
7310 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7311
7312 elt_type0 = type0;
14f9c5c9 7313 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7314 {
7315 struct type *range_type =
7316 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4 7317 dval, TYPE_INDEX_TYPE (elt_type0));
e9bb382b 7318 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7319 result, range_type);
1ce677a4 7320 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7321 }
d2e4a39e 7322 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7323 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7324 }
7325
ad82864c 7326 if (constrained_packed_array_p)
284614f0
JB
7327 {
7328 /* So far, the resulting type has been created as if the original
7329 type was a regular (non-packed) array type. As a result, the
7330 bitsize of the array elements needs to be set again, and the array
7331 length needs to be recomputed based on that bitsize. */
7332 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7333 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7334
7335 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7336 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7337 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7338 TYPE_LENGTH (result)++;
7339 }
7340
876cecd0 7341 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7342 return result;
d2e4a39e 7343}
14f9c5c9
AS
7344
7345
7346/* A standard type (containing no dynamically sized components)
7347 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7348 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7349 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7350 ADDRESS or in VALADDR contains these discriminants.
7351
1ed6ede0
JB
7352 If CHECK_TAG is not null, in the case of tagged types, this function
7353 attempts to locate the object's tag and use it to compute the actual
7354 type. However, when ADDRESS is null, we cannot use it to determine the
7355 location of the tag, and therefore compute the tagged type's actual type.
7356 So we return the tagged type without consulting the tag. */
529cad9c 7357
f192137b
JB
7358static struct type *
7359ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7360 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7361{
61ee279c 7362 type = ada_check_typedef (type);
d2e4a39e
AS
7363 switch (TYPE_CODE (type))
7364 {
7365 default:
14f9c5c9 7366 return type;
d2e4a39e 7367 case TYPE_CODE_STRUCT:
4c4b4cd2 7368 {
76a01679 7369 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7370 struct type *fixed_record_type =
7371 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7372 /* If STATIC_TYPE is a tagged type and we know the object's address,
7373 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7374 type from there. Note that we have to use the fixed record
7375 type (the parent part of the record may have dynamic fields
7376 and the way the location of _tag is expressed may depend on
7377 them). */
529cad9c 7378
1ed6ede0 7379 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7380 {
7381 struct type *real_type =
1ed6ede0
JB
7382 type_from_tag (value_tag_from_contents_and_address
7383 (fixed_record_type,
7384 valaddr,
7385 address));
76a01679 7386 if (real_type != NULL)
1ed6ede0 7387 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7388 }
4af88198
JB
7389
7390 /* Check to see if there is a parallel ___XVZ variable.
7391 If there is, then it provides the actual size of our type. */
7392 else if (ada_type_name (fixed_record_type) != NULL)
7393 {
7394 char *name = ada_type_name (fixed_record_type);
7395 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7396 int xvz_found = 0;
7397 LONGEST size;
7398
88c15c34 7399 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7400 size = get_int_var_value (xvz_name, &xvz_found);
7401 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7402 {
7403 fixed_record_type = copy_type (fixed_record_type);
7404 TYPE_LENGTH (fixed_record_type) = size;
7405
7406 /* The FIXED_RECORD_TYPE may have be a stub. We have
7407 observed this when the debugging info is STABS, and
7408 apparently it is something that is hard to fix.
7409
7410 In practice, we don't need the actual type definition
7411 at all, because the presence of the XVZ variable allows us
7412 to assume that there must be a XVS type as well, which we
7413 should be able to use later, when we need the actual type
7414 definition.
7415
7416 In the meantime, pretend that the "fixed" type we are
7417 returning is NOT a stub, because this can cause trouble
7418 when using this type to create new types targeting it.
7419 Indeed, the associated creation routines often check
7420 whether the target type is a stub and will try to replace
7421 it, thus using a type with the wrong size. This, in turn,
7422 might cause the new type to have the wrong size too.
7423 Consider the case of an array, for instance, where the size
7424 of the array is computed from the number of elements in
7425 our array multiplied by the size of its element. */
7426 TYPE_STUB (fixed_record_type) = 0;
7427 }
7428 }
1ed6ede0 7429 return fixed_record_type;
4c4b4cd2 7430 }
d2e4a39e 7431 case TYPE_CODE_ARRAY:
4c4b4cd2 7432 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7433 case TYPE_CODE_UNION:
7434 if (dval == NULL)
4c4b4cd2 7435 return type;
d2e4a39e 7436 else
4c4b4cd2 7437 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7438 }
14f9c5c9
AS
7439}
7440
f192137b
JB
7441/* The same as ada_to_fixed_type_1, except that it preserves the type
7442 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7443 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7444
7445struct type *
7446ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7447 CORE_ADDR address, struct value *dval, int check_tag)
7448
7449{
7450 struct type *fixed_type =
7451 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7452
7453 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7454 && TYPE_TARGET_TYPE (type) == fixed_type)
7455 return type;
7456
7457 return fixed_type;
7458}
7459
14f9c5c9 7460/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7461 TYPE0, but based on no runtime data. */
14f9c5c9 7462
d2e4a39e
AS
7463static struct type *
7464to_static_fixed_type (struct type *type0)
14f9c5c9 7465{
d2e4a39e 7466 struct type *type;
14f9c5c9
AS
7467
7468 if (type0 == NULL)
7469 return NULL;
7470
876cecd0 7471 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7472 return type0;
7473
61ee279c 7474 type0 = ada_check_typedef (type0);
d2e4a39e 7475
14f9c5c9
AS
7476 switch (TYPE_CODE (type0))
7477 {
7478 default:
7479 return type0;
7480 case TYPE_CODE_STRUCT:
7481 type = dynamic_template_type (type0);
d2e4a39e 7482 if (type != NULL)
4c4b4cd2
PH
7483 return template_to_static_fixed_type (type);
7484 else
7485 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7486 case TYPE_CODE_UNION:
7487 type = ada_find_parallel_type (type0, "___XVU");
7488 if (type != NULL)
4c4b4cd2
PH
7489 return template_to_static_fixed_type (type);
7490 else
7491 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7492 }
7493}
7494
4c4b4cd2
PH
7495/* A static approximation of TYPE with all type wrappers removed. */
7496
d2e4a39e
AS
7497static struct type *
7498static_unwrap_type (struct type *type)
14f9c5c9
AS
7499{
7500 if (ada_is_aligner_type (type))
7501 {
61ee279c 7502 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7503 if (ada_type_name (type1) == NULL)
4c4b4cd2 7504 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7505
7506 return static_unwrap_type (type1);
7507 }
d2e4a39e 7508 else
14f9c5c9 7509 {
d2e4a39e
AS
7510 struct type *raw_real_type = ada_get_base_type (type);
7511 if (raw_real_type == type)
4c4b4cd2 7512 return type;
14f9c5c9 7513 else
4c4b4cd2 7514 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7515 }
7516}
7517
7518/* In some cases, incomplete and private types require
4c4b4cd2 7519 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7520 type Foo;
7521 type FooP is access Foo;
7522 V: FooP;
7523 type Foo is array ...;
4c4b4cd2 7524 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7525 cross-references to such types, we instead substitute for FooP a
7526 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7527 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7528
7529/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7530 exists, otherwise TYPE. */
7531
d2e4a39e 7532struct type *
61ee279c 7533ada_check_typedef (struct type *type)
14f9c5c9 7534{
727e3d2e
JB
7535 if (type == NULL)
7536 return NULL;
7537
14f9c5c9
AS
7538 CHECK_TYPEDEF (type);
7539 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7540 || !TYPE_STUB (type)
14f9c5c9
AS
7541 || TYPE_TAG_NAME (type) == NULL)
7542 return type;
d2e4a39e 7543 else
14f9c5c9 7544 {
d2e4a39e
AS
7545 char *name = TYPE_TAG_NAME (type);
7546 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7547 return (type1 == NULL) ? type : type1;
7548 }
7549}
7550
7551/* A value representing the data at VALADDR/ADDRESS as described by
7552 type TYPE0, but with a standard (static-sized) type that correctly
7553 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7554 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7555 creation of struct values]. */
14f9c5c9 7556
4c4b4cd2
PH
7557static struct value *
7558ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7559 struct value *val0)
14f9c5c9 7560{
1ed6ede0 7561 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7562 if (type == type0 && val0 != NULL)
7563 return val0;
d2e4a39e 7564 else
4c4b4cd2
PH
7565 return value_from_contents_and_address (type, 0, address);
7566}
7567
7568/* A value representing VAL, but with a standard (static-sized) type
7569 that correctly describes it. Does not necessarily create a new
7570 value. */
7571
7572static struct value *
7573ada_to_fixed_value (struct value *val)
7574{
df407dfe 7575 return ada_to_fixed_value_create (value_type (val),
42ae5230 7576 value_address (val),
4c4b4cd2 7577 val);
14f9c5c9 7578}
d2e4a39e 7579\f
14f9c5c9 7580
14f9c5c9
AS
7581/* Attributes */
7582
4c4b4cd2
PH
7583/* Table mapping attribute numbers to names.
7584 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7585
d2e4a39e 7586static const char *attribute_names[] = {
14f9c5c9
AS
7587 "<?>",
7588
d2e4a39e 7589 "first",
14f9c5c9
AS
7590 "last",
7591 "length",
7592 "image",
14f9c5c9
AS
7593 "max",
7594 "min",
4c4b4cd2
PH
7595 "modulus",
7596 "pos",
7597 "size",
7598 "tag",
14f9c5c9 7599 "val",
14f9c5c9
AS
7600 0
7601};
7602
d2e4a39e 7603const char *
4c4b4cd2 7604ada_attribute_name (enum exp_opcode n)
14f9c5c9 7605{
4c4b4cd2
PH
7606 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7607 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7608 else
7609 return attribute_names[0];
7610}
7611
4c4b4cd2 7612/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7613
4c4b4cd2
PH
7614static LONGEST
7615pos_atr (struct value *arg)
14f9c5c9 7616{
24209737
PH
7617 struct value *val = coerce_ref (arg);
7618 struct type *type = value_type (val);
14f9c5c9 7619
d2e4a39e 7620 if (!discrete_type_p (type))
323e0a4a 7621 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7622
7623 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7624 {
7625 int i;
24209737 7626 LONGEST v = value_as_long (val);
14f9c5c9 7627
d2e4a39e 7628 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7629 {
7630 if (v == TYPE_FIELD_BITPOS (type, i))
7631 return i;
7632 }
323e0a4a 7633 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7634 }
7635 else
24209737 7636 return value_as_long (val);
4c4b4cd2
PH
7637}
7638
7639static struct value *
3cb382c9 7640value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7641{
3cb382c9 7642 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7643}
7644
4c4b4cd2 7645/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7646
d2e4a39e
AS
7647static struct value *
7648value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7649{
d2e4a39e 7650 if (!discrete_type_p (type))
323e0a4a 7651 error (_("'VAL only defined on discrete types"));
df407dfe 7652 if (!integer_type_p (value_type (arg)))
323e0a4a 7653 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7654
7655 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7656 {
7657 long pos = value_as_long (arg);
7658 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7659 error (_("argument to 'VAL out of range"));
d2e4a39e 7660 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7661 }
7662 else
7663 return value_from_longest (type, value_as_long (arg));
7664}
14f9c5c9 7665\f
d2e4a39e 7666
4c4b4cd2 7667 /* Evaluation */
14f9c5c9 7668
4c4b4cd2
PH
7669/* True if TYPE appears to be an Ada character type.
7670 [At the moment, this is true only for Character and Wide_Character;
7671 It is a heuristic test that could stand improvement]. */
14f9c5c9 7672
d2e4a39e
AS
7673int
7674ada_is_character_type (struct type *type)
14f9c5c9 7675{
7b9f71f2
JB
7676 const char *name;
7677
7678 /* If the type code says it's a character, then assume it really is,
7679 and don't check any further. */
7680 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7681 return 1;
7682
7683 /* Otherwise, assume it's a character type iff it is a discrete type
7684 with a known character type name. */
7685 name = ada_type_name (type);
7686 return (name != NULL
7687 && (TYPE_CODE (type) == TYPE_CODE_INT
7688 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7689 && (strcmp (name, "character") == 0
7690 || strcmp (name, "wide_character") == 0
5a517ebd 7691 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7692 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7693}
7694
4c4b4cd2 7695/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7696
7697int
ebf56fd3 7698ada_is_string_type (struct type *type)
14f9c5c9 7699{
61ee279c 7700 type = ada_check_typedef (type);
d2e4a39e 7701 if (type != NULL
14f9c5c9 7702 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7703 && (ada_is_simple_array_type (type)
7704 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7705 && ada_array_arity (type) == 1)
7706 {
7707 struct type *elttype = ada_array_element_type (type, 1);
7708
7709 return ada_is_character_type (elttype);
7710 }
d2e4a39e 7711 else
14f9c5c9
AS
7712 return 0;
7713}
7714
5bf03f13
JB
7715/* The compiler sometimes provides a parallel XVS type for a given
7716 PAD type. Normally, it is safe to follow the PAD type directly,
7717 but older versions of the compiler have a bug that causes the offset
7718 of its "F" field to be wrong. Following that field in that case
7719 would lead to incorrect results, but this can be worked around
7720 by ignoring the PAD type and using the associated XVS type instead.
7721
7722 Set to True if the debugger should trust the contents of PAD types.
7723 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7724static int trust_pad_over_xvs = 1;
14f9c5c9
AS
7725
7726/* True if TYPE is a struct type introduced by the compiler to force the
7727 alignment of a value. Such types have a single field with a
4c4b4cd2 7728 distinctive name. */
14f9c5c9
AS
7729
7730int
ebf56fd3 7731ada_is_aligner_type (struct type *type)
14f9c5c9 7732{
61ee279c 7733 type = ada_check_typedef (type);
714e53ab 7734
5bf03f13 7735 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
7736 return 0;
7737
14f9c5c9 7738 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7739 && TYPE_NFIELDS (type) == 1
7740 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7741}
7742
7743/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7744 the parallel type. */
14f9c5c9 7745
d2e4a39e
AS
7746struct type *
7747ada_get_base_type (struct type *raw_type)
14f9c5c9 7748{
d2e4a39e
AS
7749 struct type *real_type_namer;
7750 struct type *raw_real_type;
14f9c5c9
AS
7751
7752 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7753 return raw_type;
7754
284614f0
JB
7755 if (ada_is_aligner_type (raw_type))
7756 /* The encoding specifies that we should always use the aligner type.
7757 So, even if this aligner type has an associated XVS type, we should
7758 simply ignore it.
7759
7760 According to the compiler gurus, an XVS type parallel to an aligner
7761 type may exist because of a stabs limitation. In stabs, aligner
7762 types are empty because the field has a variable-sized type, and
7763 thus cannot actually be used as an aligner type. As a result,
7764 we need the associated parallel XVS type to decode the type.
7765 Since the policy in the compiler is to not change the internal
7766 representation based on the debugging info format, we sometimes
7767 end up having a redundant XVS type parallel to the aligner type. */
7768 return raw_type;
7769
14f9c5c9 7770 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7771 if (real_type_namer == NULL
14f9c5c9
AS
7772 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7773 || TYPE_NFIELDS (real_type_namer) != 1)
7774 return raw_type;
7775
f80d3ff2
JB
7776 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7777 {
7778 /* This is an older encoding form where the base type needs to be
7779 looked up by name. We prefer the newer enconding because it is
7780 more efficient. */
7781 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7782 if (raw_real_type == NULL)
7783 return raw_type;
7784 else
7785 return raw_real_type;
7786 }
7787
7788 /* The field in our XVS type is a reference to the base type. */
7789 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 7790}
14f9c5c9 7791
4c4b4cd2 7792/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7793
d2e4a39e
AS
7794struct type *
7795ada_aligned_type (struct type *type)
14f9c5c9
AS
7796{
7797 if (ada_is_aligner_type (type))
7798 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7799 else
7800 return ada_get_base_type (type);
7801}
7802
7803
7804/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7805 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7806
fc1a4b47
AC
7807const gdb_byte *
7808ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7809{
d2e4a39e 7810 if (ada_is_aligner_type (type))
14f9c5c9 7811 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7812 valaddr +
7813 TYPE_FIELD_BITPOS (type,
7814 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7815 else
7816 return valaddr;
7817}
7818
4c4b4cd2
PH
7819
7820
14f9c5c9 7821/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7822 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7823const char *
7824ada_enum_name (const char *name)
14f9c5c9 7825{
4c4b4cd2
PH
7826 static char *result;
7827 static size_t result_len = 0;
d2e4a39e 7828 char *tmp;
14f9c5c9 7829
4c4b4cd2
PH
7830 /* First, unqualify the enumeration name:
7831 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7832 all the preceeding characters, the unqualified name starts
7833 right after that dot.
