Automatic Copyright Year update after running gdb/copyright.py
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
88b9d363 3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
0f8e2034 52#include "cli/cli-decode.h"
4de283e4 53
40bc484c 54#include "value.h"
4de283e4
TT
55#include "mi/mi-common.h"
56#include "arch-utils.h"
57#include "cli/cli-utils.h"
268a13a5
TT
58#include "gdbsupport/function-view.h"
59#include "gdbsupport/byte-vector.h"
4de283e4 60#include <algorithm>
03070ee9 61#include "ada-exp.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
d1183b06 103static void ada_add_block_symbols (std::vector<struct block_symbol> &,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
d1183b06
TT
108static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
b5ec771e
PA
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
22cee43f 112
d1183b06 113static int is_nonfunction (const std::vector<struct block_symbol> &);
14f9c5c9 114
d1183b06
TT
115static void add_defn_to_vec (std::vector<struct block_symbol> &,
116 struct symbol *,
dda83cd7 117 const struct block *);
14f9c5c9 118
d2e4a39e 119static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 120
4c4b4cd2 121static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 122
d2e4a39e 123static int numeric_type_p (struct type *);
14f9c5c9 124
d2e4a39e 125static int integer_type_p (struct type *);
14f9c5c9 126
d2e4a39e 127static int scalar_type_p (struct type *);
14f9c5c9 128
d2e4a39e 129static int discrete_type_p (struct type *);
14f9c5c9 130
a121b7c1 131static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 132 int, int);
4c4b4cd2 133
b4ba55a1 134static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 135 const char *);
b4ba55a1 136
d2e4a39e 137static int is_dynamic_field (struct type *, int);
14f9c5c9 138
10a2c479 139static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 140 const gdb_byte *,
dda83cd7 141 CORE_ADDR, struct value *);
4c4b4cd2
PH
142
143static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 144
28c85d6c 145static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 146
d2e4a39e 147static struct type *to_static_fixed_type (struct type *);
f192137b 148static struct type *static_unwrap_type (struct type *type);
14f9c5c9 149
d2e4a39e 150static struct value *unwrap_value (struct value *);
14f9c5c9 151
ad82864c 152static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 153
ad82864c 154static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 155
ad82864c
JB
156static long decode_packed_array_bitsize (struct type *);
157
158static struct value *decode_constrained_packed_array (struct value *);
159
ad82864c 160static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 161
d2e4a39e 162static struct value *value_subscript_packed (struct value *, int,
dda83cd7 163 struct value **);
14f9c5c9 164
4c4b4cd2 165static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 166 struct type *);
14f9c5c9 167
d2e4a39e 168static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 169
d2e4a39e 170static int equiv_types (struct type *, struct type *);
14f9c5c9 171
d2e4a39e 172static int is_name_suffix (const char *);
14f9c5c9 173
59c8a30b 174static int advance_wild_match (const char **, const char *, char);
73589123 175
b5ec771e 176static bool wild_match (const char *name, const char *patn);
14f9c5c9 177
d2e4a39e 178static struct value *ada_coerce_ref (struct value *);
14f9c5c9 179
4c4b4cd2
PH
180static LONGEST pos_atr (struct value *);
181
53a47a3e
TT
182static struct value *val_atr (struct type *, LONGEST);
183
4c4b4cd2 184static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 185 domain_enum);
14f9c5c9 186
108d56a4 187static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 188 struct type *);
4c4b4cd2 189
0d5cff50 190static int find_struct_field (const char *, struct type *, int,
dda83cd7 191 struct type **, int *, int *, int *, int *);
4c4b4cd2 192
d1183b06 193static int ada_resolve_function (std::vector<struct block_symbol> &,
dda83cd7 194 struct value **, int, const char *,
7056f312 195 struct type *, bool);
4c4b4cd2 196
4c4b4cd2
PH
197static int ada_is_direct_array_type (struct type *);
198
52ce6436
PH
199static struct value *ada_index_struct_field (int, struct value *, int,
200 struct type *);
201
cf608cc4 202static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
52ce6436
PH
203
204
852dff6c 205static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
206
207static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
209
4c4b4cd2
PH
210\f
211
ee01b665
JB
212/* The result of a symbol lookup to be stored in our symbol cache. */
213
214struct cache_entry
215{
216 /* The name used to perform the lookup. */
217 const char *name;
218 /* The namespace used during the lookup. */
fe978cb0 219 domain_enum domain;
ee01b665
JB
220 /* The symbol returned by the lookup, or NULL if no matching symbol
221 was found. */
222 struct symbol *sym;
223 /* The block where the symbol was found, or NULL if no matching
224 symbol was found. */
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
228};
229
230/* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
232
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
238
239#define HASH_SIZE 1009
240
241struct ada_symbol_cache
242{
243 /* An obstack used to store the entries in our cache. */
bdcccc56 244 struct auto_obstack cache_space;
ee01b665
JB
245
246 /* The root of the hash table used to implement our symbol cache. */
bdcccc56 247 struct cache_entry *root[HASH_SIZE] {};
ee01b665
JB
248};
249
4c4b4cd2 250/* Maximum-sized dynamic type. */
14f9c5c9
AS
251static unsigned int varsize_limit;
252
67cb5b2d 253static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
254#ifdef VMS
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
256#else
14f9c5c9 257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 258#endif
14f9c5c9 259
4c4b4cd2 260/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 261static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 262 = "__gnat_ada_main_program_name";
14f9c5c9 263
4c4b4cd2
PH
264/* Limit on the number of warnings to raise per expression evaluation. */
265static int warning_limit = 2;
266
267/* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269static int warnings_issued = 0;
270
27087b7f 271static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
273};
274
27087b7f 275static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
277};
278
c6044dd1
JB
279/* Maintenance-related settings for this module. */
280
281static struct cmd_list_element *maint_set_ada_cmdlist;
282static struct cmd_list_element *maint_show_ada_cmdlist;
283
c6044dd1
JB
284/* The "maintenance ada set/show ignore-descriptive-type" value. */
285
491144b5 286static bool ada_ignore_descriptive_types_p = false;
c6044dd1 287
e802dbe0
JB
288 /* Inferior-specific data. */
289
290/* Per-inferior data for this module. */
291
292struct ada_inferior_data
293{
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
f37b313d 298 struct type *tsd_type = nullptr;
3eecfa55
JB
299
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
302 inferior. */
f37b313d 303 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
304};
305
306/* Our key to this module's inferior data. */
f37b313d 307static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
308
309/* Return our inferior data for the given inferior (INF).
310
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
316
317static struct ada_inferior_data *
318get_ada_inferior_data (struct inferior *inf)
319{
320 struct ada_inferior_data *data;
321
f37b313d 322 data = ada_inferior_data.get (inf);
e802dbe0 323 if (data == NULL)
f37b313d 324 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
325
326 return data;
327}
328
329/* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
331
332static void
333ada_inferior_exit (struct inferior *inf)
334{
f37b313d 335 ada_inferior_data.clear (inf);
e802dbe0
JB
336}
337
ee01b665
JB
338
339 /* program-space-specific data. */
340
341/* This module's per-program-space data. */
342struct ada_pspace_data
343{
344 /* The Ada symbol cache. */
bdcccc56 345 std::unique_ptr<ada_symbol_cache> sym_cache;
ee01b665
JB
346};
347
348/* Key to our per-program-space data. */
f37b313d 349static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
350
351/* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
353
354 This function always returns a valid object. */
355
356static struct ada_pspace_data *
357get_ada_pspace_data (struct program_space *pspace)
358{
359 struct ada_pspace_data *data;
360
f37b313d 361 data = ada_pspace_data_handle.get (pspace);
ee01b665 362 if (data == NULL)
f37b313d 363 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
364
365 return data;
366}
367
dda83cd7 368 /* Utilities */
4c4b4cd2 369
720d1a40 370/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 371 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
372
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
381
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
385
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
388
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
392
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
396
397static struct type *
398ada_typedef_target_type (struct type *type)
399{
78134374 400 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
401 type = TYPE_TARGET_TYPE (type);
402 return type;
403}
404
41d27058
JB
405/* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
408
409static const char *
410ada_unqualified_name (const char *decoded_name)
411{
2b0f535a
JB
412 const char *result;
413
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
419 return decoded_name;
420
421 result = strrchr (decoded_name, '.');
41d27058
JB
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428}
429
39e7af3e 430/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 431
39e7af3e 432static std::string
41d27058
JB
433add_angle_brackets (const char *str)
434{
39e7af3e 435 return string_printf ("<%s>", str);
41d27058 436}
96d887e8 437
14f9c5c9 438/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 439 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
440
441static int
ebf56fd3 442field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
443{
444 int len = strlen (target);
5b4ee69b 445
d2e4a39e 446 return
4c4b4cd2
PH
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
dda83cd7
SM
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
451 "___XVN") != 0)));
14f9c5c9
AS
452}
453
454
872c8b51
JB
455/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
462
463int
464ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 465 int maybe_missing)
4c4b4cd2
PH
466{
467 int fieldno;
872c8b51
JB
468 struct type *struct_type = check_typedef ((struct type *) type);
469
1f704f76 470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 471 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
472 return fieldno;
473
474 if (!maybe_missing)
323e0a4a 475 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 476 field_name, struct_type->name ());
4c4b4cd2
PH
477
478 return -1;
479}
480
481/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
482
483int
d2e4a39e 484ada_name_prefix_len (const char *name)
14f9c5c9
AS
485{
486 if (name == NULL)
487 return 0;
d2e4a39e 488 else
14f9c5c9 489 {
d2e4a39e 490 const char *p = strstr (name, "___");
5b4ee69b 491
14f9c5c9 492 if (p == NULL)
dda83cd7 493 return strlen (name);
14f9c5c9 494 else
dda83cd7 495 return p - name;
14f9c5c9
AS
496 }
497}
498
4c4b4cd2
PH
499/* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
501
14f9c5c9 502static int
d2e4a39e 503is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
504{
505 int len1, len2;
5b4ee69b 506
14f9c5c9
AS
507 if (str == NULL)
508 return 0;
509 len1 = strlen (str);
510 len2 = strlen (suffix);
4c4b4cd2 511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
512}
513
4c4b4cd2
PH
514/* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
14f9c5c9 516
d2e4a39e 517static struct value *
4c4b4cd2 518coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 519{
61ee279c 520 type = ada_check_typedef (type);
df407dfe 521 if (value_type (val) == type)
4c4b4cd2 522 return val;
d2e4a39e 523 else
14f9c5c9 524 {
4c4b4cd2
PH
525 struct value *result;
526
527 /* Make sure that the object size is not unreasonable before
dda83cd7 528 trying to allocate some memory for it. */
c1b5a1a6 529 ada_ensure_varsize_limit (type);
4c4b4cd2 530
f73e424f
TT
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
41e8491f
JK
537 result = allocate_value_lazy (type);
538 else
539 {
540 result = allocate_value (type);
f73e424f 541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 542 }
74bcbdf3 543 set_value_component_location (result, val);
9bbda503
AC
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
14f9c5c9
AS
548 return result;
549 }
550}
551
fc1a4b47
AC
552static const gdb_byte *
553cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
554{
555 if (valaddr == NULL)
556 return NULL;
557 else
558 return valaddr + offset;
559}
560
561static CORE_ADDR
ebf56fd3 562cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
563{
564 if (address == 0)
565 return 0;
d2e4a39e 566 else
14f9c5c9
AS
567 return address + offset;
568}
569
4c4b4cd2
PH
570/* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
573 expression. */
a2249542 574
77109804
AC
575/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
a0b31db1 577static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 578
14f9c5c9 579static void
a2249542 580lim_warning (const char *format, ...)
14f9c5c9 581{
a2249542 582 va_list args;
a2249542 583
5b4ee69b 584 va_start (args, format);
4c4b4cd2
PH
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
a2249542
MK
587 vwarning (format, args);
588
589 va_end (args);
4c4b4cd2
PH
590}
591
714e53ab
PH
592/* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
594 GDB. */
595
c1b5a1a6
JB
596void
597ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
598{
599 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 600 error (_("object size is larger than varsize-limit"));
714e53ab
PH
601}
602
0963b4bd 603/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 604static LONGEST
c3e5cd34 605max_of_size (int size)
4c4b4cd2 606{
76a01679 607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 608
76a01679 609 return top_bit | (top_bit - 1);
4c4b4cd2
PH
610}
611
0963b4bd 612/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 613static LONGEST
c3e5cd34 614min_of_size (int size)
4c4b4cd2 615{
c3e5cd34 616 return -max_of_size (size) - 1;
4c4b4cd2
PH
617}
618
0963b4bd 619/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 620static ULONGEST
c3e5cd34 621umax_of_size (int size)
4c4b4cd2 622{
76a01679 623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 624
76a01679 625 return top_bit | (top_bit - 1);
4c4b4cd2
PH
626}
627
0963b4bd 628/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
629static LONGEST
630max_of_type (struct type *t)
4c4b4cd2 631{
c6d940a9 632 if (t->is_unsigned ())
c3e5cd34
PH
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
634 else
635 return max_of_size (TYPE_LENGTH (t));
636}
637
0963b4bd 638/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
639static LONGEST
640min_of_type (struct type *t)
641{
c6d940a9 642 if (t->is_unsigned ())
c3e5cd34
PH
643 return 0;
644 else
645 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
646}
647
648/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
649LONGEST
650ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 651{
b249d2c2 652 type = resolve_dynamic_type (type, {}, 0);
78134374 653 switch (type->code ())
4c4b4cd2
PH
654 {
655 case TYPE_CODE_RANGE:
d1fd641e
SM
656 {
657 const dynamic_prop &high = type->bounds ()->high;
658
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
661 else
662 {
663 gdb_assert (high.kind () == PROP_UNDEFINED);
664
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
668 return 0;
669 }
670 }
4c4b4cd2 671 case TYPE_CODE_ENUM:
1f704f76 672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
673 case TYPE_CODE_BOOL:
674 return 1;
675 case TYPE_CODE_CHAR:
76a01679 676 case TYPE_CODE_INT:
690cc4eb 677 return max_of_type (type);
4c4b4cd2 678 default:
43bbcdc2 679 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
680 }
681}
682
14e75d8e 683/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
684LONGEST
685ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 686{
b249d2c2 687 type = resolve_dynamic_type (type, {}, 0);
78134374 688 switch (type->code ())
4c4b4cd2
PH
689 {
690 case TYPE_CODE_RANGE:
d1fd641e
SM
691 {
692 const dynamic_prop &low = type->bounds ()->low;
693
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
696 else
697 {
698 gdb_assert (low.kind () == PROP_UNDEFINED);
699
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
703 return 0;
704 }
705 }
4c4b4cd2 706 case TYPE_CODE_ENUM:
14e75d8e 707 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
708 case TYPE_CODE_BOOL:
709 return 0;
710 case TYPE_CODE_CHAR:
76a01679 711 case TYPE_CODE_INT:
690cc4eb 712 return min_of_type (type);
4c4b4cd2 713 default:
43bbcdc2 714 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
715 }
716}
717
718/* The identity on non-range types. For range types, the underlying
76a01679 719 non-range scalar type. */
4c4b4cd2
PH
720
721static struct type *
18af8284 722get_base_type (struct type *type)
4c4b4cd2 723{
78134374 724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 725 {
76a01679 726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 727 return type;
4c4b4cd2
PH
728 type = TYPE_TARGET_TYPE (type);
729 }
730 return type;
14f9c5c9 731}
41246937
JB
732
733/* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
85102364 735 encodings, making the resulting type a static but standard description
41246937
JB
736 of the initial type. */
737
738struct value *
739ada_get_decoded_value (struct value *value)
740{
741 struct type *type = ada_check_typedef (value_type (value));
742
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
dda83cd7 745 && type->code () != TYPE_CODE_PTR))
41246937 746 {
78134374 747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 748 value = ada_coerce_to_simple_array_ptr (value);
41246937 749 else
dda83cd7 750 value = ada_coerce_to_simple_array (value);
41246937
JB
751 }
752 else
753 value = ada_to_fixed_value (value);
754
755 return value;
756}
757
758/* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
762
763struct type *
764ada_get_decoded_type (struct type *type)
765{
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
769 return type;
770}
771
4c4b4cd2 772\f
76a01679 773
dda83cd7 774 /* Language Selection */
14f9c5c9
AS
775
776/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 777 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 778
de93309a 779static enum language
ccefe4c4 780ada_update_initial_language (enum language lang)
14f9c5c9 781{
cafb3438 782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 783 return language_ada;
14f9c5c9
AS
784
785 return lang;
786}
96d887e8
PH
787
788/* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
791
792char *
793ada_main_name (void)
794{
3b7344d5 795 struct bound_minimal_symbol msym;
e83e4e24 796 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 797
96d887e8
PH
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
802 in Ada. */
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
804
3b7344d5 805 if (msym.minsym != NULL)
96d887e8 806 {
66920317 807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 808 if (main_program_name_addr == 0)
dda83cd7 809 error (_("Invalid address for Ada main program name."));
96d887e8 810
66920317 811 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 812 return main_program_name.get ();
96d887e8
PH
813 }
814
815 /* The main procedure doesn't seem to be in Ada. */
816 return NULL;
817}
14f9c5c9 818\f
dda83cd7 819 /* Symbols */
d2e4a39e 820
4c4b4cd2
PH
821/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
822 of NULLs. */
14f9c5c9 823
d2e4a39e
AS
824const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
846 {NULL, NULL}
14f9c5c9
AS
847};
848
5c4258f4 849/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 850 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 851 Otherwise, return the empty string in that case. */
4c4b4cd2 852
5c4258f4 853static std::string
b5ec771e 854ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 855{
4c4b4cd2 856 if (decoded == NULL)
5c4258f4 857 return {};
14f9c5c9 858
5c4258f4
TT
859 std::string encoding_buffer;
860 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 861 {
cdc7bb92 862 if (*p == '.')
5c4258f4 863 encoding_buffer.append ("__");
14f9c5c9 864 else if (*p == '"')
dda83cd7
SM
865 {
866 const struct ada_opname_map *mapping;
867
868 for (mapping = ada_opname_table;
869 mapping->encoded != NULL
870 && !startswith (p, mapping->decoded); mapping += 1)
871 ;
872 if (mapping->encoded == NULL)
b5ec771e
PA
873 {
874 if (throw_errors)
875 error (_("invalid Ada operator name: %s"), p);
876 else
5c4258f4 877 return {};
b5ec771e 878 }
5c4258f4 879 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
880 break;
881 }
d2e4a39e 882 else
5c4258f4 883 encoding_buffer.push_back (*p);
14f9c5c9
AS
884 }
885
4c4b4cd2 886 return encoding_buffer;
14f9c5c9
AS
887}
888
5c4258f4 889/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 890
5c4258f4 891std::string
b5ec771e
PA
892ada_encode (const char *decoded)
893{
894 return ada_encode_1 (decoded, true);
895}
896
14f9c5c9 897/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
898 quotes, unfolded, but with the quotes stripped away. Result good
899 to next call. */
900
5f9febe0 901static const char *
e0802d59 902ada_fold_name (gdb::string_view name)
14f9c5c9 903{
5f9febe0 904 static std::string fold_storage;
14f9c5c9 905
6a780b67 906 if (!name.empty () && name[0] == '\'')
01573d73 907 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
14f9c5c9
AS
908 else
909 {
01573d73 910 fold_storage = gdb::to_string (name);
5f9febe0
TT
911 for (int i = 0; i < name.size (); i += 1)
912 fold_storage[i] = tolower (fold_storage[i]);
14f9c5c9
AS
913 }
914
5f9febe0 915 return fold_storage.c_str ();
14f9c5c9
AS
916}
917
529cad9c
PH
918/* Return nonzero if C is either a digit or a lowercase alphabet character. */
919
920static int
921is_lower_alphanum (const char c)
922{
923 return (isdigit (c) || (isalpha (c) && islower (c)));
924}
925
c90092fe
JB
926/* ENCODED is the linkage name of a symbol and LEN contains its length.
927 This function saves in LEN the length of that same symbol name but
928 without either of these suffixes:
29480c32
JB
929 . .{DIGIT}+
930 . ${DIGIT}+
931 . ___{DIGIT}+
932 . __{DIGIT}+.
c90092fe 933
29480c32
JB
934 These are suffixes introduced by the compiler for entities such as
935 nested subprogram for instance, in order to avoid name clashes.
936 They do not serve any purpose for the debugger. */
937
938static void
939ada_remove_trailing_digits (const char *encoded, int *len)
940{
941 if (*len > 1 && isdigit (encoded[*len - 1]))
942 {
943 int i = *len - 2;
5b4ee69b 944
29480c32 945 while (i > 0 && isdigit (encoded[i]))
dda83cd7 946 i--;
29480c32 947 if (i >= 0 && encoded[i] == '.')
dda83cd7 948 *len = i;
29480c32 949 else if (i >= 0 && encoded[i] == '$')
dda83cd7 950 *len = i;
61012eef 951 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 952 *len = i - 2;
61012eef 953 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 954 *len = i - 1;
29480c32
JB
955 }
956}
957
958/* Remove the suffix introduced by the compiler for protected object
959 subprograms. */
960
961static void
962ada_remove_po_subprogram_suffix (const char *encoded, int *len)
963{
964 /* Remove trailing N. */
965
966 /* Protected entry subprograms are broken into two
967 separate subprograms: The first one is unprotected, and has
968 a 'N' suffix; the second is the protected version, and has
0963b4bd 969 the 'P' suffix. The second calls the first one after handling
29480c32
JB
970 the protection. Since the P subprograms are internally generated,
971 we leave these names undecoded, giving the user a clue that this
972 entity is internal. */
973
974 if (*len > 1
975 && encoded[*len - 1] == 'N'
976 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
977 *len = *len - 1;
978}
979
8a3df5ac 980/* See ada-lang.h. */
14f9c5c9 981
f945dedf 982std::string
8a3df5ac 983ada_decode (const char *encoded, bool wrap)
14f9c5c9
AS
984{
985 int i, j;
986 int len0;
d2e4a39e 987 const char *p;
14f9c5c9 988 int at_start_name;
f945dedf 989 std::string decoded;
d2e4a39e 990
0d81f350
JG
991 /* With function descriptors on PPC64, the value of a symbol named
992 ".FN", if it exists, is the entry point of the function "FN". */
993 if (encoded[0] == '.')
994 encoded += 1;
995
29480c32
JB
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
61012eef 999 if (startswith (encoded, "_ada_"))
4c4b4cd2 1000 encoded += 5;
14f9c5c9 1001
29480c32
JB
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
4c4b4cd2 1005 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1006 goto Suppress;
1007
4c4b4cd2 1008 len0 = strlen (encoded);
4c4b4cd2 1009
29480c32
JB
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1012
4c4b4cd2
PH
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1019 {
1020 if (p[3] == 'X')
dda83cd7 1021 len0 = p - encoded;
14f9c5c9 1022 else
dda83cd7 1023 goto Suppress;
14f9c5c9 1024 }
4c4b4cd2 1025
29480c32
JB
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1029
61012eef 1030 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1031 len0 -= 3;
76a01679 1032
a10967fa
JB
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1035 bodies. */
1036
61012eef 1037 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1038 len0 -= 2;
1039
29480c32
JB
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1042
61012eef 1043 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1044 len0 -= 1;
1045
4c4b4cd2 1046 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1047
f945dedf 1048 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1049
29480c32
JB
1050 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1051
4c4b4cd2 1052 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1053 {
4c4b4cd2
PH
1054 i = len0 - 2;
1055 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1056 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1057 i -= 1;
4c4b4cd2 1058 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1059 len0 = i - 1;
4c4b4cd2 1060 else if (encoded[i] == '$')
dda83cd7 1061 len0 = i;
d2e4a39e 1062 }
14f9c5c9 1063
29480c32
JB
1064 /* The first few characters that are not alphabetic are not part
1065 of any encoding we use, so we can copy them over verbatim. */
1066
4c4b4cd2
PH
1067 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1068 decoded[j] = encoded[i];
14f9c5c9
AS
1069
1070 at_start_name = 1;
1071 while (i < len0)
1072 {
29480c32 1073 /* Is this a symbol function? */
4c4b4cd2 1074 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1075 {
1076 int k;
1077
1078 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1079 {
1080 int op_len = strlen (ada_opname_table[k].encoded);
1081 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1082 op_len - 1) == 0)
1083 && !isalnum (encoded[i + op_len]))
1084 {
1085 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1086 at_start_name = 0;
1087 i += op_len;
1088 j += strlen (ada_opname_table[k].decoded);
1089 break;
1090 }
1091 }
1092 if (ada_opname_table[k].encoded != NULL)
1093 continue;
1094 }
14f9c5c9
AS
1095 at_start_name = 0;
1096
529cad9c 1097 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1098 into "." (just below). */
529cad9c 1099
61012eef 1100 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1101 i += 2;
529cad9c 1102
29480c32 1103 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1104 be translated into "." (just below). These are internal names
1105 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1106
1107 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1108 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1109 && isdigit (encoded [i+4]))
1110 {
1111 int k = i + 5;
1112
1113 while (k < len0 && isdigit (encoded[k]))
1114 k++; /* Skip any extra digit. */
1115
1116 /* Double-check that the "__B_{DIGITS}+" sequence we found
1117 is indeed followed by "__". */
1118 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1119 i = k;
1120 }
29480c32 1121
529cad9c
PH
1122 /* Remove _E{DIGITS}+[sb] */
1123
1124 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1125 of subprograms created by the compiler for each entry. The first
1126 one implements the actual entry code, and has a suffix following
1127 the convention above; the second one implements the barrier and
1128 uses the same convention as above, except that the 'E' is replaced
1129 by a 'B'.
529cad9c 1130
dda83cd7
SM
1131 Just as above, we do not decode the name of barrier functions
1132 to give the user a clue that the code he is debugging has been
1133 internally generated. */
529cad9c
PH
1134
1135 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1136 && isdigit (encoded[i+2]))
1137 {
1138 int k = i + 3;
1139
1140 while (k < len0 && isdigit (encoded[k]))
1141 k++;
1142
1143 if (k < len0
1144 && (encoded[k] == 'b' || encoded[k] == 's'))
1145 {
1146 k++;
1147 /* Just as an extra precaution, make sure that if this
1148 suffix is followed by anything else, it is a '_'.
1149 Otherwise, we matched this sequence by accident. */
1150 if (k == len0
1151 || (k < len0 && encoded[k] == '_'))
1152 i = k;
1153 }
1154 }
529cad9c
PH
1155
1156 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1157 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1158
1159 if (i < len0 + 3
dda83cd7
SM
1160 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1161 {
1162 /* Backtrack a bit up until we reach either the begining of
1163 the encoded name, or "__". Make sure that we only find
1164 digits or lowercase characters. */
1165 const char *ptr = encoded + i - 1;
1166
1167 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1168 ptr--;
1169 if (ptr < encoded
1170 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1171 i++;
1172 }
529cad9c 1173
4c4b4cd2 1174 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1175 {
1176 /* This is a X[bn]* sequence not separated from the previous
1177 part of the name with a non-alpha-numeric character (in other
1178 words, immediately following an alpha-numeric character), then
1179 verify that it is placed at the end of the encoded name. If
1180 not, then the encoding is not valid and we should abort the
1181 decoding. Otherwise, just skip it, it is used in body-nested
1182 package names. */
1183 do
1184 i += 1;
1185 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1186 if (i < len0)
1187 goto Suppress;
1188 }
cdc7bb92 1189 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1190 {
1191 /* Replace '__' by '.'. */
1192 decoded[j] = '.';
1193 at_start_name = 1;
1194 i += 2;
1195 j += 1;
1196 }
14f9c5c9 1197 else
dda83cd7
SM
1198 {
1199 /* It's a character part of the decoded name, so just copy it
1200 over. */
1201 decoded[j] = encoded[i];
1202 i += 1;
1203 j += 1;
1204 }
14f9c5c9 1205 }
f945dedf 1206 decoded.resize (j);
14f9c5c9 1207
29480c32
JB
1208 /* Decoded names should never contain any uppercase character.
1209 Double-check this, and abort the decoding if we find one. */
1210
f945dedf 1211 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1212 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1213 goto Suppress;
1214
f945dedf 1215 return decoded;
14f9c5c9
AS
1216
1217Suppress:
8a3df5ac
TT
1218 if (!wrap)
1219 return {};
1220
4c4b4cd2 1221 if (encoded[0] == '<')
f945dedf 1222 decoded = encoded;
14f9c5c9 1223 else
f945dedf 1224 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2 1225 return decoded;
4c4b4cd2
PH
1226}
1227
1228/* Table for keeping permanent unique copies of decoded names. Once
1229 allocated, names in this table are never released. While this is a
1230 storage leak, it should not be significant unless there are massive
1231 changes in the set of decoded names in successive versions of a
1232 symbol table loaded during a single session. */
1233static struct htab *decoded_names_store;
1234
1235/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1236 in the language-specific part of GSYMBOL, if it has not been
1237 previously computed. Tries to save the decoded name in the same
1238 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1239 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1240 GSYMBOL).
4c4b4cd2
PH
1241 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1242 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1243 when a decoded name is cached in it. */
4c4b4cd2 1244
45e6c716 1245const char *
f85f34ed 1246ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1247{
f85f34ed
TT
1248 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1249 const char **resultp =
615b3f62 1250 &gsymbol->language_specific.demangled_name;
5b4ee69b 1251
f85f34ed 1252 if (!gsymbol->ada_mangled)
4c4b4cd2 1253 {
4d4eaa30 1254 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1255 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1256
f85f34ed 1257 gsymbol->ada_mangled = 1;
5b4ee69b 1258
f85f34ed 1259 if (obstack != NULL)
f945dedf 1260 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1261 else
dda83cd7 1262 {
f85f34ed
TT
1263 /* Sometimes, we can't find a corresponding objfile, in
1264 which case, we put the result on the heap. Since we only
1265 decode when needed, we hope this usually does not cause a
1266 significant memory leak (FIXME). */
1267
dda83cd7
SM
1268 char **slot = (char **) htab_find_slot (decoded_names_store,
1269 decoded.c_str (), INSERT);
5b4ee69b 1270
dda83cd7
SM
1271 if (*slot == NULL)
1272 *slot = xstrdup (decoded.c_str ());
1273 *resultp = *slot;
1274 }
4c4b4cd2 1275 }
14f9c5c9 1276
4c4b4cd2
PH
1277 return *resultp;
1278}
76a01679 1279
2c0b251b 1280static char *
76a01679 1281ada_la_decode (const char *encoded, int options)
4c4b4cd2 1282{
f945dedf 1283 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1284}
1285
14f9c5c9 1286\f
d2e4a39e 1287
dda83cd7 1288 /* Arrays */
14f9c5c9 1289
28c85d6c
JB
1290/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1291 generated by the GNAT compiler to describe the index type used
1292 for each dimension of an array, check whether it follows the latest
1293 known encoding. If not, fix it up to conform to the latest encoding.
1294 Otherwise, do nothing. This function also does nothing if
1295 INDEX_DESC_TYPE is NULL.
1296
85102364 1297 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1298 Initially, the information would be provided through the name of each
1299 field of the structure type only, while the type of these fields was
1300 described as unspecified and irrelevant. The debugger was then expected
1301 to perform a global type lookup using the name of that field in order
1302 to get access to the full index type description. Because these global
1303 lookups can be very expensive, the encoding was later enhanced to make
1304 the global lookup unnecessary by defining the field type as being
1305 the full index type description.
1306
1307 The purpose of this routine is to allow us to support older versions
1308 of the compiler by detecting the use of the older encoding, and by
1309 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1310 we essentially replace each field's meaningless type by the associated
1311 index subtype). */
1312
1313void
1314ada_fixup_array_indexes_type (struct type *index_desc_type)
1315{
1316 int i;
1317
1318 if (index_desc_type == NULL)
1319 return;
1f704f76 1320 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1321
1322 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1323 to check one field only, no need to check them all). If not, return
1324 now.
1325
1326 If our INDEX_DESC_TYPE was generated using the older encoding,
1327 the field type should be a meaningless integer type whose name
1328 is not equal to the field name. */
940da03e
SM
1329 if (index_desc_type->field (0).type ()->name () != NULL
1330 && strcmp (index_desc_type->field (0).type ()->name (),
dda83cd7 1331 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
28c85d6c
JB
1332 return;
1333
1334 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1335 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1336 {
0d5cff50 1337 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1338 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1339
1340 if (raw_type)
5d14b6e5 1341 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1342 }
1343}
1344
4c4b4cd2
PH
1345/* The desc_* routines return primitive portions of array descriptors
1346 (fat pointers). */
14f9c5c9
AS
1347
1348/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1349 level of indirection, if needed. */
1350
d2e4a39e
AS
1351static struct type *
1352desc_base_type (struct type *type)
14f9c5c9
AS
1353{
1354 if (type == NULL)
1355 return NULL;
61ee279c 1356 type = ada_check_typedef (type);
78134374 1357 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1358 type = ada_typedef_target_type (type);
1359
1265e4aa 1360 if (type != NULL
78134374 1361 && (type->code () == TYPE_CODE_PTR
dda83cd7 1362 || type->code () == TYPE_CODE_REF))
61ee279c 1363 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1364 else
1365 return type;
1366}
1367
4c4b4cd2
PH
1368/* True iff TYPE indicates a "thin" array pointer type. */
1369
14f9c5c9 1370static int
d2e4a39e 1371is_thin_pntr (struct type *type)
14f9c5c9 1372{
d2e4a39e 1373 return
14f9c5c9
AS
1374 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1375 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1376}
1377
4c4b4cd2
PH
1378/* The descriptor type for thin pointer type TYPE. */
1379
d2e4a39e
AS
1380static struct type *
1381thin_descriptor_type (struct type *type)
14f9c5c9 1382{
d2e4a39e 1383 struct type *base_type = desc_base_type (type);
5b4ee69b 1384
14f9c5c9
AS
1385 if (base_type == NULL)
1386 return NULL;
1387 if (is_suffix (ada_type_name (base_type), "___XVE"))
1388 return base_type;
d2e4a39e 1389 else
14f9c5c9 1390 {
d2e4a39e 1391 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1392
14f9c5c9 1393 if (alt_type == NULL)
dda83cd7 1394 return base_type;
14f9c5c9 1395 else
dda83cd7 1396 return alt_type;
14f9c5c9
AS
1397 }
1398}
1399
4c4b4cd2
PH
1400/* A pointer to the array data for thin-pointer value VAL. */
1401
d2e4a39e
AS
1402static struct value *
1403thin_data_pntr (struct value *val)
14f9c5c9 1404{
828292f2 1405 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1406 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1407
556bdfd4
UW
1408 data_type = lookup_pointer_type (data_type);
1409
78134374 1410 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1411 return value_cast (data_type, value_copy (val));
d2e4a39e 1412 else
42ae5230 1413 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1414}
1415
4c4b4cd2
PH
1416/* True iff TYPE indicates a "thick" array pointer type. */
1417
14f9c5c9 1418static int
d2e4a39e 1419is_thick_pntr (struct type *type)
14f9c5c9
AS
1420{
1421 type = desc_base_type (type);
78134374 1422 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1423 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1424}
1425
4c4b4cd2
PH
1426/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1427 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1428
d2e4a39e
AS
1429static struct type *
1430desc_bounds_type (struct type *type)
14f9c5c9 1431{
d2e4a39e 1432 struct type *r;
14f9c5c9
AS
1433
1434 type = desc_base_type (type);
1435
1436 if (type == NULL)
1437 return NULL;
1438 else if (is_thin_pntr (type))
1439 {
1440 type = thin_descriptor_type (type);
1441 if (type == NULL)
dda83cd7 1442 return NULL;
14f9c5c9
AS
1443 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1444 if (r != NULL)
dda83cd7 1445 return ada_check_typedef (r);
14f9c5c9 1446 }
78134374 1447 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1448 {
1449 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1450 if (r != NULL)
dda83cd7 1451 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1452 }
1453 return NULL;
1454}
1455
1456/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1457 one, a pointer to its bounds data. Otherwise NULL. */
1458
d2e4a39e
AS
1459static struct value *
1460desc_bounds (struct value *arr)
14f9c5c9 1461{
df407dfe 1462 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1463
d2e4a39e 1464 if (is_thin_pntr (type))
14f9c5c9 1465 {
d2e4a39e 1466 struct type *bounds_type =
dda83cd7 1467 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1468 LONGEST addr;
1469
4cdfadb1 1470 if (bounds_type == NULL)
dda83cd7 1471 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1472
1473 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1474 since desc_type is an XVE-encoded type (and shouldn't be),
1475 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1476 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1477 addr = value_as_long (arr);
d2e4a39e 1478 else
dda83cd7 1479 addr = value_address (arr);
14f9c5c9 1480
d2e4a39e 1481 return
dda83cd7
SM
1482 value_from_longest (lookup_pointer_type (bounds_type),
1483 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1484 }
1485
1486 else if (is_thick_pntr (type))
05e522ef 1487 {
158cc4fe 1488 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
05e522ef
JB
1489 _("Bad GNAT array descriptor"));
1490 struct type *p_bounds_type = value_type (p_bounds);
1491
1492 if (p_bounds_type
78134374 1493 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1494 {
1495 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1496
e46d3488 1497 if (target_type->is_stub ())
05e522ef
JB
1498 p_bounds = value_cast (lookup_pointer_type
1499 (ada_check_typedef (target_type)),
1500 p_bounds);
1501 }
1502 else
1503 error (_("Bad GNAT array descriptor"));
1504
1505 return p_bounds;
1506 }
14f9c5c9
AS
1507 else
1508 return NULL;
1509}
1510
4c4b4cd2
PH
1511/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1512 position of the field containing the address of the bounds data. */
1513
14f9c5c9 1514static int
d2e4a39e 1515fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1516{
1517 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1518}
1519
1520/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1521 size of the field containing the address of the bounds data. */
1522
14f9c5c9 1523static int
d2e4a39e 1524fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1525{
1526 type = desc_base_type (type);
1527
d2e4a39e 1528 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1529 return TYPE_FIELD_BITSIZE (type, 1);
1530 else
940da03e 1531 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1532}
1533
4c4b4cd2 1534/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1535 pointer to one, the type of its array data (a array-with-no-bounds type);
1536 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1537 data. */
4c4b4cd2 1538
d2e4a39e 1539static struct type *
556bdfd4 1540desc_data_target_type (struct type *type)
14f9c5c9
AS
1541{
1542 type = desc_base_type (type);
1543
4c4b4cd2 1544 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1545 if (is_thin_pntr (type))
940da03e 1546 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1547 else if (is_thick_pntr (type))
556bdfd4
UW
1548 {
1549 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1550
1551 if (data_type
78134374 1552 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1553 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1554 }
1555
1556 return NULL;
14f9c5c9
AS
1557}
1558
1559/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1560 its array data. */
4c4b4cd2 1561
d2e4a39e
AS
1562static struct value *
1563desc_data (struct value *arr)
14f9c5c9 1564{
df407dfe 1565 struct type *type = value_type (arr);
5b4ee69b 1566
14f9c5c9
AS
1567 if (is_thin_pntr (type))
1568 return thin_data_pntr (arr);
1569 else if (is_thick_pntr (type))
158cc4fe 1570 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
dda83cd7 1571 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1572 else
1573 return NULL;
1574}
1575
1576
1577/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1578 position of the field containing the address of the data. */
1579
14f9c5c9 1580static int
d2e4a39e 1581fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1582{
1583 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1584}
1585
1586/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1587 size of the field containing the address of the data. */
1588
14f9c5c9 1589static int
d2e4a39e 1590fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1591{
1592 type = desc_base_type (type);
1593
1594 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1595 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1596 else
940da03e 1597 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1598}
1599
4c4b4cd2 1600/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1601 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1602 bound, if WHICH is 1. The first bound is I=1. */
1603
d2e4a39e
AS
1604static struct value *
1605desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1606{
250106a7
TT
1607 char bound_name[20];
1608 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1609 which ? 'U' : 'L', i - 1);
158cc4fe 1610 return value_struct_elt (&bounds, {}, bound_name, NULL,
dda83cd7 1611 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1612}
1613
1614/* If BOUNDS is an array-bounds structure type, return the bit position
1615 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1616 bound, if WHICH is 1. The first bound is I=1. */
1617
14f9c5c9 1618static int
d2e4a39e 1619desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1620{
d2e4a39e 1621 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1622}
1623
1624/* If BOUNDS is an array-bounds structure type, return the bit field size
1625 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1626 bound, if WHICH is 1. The first bound is I=1. */
1627
76a01679 1628static int
d2e4a39e 1629desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1630{
1631 type = desc_base_type (type);
1632
d2e4a39e
AS
1633 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1634 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1635 else
940da03e 1636 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1637}
1638
1639/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1640 Ith bound (numbering from 1). Otherwise, NULL. */
1641
d2e4a39e
AS
1642static struct type *
1643desc_index_type (struct type *type, int i)
14f9c5c9
AS
1644{
1645 type = desc_base_type (type);
1646
78134374 1647 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1648 {
1649 char bound_name[20];
1650 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1651 return lookup_struct_elt_type (type, bound_name, 1);
1652 }
d2e4a39e 1653 else
14f9c5c9
AS
1654 return NULL;
1655}
1656
4c4b4cd2
PH
1657/* The number of index positions in the array-bounds type TYPE.
1658 Return 0 if TYPE is NULL. */
1659
14f9c5c9 1660static int
d2e4a39e 1661desc_arity (struct type *type)
14f9c5c9
AS
1662{
1663 type = desc_base_type (type);
1664
1665 if (type != NULL)
1f704f76 1666 return type->num_fields () / 2;
14f9c5c9
AS
1667 return 0;
1668}
1669
4c4b4cd2
PH
1670/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1671 an array descriptor type (representing an unconstrained array
1672 type). */
1673
76a01679
JB
1674static int
1675ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1676{
1677 if (type == NULL)
1678 return 0;
61ee279c 1679 type = ada_check_typedef (type);
78134374 1680 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1681 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1682}
1683
52ce6436 1684/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1685 * to one. */
52ce6436 1686
2c0b251b 1687static int
52ce6436
PH
1688ada_is_array_type (struct type *type)
1689{
78134374
SM
1690 while (type != NULL
1691 && (type->code () == TYPE_CODE_PTR
1692 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1693 type = TYPE_TARGET_TYPE (type);
1694 return ada_is_direct_array_type (type);
1695}
1696
4c4b4cd2 1697/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1698
14f9c5c9 1699int
4c4b4cd2 1700ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1701{
1702 if (type == NULL)
1703 return 0;
61ee279c 1704 type = ada_check_typedef (type);
78134374
SM
1705 return (type->code () == TYPE_CODE_ARRAY
1706 || (type->code () == TYPE_CODE_PTR
1707 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1708 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1709}
1710
4c4b4cd2
PH
1711/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1712
14f9c5c9 1713int
4c4b4cd2 1714ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1715{
556bdfd4 1716 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1717
1718 if (type == NULL)
1719 return 0;
61ee279c 1720 type = ada_check_typedef (type);
556bdfd4 1721 return (data_type != NULL
78134374 1722 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1723 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1724}
1725
1726/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1727 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1728 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1729 is still needed. */
1730
14f9c5c9 1731int
ebf56fd3 1732ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1733{
d2e4a39e 1734 return
14f9c5c9 1735 type != NULL
78134374 1736 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1737 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1738 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1739 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1740}
1741
1742
4c4b4cd2 1743/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1744 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1745 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1746 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1747 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1748 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1749 a descriptor. */
de93309a
SM
1750
1751static struct type *
d2e4a39e 1752ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1753{
ad82864c
JB
1754 if (ada_is_constrained_packed_array_type (value_type (arr)))
1755 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1756
df407dfe
AC
1757 if (!ada_is_array_descriptor_type (value_type (arr)))
1758 return value_type (arr);
d2e4a39e
AS
1759
1760 if (!bounds)
ad82864c
JB
1761 {
1762 struct type *array_type =
1763 ada_check_typedef (desc_data_target_type (value_type (arr)));
1764
1765 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1766 TYPE_FIELD_BITSIZE (array_type, 0) =
1767 decode_packed_array_bitsize (value_type (arr));
1768
1769 return array_type;
1770 }
14f9c5c9
AS
1771 else
1772 {
d2e4a39e 1773 struct type *elt_type;
14f9c5c9 1774 int arity;
d2e4a39e 1775 struct value *descriptor;
14f9c5c9 1776
df407dfe
AC
1777 elt_type = ada_array_element_type (value_type (arr), -1);
1778 arity = ada_array_arity (value_type (arr));
14f9c5c9 1779
d2e4a39e 1780 if (elt_type == NULL || arity == 0)
dda83cd7 1781 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1782
1783 descriptor = desc_bounds (arr);
d2e4a39e 1784 if (value_as_long (descriptor) == 0)
dda83cd7 1785 return NULL;
d2e4a39e 1786 while (arity > 0)
dda83cd7
SM
1787 {
1788 struct type *range_type = alloc_type_copy (value_type (arr));
1789 struct type *array_type = alloc_type_copy (value_type (arr));
1790 struct value *low = desc_one_bound (descriptor, arity, 0);
1791 struct value *high = desc_one_bound (descriptor, arity, 1);
1792
1793 arity -= 1;
1794 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1795 longest_to_int (value_as_long (low)),
1796 longest_to_int (value_as_long (high)));
dda83cd7 1797 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1798
1799 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1800 {
1801 /* We need to store the element packed bitsize, as well as
dda83cd7 1802 recompute the array size, because it was previously
e67ad678
JB
1803 computed based on the unpacked element size. */
1804 LONGEST lo = value_as_long (low);
1805 LONGEST hi = value_as_long (high);
1806
1807 TYPE_FIELD_BITSIZE (elt_type, 0) =
1808 decode_packed_array_bitsize (value_type (arr));
1809 /* If the array has no element, then the size is already
dda83cd7 1810 zero, and does not need to be recomputed. */
e67ad678
JB
1811 if (lo < hi)
1812 {
1813 int array_bitsize =
dda83cd7 1814 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1815
1816 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1817 }
1818 }
dda83cd7 1819 }
14f9c5c9
AS
1820
1821 return lookup_pointer_type (elt_type);
1822 }
1823}
1824
1825/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1826 Otherwise, returns either a standard GDB array with bounds set
1827 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1828 GDB array. Returns NULL if ARR is a null fat pointer. */
1829
d2e4a39e
AS
1830struct value *
1831ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1832{
df407dfe 1833 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1834 {
d2e4a39e 1835 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1836
14f9c5c9 1837 if (arrType == NULL)
dda83cd7 1838 return NULL;
14f9c5c9
AS
1839 return value_cast (arrType, value_copy (desc_data (arr)));
1840 }
ad82864c
JB
1841 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1842 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1843 else
1844 return arr;
1845}
1846
1847/* If ARR does not represent an array, returns ARR unchanged.
1848 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1849 be ARR itself if it already is in the proper form). */
1850
720d1a40 1851struct value *
d2e4a39e 1852ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1853{
df407dfe 1854 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1855 {
d2e4a39e 1856 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1857
14f9c5c9 1858 if (arrVal == NULL)
dda83cd7 1859 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1860 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1861 return value_ind (arrVal);
1862 }
ad82864c
JB
1863 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1864 return decode_constrained_packed_array (arr);
d2e4a39e 1865 else
14f9c5c9
AS
1866 return arr;
1867}
1868
1869/* If TYPE represents a GNAT array type, return it translated to an
1870 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1871 packing). For other types, is the identity. */
1872
d2e4a39e
AS
1873struct type *
1874ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1875{
ad82864c
JB
1876 if (ada_is_constrained_packed_array_type (type))
1877 return decode_constrained_packed_array_type (type);
17280b9f
UW
1878
1879 if (ada_is_array_descriptor_type (type))
556bdfd4 1880 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1881
1882 return type;
14f9c5c9
AS
1883}
1884
4c4b4cd2
PH
1885/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1886
ad82864c 1887static int
57567375 1888ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1889{
1890 if (type == NULL)
1891 return 0;
4c4b4cd2 1892 type = desc_base_type (type);
61ee279c 1893 type = ada_check_typedef (type);
d2e4a39e 1894 return
14f9c5c9
AS
1895 ada_type_name (type) != NULL
1896 && strstr (ada_type_name (type), "___XP") != NULL;
1897}
1898
ad82864c
JB
1899/* Non-zero iff TYPE represents a standard GNAT constrained
1900 packed-array type. */
1901
1902int
1903ada_is_constrained_packed_array_type (struct type *type)
1904{
57567375 1905 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1906 && !ada_is_array_descriptor_type (type);
1907}
1908
1909/* Non-zero iff TYPE represents an array descriptor for a
1910 unconstrained packed-array type. */
1911
1912static int
1913ada_is_unconstrained_packed_array_type (struct type *type)
1914{
57567375
TT
1915 if (!ada_is_array_descriptor_type (type))
1916 return 0;
1917
1918 if (ada_is_gnat_encoded_packed_array_type (type))
1919 return 1;
1920
1921 /* If we saw GNAT encodings, then the above code is sufficient.
1922 However, with minimal encodings, we will just have a thick
1923 pointer instead. */
1924 if (is_thick_pntr (type))
1925 {
1926 type = desc_base_type (type);
1927 /* The structure's first field is a pointer to an array, so this
1928 fetches the array type. */
1929 type = TYPE_TARGET_TYPE (type->field (0).type ());
1930 /* Now we can see if the array elements are packed. */
1931 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1932 }
1933
1934 return 0;
ad82864c
JB
1935}
1936
c9a28cbe
TT
1937/* Return true if TYPE is a (Gnat-encoded) constrained packed array
1938 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1939
1940static bool
1941ada_is_any_packed_array_type (struct type *type)
1942{
1943 return (ada_is_constrained_packed_array_type (type)
1944 || (type->code () == TYPE_CODE_ARRAY
1945 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1946}
1947
ad82864c
JB
1948/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1949 return the size of its elements in bits. */
1950
1951static long
1952decode_packed_array_bitsize (struct type *type)
1953{
0d5cff50
DE
1954 const char *raw_name;
1955 const char *tail;
ad82864c
JB
1956 long bits;
1957
720d1a40
JB
1958 /* Access to arrays implemented as fat pointers are encoded as a typedef
1959 of the fat pointer type. We need the name of the fat pointer type
1960 to do the decoding, so strip the typedef layer. */
78134374 1961 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1962 type = ada_typedef_target_type (type);
1963
1964 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1965 if (!raw_name)
1966 raw_name = ada_type_name (desc_base_type (type));
1967
1968 if (!raw_name)
1969 return 0;
1970
1971 tail = strstr (raw_name, "___XP");
57567375
TT
1972 if (tail == nullptr)
1973 {
1974 gdb_assert (is_thick_pntr (type));
1975 /* The structure's first field is a pointer to an array, so this
1976 fetches the array type. */
1977 type = TYPE_TARGET_TYPE (type->field (0).type ());
1978 /* Now we can see if the array elements are packed. */
1979 return TYPE_FIELD_BITSIZE (type, 0);
1980 }
ad82864c
JB
1981
1982 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1983 {
1984 lim_warning
1985 (_("could not understand bit size information on packed array"));
1986 return 0;
1987 }
1988
1989 return bits;
1990}
1991
14f9c5c9
AS
1992/* Given that TYPE is a standard GDB array type with all bounds filled
1993 in, and that the element size of its ultimate scalar constituents
1994 (that is, either its elements, or, if it is an array of arrays, its
1995 elements' elements, etc.) is *ELT_BITS, return an identical type,
1996 but with the bit sizes of its elements (and those of any
1997 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 1998 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
1999 in bits.
2000
2001 Note that, for arrays whose index type has an XA encoding where
2002 a bound references a record discriminant, getting that discriminant,
2003 and therefore the actual value of that bound, is not possible
2004 because none of the given parameters gives us access to the record.
2005 This function assumes that it is OK in the context where it is being
2006 used to return an array whose bounds are still dynamic and where
2007 the length is arbitrary. */
4c4b4cd2 2008
d2e4a39e 2009static struct type *
ad82864c 2010constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2011{
d2e4a39e
AS
2012 struct type *new_elt_type;
2013 struct type *new_type;
99b1c762
JB
2014 struct type *index_type_desc;
2015 struct type *index_type;
14f9c5c9
AS
2016 LONGEST low_bound, high_bound;
2017
61ee279c 2018 type = ada_check_typedef (type);
78134374 2019 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2020 return type;
2021
99b1c762
JB
2022 index_type_desc = ada_find_parallel_type (type, "___XA");
2023 if (index_type_desc)
940da03e 2024 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2025 NULL);
2026 else
3d967001 2027 index_type = type->index_type ();
99b1c762 2028
e9bb382b 2029 new_type = alloc_type_copy (type);
ad82864c
JB
2030 new_elt_type =
2031 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2032 elt_bits);
99b1c762 2033 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2034 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2035 new_type->set_name (ada_type_name (type));
14f9c5c9 2036
78134374 2037 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e 2038 && is_dynamic_type (check_typedef (index_type)))
1f8d2881 2039 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
14f9c5c9
AS
2040 low_bound = high_bound = 0;
2041 if (high_bound < low_bound)
2042 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2043 else
14f9c5c9
AS
2044 {
2045 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2046 TYPE_LENGTH (new_type) =
dda83cd7 2047 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2048 }
2049
9cdd0d12 2050 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2051 return new_type;
2052}
2053
ad82864c
JB
2054/* The array type encoded by TYPE, where
2055 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2056
d2e4a39e 2057static struct type *
ad82864c 2058decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2059{
0d5cff50 2060 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2061 char *name;
0d5cff50 2062 const char *tail;
d2e4a39e 2063 struct type *shadow_type;
14f9c5c9 2064 long bits;
14f9c5c9 2065
727e3d2e
JB
2066 if (!raw_name)
2067 raw_name = ada_type_name (desc_base_type (type));
2068
2069 if (!raw_name)
2070 return NULL;
2071
2072 name = (char *) alloca (strlen (raw_name) + 1);
2073 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2074 type = desc_base_type (type);
2075
14f9c5c9
AS
2076 memcpy (name, raw_name, tail - raw_name);
2077 name[tail - raw_name] = '\000';
2078
b4ba55a1
JB
2079 shadow_type = ada_find_parallel_type_with_name (type, name);
2080
2081 if (shadow_type == NULL)
14f9c5c9 2082 {
323e0a4a 2083 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2084 return NULL;
2085 }
f168693b 2086 shadow_type = check_typedef (shadow_type);
14f9c5c9 2087
78134374 2088 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2089 {
0963b4bd
MS
2090 lim_warning (_("could not understand bounds "
2091 "information on packed array"));
14f9c5c9
AS
2092 return NULL;
2093 }
d2e4a39e 2094
ad82864c
JB
2095 bits = decode_packed_array_bitsize (type);
2096 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2097}
2098
a7400e44
TT
2099/* Helper function for decode_constrained_packed_array. Set the field
2100 bitsize on a series of packed arrays. Returns the number of
2101 elements in TYPE. */
2102
2103static LONGEST
2104recursively_update_array_bitsize (struct type *type)
2105{
2106 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2107
2108 LONGEST low, high;
1f8d2881 2109 if (!get_discrete_bounds (type->index_type (), &low, &high)
a7400e44
TT
2110 || low > high)
2111 return 0;
2112 LONGEST our_len = high - low + 1;
2113
2114 struct type *elt_type = TYPE_TARGET_TYPE (type);
2115 if (elt_type->code () == TYPE_CODE_ARRAY)
2116 {
2117 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2118 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2119 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2120
2121 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2122 / HOST_CHAR_BIT);
2123 }
2124
2125 return our_len;
2126}
2127
ad82864c
JB
2128/* Given that ARR is a struct value *indicating a GNAT constrained packed
2129 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2130 standard GDB array type except that the BITSIZEs of the array
2131 target types are set to the number of bits in each element, and the
4c4b4cd2 2132 type length is set appropriately. */
14f9c5c9 2133
d2e4a39e 2134static struct value *
ad82864c 2135decode_constrained_packed_array (struct value *arr)
14f9c5c9 2136{
4c4b4cd2 2137 struct type *type;
14f9c5c9 2138
11aa919a
PMR
2139 /* If our value is a pointer, then dereference it. Likewise if
2140 the value is a reference. Make sure that this operation does not
2141 cause the target type to be fixed, as this would indirectly cause
2142 this array to be decoded. The rest of the routine assumes that
2143 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2144 and "value_ind" routines to perform the dereferencing, as opposed
2145 to using "ada_coerce_ref" or "ada_value_ind". */
2146 arr = coerce_ref (arr);
78134374 2147 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2148 arr = value_ind (arr);
4c4b4cd2 2149
ad82864c 2150 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2151 if (type == NULL)
2152 {
323e0a4a 2153 error (_("can't unpack array"));
14f9c5c9
AS
2154 return NULL;
2155 }
61ee279c 2156
a7400e44
TT
2157 /* Decoding the packed array type could not correctly set the field
2158 bitsizes for any dimension except the innermost, because the
2159 bounds may be variable and were not passed to that function. So,
2160 we further resolve the array bounds here and then update the
2161 sizes. */
2162 const gdb_byte *valaddr = value_contents_for_printing (arr);
2163 CORE_ADDR address = value_address (arr);
2164 gdb::array_view<const gdb_byte> view
2165 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2166 type = resolve_dynamic_type (type, view, address);
2167 recursively_update_array_bitsize (type);
2168
d5a22e77 2169 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2170 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2171 {
2172 /* This is a (right-justified) modular type representing a packed
24b21115
SM
2173 array with no wrapper. In order to interpret the value through
2174 the (left-justified) packed array type we just built, we must
2175 first left-justify it. */
61ee279c
PH
2176 int bit_size, bit_pos;
2177 ULONGEST mod;
2178
df407dfe 2179 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2180 bit_size = 0;
2181 while (mod > 0)
2182 {
2183 bit_size += 1;
2184 mod >>= 1;
2185 }
df407dfe 2186 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2187 arr = ada_value_primitive_packed_val (arr, NULL,
2188 bit_pos / HOST_CHAR_BIT,
2189 bit_pos % HOST_CHAR_BIT,
2190 bit_size,
2191 type);
2192 }
2193
4c4b4cd2 2194 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2195}
2196
2197
2198/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2199 given in IND. ARR must be a simple array. */
14f9c5c9 2200
d2e4a39e
AS
2201static struct value *
2202value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2203{
2204 int i;
2205 int bits, elt_off, bit_off;
2206 long elt_total_bit_offset;
d2e4a39e
AS
2207 struct type *elt_type;
2208 struct value *v;
14f9c5c9
AS
2209
2210 bits = 0;
2211 elt_total_bit_offset = 0;
df407dfe 2212 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2213 for (i = 0; i < arity; i += 1)
14f9c5c9 2214 {
78134374 2215 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2216 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2217 error
2218 (_("attempt to do packed indexing of "
0963b4bd 2219 "something other than a packed array"));
14f9c5c9 2220 else
dda83cd7
SM
2221 {
2222 struct type *range_type = elt_type->index_type ();
2223 LONGEST lowerbound, upperbound;
2224 LONGEST idx;
2225
1f8d2881 2226 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
dda83cd7
SM
2227 {
2228 lim_warning (_("don't know bounds of array"));
2229 lowerbound = upperbound = 0;
2230 }
2231
2232 idx = pos_atr (ind[i]);
2233 if (idx < lowerbound || idx > upperbound)
2234 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2235 (long) idx);
dda83cd7
SM
2236 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2237 elt_total_bit_offset += (idx - lowerbound) * bits;
2238 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2239 }
14f9c5c9
AS
2240 }
2241 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2242 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2243
2244 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2245 bits, elt_type);
14f9c5c9
AS
2246 return v;
2247}
2248
4c4b4cd2 2249/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2250
2251static int
d2e4a39e 2252has_negatives (struct type *type)
14f9c5c9 2253{
78134374 2254 switch (type->code ())
d2e4a39e
AS
2255 {
2256 default:
2257 return 0;
2258 case TYPE_CODE_INT:
c6d940a9 2259 return !type->is_unsigned ();
d2e4a39e 2260 case TYPE_CODE_RANGE:
5537ddd0 2261 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2262 }
14f9c5c9 2263}
d2e4a39e 2264
f93fca70 2265/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2266 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2267 the unpacked buffer.
14f9c5c9 2268
5b639dea
JB
2269 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2270 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2271
f93fca70
JB
2272 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2273 zero otherwise.