4c4b4cd2 7834 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7835 translates dots into "__". Search forward for double underscores,
7836 but stop searching when we hit an overloading suffix, which is
7837 of the form "__" followed by digits. */
4c4b4cd2 7838
c3e5cd34
PH
7839 tmp = strrchr (name, '.');
7840 if (tmp != NULL)
4c4b4cd2
PH
7841 name = tmp + 1;
7842 else
14f9c5c9 7843 {
4c4b4cd2
PH
7844 while ((tmp = strstr (name, "__")) != NULL)
7845 {
7846 if (isdigit (tmp[2]))
7847 break;
7848 else
7849 name = tmp + 2;
7850 }
14f9c5c9
AS
7851 }
7852
7853 if (name[0] == 'Q')
7854 {
14f9c5c9
AS
7855 int v;
7856 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7857 {
7858 if (sscanf (name + 2, "%x", &v) != 1)
7859 return name;
7860 }
14f9c5c9 7861 else
4c4b4cd2 7862 return name;
14f9c5c9 7863
4c4b4cd2 7864 GROW_VECT (result, result_len, 16);
14f9c5c9 7865 if (isascii (v) && isprint (v))
88c15c34 7866 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7867 else if (name[1] == 'U')
88c15c34 7868 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7869 else
88c15c34 7870 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7871
7872 return result;
7873 }
d2e4a39e 7874 else
4c4b4cd2 7875 {
c3e5cd34
PH
7876 tmp = strstr (name, "__");
7877 if (tmp == NULL)
7878 tmp = strstr (name, "$");
7879 if (tmp != NULL)
4c4b4cd2
PH
7880 {
7881 GROW_VECT (result, result_len, tmp - name + 1);
7882 strncpy (result, name, tmp - name);
7883 result[tmp - name] = '\0';
7884 return result;
7885 }
7886
7887 return name;
7888 }
14f9c5c9
AS
7889}
7890
14f9c5c9
AS
7891/* Evaluate the subexpression of EXP starting at *POS as for
7892 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7893 expression. */
14f9c5c9 7894
d2e4a39e
AS
7895static struct value *
7896evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7897{
4b27a620 7898 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7899}
7900
7901/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7902 value it wraps. */
14f9c5c9 7903
d2e4a39e
AS
7904static struct value *
7905unwrap_value (struct value *val)
14f9c5c9 7906{
df407dfe 7907 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7908 if (ada_is_aligner_type (type))
7909 {
de4d072f 7910 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7911 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7912 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7913 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7914
7915 return unwrap_value (v);
7916 }
d2e4a39e 7917 else
14f9c5c9 7918 {
d2e4a39e 7919 struct type *raw_real_type =
61ee279c 7920 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7921
5bf03f13
JB
7922 /* If there is no parallel XVS or XVE type, then the value is
7923 already unwrapped. Return it without further modification. */
7924 if ((type == raw_real_type)
7925 && ada_find_parallel_type (type, "___XVE") == NULL)
7926 return val;
14f9c5c9 7927
d2e4a39e 7928 return
4c4b4cd2
PH
7929 coerce_unspec_val_to_type
7930 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7931 value_address (val),
1ed6ede0 7932 NULL, 1));
14f9c5c9
AS
7933 }
7934}
d2e4a39e
AS
7935
7936static struct value *
7937cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7938{
7939 LONGEST val;
7940
df407dfe 7941 if (type == value_type (arg))
14f9c5c9 7942 return arg;
df407dfe 7943 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7944 val = ada_float_to_fixed (type,
df407dfe 7945 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7946 value_as_long (arg)));
d2e4a39e 7947 else
14f9c5c9 7948 {
a53b7a21 7949 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7950 val = ada_float_to_fixed (type, argd);
7951 }
7952
7953 return value_from_longest (type, val);
7954}
7955
d2e4a39e 7956static struct value *
a53b7a21 7957cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7958{
df407dfe 7959 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7960 value_as_long (arg));
a53b7a21 7961 return value_from_double (type, val);
14f9c5c9
AS
7962}
7963
4c4b4cd2
PH
7964/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7965 return the converted value. */
7966
d2e4a39e
AS
7967static struct value *
7968coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7969{
df407dfe 7970 struct type *type2 = value_type (val);
14f9c5c9
AS
7971 if (type == type2)
7972 return val;
7973
61ee279c
PH
7974 type2 = ada_check_typedef (type2);
7975 type = ada_check_typedef (type);
14f9c5c9 7976
d2e4a39e
AS
7977 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7978 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7979 {
7980 val = ada_value_ind (val);
df407dfe 7981 type2 = value_type (val);
14f9c5c9
AS
7982 }
7983
d2e4a39e 7984 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7985 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7986 {
7987 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7988 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7989 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7990 error (_("Incompatible types in assignment"));
04624583 7991 deprecated_set_value_type (val, type);
14f9c5c9 7992 }
d2e4a39e 7993 return val;
14f9c5c9
AS
7994}
7995
4c4b4cd2
PH
7996static struct value *
7997ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7998{
7999 struct value *val;
8000 struct type *type1, *type2;
8001 LONGEST v, v1, v2;
8002
994b9211
AC
8003 arg1 = coerce_ref (arg1);
8004 arg2 = coerce_ref (arg2);
df407dfe
AC
8005 type1 = base_type (ada_check_typedef (value_type (arg1)));
8006 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8007
76a01679
JB
8008 if (TYPE_CODE (type1) != TYPE_CODE_INT
8009 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8010 return value_binop (arg1, arg2, op);
8011
76a01679 8012 switch (op)
4c4b4cd2
PH
8013 {
8014 case BINOP_MOD:
8015 case BINOP_DIV:
8016 case BINOP_REM:
8017 break;
8018 default:
8019 return value_binop (arg1, arg2, op);
8020 }
8021
8022 v2 = value_as_long (arg2);
8023 if (v2 == 0)
323e0a4a 8024 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8025
8026 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8027 return value_binop (arg1, arg2, op);
8028
8029 v1 = value_as_long (arg1);
8030 switch (op)
8031 {
8032 case BINOP_DIV:
8033 v = v1 / v2;
76a01679
JB
8034 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8035 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8036 break;
8037 case BINOP_REM:
8038 v = v1 % v2;
76a01679
JB
8039 if (v * v1 < 0)
8040 v -= v2;
4c4b4cd2
PH
8041 break;
8042 default:
8043 /* Should not reach this point. */
8044 v = 0;
8045 }
8046
8047 val = allocate_value (type1);
990a07ab 8048 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8049 TYPE_LENGTH (value_type (val)),
8050 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8051 return val;
8052}
8053
8054static int
8055ada_value_equal (struct value *arg1, struct value *arg2)
8056{
df407dfe
AC
8057 if (ada_is_direct_array_type (value_type (arg1))
8058 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8059 {
f58b38bf
JB
8060 /* Automatically dereference any array reference before
8061 we attempt to perform the comparison. */
8062 arg1 = ada_coerce_ref (arg1);
8063 arg2 = ada_coerce_ref (arg2);
8064
4c4b4cd2
PH
8065 arg1 = ada_coerce_to_simple_array (arg1);
8066 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8067 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8068 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8069 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8070 /* FIXME: The following works only for types whose
76a01679
JB
8071 representations use all bits (no padding or undefined bits)
8072 and do not have user-defined equality. */
8073 return
df407dfe 8074 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8075 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8076 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8077 }
8078 return value_equal (arg1, arg2);
8079}
8080
52ce6436
PH
8081/* Total number of component associations in the aggregate starting at
8082 index PC in EXP. Assumes that index PC is the start of an
8083 OP_AGGREGATE. */
8084
8085static int
8086num_component_specs (struct expression *exp, int pc)
8087{
8088 int n, m, i;
8089 m = exp->elts[pc + 1].longconst;
8090 pc += 3;
8091 n = 0;
8092 for (i = 0; i < m; i += 1)
8093 {
8094 switch (exp->elts[pc].opcode)
8095 {
8096 default:
8097 n += 1;
8098 break;
8099 case OP_CHOICES:
8100 n += exp->elts[pc + 1].longconst;
8101 break;
8102 }
8103 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8104 }
8105 return n;
8106}
8107
8108/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8109 component of LHS (a simple array or a record), updating *POS past
8110 the expression, assuming that LHS is contained in CONTAINER. Does
8111 not modify the inferior's memory, nor does it modify LHS (unless
8112 LHS == CONTAINER). */
8113
8114static void
8115assign_component (struct value *container, struct value *lhs, LONGEST index,
8116 struct expression *exp, int *pos)
8117{
8118 struct value *mark = value_mark ();
8119 struct value *elt;
8120 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8121 {
22601c15
UW
8122 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8123 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
8124 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8125 }
8126 else
8127 {
8128 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8129 elt = ada_to_fixed_value (unwrap_value (elt));
8130 }
8131
8132 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8133 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8134 else
8135 value_assign_to_component (container, elt,
8136 ada_evaluate_subexp (NULL, exp, pos,
8137 EVAL_NORMAL));
8138
8139 value_free_to_mark (mark);
8140}
8141
8142/* Assuming that LHS represents an lvalue having a record or array
8143 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8144 of that aggregate's value to LHS, advancing *POS past the
8145 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8146 lvalue containing LHS (possibly LHS itself). Does not modify
8147 the inferior's memory, nor does it modify the contents of
8148 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8149
8150static struct value *
8151assign_aggregate (struct value *container,
8152 struct value *lhs, struct expression *exp,
8153 int *pos, enum noside noside)
8154{
8155 struct type *lhs_type;
8156 int n = exp->elts[*pos+1].longconst;
8157 LONGEST low_index, high_index;
8158 int num_specs;
8159 LONGEST *indices;
8160 int max_indices, num_indices;
8161 int is_array_aggregate;
8162 int i;
8163 struct value *mark = value_mark ();
8164
8165 *pos += 3;
8166 if (noside != EVAL_NORMAL)
8167 {
8168 int i;
8169 for (i = 0; i < n; i += 1)
8170 ada_evaluate_subexp (NULL, exp, pos, noside);
8171 return container;
8172 }
8173
8174 container = ada_coerce_ref (container);
8175 if (ada_is_direct_array_type (value_type (container)))
8176 container = ada_coerce_to_simple_array (container);
8177 lhs = ada_coerce_ref (lhs);
8178 if (!deprecated_value_modifiable (lhs))
8179 error (_("Left operand of assignment is not a modifiable lvalue."));
8180
8181 lhs_type = value_type (lhs);
8182 if (ada_is_direct_array_type (lhs_type))
8183 {
8184 lhs = ada_coerce_to_simple_array (lhs);
8185 lhs_type = value_type (lhs);
8186 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8187 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8188 is_array_aggregate = 1;
8189 }
8190 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8191 {
8192 low_index = 0;
8193 high_index = num_visible_fields (lhs_type) - 1;
8194 is_array_aggregate = 0;
8195 }
8196 else
8197 error (_("Left-hand side must be array or record."));
8198
8199 num_specs = num_component_specs (exp, *pos - 3);
8200 max_indices = 4 * num_specs + 4;
8201 indices = alloca (max_indices * sizeof (indices[0]));
8202 indices[0] = indices[1] = low_index - 1;
8203 indices[2] = indices[3] = high_index + 1;
8204 num_indices = 4;
8205
8206 for (i = 0; i < n; i += 1)
8207 {
8208 switch (exp->elts[*pos].opcode)
8209 {
8210 case OP_CHOICES:
8211 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8212 &num_indices, max_indices,
8213 low_index, high_index);
8214 break;
8215 case OP_POSITIONAL:
8216 aggregate_assign_positional (container, lhs, exp, pos, indices,
8217 &num_indices, max_indices,
8218 low_index, high_index);
8219 break;
8220 case OP_OTHERS:
8221 if (i != n-1)
8222 error (_("Misplaced 'others' clause"));
8223 aggregate_assign_others (container, lhs, exp, pos, indices,
8224 num_indices, low_index, high_index);
8225 break;
8226 default:
8227 error (_("Internal error: bad aggregate clause"));
8228 }
8229 }
8230
8231 return container;
8232}
8233
8234/* Assign into the component of LHS indexed by the OP_POSITIONAL
8235 construct at *POS, updating *POS past the construct, given that
8236 the positions are relative to lower bound LOW, where HIGH is the
8237 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8238 updating *NUM_INDICES as needed. CONTAINER is as for
8239 assign_aggregate. */
8240static void
8241aggregate_assign_positional (struct value *container,
8242 struct value *lhs, struct expression *exp,
8243 int *pos, LONGEST *indices, int *num_indices,
8244 int max_indices, LONGEST low, LONGEST high)
8245{
8246 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8247
8248 if (ind - 1 == high)
e1d5a0d2 8249 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8250 if (ind <= high)
8251 {
8252 add_component_interval (ind, ind, indices, num_indices, max_indices);
8253 *pos += 3;
8254 assign_component (container, lhs, ind, exp, pos);
8255 }
8256 else
8257 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8258}
8259
8260/* Assign into the components of LHS indexed by the OP_CHOICES
8261 construct at *POS, updating *POS past the construct, given that
8262 the allowable indices are LOW..HIGH. Record the indices assigned
8263 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8264 needed. CONTAINER is as for assign_aggregate. */
8265static void
8266aggregate_assign_from_choices (struct value *container,
8267 struct value *lhs, struct expression *exp,
8268 int *pos, LONGEST *indices, int *num_indices,
8269 int max_indices, LONGEST low, LONGEST high)
8270{
8271 int j;
8272 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8273 int choice_pos, expr_pc;
8274 int is_array = ada_is_direct_array_type (value_type (lhs));
8275
8276 choice_pos = *pos += 3;
8277
8278 for (j = 0; j < n_choices; j += 1)
8279 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8280 expr_pc = *pos;
8281 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8282
8283 for (j = 0; j < n_choices; j += 1)
8284 {
8285 LONGEST lower, upper;
8286 enum exp_opcode op = exp->elts[choice_pos].opcode;
8287 if (op == OP_DISCRETE_RANGE)
8288 {
8289 choice_pos += 1;
8290 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8291 EVAL_NORMAL));
8292 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8293 EVAL_NORMAL));
8294 }
8295 else if (is_array)
8296 {
8297 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8298 EVAL_NORMAL));
8299 upper = lower;
8300 }
8301 else
8302 {
8303 int ind;
8304 char *name;
8305 switch (op)
8306 {
8307 case OP_NAME:
8308 name = &exp->elts[choice_pos + 2].string;
8309 break;
8310 case OP_VAR_VALUE:
8311 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8312 break;
8313 default:
8314 error (_("Invalid record component association."));
8315 }
8316 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8317 ind = 0;
8318 if (! find_struct_field (name, value_type (lhs), 0,
8319 NULL, NULL, NULL, NULL, &ind))
8320 error (_("Unknown component name: %s."), name);
8321 lower = upper = ind;
8322 }
8323
8324 if (lower <= upper && (lower < low || upper > high))
8325 error (_("Index in component association out of bounds."));
8326
8327 add_component_interval (lower, upper, indices, num_indices,
8328 max_indices);
8329 while (lower <= upper)
8330 {
8331 int pos1;
8332 pos1 = expr_pc;
8333 assign_component (container, lhs, lower, exp, &pos1);
8334 lower += 1;
8335 }
8336 }
8337}
8338
8339/* Assign the value of the expression in the OP_OTHERS construct in
8340 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8341 have not been previously assigned. The index intervals already assigned
8342 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8343 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8344static void
8345aggregate_assign_others (struct value *container,
8346 struct value *lhs, struct expression *exp,
8347 int *pos, LONGEST *indices, int num_indices,
8348 LONGEST low, LONGEST high)
8349{
8350 int i;
8351 int expr_pc = *pos+1;
8352
8353 for (i = 0; i < num_indices - 2; i += 2)
8354 {
8355 LONGEST ind;
8356 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8357 {
8358 int pos;
8359 pos = expr_pc;
8360 assign_component (container, lhs, ind, exp, &pos);
8361 }
8362 }
8363 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8364}
8365
8366/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8367 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8368 modifying *SIZE as needed. It is an error if *SIZE exceeds
8369 MAX_SIZE. The resulting intervals do not overlap. */
8370static void
8371add_component_interval (LONGEST low, LONGEST high,
8372 LONGEST* indices, int *size, int max_size)
8373{
8374 int i, j;
8375 for (i = 0; i < *size; i += 2) {
8376 if (high >= indices[i] && low <= indices[i + 1])
8377 {
8378 int kh;
8379 for (kh = i + 2; kh < *size; kh += 2)
8380 if (high < indices[kh])
8381 break;
8382 if (low < indices[i])
8383 indices[i] = low;
8384 indices[i + 1] = indices[kh - 1];
8385 if (high > indices[i + 1])
8386 indices[i + 1] = high;
8387 memcpy (indices + i + 2, indices + kh, *size - kh);
8388 *size -= kh - i - 2;
8389 return;
8390 }
8391 else if (high < indices[i])
8392 break;
8393 }
8394
8395 if (*size == max_size)
8396 error (_("Internal error: miscounted aggregate components."));
8397 *size += 2;
8398 for (j = *size-1; j >= i+2; j -= 1)
8399 indices[j] = indices[j - 2];
8400 indices[i] = low;
8401 indices[i + 1] = high;
8402}
8403
6e48bd2c
JB
8404/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8405 is different. */
8406
8407static struct value *
8408ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8409{
8410 if (type == ada_check_typedef (value_type (arg2)))
8411 return arg2;
8412
8413 if (ada_is_fixed_point_type (type))
8414 return (cast_to_fixed (type, arg2));
8415
8416 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8417 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8418
8419 return value_cast (type, arg2);
8420}
8421
284614f0
JB
8422/* Evaluating Ada expressions, and printing their result.