14f9c5c9 2274
f93fca70 2275 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2276
f93fca70
JB
2277 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2278
2279static void
2280ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2281 gdb_byte *unpacked, int unpacked_len,
2282 int is_big_endian, int is_signed_type,
2283 int is_scalar)
2284{
a1c95e6b
JB
2285 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2286 int src_idx; /* Index into the source area */
2287 int src_bytes_left; /* Number of source bytes left to process. */
2288 int srcBitsLeft; /* Number of source bits left to move */
2289 int unusedLS; /* Number of bits in next significant
dda83cd7 2290 byte of source that are unused */
a1c95e6b 2291
a1c95e6b
JB
2292 int unpacked_idx; /* Index into the unpacked buffer */
2293 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2294
4c4b4cd2 2295 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2296 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2297 unsigned char sign;
a1c95e6b 2298
4c4b4cd2
PH
2299 /* Transmit bytes from least to most significant; delta is the direction
2300 the indices move. */
f93fca70 2301 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2302
5b639dea
JB
2303 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2304 bits from SRC. .*/
2305 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2306 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2307 bit_size, unpacked_len);
2308
14f9c5c9 2309 srcBitsLeft = bit_size;
086ca51f 2310 src_bytes_left = src_len;
f93fca70 2311 unpacked_bytes_left = unpacked_len;
14f9c5c9 2312 sign = 0;
f93fca70
JB
2313
2314 if (is_big_endian)
14f9c5c9 2315 {
086ca51f 2316 src_idx = src_len - 1;
f93fca70
JB
2317 if (is_signed_type
2318 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2319 sign = ~0;
d2e4a39e
AS
2320
2321 unusedLS =
dda83cd7
SM
2322 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2323 % HOST_CHAR_BIT;
14f9c5c9 2324
f93fca70
JB
2325 if (is_scalar)
2326 {
dda83cd7
SM
2327 accumSize = 0;
2328 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2329 }
2330 else
2331 {
dda83cd7
SM
2332 /* Non-scalar values must be aligned at a byte boundary... */
2333 accumSize =
2334 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2335 /* ... And are placed at the beginning (most-significant) bytes
2336 of the target. */
2337 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2338 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2339 }
14f9c5c9 2340 }
d2e4a39e 2341 else
14f9c5c9
AS
2342 {
2343 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2344
086ca51f 2345 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2346 unusedLS = bit_offset;
2347 accumSize = 0;
2348
f93fca70 2349 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2350 sign = ~0;
14f9c5c9 2351 }
d2e4a39e 2352
14f9c5c9 2353 accum = 0;
086ca51f 2354 while (src_bytes_left > 0)
14f9c5c9
AS
2355 {
2356 /* Mask for removing bits of the next source byte that are not
dda83cd7 2357 part of the value. */
d2e4a39e 2358 unsigned int unusedMSMask =
dda83cd7
SM
2359 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2360 1;
4c4b4cd2 2361 /* Sign-extend bits for this byte. */
14f9c5c9 2362 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2363
d2e4a39e 2364 accum |=
dda83cd7 2365 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2366 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2367 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2368 {
2369 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2370 accumSize -= HOST_CHAR_BIT;
2371 accum >>= HOST_CHAR_BIT;
2372 unpacked_bytes_left -= 1;
2373 unpacked_idx += delta;
2374 }
14f9c5c9
AS
2375 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2376 unusedLS = 0;
086ca51f
JB
2377 src_bytes_left -= 1;
2378 src_idx += delta;
14f9c5c9 2379 }
086ca51f 2380 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2381 {
2382 accum |= sign << accumSize;
db297a65 2383 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2384 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2385 if (accumSize < 0)
2386 accumSize = 0;
14f9c5c9 2387 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
14f9c5c9 2390 }
f93fca70
JB
2391}
2392
2393/* Create a new value of type TYPE from the contents of OBJ starting
2394 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2395 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2396 assigning through the result will set the field fetched from.
2397 VALADDR is ignored unless OBJ is NULL, in which case,
2398 VALADDR+OFFSET must address the start of storage containing the
2399 packed value. The value returned in this case is never an lval.
2400 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2401
2402struct value *
2403ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2404 long offset, int bit_offset, int bit_size,
dda83cd7 2405 struct type *type)
f93fca70
JB
2406{
2407 struct value *v;
bfb1c796 2408 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2409 gdb_byte *unpacked;
220475ed 2410 const int is_scalar = is_scalar_type (type);
d5a22e77 2411 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2412 gdb::byte_vector staging;
f93fca70
JB
2413
2414 type = ada_check_typedef (type);
2415
d0a9e810 2416 if (obj == NULL)
bfb1c796 2417 src = valaddr + offset;
d0a9e810 2418 else
bfb1c796 2419 src = value_contents (obj) + offset;
d0a9e810
JB
2420
2421 if (is_dynamic_type (type))
2422 {
2423 /* The length of TYPE might by dynamic, so we need to resolve
2424 TYPE in order to know its actual size, which we then use
2425 to create the contents buffer of the value we return.
2426 The difficulty is that the data containing our object is
2427 packed, and therefore maybe not at a byte boundary. So, what
2428 we do, is unpack the data into a byte-aligned buffer, and then
2429 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2430 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2431 staging.resize (staging_len);
d0a9e810
JB
2432
2433 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2434 staging.data (), staging.size (),
d0a9e810
JB
2435 is_big_endian, has_negatives (type),
2436 is_scalar);
b249d2c2 2437 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2438 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2439 {
2440 /* This happens when the length of the object is dynamic,
2441 and is actually smaller than the space reserved for it.
2442 For instance, in an array of variant records, the bit_size
2443 we're given is the array stride, which is constant and
2444 normally equal to the maximum size of its element.
2445 But, in reality, each element only actually spans a portion
2446 of that stride. */
2447 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2448 }
d0a9e810
JB
2449 }
2450
f93fca70
JB
2451 if (obj == NULL)
2452 {
2453 v = allocate_value (type);
bfb1c796 2454 src = valaddr + offset;
f93fca70
JB
2455 }
2456 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2457 {
0cafa88c 2458 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2459 gdb_byte *buf;
0cafa88c 2460
f93fca70 2461 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2462 buf = (gdb_byte *) alloca (src_len);
2463 read_memory (value_address (v), buf, src_len);
2464 src = buf;
f93fca70
JB
2465 }
2466 else
2467 {
2468 v = allocate_value (type);
bfb1c796 2469 src = value_contents (obj) + offset;
f93fca70
JB
2470 }
2471
2472 if (obj != NULL)
2473 {
2474 long new_offset = offset;
2475
2476 set_value_component_location (v, obj);
2477 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2478 set_value_bitsize (v, bit_size);
2479 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2480 {
f93fca70 2481 ++new_offset;
dda83cd7
SM
2482 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2483 }
f93fca70
JB
2484 set_value_offset (v, new_offset);
2485
2486 /* Also set the parent value. This is needed when trying to
2487 assign a new value (in inferior memory). */
2488 set_value_parent (v, obj);
2489 }
2490 else
2491 set_value_bitsize (v, bit_size);
bfb1c796 2492 unpacked = value_contents_writeable (v);
f93fca70
JB
2493
2494 if (bit_size == 0)
2495 {
2496 memset (unpacked, 0, TYPE_LENGTH (type));
2497 return v;
2498 }
2499
d5722aa2 2500 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2501 {
d0a9e810
JB
2502 /* Small short-cut: If we've unpacked the data into a buffer
2503 of the same size as TYPE's length, then we can reuse that,
2504 instead of doing the unpacking again. */
d5722aa2 2505 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2506 }
d0a9e810
JB
2507 else
2508 ada_unpack_from_contents (src, bit_offset, bit_size,
2509 unpacked, TYPE_LENGTH (type),
2510 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2511
14f9c5c9
AS
2512 return v;
2513}
d2e4a39e 2514
14f9c5c9
AS
2515/* Store the contents of FROMVAL into the location of TOVAL.
2516 Return a new value with the location of TOVAL and contents of
2517 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2518 floating-point or non-scalar types. */
14f9c5c9 2519
d2e4a39e
AS
2520static struct value *
2521ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2522{
df407dfe
AC
2523 struct type *type = value_type (toval);
2524 int bits = value_bitsize (toval);
14f9c5c9 2525
52ce6436
PH
2526 toval = ada_coerce_ref (toval);
2527 fromval = ada_coerce_ref (fromval);
2528
2529 if (ada_is_direct_array_type (value_type (toval)))
2530 toval = ada_coerce_to_simple_array (toval);
2531 if (ada_is_direct_array_type (value_type (fromval)))
2532 fromval = ada_coerce_to_simple_array (fromval);
2533
88e3b34b 2534 if (!deprecated_value_modifiable (toval))
323e0a4a 2535 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2536
d2e4a39e 2537 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2538 && bits > 0
78134374 2539 && (type->code () == TYPE_CODE_FLT
dda83cd7 2540 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2541 {
df407dfe
AC
2542 int len = (value_bitpos (toval)
2543 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2544 int from_size;
224c3ddb 2545 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2546 struct value *val;
42ae5230 2547 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2548
78134374 2549 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2550 fromval = value_cast (type, fromval);
14f9c5c9 2551
52ce6436 2552 read_memory (to_addr, buffer, len);
aced2898
PH
2553 from_size = value_bitsize (fromval);
2554 if (from_size == 0)
2555 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2556
d5a22e77 2557 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2558 ULONGEST from_offset = 0;
2559 if (is_big_endian && is_scalar_type (value_type (fromval)))
2560 from_offset = from_size - bits;
2561 copy_bitwise (buffer, value_bitpos (toval),
2562 value_contents (fromval), from_offset,
2563 bits, is_big_endian);
972daa01 2564 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2565
14f9c5c9 2566 val = value_copy (toval);
0fd88904 2567 memcpy (value_contents_raw (val), value_contents (fromval),
dda83cd7 2568 TYPE_LENGTH (type));
04624583 2569 deprecated_set_value_type (val, type);
d2e4a39e 2570
14f9c5c9
AS
2571 return val;
2572 }
2573
2574 return value_assign (toval, fromval);
2575}
2576
2577
7c512744
JB
2578/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2579 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2580 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2581 COMPONENT, and not the inferior's memory. The current contents
2582 of COMPONENT are ignored.
2583
2584 Although not part of the initial design, this function also works
2585 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2586 had a null address, and COMPONENT had an address which is equal to
2587 its offset inside CONTAINER. */
2588
52ce6436
PH
2589static void
2590value_assign_to_component (struct value *container, struct value *component,
2591 struct value *val)
2592{
2593 LONGEST offset_in_container =
42ae5230 2594 (LONGEST) (value_address (component) - value_address (container));
7c512744 2595 int bit_offset_in_container =
52ce6436
PH
2596 value_bitpos (component) - value_bitpos (container);
2597 int bits;
7c512744 2598
52ce6436
PH
2599 val = value_cast (value_type (component), val);
2600
2601 if (value_bitsize (component) == 0)
2602 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2603 else
2604 bits = value_bitsize (component);
2605
d5a22e77 2606 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2607 {
2608 int src_offset;
2609
2610 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2611 src_offset
2a62dfa9
JB
2612 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2613 else
2614 src_offset = 0;
a99bc3d2
JB
2615 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2616 value_bitpos (container) + bit_offset_in_container,
2617 value_contents (val), src_offset, bits, 1);
2a62dfa9 2618 }
52ce6436 2619 else
a99bc3d2
JB
2620 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2621 value_bitpos (container) + bit_offset_in_container,
2622 value_contents (val), 0, bits, 0);
7c512744
JB
2623}
2624
736ade86
XR
2625/* Determine if TYPE is an access to an unconstrained array. */
2626
d91e9ea8 2627bool
736ade86
XR
2628ada_is_access_to_unconstrained_array (struct type *type)
2629{
78134374 2630 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2631 && is_thick_pntr (ada_typedef_target_type (type)));
2632}
2633
4c4b4cd2
PH
2634/* The value of the element of array ARR at the ARITY indices given in IND.
2635 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2636 thereto. */
2637
d2e4a39e
AS
2638struct value *
2639ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2640{
2641 int k;
d2e4a39e
AS
2642 struct value *elt;
2643 struct type *elt_type;
14f9c5c9
AS
2644
2645 elt = ada_coerce_to_simple_array (arr);
2646
df407dfe 2647 elt_type = ada_check_typedef (value_type (elt));
78134374 2648 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2649 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2650 return value_subscript_packed (elt, arity, ind);
2651
2652 for (k = 0; k < arity; k += 1)
2653 {
b9c50e9a
XR
2654 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2655
78134374 2656 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2657 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2658
2497b498 2659 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2660
2661 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2662 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2663 {
2664 /* The element is a typedef to an unconstrained array,
2665 except that the value_subscript call stripped the
2666 typedef layer. The typedef layer is GNAT's way to
2667 specify that the element is, at the source level, an
2668 access to the unconstrained array, rather than the
2669 unconstrained array. So, we need to restore that
2670 typedef layer, which we can do by forcing the element's
2671 type back to its original type. Otherwise, the returned
2672 value is going to be printed as the array, rather
2673 than as an access. Another symptom of the same issue
2674 would be that an expression trying to dereference the
2675 element would also be improperly rejected. */
2676 deprecated_set_value_type (elt, saved_elt_type);
2677 }
2678
2679 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2680 }
b9c50e9a 2681
14f9c5c9
AS
2682 return elt;
2683}
2684
deede10c
JB
2685/* Assuming ARR is a pointer to a GDB array, the value of the element
2686 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2687 Does not read the entire array into memory.
2688
2689 Note: Unlike what one would expect, this function is used instead of
2690 ada_value_subscript for basically all non-packed array types. The reason
2691 for this is that a side effect of doing our own pointer arithmetics instead
2692 of relying on value_subscript is that there is no implicit typedef peeling.
2693 This is important for arrays of array accesses, where it allows us to
2694 preserve the fact that the array's element is an array access, where the
2695 access part os encoded in a typedef layer. */
14f9c5c9 2696
2c0b251b 2697static struct value *
deede10c 2698ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2699{
2700 int k;
919e6dbe 2701 struct value *array_ind = ada_value_ind (arr);
deede10c 2702 struct type *type
919e6dbe
PMR
2703 = check_typedef (value_enclosing_type (array_ind));
2704
78134374 2705 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2706 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2707 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2708
2709 for (k = 0; k < arity; k += 1)
2710 {
2711 LONGEST lwb, upb;
14f9c5c9 2712
78134374 2713 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2714 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2715 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2716 value_copy (arr));
3d967001 2717 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2718 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2719 type = TYPE_TARGET_TYPE (type);
2720 }
2721
2722 return value_ind (arr);
2723}
2724
0b5d8877 2725/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2726 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2727 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2728 this array is LOW, as per Ada rules. */
0b5d8877 2729static struct value *
f5938064 2730ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2731 int low, int high)
0b5d8877 2732{
b0dd7688 2733 struct type *type0 = ada_check_typedef (type);
3d967001 2734 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2735 struct type *index_type
aa715135 2736 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2737 struct type *slice_type = create_array_type_with_stride
2738 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2739 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2740 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2741 int base_low = ada_discrete_type_low_bound (type0->index_type ());
6244c119 2742 gdb::optional<LONGEST> base_low_pos, low_pos;
aa715135
JG
2743 CORE_ADDR base;
2744
6244c119
SM
2745 low_pos = discrete_position (base_index_type, low);
2746 base_low_pos = discrete_position (base_index_type, base_low);
2747
2748 if (!low_pos.has_value () || !base_low_pos.has_value ())
aa715135
JG
2749 {
2750 warning (_("unable to get positions in slice, use bounds instead"));
2751 low_pos = low;
2752 base_low_pos = base_low;
2753 }
5b4ee69b 2754
7ff5b937
TT
2755 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2756 if (stride == 0)
2757 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2758
6244c119 2759 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
f5938064 2760 return value_at_lazy (slice_type, base);
0b5d8877
PH
2761}
2762
2763
2764static struct value *
2765ada_value_slice (struct value *array, int low, int high)
2766{
b0dd7688 2767 struct type *type = ada_check_typedef (value_type (array));
3d967001 2768 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2769 struct type *index_type
3d967001 2770 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2771 struct type *slice_type = create_array_type_with_stride
2772 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2773 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2774 TYPE_FIELD_BITSIZE (type, 0));
6244c119
SM
2775 gdb::optional<LONGEST> low_pos, high_pos;
2776
5b4ee69b 2777
6244c119
SM
2778 low_pos = discrete_position (base_index_type, low);
2779 high_pos = discrete_position (base_index_type, high);
2780
2781 if (!low_pos.has_value () || !high_pos.has_value ())
aa715135
JG
2782 {
2783 warning (_("unable to get positions in slice, use bounds instead"));
2784 low_pos = low;
2785 high_pos = high;
2786 }
2787
2788 return value_cast (slice_type,
6244c119 2789 value_slice (array, low, *high_pos - *low_pos + 1));
0b5d8877
PH
2790}
2791
14f9c5c9
AS
2792/* If type is a record type in the form of a standard GNAT array
2793 descriptor, returns the number of dimensions for type. If arr is a
2794 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2795 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2796
2797int
d2e4a39e 2798ada_array_arity (struct type *type)
14f9c5c9
AS
2799{
2800 int arity;
2801
2802 if (type == NULL)
2803 return 0;
2804
2805 type = desc_base_type (type);
2806
2807 arity = 0;
78134374 2808 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2809 return desc_arity (desc_bounds_type (type));
d2e4a39e 2810 else
78134374 2811 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2812 {
dda83cd7
SM
2813 arity += 1;
2814 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2815 }
d2e4a39e 2816
14f9c5c9
AS
2817 return arity;
2818}
2819
2820/* If TYPE is a record type in the form of a standard GNAT array
2821 descriptor or a simple array type, returns the element type for
2822 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2823 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2824
d2e4a39e
AS
2825struct type *
2826ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2827{
2828 type = desc_base_type (type);
2829
78134374 2830 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2831 {
2832 int k;
d2e4a39e 2833 struct type *p_array_type;
14f9c5c9 2834
556bdfd4 2835 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2836
2837 k = ada_array_arity (type);
2838 if (k == 0)
dda83cd7 2839 return NULL;
d2e4a39e 2840
4c4b4cd2 2841 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2842 if (nindices >= 0 && k > nindices)
dda83cd7 2843 k = nindices;
d2e4a39e 2844 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2845 {
2846 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2847 k -= 1;
2848 }
14f9c5c9
AS
2849 return p_array_type;
2850 }
78134374 2851 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2852 {
78134374 2853 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2854 {
2855 type = TYPE_TARGET_TYPE (type);
2856 nindices -= 1;
2857 }
14f9c5c9
AS
2858 return type;
2859 }
2860
2861 return NULL;
2862}
2863
08a057e6 2864/* See ada-lang.h. */
14f9c5c9 2865
08a057e6 2866struct type *
1eea4ebd 2867ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2868{
4c4b4cd2
PH
2869 struct type *result_type;
2870
14f9c5c9
AS
2871 type = desc_base_type (type);
2872
1eea4ebd
UW
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2875
4c4b4cd2 2876 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2877 {
2878 int i;
2879
2880 for (i = 1; i < n; i += 1)
2869ac4b
TT
2881 {
2882 type = ada_check_typedef (type);
2883 type = TYPE_TARGET_TYPE (type);
2884 }
2885 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
4c4b4cd2 2886 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2887 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2888 perhaps stabsread.c would make more sense. */
78134374 2889 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2890 result_type = NULL;
14f9c5c9 2891 }
d2e4a39e 2892 else
1eea4ebd
UW
2893 {
2894 result_type = desc_index_type (desc_bounds_type (type), n);
2895 if (result_type == NULL)
2896 error (_("attempt to take bound of something that is not an array"));
2897 }
2898
2899 return result_type;
14f9c5c9
AS
2900}
2901
2902/* Given that arr is an array type, returns the lower bound of the
2903 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2904 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2905 array-descriptor type. It works for other arrays with bounds supplied
2906 by run-time quantities other than discriminants. */
14f9c5c9 2907
abb68b3e 2908static LONGEST
fb5e3d5c 2909ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2910{
8a48ac95 2911 struct type *type, *index_type_desc, *index_type;
1ce677a4 2912 int i;
262452ec
JK
2913
2914 gdb_assert (which == 0 || which == 1);
14f9c5c9 2915
ad82864c
JB
2916 if (ada_is_constrained_packed_array_type (arr_type))
2917 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2918
4c4b4cd2 2919 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2920 return (LONGEST) - which;
14f9c5c9 2921
78134374 2922 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2923 type = TYPE_TARGET_TYPE (arr_type);
2924 else
2925 type = arr_type;
2926
22c4c60c 2927 if (type->is_fixed_instance ())
bafffb51
JB
2928 {
2929 /* The array has already been fixed, so we do not need to
2930 check the parallel ___XA type again. That encoding has
2931 already been applied, so ignore it now. */
2932 index_type_desc = NULL;
2933 }
2934 else
2935 {
2936 index_type_desc = ada_find_parallel_type (type, "___XA");
2937 ada_fixup_array_indexes_type (index_type_desc);
2938 }
2939
262452ec 2940 if (index_type_desc != NULL)
940da03e 2941 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2942 NULL);
262452ec 2943 else
8a48ac95
JB
2944 {
2945 struct type *elt_type = check_typedef (type);
2946
2947 for (i = 1; i < n; i++)
2948 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2949
3d967001 2950 index_type = elt_type->index_type ();
8a48ac95 2951 }
262452ec 2952
43bbcdc2
PH
2953 return
2954 (LONGEST) (which == 0
dda83cd7
SM
2955 ? ada_discrete_type_low_bound (index_type)
2956 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2957}
2958
2959/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2960 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2961 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2962 supplied by run-time quantities other than discriminants. */
14f9c5c9 2963
1eea4ebd 2964static LONGEST
4dc81987 2965ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2966{
eb479039
JB
2967 struct type *arr_type;
2968
78134374 2969 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
14f9c5c9 2972
ad82864c
JB
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2975 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2976 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2977 else
1eea4ebd 2978 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2979}
2980
2981/* Given that arr is an array value, returns the length of the
2982 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2983 supplied by run-time quantities other than discriminants.
2984 Does not work for arrays indexed by enumeration types with representation
2985 clauses at the moment. */
14f9c5c9 2986
1eea4ebd 2987static LONGEST
d2e4a39e 2988ada_array_length (struct value *arr, int n)
14f9c5c9 2989{
aa715135
JG
2990 struct type *arr_type, *index_type;
2991 int low, high;
eb479039 2992
78134374 2993 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2994 arr = value_ind (arr);
2995 arr_type = value_enclosing_type (arr);
14f9c5c9 2996
ad82864c
JB
2997 if (ada_is_constrained_packed_array_type (arr_type))
2998 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2999
4c4b4cd2 3000 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3001 {
3002 low = ada_array_bound_from_type (arr_type, n, 0);
3003 high = ada_array_bound_from_type (arr_type, n, 1);
3004 }
14f9c5c9 3005 else
aa715135
JG
3006 {
3007 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3008 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3009 }
3010
f168693b 3011 arr_type = check_typedef (arr_type);
7150d33c 3012 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3013 if (index_type != NULL)
3014 {
3015 struct type *base_type;
78134374 3016 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3017 base_type = TYPE_TARGET_TYPE (index_type);
3018 else
3019 base_type = index_type;
3020
3021 low = pos_atr (value_from_longest (base_type, low));
3022 high = pos_atr (value_from_longest (base_type, high));
3023 }
3024 return high - low + 1;
4c4b4cd2
PH
3025}
3026
bff8c71f
TT
3027/* An array whose type is that of ARR_TYPE (an array type), with
3028 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3029 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3030
3031static struct value *
bff8c71f 3032empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3033{
b0dd7688 3034 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3035 struct type *index_type
3036 = create_static_range_type
dda83cd7 3037 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3038 high < low ? low - 1 : high);
b0dd7688 3039 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3040
0b5d8877 3041 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3042}
14f9c5c9 3043\f
d2e4a39e 3044
dda83cd7 3045 /* Name resolution */
14f9c5c9 3046
4c4b4cd2
PH
3047/* The "decoded" name for the user-definable Ada operator corresponding
3048 to OP. */
14f9c5c9 3049
d2e4a39e 3050static const char *
4c4b4cd2 3051ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3052{
3053 int i;
3054
4c4b4cd2 3055 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3056 {
3057 if (ada_opname_table[i].op == op)
dda83cd7 3058 return ada_opname_table[i].decoded;
14f9c5c9 3059 }
323e0a4a 3060 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3061}
3062
de93309a
SM
3063/* Returns true (non-zero) iff decoded name N0 should appear before N1
3064 in a listing of choices during disambiguation (see sort_choices, below).
3065 The idea is that overloadings of a subprogram name from the
3066 same package should sort in their source order. We settle for ordering
3067 such symbols by their trailing number (__N or $N). */
14f9c5c9 3068
de93309a
SM
3069static int
3070encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3071{
de93309a
SM
3072 if (N1 == NULL)
3073 return 0;
3074 else if (N0 == NULL)
3075 return 1;
3076 else
3077 {
3078 int k0, k1;
30b15541 3079
de93309a 3080 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3081 ;
de93309a 3082 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3083 ;
de93309a 3084 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3085 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3086 {
3087 int n0, n1;
3088
3089 n0 = k0;
3090 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3091 n0 -= 1;
3092 n1 = k1;
3093 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3094 n1 -= 1;
3095 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3096 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3097 }
de93309a
SM
3098 return (strcmp (N0, N1) < 0);
3099 }
14f9c5c9
AS
3100}
3101
de93309a
SM
3102/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3103 encoded names. */
14f9c5c9 3104
de93309a
SM
3105static void
3106sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3107{
14f9c5c9 3108 int i;
14f9c5c9 3109
de93309a 3110 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3111 {
de93309a
SM
3112 struct block_symbol sym = syms[i];
3113 int j;
3114
3115 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3116 {
3117 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3118 sym.symbol->linkage_name ()))
3119 break;
3120 syms[j + 1] = syms[j];
3121 }
de93309a
SM
3122 syms[j + 1] = sym;
3123 }
3124}
14f9c5c9 3125
de93309a
SM
3126/* Whether GDB should display formals and return types for functions in the
3127 overloads selection menu. */
3128static bool print_signatures = true;
4c4b4cd2 3129
de93309a
SM
3130/* Print the signature for SYM on STREAM according to the FLAGS options. For
3131 all but functions, the signature is just the name of the symbol. For
3132 functions, this is the name of the function, the list of types for formals
3133 and the return type (if any). */
4c4b4cd2 3134
de93309a
SM
3135static void
3136ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3137 const struct type_print_options *flags)
3138{
3139 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3140
987012b8 3141 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3142 if (!print_signatures
3143 || type == NULL
78134374 3144 || type->code () != TYPE_CODE_FUNC)
de93309a 3145 return;
4c4b4cd2 3146
1f704f76 3147 if (type->num_fields () > 0)
de93309a
SM
3148 {
3149 int i;
14f9c5c9 3150
de93309a 3151 fprintf_filtered (stream, " (");
1f704f76 3152 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3153 {
3154 if (i > 0)
3155 fprintf_filtered (stream, "; ");
940da03e 3156 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3157 flags);
3158 }
3159 fprintf_filtered (stream, ")");
3160 }
3161 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3162 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3163 {
3164 fprintf_filtered (stream, " return ");
3165 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3166 }
3167}
14f9c5c9 3168
de93309a
SM
3169/* Read and validate a set of numeric choices from the user in the
3170 range 0 .. N_CHOICES-1. Place the results in increasing
3171 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3172
de93309a
SM
3173 The user types choices as a sequence of numbers on one line
3174 separated by blanks, encoding them as follows:
14f9c5c9 3175
de93309a
SM
3176 + A choice of 0 means to cancel the selection, throwing an error.
3177 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3178 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3179
de93309a 3180 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3181
de93309a
SM
3182 ANNOTATION_SUFFIX, if present, is used to annotate the input
3183 prompts (for use with the -f switch). */
14f9c5c9 3184
de93309a
SM
3185static int
3186get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3187 int is_all_choice, const char *annotation_suffix)
de93309a 3188{
992a7040 3189 const char *args;
de93309a
SM
3190 const char *prompt;
3191 int n_chosen;
3192 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3193
de93309a
SM
3194 prompt = getenv ("PS2");
3195 if (prompt == NULL)
3196 prompt = "> ";
4c4b4cd2 3197
de93309a 3198 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3199
de93309a
SM
3200 if (args == NULL)
3201 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3202
de93309a 3203 n_chosen = 0;
4c4b4cd2 3204
de93309a
SM
3205 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3206 order, as given in args. Choices are validated. */
3207 while (1)
14f9c5c9 3208 {
de93309a
SM
3209 char *args2;
3210 int choice, j;
76a01679 3211
de93309a
SM
3212 args = skip_spaces (args);
3213 if (*args == '\0' && n_chosen == 0)
dda83cd7 3214 error_no_arg (_("one or more choice numbers"));
de93309a 3215 else if (*args == '\0')
dda83cd7 3216 break;
76a01679 3217
de93309a
SM
3218 choice = strtol (args, &args2, 10);
3219 if (args == args2 || choice < 0
dda83cd7
SM
3220 || choice > n_choices + first_choice - 1)
3221 error (_("Argument must be choice number"));
de93309a 3222 args = args2;
76a01679 3223
de93309a 3224 if (choice == 0)
dda83cd7 3225 error (_("cancelled"));
76a01679 3226
de93309a 3227 if (choice < first_choice)
dda83cd7
SM
3228 {
3229 n_chosen = n_choices;
3230 for (j = 0; j < n_choices; j += 1)
3231 choices[j] = j;
3232 break;
3233 }
de93309a 3234 choice -= first_choice;
76a01679 3235
de93309a 3236 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3237 {
3238 }
4c4b4cd2 3239
de93309a 3240 if (j < 0 || choice != choices[j])
dda83cd7
SM
3241 {
3242 int k;
4c4b4cd2 3243
dda83cd7
SM
3244 for (k = n_chosen - 1; k > j; k -= 1)
3245 choices[k + 1] = choices[k];
3246 choices[j + 1] = choice;
3247 n_chosen += 1;
3248 }
14f9c5c9
AS
3249 }
3250
de93309a
SM
3251 if (n_chosen > max_results)
3252 error (_("Select no more than %d of the above"), max_results);
3253
3254 return n_chosen;
14f9c5c9
AS
3255}
3256
de93309a
SM
3257/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3260 selected. */
3261
3262/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3263 to be re-integrated one of these days. */
14f9c5c9
AS
3264
3265static int
de93309a 3266user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3267{
de93309a
SM
3268 int i;
3269 int *chosen = XALLOCAVEC (int , nsyms);
3270 int n_chosen;
3271 int first_choice = (max_results == 1) ? 1 : 2;
3272 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3273
de93309a
SM
3274 if (max_results < 1)
3275 error (_("Request to select 0 symbols!"));
3276 if (nsyms <= 1)
3277 return nsyms;
14f9c5c9 3278
de93309a
SM
3279 if (select_mode == multiple_symbols_cancel)
3280 error (_("\
3281canceled because the command is ambiguous\n\
3282See set/show multiple-symbol."));
14f9c5c9 3283
de93309a
SM
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3288 return nsyms;
14f9c5c9 3289
de93309a
SM
3290 printf_filtered (_("[0] cancel\n"));
3291 if (max_results > 1)
3292 printf_filtered (_("[1] all\n"));
14f9c5c9 3293
de93309a 3294 sort_choices (syms, nsyms);
14f9c5c9 3295
de93309a
SM
3296 for (i = 0; i < nsyms; i += 1)
3297 {
3298 if (syms[i].symbol == NULL)
dda83cd7 3299 continue;
14f9c5c9 3300
de93309a 3301 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
dda83cd7
SM
3302 {
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3305
de93309a
SM
3306 printf_filtered ("[%d] ", i + first_choice);
3307 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3308 &type_print_raw_options);
3309 if (sal.symtab == NULL)
3310 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3311 metadata_style.style ().ptr (), nullptr, sal.line);
3312 else
3313 printf_filtered
3314 (_(" at %ps:%d\n"),
3315 styled_string (file_name_style.style (),
3316 symtab_to_filename_for_display (sal.symtab)),
3317 sal.line);
dda83cd7
SM
3318 continue;
3319 }
76a01679 3320 else
dda83cd7
SM
3321 {
3322 int is_enumeral =
3323 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3324 && SYMBOL_TYPE (syms[i].symbol) != NULL
3325 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3326 struct symtab *symtab = NULL;
4c4b4cd2 3327
de93309a
SM
3328 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3329 symtab = symbol_symtab (syms[i].symbol);
3330
dda83cd7 3331 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3332 {
3333 printf_filtered ("[%d] ", i + first_choice);
3334 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3335 &type_print_raw_options);
3336 printf_filtered (_(" at %s:%d\n"),
3337 symtab_to_filename_for_display (symtab),
3338 SYMBOL_LINE (syms[i].symbol));
3339 }
dda83cd7
SM
3340 else if (is_enumeral
3341 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3342 {
3343 printf_filtered (("[%d] "), i + first_choice);
3344 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3345 gdb_stdout, -1, 0, &type_print_raw_options);
3346 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3347 syms[i].symbol->print_name ());
dda83cd7 3348 }
de93309a
SM
3349 else
3350 {
3351 printf_filtered ("[%d] ", i + first_choice);
3352 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3353 &type_print_raw_options);
3354
3355 if (symtab != NULL)
3356 printf_filtered (is_enumeral
3357 ? _(" in %s (enumeral)\n")
3358 : _(" at %s:?\n"),
3359 symtab_to_filename_for_display (symtab));
3360 else
3361 printf_filtered (is_enumeral
3362 ? _(" (enumeral)\n")
3363 : _(" at ?\n"));
3364 }
dda83cd7 3365 }
14f9c5c9 3366 }
14f9c5c9 3367
de93309a 3368 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3369 "overload-choice");
14f9c5c9 3370
de93309a
SM
3371 for (i = 0; i < n_chosen; i += 1)
3372 syms[i] = syms[chosen[i]];
14f9c5c9 3373
de93309a
SM
3374 return n_chosen;
3375}
14f9c5c9 3376
cd9a3148
TT
3377/* See ada-lang.h. */
3378
3379block_symbol
7056f312 3380ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
cd9a3148
TT
3381 int nargs, value *argvec[])
3382{
3383 if (possible_user_operator_p (op, argvec))
3384 {
3385 std::vector<struct block_symbol> candidates
3386 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3387 NULL, VAR_DOMAIN);
3388
3389 int i = ada_resolve_function (candidates, argvec,
3390 nargs, ada_decoded_op_name (op), NULL,
3391 parse_completion);
3392 if (i >= 0)
3393 return candidates[i];
3394 }
3395 return {};
3396}
3397
3398/* See ada-lang.h. */
3399
3400block_symbol
3401ada_resolve_funcall (struct symbol *sym, const struct block *block,
3402 struct type *context_type,
7056f312 3403 bool parse_completion,
cd9a3148
TT
3404 int nargs, value *argvec[],
3405 innermost_block_tracker *tracker)
3406{
3407 std::vector<struct block_symbol> candidates
3408 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3409
3410 int i;
3411 if (candidates.size () == 1)
3412 i = 0;
3413 else
3414 {
3415 i = ada_resolve_function
3416 (candidates,
3417 argvec, nargs,
3418 sym->linkage_name (),
3419 context_type, parse_completion);
3420 if (i < 0)
3421 error (_("Could not find a match for %s"), sym->print_name ());
3422 }
3423
3424 tracker->update (candidates[i]);
3425 return candidates[i];
3426}
3427
3428/* See ada-lang.h. */
3429
3430block_symbol
3431ada_resolve_variable (struct symbol *sym, const struct block *block,
3432 struct type *context_type,
7056f312 3433 bool parse_completion,
cd9a3148
TT
3434 int deprocedure_p,
3435 innermost_block_tracker *tracker)
3436{
3437 std::vector<struct block_symbol> candidates
3438 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3439
3440 if (std::any_of (candidates.begin (),
3441 candidates.end (),
3442 [] (block_symbol &bsym)
3443 {
3444 switch (SYMBOL_CLASS (bsym.symbol))
3445 {
3446 case LOC_REGISTER:
3447 case LOC_ARG:
3448 case LOC_REF_ARG:
3449 case LOC_REGPARM_ADDR:
3450 case LOC_LOCAL:
3451 case LOC_COMPUTED:
3452 return true;
3453 default:
3454 return false;
3455 }
3456 }))
3457 {
3458 /* Types tend to get re-introduced locally, so if there
3459 are any local symbols that are not types, first filter
3460 out all types. */
3461 candidates.erase
3462 (std::remove_if
3463 (candidates.begin (),
3464 candidates.end (),
3465 [] (block_symbol &bsym)
3466 {
3467 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3468 }),
3469 candidates.end ());
3470 }
3471
3472 int i;
3473 if (candidates.empty ())
3474 error (_("No definition found for %s"), sym->print_name ());
3475 else if (candidates.size () == 1)
3476 i = 0;
3477 else if (deprocedure_p && !is_nonfunction (candidates))
3478 {
3479 i = ada_resolve_function
3480 (candidates, NULL, 0,
3481 sym->linkage_name (),
3482 context_type, parse_completion);
3483 if (i < 0)
3484 error (_("Could not find a match for %s"), sym->print_name ());
3485 }
3486 else
3487 {
3488 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3489 user_select_syms (candidates.data (), candidates.size (), 1);
3490 i = 0;
3491 }
3492
3493 tracker->update (candidates[i]);
3494 return candidates[i];
3495}
3496
db2534b7 3497/* Return non-zero if formal type FTYPE matches actual type ATYPE. */
de93309a
SM
3498/* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
14f9c5c9 3500
de93309a 3501static int
db2534b7 3502ada_type_match (struct type *ftype, struct type *atype)
14f9c5c9 3503{
de93309a
SM
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
14f9c5c9 3506
78134374 3507 if (ftype->code () == TYPE_CODE_REF)
de93309a 3508 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3509 if (atype->code () == TYPE_CODE_REF)
de93309a 3510 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3511
78134374 3512 switch (ftype->code ())
14f9c5c9 3513 {
de93309a 3514 default:
78134374 3515 return ftype->code () == atype->code ();
de93309a 3516 case TYPE_CODE_PTR:
db2534b7
TT
3517 if (atype->code () != TYPE_CODE_PTR)
3518 return 0;
3519 atype = TYPE_TARGET_TYPE (atype);
3520 /* This can only happen if the actual argument is 'null'. */
3521 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3522 return 1;
3523 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
de93309a
SM
3524 case TYPE_CODE_INT:
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
78134374 3527 switch (atype->code ())
dda83cd7
SM
3528 {
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_ENUM:
3531 case TYPE_CODE_RANGE:
3532 return 1;
3533 default:
3534 return 0;
3535 }
d2e4a39e 3536
de93309a 3537 case TYPE_CODE_ARRAY:
78134374 3538 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3539 || ada_is_array_descriptor_type (atype));
14f9c5c9 3540
de93309a
SM
3541 case TYPE_CODE_STRUCT:
3542 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3543 return (atype->code () == TYPE_CODE_ARRAY
3544 || ada_is_array_descriptor_type (atype));
de93309a 3545 else
dda83cd7
SM
3546 return (atype->code () == TYPE_CODE_STRUCT
3547 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3548
de93309a
SM
3549 case TYPE_CODE_UNION:
3550 case TYPE_CODE_FLT:
78134374 3551 return (atype->code () == ftype->code ());
de93309a 3552 }
14f9c5c9
AS
3553}
3554
de93309a
SM
3555/* Return non-zero if the formals of FUNC "sufficiently match" the
3556 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3557 may also be an enumeral, in which case it is treated as a 0-
3558 argument function. */
14f9c5c9 3559
de93309a
SM
3560static int
3561ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3562{
3563 int i;
3564 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3565
de93309a 3566 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3567 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3568 return (n_actuals == 0);
78134374 3569 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3570 return 0;
14f9c5c9 3571
1f704f76 3572 if (func_type->num_fields () != n_actuals)
de93309a 3573 return 0;
14f9c5c9 3574
de93309a
SM
3575 for (i = 0; i < n_actuals; i += 1)
3576 {
3577 if (actuals[i] == NULL)
dda83cd7 3578 return 0;
de93309a 3579 else
dda83cd7
SM
3580 {
3581 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3582 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3583
db2534b7 3584 if (!ada_type_match (ftype, atype))
dda83cd7
SM
3585 return 0;
3586 }
de93309a
SM
3587 }
3588 return 1;
3589}
d2e4a39e 3590
de93309a
SM
3591/* False iff function type FUNC_TYPE definitely does not produce a value
3592 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3593 FUNC_TYPE is not a valid function type with a non-null return type
3594 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3595
de93309a
SM
3596static int
3597return_match (struct type *func_type, struct type *context_type)
3598{
3599 struct type *return_type;
d2e4a39e 3600
de93309a
SM
3601 if (func_type == NULL)
3602 return 1;
14f9c5c9 3603
78134374 3604 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3605 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3606 else
3607 return_type = get_base_type (func_type);
3608 if (return_type == NULL)
3609 return 1;
76a01679 3610
de93309a 3611 context_type = get_base_type (context_type);
14f9c5c9 3612
78134374 3613 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3614 return context_type == NULL || return_type == context_type;
3615 else if (context_type == NULL)
78134374 3616 return return_type->code () != TYPE_CODE_VOID;
de93309a 3617 else
78134374 3618 return return_type->code () == context_type->code ();
de93309a 3619}
14f9c5c9 3620
14f9c5c9 3621
1bfa81ac 3622/* Returns the index in SYMS that contains the symbol for the
de93309a
SM
3623 function (if any) that matches the types of the NARGS arguments in
3624 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3625 that returns that type, then eliminate matches that don't. If
3626 CONTEXT_TYPE is void and there is at least one match that does not
3627 return void, eliminate all matches that do.
14f9c5c9 3628
de93309a
SM
3629 Asks the user if there is more than one match remaining. Returns -1
3630 if there is no such symbol or none is selected. NAME is used
3631 solely for messages. May re-arrange and modify SYMS in
3632 the process; the index returned is for the modified vector. */
14f9c5c9 3633
de93309a 3634static int
d1183b06
TT
3635ada_resolve_function (std::vector<struct block_symbol> &syms,
3636 struct value **args, int nargs,
dda83cd7 3637 const char *name, struct type *context_type,
7056f312 3638 bool parse_completion)
de93309a
SM
3639{
3640 int fallback;
3641 int k;
3642 int m; /* Number of hits */
14f9c5c9 3643
de93309a
SM
3644 m = 0;
3645 /* In the first pass of the loop, we only accept functions matching
3646 context_type. If none are found, we add a second pass of the loop
3647 where every function is accepted. */
3648 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3649 {
d1183b06 3650 for (k = 0; k < syms.size (); k += 1)
dda83cd7
SM
3651 {
3652 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3653
dda83cd7
SM
3654 if (ada_args_match (syms[k].symbol, args, nargs)
3655 && (fallback || return_match (type, context_type)))
3656 {
3657 syms[m] = syms[k];
3658 m += 1;
3659 }
3660 }
14f9c5c9
AS
3661 }
3662
de93309a
SM
3663 /* If we got multiple matches, ask the user which one to use. Don't do this
3664 interactive thing during completion, though, as the purpose of the
3665 completion is providing a list of all possible matches. Prompting the
3666 user to filter it down would be completely unexpected in this case. */
3667 if (m == 0)
3668 return -1;
3669 else if (m > 1 && !parse_completion)
3670 {
3671 printf_filtered (_("Multiple matches for %s\n"), name);
d1183b06 3672 user_select_syms (syms.data (), m, 1);
de93309a
SM
3673 return 0;
3674 }
3675 return 0;
14f9c5c9
AS
3676}
3677
14f9c5c9
AS
3678/* Type-class predicates */
3679
4c4b4cd2
PH
3680/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3681 or FLOAT). */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684numeric_type_p (struct type *type)
14f9c5c9
AS
3685{
3686 if (type == NULL)
3687 return 0;
d2e4a39e
AS
3688 else
3689 {
78134374 3690 switch (type->code ())
dda83cd7
SM
3691 {
3692 case TYPE_CODE_INT:
3693 case TYPE_CODE_FLT:
c04da66c 3694 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
3695 return 1;
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3699 default:
3700 return 0;
3701 }
d2e4a39e 3702 }
14f9c5c9
AS
3703}
3704
4c4b4cd2 3705/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3706
3707static int
d2e4a39e 3708integer_type_p (struct type *type)
14f9c5c9
AS
3709{
3710 if (type == NULL)
3711 return 0;
d2e4a39e
AS
3712 else
3713 {
78134374 3714 switch (type->code ())
dda83cd7
SM
3715 {
3716 case TYPE_CODE_INT:
3717 return 1;
3718 case TYPE_CODE_RANGE:
3719 return (type == TYPE_TARGET_TYPE (type)
3720 || integer_type_p (TYPE_TARGET_TYPE (type)));
3721 default:
3722 return 0;
3723 }
d2e4a39e 3724 }
14f9c5c9
AS
3725}
3726
4c4b4cd2 3727/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3728
3729static int
d2e4a39e 3730scalar_type_p (struct type *type)
14f9c5c9
AS
3731{
3732 if (type == NULL)
3733 return 0;
d2e4a39e
AS
3734 else
3735 {
78134374 3736 switch (type->code ())
dda83cd7
SM
3737 {
3738 case TYPE_CODE_INT:
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3741 case TYPE_CODE_FLT:
c04da66c 3742 case TYPE_CODE_FIXED_POINT:
dda83cd7
SM
3743 return 1;
3744 default:
3745 return 0;
3746 }
d2e4a39e 3747 }
14f9c5c9
AS
3748}
3749
4c4b4cd2 3750/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3751
3752static int
d2e4a39e 3753discrete_type_p (struct type *type)
14f9c5c9
AS
3754{
3755 if (type == NULL)
3756 return 0;
d2e4a39e
AS
3757 else
3758 {
78134374 3759 switch (type->code ())
dda83cd7
SM
3760 {
3761 case TYPE_CODE_INT:
3762 case TYPE_CODE_RANGE:
3763 case TYPE_CODE_ENUM:
3764 case TYPE_CODE_BOOL:
3765 return 1;
3766 default:
3767 return 0;
3768 }
d2e4a39e 3769 }
14f9c5c9
AS
3770}
3771
4c4b4cd2
PH
3772/* Returns non-zero if OP with operands in the vector ARGS could be
3773 a user-defined function. Errs on the side of pre-defined operators
3774 (i.e., result 0). */
14f9c5c9
AS
3775
3776static int
d2e4a39e 3777possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3778{
76a01679 3779 struct type *type0 =
df407dfe 3780 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3781 struct type *type1 =
df407dfe 3782 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3783
4c4b4cd2
PH
3784 if (type0 == NULL)
3785 return 0;
3786
14f9c5c9
AS
3787 switch (op)
3788 {
3789 default:
3790 return 0;
3791
3792 case BINOP_ADD:
3793 case BINOP_SUB:
3794 case BINOP_MUL:
3795 case BINOP_DIV:
d2e4a39e 3796 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3797
3798 case BINOP_REM:
3799 case BINOP_MOD:
3800 case BINOP_BITWISE_AND:
3801 case BINOP_BITWISE_IOR:
3802 case BINOP_BITWISE_XOR:
d2e4a39e 3803 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3804
3805 case BINOP_EQUAL:
3806 case BINOP_NOTEQUAL:
3807 case BINOP_LESS:
3808 case BINOP_GTR:
3809 case BINOP_LEQ:
3810 case BINOP_GEQ:
d2e4a39e 3811 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3812
3813 case BINOP_CONCAT:
ee90b9ab 3814 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3815
3816 case BINOP_EXP:
d2e4a39e 3817 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3818
3819 case UNOP_NEG:
3820 case UNOP_PLUS:
3821 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3822 case UNOP_ABS:
3823 return (!numeric_type_p (type0));
14f9c5c9
AS
3824
3825 }
3826}
3827\f
dda83cd7 3828 /* Renaming */
14f9c5c9 3829
aeb5907d
JB
3830/* NOTES:
3831
3832 1. In the following, we assume that a renaming type's name may
3833 have an ___XD suffix. It would be nice if this went away at some
3834 point.
3835 2. We handle both the (old) purely type-based representation of
3836 renamings and the (new) variable-based encoding. At some point,
3837 it is devoutly to be hoped that the former goes away
3838 (FIXME: hilfinger-2007-07-09).
3839 3. Subprogram renamings are not implemented, although the XRS
3840 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3841
3842/* If SYM encodes a renaming,
3843
3844 <renaming> renames <renamed entity>,
3845
3846 sets *LEN to the length of the renamed entity's name,
3847 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3848 the string describing the subcomponent selected from the renamed
0963b4bd 3849 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3850 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3851 are undefined). Otherwise, returns a value indicating the category
3852 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3853 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3854 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3855 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3856 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3857 may be NULL, in which case they are not assigned.
3858
3859 [Currently, however, GCC does not generate subprogram renamings.] */
3860
3861enum ada_renaming_category
3862ada_parse_renaming (struct symbol *sym,
3863 const char **renamed_entity, int *len,
3864 const char **renaming_expr)
3865{
3866 enum ada_renaming_category kind;
3867 const char *info;
3868 const char *suffix;
3869
3870 if (sym == NULL)
3871 return ADA_NOT_RENAMING;
3872 switch (SYMBOL_CLASS (sym))
14f9c5c9 3873 {
aeb5907d
JB
3874 default:
3875 return ADA_NOT_RENAMING;
aeb5907d
JB
3876 case LOC_LOCAL:
3877 case LOC_STATIC:
3878 case LOC_COMPUTED:
3879 case LOC_OPTIMIZED_OUT:
987012b8 3880 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
3881 if (info == NULL)
3882 return ADA_NOT_RENAMING;
3883 switch (info[5])
3884 {
3885 case '_':
3886 kind = ADA_OBJECT_RENAMING;
3887 info += 6;
3888 break;
3889 case 'E':
3890 kind = ADA_EXCEPTION_RENAMING;
3891 info += 7;
3892 break;
3893 case 'P':
3894 kind = ADA_PACKAGE_RENAMING;
3895 info += 7;
3896 break;
3897 case 'S':
3898 kind = ADA_SUBPROGRAM_RENAMING;
3899 info += 7;
3900 break;
3901 default:
3902 return ADA_NOT_RENAMING;
3903 }
14f9c5c9 3904 }
4c4b4cd2 3905
de93309a
SM
3906 if (renamed_entity != NULL)
3907 *renamed_entity = info;
3908 suffix = strstr (info, "___XE");
3909 if (suffix == NULL || suffix == info)
3910 return ADA_NOT_RENAMING;
3911 if (len != NULL)
3912 *len = strlen (info) - strlen (suffix);
3913 suffix += 5;
3914 if (renaming_expr != NULL)
3915 *renaming_expr = suffix;
3916 return kind;
3917}
3918
3919/* Compute the value of the given RENAMING_SYM, which is expected to
3920 be a symbol encoding a renaming expression. BLOCK is the block
3921 used to evaluate the renaming. */
3922
3923static struct value *
3924ada_read_renaming_var_value (struct symbol *renaming_sym,
3925 const struct block *block)
3926{
3927 const char *sym_name;
3928
987012b8 3929 sym_name = renaming_sym->linkage_name ();
de93309a
SM
3930 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3931 return evaluate_expression (expr.get ());
3932}
3933\f
3934
dda83cd7 3935 /* Evaluation: Function Calls */
de93309a
SM
3936
3937/* Return an lvalue containing the value VAL. This is the identity on
3938 lvalues, and otherwise has the side-effect of allocating memory
3939 in the inferior where a copy of the value contents is copied. */
3940
3941static struct value *
3942ensure_lval (struct value *val)
3943{
3944 if (VALUE_LVAL (val) == not_lval
3945 || VALUE_LVAL (val) == lval_internalvar)
3946 {
3947 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3948 const CORE_ADDR addr =
dda83cd7 3949 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
3950
3951 VALUE_LVAL (val) = lval_memory;
3952 set_value_address (val, addr);
3953 write_memory (addr, value_contents (val), len);
3954 }
3955
3956 return val;
3957}
3958
3959/* Given ARG, a value of type (pointer or reference to a)*
3960 structure/union, extract the component named NAME from the ultimate
3961 target structure/union and return it as a value with its
3962 appropriate type.
3963
3964 The routine searches for NAME among all members of the structure itself
3965 and (recursively) among all members of any wrapper members
3966 (e.g., '_parent').
3967
3968 If NO_ERR, then simply return NULL in case of error, rather than
3969 calling error. */
3970
3971static struct value *
3972ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3973{
3974 struct type *t, *t1;
3975 struct value *v;
3976 int check_tag;
3977
3978 v = NULL;
3979 t1 = t = ada_check_typedef (value_type (arg));
78134374 3980 if (t->code () == TYPE_CODE_REF)
de93309a
SM
3981 {
3982 t1 = TYPE_TARGET_TYPE (t);
3983 if (t1 == NULL)
3984 goto BadValue;
3985 t1 = ada_check_typedef (t1);
78134374 3986 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
3987 {
3988 arg = coerce_ref (arg);
3989 t = t1;
3990 }
de93309a
SM
3991 }
3992
78134374 3993 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
3994 {
3995 t1 = TYPE_TARGET_TYPE (t);
3996 if (t1 == NULL)
3997 goto BadValue;
3998 t1 = ada_check_typedef (t1);
78134374 3999 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4000 {
4001 arg = value_ind (arg);
4002 t = t1;
4003 }
de93309a 4004 else
dda83cd7 4005 break;
de93309a 4006 }
aeb5907d 4007
78134374 4008 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4009 goto BadValue;
52ce6436 4010
de93309a
SM
4011 if (t1 == t)
4012 v = ada_search_struct_field (name, arg, 0, t);
4013 else
4014 {
4015 int bit_offset, bit_size, byte_offset;
4016 struct type *field_type;
4017 CORE_ADDR address;
a5ee536b 4018
78134374 4019 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4020 address = value_address (ada_value_ind (arg));
4021 else
4022 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4023
de93309a 4024 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4025 the case where the type is a reference to a tagged type, but
4026 we have to be careful to exclude pointers to tagged types.
4027 The latter should be shown as usual (as a pointer), whereas
4028 a reference should mostly be transparent to the user. */
14f9c5c9 4029
de93309a 4030 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4031 || (t1->code () == TYPE_CODE_REF
4032 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4033 {
4034 /* We first try to find the searched field in the current type.
de93309a 4035 If not found then let's look in the fixed type. */
14f9c5c9 4036
dda83cd7
SM
4037 if (!find_struct_field (name, t1, 0,
4038 &field_type, &byte_offset, &bit_offset,
4039 &bit_size, NULL))
de93309a
SM
4040 check_tag = 1;
4041 else
4042 check_tag = 0;
dda83cd7 4043 }
de93309a
SM
4044 else
4045 check_tag = 0;
c3e5cd34 4046
de93309a
SM
4047 /* Convert to fixed type in all cases, so that we have proper
4048 offsets to each field in unconstrained record types. */
4049 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4050 address, NULL, check_tag);
4051
24aa1b02
TT
4052 /* Resolve the dynamic type as well. */
4053 arg = value_from_contents_and_address (t1, nullptr, address);
4054 t1 = value_type (arg);
4055
de93309a 4056 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4057 &field_type, &byte_offset, &bit_offset,
4058 &bit_size, NULL))
4059 {
4060 if (bit_size != 0)
4061 {
4062 if (t->code () == TYPE_CODE_REF)
4063 arg = ada_coerce_ref (arg);
4064 else
4065 arg = ada_value_ind (arg);
4066 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4067 bit_offset, bit_size,
4068 field_type);
4069 }
4070 else
4071 v = value_at_lazy (field_type, address + byte_offset);
4072 }
c3e5cd34 4073 }
14f9c5c9 4074
de93309a
SM
4075 if (v != NULL || no_err)
4076 return v;
4077 else
4078 error (_("There is no member named %s."), name);
4079
4080 BadValue:
4081 if (no_err)
4082 return NULL;
4083 else
4084 error (_("Attempt to extract a component of "
4085 "a value that is not a record."));
14f9c5c9
AS
4086}
4087
4088/* Return the value ACTUAL, converted to be an appropriate value for a
4089 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4090 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4091 values not residing in memory, updating it as needed. */
14f9c5c9 4092
a93c0eb6 4093struct value *
40bc484c 4094ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4095{
df407dfe 4096 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4097 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4098 struct type *formal_target =
78134374 4099 formal_type->code () == TYPE_CODE_PTR
61ee279c 4100 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4101 struct type *actual_target =
78134374 4102 actual_type->code () == TYPE_CODE_PTR
61ee279c 4103 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4104
4c4b4cd2 4105 if (ada_is_array_descriptor_type (formal_target)
78134374 4106 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4107 return make_array_descriptor (formal_type, actual);
78134374
SM
4108 else if (formal_type->code () == TYPE_CODE_PTR
4109 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4110 {
a84a8a0d 4111 struct value *result;
5b4ee69b 4112
78134374 4113 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4114 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4115 result = desc_data (actual);
78134374 4116 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4117 {
4118 if (VALUE_LVAL (actual) != lval_memory)
4119 {
4120 struct value *val;
4121
4122 actual_type = ada_check_typedef (value_type (actual));
4123 val = allocate_value (actual_type);
4124 memcpy ((char *) value_contents_raw (val),
4125 (char *) value_contents (actual),
4126 TYPE_LENGTH (actual_type));
4127 actual = ensure_lval (val);
4128 }
4129 result = value_addr (actual);
4130 }
a84a8a0d
JB
4131 else
4132 return actual;
b1af9e97 4133 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4134 }
78134374 4135 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4136 return ada_value_ind (actual);
8344af1e
JB
4137 else if (ada_is_aligner_type (formal_type))
4138 {
4139 /* We need to turn this parameter into an aligner type
4140 as well. */
4141 struct value *aligner = allocate_value (formal_type);
4142 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4143
4144 value_assign_to_component (aligner, component, actual);
4145 return aligner;
4146 }
14f9c5c9
AS
4147
4148 return actual;
4149}
4150
438c98a1
JB
4151/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156static CORE_ADDR
4157value_pointer (struct value *value, struct type *type)
4158{
438c98a1 4159 unsigned len = TYPE_LENGTH (type);
224c3ddb 4160 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
8ee511af 4164 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
34877895 4165 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4166 return addr;
4167}
4168
14f9c5c9 4169
4c4b4cd2
PH
4170/* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
14f9c5c9 4175
d2e4a39e 4176static struct value *
40bc484c 4177make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4178{
d2e4a39e
AS
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4183 int i;
d2e4a39e 4184
0963b4bd
MS
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
14f9c5c9 4187 {
19f220c3
JK
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4196 }
d2e4a39e 4197
40bc484c 4198 bounds = ensure_lval (bounds);
d2e4a39e 4199
19f220c3
JK
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
940da03e 4203 desc_type->field (0).type ()),
19f220c3
JK
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
940da03e 4210 desc_type->field (1).type ()),
19f220c3
JK
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4213
40bc484c 4214 descriptor = ensure_lval (descriptor);
14f9c5c9 4215
78134374 4216 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220}
14f9c5c9 4221\f
dda83cd7 4222 /* Symbol Cache Module */
3d9434b5 4223
3d9434b5 4224/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4225 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4226 on the type of entity being printed, the cache can make it as much
4227 as an order of magnitude faster than without it.
4228
4229 The descriptive type DWARF extension has significantly reduced
4230 the need for this cache, at least when DWARF is being used. However,
4231 even in this case, some expensive name-based symbol searches are still
4232 sometimes necessary - to find an XVZ variable, mostly. */
4233
ee01b665
JB
4234/* Return the symbol cache associated to the given program space PSPACE.
4235 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4236
ee01b665
JB
4237static struct ada_symbol_cache *
4238ada_get_symbol_cache (struct program_space *pspace)
4239{
4240 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4241
bdcccc56
TT
4242 if (pspace_data->sym_cache == nullptr)
4243 pspace_data->sym_cache.reset (new ada_symbol_cache);
ee01b665 4244
bdcccc56 4245 return pspace_data->sym_cache.get ();
ee01b665 4246}
3d9434b5
JB
4247
4248/* Clear all entries from the symbol cache. */
4249
4250static void
bdcccc56 4251ada_clear_symbol_cache ()
3d9434b5 4252{
bdcccc56
TT
4253 struct ada_pspace_data *pspace_data
4254 = get_ada_pspace_data (current_program_space);
ee01b665 4255
bdcccc56
TT
4256 if (pspace_data->sym_cache != nullptr)
4257 pspace_data->sym_cache.reset ();
3d9434b5
JB
4258}
4259
fe978cb0 4260/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4261 Return it if found, or NULL otherwise. */
4262
4263static struct cache_entry **
fe978cb0 4264find_entry (const char *name, domain_enum domain)
3d9434b5 4265{
ee01b665
JB
4266 struct ada_symbol_cache *sym_cache
4267 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4268 int h = msymbol_hash (name) % HASH_SIZE;
4269 struct cache_entry **e;
4270
ee01b665 4271 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4272 {
fe978cb0 4273 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4274 return e;
3d9434b5
JB
4275 }
4276 return NULL;
4277}
4278
fe978cb0 4279/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4280 Return 1 if found, 0 otherwise.
4281
4282 If an entry was found and SYM is not NULL, set *SYM to the entry's
4283 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4284
96d887e8 4285static int
fe978cb0 4286lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4287 struct symbol **sym, const struct block **block)
96d887e8 4288{
fe978cb0 4289 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4290
4291 if (e == NULL)
4292 return 0;
4293 if (sym != NULL)
4294 *sym = (*e)->sym;
4295 if (block != NULL)
4296 *block = (*e)->block;
4297 return 1;
96d887e8
PH
4298}
4299
3d9434b5 4300/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4301 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4302
96d887e8 4303static void
fe978cb0 4304cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4305 const struct block *block)
96d887e8 4306{
ee01b665
JB
4307 struct ada_symbol_cache *sym_cache
4308 = ada_get_symbol_cache (current_program_space);
3d9434b5 4309 int h;
3d9434b5
JB
4310 struct cache_entry *e;
4311
1994afbf
DE
4312 /* Symbols for builtin types don't have a block.