8423 ------------------------------------------------------
8424
21649b50
JB
8425 1. Introduction:
8426 ----------------
8427
284614f0
JB
8428 We usually evaluate an Ada expression in order to print its value.
8429 We also evaluate an expression in order to print its type, which
8430 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8431 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8432 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8433 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8434 similar.
8435
8436 Evaluating expressions is a little more complicated for Ada entities
8437 than it is for entities in languages such as C. The main reason for
8438 this is that Ada provides types whose definition might be dynamic.
8439 One example of such types is variant records. Or another example
8440 would be an array whose bounds can only be known at run time.
8441
8442 The following description is a general guide as to what should be
8443 done (and what should NOT be done) in order to evaluate an expression
8444 involving such types, and when. This does not cover how the semantic
8445 information is encoded by GNAT as this is covered separatly. For the
8446 document used as the reference for the GNAT encoding, see exp_dbug.ads
8447 in the GNAT sources.
8448
8449 Ideally, we should embed each part of this description next to its
8450 associated code. Unfortunately, the amount of code is so vast right
8451 now that it's hard to see whether the code handling a particular
8452 situation might be duplicated or not. One day, when the code is
8453 cleaned up, this guide might become redundant with the comments
8454 inserted in the code, and we might want to remove it.
8455
21649b50
JB
8456 2. ``Fixing'' an Entity, the Simple Case:
8457 -----------------------------------------
8458
284614f0
JB
8459 When evaluating Ada expressions, the tricky issue is that they may
8460 reference entities whose type contents and size are not statically
8461 known. Consider for instance a variant record:
8462
8463 type Rec (Empty : Boolean := True) is record
8464 case Empty is
8465 when True => null;
8466 when False => Value : Integer;
8467 end case;
8468 end record;
8469 Yes : Rec := (Empty => False, Value => 1);
8470 No : Rec := (empty => True);
8471
8472 The size and contents of that record depends on the value of the
8473 descriminant (Rec.Empty). At this point, neither the debugging
8474 information nor the associated type structure in GDB are able to
8475 express such dynamic types. So what the debugger does is to create
8476 "fixed" versions of the type that applies to the specific object.
8477 We also informally refer to this opperation as "fixing" an object,
8478 which means creating its associated fixed type.
8479
8480 Example: when printing the value of variable "Yes" above, its fixed
8481 type would look like this:
8482
8483 type Rec is record
8484 Empty : Boolean;
8485 Value : Integer;
8486 end record;
8487
8488 On the other hand, if we printed the value of "No", its fixed type
8489 would become:
8490
8491 type Rec is record
8492 Empty : Boolean;
8493 end record;
8494
8495 Things become a little more complicated when trying to fix an entity
8496 with a dynamic type that directly contains another dynamic type,
8497 such as an array of variant records, for instance. There are
8498 two possible cases: Arrays, and records.
8499
21649b50
JB
8500 3. ``Fixing'' Arrays:
8501 ---------------------
8502
8503 The type structure in GDB describes an array in terms of its bounds,
8504 and the type of its elements. By design, all elements in the array
8505 have the same type and we cannot represent an array of variant elements
8506 using the current type structure in GDB. When fixing an array,
8507 we cannot fix the array element, as we would potentially need one
8508 fixed type per element of the array. As a result, the best we can do
8509 when fixing an array is to produce an array whose bounds and size
8510 are correct (allowing us to read it from memory), but without having
8511 touched its element type. Fixing each element will be done later,
8512 when (if) necessary.
8513
8514 Arrays are a little simpler to handle than records, because the same
8515 amount of memory is allocated for each element of the array, even if
1b536f04 8516 the amount of space actually used by each element differs from element
21649b50 8517 to element. Consider for instance the following array of type Rec:
284614f0
JB
8518
8519 type Rec_Array is array (1 .. 2) of Rec;
8520
1b536f04
JB
8521 The actual amount of memory occupied by each element might be different
8522 from element to element, depending on the value of their discriminant.
21649b50 8523 But the amount of space reserved for each element in the array remains
1b536f04 8524 fixed regardless. So we simply need to compute that size using
21649b50
JB
8525 the debugging information available, from which we can then determine
8526 the array size (we multiply the number of elements of the array by
8527 the size of each element).
8528
8529 The simplest case is when we have an array of a constrained element
8530 type. For instance, consider the following type declarations:
8531
8532 type Bounded_String (Max_Size : Integer) is
8533 Length : Integer;
8534 Buffer : String (1 .. Max_Size);
8535 end record;
8536 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8537
8538 In this case, the compiler describes the array as an array of
8539 variable-size elements (identified by its XVS suffix) for which
8540 the size can be read in the parallel XVZ variable.
8541
8542 In the case of an array of an unconstrained element type, the compiler
8543 wraps the array element inside a private PAD type. This type should not
8544 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8545 that we also use the adjective "aligner" in our code to designate
8546 these wrapper types.
8547
1b536f04 8548 In some cases, the size allocated for each element is statically
21649b50
JB
8549 known. In that case, the PAD type already has the correct size,
8550 and the array element should remain unfixed.
8551
8552 But there are cases when this size is not statically known.
8553 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8554
8555 type Dynamic is array (1 .. Five) of Integer;
8556 type Wrapper (Has_Length : Boolean := False) is record
8557 Data : Dynamic;
8558 case Has_Length is
8559 when True => Length : Integer;
8560 when False => null;
8561 end case;
8562 end record;
8563 type Wrapper_Array is array (1 .. 2) of Wrapper;
8564
8565 Hello : Wrapper_Array := (others => (Has_Length => True,
8566 Data => (others => 17),
8567 Length => 1));
8568
8569
8570 The debugging info would describe variable Hello as being an
8571 array of a PAD type. The size of that PAD type is not statically
8572 known, but can be determined using a parallel XVZ variable.
8573 In that case, a copy of the PAD type with the correct size should
8574 be used for the fixed array.
8575
21649b50
JB
8576 3. ``Fixing'' record type objects:
8577 ----------------------------------
8578
8579 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8580 record types. In this case, in order to compute the associated
8581 fixed type, we need to determine the size and offset of each of
8582 its components. This, in turn, requires us to compute the fixed
8583 type of each of these components.
8584
8585 Consider for instance the example:
8586
8587 type Bounded_String (Max_Size : Natural) is record
8588 Str : String (1 .. Max_Size);
8589 Length : Natural;
8590 end record;
8591 My_String : Bounded_String (Max_Size => 10);
8592
8593 In that case, the position of field "Length" depends on the size
8594 of field Str, which itself depends on the value of the Max_Size
21649b50 8595 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8596 we need to fix the type of field Str. Therefore, fixing a variant
8597 record requires us to fix each of its components.
8598
8599 However, if a component does not have a dynamic size, the component
8600 should not be fixed. In particular, fields that use a PAD type
8601 should not fixed. Here is an example where this might happen
8602 (assuming type Rec above):
8603
8604 type Container (Big : Boolean) is record
8605 First : Rec;
8606 After : Integer;
8607 case Big is
8608 when True => Another : Integer;
8609 when False => null;
8610 end case;
8611 end record;
8612 My_Container : Container := (Big => False,
8613 First => (Empty => True),
8614 After => 42);
8615
8616 In that example, the compiler creates a PAD type for component First,
8617 whose size is constant, and then positions the component After just
8618 right after it. The offset of component After is therefore constant
8619 in this case.
8620
8621 The debugger computes the position of each field based on an algorithm
8622 that uses, among other things, the actual position and size of the field
21649b50
JB
8623 preceding it. Let's now imagine that the user is trying to print
8624 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8625 end up computing the offset of field After based on the size of the
8626 fixed version of field First. And since in our example First has
8627 only one actual field, the size of the fixed type is actually smaller
8628 than the amount of space allocated to that field, and thus we would
8629 compute the wrong offset of field After.
8630
21649b50
JB
8631 To make things more complicated, we need to watch out for dynamic
8632 components of variant records (identified by the ___XVL suffix in
8633 the component name). Even if the target type is a PAD type, the size
8634 of that type might not be statically known. So the PAD type needs
8635 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8636 we might end up with the wrong size for our component. This can be
8637 observed with the following type declarations:
284614f0
JB
8638
8639 type Octal is new Integer range 0 .. 7;
8640 type Octal_Array is array (Positive range <>) of Octal;
8641 pragma Pack (Octal_Array);
8642
8643 type Octal_Buffer (Size : Positive) is record
8644 Buffer : Octal_Array (1 .. Size);
8645 Length : Integer;
8646 end record;
8647
8648 In that case, Buffer is a PAD type whose size is unset and needs
8649 to be computed by fixing the unwrapped type.
8650
21649b50
JB
8651 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8652 ----------------------------------------------------------
8653
8654 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
8655 thus far, be actually fixed?
8656
8657 The answer is: Only when referencing that element. For instance
8658 when selecting one component of a record, this specific component
8659 should be fixed at that point in time. Or when printing the value
8660 of a record, each component should be fixed before its value gets
8661 printed. Similarly for arrays, the element of the array should be
8662 fixed when printing each element of the array, or when extracting
8663 one element out of that array. On the other hand, fixing should
8664 not be performed on the elements when taking a slice of an array!
8665
8666 Note that one of the side-effects of miscomputing the offset and
8667 size of each field is that we end up also miscomputing the size
8668 of the containing type. This can have adverse results when computing
8669 the value of an entity. GDB fetches the value of an entity based
8670 on the size of its type, and thus a wrong size causes GDB to fetch
8671 the wrong amount of memory. In the case where the computed size is
8672 too small, GDB fetches too little data to print the value of our
8673 entiry. Results in this case as unpredicatble, as we usually read
8674 past the buffer containing the data =:-o. */
8675
8676/* Implement the evaluate_exp routine in the exp_descriptor structure
8677 for the Ada language. */
8678
52ce6436 8679static struct value *
ebf56fd3 8680ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8681 int *pos, enum noside noside)
14f9c5c9
AS
8682{
8683 enum exp_opcode op;
14f9c5c9
AS
8684 int tem, tem2, tem3;
8685 int pc;
8686 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8687 struct type *type;
52ce6436 8688 int nargs, oplen;
d2e4a39e 8689 struct value **argvec;
14f9c5c9 8690
d2e4a39e
AS
8691 pc = *pos;
8692 *pos += 1;
14f9c5c9
AS
8693 op = exp->elts[pc].opcode;
8694
d2e4a39e 8695 switch (op)
14f9c5c9
AS
8696 {
8697 default:
8698 *pos -= 1;
6e48bd2c
JB
8699 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8700 arg1 = unwrap_value (arg1);
8701
8702 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8703 then we need to perform the conversion manually, because
8704 evaluate_subexp_standard doesn't do it. This conversion is
8705 necessary in Ada because the different kinds of float/fixed
8706 types in Ada have different representations.
8707
8708 Similarly, we need to perform the conversion from OP_LONG
8709 ourselves. */
8710 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8711 arg1 = ada_value_cast (expect_type, arg1, noside);
8712
8713 return arg1;
4c4b4cd2
PH
8714
8715 case OP_STRING:
8716 {
76a01679
JB
8717 struct value *result;
8718 *pos -= 1;
8719 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8720 /* The result type will have code OP_STRING, bashed there from
8721 OP_ARRAY. Bash it back. */
df407dfe
AC
8722 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8723 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8724 return result;
4c4b4cd2 8725 }
14f9c5c9
AS
8726
8727 case UNOP_CAST:
8728 (*pos) += 2;
8729 type = exp->elts[pc + 1].type;
8730 arg1 = evaluate_subexp (type, exp, pos, noside);
8731 if (noside == EVAL_SKIP)
4c4b4cd2 8732 goto nosideret;
6e48bd2c 8733 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8734 return arg1;
8735
4c4b4cd2
PH
8736 case UNOP_QUAL:
8737 (*pos) += 2;
8738 type = exp->elts[pc + 1].type;
8739 return ada_evaluate_subexp (type, exp, pos, noside);
8740
14f9c5c9
AS
8741 case BINOP_ASSIGN:
8742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8743 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8744 {
8745 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8746 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8747 return arg1;
8748 return ada_value_assign (arg1, arg1);
8749 }
003f3813
JB
8750 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8751 except if the lhs of our assignment is a convenience variable.