4313 For now don't cache such symbols. */
4314 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4315 return;
4316
3d9434b5
JB
4317 /* If the symbol is a local symbol, then do not cache it, as a search
4318 for that symbol depends on the context. To determine whether
4319 the symbol is local or not, we check the block where we found it
4320 against the global and static blocks of its associated symtab. */
4321 if (sym
08be3fe3 4322 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4323 GLOBAL_BLOCK) != block
08be3fe3 4324 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4325 STATIC_BLOCK) != block)
3d9434b5
JB
4326 return;
4327
4328 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4329 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4330 e->next = sym_cache->root[h];
4331 sym_cache->root[h] = e;
2ef5453b 4332 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4333 e->sym = sym;
fe978cb0 4334 e->domain = domain;
3d9434b5 4335 e->block = block;
96d887e8 4336}
4c4b4cd2 4337\f
dda83cd7 4338 /* Symbol Lookup */
4c4b4cd2 4339
b5ec771e
PA
4340/* Return the symbol name match type that should be used used when
4341 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4342
4343 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4344 for Ada lookups. */
c0431670 4345
b5ec771e
PA
4346static symbol_name_match_type
4347name_match_type_from_name (const char *lookup_name)
c0431670 4348{
b5ec771e
PA
4349 return (strstr (lookup_name, "__") == NULL
4350 ? symbol_name_match_type::WILD
4351 : symbol_name_match_type::FULL);
c0431670
JB
4352}
4353
4c4b4cd2
PH
4354/* Return the result of a standard (literal, C-like) lookup of NAME in
4355 given DOMAIN, visible from lexical block BLOCK. */
4356
4357static struct symbol *
4358standard_lookup (const char *name, const struct block *block,
dda83cd7 4359 domain_enum domain)
4c4b4cd2 4360{
acbd605d 4361 /* Initialize it just to avoid a GCC false warning. */
6640a367 4362 struct block_symbol sym = {};
4c4b4cd2 4363
d12307c1
PMR
4364 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4365 return sym.symbol;
a2cd4f14 4366 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4367 cache_symbol (name, domain, sym.symbol, sym.block);
4368 return sym.symbol;
4c4b4cd2
PH
4369}
4370
4371
4372/* Non-zero iff there is at least one non-function/non-enumeral symbol
1bfa81ac 4373 in the symbol fields of SYMS. We treat enumerals as functions,
4c4b4cd2
PH
4374 since they contend in overloading in the same way. */
4375static int
d1183b06 4376is_nonfunction (const std::vector<struct block_symbol> &syms)
4c4b4cd2 4377{
d1183b06
TT
4378 for (const block_symbol &sym : syms)
4379 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4380 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4381 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
14f9c5c9
AS
4382 return 1;
4383
4384 return 0;
4385}
4386
4387/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4388 struct types. Otherwise, they may not. */
14f9c5c9
AS
4389
4390static int
d2e4a39e 4391equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4392{
d2e4a39e 4393 if (type0 == type1)
14f9c5c9 4394 return 1;
d2e4a39e 4395 if (type0 == NULL || type1 == NULL
78134374 4396 || type0->code () != type1->code ())
14f9c5c9 4397 return 0;
78134374
SM
4398 if ((type0->code () == TYPE_CODE_STRUCT
4399 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4400 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4401 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4402 return 1;
d2e4a39e 4403
14f9c5c9
AS
4404 return 0;
4405}
4406
4407/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4408 no more defined than that of SYM1. */
14f9c5c9
AS
4409
4410static int
d2e4a39e 4411lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4412{
4413 if (sym0 == sym1)
4414 return 1;
176620f1 4415 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4416 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4417 return 0;
4418
d2e4a39e 4419 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4420 {
4421 case LOC_UNDEF:
4422 return 1;
4423 case LOC_TYPEDEF:
4424 {
dda83cd7
SM
4425 struct type *type0 = SYMBOL_TYPE (sym0);
4426 struct type *type1 = SYMBOL_TYPE (sym1);
4427 const char *name0 = sym0->linkage_name ();
4428 const char *name1 = sym1->linkage_name ();
4429 int len0 = strlen (name0);
4430
4431 return
4432 type0->code () == type1->code ()
4433 && (equiv_types (type0, type1)
4434 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4435 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4436 }
4437 case LOC_CONST:
4438 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
dda83cd7 4439 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4440
4441 case LOC_STATIC:
4442 {
dda83cd7
SM
4443 const char *name0 = sym0->linkage_name ();
4444 const char *name1 = sym1->linkage_name ();
4445 return (strcmp (name0, name1) == 0
4446 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4447 }
4448
d2e4a39e
AS
4449 default:
4450 return 0;
14f9c5c9
AS
4451 }
4452}
4453
d1183b06
TT
4454/* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4455 records in RESULT. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4456
4457static void
d1183b06 4458add_defn_to_vec (std::vector<struct block_symbol> &result,
dda83cd7
SM
4459 struct symbol *sym,
4460 const struct block *block)
14f9c5c9 4461{
529cad9c
PH
4462 /* Do not try to complete stub types, as the debugger is probably
4463 already scanning all symbols matching a certain name at the
4464 time when this function is called. Trying to replace the stub
4465 type by its associated full type will cause us to restart a scan
4466 which may lead to an infinite recursion. Instead, the client
4467 collecting the matching symbols will end up collecting several
4468 matches, with at least one of them complete. It can then filter
4469 out the stub ones if needed. */
4470
d1183b06 4471 for (int i = result.size () - 1; i >= 0; i -= 1)
4c4b4cd2 4472 {
d1183b06 4473 if (lesseq_defined_than (sym, result[i].symbol))
dda83cd7 4474 return;
d1183b06 4475 else if (lesseq_defined_than (result[i].symbol, sym))
dda83cd7 4476 {
d1183b06
TT
4477 result[i].symbol = sym;
4478 result[i].block = block;
dda83cd7
SM
4479 return;
4480 }
4c4b4cd2
PH
4481 }
4482
d1183b06
TT
4483 struct block_symbol info;
4484 info.symbol = sym;
4485 info.block = block;
4486 result.push_back (info);
4c4b4cd2
PH
4487}
4488
7c7b6655
TT
4489/* Return a bound minimal symbol matching NAME according to Ada
4490 decoding rules. Returns an invalid symbol if there is no such
4491 minimal symbol. Names prefixed with "standard__" are handled
4492 specially: "standard__" is first stripped off, and only static and
4493 global symbols are searched. */
4c4b4cd2 4494
7c7b6655 4495struct bound_minimal_symbol
96d887e8 4496ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4497{
7c7b6655 4498 struct bound_minimal_symbol result;
4c4b4cd2 4499
7c7b6655
TT
4500 memset (&result, 0, sizeof (result));
4501
b5ec771e
PA
4502 symbol_name_match_type match_type = name_match_type_from_name (name);
4503 lookup_name_info lookup_name (name, match_type);
4504
4505 symbol_name_matcher_ftype *match_name
4506 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4507
2030c079 4508 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4509 {
7932255d 4510 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4511 {
c9d95fa3 4512 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4513 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4514 {
4515 result.minsym = msymbol;
4516 result.objfile = objfile;
4517 break;
4518 }
4519 }
4520 }
4c4b4cd2 4521
7c7b6655 4522 return result;
96d887e8 4523}
4c4b4cd2 4524
96d887e8
PH
4525/* For all subprograms that statically enclose the subprogram of the
4526 selected frame, add symbols matching identifier NAME in DOMAIN
1bfa81ac 4527 and their blocks to the list of data in RESULT, as for
48b78332
JB
4528 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4529 with a wildcard prefix. */
4c4b4cd2 4530
96d887e8 4531static void
d1183b06 4532add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
b5ec771e
PA
4533 const lookup_name_info &lookup_name,
4534 domain_enum domain)
96d887e8 4535{
96d887e8 4536}
14f9c5c9 4537
96d887e8
PH
4538/* True if TYPE is definitely an artificial type supplied to a symbol
4539 for which no debugging information was given in the symbol file. */
14f9c5c9 4540
96d887e8
PH
4541static int
4542is_nondebugging_type (struct type *type)
4543{
0d5cff50 4544 const char *name = ada_type_name (type);
5b4ee69b 4545
96d887e8
PH
4546 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4547}
4c4b4cd2 4548
8f17729f
JB
4549/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4550 that are deemed "identical" for practical purposes.
4551
4552 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4553 types and that their number of enumerals is identical (in other
1f704f76 4554 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4555
4556static int
4557ada_identical_enum_types_p (struct type *type1, struct type *type2)
4558{
4559 int i;
4560
4561 /* The heuristic we use here is fairly conservative. We consider
4562 that 2 enumerate types are identical if they have the same
4563 number of enumerals and that all enumerals have the same
4564 underlying value and name. */
4565
4566 /* All enums in the type should have an identical underlying value. */
1f704f76 4567 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4568 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4569 return 0;
4570
4571 /* All enumerals should also have the same name (modulo any numerical
4572 suffix). */
1f704f76 4573 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4574 {
0d5cff50
DE
4575 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4576 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4577 int len_1 = strlen (name_1);
4578 int len_2 = strlen (name_2);
4579
4580 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4581 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4582 if (len_1 != len_2
dda83cd7 4583 || strncmp (TYPE_FIELD_NAME (type1, i),
8f17729f
JB
4584 TYPE_FIELD_NAME (type2, i),
4585 len_1) != 0)
4586 return 0;
4587 }
4588
4589 return 1;
4590}
4591
4592/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4593 that are deemed "identical" for practical purposes. Sometimes,
4594 enumerals are not strictly identical, but their types are so similar
4595 that they can be considered identical.
4596
4597 For instance, consider the following code:
4598
4599 type Color is (Black, Red, Green, Blue, White);
4600 type RGB_Color is new Color range Red .. Blue;
4601
4602 Type RGB_Color is a subrange of an implicit type which is a copy
4603 of type Color. If we call that implicit type RGB_ColorB ("B" is
4604 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4605 As a result, when an expression references any of the enumeral
4606 by name (Eg. "print green"), the expression is technically
4607 ambiguous and the user should be asked to disambiguate. But
4608 doing so would only hinder the user, since it wouldn't matter
4609 what choice he makes, the outcome would always be the same.
4610 So, for practical purposes, we consider them as the same. */
4611
4612static int
54d343a2 4613symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4614{
4615 int i;
4616
4617 /* Before performing a thorough comparison check of each type,
4618 we perform a series of inexpensive checks. We expect that these
4619 checks will quickly fail in the vast majority of cases, and thus
4620 help prevent the unnecessary use of a more expensive comparison.
4621 Said comparison also expects us to make some of these checks
4622 (see ada_identical_enum_types_p). */
4623
4624 /* Quick check: All symbols should have an enum type. */
54d343a2 4625 for (i = 0; i < syms.size (); i++)
78134374 4626 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4627 return 0;
4628
4629 /* Quick check: They should all have the same value. */
54d343a2 4630 for (i = 1; i < syms.size (); i++)
d12307c1 4631 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4632 return 0;
4633
4634 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4635 for (i = 1; i < syms.size (); i++)
1f704f76 4636 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
dda83cd7 4637 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4638 return 0;
4639
4640 /* All the sanity checks passed, so we might have a set of
4641 identical enumeration types. Perform a more complete
4642 comparison of the type of each symbol. */
54d343a2 4643 for (i = 1; i < syms.size (); i++)
d12307c1 4644 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
dda83cd7 4645 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4646 return 0;
4647
4648 return 1;
4649}
4650
54d343a2 4651/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4652 duplicate other symbols in the list (The only case I know of where
4653 this happens is when object files containing stabs-in-ecoff are
4654 linked with files containing ordinary ecoff debugging symbols (or no
1bfa81ac 4655 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4c4b4cd2 4656
d1183b06 4657static void
54d343a2 4658remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4659{
4660 int i, j;
4c4b4cd2 4661
8f17729f
JB
4662 /* We should never be called with less than 2 symbols, as there
4663 cannot be any extra symbol in that case. But it's easy to
4664 handle, since we have nothing to do in that case. */
54d343a2 4665 if (syms->size () < 2)
d1183b06 4666 return;
8f17729f 4667
96d887e8 4668 i = 0;
54d343a2 4669 while (i < syms->size ())
96d887e8 4670 {
a35ddb44 4671 int remove_p = 0;
339c13b6
JB
4672
4673 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 4674 the get rid of the stub. */
339c13b6 4675
e46d3488 4676 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
dda83cd7
SM
4677 && (*syms)[i].symbol->linkage_name () != NULL)
4678 {
4679 for (j = 0; j < syms->size (); j++)
4680 {
4681 if (j != i
4682 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4683 && (*syms)[j].symbol->linkage_name () != NULL
4684 && strcmp ((*syms)[i].symbol->linkage_name (),
4685 (*syms)[j].symbol->linkage_name ()) == 0)
4686 remove_p = 1;
4687 }
4688 }
339c13b6
JB
4689
4690 /* Two symbols with the same name, same class and same address
dda83cd7 4691 should be identical. */
339c13b6 4692
987012b8 4693 else if ((*syms)[i].symbol->linkage_name () != NULL
dda83cd7
SM
4694 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4695 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4696 {
4697 for (j = 0; j < syms->size (); j += 1)
4698 {
4699 if (i != j
4700 && (*syms)[j].symbol->linkage_name () != NULL
4701 && strcmp ((*syms)[i].symbol->linkage_name (),
4702 (*syms)[j].symbol->linkage_name ()) == 0
4703 && SYMBOL_CLASS ((*syms)[i].symbol)
54d343a2 4704 == SYMBOL_CLASS ((*syms)[j].symbol)
dda83cd7
SM
4705 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4706 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4707 remove_p = 1;
4708 }
4709 }
339c13b6 4710
a35ddb44 4711 if (remove_p)
54d343a2 4712 syms->erase (syms->begin () + i);
1b788fb6
TT
4713 else
4714 i += 1;
14f9c5c9 4715 }
8f17729f
JB
4716
4717 /* If all the remaining symbols are identical enumerals, then
4718 just keep the first one and discard the rest.
4719
4720 Unlike what we did previously, we do not discard any entry
4721 unless they are ALL identical. This is because the symbol
4722 comparison is not a strict comparison, but rather a practical
4723 comparison. If all symbols are considered identical, then
4724 we can just go ahead and use the first one and discard the rest.
4725 But if we cannot reduce the list to a single element, we have
4726 to ask the user to disambiguate anyways. And if we have to
4727 present a multiple-choice menu, it's less confusing if the list
4728 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
4729 if (symbols_are_identical_enums (*syms))
4730 syms->resize (1);
14f9c5c9
AS
4731}
4732
96d887e8
PH
4733/* Given a type that corresponds to a renaming entity, use the type name
4734 to extract the scope (package name or function name, fully qualified,
4735 and following the GNAT encoding convention) where this renaming has been
49d83361 4736 defined. */
4c4b4cd2 4737
49d83361 4738static std::string
96d887e8 4739xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4740{
96d887e8 4741 /* The renaming types adhere to the following convention:
0963b4bd 4742 <scope>__<rename>___<XR extension>.
96d887e8
PH
4743 So, to extract the scope, we search for the "___XR" extension,
4744 and then backtrack until we find the first "__". */
76a01679 4745
7d93a1e0 4746 const char *name = renaming_type->name ();
108d56a4
SM
4747 const char *suffix = strstr (name, "___XR");
4748 const char *last;
14f9c5c9 4749
96d887e8
PH
4750 /* Now, backtrack a bit until we find the first "__". Start looking
4751 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4752
96d887e8
PH
4753 for (last = suffix - 3; last > name; last--)
4754 if (last[0] == '_' && last[1] == '_')
4755 break;
76a01679 4756
96d887e8 4757 /* Make a copy of scope and return it. */
49d83361 4758 return std::string (name, last);
4c4b4cd2
PH
4759}
4760
96d887e8 4761/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4762
96d887e8
PH
4763static int
4764is_package_name (const char *name)
4c4b4cd2 4765{
96d887e8
PH
4766 /* Here, We take advantage of the fact that no symbols are generated
4767 for packages, while symbols are generated for each function.
4768 So the condition for NAME represent a package becomes equivalent
4769 to NAME not existing in our list of symbols. There is only one
4770 small complication with library-level functions (see below). */
4c4b4cd2 4771
96d887e8
PH
4772 /* If it is a function that has not been defined at library level,
4773 then we should be able to look it up in the symbols. */
4774 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4775 return 0;
14f9c5c9 4776
96d887e8
PH
4777 /* Library-level function names start with "_ada_". See if function
4778 "_ada_" followed by NAME can be found. */
14f9c5c9 4779
96d887e8 4780 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4781 functions names cannot contain "__" in them. */
96d887e8
PH
4782 if (strstr (name, "__") != NULL)
4783 return 0;
4c4b4cd2 4784
528e1572 4785 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 4786
528e1572 4787 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 4788}
14f9c5c9 4789
96d887e8 4790/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4791 not visible from FUNCTION_NAME. */
14f9c5c9 4792
96d887e8 4793static int
0d5cff50 4794old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4795{
aeb5907d
JB
4796 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4797 return 0;
4798
49d83361 4799 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 4800
96d887e8 4801 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
4802 if (is_package_name (scope.c_str ()))
4803 return 0;
14f9c5c9 4804
96d887e8
PH
4805 /* Check that the rename is in the current function scope by checking
4806 that its name starts with SCOPE. */
76a01679 4807
96d887e8
PH
4808 /* If the function name starts with "_ada_", it means that it is
4809 a library-level function. Strip this prefix before doing the
4810 comparison, as the encoding for the renaming does not contain
4811 this prefix. */
61012eef 4812 if (startswith (function_name, "_ada_"))
96d887e8 4813 function_name += 5;
f26caa11 4814
49d83361 4815 return !startswith (function_name, scope.c_str ());
f26caa11
PH
4816}
4817
aeb5907d
JB
4818/* Remove entries from SYMS that corresponds to a renaming entity that
4819 is not visible from the function associated with CURRENT_BLOCK or
4820 that is superfluous due to the presence of more specific renaming
4821 information. Places surviving symbols in the initial entries of
d1183b06
TT
4822 SYMS.
4823
96d887e8 4824 Rationale:
aeb5907d
JB
4825 First, in cases where an object renaming is implemented as a
4826 reference variable, GNAT may produce both the actual reference
4827 variable and the renaming encoding. In this case, we discard the
4828 latter.
4829
4830 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4831 entity. Unfortunately, STABS currently does not support the definition
4832 of types that are local to a given lexical block, so all renamings types
4833 are emitted at library level. As a consequence, if an application
4834 contains two renaming entities using the same name, and a user tries to
4835 print the value of one of these entities, the result of the ada symbol
4836 lookup will also contain the wrong renaming type.
f26caa11 4837
96d887e8
PH
4838 This function partially covers for this limitation by attempting to
4839 remove from the SYMS list renaming symbols that should be visible
4840 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4841 method with the current information available. The implementation
4842 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4843
4844 - When the user tries to print a rename in a function while there
dda83cd7
SM
4845 is another rename entity defined in a package: Normally, the
4846 rename in the function has precedence over the rename in the
4847 package, so the latter should be removed from the list. This is
4848 currently not the case.
4849
96d887e8 4850 - This function will incorrectly remove valid renames if
dda83cd7
SM
4851 the CURRENT_BLOCK corresponds to a function which symbol name
4852 has been changed by an "Export" pragma. As a consequence,
4853 the user will be unable to print such rename entities. */
4c4b4cd2 4854
d1183b06 4855static void
54d343a2
TT
4856remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4857 const struct block *current_block)
4c4b4cd2
PH
4858{
4859 struct symbol *current_function;
0d5cff50 4860 const char *current_function_name;
4c4b4cd2 4861 int i;
aeb5907d
JB
4862 int is_new_style_renaming;
4863
4864 /* If there is both a renaming foo___XR... encoded as a variable and
4865 a simple variable foo in the same block, discard the latter.
0963b4bd 4866 First, zero out such symbols, then compress. */
aeb5907d 4867 is_new_style_renaming = 0;
54d343a2 4868 for (i = 0; i < syms->size (); i += 1)
aeb5907d 4869 {
54d343a2
TT
4870 struct symbol *sym = (*syms)[i].symbol;
4871 const struct block *block = (*syms)[i].block;
aeb5907d
JB
4872 const char *name;
4873 const char *suffix;
4874
4875 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4876 continue;
987012b8 4877 name = sym->linkage_name ();
aeb5907d
JB
4878 suffix = strstr (name, "___XR");
4879
4880 if (suffix != NULL)
4881 {
4882 int name_len = suffix - name;
4883 int j;
5b4ee69b 4884
aeb5907d 4885 is_new_style_renaming = 1;
54d343a2
TT
4886 for (j = 0; j < syms->size (); j += 1)
4887 if (i != j && (*syms)[j].symbol != NULL
987012b8 4888 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 4889 name_len) == 0
54d343a2
TT
4890 && block == (*syms)[j].block)
4891 (*syms)[j].symbol = NULL;
aeb5907d
JB
4892 }
4893 }
4894 if (is_new_style_renaming)
4895 {
4896 int j, k;
4897
54d343a2
TT
4898 for (j = k = 0; j < syms->size (); j += 1)
4899 if ((*syms)[j].symbol != NULL)
aeb5907d 4900 {
54d343a2 4901 (*syms)[k] = (*syms)[j];
aeb5907d
JB
4902 k += 1;
4903 }
d1183b06
TT
4904 syms->resize (k);
4905 return;
aeb5907d 4906 }
4c4b4cd2
PH
4907
4908 /* Extract the function name associated to CURRENT_BLOCK.
4909 Abort if unable to do so. */
76a01679 4910
4c4b4cd2 4911 if (current_block == NULL)
d1183b06 4912 return;
76a01679 4913
7f0df278 4914 current_function = block_linkage_function (current_block);
4c4b4cd2 4915 if (current_function == NULL)
d1183b06 4916 return;
4c4b4cd2 4917
987012b8 4918 current_function_name = current_function->linkage_name ();
4c4b4cd2 4919 if (current_function_name == NULL)
d1183b06 4920 return;
4c4b4cd2
PH
4921
4922 /* Check each of the symbols, and remove it from the list if it is
4923 a type corresponding to a renaming that is out of the scope of
4924 the current block. */
4925
4926 i = 0;
54d343a2 4927 while (i < syms->size ())
4c4b4cd2 4928 {
54d343a2 4929 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
4930 == ADA_OBJECT_RENAMING
4931 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
4932 current_function_name))
4933 syms->erase (syms->begin () + i);
4c4b4cd2 4934 else
dda83cd7 4935 i += 1;
4c4b4cd2 4936 }
4c4b4cd2
PH
4937}
4938
d1183b06 4939/* Add to RESULT all symbols from BLOCK (and its super-blocks)
339c13b6
JB
4940 whose name and domain match NAME and DOMAIN respectively.
4941 If no match was found, then extend the search to "enclosing"
4942 routines (in other words, if we're inside a nested function,
4943 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4944 If WILD_MATCH_P is nonzero, perform the naming matching in
4945 "wild" mode (see function "wild_match" for more info).
339c13b6 4946
d1183b06 4947 Note: This function assumes that RESULT has 0 (zero) element in it. */
339c13b6
JB
4948
4949static void
d1183b06 4950ada_add_local_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
4951 const lookup_name_info &lookup_name,
4952 const struct block *block, domain_enum domain)
339c13b6
JB
4953{
4954 int block_depth = 0;
4955
4956 while (block != NULL)
4957 {
4958 block_depth += 1;
d1183b06 4959 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
339c13b6
JB
4960
4961 /* If we found a non-function match, assume that's the one. */
d1183b06 4962 if (is_nonfunction (result))
dda83cd7 4963 return;
339c13b6
JB
4964
4965 block = BLOCK_SUPERBLOCK (block);
4966 }
4967
4968 /* If no luck so far, try to find NAME as a local symbol in some lexically
4969 enclosing subprogram. */
d1183b06
TT
4970 if (result.empty () && block_depth > 2)
4971 add_symbols_from_enclosing_procs (result, lookup_name, domain);
339c13b6
JB
4972}
4973
2315bb2d 4974/* An object of this type is used as the callback argument when
40658b94 4975 calling the map_matching_symbols method. */
ccefe4c4 4976
40658b94 4977struct match_data
ccefe4c4 4978{
1bfa81ac
TT
4979 explicit match_data (std::vector<struct block_symbol> *rp)
4980 : resultp (rp)
4981 {
4982 }
4983 DISABLE_COPY_AND_ASSIGN (match_data);
4984
2315bb2d
TT
4985 bool operator() (struct block_symbol *bsym);
4986
1bfa81ac 4987 struct objfile *objfile = nullptr;
d1183b06 4988 std::vector<struct block_symbol> *resultp;
1bfa81ac 4989 struct symbol *arg_sym = nullptr;
1178743e 4990 bool found_sym = false;
ccefe4c4
TT
4991};
4992
2315bb2d
TT
4993/* A callback for add_nonlocal_symbols that adds symbol, found in
4994 BSYM, to a list of symbols. */
ccefe4c4 4995
2315bb2d
TT
4996bool
4997match_data::operator() (struct block_symbol *bsym)
ccefe4c4 4998{
199b4314
TT
4999 const struct block *block = bsym->block;
5000 struct symbol *sym = bsym->symbol;
5001
40658b94
PH
5002 if (sym == NULL)
5003 {
2315bb2d
TT
5004 if (!found_sym && arg_sym != NULL)
5005 add_defn_to_vec (*resultp,
5006 fixup_symbol_section (arg_sym, objfile),
40658b94 5007 block);
2315bb2d
TT
5008 found_sym = false;
5009 arg_sym = NULL;
40658b94
PH
5010 }
5011 else
5012 {
5013 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5014 return true;
40658b94 5015 else if (SYMBOL_IS_ARGUMENT (sym))
2315bb2d 5016 arg_sym = sym;
40658b94
PH
5017 else
5018 {
2315bb2d
TT
5019 found_sym = true;
5020 add_defn_to_vec (*resultp,
5021 fixup_symbol_section (sym, objfile),
40658b94
PH
5022 block);
5023 }
5024 }
199b4314 5025 return true;
40658b94
PH
5026}
5027
b5ec771e
PA
5028/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5029 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
1bfa81ac 5030 symbols to RESULT. Return whether we found such symbols. */
22cee43f
PMR
5031
5032static int
d1183b06 5033ada_add_block_renamings (std::vector<struct block_symbol> &result,
22cee43f 5034 const struct block *block,
b5ec771e
PA
5035 const lookup_name_info &lookup_name,
5036 domain_enum domain)
22cee43f
PMR
5037{
5038 struct using_direct *renaming;
d1183b06 5039 int defns_mark = result.size ();
22cee43f 5040
b5ec771e
PA
5041 symbol_name_matcher_ftype *name_match
5042 = ada_get_symbol_name_matcher (lookup_name);
5043
22cee43f
PMR
5044 for (renaming = block_using (block);
5045 renaming != NULL;
5046 renaming = renaming->next)
5047 {
5048 const char *r_name;
22cee43f
PMR
5049
5050 /* Avoid infinite recursions: skip this renaming if we are actually
5051 already traversing it.
5052
5053 Currently, symbol lookup in Ada don't use the namespace machinery from
5054 C++/Fortran support: skip namespace imports that use them. */
5055 if (renaming->searched
5056 || (renaming->import_src != NULL
5057 && renaming->import_src[0] != '\0')
5058 || (renaming->import_dest != NULL
5059 && renaming->import_dest[0] != '\0'))
5060 continue;
5061 renaming->searched = 1;
5062
5063 /* TODO: here, we perform another name-based symbol lookup, which can
5064 pull its own multiple overloads. In theory, we should be able to do
5065 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5066 not a simple name. But in order to do this, we would need to enhance
5067 the DWARF reader to associate a symbol to this renaming, instead of a
5068 name. So, for now, we do something simpler: re-use the C++/Fortran
5069 namespace machinery. */
5070 r_name = (renaming->alias != NULL
5071 ? renaming->alias
5072 : renaming->declaration);
b5ec771e
PA
5073 if (name_match (r_name, lookup_name, NULL))
5074 {
5075 lookup_name_info decl_lookup_name (renaming->declaration,
5076 lookup_name.match_type ());
d1183b06 5077 ada_add_all_symbols (result, block, decl_lookup_name, domain,
b5ec771e
PA
5078 1, NULL);
5079 }
22cee43f
PMR
5080 renaming->searched = 0;
5081 }
d1183b06 5082 return result.size () != defns_mark;
22cee43f
PMR
5083}
5084
db230ce3
JB
5085/* Implements compare_names, but only applying the comparision using
5086 the given CASING. */
5b4ee69b 5087
40658b94 5088static int
db230ce3
JB
5089compare_names_with_case (const char *string1, const char *string2,
5090 enum case_sensitivity casing)
40658b94
PH
5091{
5092 while (*string1 != '\0' && *string2 != '\0')
5093 {
db230ce3
JB
5094 char c1, c2;
5095
40658b94
PH
5096 if (isspace (*string1) || isspace (*string2))
5097 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5098
5099 if (casing == case_sensitive_off)
5100 {
5101 c1 = tolower (*string1);
5102 c2 = tolower (*string2);
5103 }
5104 else
5105 {
5106 c1 = *string1;
5107 c2 = *string2;
5108 }
5109 if (c1 != c2)
40658b94 5110 break;
db230ce3 5111
40658b94
PH
5112 string1 += 1;
5113 string2 += 1;
5114 }
db230ce3 5115
40658b94
PH
5116 switch (*string1)
5117 {
5118 case '(':
5119 return strcmp_iw_ordered (string1, string2);
5120 case '_':
5121 if (*string2 == '\0')
5122 {
052874e8 5123 if (is_name_suffix (string1))
40658b94
PH
5124 return 0;
5125 else
1a1d5513 5126 return 1;
40658b94 5127 }
dbb8534f 5128 /* FALLTHROUGH */
40658b94
PH
5129 default:
5130 if (*string2 == '(')
5131 return strcmp_iw_ordered (string1, string2);
5132 else
db230ce3
JB
5133 {
5134 if (casing == case_sensitive_off)
5135 return tolower (*string1) - tolower (*string2);
5136 else
5137 return *string1 - *string2;
5138 }
40658b94 5139 }
ccefe4c4
TT
5140}
5141
db230ce3
JB
5142/* Compare STRING1 to STRING2, with results as for strcmp.