8752 In the case of assigning to a convenience variable, the lhs
8753 should be exactly the result of the evaluation of the rhs. */
8754 type = value_type (arg1);
8755 if (VALUE_LVAL (arg1) == lval_internalvar)
8756 type = NULL;
8757 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8758 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8759 return arg1;
df407dfe
AC
8760 if (ada_is_fixed_point_type (value_type (arg1)))
8761 arg2 = cast_to_fixed (value_type (arg1), arg2);
8762 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8763 error
323e0a4a 8764 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8765 else
df407dfe 8766 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8767 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8768
8769 case BINOP_ADD:
8770 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8771 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8772 if (noside == EVAL_SKIP)
4c4b4cd2 8773 goto nosideret;
2ac8a782
JB
8774 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8775 return (value_from_longest
8776 (value_type (arg1),
8777 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8778 if ((ada_is_fixed_point_type (value_type (arg1))
8779 || ada_is_fixed_point_type (value_type (arg2)))
8780 && value_type (arg1) != value_type (arg2))
323e0a4a 8781 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8782 /* Do the addition, and cast the result to the type of the first
8783 argument. We cannot cast the result to a reference type, so if
8784 ARG1 is a reference type, find its underlying type. */
8785 type = value_type (arg1);
8786 while (TYPE_CODE (type) == TYPE_CODE_REF)
8787 type = TYPE_TARGET_TYPE (type);
f44316fa 8788 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8789 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8790
8791 case BINOP_SUB:
8792 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8793 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8794 if (noside == EVAL_SKIP)
4c4b4cd2 8795 goto nosideret;
2ac8a782
JB
8796 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8797 return (value_from_longest
8798 (value_type (arg1),
8799 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8800 if ((ada_is_fixed_point_type (value_type (arg1))
8801 || ada_is_fixed_point_type (value_type (arg2)))
8802 && value_type (arg1) != value_type (arg2))
323e0a4a 8803 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8804 /* Do the substraction, and cast the result to the type of the first
8805 argument. We cannot cast the result to a reference type, so if
8806 ARG1 is a reference type, find its underlying type. */
8807 type = value_type (arg1);
8808 while (TYPE_CODE (type) == TYPE_CODE_REF)
8809 type = TYPE_TARGET_TYPE (type);
f44316fa 8810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8811 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8812
8813 case BINOP_MUL:
8814 case BINOP_DIV:
e1578042
JB
8815 case BINOP_REM:
8816 case BINOP_MOD:
14f9c5c9
AS
8817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819 if (noside == EVAL_SKIP)
4c4b4cd2 8820 goto nosideret;
e1578042 8821 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8822 {
8823 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8824 return value_zero (value_type (arg1), not_lval);
8825 }
14f9c5c9 8826 else
4c4b4cd2 8827 {
a53b7a21 8828 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8829 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8830 arg1 = cast_from_fixed (type, arg1);
df407dfe 8831 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8832 arg2 = cast_from_fixed (type, arg2);
f44316fa 8833 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8834 return ada_value_binop (arg1, arg2, op);
8835 }
8836
4c4b4cd2
PH
8837 case BINOP_EQUAL:
8838 case BINOP_NOTEQUAL:
14f9c5c9 8839 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8840 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8841 if (noside == EVAL_SKIP)
76a01679 8842 goto nosideret;
4c4b4cd2 8843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8844 tem = 0;
4c4b4cd2 8845 else
f44316fa
UW
8846 {
8847 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8848 tem = ada_value_equal (arg1, arg2);
8849 }
4c4b4cd2 8850 if (op == BINOP_NOTEQUAL)
76a01679 8851 tem = !tem;
fbb06eb1
UW
8852 type = language_bool_type (exp->language_defn, exp->gdbarch);
8853 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8854
8855 case UNOP_NEG:
8856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 if (noside == EVAL_SKIP)
8858 goto nosideret;
df407dfe
AC
8859 else if (ada_is_fixed_point_type (value_type (arg1)))
8860 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8861 else
f44316fa
UW
8862 {
8863 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8864 return value_neg (arg1);
8865 }
4c4b4cd2 8866
2330c6c6
JB
8867 case BINOP_LOGICAL_AND:
8868 case BINOP_LOGICAL_OR:
8869 case UNOP_LOGICAL_NOT:
000d5124
JB
8870 {
8871 struct value *val;
8872
8873 *pos -= 1;
8874 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8875 type = language_bool_type (exp->language_defn, exp->gdbarch);
8876 return value_cast (type, val);
000d5124 8877 }
2330c6c6
JB
8878
8879 case BINOP_BITWISE_AND:
8880 case BINOP_BITWISE_IOR:
8881 case BINOP_BITWISE_XOR:
000d5124
JB
8882 {
8883 struct value *val;
8884
8885 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8886 *pos = pc;
8887 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8888
8889 return value_cast (value_type (arg1), val);
8890 }
2330c6c6 8891
14f9c5c9
AS
8892 case OP_VAR_VALUE:
8893 *pos -= 1;
6799def4 8894
14f9c5c9 8895 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8896 {
8897 *pos += 4;
8898 goto nosideret;
8899 }
8900 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8901 /* Only encountered when an unresolved symbol occurs in a
8902 context other than a function call, in which case, it is
52ce6436 8903 invalid. */
323e0a4a 8904 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8905 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8906 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8907 {
0c1f74cf
JB
8908 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8909 if (ada_is_tagged_type (type, 0))
8910 {
8911 /* Tagged types are a little special in the fact that the real
8912 type is dynamic and can only be determined by inspecting the
8913 object's tag. This means that we need to get the object's
8914 value first (EVAL_NORMAL) and then extract the actual object
8915 type from its tag.
8916
8917 Note that we cannot skip the final step where we extract
8918 the object type from its tag, because the EVAL_NORMAL phase
8919 results in dynamic components being resolved into fixed ones.
8920 This can cause problems when trying to print the type
8921 description of tagged types whose parent has a dynamic size:
8922 We use the type name of the "_parent" component in order
8923 to print the name of the ancestor type in the type description.
8924 If that component had a dynamic size, the resolution into
8925 a fixed type would result in the loss of that type name,
8926 thus preventing us from printing the name of the ancestor
8927 type in the type description. */
b79819ba
JB
8928 struct type *actual_type;
8929
0c1f74cf 8930 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8931 actual_type = type_from_tag (ada_value_tag (arg1));
8932 if (actual_type == NULL)
8933 /* If, for some reason, we were unable to determine
8934 the actual type from the tag, then use the static
8935 approximation that we just computed as a fallback.
8936 This can happen if the debugging information is
8937 incomplete, for instance. */
8938 actual_type = type;
8939
8940 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8941 }
8942
4c4b4cd2
PH
8943 *pos += 4;
8944 return value_zero
8945 (to_static_fixed_type
8946 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8947 not_lval);
8948 }
d2e4a39e 8949 else
4c4b4cd2 8950 {
284614f0
JB
8951 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8952 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8953 return ada_to_fixed_value (arg1);
8954 }
8955
8956 case OP_FUNCALL:
8957 (*pos) += 2;
8958
8959 /* Allocate arg vector, including space for the function to be
8960 called in argvec[0] and a terminating NULL. */
8961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8962 argvec =
8963 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8964
8965 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8966 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8967 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8968 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8969 else
8970 {
8971 for (tem = 0; tem <= nargs; tem += 1)
8972 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8973 argvec[tem] = 0;
8974
8975 if (noside == EVAL_SKIP)
8976 goto nosideret;
8977 }
8978
ad82864c
JB
8979 if (ada_is_constrained_packed_array_type
8980 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8981 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8982 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8983 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8984 /* This is a packed array that has already been fixed, and
8985 therefore already coerced to a simple array. Nothing further
8986 to do. */
8987 ;
df407dfe
AC
8988 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8989 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8990 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8991 argvec[0] = value_addr (argvec[0]);
8992
df407dfe 8993 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8994 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8995 {
61ee279c 8996 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8997 {
8998 case TYPE_CODE_FUNC:
61ee279c 8999 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9000 break;
9001 case TYPE_CODE_ARRAY:
9002 break;
9003 case TYPE_CODE_STRUCT:
9004 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9005 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9006 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9007 break;
9008 default:
323e0a4a 9009 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9010 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9011 break;
9012 }
9013 }
9014
9015 switch (TYPE_CODE (type))
9016 {
9017 case TYPE_CODE_FUNC:
9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9019 return allocate_value (TYPE_TARGET_TYPE (type));
9020 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9021 case TYPE_CODE_STRUCT:
9022 {
9023 int arity;
9024
4c4b4cd2
PH
9025 arity = ada_array_arity (type);
9026 type = ada_array_element_type (type, nargs);
9027 if (type == NULL)
323e0a4a 9028 error (_("cannot subscript or call a record"));
4c4b4cd2 9029 if (arity != nargs)
323e0a4a 9030 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9031 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9032 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9033 return
9034 unwrap_value (ada_value_subscript
9035 (argvec[0], nargs, argvec + 1));
9036 }
9037 case TYPE_CODE_ARRAY:
9038 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9039 {
9040 type = ada_array_element_type (type, nargs);
9041 if (type == NULL)
323e0a4a 9042 error (_("element type of array unknown"));
4c4b4cd2 9043 else
0a07e705 9044 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9045 }
9046 return
9047 unwrap_value (ada_value_subscript
9048 (ada_coerce_to_simple_array (argvec[0]),
9049 nargs, argvec + 1));
9050 case TYPE_CODE_PTR: /* Pointer to array */
9051 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9053 {
9054 type = ada_array_element_type (type, nargs);
9055 if (type == NULL)
323e0a4a 9056 error (_("element type of array unknown"));
4c4b4cd2 9057 else
0a07e705 9058 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9059 }
9060 return
9061 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9062 nargs, argvec + 1));
9063
9064 default:
e1d5a0d2
PH
9065 error (_("Attempt to index or call something other than an "
9066 "array or function"));
4c4b4cd2
PH
9067 }
9068
9069 case TERNOP_SLICE:
9070 {
9071 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9072 struct value *low_bound_val =
9073 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9074 struct value *high_bound_val =
9075 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9076 LONGEST low_bound;
9077 LONGEST high_bound;
994b9211
AC
9078 low_bound_val = coerce_ref (low_bound_val);
9079 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9080 low_bound = pos_atr (low_bound_val);
9081 high_bound = pos_atr (high_bound_val);
963a6417 9082
4c4b4cd2
PH
9083 if (noside == EVAL_SKIP)
9084 goto nosideret;
9085
4c4b4cd2
PH
9086 /* If this is a reference to an aligner type, then remove all
9087 the aligners. */
df407dfe
AC
9088 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9089 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9090 TYPE_TARGET_TYPE (value_type (array)) =
9091 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9092
ad82864c 9093 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9094 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9095
9096 /* If this is a reference to an array or an array lvalue,
9097 convert to a pointer. */
df407dfe
AC
9098 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9099 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9100 && VALUE_LVAL (array) == lval_memory))
9101 array = value_addr (array);
9102
1265e4aa 9103 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9104 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9105 (value_type (array))))
0b5d8877 9106 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9107
9108 array = ada_coerce_to_simple_array_ptr (array);
9109
714e53ab
PH
9110 /* If we have more than one level of pointer indirection,
9111 dereference the value until we get only one level. */
df407dfe
AC
9112 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9113 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9114 == TYPE_CODE_PTR))
9115 array = value_ind (array);
9116
9117 /* Make sure we really do have an array type before going further,
9118 to avoid a SEGV when trying to get the index type or the target
9119 type later down the road if the debug info generated by
9120 the compiler is incorrect or incomplete. */
df407dfe 9121 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9122 error (_("cannot take slice of non-array"));
714e53ab 9123
df407dfe 9124 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9125 {
0b5d8877 9126 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9127 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9128 low_bound);
9129 else
9130 {
9131 struct type *arr_type0 =
df407dfe 9132 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9133 NULL, 1);
f5938064
JG
9134 return ada_value_slice_from_ptr (array, arr_type0,
9135 longest_to_int (low_bound),
9136 longest_to_int (high_bound));
4c4b4cd2
PH
9137 }
9138 }
9139 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9140 return array;
9141 else if (high_bound < low_bound)
df407dfe 9142 return empty_array (value_type (array), low_bound);
4c4b4cd2 9143 else
529cad9c
PH
9144 return ada_value_slice (array, longest_to_int (low_bound),
9145 longest_to_int (high_bound));
4c4b4cd2 9146 }
14f9c5c9 9147
4c4b4cd2
PH
9148 case UNOP_IN_RANGE:
9149 (*pos) += 2;
9150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9151 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9152
14f9c5c9 9153 if (noside == EVAL_SKIP)
4c4b4cd2 9154 goto nosideret;
14f9c5c9 9155
4c4b4cd2
PH
9156 switch (TYPE_CODE (type))
9157 {
9158 default:
e1d5a0d2
PH
9159 lim_warning (_("Membership test incompletely implemented; "
9160 "always returns true"));
fbb06eb1
UW
9161 type = language_bool_type (exp->language_defn, exp->gdbarch);
9162 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9163
9164 case TYPE_CODE_RANGE:
030b4912
UW
9165 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9166 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9169 type = language_bool_type (exp->language_defn, exp->gdbarch);
9170 return
9171 value_from_longest (type,
4c4b4cd2
PH
9172 (value_less (arg1, arg3)
9173 || value_equal (arg1, arg3))
9174 && (value_less (arg2, arg1)
9175 || value_equal (arg2, arg1)));
9176 }
9177
9178 case BINOP_IN_BOUNDS:
14f9c5c9 9179 (*pos) += 2;
4c4b4cd2
PH
9180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9181 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9182
4c4b4cd2
PH
9183 if (noside == EVAL_SKIP)
9184 goto nosideret;
14f9c5c9 9185
4c4b4cd2 9186 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9187 {
9188 type = language_bool_type (exp->language_defn, exp->gdbarch);
9189 return value_zero (type, not_lval);
9190 }
14f9c5c9 9191
4c4b4cd2 9192 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9193
1eea4ebd
UW
9194 type = ada_index_type (value_type (arg2), tem, "range");
9195 if (!type)
9196 type = value_type (arg1);
14f9c5c9 9197
1eea4ebd
UW
9198 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9199 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9200
f44316fa
UW
9201 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9203 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9204 return
fbb06eb1 9205 value_from_longest (type,
4c4b4cd2
PH
9206 (value_less (arg1, arg3)
9207 || value_equal (arg1, arg3))
9208 && (value_less (arg2, arg1)
9209 || value_equal (arg2, arg1)));
9210
9211 case TERNOP_IN_RANGE:
9212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9213 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9214 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9215
9216 if (noside == EVAL_SKIP)
9217 goto nosideret;
9218
f44316fa
UW
9219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9220 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9221 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9222 return
fbb06eb1 9223 value_from_longest (type,
4c4b4cd2
PH
9224 (value_less (arg1, arg3)
9225 || value_equal (arg1, arg3))
9226 && (value_less (arg2, arg1)
9227 || value_equal (arg2, arg1)));
9228
9229 case OP_ATR_FIRST:
9230 case OP_ATR_LAST:
9231 case OP_ATR_LENGTH:
9232 {
76a01679
JB
9233 struct type *type_arg;
9234 if (exp->elts[*pos].opcode == OP_TYPE)
9235 {
9236 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9237 arg1 = NULL;
5bc23cb3 9238 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9239 }
9240 else
9241 {
9242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 type_arg = NULL;
9244 }
9245
9246 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9247 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9248 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9249 *pos += 4;
9250
9251 if (noside == EVAL_SKIP)
9252 goto nosideret;
9253
9254 if (type_arg == NULL)
9255 {
9256 arg1 = ada_coerce_ref (arg1);
9257
ad82864c 9258 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9259 arg1 = ada_coerce_to_simple_array (arg1);
9260
1eea4ebd
UW
9261 type = ada_index_type (value_type (arg1), tem,
9262 ada_attribute_name (op));
9263 if (type == NULL)
9264 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9265
9266 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9267 return allocate_value (type);
76a01679
JB
9268
9269 switch (op)
9270 {
9271 default: /* Should never happen. */
323e0a4a 9272 error (_("unexpected attribute encountered"));
76a01679 9273 case OP_ATR_FIRST:
1eea4ebd
UW
9274 return value_from_longest
9275 (type, ada_array_bound (arg1, tem, 0));
76a01679 9276 case OP_ATR_LAST:
1eea4ebd
UW
9277 return value_from_longest
9278 (type, ada_array_bound (arg1, tem, 1));
76a01679 9279 case OP_ATR_LENGTH:
1eea4ebd
UW
9280 return value_from_longest
9281 (type, ada_array_length (arg1, tem));
76a01679
JB
9282 }
9283 }
9284 else if (discrete_type_p (type_arg))
9285 {
9286 struct type *range_type;
9287 char *name = ada_type_name (type_arg);
9288 range_type = NULL;
9289 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9290 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9291 if (range_type == NULL)
9292 range_type = type_arg;
9293 switch (op)
9294 {
9295 default:
323e0a4a 9296 error (_("unexpected attribute encountered"));
76a01679 9297 case OP_ATR_FIRST:
690cc4eb 9298 return value_from_longest
43bbcdc2 9299 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9300 case OP_ATR_LAST:
690cc4eb 9301 return value_from_longest
43bbcdc2 9302 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9303 case OP_ATR_LENGTH:
323e0a4a 9304 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9305 }
9306 }
9307 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9308 error (_("unimplemented type attribute"));
76a01679
JB
9309 else
9310 {
9311 LONGEST low, high;
9312
ad82864c
JB
9313 if (ada_is_constrained_packed_array_type (type_arg))
9314 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9315
1eea4ebd 9316 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9317 if (type == NULL)
1eea4ebd
UW
9318 type = builtin_type (exp->gdbarch)->builtin_int;
9319
76a01679
JB
9320 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9321 return allocate_value (type);
9322
9323 switch (op)
9324 {
9325 default:
323e0a4a 9326 error (_("unexpected attribute encountered"));
76a01679 9327 case OP_ATR_FIRST:
1eea4ebd 9328 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9329 return value_from_longest (type, low);
9330 case OP_ATR_LAST:
1eea4ebd 9331 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9332 return value_from_longest (type, high);
9333 case OP_ATR_LENGTH:
1eea4ebd
UW
9334 low = ada_array_bound_from_type (type_arg, tem, 0);
9335 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9336 return value_from_longest (type, high - low + 1);
9337 }
9338 }
14f9c5c9
AS
9339 }
9340
4c4b4cd2
PH
9341 case OP_ATR_TAG:
9342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9343 if (noside == EVAL_SKIP)
76a01679 9344 goto nosideret;
4c4b4cd2
PH
9345
9346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9347 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9348
9349 return ada_value_tag (arg1);
9350
9351 case OP_ATR_MIN:
9352 case OP_ATR_MAX:
9353 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9354 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9355 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9356 if (noside == EVAL_SKIP)
76a01679 9357 goto nosideret;
d2e4a39e 9358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9359 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9360 else
f44316fa
UW
9361 {
9362 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9363 return value_binop (arg1, arg2,
9364 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9365 }
14f9c5c9 9366
4c4b4cd2
PH
9367 case OP_ATR_MODULUS:
9368 {
31dedfee 9369 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9370 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9371
76a01679
JB
9372 if (noside == EVAL_SKIP)
9373 goto nosideret;
4c4b4cd2 9374
76a01679 9375 if (!ada_is_modular_type (type_arg))
323e0a4a 9376 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9377
76a01679
JB
9378 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9379 ada_modulus (type_arg));
4c4b4cd2
PH
9380 }
9381
9382
9383 case OP_ATR_POS:
9384 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9385 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9386 if (noside == EVAL_SKIP)
76a01679 9387 goto nosideret;
3cb382c9
UW
9388 type = builtin_type (exp->gdbarch)->builtin_int;
9389 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9390 return value_zero (type, not_lval);
14f9c5c9 9391 else
3cb382c9 9392 return value_pos_atr (type, arg1);
14f9c5c9 9393
4c4b4cd2
PH
9394 case OP_ATR_SIZE:
9395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9396 type = value_type (arg1);
9397
9398 /* If the argument is a reference, then dereference its type, since
9399 the user is really asking for the size of the actual object,
9400 not the size of the pointer. */
9401 if (TYPE_CODE (type) == TYPE_CODE_REF)
9402 type = TYPE_TARGET_TYPE (type);
9403
4c4b4cd2 9404 if (noside == EVAL_SKIP)
76a01679 9405 goto nosideret;
4c4b4cd2 9406 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9407 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9408 else
22601c15 9409 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9410 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9411
9412 case OP_ATR_VAL:
9413 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9415 type = exp->elts[pc + 2].type;
14f9c5c9 9416 if (noside == EVAL_SKIP)
76a01679 9417 goto nosideret;
4c4b4cd2 9418 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9419 return value_zero (type, not_lval);
4c4b4cd2 9420 else
76a01679 9421 return value_val_atr (type, arg1);
4c4b4cd2
PH
9422
9423 case BINOP_EXP:
9424 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9425 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9426 if (noside == EVAL_SKIP)
9427 goto nosideret;
9428 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9429 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9430 else
f44316fa
UW
9431 {
9432 /* For integer exponentiation operations,
9433 only promote the first argument. */
9434 if (is_integral_type (value_type (arg2)))
9435 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9436 else
9437 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9438
9439 return value_binop (arg1, arg2, op);
9440 }
4c4b4cd2
PH
9441
9442 case UNOP_PLUS:
9443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9444 if (noside == EVAL_SKIP)
9445 goto nosideret;
9446 else
9447 return arg1;
9448
9449 case UNOP_ABS:
9450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9451 if (noside == EVAL_SKIP)
9452 goto nosideret;
f44316fa 9453 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9454 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9455 return value_neg (arg1);
14f9c5c9 9456 else
4c4b4cd2 9457 return arg1;
14f9c5c9
AS
9458
9459 case UNOP_IND:
6b0d7253 9460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9461 if (noside == EVAL_SKIP)
4c4b4cd2 9462 goto nosideret;
df407dfe 9463 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9465 {
9466 if (ada_is_array_descriptor_type (type))
9467 /* GDB allows dereferencing GNAT array descriptors. */
9468 {
9469 struct type *arrType = ada_type_of_array (arg1, 0);
9470 if (arrType == NULL)
323e0a4a 9471 error (_("Attempt to dereference null array pointer."));
00a4c844 9472 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9473 }
9474 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9475 || TYPE_CODE (type) == TYPE_CODE_REF
9476 /* In C you can dereference an array to get the 1st elt. */
9477 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9478 {
9479 type = to_static_fixed_type
9480 (ada_aligned_type
9481 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9482 check_size (type);
9483 return value_zero (type, lval_memory);
9484 }
4c4b4cd2 9485 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9486 {
9487 /* GDB allows dereferencing an int. */
9488 if (expect_type == NULL)
9489 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9490 lval_memory);
9491 else
9492 {
9493 expect_type =
9494 to_static_fixed_type (ada_aligned_type (expect_type));
9495 return value_zero (expect_type, lval_memory);
9496 }
9497 }
4c4b4cd2 9498 else
323e0a4a 9499 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9500 }
76a01679 9501 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9502 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9503
96967637
JB
9504 if (TYPE_CODE (type) == TYPE_CODE_INT)
9505 /* GDB allows dereferencing an int. If we were given
9506 the expect_type, then use that as the target type.