5143 Compatible with strcmp_iw_ordered in that...
5144
5145 strcmp_iw_ordered (STRING1, STRING2) <= 0
5146
5147 ... implies...
5148
5149 compare_names (STRING1, STRING2) <= 0
5150
5151 (they may differ as to what symbols compare equal). */
5152
5153static int
5154compare_names (const char *string1, const char *string2)
5155{
5156 int result;
5157
5158 /* Similar to what strcmp_iw_ordered does, we need to perform
5159 a case-insensitive comparison first, and only resort to
5160 a second, case-sensitive, comparison if the first one was
5161 not sufficient to differentiate the two strings. */
5162
5163 result = compare_names_with_case (string1, string2, case_sensitive_off);
5164 if (result == 0)
5165 result = compare_names_with_case (string1, string2, case_sensitive_on);
5166
5167 return result;
5168}
5169
b5ec771e
PA
5170/* Convenience function to get at the Ada encoded lookup name for
5171 LOOKUP_NAME, as a C string. */
5172
5173static const char *
5174ada_lookup_name (const lookup_name_info &lookup_name)
5175{
5176 return lookup_name.ada ().lookup_name ().c_str ();
5177}
5178
0b7b2c2a
TT
5179/* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5180 for OBJFILE, then walk the objfile's symtabs and update the
5181 results. */
5182
5183static void
5184map_matching_symbols (struct objfile *objfile,
5185 const lookup_name_info &lookup_name,
5186 bool is_wild_match,
5187 domain_enum domain,
5188 int global,
5189 match_data &data)
5190{
5191 data.objfile = objfile;
5192 objfile->expand_matching_symbols (lookup_name, domain, global,
5193 is_wild_match ? nullptr : compare_names);
5194
5195 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5196 for (compunit_symtab *symtab : objfile->compunits ())
5197 {
5198 const struct block *block
5199 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5200 if (!iterate_over_symbols_terminated (block, lookup_name,
5201 domain, data))
5202 break;
5203 }
5204}
5205
1bfa81ac 5206/* Add to RESULT all non-local symbols whose name and domain match
b5ec771e
PA
5207 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5208 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5209 symbols otherwise. */
339c13b6
JB
5210
5211static void
d1183b06 5212add_nonlocal_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5213 const lookup_name_info &lookup_name,
5214 domain_enum domain, int global)
339c13b6 5215{
1bfa81ac 5216 struct match_data data (&result);
339c13b6 5217
b5ec771e
PA
5218 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5219
2030c079 5220 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5221 {
0b7b2c2a
TT
5222 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5223 global, data);
22cee43f 5224
b669c953 5225 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5226 {
5227 const struct block *global_block
5228 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5229
d1183b06 5230 if (ada_add_block_renamings (result, global_block, lookup_name,
b5ec771e 5231 domain))
1178743e 5232 data.found_sym = true;
22cee43f 5233 }
40658b94
PH
5234 }
5235
d1183b06 5236 if (result.empty () && global && !is_wild_match)
40658b94 5237 {
b5ec771e 5238 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5239 std::string bracket_name = std::string ("<_ada_") + name + '>';
5240 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5241
2030c079 5242 for (objfile *objfile : current_program_space->objfiles ())
0b7b2c2a
TT
5243 map_matching_symbols (objfile, name1, false, domain, global, data);
5244 }
339c13b6
JB
5245}
5246
b5ec771e
PA
5247/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5248 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
1bfa81ac 5249 returning the number of matches. Add these to RESULT.
4eeaa230 5250
22cee43f
PMR
5251 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5252 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5253 is the one match returned (no other matches in that or
d9680e73 5254 enclosing blocks is returned). If there are any matches in or
22cee43f 5255 surrounding BLOCK, then these alone are returned.
4eeaa230 5256
b5ec771e
PA
5257 Names prefixed with "standard__" are handled specially:
5258 "standard__" is first stripped off (by the lookup_name
5259 constructor), and only static and global symbols are searched.
14f9c5c9 5260
22cee43f
PMR
5261 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5262 to lookup global symbols. */
5263
5264static void
d1183b06 5265ada_add_all_symbols (std::vector<struct block_symbol> &result,
22cee43f 5266 const struct block *block,
b5ec771e 5267 const lookup_name_info &lookup_name,
22cee43f
PMR
5268 domain_enum domain,
5269 int full_search,
5270 int *made_global_lookup_p)
14f9c5c9
AS
5271{
5272 struct symbol *sym;
14f9c5c9 5273
22cee43f
PMR
5274 if (made_global_lookup_p)
5275 *made_global_lookup_p = 0;
339c13b6
JB
5276
5277 /* Special case: If the user specifies a symbol name inside package
5278 Standard, do a non-wild matching of the symbol name without
5279 the "standard__" prefix. This was primarily introduced in order
5280 to allow the user to specifically access the standard exceptions
5281 using, for instance, Standard.Constraint_Error when Constraint_Error
5282 is ambiguous (due to the user defining its own Constraint_Error
5283 entity inside its program). */
b5ec771e
PA
5284 if (lookup_name.ada ().standard_p ())
5285 block = NULL;
4c4b4cd2 5286
339c13b6 5287 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5288
4eeaa230
DE
5289 if (block != NULL)
5290 {
5291 if (full_search)
d1183b06 5292 ada_add_local_symbols (result, lookup_name, block, domain);
4eeaa230
DE
5293 else
5294 {
5295 /* In the !full_search case we're are being called by
4009ee92 5296 iterate_over_symbols, and we don't want to search
4eeaa230 5297 superblocks. */
d1183b06 5298 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4eeaa230 5299 }
d1183b06 5300 if (!result.empty () || !full_search)
22cee43f 5301 return;
4eeaa230 5302 }
d2e4a39e 5303
339c13b6
JB
5304 /* No non-global symbols found. Check our cache to see if we have
5305 already performed this search before. If we have, then return
5306 the same result. */
5307
b5ec771e
PA
5308 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5309 domain, &sym, &block))
4c4b4cd2
PH
5310 {
5311 if (sym != NULL)
d1183b06 5312 add_defn_to_vec (result, sym, block);
22cee43f 5313 return;
4c4b4cd2 5314 }
14f9c5c9 5315
22cee43f
PMR
5316 if (made_global_lookup_p)
5317 *made_global_lookup_p = 1;
b1eedac9 5318
339c13b6
JB
5319 /* Search symbols from all global blocks. */
5320
d1183b06 5321 add_nonlocal_symbols (result, lookup_name, domain, 1);
d2e4a39e 5322
4c4b4cd2 5323 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5324 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5325
d1183b06
TT
5326 if (result.empty ())
5327 add_nonlocal_symbols (result, lookup_name, domain, 0);
22cee43f
PMR
5328}
5329
b5ec771e 5330/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
d1183b06
TT
5331 is non-zero, enclosing scope and in global scopes.
5332
5333 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5334 blocks and symbol tables (if any) in which they were found.
22cee43f
PMR
5335
5336 When full_search is non-zero, any non-function/non-enumeral
5337 symbol match within the nest of blocks whose innermost member is BLOCK,
5338 is the one match returned (no other matches in that or
5339 enclosing blocks is returned). If there are any matches in or
5340 surrounding BLOCK, then these alone are returned.
5341
5342 Names prefixed with "standard__" are handled specially: "standard__"
5343 is first stripped off, and only static and global symbols are searched. */
5344
d1183b06 5345static std::vector<struct block_symbol>
b5ec771e
PA
5346ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5347 const struct block *block,
22cee43f 5348 domain_enum domain,
22cee43f
PMR
5349 int full_search)
5350{
22cee43f 5351 int syms_from_global_search;
d1183b06 5352 std::vector<struct block_symbol> results;
22cee43f 5353
d1183b06 5354 ada_add_all_symbols (results, block, lookup_name,
b5ec771e 5355 domain, full_search, &syms_from_global_search);
14f9c5c9 5356
d1183b06 5357 remove_extra_symbols (&results);
4c4b4cd2 5358
d1183b06 5359 if (results.empty () && full_search && syms_from_global_search)
b5ec771e 5360 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5361
d1183b06 5362 if (results.size () == 1 && full_search && syms_from_global_search)
b5ec771e 5363 cache_symbol (ada_lookup_name (lookup_name), domain,
d1183b06 5364 results[0].symbol, results[0].block);
ec6a20c2 5365
d1183b06
TT
5366 remove_irrelevant_renamings (&results, block);
5367 return results;
14f9c5c9
AS
5368}
5369
b5ec771e 5370/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
d1183b06 5371 in global scopes, returning (SYM,BLOCK) tuples.
ec6a20c2 5372
4eeaa230
DE
5373 See ada_lookup_symbol_list_worker for further details. */
5374
d1183b06 5375std::vector<struct block_symbol>
b5ec771e 5376ada_lookup_symbol_list (const char *name, const struct block *block,
d1183b06 5377 domain_enum domain)
4eeaa230 5378{
b5ec771e
PA
5379 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5380 lookup_name_info lookup_name (name, name_match_type);
5381
d1183b06 5382 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
4eeaa230
DE
5383}
5384
4e5c77fe
JB
5385/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5386 to 1, but choosing the first symbol found if there are multiple
5387 choices.
5388
5e2336be
JB
5389 The result is stored in *INFO, which must be non-NULL.
5390 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5391
5392void
5393ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5394 domain_enum domain,
d12307c1 5395 struct block_symbol *info)
14f9c5c9 5396{
b5ec771e
PA
5397 /* Since we already have an encoded name, wrap it in '<>' to force a
5398 verbatim match. Otherwise, if the name happens to not look like
5399 an encoded name (because it doesn't include a "__"),
5400 ada_lookup_name_info would re-encode/fold it again, and that
5401 would e.g., incorrectly lowercase object renaming names like
5402 "R28b" -> "r28b". */
12932e2c 5403 std::string verbatim = add_angle_brackets (name);
b5ec771e 5404
5e2336be 5405 gdb_assert (info != NULL);
65392b3e 5406 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5407}
aeb5907d
JB
5408
5409/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5410 scope and in global scopes, or NULL if none. NAME is folded and
5411 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5412 choosing the first symbol if there are multiple choices. */
4e5c77fe 5413
d12307c1 5414struct block_symbol
aeb5907d 5415ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5416 domain_enum domain)
aeb5907d 5417{
d1183b06
TT
5418 std::vector<struct block_symbol> candidates
5419 = ada_lookup_symbol_list (name, block0, domain);
f98fc17b 5420
d1183b06 5421 if (candidates.empty ())
54d343a2 5422 return {};
f98fc17b
PA
5423
5424 block_symbol info = candidates[0];
5425 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5426 return info;
4c4b4cd2 5427}
14f9c5c9 5428
14f9c5c9 5429
4c4b4cd2
PH
5430/* True iff STR is a possible encoded suffix of a normal Ada name
5431 that is to be ignored for matching purposes. Suffixes of parallel
5432 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5433 are given by any of the regular expressions:
4c4b4cd2 5434
babe1480
JB
5435 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5436 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5437 TKB [subprogram suffix for task bodies]
babe1480 5438 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5439 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5440
5441 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5442 match is performed. This sequence is used to differentiate homonyms,
5443 is an optional part of a valid name suffix. */
4c4b4cd2 5444
14f9c5c9 5445static int
d2e4a39e 5446is_name_suffix (const char *str)
14f9c5c9
AS
5447{
5448 int k;
4c4b4cd2
PH
5449 const char *matching;
5450 const int len = strlen (str);
5451
babe1480
JB
5452 /* Skip optional leading __[0-9]+. */
5453
4c4b4cd2
PH
5454 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5455 {
babe1480
JB
5456 str += 3;
5457 while (isdigit (str[0]))
dda83cd7 5458 str += 1;
4c4b4cd2 5459 }
babe1480
JB
5460
5461 /* [.$][0-9]+ */
4c4b4cd2 5462
babe1480 5463 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5464 {
babe1480 5465 matching = str + 1;
4c4b4cd2 5466 while (isdigit (matching[0]))
dda83cd7 5467 matching += 1;
4c4b4cd2 5468 if (matching[0] == '\0')
dda83cd7 5469 return 1;
4c4b4cd2
PH
5470 }
5471
5472 /* ___[0-9]+ */
babe1480 5473
4c4b4cd2
PH
5474 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5475 {
5476 matching = str + 3;
5477 while (isdigit (matching[0]))
dda83cd7 5478 matching += 1;
4c4b4cd2 5479 if (matching[0] == '\0')
dda83cd7 5480 return 1;
4c4b4cd2
PH
5481 }
5482
9ac7f98e
JB
5483 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5484
5485 if (strcmp (str, "TKB") == 0)
5486 return 1;
5487
529cad9c
PH
5488#if 0
5489 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5490 with a N at the end. Unfortunately, the compiler uses the same
5491 convention for other internal types it creates. So treating
529cad9c 5492 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5493 some regressions. For instance, consider the case of an enumerated
5494 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5495 name ends with N.
5496 Having a single character like this as a suffix carrying some
0963b4bd 5497 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5498 to be something like "_N" instead. In the meantime, do not do
5499 the following check. */
5500 /* Protected Object Subprograms */
5501 if (len == 1 && str [0] == 'N')
5502 return 1;
5503#endif
5504
5505 /* _E[0-9]+[bs]$ */
5506 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5507 {
5508 matching = str + 3;
5509 while (isdigit (matching[0]))
dda83cd7 5510 matching += 1;
529cad9c 5511 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5512 && matching [1] == '\0')
5513 return 1;
529cad9c
PH
5514 }
5515
4c4b4cd2
PH
5516 /* ??? We should not modify STR directly, as we are doing below. This
5517 is fine in this case, but may become problematic later if we find
5518 that this alternative did not work, and want to try matching
5519 another one from the begining of STR. Since we modified it, we
5520 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5521 if (str[0] == 'X')
5522 {
5523 str += 1;
d2e4a39e 5524 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5525 {
5526 if (str[0] != 'n' && str[0] != 'b')
5527 return 0;
5528 str += 1;
5529 }
14f9c5c9 5530 }
babe1480 5531
14f9c5c9
AS
5532 if (str[0] == '\000')
5533 return 1;
babe1480 5534
d2e4a39e 5535 if (str[0] == '_')
14f9c5c9
AS
5536 {
5537 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5538 return 0;
d2e4a39e 5539 if (str[2] == '_')
dda83cd7
SM
5540 {
5541 if (strcmp (str + 3, "JM") == 0)
5542 return 1;
5543 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5544 the LJM suffix in favor of the JM one. But we will
5545 still accept LJM as a valid suffix for a reasonable
5546 amount of time, just to allow ourselves to debug programs
5547 compiled using an older version of GNAT. */
5548 if (strcmp (str + 3, "LJM") == 0)
5549 return 1;
5550 if (str[3] != 'X')
5551 return 0;
5552 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5553 || str[4] == 'U' || str[4] == 'P')
5554 return 1;
5555 if (str[4] == 'R' && str[5] != 'T')
5556 return 1;
5557 return 0;
5558 }
4c4b4cd2 5559 if (!isdigit (str[2]))
dda83cd7 5560 return 0;
4c4b4cd2 5561 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5562 if (!isdigit (str[k]) && str[k] != '_')
5563 return 0;
14f9c5c9
AS
5564 return 1;
5565 }
4c4b4cd2 5566 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5567 {
4c4b4cd2 5568 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5569 if (!isdigit (str[k]) && str[k] != '_')
5570 return 0;
14f9c5c9
AS
5571 return 1;
5572 }
5573 return 0;
5574}
d2e4a39e 5575
aeb5907d
JB
5576/* Return non-zero if the string starting at NAME and ending before
5577 NAME_END contains no capital letters. */
529cad9c
PH
5578
5579static int
5580is_valid_name_for_wild_match (const char *name0)
5581{
f945dedf 5582 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5583 int i;
5584
5823c3ef
JB
5585 /* If the decoded name starts with an angle bracket, it means that
5586 NAME0 does not follow the GNAT encoding format. It should then
5587 not be allowed as a possible wild match. */
5588 if (decoded_name[0] == '<')
5589 return 0;
5590
529cad9c
PH
5591 for (i=0; decoded_name[i] != '\0'; i++)
5592 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5593 return 0;
5594
5595 return 1;
5596}
5597
59c8a30b
JB
5598/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5599 character which could start a simple name. Assumes that *NAMEP points
5600 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5601
14f9c5c9 5602static int
59c8a30b 5603advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5604{
73589123 5605 const char *name = *namep;
5b4ee69b 5606
5823c3ef 5607 while (1)
14f9c5c9 5608 {
59c8a30b 5609 char t0, t1;
73589123
PH
5610
5611 t0 = *name;
5612 if (t0 == '_')
5613 {
5614 t1 = name[1];
5615 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5616 {
5617 name += 1;
61012eef 5618 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5619 break;
5620 else
5621 name += 1;
5622 }
aa27d0b3
JB
5623 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5624 || name[2] == target0))
73589123
PH
5625 {
5626 name += 2;
5627 break;
5628 }
86b44259
TT
5629 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5630 {
5631 /* Names like "pkg__B_N__name", where N is a number, are
5632 block-local. We can handle these by simply skipping
5633 the "B_" here. */
5634 name += 4;
5635 }
73589123
PH
5636 else
5637 return 0;
5638 }
5639 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5640 name += 1;
5641 else
5823c3ef 5642 return 0;
73589123
PH
5643 }
5644
5645 *namep = name;
5646 return 1;
5647}
5648
b5ec771e
PA
5649/* Return true iff NAME encodes a name of the form prefix.PATN.
5650 Ignores any informational suffixes of NAME (i.e., for which
5651 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5652 simple name. */
73589123 5653
b5ec771e 5654static bool
73589123
PH
5655wild_match (const char *name, const char *patn)
5656{
22e048c9 5657 const char *p;
73589123
PH
5658 const char *name0 = name;
5659
5660 while (1)
5661 {
5662 const char *match = name;
5663
5664 if (*name == *patn)
5665 {
5666 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5667 if (*p != *name)
5668 break;
5669 if (*p == '\0' && is_name_suffix (name))
b5ec771e 5670 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
5671
5672 if (name[-1] == '_')
5673 name -= 1;
5674 }
5675 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 5676 return false;
96d887e8 5677 }
96d887e8
PH
5678}
5679
d1183b06 5680/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
b5ec771e 5681 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
5682
5683static void
d1183b06 5684ada_add_block_symbols (std::vector<struct block_symbol> &result,
b5ec771e
PA
5685 const struct block *block,
5686 const lookup_name_info &lookup_name,
5687 domain_enum domain, struct objfile *objfile)
96d887e8 5688{
8157b174 5689 struct block_iterator iter;
96d887e8
PH
5690 /* A matching argument symbol, if any. */
5691 struct symbol *arg_sym;
5692 /* Set true when we find a matching non-argument symbol. */
1178743e 5693 bool found_sym;
96d887e8
PH
5694 struct symbol *sym;
5695
5696 arg_sym = NULL;
1178743e 5697 found_sym = false;
b5ec771e
PA
5698 for (sym = block_iter_match_first (block, lookup_name, &iter);
5699 sym != NULL;
5700 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 5701 {
c1b5c1eb 5702 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
5703 {
5704 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5705 {
5706 if (SYMBOL_IS_ARGUMENT (sym))
5707 arg_sym = sym;
5708 else
5709 {
1178743e 5710 found_sym = true;
d1183b06 5711 add_defn_to_vec (result,
b5ec771e
PA
5712 fixup_symbol_section (sym, objfile),
5713 block);
5714 }
5715 }
5716 }
96d887e8
PH
5717 }
5718
22cee43f
PMR
5719 /* Handle renamings. */
5720
d1183b06 5721 if (ada_add_block_renamings (result, block, lookup_name, domain))
1178743e 5722 found_sym = true;
22cee43f 5723
96d887e8
PH
5724 if (!found_sym && arg_sym != NULL)
5725 {
d1183b06 5726 add_defn_to_vec (result,
dda83cd7
SM
5727 fixup_symbol_section (arg_sym, objfile),
5728 block);
96d887e8
PH
5729 }
5730
b5ec771e 5731 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
5732 {
5733 arg_sym = NULL;
1178743e 5734 found_sym = false;
b5ec771e
PA
5735 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5736 const char *name = ada_lookup_name.c_str ();
5737 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
5738
5739 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5740 {
dda83cd7
SM
5741 if (symbol_matches_domain (sym->language (),
5742 SYMBOL_DOMAIN (sym), domain))
5743 {
5744 int cmp;
5745
5746 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5747 if (cmp == 0)
5748 {
5749 cmp = !startswith (sym->linkage_name (), "_ada_");
5750 if (cmp == 0)
5751 cmp = strncmp (name, sym->linkage_name () + 5,
5752 name_len);
5753 }
5754
5755 if (cmp == 0
5756 && is_name_suffix (sym->linkage_name () + name_len + 5))
5757 {
2a2d4dc3
AS
5758 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5759 {
5760 if (SYMBOL_IS_ARGUMENT (sym))
5761 arg_sym = sym;
5762 else
5763 {
1178743e 5764 found_sym = true;
d1183b06 5765 add_defn_to_vec (result,
2a2d4dc3
AS
5766 fixup_symbol_section (sym, objfile),
5767 block);
5768 }
5769 }
dda83cd7
SM
5770 }
5771 }
76a01679 5772 }
96d887e8
PH
5773
5774 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 5775 They aren't parameters, right? */
96d887e8 5776 if (!found_sym && arg_sym != NULL)
dda83cd7 5777 {
d1183b06 5778 add_defn_to_vec (result,
dda83cd7
SM
5779 fixup_symbol_section (arg_sym, objfile),
5780 block);
5781 }
96d887e8
PH
5782 }
5783}
5784\f
41d27058 5785
dda83cd7 5786 /* Symbol Completion */
41d27058 5787
b5ec771e 5788/* See symtab.h. */
41d27058 5789
b5ec771e
PA
5790bool
5791ada_lookup_name_info::matches
5792 (const char *sym_name,
5793 symbol_name_match_type match_type,
a207cff2 5794 completion_match_result *comp_match_res) const
41d27058 5795{
b5ec771e
PA
5796 bool match = false;
5797 const char *text = m_encoded_name.c_str ();
5798 size_t text_len = m_encoded_name.size ();
41d27058
JB
5799
5800 /* First, test against the fully qualified name of the symbol. */
5801
5802 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5803 match = true;
41d27058 5804
f945dedf 5805 std::string decoded_name = ada_decode (sym_name);
b5ec771e 5806 if (match && !m_encoded_p)
41d27058
JB
5807 {
5808 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
5809 that iff we are doing a verbatim match, the decoded version
5810 of the symbol name starts with '<'. Otherwise, this symbol name
5811 is not a suitable completion. */
41d27058 5812
f945dedf 5813 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 5814 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
5815 }
5816
b5ec771e 5817 if (match && !m_verbatim_p)
41d27058
JB
5818 {
5819 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
5820 be done is to verify that the potentially matching symbol name
5821 does not include capital letters, because the ada-mode would
5822 not be able to understand these symbol names without the
5823 angle bracket notation. */
41d27058
JB
5824 const char *tmp;
5825
5826 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5827 if (*tmp != '\0')
b5ec771e 5828 match = false;
41d27058
JB
5829 }
5830
5831 /* Second: Try wild matching... */
5832
b5ec771e 5833 if (!match && m_wild_match_p)
41d27058
JB
5834 {
5835 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
5836 may represent an unqualified symbol name. We therefore must
5837 also compare TEXT against the unqualified name of the symbol. */
f945dedf 5838 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
5839
5840 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 5841 match = true;
41d27058
JB
5842 }
5843
b5ec771e 5844 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
5845
5846 if (!match)
b5ec771e 5847 return false;
41d27058 5848
a207cff2 5849 if (comp_match_res != NULL)
b5ec771e 5850 {
a207cff2 5851 std::string &match_str = comp_match_res->match.storage ();
41d27058 5852
b5ec771e 5853 if (!m_encoded_p)
a207cff2 5854 match_str = ada_decode (sym_name);
b5ec771e
PA
5855 else
5856 {
5857 if (m_verbatim_p)
5858 match_str = add_angle_brackets (sym_name);
5859 else
5860 match_str = sym_name;
41d27058 5861
b5ec771e 5862 }
a207cff2
PA
5863
5864 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
5865 }
5866
b5ec771e 5867 return true;
41d27058
JB
5868}
5869
dda83cd7 5870 /* Field Access */
96d887e8 5871
73fb9985
JB
5872/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5873 for tagged types. */
5874
5875static int
5876ada_is_dispatch_table_ptr_type (struct type *type)
5877{
0d5cff50 5878 const char *name;
73fb9985 5879
78134374 5880 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
5881 return 0;
5882
7d93a1e0 5883 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
5884 if (name == NULL)
5885 return 0;
5886
5887 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5888}
5889
ac4a2da4
JG
5890/* Return non-zero if TYPE is an interface tag. */
5891
5892static int
5893ada_is_interface_tag (struct type *type)
5894{
7d93a1e0 5895 const char *name = type->name ();
ac4a2da4
JG
5896
5897 if (name == NULL)
5898 return 0;
5899
5900 return (strcmp (name, "ada__tags__interface_tag") == 0);
5901}
5902
963a6417
PH
5903/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5904 to be invisible to users. */
96d887e8 5905
963a6417
PH
5906int
5907ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5908{
1f704f76 5909 if (field_num < 0 || field_num > type->num_fields ())
963a6417 5910 return 1;
ffde82bf 5911
73fb9985
JB
5912 /* Check the name of that field. */
5913 {
5914 const char *name = TYPE_FIELD_NAME (type, field_num);
5915
5916 /* Anonymous field names should not be printed.
5917 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 5918 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
5919 if (name == NULL)
5920 return 1;
5921
ffde82bf
JB
5922 /* Normally, fields whose name start with an underscore ("_")
5923 are fields that have been internally generated by the compiler,
5924 and thus should not be printed. The "_parent" field is special,
5925 however: This is a field internally generated by the compiler
5926 for tagged types, and it contains the components inherited from
5927 the parent type. This field should not be printed as is, but
5928 should not be ignored either. */
61012eef 5929 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
5930 return 1;
5931 }
5932
ac4a2da4
JG
5933 /* If this is the dispatch table of a tagged type or an interface tag,
5934 then ignore. */
73fb9985 5935 if (ada_is_tagged_type (type, 1)
940da03e
SM
5936 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5937 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
5938 return 1;
5939
5940 /* Not a special field, so it should not be ignored. */
5941 return 0;
963a6417 5942}
96d887e8 5943
963a6417 5944/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5945 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5946
963a6417
PH
5947int
5948ada_is_tagged_type (struct type *type, int refok)
5949{
988f6b3d 5950 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 5951}
96d887e8 5952
963a6417 5953/* True iff TYPE represents the type of X'Tag */
96d887e8 5954
963a6417
PH
5955int
5956ada_is_tag_type (struct type *type)
5957{
460efde1
JB
5958 type = ada_check_typedef (type);
5959
78134374 5960 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
5961 return 0;
5962 else
96d887e8 5963 {
963a6417 5964 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5965
963a6417 5966 return (name != NULL
dda83cd7 5967 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5968 }
96d887e8
PH
5969}
5970
963a6417 5971/* The type of the tag on VAL. */
76a01679 5972
de93309a 5973static struct type *
963a6417 5974ada_tag_type (struct value *val)
96d887e8 5975{
988f6b3d 5976 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 5977}
96d887e8 5978
b50d69b5
JG
5979/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5980 retired at Ada 05). */
5981
5982static int
5983is_ada95_tag (struct value *tag)
5984{
5985 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5986}
5987
963a6417 5988/* The value of the tag on VAL. */
96d887e8 5989
de93309a 5990static struct value *
963a6417
PH
5991ada_value_tag (struct value *val)
5992{
03ee6b2e 5993 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5994}
5995
963a6417
PH
5996/* The value of the tag on the object of type TYPE whose contents are
5997 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5998 ADDRESS. */
96d887e8 5999
963a6417 6000static struct value *
10a2c479 6001value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6002 const gdb_byte *valaddr,
dda83cd7 6003 CORE_ADDR address)
96d887e8 6004{
b5385fc0 6005 int tag_byte_offset;
963a6417 6006 struct type *tag_type;
5b4ee69b 6007
963a6417 6008 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6009 NULL, NULL, NULL))
96d887e8 6010 {
fc1a4b47 6011 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6012 ? NULL
6013 : valaddr + tag_byte_offset);
963a6417 6014 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6015
963a6417 6016 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6017 }
963a6417
PH
6018 return NULL;
6019}
96d887e8 6020
963a6417
PH
6021static struct type *
6022type_from_tag (struct value *tag)
6023{
f5272a3b 6024 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6025
963a6417 6026 if (type_name != NULL)
5c4258f4 6027 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6028 return NULL;
6029}
96d887e8 6030
b50d69b5
JG
6031/* Given a value OBJ of a tagged type, return a value of this
6032 type at the base address of the object. The base address, as
6033 defined in Ada.Tags, it is the address of the primary tag of
6034 the object, and therefore where the field values of its full
6035 view can be fetched. */
6036
6037struct value *
6038ada_tag_value_at_base_address (struct value *obj)
6039{
b50d69b5
JG
6040 struct value *val;
6041 LONGEST offset_to_top = 0;
6042 struct type *ptr_type, *obj_type;
6043 struct value *tag;
6044 CORE_ADDR base_address;
6045
6046 obj_type = value_type (obj);
6047
6048 /* It is the responsability of the caller to deref pointers. */
6049
78134374 6050 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6051 return obj;
6052
6053 tag = ada_value_tag (obj);
6054 if (!tag)
6055 return obj;
6056
6057 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6058
6059 if (is_ada95_tag (tag))
6060 return obj;
6061
08f49010
XR
6062 ptr_type = language_lookup_primitive_type
6063 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6064 ptr_type = lookup_pointer_type (ptr_type);
6065 val = value_cast (ptr_type, tag);
6066 if (!val)
6067 return obj;
6068
6069 /* It is perfectly possible that an exception be raised while
6070 trying to determine the base address, just like for the tag;
6071 see ada_tag_name for more details. We do not print the error
6072 message for the same reason. */
6073
a70b8144 6074 try
b50d69b5
JG
6075 {
6076 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6077 }
6078
230d2906 6079 catch (const gdb_exception_error &e)
492d29ea
PA
6080 {
6081 return obj;
6082 }
b50d69b5
JG
6083
6084 /* If offset is null, nothing to do. */
6085
6086 if (offset_to_top == 0)
6087 return obj;
6088
6089 /* -1 is a special case in Ada.Tags; however, what should be done
6090 is not quite clear from the documentation. So do nothing for
6091 now. */
6092
6093 if (offset_to_top == -1)
6094 return obj;
6095
08f49010
XR
6096 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6097 from the base address. This was however incompatible with
6098 C++ dispatch table: C++ uses a *negative* value to *add*
6099 to the base address. Ada's convention has therefore been
6100 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6101 use the same convention. Here, we support both cases by
6102 checking the sign of OFFSET_TO_TOP. */
6103
6104 if (offset_to_top > 0)
6105 offset_to_top = -offset_to_top;
6106
6107 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6108 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6109
6110 /* Make sure that we have a proper tag at the new address.