9507 Otherwise, assume that the target type is an int. */
9508 {
9509 if (expect_type != NULL)
9510 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9511 arg1));
9512 else
9513 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9514 (CORE_ADDR) value_as_address (arg1));
9515 }
6b0d7253 9516
4c4b4cd2
PH
9517 if (ada_is_array_descriptor_type (type))
9518 /* GDB allows dereferencing GNAT array descriptors. */
9519 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9520 else
4c4b4cd2 9521 return ada_value_ind (arg1);
14f9c5c9
AS
9522
9523 case STRUCTOP_STRUCT:
9524 tem = longest_to_int (exp->elts[pc + 1].longconst);
9525 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9527 if (noside == EVAL_SKIP)
4c4b4cd2 9528 goto nosideret;
14f9c5c9 9529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9530 {
df407dfe 9531 struct type *type1 = value_type (arg1);
76a01679
JB
9532 if (ada_is_tagged_type (type1, 1))
9533 {
9534 type = ada_lookup_struct_elt_type (type1,
9535 &exp->elts[pc + 2].string,
9536 1, 1, NULL);
9537 if (type == NULL)
9538 /* In this case, we assume that the field COULD exist
9539 in some extension of the type. Return an object of
9540 "type" void, which will match any formal
9541 (see ada_type_match). */
30b15541
UW
9542 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9543 lval_memory);
76a01679
JB
9544 }
9545 else
9546 type =
9547 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9548 0, NULL);
9549
9550 return value_zero (ada_aligned_type (type), lval_memory);
9551 }
14f9c5c9 9552 else
284614f0
JB
9553 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9554 arg1 = unwrap_value (arg1);
9555 return ada_to_fixed_value (arg1);
9556
14f9c5c9 9557 case OP_TYPE:
4c4b4cd2
PH
9558 /* The value is not supposed to be used. This is here to make it
9559 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9560 (*pos) += 2;
9561 if (noside == EVAL_SKIP)
4c4b4cd2 9562 goto nosideret;
14f9c5c9 9563 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9564 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9565 else
323e0a4a 9566 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9567
9568 case OP_AGGREGATE:
9569 case OP_CHOICES:
9570 case OP_OTHERS:
9571 case OP_DISCRETE_RANGE:
9572 case OP_POSITIONAL:
9573 case OP_NAME:
9574 if (noside == EVAL_NORMAL)
9575 switch (op)
9576 {
9577 case OP_NAME:
9578 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9579 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9580 case OP_AGGREGATE:
9581 error (_("Aggregates only allowed on the right of an assignment"));
9582 default:
e1d5a0d2 9583 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9584 }
9585
9586 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9587 *pos += oplen - 1;
9588 for (tem = 0; tem < nargs; tem += 1)
9589 ada_evaluate_subexp (NULL, exp, pos, noside);
9590 goto nosideret;
14f9c5c9
AS
9591 }
9592
9593nosideret:
22601c15 9594 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9595}
14f9c5c9 9596\f
d2e4a39e 9597
4c4b4cd2 9598 /* Fixed point */
14f9c5c9
AS
9599
9600/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9601 type name that encodes the 'small and 'delta information.
4c4b4cd2 9602 Otherwise, return NULL. */
14f9c5c9 9603
d2e4a39e 9604static const char *
ebf56fd3 9605fixed_type_info (struct type *type)
14f9c5c9 9606{
d2e4a39e 9607 const char *name = ada_type_name (type);
14f9c5c9
AS
9608 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9609
d2e4a39e
AS
9610 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9611 {
14f9c5c9
AS
9612 const char *tail = strstr (name, "___XF_");
9613 if (tail == NULL)
4c4b4cd2 9614 return NULL;
d2e4a39e 9615 else
4c4b4cd2 9616 return tail + 5;
14f9c5c9
AS
9617 }
9618 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9619 return fixed_type_info (TYPE_TARGET_TYPE (type));
9620 else
9621 return NULL;
9622}
9623
4c4b4cd2 9624/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9625
9626int
ebf56fd3 9627ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9628{
9629 return fixed_type_info (type) != NULL;
9630}
9631
4c4b4cd2
PH
9632/* Return non-zero iff TYPE represents a System.Address type. */
9633
9634int
9635ada_is_system_address_type (struct type *type)
9636{
9637 return (TYPE_NAME (type)
9638 && strcmp (TYPE_NAME (type), "system__address") == 0);
9639}
9640
14f9c5c9
AS
9641/* Assuming that TYPE is the representation of an Ada fixed-point
9642 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9643 delta cannot be determined. */
14f9c5c9
AS
9644
9645DOUBLEST
ebf56fd3 9646ada_delta (struct type *type)
14f9c5c9
AS
9647{
9648 const char *encoding = fixed_type_info (type);
facc390f 9649 DOUBLEST num, den;
14f9c5c9 9650
facc390f
JB
9651 /* Strictly speaking, num and den are encoded as integer. However,
9652 they may not fit into a long, and they will have to be converted
9653 to DOUBLEST anyway. So scan them as DOUBLEST. */
9654 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9655 &num, &den) < 2)
14f9c5c9 9656 return -1.0;
d2e4a39e 9657 else
facc390f 9658 return num / den;
14f9c5c9
AS
9659}
9660
9661/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9662 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9663
9664static DOUBLEST
ebf56fd3 9665scaling_factor (struct type *type)
14f9c5c9
AS
9666{
9667 const char *encoding = fixed_type_info (type);
facc390f 9668 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9669 int n;
d2e4a39e 9670
facc390f
JB
9671 /* Strictly speaking, num's and den's are encoded as integer. However,
9672 they may not fit into a long, and they will have to be converted
9673 to DOUBLEST anyway. So scan them as DOUBLEST. */
9674 n = sscanf (encoding,
9675 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9676 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9677 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9678
9679 if (n < 2)
9680 return 1.0;
9681 else if (n == 4)
facc390f 9682 return num1 / den1;
d2e4a39e 9683 else
facc390f 9684 return num0 / den0;
14f9c5c9
AS
9685}
9686
9687
9688/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9689 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9690
9691DOUBLEST
ebf56fd3 9692ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9693{
d2e4a39e 9694 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9695}
9696
4c4b4cd2
PH
9697/* The representation of a fixed-point value of type TYPE
9698 corresponding to the value X. */
14f9c5c9
AS
9699
9700LONGEST
ebf56fd3 9701ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9702{
9703 return (LONGEST) (x / scaling_factor (type) + 0.5);
9704}
9705
14f9c5c9 9706\f
d2e4a39e 9707
4c4b4cd2 9708 /* Range types */
14f9c5c9
AS
9709
9710/* Scan STR beginning at position K for a discriminant name, and
9711 return the value of that discriminant field of DVAL in *PX. If
9712 PNEW_K is not null, put the position of the character beyond the
9713 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9714 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9715
9716static int
07d8f827 9717scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9718 int *pnew_k)
14f9c5c9
AS
9719{
9720 static char *bound_buffer = NULL;
9721 static size_t bound_buffer_len = 0;
9722 char *bound;
9723 char *pend;
d2e4a39e 9724 struct value *bound_val;
14f9c5c9
AS
9725
9726 if (dval == NULL || str == NULL || str[k] == '\0')
9727 return 0;
9728
d2e4a39e 9729 pend = strstr (str + k, "__");
14f9c5c9
AS
9730 if (pend == NULL)
9731 {
d2e4a39e 9732 bound = str + k;
14f9c5c9
AS
9733 k += strlen (bound);
9734 }
d2e4a39e 9735 else
14f9c5c9 9736 {
d2e4a39e 9737 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9738 bound = bound_buffer;
d2e4a39e
AS
9739 strncpy (bound_buffer, str + k, pend - (str + k));
9740 bound[pend - (str + k)] = '\0';
9741 k = pend - str;
14f9c5c9 9742 }
d2e4a39e 9743
df407dfe 9744 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9745 if (bound_val == NULL)
9746 return 0;
9747
9748 *px = value_as_long (bound_val);
9749 if (pnew_k != NULL)
9750 *pnew_k = k;
9751 return 1;
9752}
9753
9754/* Value of variable named NAME in the current environment. If
9755 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9756 otherwise causes an error with message ERR_MSG. */
9757
d2e4a39e
AS
9758static struct value *
9759get_var_value (char *name, char *err_msg)
14f9c5c9 9760{
4c4b4cd2 9761 struct ada_symbol_info *syms;
14f9c5c9
AS
9762 int nsyms;
9763
4c4b4cd2
PH
9764 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9765 &syms);
14f9c5c9
AS
9766
9767 if (nsyms != 1)
9768 {
9769 if (err_msg == NULL)
4c4b4cd2 9770 return 0;
14f9c5c9 9771 else
8a3fe4f8 9772 error (("%s"), err_msg);
14f9c5c9
AS
9773 }
9774
4c4b4cd2 9775 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9776}
d2e4a39e 9777
14f9c5c9 9778/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9779 no such variable found, returns 0, and sets *FLAG to 0. If
9780 successful, sets *FLAG to 1. */
9781
14f9c5c9 9782LONGEST
4c4b4cd2 9783get_int_var_value (char *name, int *flag)
14f9c5c9 9784{
4c4b4cd2 9785 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9786
14f9c5c9
AS
9787 if (var_val == 0)
9788 {
9789 if (flag != NULL)
4c4b4cd2 9790 *flag = 0;
14f9c5c9
AS
9791 return 0;
9792 }
9793 else
9794 {
9795 if (flag != NULL)
4c4b4cd2 9796 *flag = 1;
14f9c5c9
AS
9797 return value_as_long (var_val);
9798 }
9799}
d2e4a39e 9800
14f9c5c9
AS
9801
9802/* Return a range type whose base type is that of the range type named
9803 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9804 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9805 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9806 corresponding range type from debug information; fall back to using it
9807 if symbol lookup fails. If a new type must be created, allocate it
9808 like ORIG_TYPE was. The bounds information, in general, is encoded
9809 in NAME, the base type given in the named range type. */
14f9c5c9 9810
d2e4a39e 9811static struct type *
1ce677a4 9812to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9813{
9814 struct type *raw_type = ada_find_any_type (name);
9815 struct type *base_type;
d2e4a39e 9816 char *subtype_info;
14f9c5c9 9817
1ce677a4 9818 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9819 if (raw_type == NULL)
1ce677a4 9820 raw_type = orig_type;
dddfab26 9821
1ce677a4 9822 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9823 base_type = TYPE_TARGET_TYPE (raw_type);
9824 else
9825 base_type = raw_type;
9826
9827 subtype_info = strstr (name, "___XD");
9828 if (subtype_info == NULL)
690cc4eb 9829 {
43bbcdc2
PH
9830 LONGEST L = ada_discrete_type_low_bound (raw_type);
9831 LONGEST U = ada_discrete_type_high_bound (raw_type);
690cc4eb
PH
9832 if (L < INT_MIN || U > INT_MAX)
9833 return raw_type;
9834 else
e9bb382b 9835 return create_range_type (alloc_type_copy (orig_type), raw_type,
43bbcdc2
PH
9836 ada_discrete_type_low_bound (raw_type),
9837 ada_discrete_type_high_bound (raw_type));
690cc4eb 9838 }
14f9c5c9
AS
9839 else
9840 {
9841 static char *name_buf = NULL;
9842 static size_t name_len = 0;
9843 int prefix_len = subtype_info - name;
9844 LONGEST L, U;
9845 struct type *type;
9846 char *bounds_str;
9847 int n;
9848
9849 GROW_VECT (name_buf, name_len, prefix_len + 5);
9850 strncpy (name_buf, name, prefix_len);
9851 name_buf[prefix_len] = '\0';
9852
9853 subtype_info += 5;
9854 bounds_str = strchr (subtype_info, '_');
9855 n = 1;
9856
d2e4a39e 9857 if (*subtype_info == 'L')
4c4b4cd2
PH
9858 {
9859 if (!ada_scan_number (bounds_str, n, &L, &n)
9860 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9861 return raw_type;
9862 if (bounds_str[n] == '_')
9863 n += 2;
9864 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9865 n += 1;
9866 subtype_info += 1;
9867 }
d2e4a39e 9868 else
4c4b4cd2
PH
9869 {
9870 int ok;
9871 strcpy (name_buf + prefix_len, "___L");
9872 L = get_int_var_value (name_buf, &ok);
9873 if (!ok)
9874 {
323e0a4a 9875 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9876 L = 1;
9877 }
9878 }
14f9c5c9 9879
d2e4a39e 9880 if (*subtype_info == 'U')
4c4b4cd2
PH
9881 {
9882 if (!ada_scan_number (bounds_str, n, &U, &n)
9883 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9884 return raw_type;
9885 }
d2e4a39e 9886 else
4c4b4cd2
PH
9887 {
9888 int ok;
9889 strcpy (name_buf + prefix_len, "___U");
9890 U = get_int_var_value (name_buf, &ok);
9891 if (!ok)
9892 {
323e0a4a 9893 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9894 U = L;
9895 }
9896 }
14f9c5c9 9897
e9bb382b 9898 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
d2e4a39e 9899 TYPE_NAME (type) = name;
14f9c5c9
AS
9900 return type;
9901 }
9902}
9903
4c4b4cd2
PH
9904/* True iff NAME is the name of a range type. */
9905
14f9c5c9 9906int
d2e4a39e 9907ada_is_range_type_name (const char *name)
14f9c5c9
AS
9908{
9909 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9910}
14f9c5c9 9911\f
d2e4a39e 9912
4c4b4cd2
PH
9913 /* Modular types */
9914
9915/* True iff TYPE is an Ada modular type. */
14f9c5c9 9916
14f9c5c9 9917int
d2e4a39e 9918ada_is_modular_type (struct type *type)
14f9c5c9 9919{
4c4b4cd2 9920 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9921
9922 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9923 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9924 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9925}
9926
0056e4d5
JB
9927/* Try to determine the lower and upper bounds of the given modular type
9928 using the type name only. Return non-zero and set L and U as the lower
9929 and upper bounds (respectively) if successful. */
9930
9931int
9932ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9933{
9934 char *name = ada_type_name (type);
9935 char *suffix;
9936 int k;
9937 LONGEST U;
9938
9939 if (name == NULL)
9940 return 0;
9941
9942 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9943 we are looking for static bounds, which means an __XDLU suffix.