6111 Otherwise, offset_to_top is bogus (which can happen when
6112 the object is not initialized yet). */
6113
6114 if (!tag)
6115 return obj;
6116
6117 obj_type = type_from_tag (tag);
6118
6119 if (!obj_type)
6120 return obj;
6121
6122 return value_from_contents_and_address (obj_type, NULL, base_address);
6123}
6124
1b611343
JB
6125/* Return the "ada__tags__type_specific_data" type. */
6126
6127static struct type *
6128ada_get_tsd_type (struct inferior *inf)
963a6417 6129{
1b611343 6130 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6131
1b611343
JB
6132 if (data->tsd_type == 0)
6133 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6134 return data->tsd_type;
6135}
529cad9c 6136
1b611343
JB
6137/* Return the TSD (type-specific data) associated to the given TAG.
6138 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6139
1b611343 6140 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6141
1b611343
JB
6142static struct value *
6143ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6144{
4c4b4cd2 6145 struct value *val;
1b611343 6146 struct type *type;
5b4ee69b 6147
1b611343
JB
6148 /* First option: The TSD is simply stored as a field of our TAG.
6149 Only older versions of GNAT would use this format, but we have
6150 to test it first, because there are no visible markers for
6151 the current approach except the absence of that field. */
529cad9c 6152
1b611343
JB
6153 val = ada_value_struct_elt (tag, "tsd", 1);
6154 if (val)
6155 return val;
e802dbe0 6156
1b611343
JB
6157 /* Try the second representation for the dispatch table (in which
6158 there is no explicit 'tsd' field in the referent of the tag pointer,
6159 and instead the tsd pointer is stored just before the dispatch
6160 table. */
e802dbe0 6161
1b611343
JB
6162 type = ada_get_tsd_type (current_inferior());
6163 if (type == NULL)
6164 return NULL;
6165 type = lookup_pointer_type (lookup_pointer_type (type));
6166 val = value_cast (type, tag);
6167 if (val == NULL)
6168 return NULL;
6169 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6170}
6171
1b611343
JB
6172/* Given the TSD of a tag (type-specific data), return a string
6173 containing the name of the associated type.
6174
f5272a3b 6175 May return NULL if we are unable to determine the tag name. */
1b611343 6176
f5272a3b 6177static gdb::unique_xmalloc_ptr<char>
1b611343 6178ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6179{
529cad9c 6180 char *p;
1b611343 6181 struct value *val;
529cad9c 6182
1b611343 6183 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6184 if (val == NULL)
1b611343 6185 return NULL;
66920317
TT
6186 gdb::unique_xmalloc_ptr<char> buffer
6187 = target_read_string (value_as_address (val), INT_MAX);
6188 if (buffer == nullptr)
f5272a3b
TT
6189 return nullptr;
6190
6191 for (p = buffer.get (); *p != '\0'; ++p)
6192 {
6193 if (isalpha (*p))
6194 *p = tolower (*p);
6195 }
6196
6197 return buffer;
4c4b4cd2
PH
6198}
6199
6200/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6201 a C string.
6202
6203 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6204 determine the name of that tag. */
4c4b4cd2 6205
f5272a3b 6206gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6207ada_tag_name (struct value *tag)
6208{
f5272a3b 6209 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6210
df407dfe 6211 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6212 return NULL;
1b611343
JB
6213
6214 /* It is perfectly possible that an exception be raised while trying
6215 to determine the TAG's name, even under normal circumstances:
6216 The associated variable may be uninitialized or corrupted, for
6217 instance. We do not let any exception propagate past this point.
6218 instead we return NULL.
6219
6220 We also do not print the error message either (which often is very
6221 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6222 the caller print a more meaningful message if necessary. */
a70b8144 6223 try
1b611343
JB
6224 {
6225 struct value *tsd = ada_get_tsd_from_tag (tag);
6226
6227 if (tsd != NULL)
6228 name = ada_tag_name_from_tsd (tsd);
6229 }
230d2906 6230 catch (const gdb_exception_error &e)
492d29ea
PA
6231 {
6232 }
1b611343
JB
6233
6234 return name;
4c4b4cd2
PH
6235}
6236
6237/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6238
d2e4a39e 6239struct type *
ebf56fd3 6240ada_parent_type (struct type *type)
14f9c5c9
AS
6241{
6242 int i;
6243
61ee279c 6244 type = ada_check_typedef (type);
14f9c5c9 6245
78134374 6246 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6247 return NULL;
6248
1f704f76 6249 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6250 if (ada_is_parent_field (type, i))
0c1f74cf 6251 {
dda83cd7 6252 struct type *parent_type = type->field (i).type ();
0c1f74cf 6253
dda83cd7
SM
6254 /* If the _parent field is a pointer, then dereference it. */
6255 if (parent_type->code () == TYPE_CODE_PTR)
6256 parent_type = TYPE_TARGET_TYPE (parent_type);
6257 /* If there is a parallel XVS type, get the actual base type. */
6258 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6259
dda83cd7 6260 return ada_check_typedef (parent_type);
0c1f74cf 6261 }
14f9c5c9
AS
6262
6263 return NULL;
6264}
6265
4c4b4cd2
PH
6266/* True iff field number FIELD_NUM of structure type TYPE contains the
6267 parent-type (inherited) fields of a derived type. Assumes TYPE is
6268 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6269
6270int
ebf56fd3 6271ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6272{
61ee279c 6273 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6274
4c4b4cd2 6275 return (name != NULL
dda83cd7
SM
6276 && (startswith (name, "PARENT")
6277 || startswith (name, "_parent")));
14f9c5c9
AS
6278}
6279
4c4b4cd2 6280/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6281 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6282 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6283 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6284 structures. */
14f9c5c9
AS
6285
6286int
ebf56fd3 6287ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6288{
d2e4a39e 6289 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6290
dddc0e16
JB
6291 if (name != NULL && strcmp (name, "RETVAL") == 0)
6292 {
6293 /* This happens in functions with "out" or "in out" parameters
6294 which are passed by copy. For such functions, GNAT describes
6295 the function's return type as being a struct where the return
6296 value is in a field called RETVAL, and where the other "out"
6297 or "in out" parameters are fields of that struct. This is not
6298 a wrapper. */
6299 return 0;
6300 }
6301
d2e4a39e 6302 return (name != NULL
dda83cd7
SM
6303 && (startswith (name, "PARENT")
6304 || strcmp (name, "REP") == 0
6305 || startswith (name, "_parent")
6306 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6307}
6308
4c4b4cd2
PH
6309/* True iff field number FIELD_NUM of structure or union type TYPE
6310 is a variant wrapper. Assumes TYPE is a structure type with at least
6311 FIELD_NUM+1 fields. */
14f9c5c9
AS
6312
6313int
ebf56fd3 6314ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6315{
8ecb59f8
TT
6316 /* Only Ada types are eligible. */
6317 if (!ADA_TYPE_P (type))
6318 return 0;
6319
940da03e 6320 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6321
78134374
SM
6322 return (field_type->code () == TYPE_CODE_UNION
6323 || (is_dynamic_field (type, field_num)
6324 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6325 == TYPE_CODE_UNION)));
14f9c5c9
AS
6326}
6327
6328/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6329 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6330 returns the type of the controlling discriminant for the variant.
6331 May return NULL if the type could not be found. */
14f9c5c9 6332
d2e4a39e 6333struct type *
ebf56fd3 6334ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6335{
a121b7c1 6336 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6337
988f6b3d 6338 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6339}
6340
4c4b4cd2 6341/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6342 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6343 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6344
de93309a 6345static int
ebf56fd3 6346ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6347{
d2e4a39e 6348 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6349
14f9c5c9
AS
6350 return (name != NULL && name[0] == 'O');
6351}
6352
6353/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6354 returns the name of the discriminant controlling the variant.
6355 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6356
a121b7c1 6357const char *
ebf56fd3 6358ada_variant_discrim_name (struct type *type0)
14f9c5c9 6359{
5f9febe0 6360 static std::string result;
d2e4a39e
AS
6361 struct type *type;
6362 const char *name;
6363 const char *discrim_end;
6364 const char *discrim_start;
14f9c5c9 6365
78134374 6366 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6367 type = TYPE_TARGET_TYPE (type0);
6368 else
6369 type = type0;
6370
6371 name = ada_type_name (type);
6372
6373 if (name == NULL || name[0] == '\000')
6374 return "";
6375
6376 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6377 discrim_end -= 1)
6378 {
61012eef 6379 if (startswith (discrim_end, "___XVN"))
dda83cd7 6380 break;
14f9c5c9
AS
6381 }
6382 if (discrim_end == name)
6383 return "";
6384
d2e4a39e 6385 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6386 discrim_start -= 1)
6387 {
d2e4a39e 6388 if (discrim_start == name + 1)
dda83cd7 6389 return "";
76a01679 6390 if ((discrim_start > name + 3
dda83cd7
SM
6391 && startswith (discrim_start - 3, "___"))
6392 || discrim_start[-1] == '.')
6393 break;
14f9c5c9
AS
6394 }
6395
5f9febe0
TT
6396 result = std::string (discrim_start, discrim_end - discrim_start);
6397 return result.c_str ();
14f9c5c9
AS
6398}
6399
4c4b4cd2
PH
6400/* Scan STR for a subtype-encoded number, beginning at position K.
6401 Put the position of the character just past the number scanned in
6402 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6403 Return 1 if there was a valid number at the given position, and 0
6404 otherwise. A "subtype-encoded" number consists of the absolute value
6405 in decimal, followed by the letter 'm' to indicate a negative number.
6406 Assumes 0m does not occur. */
14f9c5c9
AS
6407
6408int
d2e4a39e 6409ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6410{
6411 ULONGEST RU;
6412
d2e4a39e 6413 if (!isdigit (str[k]))
14f9c5c9
AS
6414 return 0;
6415
4c4b4cd2 6416 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6417 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6418 LONGEST. */
14f9c5c9
AS
6419 RU = 0;
6420 while (isdigit (str[k]))
6421 {
d2e4a39e 6422 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6423 k += 1;
6424 }
6425
d2e4a39e 6426 if (str[k] == 'm')
14f9c5c9
AS
6427 {
6428 if (R != NULL)
dda83cd7 6429 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6430 k += 1;
6431 }
6432 else if (R != NULL)
6433 *R = (LONGEST) RU;
6434
4c4b4cd2 6435 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6436 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6437 number representable as a LONGEST (although either would probably work
6438 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6439 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6440
6441 if (new_k != NULL)
6442 *new_k = k;
6443 return 1;
6444}
6445
4c4b4cd2
PH
6446/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6447 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6448 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6449
de93309a 6450static int
ebf56fd3 6451ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6452{
d2e4a39e 6453 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6454 int p;
6455
6456 p = 0;
6457 while (1)
6458 {
d2e4a39e 6459 switch (name[p])
dda83cd7
SM
6460 {
6461 case '\0':
6462 return 0;
6463 case 'S':
6464 {
6465 LONGEST W;
6466
6467 if (!ada_scan_number (name, p + 1, &W, &p))
6468 return 0;
6469 if (val == W)
6470 return 1;
6471 break;
6472 }
6473 case 'R':
6474 {
6475 LONGEST L, U;
6476
6477 if (!ada_scan_number (name, p + 1, &L, &p)
6478 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6479 return 0;
6480 if (val >= L && val <= U)
6481 return 1;
6482 break;
6483 }
6484 case 'O':
6485 return 1;
6486 default:
6487 return 0;
6488 }
4c4b4cd2
PH
6489 }
6490}
6491
0963b4bd 6492/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6493
6494/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6495 ARG_TYPE, extract and return the value of one of its (non-static)
6496 fields. FIELDNO says which field. Differs from value_primitive_field
6497 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6498
5eb68a39 6499struct value *
d2e4a39e 6500ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6501 struct type *arg_type)
14f9c5c9 6502{
14f9c5c9
AS
6503 struct type *type;
6504
61ee279c 6505 arg_type = ada_check_typedef (arg_type);
940da03e 6506 type = arg_type->field (fieldno).type ();
14f9c5c9 6507
4504bbde
TT
6508 /* Handle packed fields. It might be that the field is not packed
6509 relative to its containing structure, but the structure itself is
6510 packed; in this case we must take the bit-field path. */
6511 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6512 {
6513 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6514 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6515
0fd88904 6516 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
dda83cd7
SM
6517 offset + bit_pos / 8,
6518 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6519 }
6520 else
6521 return value_primitive_field (arg1, offset, fieldno, arg_type);
6522}
6523
52ce6436
PH
6524/* Find field with name NAME in object of type TYPE. If found,
6525 set the following for each argument that is non-null:
6526 - *FIELD_TYPE_P to the field's type;
6527 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6528 an object of that type;
6529 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6530 - *BIT_SIZE_P to its size in bits if the field is packed, and
6531 0 otherwise;
6532 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6533 fields up to but not including the desired field, or by the total
6534 number of fields if not found. A NULL value of NAME never
6535 matches; the function just counts visible fields in this case.
6536
828d5846
XR
6537 Notice that we need to handle when a tagged record hierarchy
6538 has some components with the same name, like in this scenario:
6539
6540 type Top_T is tagged record
dda83cd7
SM
6541 N : Integer := 1;
6542 U : Integer := 974;
6543 A : Integer := 48;
828d5846
XR
6544 end record;
6545
6546 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6547 N : Character := 'a';
6548 C : Integer := 3;
828d5846
XR
6549 end record;
6550
6551 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6552 N : Float := 4.0;
6553 C : Character := '5';
6554 X : Integer := 6;
6555 A : Character := 'J';
828d5846
XR
6556 end record;
6557
6558 Let's say we now have a variable declared and initialized as follow:
6559
6560 TC : Top_A := new Bottom_T;
6561
6562 And then we use this variable to call this function
6563
6564 procedure Assign (Obj: in out Top_T; TV : Integer);
6565
6566 as follow:
6567
6568 Assign (Top_T (B), 12);
6569
6570 Now, we're in the debugger, and we're inside that procedure
6571 then and we want to print the value of obj.c:
6572
6573 Usually, the tagged record or one of the parent type owns the
6574 component to print and there's no issue but in this particular
6575 case, what does it mean to ask for Obj.C? Since the actual
6576 type for object is type Bottom_T, it could mean two things: type
6577 component C from the Middle_T view, but also component C from
6578 Bottom_T. So in that "undefined" case, when the component is
6579 not found in the non-resolved type (which includes all the
6580 components of the parent type), then resolve it and see if we
6581 get better luck once expanded.
6582
6583 In the case of homonyms in the derived tagged type, we don't
6584 guaranty anything, and pick the one that's easiest for us
6585 to program.
6586
0963b4bd 6587 Returns 1 if found, 0 otherwise. */
52ce6436 6588
4c4b4cd2 6589static int
0d5cff50 6590find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
6591 struct type **field_type_p,
6592 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 6593 int *index_p)
4c4b4cd2
PH
6594{
6595 int i;
828d5846 6596 int parent_offset = -1;
4c4b4cd2 6597
61ee279c 6598 type = ada_check_typedef (type);
76a01679 6599
52ce6436
PH
6600 if (field_type_p != NULL)
6601 *field_type_p = NULL;
6602 if (byte_offset_p != NULL)
d5d6fca5 6603 *byte_offset_p = 0;
52ce6436
PH
6604 if (bit_offset_p != NULL)
6605 *bit_offset_p = 0;
6606 if (bit_size_p != NULL)
6607 *bit_size_p = 0;
6608
1f704f76 6609 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
6610 {
6611 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6612 int fld_offset = offset + bit_pos / 8;
0d5cff50 6613 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6614
4c4b4cd2 6615 if (t_field_name == NULL)
dda83cd7 6616 continue;
4c4b4cd2 6617
828d5846 6618 else if (ada_is_parent_field (type, i))
dda83cd7 6619 {
828d5846
XR
6620 /* This is a field pointing us to the parent type of a tagged
6621 type. As hinted in this function's documentation, we give
6622 preference to fields in the current record first, so what
6623 we do here is just record the index of this field before
6624 we skip it. If it turns out we couldn't find our field
6625 in the current record, then we'll get back to it and search
6626 inside it whether the field might exist in the parent. */
6627
dda83cd7
SM
6628 parent_offset = i;
6629 continue;
6630 }
828d5846 6631
52ce6436 6632 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
6633 {
6634 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6635
52ce6436 6636 if (field_type_p != NULL)
940da03e 6637 *field_type_p = type->field (i).type ();
52ce6436
PH
6638 if (byte_offset_p != NULL)
6639 *byte_offset_p = fld_offset;
6640 if (bit_offset_p != NULL)
6641 *bit_offset_p = bit_pos % 8;
6642 if (bit_size_p != NULL)
6643 *bit_size_p = bit_size;
dda83cd7
SM
6644 return 1;
6645 }
4c4b4cd2 6646 else if (ada_is_wrapper_field (type, i))
dda83cd7 6647 {
940da03e 6648 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
6649 field_type_p, byte_offset_p, bit_offset_p,
6650 bit_size_p, index_p))
dda83cd7
SM
6651 return 1;
6652 }
4c4b4cd2 6653 else if (ada_is_variant_part (type, i))
dda83cd7 6654 {
52ce6436
PH
6655 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6656 fixed type?? */
dda83cd7
SM
6657 int j;
6658 struct type *field_type
940da03e 6659 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 6660
dda83cd7
SM
6661 for (j = 0; j < field_type->num_fields (); j += 1)
6662 {
6663 if (find_struct_field (name, field_type->field (j).type (),
6664 fld_offset
6665 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6666 field_type_p, byte_offset_p,
6667 bit_offset_p, bit_size_p, index_p))
6668 return 1;
6669 }
6670 }
52ce6436
PH
6671 else if (index_p != NULL)
6672 *index_p += 1;
4c4b4cd2 6673 }
828d5846
XR
6674
6675 /* Field not found so far. If this is a tagged type which
6676 has a parent, try finding that field in the parent now. */
6677
6678 if (parent_offset != -1)
6679 {
6680 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6681 int fld_offset = offset + bit_pos / 8;
6682
940da03e 6683 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
6684 fld_offset, field_type_p, byte_offset_p,
6685 bit_offset_p, bit_size_p, index_p))
6686 return 1;
828d5846
XR
6687 }
6688
4c4b4cd2
PH
6689 return 0;
6690}
6691
0963b4bd 6692/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6693
52ce6436
PH
6694static int
6695num_visible_fields (struct type *type)
6696{
6697 int n;
5b4ee69b 6698
52ce6436
PH
6699 n = 0;
6700 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6701 return n;
6702}
14f9c5c9 6703
4c4b4cd2 6704/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6705 and search in it assuming it has (class) type TYPE.
6706 If found, return value, else return NULL.
6707
828d5846
XR
6708 Searches recursively through wrapper fields (e.g., '_parent').
6709
6710 In the case of homonyms in the tagged types, please refer to the
6711 long explanation in find_struct_field's function documentation. */
14f9c5c9 6712
4c4b4cd2 6713static struct value *
108d56a4 6714ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 6715 struct type *type)
14f9c5c9
AS
6716{
6717 int i;
828d5846 6718 int parent_offset = -1;
14f9c5c9 6719
5b4ee69b 6720 type = ada_check_typedef (type);
1f704f76 6721 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6722 {
0d5cff50 6723 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6724
6725 if (t_field_name == NULL)
dda83cd7 6726 continue;
14f9c5c9 6727
828d5846 6728 else if (ada_is_parent_field (type, i))
dda83cd7 6729 {
828d5846
XR
6730 /* This is a field pointing us to the parent type of a tagged
6731 type. As hinted in this function's documentation, we give
6732 preference to fields in the current record first, so what
6733 we do here is just record the index of this field before
6734 we skip it. If it turns out we couldn't find our field
6735 in the current record, then we'll get back to it and search
6736 inside it whether the field might exist in the parent. */
6737
dda83cd7
SM
6738 parent_offset = i;
6739 continue;
6740 }
828d5846 6741
14f9c5c9 6742 else if (field_name_match (t_field_name, name))
dda83cd7 6743 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6744
6745 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6746 {
6747 struct value *v = /* Do not let indent join lines here. */
6748 ada_search_struct_field (name, arg,
6749 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6750 type->field (i).type ());
5b4ee69b 6751
dda83cd7
SM
6752 if (v != NULL)
6753 return v;
6754 }
14f9c5c9
AS
6755
6756 else if (ada_is_variant_part (type, i))
dda83cd7 6757 {
0963b4bd 6758 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
6759 int j;
6760 struct type *field_type = ada_check_typedef (type->field (i).type ());
6761 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
4c4b4cd2 6762
dda83cd7
SM
6763 for (j = 0; j < field_type->num_fields (); j += 1)
6764 {
6765 struct value *v = ada_search_struct_field /* Force line
0963b4bd 6766 break. */
dda83cd7
SM
6767 (name, arg,
6768 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6769 field_type->field (j).type ());
5b4ee69b 6770
dda83cd7
SM
6771 if (v != NULL)
6772 return v;
6773 }
6774 }
14f9c5c9 6775 }
828d5846
XR
6776
6777 /* Field not found so far. If this is a tagged type which
6778 has a parent, try finding that field in the parent now. */
6779
6780 if (parent_offset != -1)
6781 {
6782 struct value *v = ada_search_struct_field (
6783 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 6784 type->field (parent_offset).type ());
828d5846
XR
6785
6786 if (v != NULL)
dda83cd7 6787 return v;
828d5846
XR
6788 }
6789
14f9c5c9
AS
6790 return NULL;
6791}
d2e4a39e 6792
52ce6436
PH
6793static struct value *ada_index_struct_field_1 (int *, struct value *,
6794 int, struct type *);
6795
6796
6797/* Return field #INDEX in ARG, where the index is that returned by
6798 * find_struct_field through its INDEX_P argument. Adjust the address
6799 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6800 * If found, return value, else return NULL. */
52ce6436
PH
6801
6802static struct value *
6803ada_index_struct_field (int index, struct value *arg, int offset,
6804 struct type *type)
6805{
6806 return ada_index_struct_field_1 (&index, arg, offset, type);
6807}
6808
6809
6810/* Auxiliary function for ada_index_struct_field. Like
6811 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6812 * *INDEX_P. */
52ce6436
PH
6813
6814static struct value *
6815ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6816 struct type *type)
6817{
6818 int i;
6819 type = ada_check_typedef (type);
6820
1f704f76 6821 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
6822 {
6823 if (TYPE_FIELD_NAME (type, i) == NULL)
dda83cd7 6824 continue;
52ce6436 6825 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6826 {
6827 struct value *v = /* Do not let indent join lines here. */
6828 ada_index_struct_field_1 (index_p, arg,
52ce6436 6829 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 6830 type->field (i).type ());
5b4ee69b 6831
dda83cd7
SM
6832 if (v != NULL)
6833 return v;
6834 }
52ce6436
PH
6835
6836 else if (ada_is_variant_part (type, i))
dda83cd7 6837 {
52ce6436 6838 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6839 find_struct_field. */
52ce6436 6840 error (_("Cannot assign this kind of variant record"));
dda83cd7 6841 }
52ce6436 6842 else if (*index_p == 0)
dda83cd7 6843 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
6844 else
6845 *index_p -= 1;
6846 }
6847 return NULL;
6848}
6849
3b4de39c 6850/* Return a string representation of type TYPE. */
99bbb428 6851
3b4de39c 6852static std::string
99bbb428
PA
6853type_as_string (struct type *type)
6854{
d7e74731 6855 string_file tmp_stream;
99bbb428 6856
d7e74731 6857 type_print (type, "", &tmp_stream, -1);
99bbb428 6858
d7e74731 6859 return std::move (tmp_stream.string ());
99bbb428
PA
6860}
6861
14f9c5c9 6862/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6863 If DISPP is non-null, add its byte displacement from the beginning of a
6864 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6865 work for packed fields).
6866
6867 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6868 followed by "___".
14f9c5c9 6869
0963b4bd 6870 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6871 be a (pointer or reference)+ to a struct or union, and the
6872 ultimate target type will be searched.
14f9c5c9
AS
6873
6874 Looks recursively into variant clauses and parent types.
6875
828d5846
XR
6876 In the case of homonyms in the tagged types, please refer to the
6877 long explanation in find_struct_field's function documentation.
6878
4c4b4cd2
PH
6879 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6880 TYPE is not a type of the right kind. */
14f9c5c9 6881
4c4b4cd2 6882static struct type *
a121b7c1 6883ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 6884 int noerr)
14f9c5c9
AS
6885{
6886 int i;
828d5846 6887 int parent_offset = -1;
14f9c5c9
AS
6888
6889 if (name == NULL)
6890 goto BadName;
6891
76a01679 6892 if (refok && type != NULL)
4c4b4cd2
PH
6893 while (1)
6894 {
dda83cd7
SM
6895 type = ada_check_typedef (type);
6896 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6897 break;
6898 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6899 }
14f9c5c9 6900
76a01679 6901 if (type == NULL
78134374
SM
6902 || (type->code () != TYPE_CODE_STRUCT
6903 && type->code () != TYPE_CODE_UNION))
14f9c5c9 6904 {
4c4b4cd2 6905 if (noerr)
dda83cd7 6906 return NULL;
99bbb428 6907
3b4de39c
PA
6908 error (_("Type %s is not a structure or union type"),
6909 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
6910 }
6911
6912 type = to_static_fixed_type (type);
6913
1f704f76 6914 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6915 {
0d5cff50 6916 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 6917 struct type *t;
d2e4a39e 6918
14f9c5c9 6919 if (t_field_name == NULL)
dda83cd7 6920 continue;
14f9c5c9 6921
828d5846 6922 else if (ada_is_parent_field (type, i))
dda83cd7 6923 {
828d5846
XR
6924 /* This is a field pointing us to the parent type of a tagged
6925 type. As hinted in this function's documentation, we give
6926 preference to fields in the current record first, so what
6927 we do here is just record the index of this field before
6928 we skip it. If it turns out we couldn't find our field
6929 in the current record, then we'll get back to it and search
6930 inside it whether the field might exist in the parent. */
6931
dda83cd7
SM
6932 parent_offset = i;
6933 continue;
6934 }
828d5846 6935
14f9c5c9 6936 else if (field_name_match (t_field_name, name))
940da03e 6937 return type->field (i).type ();
14f9c5c9
AS
6938
6939 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
6940 {
6941 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6942 0, 1);
6943 if (t != NULL)
988f6b3d 6944 return t;
dda83cd7 6945 }
14f9c5c9
AS
6946
6947 else if (ada_is_variant_part (type, i))
dda83cd7
SM
6948 {
6949 int j;
6950 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 6951
dda83cd7
SM
6952 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6953 {
b1f33ddd 6954 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 6955 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 6956 generates these for unchecked variant types. Revisit
dda83cd7 6957 if the compiler changes this practice. */
0d5cff50 6958 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 6959
b1f33ddd
JB
6960 if (v_field_name != NULL
6961 && field_name_match (v_field_name, name))
940da03e 6962 t = field_type->field (j).type ();
b1f33ddd 6963 else
940da03e 6964 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 6965 name, 0, 1);
b1f33ddd 6966
dda83cd7 6967 if (t != NULL)
988f6b3d 6968 return t;
dda83cd7
SM
6969 }
6970 }
14f9c5c9
AS
6971
6972 }
6973
828d5846
XR
6974 /* Field not found so far. If this is a tagged type which
6975 has a parent, try finding that field in the parent now. */
6976
6977 if (parent_offset != -1)
6978 {
dda83cd7 6979 struct type *t;
828d5846 6980
dda83cd7
SM
6981 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6982 name, 0, 1);
6983 if (t != NULL)
828d5846
XR
6984 return t;
6985 }
6986
14f9c5c9 6987BadName:
d2e4a39e 6988 if (!noerr)
14f9c5c9 6989 {
2b2798cc 6990 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
6991
6992 error (_("Type %s has no component named %s"),
3b4de39c 6993 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
6994 }
6995
6996 return NULL;
6997}
6998
b1f33ddd
JB
6999/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7000 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7001 represents an unchecked union (that is, the variant part of a
0963b4bd 7002 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7003
7004static int
7005is_unchecked_variant (struct type *var_type, struct type *outer_type)
7006{
a121b7c1 7007 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7008
988f6b3d 7009 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7010}
7011
7012
14f9c5c9 7013/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7014 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7015 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7016
d2e4a39e 7017int
d8af9068 7018ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7019{
7020 int others_clause;
7021 int i;
a121b7c1 7022 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7023 struct value *discrim;
14f9c5c9
AS
7024 LONGEST discrim_val;
7025
012370f6
TT
7026 /* Using plain value_from_contents_and_address here causes problems
7027 because we will end up trying to resolve a type that is currently
7028 being constructed. */
0c281816
JB
7029 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7030 if (discrim == NULL)
14f9c5c9 7031 return -1;
0c281816 7032 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7033
7034 others_clause = -1;
1f704f76 7035 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7036 {
7037 if (ada_is_others_clause (var_type, i))
dda83cd7 7038 others_clause = i;
14f9c5c9 7039 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7040 return i;
14f9c5c9
AS
7041 }
7042
7043 return others_clause;
7044}
d2e4a39e 7045\f
14f9c5c9
AS
7046
7047
dda83cd7 7048 /* Dynamic-Sized Records */
14f9c5c9
AS
7049
7050/* Strategy: The type ostensibly attached to a value with dynamic size
7051 (i.e., a size that is not statically recorded in the debugging
7052 data) does not accurately reflect the size or layout of the value.
7053 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7054 conventional types that are constructed on the fly. */
14f9c5c9
AS
7055
7056/* There is a subtle and tricky problem here. In general, we cannot
7057 determine the size of dynamic records without its data. However,
7058 the 'struct value' data structure, which GDB uses to represent
7059 quantities in the inferior process (the target), requires the size
7060 of the type at the time of its allocation in order to reserve space
7061 for GDB's internal copy of the data. That's why the
7062 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7063 rather than struct value*s.
14f9c5c9
AS
7064
7065 However, GDB's internal history variables ($1, $2, etc.) are
7066 struct value*s containing internal copies of the data that are not, in
7067 general, the same as the data at their corresponding addresses in
7068 the target. Fortunately, the types we give to these values are all
7069 conventional, fixed-size types (as per the strategy described
7070 above), so that we don't usually have to perform the
7071 'to_fixed_xxx_type' conversions to look at their values.