9944 Moreover, we know that the lower bound of modular types is always
9945 zero, so the actual suffix should start with "__XDLU_0__", and
9946 then be followed by the upper bound value. */
9947 suffix = strstr (name, "__XDLU_0__");
9948 if (suffix == NULL)
9949 return 0;
9950 k = 10;
9951 if (!ada_scan_number (suffix, k, &U, NULL))
9952 return 0;
9953
9954 *modulus = (ULONGEST) U + 1;
9955 return 1;
9956}
9957
4c4b4cd2
PH
9958/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9959
61ee279c 9960ULONGEST
0056e4d5 9961ada_modulus (struct type *type)
14f9c5c9 9962{
43bbcdc2 9963 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9964}
d2e4a39e 9965\f
f7f9143b
JB
9966
9967/* Ada exception catchpoint support:
9968 ---------------------------------
9969
9970 We support 3 kinds of exception catchpoints:
9971 . catchpoints on Ada exceptions
9972 . catchpoints on unhandled Ada exceptions
9973 . catchpoints on failed assertions
9974
9975 Exceptions raised during failed assertions, or unhandled exceptions
9976 could perfectly be caught with the general catchpoint on Ada exceptions.
9977 However, we can easily differentiate these two special cases, and having
9978 the option to distinguish these two cases from the rest can be useful
9979 to zero-in on certain situations.
9980
9981 Exception catchpoints are a specialized form of breakpoint,
9982 since they rely on inserting breakpoints inside known routines
9983 of the GNAT runtime. The implementation therefore uses a standard
9984 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9985 of breakpoint_ops.
9986
0259addd
JB
9987 Support in the runtime for exception catchpoints have been changed
9988 a few times already, and these changes affect the implementation
9989 of these catchpoints. In order to be able to support several
9990 variants of the runtime, we use a sniffer that will determine
9991 the runtime variant used by the program being debugged.
9992
f7f9143b
JB
9993 At this time, we do not support the use of conditions on Ada exception
9994 catchpoints. The COND and COND_STRING fields are therefore set
9995 to NULL (most of the time, see below).
9996
9997 Conditions where EXP_STRING, COND, and COND_STRING are used:
9998
9999 When a user specifies the name of a specific exception in the case
10000 of catchpoints on Ada exceptions, we store the name of that exception
10001 in the EXP_STRING. We then translate this request into an actual
10002 condition stored in COND_STRING, and then parse it into an expression
10003 stored in COND. */
10004
10005/* The different types of catchpoints that we introduced for catching
10006 Ada exceptions. */
10007
10008enum exception_catchpoint_kind
10009{
10010 ex_catch_exception,
10011 ex_catch_exception_unhandled,
10012 ex_catch_assert
10013};
10014
3d0b0fa3
JB
10015/* Ada's standard exceptions. */
10016
10017static char *standard_exc[] = {
10018 "constraint_error",
10019 "program_error",
10020 "storage_error",
10021 "tasking_error"
10022};
10023
0259addd
JB
10024typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10025
10026/* A structure that describes how to support exception catchpoints
10027 for a given executable. */
10028
10029struct exception_support_info
10030{
10031 /* The name of the symbol to break on in order to insert
10032 a catchpoint on exceptions. */
10033 const char *catch_exception_sym;
10034
10035 /* The name of the symbol to break on in order to insert
10036 a catchpoint on unhandled exceptions. */
10037 const char *catch_exception_unhandled_sym;
10038
10039 /* The name of the symbol to break on in order to insert
10040 a catchpoint on failed assertions. */
10041 const char *catch_assert_sym;
10042
10043 /* Assuming that the inferior just triggered an unhandled exception
10044 catchpoint, this function is responsible for returning the address
10045 in inferior memory where the name of that exception is stored.
10046 Return zero if the address could not be computed. */
10047 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10048};
10049
10050static CORE_ADDR ada_unhandled_exception_name_addr (void);
10051static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10052
10053/* The following exception support info structure describes how to
10054 implement exception catchpoints with the latest version of the
10055 Ada runtime (as of 2007-03-06). */
10056
10057static const struct exception_support_info default_exception_support_info =
10058{
10059 "__gnat_debug_raise_exception", /* catch_exception_sym */
10060 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10061 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10062 ada_unhandled_exception_name_addr
10063};
10064
10065/* The following exception support info structure describes how to
10066 implement exception catchpoints with a slightly older version
10067 of the Ada runtime. */
10068
10069static const struct exception_support_info exception_support_info_fallback =
10070{
10071 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10072 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10073 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10074 ada_unhandled_exception_name_addr_from_raise
10075};
10076
10077/* For each executable, we sniff which exception info structure to use
10078 and cache it in the following global variable. */
10079
10080static const struct exception_support_info *exception_info = NULL;
10081
10082/* Inspect the Ada runtime and determine which exception info structure
10083 should be used to provide support for exception catchpoints.
10084
10085 This function will always set exception_info, or raise an error. */
10086
10087static void
10088ada_exception_support_info_sniffer (void)
10089{
10090 struct symbol *sym;
10091
10092 /* If the exception info is already known, then no need to recompute it. */
10093 if (exception_info != NULL)
10094 return;
10095
10096 /* Check the latest (default) exception support info. */
10097 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10098 NULL, VAR_DOMAIN);
10099 if (sym != NULL)
10100 {
10101 exception_info = &default_exception_support_info;
10102 return;
10103 }
10104
10105 /* Try our fallback exception suport info. */
10106 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10107 NULL, VAR_DOMAIN);
10108 if (sym != NULL)
10109 {
10110 exception_info = &exception_support_info_fallback;
10111 return;
10112 }
10113
10114 /* Sometimes, it is normal for us to not be able to find the routine
10115 we are looking for. This happens when the program is linked with
10116 the shared version of the GNAT runtime, and the program has not been
10117 started yet. Inform the user of these two possible causes if
10118 applicable. */
10119
10120 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10121 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10122
10123 /* If the symbol does not exist, then check that the program is
10124 already started, to make sure that shared libraries have been
10125 loaded. If it is not started, this may mean that the symbol is
10126 in a shared library. */
10127
10128 if (ptid_get_pid (inferior_ptid) == 0)
10129 error (_("Unable to insert catchpoint. Try to start the program first."));
10130
10131 /* At this point, we know that we are debugging an Ada program and
10132 that the inferior has been started, but we still are not able to
10133 find the run-time symbols. That can mean that we are in
10134 configurable run time mode, or that a-except as been optimized
10135 out by the linker... In any case, at this point it is not worth
10136 supporting this feature. */
10137
10138 error (_("Cannot insert catchpoints in this configuration."));
10139}
10140
10141/* An observer of "executable_changed" events.
10142 Its role is to clear certain cached values that need to be recomputed
10143 each time a new executable is loaded by GDB. */
10144
10145static void
781b42b0 10146ada_executable_changed_observer (void)
0259addd
JB
10147{
10148 /* If the executable changed, then it is possible that the Ada runtime
10149 is different. So we need to invalidate the exception support info
10150 cache. */
10151 exception_info = NULL;
10152}
10153
f7f9143b
JB
10154/* True iff FRAME is very likely to be that of a function that is
10155 part of the runtime system. This is all very heuristic, but is
10156 intended to be used as advice as to what frames are uninteresting
10157 to most users. */
10158
10159static int
10160is_known_support_routine (struct frame_info *frame)
10161{
4ed6b5be 10162 struct symtab_and_line sal;
f7f9143b 10163 char *func_name;
692465f1 10164 enum language func_lang;
f7f9143b 10165 int i;
f7f9143b 10166
4ed6b5be
JB
10167 /* If this code does not have any debugging information (no symtab),
10168 This cannot be any user code. */
f7f9143b 10169
4ed6b5be 10170 find_frame_sal (frame, &sal);
f7f9143b
JB
10171 if (sal.symtab == NULL)
10172 return 1;
10173
4ed6b5be
JB
10174 /* If there is a symtab, but the associated source file cannot be
10175 located, then assume this is not user code: Selecting a frame
10176 for which we cannot display the code would not be very helpful
10177 for the user. This should also take care of case such as VxWorks
10178 where the kernel has some debugging info provided for a few units. */
f7f9143b 10179
9bbc9174 10180 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10181 return 1;
10182
4ed6b5be
JB
10183 /* Check the unit filename againt the Ada runtime file naming.
10184 We also check the name of the objfile against the name of some
10185 known system libraries that sometimes come with debugging info
10186 too. */
10187
f7f9143b
JB
10188 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10189 {
10190 re_comp (known_runtime_file_name_patterns[i]);
10191 if (re_exec (sal.symtab->filename))
10192 return 1;
4ed6b5be
JB
10193 if (sal.symtab->objfile != NULL
10194 && re_exec (sal.symtab->objfile->name))
10195 return 1;
f7f9143b
JB
10196 }
10197
4ed6b5be 10198 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10199
692465f1 10200 find_frame_funname (frame, &func_name, &func_lang);
f7f9143b
JB
10201 if (func_name == NULL)
10202 return 1;
10203
10204 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10205 {
10206 re_comp (known_auxiliary_function_name_patterns[i]);
10207 if (re_exec (func_name))
10208 return 1;
10209 }
10210
10211 return 0;
10212}
10213
10214/* Find the first frame that contains debugging information and that is not
10215 part of the Ada run-time, starting from FI and moving upward. */
10216
0ef643c8 10217void
f7f9143b
JB
10218ada_find_printable_frame (struct frame_info *fi)
10219{
10220 for (; fi != NULL; fi = get_prev_frame (fi))
10221 {
10222 if (!is_known_support_routine (fi))
10223 {
10224 select_frame (fi);
10225 break;
10226 }
10227 }
10228
10229}
10230
10231/* Assuming that the inferior just triggered an unhandled exception
10232 catchpoint, return the address in inferior memory where the name
10233 of the exception is stored.
10234
10235 Return zero if the address could not be computed. */
10236
10237static CORE_ADDR
10238ada_unhandled_exception_name_addr (void)
0259addd
JB
10239{
10240 return parse_and_eval_address ("e.full_name");
10241}
10242
10243/* Same as ada_unhandled_exception_name_addr, except that this function
10244 should be used when the inferior uses an older version of the runtime,
10245 where the exception name needs to be extracted from a specific frame
10246 several frames up in the callstack. */
10247
10248static CORE_ADDR
10249ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10250{
10251 int frame_level;
10252 struct frame_info *fi;
10253
10254 /* To determine the name of this exception, we need to select
10255 the frame corresponding to RAISE_SYM_NAME. This frame is
10256 at least 3 levels up, so we simply skip the first 3 frames
10257 without checking the name of their associated function. */
10258 fi = get_current_frame ();
10259 for (frame_level = 0; frame_level < 3; frame_level += 1)
10260 if (fi != NULL)
10261 fi = get_prev_frame (fi);
10262
10263 while (fi != NULL)
10264 {
692465f1
JB
10265 char *func_name;
10266 enum language func_lang;
10267
10268 find_frame_funname (fi, &func_name, &func_lang);
f7f9143b 10269 if (func_name != NULL
0259addd 10270 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10271 break; /* We found the frame we were looking for... */
10272 fi = get_prev_frame (fi);
10273 }
10274
10275 if (fi == NULL)
10276 return 0;
10277
10278 select_frame (fi);
10279 return parse_and_eval_address ("id.full_name");
10280}
10281
10282/* Assuming the inferior just triggered an Ada exception catchpoint
10283 (of any type), return the address in inferior memory where the name
10284 of the exception is stored, if applicable.
10285
10286 Return zero if the address could not be computed, or if not relevant. */
10287
10288static CORE_ADDR
10289ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10290 struct breakpoint *b)
10291{
10292 switch (ex)
10293 {
10294 case ex_catch_exception:
10295 return (parse_and_eval_address ("e.full_name"));
10296 break;
10297
10298 case ex_catch_exception_unhandled:
0259addd 10299 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10300 break;
10301
10302 case ex_catch_assert:
10303 return 0; /* Exception name is not relevant in this case. */
10304 break;
10305
10306 default:
10307 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10308 break;
10309 }
10310
10311 return 0; /* Should never be reached. */
10312}
10313
10314/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10315 any error that ada_exception_name_addr_1 might cause to be thrown.
10316 When an error is intercepted, a warning with the error message is printed,
10317 and zero is returned. */
10318
10319static CORE_ADDR
10320ada_exception_name_addr (enum exception_catchpoint_kind ex,
10321 struct breakpoint *b)
10322{
10323 struct gdb_exception e;
10324 CORE_ADDR result = 0;
10325
10326 TRY_CATCH (e, RETURN_MASK_ERROR)
10327 {
10328 result = ada_exception_name_addr_1 (ex, b);
10329 }
10330
10331 if (e.reason < 0)
10332 {
10333 warning (_("failed to get exception name: %s"), e.message);
10334 return 0;
10335 }
10336
10337 return result;
10338}
10339
10340/* Implement the PRINT_IT method in the breakpoint_ops structure
10341 for all exception catchpoint kinds. */
10342
10343static enum print_stop_action
10344print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10345{
10346 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10347 char exception_name[256];
10348
10349 if (addr != 0)
10350 {
10351 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10352 exception_name [sizeof (exception_name) - 1] = '\0';
10353 }
10354
10355 ada_find_printable_frame (get_current_frame ());
10356
10357 annotate_catchpoint (b->number);
10358 switch (ex)
10359 {
10360 case ex_catch_exception:
10361 if (addr != 0)
10362 printf_filtered (_("\nCatchpoint %d, %s at "),
10363 b->number, exception_name);
10364 else
10365 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10366 break;
10367 case ex_catch_exception_unhandled:
10368 if (addr != 0)
10369 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10370 b->number, exception_name);
10371 else
10372 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10373 b->number);
10374 break;
10375 case ex_catch_assert:
10376 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10377 b->number);
10378 break;
10379 }
10380
10381 return PRINT_SRC_AND_LOC;
10382}
10383
10384/* Implement the PRINT_ONE method in the breakpoint_ops structure
10385 for all exception catchpoint kinds. */
10386
10387static void
10388print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10389 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10390{
79a45b7d
TT
10391 struct value_print_options opts;
10392
10393 get_user_print_options (&opts);
10394 if (opts.addressprint)
f7f9143b
JB
10395 {
10396 annotate_field (4);
5af949e3 10397 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10398 }
10399
10400 annotate_field (5);
a6d9a66e 10401 *last_loc = b->loc;
f7f9143b
JB
10402 switch (ex)
10403 {
10404 case ex_catch_exception:
10405 if (b->exp_string != NULL)
10406 {
10407 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10408
10409 ui_out_field_string (uiout, "what", msg);
10410 xfree (msg);
10411 }
10412 else
10413 ui_out_field_string (uiout, "what", "all Ada exceptions");
10414
10415 break;
10416
10417 case ex_catch_exception_unhandled:
10418 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10419 break;
10420
10421 case ex_catch_assert:
10422 ui_out_field_string (uiout, "what", "failed Ada assertions");
10423 break;
10424
10425 default:
10426 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10427 break;
10428 }
10429}
10430
10431/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10432 for all exception catchpoint kinds. */
10433
10434static void
10435print_mention_exception (enum exception_catchpoint_kind ex,
10436 struct breakpoint *b)
10437{
10438 switch (ex)
10439 {
10440 case ex_catch_exception:
10441 if (b->exp_string != NULL)
10442 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10443 b->number, b->exp_string);
10444 else
10445 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10446
10447 break;
10448
10449 case ex_catch_exception_unhandled:
10450 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10451 b->number);
10452 break;
10453
10454 case ex_catch_assert:
10455 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10456 break;
10457
10458 default:
10459 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10460 break;
10461 }
10462}
10463
10464/* Virtual table for "catch exception" breakpoints. */
10465
10466static enum print_stop_action
10467print_it_catch_exception (struct breakpoint *b)
10468{
10469 return print_it_exception (ex_catch_exception, b);
10470}
10471
10472static void
a6d9a66e 10473print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10474{
a6d9a66e 10475 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10476}
10477
10478static void
10479print_mention_catch_exception (struct breakpoint *b)
10480{
10481 print_mention_exception (ex_catch_exception, b);
10482}
10483
10484static struct breakpoint_ops catch_exception_breakpoint_ops =
10485{
ce78b96d
JB
10486 NULL, /* insert */
10487 NULL, /* remove */
10488 NULL, /* breakpoint_hit */
f7f9143b
JB
10489 print_it_catch_exception,
10490 print_one_catch_exception,
10491 print_mention_catch_exception
10492};
10493
10494/* Virtual table for "catch exception unhandled" breakpoints. */
10495
10496static enum print_stop_action
10497print_it_catch_exception_unhandled (struct breakpoint *b)
10498{
10499 return print_it_exception (ex_catch_exception_unhandled, b);
10500}
10501
10502static void
a6d9a66e
UW
10503print_one_catch_exception_unhandled (struct breakpoint *b,
10504 struct bp_location **last_loc)
f7f9143b 10505{
a6d9a66e 10506 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10507}
10508
10509static void
10510print_mention_catch_exception_unhandled (struct breakpoint *b)
10511{
10512 print_mention_exception (ex_catch_exception_unhandled, b);
10513}
10514
10515static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10516 NULL, /* insert */
10517 NULL, /* remove */
10518 NULL, /* breakpoint_hit */
f7f9143b
JB
10519 print_it_catch_exception_unhandled,
10520 print_one_catch_exception_unhandled,
10521 print_mention_catch_exception_unhandled
10522};
10523
10524/* Virtual table for "catch assert" breakpoints. */
10525
10526static enum print_stop_action
10527print_it_catch_assert (struct breakpoint *b)
10528{
10529 return print_it_exception (ex_catch_assert, b);
10530}
10531
10532static void
a6d9a66e 10533print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10534{
a6d9a66e 10535 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10536}
10537
10538static void
10539print_mention_catch_assert (struct breakpoint *b)
10540{
10541 print_mention_exception (ex_catch_assert, b);
10542}
10543
10544static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10545 NULL, /* insert */
10546 NULL, /* remove */
10547 NULL, /* breakpoint_hit */
f7f9143b
JB
10548 print_it_catch_assert,
10549 print_one_catch_assert,
10550 print_mention_catch_assert
10551};
10552
10553/* Return non-zero if B is an Ada exception catchpoint. */
10554
10555int
10556ada_exception_catchpoint_p (struct breakpoint *b)
10557{
10558 return (b->ops == &catch_exception_breakpoint_ops
10559 || b->ops == &catch_exception_unhandled_breakpoint_ops
10560 || b->ops == &catch_assert_breakpoint_ops);
10561}
10562
f7f9143b
JB
10563/* Return a newly allocated copy of the first space-separated token
10564 in ARGSP, and then adjust ARGSP to point immediately after that
10565 token.
10566
10567 Return NULL if ARGPS does not contain any more tokens. */
10568
10569static char *
10570ada_get_next_arg (char **argsp)
10571{
10572 char *args = *argsp;
10573 char *end;
10574 char *result;
10575
10576 /* Skip any leading white space. */
10577
10578 while (isspace (*args))
10579 args++;
10580
10581 if (args[0] == '\0')
10582 return NULL; /* No more arguments. */
10583
10584 /* Find the end of the current argument. */
10585
10586 end = args;
10587 while (*end != '\0' && !isspace (*end))
10588 end++;
10589
10590 /* Adjust ARGSP to point to the start of the next argument. */
10591
10592 *argsp = end;
10593
10594 /* Make a copy of the current argument and return it. */
10595
10596 result = xmalloc (end - args + 1);
10597 strncpy (result, args, end - args);
10598 result[end - args] = '\0';
10599
10600 return result;
10601}
10602
10603/* Split the arguments specified in a "catch exception" command.
10604 Set EX to the appropriate catchpoint type.
10605 Set EXP_STRING to the name of the specific exception if
10606 specified by the user. */
10607
10608static void
10609catch_ada_exception_command_split (char *args,
10610 enum exception_catchpoint_kind *ex,
10611 char **exp_string)
10612{
10613 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10614 char *exception_name;
10615
10616 exception_name = ada_get_next_arg (&args);
10617 make_cleanup (xfree, exception_name);
10618
10619 /* Check that we do not have any more arguments. Anything else
10620 is unexpected. */
10621
10622 while (isspace (*args))
10623 args++;
10624
10625 if (args[0] != '\0')
10626 error (_("Junk at end of expression"));
10627
10628 discard_cleanups (old_chain);
10629
10630 if (exception_name == NULL)
10631 {
10632 /* Catch all exceptions. */
10633 *ex = ex_catch_exception;
10634 *exp_string = NULL;
10635 }
10636 else if (strcmp (exception_name, "unhandled") == 0)
10637 {
10638 /* Catch unhandled exceptions. */
10639 *ex = ex_catch_exception_unhandled;
10640 *exp_string = NULL;
10641 }
10642 else
10643 {
10644 /* Catch a specific exception. */
10645 *ex = ex_catch_exception;
10646 *exp_string = exception_name;
10647 }
10648}
10649
10650/* Return the name of the symbol on which we should break in order to
10651 implement a catchpoint of the EX kind. */
10652
10653static const char *
10654ada_exception_sym_name (enum exception_catchpoint_kind ex)
10655{
0259addd
JB
10656 gdb_assert (exception_info != NULL);
10657
f7f9143b
JB
10658 switch (ex)
10659 {
10660 case ex_catch_exception:
0259addd 10661 return (exception_info->catch_exception_sym);
f7f9143b
JB
10662 break;
10663 case ex_catch_exception_unhandled:
0259addd 10664 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10665 break;
10666 case ex_catch_assert:
0259addd 10667 return (exception_info->catch_assert_sym);
f7f9143b
JB
10668 break;
10669 default:
10670 internal_error (__FILE__, __LINE__,
10671 _("unexpected catchpoint kind (%d)"), ex);
10672 }
10673}
10674
10675/* Return the breakpoint ops "virtual table" used for catchpoints
10676 of the EX kind. */
10677
10678static struct breakpoint_ops *
4b9eee8c 10679ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10680{
10681 switch (ex)
10682 {
10683 case ex_catch_exception:
10684 return (&catch_exception_breakpoint_ops);
10685 break;
10686 case ex_catch_exception_unhandled:
10687 return (&catch_exception_unhandled_breakpoint_ops);
10688 break;
10689 case ex_catch_assert:
10690 return (&catch_assert_breakpoint_ops);
10691 break;
10692 default:
10693 internal_error (__FILE__, __LINE__,
10694 _("unexpected catchpoint kind (%d)"), ex);
10695 }
10696}
10697
10698/* Return the condition that will be used to match the current exception
10699 being raised with the exception that the user wants to catch. This
10700 assumes that this condition is used when the inferior just triggered
10701 an exception catchpoint.
10702
10703 The string returned is a newly allocated string that needs to be
10704 deallocated later. */
10705
10706static char *
10707ada_exception_catchpoint_cond_string (const char *exp_string)
10708{
3d0b0fa3
JB
10709 int i;
10710
10711 /* The standard exceptions are a special case. They are defined in
10712 runtime units that have been compiled without debugging info; if
10713 EXP_STRING is the not-fully-qualified name of a standard
10714 exception (e.g. "constraint_error") then, during the evaluation
10715 of the condition expression, the symbol lookup on this name would
10716 *not* return this standard exception. The catchpoint condition
10717 may then be set only on user-defined exceptions which have the
10718 same not-fully-qualified name (e.g. my_package.constraint_error).
10719
10720 To avoid this unexcepted behavior, these standard exceptions are
10721 systematically prefixed by "standard". This means that "catch
10722 exception constraint_error" is rewritten into "catch exception
10723 standard.constraint_error".
10724
10725 If an exception named contraint_error is defined in another package of
10726 the inferior program, then the only way to specify this exception as a
10727 breakpoint condition is to use its fully-qualified named:
10728 e.g. my_package.constraint_error. */
10729
10730 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10731 {
10732 if (strcmp (standard_exc [i], exp_string) == 0)
10733 {
10734 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10735 exp_string);
10736 }
10737 }
f7f9143b
JB
10738 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10739}
10740
10741/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10742
10743static struct expression *
10744ada_parse_catchpoint_condition (char *cond_string,
10745 struct symtab_and_line sal)
10746{
10747 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10748}
10749
10750/* Return the symtab_and_line that should be used to insert an exception
10751 catchpoint of the TYPE kind.
10752
10753 EX_STRING should contain the name of a specific exception
10754 that the catchpoint should catch, or NULL otherwise.
10755
10756 The idea behind all the remaining parameters is that their names match
10757 the name of certain fields in the breakpoint structure that are used to
10758 handle exception catchpoints. This function returns the value to which
10759 these fields should be set, depending on the type of catchpoint we need
10760 to create.
10761
10762 If COND and COND_STRING are both non-NULL, any value they might
10763 hold will be free'ed, and then replaced by newly allocated ones.
10764 These parameters are left untouched otherwise. */
10765
10766static struct symtab_and_line
10767ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10768 char **addr_string, char **cond_string,
10769 struct expression **cond, struct breakpoint_ops **ops)
10770{
10771 const char *sym_name;
10772 struct symbol *sym;
10773 struct symtab_and_line sal;
10774
0259addd
JB
10775 /* First, find out which exception support info to use. */
10776 ada_exception_support_info_sniffer ();
10777
10778 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10779 the Ada exceptions requested by the user. */
10780
10781 sym_name = ada_exception_sym_name (ex);
10782 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10783
10784 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10785 that should be compiled with debugging information. As a result, we
10786 expect to find that symbol in the symtabs. If we don't find it, then
10787 the target most likely does not support Ada exceptions, or we cannot
10788 insert exception breakpoints yet, because the GNAT runtime hasn't been
10789 loaded yet. */
10790
10791 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10792 in such a way that no debugging information is produced for the symbol
10793 we are looking for. In this case, we could search the minimal symbols
10794 as a fall-back mechanism. This would still be operating in degraded
10795 mode, however, as we would still be missing the debugging information
10796 that is needed in order to extract the name of the exception being
10797 raised (this name is printed in the catchpoint message, and is also
10798 used when trying to catch a specific exception). We do not handle
10799 this case for now. */
10800
10801 if (sym == NULL)
0259addd 10802 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10803
10804 /* Make sure that the symbol we found corresponds to a function. */
10805 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10806 error (_("Symbol \"%s\" is not a function (class = %d)"),
10807 sym_name, SYMBOL_CLASS (sym));
10808
10809 sal = find_function_start_sal (sym, 1);
10810
10811 /* Set ADDR_STRING. */
10812
10813 *addr_string = xstrdup (sym_name);
10814
10815 /* Set the COND and COND_STRING (if not NULL). */
10816
10817 if (cond_string != NULL && cond != NULL)
10818 {
10819 if (*cond_string != NULL)
10820 {
10821 xfree (*cond_string);
10822 *cond_string = NULL;
10823 }
10824 if (*cond != NULL)
10825 {
10826 xfree (*cond);
10827 *cond = NULL;
10828 }
10829 if (exp_string != NULL)
10830 {
10831 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10832 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10833 }
10834 }
10835
10836 /* Set OPS. */
4b9eee8c 10837 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10838
10839 return sal;
10840}
10841
10842/* Parse the arguments (ARGS) of the "catch exception" command.
10843
10844 Set TYPE to the appropriate exception catchpoint type.
10845 If the user asked the catchpoint to catch only a specific
10846 exception, then save the exception name in ADDR_STRING.
10847
10848 See ada_exception_sal for a description of all the remaining
10849 function arguments of this function. */
10850
10851struct symtab_and_line
10852ada_decode_exception_location (char *args, char **addr_string,
10853 char **exp_string, char **cond_string,
10854 struct expression **cond,
10855 struct breakpoint_ops **ops)
10856{
10857 enum exception_catchpoint_kind ex;
10858
10859 catch_ada_exception_command_split (args, &ex, exp_string);
10860 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10861 cond, ops);
10862}
10863
10864struct symtab_and_line
10865ada_decode_assert_location (char *args, char **addr_string,
10866 struct breakpoint_ops **ops)
10867{
10868 /* Check that no argument where provided at the end of the command. */
10869
10870 if (args != NULL)
10871 {
10872 while (isspace (*args))
10873 args++;
10874 if (*args != '\0')
10875 error (_("Junk at end of arguments."));
10876 }
10877
10878 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10879 ops);
10880}
10881
4c4b4cd2
PH
10882 /* Operators */
10883/* Information about operators given special treatment in functions
10884 below. */
10885/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10886
10887#define ADA_OPERATORS \
10888 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10889 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10890 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10891 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10892 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10893 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10894 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10895 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10896 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10897 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10898 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10899 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10900 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10901 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10902 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10903 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10904 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10905 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10906 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10907
10908static void
10909ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10910{
10911 switch (exp->elts[pc - 1].opcode)
10912 {
76a01679 10913 default:
4c4b4cd2
PH
10914 operator_length_standard (exp, pc, oplenp, argsp);
10915 break;
10916
10917#define OP_DEFN(op, len, args, binop) \
10918 case op: *oplenp = len; *argsp = args; break;
10919 ADA_OPERATORS;
10920#undef OP_DEFN
52ce6436
PH
10921
10922 case OP_AGGREGATE:
10923 *oplenp = 3;
10924 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10925 break;
10926
10927 case OP_CHOICES:
10928 *oplenp = 3;
10929 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10930 break;
4c4b4cd2
PH
10931 }
10932}
10933
10934static char *
10935ada_op_name (enum exp_opcode opcode)
10936{
10937 switch (opcode)
10938 {
76a01679 10939 default:
4c4b4cd2 10940 return op_name_standard (opcode);
52ce6436 10941
4c4b4cd2
PH
10942#define OP_DEFN(op, len, args, binop) case op: return #op;
10943 ADA_OPERATORS;
10944#undef OP_DEFN
52ce6436
PH
10945
10946 case OP_AGGREGATE:
10947 return "OP_AGGREGATE";
10948 case OP_CHOICES:
10949 return "OP_CHOICES";
10950 case OP_NAME:
10951 return "OP_NAME";
4c4b4cd2
PH
10952 }
10953}
10954
10955/* As for operator_length, but assumes PC is pointing at the first
10956 element of the operator, and gives meaningful results only for the
52ce6436 10957 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10958
10959static void
76a01679
JB
10960ada_forward_operator_length (struct expression *exp, int pc,
10961 int *oplenp, int *argsp)
4c4b4cd2 10962{
76a01679 10963 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10964 {
10965 default:
10966 *oplenp = *argsp = 0;
10967 break;
52ce6436 10968
4c4b4cd2
PH
10969#define OP_DEFN(op, len, args, binop) \
10970 case op: *oplenp = len; *argsp = args; break;
10971 ADA_OPERATORS;
10972#undef OP_DEFN
52ce6436
PH
10973
10974 case OP_AGGREGATE:
10975 *oplenp = 3;
10976 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10977 break;
10978
10979 case OP_CHOICES:
10980 *oplenp = 3;
10981 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10982 break;
10983
10984 case OP_STRING:
10985 case OP_NAME:
10986 {
10987 int len = longest_to_int (exp->elts[pc + 1].longconst);
10988 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10989 *argsp = 0;
10990 break;
10991 }
4c4b4cd2
PH
10992 }
10993}
10994
10995static int
10996ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10997{
10998 enum exp_opcode op = exp->elts[elt].opcode;
10999 int oplen, nargs;
11000 int pc = elt;
11001 int i;
76a01679 11002
4c4b4cd2
PH
11003 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11004
76a01679 11005 switch (op)
4c4b4cd2 11006 {
76a01679 11007 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11008 case OP_ATR_FIRST:
11009 case OP_ATR_LAST:
11010 case OP_ATR_LENGTH:
11011 case OP_ATR_IMAGE:
11012 case OP_ATR_MAX:
11013 case OP_ATR_MIN:
11014 case OP_ATR_MODULUS:
11015 case OP_ATR_POS:
11016 case OP_ATR_SIZE:
11017 case OP_ATR_TAG:
11018 case OP_ATR_VAL:
11019 break;
11020
11021 case UNOP_IN_RANGE:
11022 case UNOP_QUAL:
323e0a4a
AC
11023 /* XXX: gdb_sprint_host_address, type_sprint */
11024 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11025 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11026 fprintf_filtered (stream, " (");
11027 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11028 fprintf_filtered (stream, ")");
11029 break;
11030 case BINOP_IN_BOUNDS:
52ce6436
PH
11031 fprintf_filtered (stream, " (%d)",
11032 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11033 break;
11034 case TERNOP_IN_RANGE:
11035 break;
11036
52ce6436
PH
11037 case OP_AGGREGATE:
11038 case OP_OTHERS:
11039 case OP_DISCRETE_RANGE:
11040 case OP_POSITIONAL:
11041 case OP_CHOICES:
11042 break;
11043
11044 case OP_NAME:
11045 case OP_STRING:
11046 {
11047 char *name = &exp->elts[elt + 2].string;
11048 int len = longest_to_int (exp->elts[elt + 1].longconst);
11049 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11050 break;
11051 }
11052
4c4b4cd2
PH
11053 default:
11054 return dump_subexp_body_standard (exp, stream, elt);
11055 }
11056
11057 elt += oplen;
11058 for (i = 0; i < nargs; i += 1)
11059 elt = dump_subexp (exp, stream, elt);
11060
11061 return elt;
11062}
11063
11064/* The Ada extension of print_subexp (q.v.). */
11065
76a01679
JB
11066static void
11067ada_print_subexp (struct expression *exp, int *pos,
11068 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11069{
52ce6436 11070 int oplen, nargs, i;
4c4b4cd2
PH
11071 int pc = *pos;
11072 enum exp_opcode op = exp->elts[pc].opcode;
11073
11074 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11075
52ce6436 11076 *pos += oplen;
4c4b4cd2
PH
11077 switch (op)
11078 {
11079 default:
52ce6436 11080 *pos -= oplen;
4c4b4cd2
PH
11081 print_subexp_standard (exp, pos, stream, prec);
11082 return;
11083
11084 case OP_VAR_VALUE:
4c4b4cd2
PH
11085 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11086 return;
11087
11088 case BINOP_IN_BOUNDS:
323e0a4a 11089 /* XXX: sprint_subexp */
4c4b4cd2 11090 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11091 fputs_filtered (" in ", stream);
4c4b4cd2 11092 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11093 fputs_filtered ("'range", stream);
4c4b4cd2 11094 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11095 fprintf_filtered (stream, "(%ld)",
11096 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11097 return;
11098
11099 case TERNOP_IN_RANGE:
4c4b4cd2 11100 if (prec >= PREC_EQUAL)
76a01679 11101 fputs_filtered ("(", stream);
323e0a4a 11102 /* XXX: sprint_subexp */
4c4b4cd2 11103 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11104 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11105 print_subexp (exp, pos, stream, PREC_EQUAL);
11106 fputs_filtered (" .. ", stream);
11107 print_subexp (exp, pos, stream, PREC_EQUAL);
11108 if (prec >= PREC_EQUAL)
76a01679
JB
11109 fputs_filtered (")", stream);
11110 return;
4c4b4cd2
PH
11111
11112 case OP_ATR_FIRST:
11113 case OP_ATR_LAST:
11114 case OP_ATR_LENGTH:
11115 case OP_ATR_IMAGE:
11116 case OP_ATR_MAX:
11117 case OP_ATR_MIN:
11118 case OP_ATR_MODULUS:
11119 case OP_ATR_POS:
11120 case OP_ATR_SIZE:
11121 case OP_ATR_TAG:
11122 case OP_ATR_VAL:
4c4b4cd2 11123 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11124 {
11125 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11126 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11127 *pos += 3;
11128 }
4c4b4cd2 11129 else
76a01679 11130 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11131 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11132 if (nargs > 1)
76a01679
JB
11133 {
11134 int tem;
11135 for (tem = 1; tem < nargs; tem += 1)
11136 {
11137 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11138 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11139 }
11140 fputs_filtered (")", stream);
11141 }
4c4b4cd2 11142 return;
14f9c5c9 11143
4c4b4cd2 11144 case UNOP_QUAL:
4c4b4cd2
PH
11145 type_print (exp->elts[pc + 1].type, "", stream, 0);
11146 fputs_filtered ("'(", stream);
11147 print_subexp (exp, pos, stream, PREC_PREFIX);
11148 fputs_filtered (")", stream);
11149 return;
14f9c5c9 11150
4c4b4cd2 11151 case UNOP_IN_RANGE:
323e0a4a 11152 /* XXX: sprint_subexp */
4c4b4cd2 11153 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11154 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11155 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11156 return;
52ce6436
PH
11157
11158 case OP_DISCRETE_RANGE:
11159 print_subexp (exp, pos, stream, PREC_SUFFIX);
11160 fputs_filtered ("..", stream);
11161 print_subexp (exp, pos, stream, PREC_SUFFIX);
11162 return;
11163
11164 case OP_OTHERS:
11165 fputs_filtered ("others => ", stream);
11166 print_subexp (exp, pos, stream, PREC_SUFFIX);
11167 return;
11168
11169 case OP_CHOICES:
11170 for (i = 0; i < nargs-1; i += 1)
11171 {
11172 if (i > 0)
11173 fputs_filtered ("|", stream);
11174 print_subexp (exp, pos, stream, PREC_SUFFIX);
11175 }
11176 fputs_filtered (" => ", stream);
11177 print_subexp (exp, pos, stream, PREC_SUFFIX);
11178 return;
11179
11180 case OP_POSITIONAL:
11181 print_subexp (exp, pos, stream, PREC_SUFFIX);
11182 return;
11183
11184 case OP_AGGREGATE:
11185 fputs_filtered ("(", stream);
11186 for (i = 0; i < nargs; i += 1)
11187 {
11188 if (i > 0)
11189 fputs_filtered (", ", stream);
11190 print_subexp (exp, pos, stream, PREC_SUFFIX);
11191 }
11192 fputs_filtered (")", stream);
11193 return;
4c4b4cd2
PH
11194 }
11195}
14f9c5c9
AS
11196
11197/* Table mapping opcodes into strings for printing operators
11198 and precedences of the operators. */
11199
d2e4a39e
AS
11200static const struct op_print ada_op_print_tab[] = {
11201 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11202 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11203 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11204 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11205 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11206 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11207 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11208 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11209 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11210 {">=", BINOP_GEQ, PREC_ORDER, 0},
11211 {">", BINOP_GTR, PREC_ORDER, 0},
11212 {"<", BINOP_LESS, PREC_ORDER, 0},
11213 {">>", BINOP_RSH, PREC_SHIFT, 0},
11214 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11215 {"+", BINOP_ADD, PREC_ADD, 0},
11216 {"-", BINOP_SUB, PREC_ADD, 0},
11217 {"&", BINOP_CONCAT, PREC_ADD, 0},
11218 {"*", BINOP_MUL, PREC_MUL, 0},
11219 {"/", BINOP_DIV, PREC_MUL, 0},
11220 {"rem", BINOP_REM, PREC_MUL, 0},
11221 {"mod", BINOP_MOD, PREC_MUL, 0},
11222 {"**", BINOP_EXP, PREC_REPEAT, 0},
11223 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11224 {"-", UNOP_NEG, PREC_PREFIX, 0},
11225 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11226 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11227 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11228 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11229 {".all", UNOP_IND, PREC_SUFFIX, 1},
11230 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11231 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11232 {NULL, 0, 0, 0}
14f9c5c9
AS
11233};
11234\f
72d5681a
PH
11235enum ada_primitive_types {
11236 ada_primitive_type_int,
11237 ada_primitive_type_long,
11238 ada_primitive_type_short,
11239 ada_primitive_type_char,
11240 ada_primitive_type_float,
11241 ada_primitive_type_double,
11242 ada_primitive_type_void,
11243 ada_primitive_type_long_long,
11244 ada_primitive_type_long_double,
11245 ada_primitive_type_natural,
11246 ada_primitive_type_positive,
11247 ada_primitive_type_system_address,
11248 nr_ada_primitive_types
11249};
6c038f32
PH
11250
11251static void
d4a9a881 11252ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11253 struct language_arch_info *lai)
11254{
d4a9a881 11255 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11256 lai->primitive_type_vector
d4a9a881 11257 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11258 struct type *);
e9bb382b
UW
11259
11260 lai->primitive_type_vector [ada_primitive_type_int]
11261 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11262 0, "integer");
11263 lai->primitive_type_vector [ada_primitive_type_long]
11264 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11265 0, "long_integer");
11266 lai->primitive_type_vector [ada_primitive_type_short]
11267 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11268 0, "short_integer");
11269 lai->string_char_type
11270 = lai->primitive_type_vector [ada_primitive_type_char]
11271 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11272 lai->primitive_type_vector [ada_primitive_type_float]
11273 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11274 "float", NULL);
11275 lai->primitive_type_vector [ada_primitive_type_double]
11276 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11277 "long_float", NULL);
11278 lai->primitive_type_vector [ada_primitive_type_long_long]
11279 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11280 0, "long_long_integer");
11281 lai->primitive_type_vector [ada_primitive_type_long_double]
11282 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11283 "long_long_float", NULL);
11284 lai->primitive_type_vector [ada_primitive_type_natural]
11285 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11286 0, "natural");
11287 lai->primitive_type_vector [ada_primitive_type_positive]
11288 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11289 0, "positive");
11290 lai->primitive_type_vector [ada_primitive_type_void]
11291 = builtin->builtin_void;
11292
11293 lai->primitive_type_vector [ada_primitive_type_system_address]
11294 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11295 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11296 = "system__address";
fbb06eb1 11297
47e729a8 11298 lai->bool_type_symbol = NULL;
fbb06eb1 11299 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11300}
6c038f32
PH
11301\f
11302 /* Language vector */
11303
11304/* Not really used, but needed in the ada_language_defn. */
11305
11306static void
6c7a06a3 11307emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11308{
6c7a06a3 11309 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11310}
11311
11312static int
11313parse (void)
11314{
11315 warnings_issued = 0;
11316 return ada_parse ();
11317}
11318
11319static const struct exp_descriptor ada_exp_descriptor = {
11320 ada_print_subexp,
11321 ada_operator_length,
11322 ada_op_name,
11323 ada_dump_subexp_body,
11324 ada_evaluate_subexp
11325};
11326
11327const struct language_defn ada_language_defn = {
11328 "ada", /* Language name */
11329 language_ada,
6c038f32
PH
11330 range_check_off,
11331 type_check_off,
11332 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11333 that's not quite what this means. */
6c038f32 11334 array_row_major,
9a044a89 11335 macro_expansion_no,
6c038f32
PH
11336 &ada_exp_descriptor,
11337 parse,
11338 ada_error,
11339 resolve,
11340 ada_printchar, /* Print a character constant */
11341 ada_printstr, /* Function to print string constant */
11342 emit_char, /* Function to print single char (not used) */
6c038f32 11343 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11344 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11345 ada_val_print, /* Print a value using appropriate syntax */
11346 ada_value_print, /* Print a top-level value */
11347 NULL, /* Language specific skip_trampoline */
2b2d9e11 11348 NULL, /* name_of_this */
6c038f32
PH
11349 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11350 basic_lookup_transparent_type, /* lookup_transparent_type */
11351 ada_la_decode, /* Language specific symbol demangler */
11352 NULL, /* Language specific class_name_from_physname */
11353 ada_op_print_tab, /* expression operators for printing */
11354 0, /* c-style arrays */
11355 1, /* String lower bound */
6c038f32 11356 ada_get_gdb_completer_word_break_characters,
41d27058 11357 ada_make_symbol_completion_list,
72d5681a 11358 ada_language_arch_info,
e79af960 11359 ada_print_array_index,
41f1b697 11360 default_pass_by_reference,
ae6a3a4c 11361 c_get_string,
6c038f32
PH
11362 LANG_MAGIC
11363};
11364
2c0b251b
PA
11365/* Provide a prototype to silence -Wmissing-prototypes. */
11366extern initialize_file_ftype _initialize_ada_language;
11367
5bf03f13
JB
11368/* Command-list for the "set/show ada" prefix command. */
11369static struct cmd_list_element *set_ada_list;
11370static struct cmd_list_element *show_ada_list;
11371
11372/* Implement the "set ada" prefix command. */
11373
11374static void
11375set_ada_command (char *arg, int from_tty)
11376{
11377 printf_unfiltered (_(\
11378"\"set ada\" must be followed by the name of a setting.\n"));
11379 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11380}
11381
11382/* Implement the "show ada" prefix command. */
11383
11384static void
11385show_ada_command (char *args, int from_tty)
11386{
11387 cmd_show_list (show_ada_list, from_tty, "");
11388}
11389
d2e4a39e 11390void
6c038f32 11391_initialize_ada_language (void)
14f9c5c9 11392{
6c038f32
PH
11393 add_language (&ada_language_defn);
11394
5bf03f13
JB
11395 add_prefix_cmd ("ada", no_class, set_ada_command,
11396 _("Prefix command for changing Ada-specfic settings"),
11397 &set_ada_list, "set ada ", 0, &setlist);
11398
11399 add_prefix_cmd ("ada", no_class, show_ada_command,
11400 _("Generic command for showing Ada-specific settings."),
11401 &show_ada_list, "show ada ", 0, &showlist);
11402
11403 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11404 &trust_pad_over_xvs, _("\
11405Enable or disable an optimization trusting PAD types over XVS types"), _("\
11406Show whether an optimization trusting PAD types over XVS types is activated"),
11407 _("\
11408This is related to the encoding used by the GNAT compiler. The debugger\n\
11409should normally trust the contents of PAD types, but certain older versions\n\
11410of GNAT have a bug that sometimes causes the information in the PAD type\n\
11411to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11412work around this bug. It is always safe to turn this option \"off\", but\n\
11413this incurs a slight performance penalty, so it is recommended to NOT change\n\
11414this option to \"off\" unless necessary."),
11415 NULL, NULL, &set_ada_list, &show_ada_list);
11416
6c038f32 11417 varsize_limit = 65536;
6c038f32
PH
11418
11419 obstack_init (&symbol_list_obstack);
11420
11421 decoded_names_store = htab_create_alloc
11422 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11423 NULL, xcalloc, xfree);
6b69afc4
JB
11424
11425 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11426}
This page took 1.466756 seconds and 4 git commands to generate.