7072 Unfortunately, there is one exception: if one of the internal
7073 history variables is an array whose elements are unconstrained
7074 records, then we will need to create distinct fixed types for each
7075 element selected. */
7076
7077/* The upshot of all of this is that many routines take a (type, host
7078 address, target address) triple as arguments to represent a value.
7079 The host address, if non-null, is supposed to contain an internal
7080 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7081 target at the target address. */
14f9c5c9
AS
7082
7083/* Assuming that VAL0 represents a pointer value, the result of
7084 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7085 dynamic-sized types. */
14f9c5c9 7086
d2e4a39e
AS
7087struct value *
7088ada_value_ind (struct value *val0)
14f9c5c9 7089{
c48db5ca 7090 struct value *val = value_ind (val0);
5b4ee69b 7091
b50d69b5
JG
7092 if (ada_is_tagged_type (value_type (val), 0))
7093 val = ada_tag_value_at_base_address (val);
7094
4c4b4cd2 7095 return ada_to_fixed_value (val);
14f9c5c9
AS
7096}
7097
7098/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7099 qualifiers on VAL0. */
7100
d2e4a39e
AS
7101static struct value *
7102ada_coerce_ref (struct value *val0)
7103{
78134374 7104 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7105 {
7106 struct value *val = val0;
5b4ee69b 7107
994b9211 7108 val = coerce_ref (val);
b50d69b5
JG
7109
7110 if (ada_is_tagged_type (value_type (val), 0))
7111 val = ada_tag_value_at_base_address (val);
7112
4c4b4cd2 7113 return ada_to_fixed_value (val);
d2e4a39e
AS
7114 }
7115 else
14f9c5c9
AS
7116 return val0;
7117}
7118
4c4b4cd2 7119/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7120
7121static unsigned int
ebf56fd3 7122field_alignment (struct type *type, int f)
14f9c5c9 7123{
d2e4a39e 7124 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7125 int len;
14f9c5c9
AS
7126 int align_offset;
7127
64a1bf19
JB
7128 /* The field name should never be null, unless the debugging information
7129 is somehow malformed. In this case, we assume the field does not
7130 require any alignment. */
7131 if (name == NULL)
7132 return 1;
7133
7134 len = strlen (name);
7135
4c4b4cd2
PH
7136 if (!isdigit (name[len - 1]))
7137 return 1;
14f9c5c9 7138
d2e4a39e 7139 if (isdigit (name[len - 2]))
14f9c5c9
AS
7140 align_offset = len - 2;
7141 else
7142 align_offset = len - 1;
7143
61012eef 7144 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7145 return TARGET_CHAR_BIT;
7146
4c4b4cd2
PH
7147 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7148}
7149
852dff6c 7150/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7151
852dff6c
JB
7152static struct symbol *
7153ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7154{
7155 struct symbol *sym;
7156
7157 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7158 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7159 return sym;
7160
4186eb54
KS
7161 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7162 return sym;
14f9c5c9
AS
7163}
7164
dddfab26
UW
7165/* Find a type named NAME. Ignores ambiguity. This routine will look
7166 solely for types defined by debug info, it will not search the GDB
7167 primitive types. */
4c4b4cd2 7168
852dff6c 7169static struct type *
ebf56fd3 7170ada_find_any_type (const char *name)
14f9c5c9 7171{
852dff6c 7172 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7173
14f9c5c9 7174 if (sym != NULL)
dddfab26 7175 return SYMBOL_TYPE (sym);
14f9c5c9 7176
dddfab26 7177 return NULL;
14f9c5c9
AS
7178}
7179
739593e0
JB
7180/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7181 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7182 symbol, in which case it is returned. Otherwise, this looks for
7183 symbols whose name is that of NAME_SYM suffixed with "___XR".
7184 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7185
c0e70c62
TT
7186static bool
7187ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7188{
987012b8 7189 const char *name = name_sym->linkage_name ();
c0e70c62 7190 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7191}
7192
14f9c5c9 7193/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7194 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7195 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7196 otherwise return 0. */
7197
14f9c5c9 7198int
d2e4a39e 7199ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7200{
7201 if (type1 == NULL)
7202 return 1;
7203 else if (type0 == NULL)
7204 return 0;
78134374 7205 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7206 return 1;
78134374 7207 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7208 return 0;
7d93a1e0 7209 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7210 return 1;
ad82864c 7211 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7212 return 1;
4c4b4cd2 7213 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7214 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7215 return 1;
aeb5907d
JB
7216 else
7217 {
7d93a1e0
SM
7218 const char *type0_name = type0->name ();
7219 const char *type1_name = type1->name ();
aeb5907d
JB
7220
7221 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7222 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7223 return 1;
7224 }
14f9c5c9
AS
7225 return 0;
7226}
7227
e86ca25f
TT
7228/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7229 null. */
4c4b4cd2 7230
0d5cff50 7231const char *
d2e4a39e 7232ada_type_name (struct type *type)
14f9c5c9 7233{
d2e4a39e 7234 if (type == NULL)
14f9c5c9 7235 return NULL;
7d93a1e0 7236 return type->name ();
14f9c5c9
AS
7237}
7238
b4ba55a1
JB
7239/* Search the list of "descriptive" types associated to TYPE for a type
7240 whose name is NAME. */
7241
7242static struct type *
7243find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7244{
931e5bc3 7245 struct type *result, *tmp;
b4ba55a1 7246
c6044dd1
JB
7247 if (ada_ignore_descriptive_types_p)
7248 return NULL;
7249
b4ba55a1
JB
7250 /* If there no descriptive-type info, then there is no parallel type
7251 to be found. */
7252 if (!HAVE_GNAT_AUX_INFO (type))
7253 return NULL;
7254
7255 result = TYPE_DESCRIPTIVE_TYPE (type);
7256 while (result != NULL)
7257 {
0d5cff50 7258 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7259
7260 if (result_name == NULL)
dda83cd7
SM
7261 {
7262 warning (_("unexpected null name on descriptive type"));
7263 return NULL;
7264 }
b4ba55a1
JB
7265
7266 /* If the names match, stop. */
7267 if (strcmp (result_name, name) == 0)
7268 break;
7269
7270 /* Otherwise, look at the next item on the list, if any. */
7271 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7272 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7273 else
7274 tmp = NULL;
7275
7276 /* If not found either, try after having resolved the typedef. */
7277 if (tmp != NULL)
7278 result = tmp;
b4ba55a1 7279 else
931e5bc3 7280 {
f168693b 7281 result = check_typedef (result);
931e5bc3
JG
7282 if (HAVE_GNAT_AUX_INFO (result))
7283 result = TYPE_DESCRIPTIVE_TYPE (result);
7284 else
7285 result = NULL;
7286 }
b4ba55a1
JB
7287 }
7288
7289 /* If we didn't find a match, see whether this is a packed array. With
7290 older compilers, the descriptive type information is either absent or
7291 irrelevant when it comes to packed arrays so the above lookup fails.
7292 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7293 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7294 return ada_find_any_type (name);
7295
7296 return result;
7297}
7298
7299/* Find a parallel type to TYPE with the specified NAME, using the
7300 descriptive type taken from the debugging information, if available,
7301 and otherwise using the (slower) name-based method. */
7302
7303static struct type *
7304ada_find_parallel_type_with_name (struct type *type, const char *name)
7305{
7306 struct type *result = NULL;
7307
7308 if (HAVE_GNAT_AUX_INFO (type))
7309 result = find_parallel_type_by_descriptive_type (type, name);
7310 else
7311 result = ada_find_any_type (name);
7312
7313 return result;
7314}
7315
7316/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7317 SUFFIX to the name of TYPE. */
14f9c5c9 7318
d2e4a39e 7319struct type *
ebf56fd3 7320ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7321{
0d5cff50 7322 char *name;
fe978cb0 7323 const char *type_name = ada_type_name (type);
14f9c5c9 7324 int len;
d2e4a39e 7325
fe978cb0 7326 if (type_name == NULL)
14f9c5c9
AS
7327 return NULL;
7328
fe978cb0 7329 len = strlen (type_name);
14f9c5c9 7330
b4ba55a1 7331 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7332
fe978cb0 7333 strcpy (name, type_name);
14f9c5c9
AS
7334 strcpy (name + len, suffix);
7335
b4ba55a1 7336 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7337}
7338
14f9c5c9 7339/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7340 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7341
d2e4a39e
AS
7342static struct type *
7343dynamic_template_type (struct type *type)
14f9c5c9 7344{
61ee279c 7345 type = ada_check_typedef (type);
14f9c5c9 7346
78134374 7347 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7348 || ada_type_name (type) == NULL)
14f9c5c9 7349 return NULL;
d2e4a39e 7350 else
14f9c5c9
AS
7351 {
7352 int len = strlen (ada_type_name (type));
5b4ee69b 7353
4c4b4cd2 7354 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7355 return type;
14f9c5c9 7356 else
dda83cd7 7357 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7358 }
7359}
7360
7361/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7362 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7363
d2e4a39e
AS
7364static int
7365is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7366{
7367 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7368
d2e4a39e 7369 return name != NULL
940da03e 7370 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7371 && strstr (name, "___XVL") != NULL;
7372}
7373
4c4b4cd2
PH
7374/* The index of the variant field of TYPE, or -1 if TYPE does not
7375 represent a variant record type. */
14f9c5c9 7376
d2e4a39e 7377static int
4c4b4cd2 7378variant_field_index (struct type *type)
14f9c5c9
AS
7379{
7380 int f;
7381
78134374 7382 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7383 return -1;
7384
1f704f76 7385 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7386 {
7387 if (ada_is_variant_part (type, f))
dda83cd7 7388 return f;
4c4b4cd2
PH
7389 }
7390 return -1;
14f9c5c9
AS
7391}
7392
4c4b4cd2
PH
7393/* A record type with no fields. */
7394
d2e4a39e 7395static struct type *
fe978cb0 7396empty_record (struct type *templ)
14f9c5c9 7397{
fe978cb0 7398 struct type *type = alloc_type_copy (templ);
5b4ee69b 7399
67607e24 7400 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7401 INIT_NONE_SPECIFIC (type);
d0e39ea2 7402 type->set_name ("<empty>");
14f9c5c9
AS
7403 TYPE_LENGTH (type) = 0;
7404 return type;
7405}
7406
7407/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7408 the value of type TYPE at VALADDR or ADDRESS (see comments at
7409 the beginning of this section) VAL according to GNAT conventions.
7410 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7411 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7412 an outer-level type (i.e., as opposed to a branch of a variant.) A
7413 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7414 of the variant.
14f9c5c9 7415
4c4b4cd2
PH
7416 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7417 length are not statically known are discarded. As a consequence,
7418 VALADDR, ADDRESS and DVAL0 are ignored.
7419
7420 NOTE: Limitations: For now, we assume that dynamic fields and
7421 variants occupy whole numbers of bytes. However, they need not be
7422 byte-aligned. */
7423
7424struct type *
10a2c479 7425ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7426 const gdb_byte *valaddr,
dda83cd7
SM
7427 CORE_ADDR address, struct value *dval0,
7428 int keep_dynamic_fields)
14f9c5c9 7429{
d2e4a39e
AS
7430 struct value *mark = value_mark ();
7431 struct value *dval;
7432 struct type *rtype;
14f9c5c9 7433 int nfields, bit_len;
4c4b4cd2 7434 int variant_field;
14f9c5c9 7435 long off;
d94e4f4f 7436 int fld_bit_len;
14f9c5c9
AS
7437 int f;
7438
4c4b4cd2
PH
7439 /* Compute the number of fields in this record type that are going
7440 to be processed: unless keep_dynamic_fields, this includes only
7441 fields whose position and length are static will be processed. */
7442 if (keep_dynamic_fields)
1f704f76 7443 nfields = type->num_fields ();
4c4b4cd2
PH
7444 else
7445 {
7446 nfields = 0;
1f704f76 7447 while (nfields < type->num_fields ()
dda83cd7
SM
7448 && !ada_is_variant_part (type, nfields)
7449 && !is_dynamic_field (type, nfields))
7450 nfields++;
4c4b4cd2
PH
7451 }
7452
e9bb382b 7453 rtype = alloc_type_copy (type);
67607e24 7454 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7455 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7456 rtype->set_num_fields (nfields);
3cabb6b0
SM
7457 rtype->set_fields
7458 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7459 rtype->set_name (ada_type_name (type));
9cdd0d12 7460 rtype->set_is_fixed_instance (true);
14f9c5c9 7461
d2e4a39e
AS
7462 off = 0;
7463 bit_len = 0;
4c4b4cd2
PH
7464 variant_field = -1;
7465
14f9c5c9
AS
7466 for (f = 0; f < nfields; f += 1)
7467 {
a89febbd 7468 off = align_up (off, field_alignment (type, f))
6c038f32 7469 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7470 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7471 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7472
d2e4a39e 7473 if (ada_is_variant_part (type, f))
dda83cd7
SM
7474 {
7475 variant_field = f;
7476 fld_bit_len = 0;
7477 }
14f9c5c9 7478 else if (is_dynamic_field (type, f))
dda83cd7 7479 {
284614f0
JB
7480 const gdb_byte *field_valaddr = valaddr;
7481 CORE_ADDR field_address = address;
7482 struct type *field_type =
940da03e 7483 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7484
dda83cd7 7485 if (dval0 == NULL)
b5304971
JG
7486 {
7487 /* rtype's length is computed based on the run-time
7488 value of discriminants. If the discriminants are not
7489 initialized, the type size may be completely bogus and
0963b4bd 7490 GDB may fail to allocate a value for it. So check the
b5304971 7491 size first before creating the value. */
c1b5a1a6 7492 ada_ensure_varsize_limit (rtype);
012370f6
TT
7493 /* Using plain value_from_contents_and_address here
7494 causes problems because we will end up trying to
7495 resolve a type that is currently being
7496 constructed. */
7497 dval = value_from_contents_and_address_unresolved (rtype,
7498 valaddr,
7499 address);
9f1f738a 7500 rtype = value_type (dval);
b5304971 7501 }
dda83cd7
SM
7502 else
7503 dval = dval0;
4c4b4cd2 7504
284614f0
JB
7505 /* If the type referenced by this field is an aligner type, we need
7506 to unwrap that aligner type, because its size might not be set.
7507 Keeping the aligner type would cause us to compute the wrong
7508 size for this field, impacting the offset of the all the fields
7509 that follow this one. */
7510 if (ada_is_aligner_type (field_type))
7511 {
7512 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7513
7514 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7515 field_address = cond_offset_target (field_address, field_offset);
7516 field_type = ada_aligned_type (field_type);
7517 }
7518
7519 field_valaddr = cond_offset_host (field_valaddr,
7520 off / TARGET_CHAR_BIT);
7521 field_address = cond_offset_target (field_address,
7522 off / TARGET_CHAR_BIT);
7523
7524 /* Get the fixed type of the field. Note that, in this case,
7525 we do not want to get the real type out of the tag: if
7526 the current field is the parent part of a tagged record,
7527 we will get the tag of the object. Clearly wrong: the real
7528 type of the parent is not the real type of the child. We
7529 would end up in an infinite loop. */
7530 field_type = ada_get_base_type (field_type);
7531 field_type = ada_to_fixed_type (field_type, field_valaddr,
7532 field_address, dval, 0);
27f2a97b
JB
7533 /* If the field size is already larger than the maximum
7534 object size, then the record itself will necessarily
7535 be larger than the maximum object size. We need to make
7536 this check now, because the size might be so ridiculously
7537 large (due to an uninitialized variable in the inferior)
7538 that it would cause an overflow when adding it to the
7539 record size. */
c1b5a1a6 7540 ada_ensure_varsize_limit (field_type);
284614f0 7541
5d14b6e5 7542 rtype->field (f).set_type (field_type);
dda83cd7 7543 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7544 /* The multiplication can potentially overflow. But because
7545 the field length has been size-checked just above, and
7546 assuming that the maximum size is a reasonable value,
7547 an overflow should not happen in practice. So rather than
7548 adding overflow recovery code to this already complex code,
7549 we just assume that it's not going to happen. */
dda83cd7
SM
7550 fld_bit_len =
7551 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7552 }
14f9c5c9 7553 else
dda83cd7 7554 {
5ded5331
JB
7555 /* Note: If this field's type is a typedef, it is important
7556 to preserve the typedef layer.
7557
7558 Otherwise, we might be transforming a typedef to a fat
7559 pointer (encoding a pointer to an unconstrained array),
7560 into a basic fat pointer (encoding an unconstrained
7561 array). As both types are implemented using the same
7562 structure, the typedef is the only clue which allows us
7563 to distinguish between the two options. Stripping it
7564 would prevent us from printing this field appropriately. */
dda83cd7
SM
7565 rtype->field (f).set_type (type->field (f).type ());
7566 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7567 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7568 fld_bit_len =
7569 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7570 else
5ded5331 7571 {
940da03e 7572 struct type *field_type = type->field (f).type ();
5ded5331
JB
7573
7574 /* We need to be careful of typedefs when computing
7575 the length of our field. If this is a typedef,
7576 get the length of the target type, not the length
7577 of the typedef. */
78134374 7578 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7579 field_type = ada_typedef_target_type (field_type);
7580
dda83cd7
SM
7581 fld_bit_len =
7582 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 7583 }
dda83cd7 7584 }
14f9c5c9 7585 if (off + fld_bit_len > bit_len)
dda83cd7 7586 bit_len = off + fld_bit_len;
d94e4f4f 7587 off += fld_bit_len;
4c4b4cd2 7588 TYPE_LENGTH (rtype) =
dda83cd7 7589 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7590 }
4c4b4cd2
PH
7591
7592 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7593 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7594 the record. This can happen in the presence of representation
7595 clauses. */
7596 if (variant_field >= 0)
7597 {
7598 struct type *branch_type;
7599
7600 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7601
7602 if (dval0 == NULL)
9f1f738a 7603 {
012370f6
TT
7604 /* Using plain value_from_contents_and_address here causes
7605 problems because we will end up trying to resolve a type
7606 that is currently being constructed. */
7607 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7608 address);
9f1f738a
SA
7609 rtype = value_type (dval);
7610 }
4c4b4cd2 7611 else
dda83cd7 7612 dval = dval0;
4c4b4cd2
PH
7613
7614 branch_type =
dda83cd7
SM
7615 to_fixed_variant_branch_type
7616 (type->field (variant_field).type (),
7617 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7618 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 7619 if (branch_type == NULL)
dda83cd7
SM
7620 {
7621 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7622 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7623 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 7624 }
4c4b4cd2 7625 else
dda83cd7
SM
7626 {
7627 rtype->field (variant_field).set_type (branch_type);
7628 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7629 fld_bit_len =
7630 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7631 TARGET_CHAR_BIT;
7632 if (off + fld_bit_len > bit_len)
7633 bit_len = off + fld_bit_len;
7634 TYPE_LENGTH (rtype) =
7635 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7636 }
4c4b4cd2
PH
7637 }
7638
714e53ab
PH
7639 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7640 should contain the alignment of that record, which should be a strictly
7641 positive value. If null or negative, then something is wrong, most
7642 probably in the debug info. In that case, we don't round up the size
0963b4bd 7643 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7644 the current RTYPE length might be good enough for our purposes. */
7645 if (TYPE_LENGTH (type) <= 0)
7646 {
7d93a1e0 7647 if (rtype->name ())
cc1defb1 7648 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 7649 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 7650 else
cc1defb1
KS
7651 warning (_("Invalid type size for <unnamed> detected: %s."),
7652 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
7653 }
7654 else
7655 {
a89febbd
TT
7656 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7657 TYPE_LENGTH (type));
714e53ab 7658 }
14f9c5c9
AS
7659
7660 value_free_to_mark (mark);
d2e4a39e 7661 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7662 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7663 return rtype;
7664}
7665
4c4b4cd2
PH
7666/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7667 of 1. */
14f9c5c9 7668
d2e4a39e 7669static struct type *
fc1a4b47 7670template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 7671 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
7672{
7673 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 7674 address, dval0, 1);
4c4b4cd2
PH
7675}
7676
7677/* An ordinary record type in which ___XVL-convention fields and
7678 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7679 static approximations, containing all possible fields. Uses
7680 no runtime values. Useless for use in values, but that's OK,
7681 since the results are used only for type determinations. Works on both
7682 structs and unions. Representation note: to save space, we memorize
7683 the result of this function in the TYPE_TARGET_TYPE of the
7684 template type. */
7685
7686static struct type *
7687template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7688{
7689 struct type *type;
7690 int nfields;
7691 int f;
7692
9e195661 7693 /* No need no do anything if the input type is already fixed. */
22c4c60c 7694 if (type0->is_fixed_instance ())
9e195661
PMR
7695 return type0;
7696
7697 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
7698 if (TYPE_TARGET_TYPE (type0) != NULL)
7699 return TYPE_TARGET_TYPE (type0);
7700
9e195661 7701 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 7702 type = type0;
1f704f76 7703 nfields = type0->num_fields ();
9e195661
PMR
7704
7705 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7706 recompute all over next time. */
7707 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
7708
7709 for (f = 0; f < nfields; f += 1)
7710 {
940da03e 7711 struct type *field_type = type0->field (f).type ();
4c4b4cd2 7712 struct type *new_type;
14f9c5c9 7713
4c4b4cd2 7714 if (is_dynamic_field (type0, f))
460efde1
JB
7715 {
7716 field_type = ada_check_typedef (field_type);
dda83cd7 7717 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 7718 }
14f9c5c9 7719 else
dda83cd7 7720 new_type = static_unwrap_type (field_type);
9e195661
PMR
7721
7722 if (new_type != field_type)
7723 {
7724 /* Clone TYPE0 only the first time we get a new field type. */
7725 if (type == type0)
7726 {
7727 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 7728 type->set_code (type0->code ());
8ecb59f8 7729 INIT_NONE_SPECIFIC (type);
5e33d5f4 7730 type->set_num_fields (nfields);
3cabb6b0
SM
7731
7732 field *fields =
7733 ((struct field *)
7734 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 7735 memcpy (fields, type0->fields (),
9e195661 7736 sizeof (struct field) * nfields);
3cabb6b0
SM
7737 type->set_fields (fields);
7738
d0e39ea2 7739 type->set_name (ada_type_name (type0));
9cdd0d12 7740 type->set_is_fixed_instance (true);
9e195661
PMR
7741 TYPE_LENGTH (type) = 0;
7742 }
5d14b6e5 7743 type->field (f).set_type (new_type);
9e195661
PMR
7744 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7745 }
14f9c5c9 7746 }
9e195661 7747
14f9c5c9
AS
7748 return type;
7749}
7750
4c4b4cd2 7751/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7752 whose address in memory is ADDRESS, returns a revision of TYPE,
7753 which should be a non-dynamic-sized record, in which the variant
7754 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7755 for discriminant values in DVAL0, which can be NULL if the record
7756 contains the necessary discriminant values. */
7757
d2e4a39e 7758static struct type *
fc1a4b47 7759to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 7760 CORE_ADDR address, struct value *dval0)
14f9c5c9 7761{
d2e4a39e 7762 struct value *mark = value_mark ();
4c4b4cd2 7763 struct value *dval;
d2e4a39e 7764 struct type *rtype;
14f9c5c9 7765 struct type *branch_type;
1f704f76 7766 int nfields = type->num_fields ();
4c4b4cd2 7767 int variant_field = variant_field_index (type);
14f9c5c9 7768
4c4b4cd2 7769 if (variant_field == -1)
14f9c5c9
AS
7770 return type;
7771
4c4b4cd2 7772 if (dval0 == NULL)
9f1f738a
SA
7773 {
7774 dval = value_from_contents_and_address (type, valaddr, address);
7775 type = value_type (dval);
7776 }
4c4b4cd2
PH
7777 else
7778 dval = dval0;
7779
e9bb382b 7780 rtype = alloc_type_copy (type);
67607e24 7781 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7782 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7783 rtype->set_num_fields (nfields);
3cabb6b0
SM
7784
7785 field *fields =
d2e4a39e 7786 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 7787 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
7788 rtype->set_fields (fields);
7789
d0e39ea2 7790 rtype->set_name (ada_type_name (type));
9cdd0d12 7791 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
7792 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7793
4c4b4cd2 7794 branch_type = to_fixed_variant_branch_type
940da03e 7795 (type->field (variant_field).type (),
d2e4a39e 7796 cond_offset_host (valaddr,
dda83cd7
SM
7797 TYPE_FIELD_BITPOS (type, variant_field)
7798 / TARGET_CHAR_BIT),
d2e4a39e 7799 cond_offset_target (address,
dda83cd7
SM
7800 TYPE_FIELD_BITPOS (type, variant_field)
7801 / TARGET_CHAR_BIT), dval);
d2e4a39e 7802 if (branch_type == NULL)
14f9c5c9 7803 {
4c4b4cd2 7804 int f;
5b4ee69b 7805
4c4b4cd2 7806 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 7807 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 7808 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
7809 }
7810 else
7811 {
5d14b6e5 7812 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
7813 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7814 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7815 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7816 }
940da03e 7817 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 7818
4c4b4cd2 7819 value_free_to_mark (mark);
14f9c5c9
AS
7820 return rtype;
7821}
7822
7823/* An ordinary record type (with fixed-length fields) that describes
7824 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7825 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7826 should be in DVAL, a record value; it may be NULL if the object
7827 at ADDR itself contains any necessary discriminant values.
7828 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7829 values from the record are needed. Except in the case that DVAL,
7830 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7831 unchecked) is replaced by a particular branch of the variant.
7832
7833 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7834 is questionable and may be removed. It can arise during the
7835 processing of an unconstrained-array-of-record type where all the
7836 variant branches have exactly the same size. This is because in
7837 such cases, the compiler does not bother to use the XVS convention
7838 when encoding the record. I am currently dubious of this
7839 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7840
d2e4a39e 7841static struct type *
fc1a4b47 7842to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 7843 CORE_ADDR address, struct value *dval)
14f9c5c9 7844{
d2e4a39e 7845 struct type *templ_type;
14f9c5c9 7846
22c4c60c 7847 if (type0->is_fixed_instance ())
4c4b4cd2
PH
7848 return type0;
7849
d2e4a39e 7850 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7851
7852 if (templ_type != NULL)
7853 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7854 else if (variant_field_index (type0) >= 0)
7855 {
7856 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 7857 return type0;
4c4b4cd2 7858 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 7859 dval);
4c4b4cd2 7860 }
14f9c5c9
AS
7861 else
7862 {
9cdd0d12 7863 type0->set_is_fixed_instance (true);
14f9c5c9
AS
7864 return type0;
7865 }
7866
7867}
7868
7869/* An ordinary record type (with fixed-length fields) that describes
7870 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7871 union type. Any necessary discriminants' values should be in DVAL,
7872 a record value. That is, this routine selects the appropriate
7873 branch of the union at ADDR according to the discriminant value
b1f33ddd 7874 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7875 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7876
d2e4a39e 7877static struct type *
fc1a4b47 7878to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 7879 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7880{
7881 int which;
d2e4a39e
AS
7882 struct type *templ_type;
7883 struct type *var_type;
14f9c5c9 7884
78134374 7885 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 7886 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7887 else
14f9c5c9
AS
7888 var_type = var_type0;
7889
7890 templ_type = ada_find_parallel_type (var_type, "___XVU");
7891
7892 if (templ_type != NULL)
7893 var_type = templ_type;
7894
b1f33ddd
JB
7895 if (is_unchecked_variant (var_type, value_type (dval)))
7896 return var_type0;
d8af9068 7897 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
7898
7899 if (which < 0)
e9bb382b 7900 return empty_record (var_type);
14f9c5c9 7901 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7902 return to_fixed_record_type
940da03e 7903 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 7904 valaddr, address, dval);
940da03e 7905 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
7906 return
7907 to_fixed_record_type
940da03e 7908 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 7909 else
940da03e 7910 return var_type->field (which).type ();
14f9c5c9
AS
7911}
7912
8908fca5
JB
7913/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7914 ENCODING_TYPE, a type following the GNAT conventions for discrete
7915 type encodings, only carries redundant information. */
7916
7917static int
7918ada_is_redundant_range_encoding (struct type *range_type,
7919 struct type *encoding_type)
7920{
108d56a4 7921 const char *bounds_str;
8908fca5
JB
7922 int n;
7923 LONGEST lo, hi;
7924
78134374 7925 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 7926
78134374
SM
7927 if (get_base_type (range_type)->code ()
7928 != get_base_type (encoding_type)->code ())
005e2509
JB
7929 {
7930 /* The compiler probably used a simple base type to describe
7931 the range type instead of the range's actual base type,
7932 expecting us to get the real base type from the encoding
7933 anyway. In this situation, the encoding cannot be ignored
7934 as redundant. */
7935 return 0;
7936 }
7937
8908fca5
JB
7938 if (is_dynamic_type (range_type))
7939 return 0;
7940
7d93a1e0 7941 if (encoding_type->name () == NULL)
8908fca5
JB
7942 return 0;
7943
7d93a1e0 7944 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
7945 if (bounds_str == NULL)
7946 return 0;
7947
7948 n = 8; /* Skip "___XDLU_". */
7949 if (!ada_scan_number (bounds_str, n, &lo, &n))
7950 return 0;
5537ddd0 7951 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
7952 return 0;
7953
7954 n += 2; /* Skip the "__" separator between the two bounds. */
7955 if (!ada_scan_number (bounds_str, n, &hi, &n))
7956 return 0;
5537ddd0 7957 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
7958 return 0;
7959
7960 return 1;
7961}
7962
7963/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7964 a type following the GNAT encoding for describing array type
7965 indices, only carries redundant information. */
7966
7967static int
7968ada_is_redundant_index_type_desc (struct type *array_type,
7969 struct type *desc_type)
7970{
7971 struct type *this_layer = check_typedef (array_type);
7972 int i;
7973
1f704f76 7974 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 7975 {
3d967001 7976 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 7977 desc_type->field (i).type ()))
8908fca5
JB
7978 return 0;
7979 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7980 }
7981
7982 return 1;
7983}
7984
14f9c5c9
AS
7985/* Assuming that TYPE0 is an array type describing the type of a value
7986 at ADDR, and that DVAL describes a record containing any
7987 discriminants used in TYPE0, returns a type for the value that
7988 contains no dynamic components (that is, no components whose sizes
7989 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7990 true, gives an error message if the resulting type's size is over
4c4b4cd2 7991 varsize_limit. */
14f9c5c9 7992
d2e4a39e
AS
7993static struct type *
7994to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 7995 int ignore_too_big)
14f9c5c9 7996{
d2e4a39e
AS
7997 struct type *index_type_desc;
7998 struct type *result;
ad82864c 7999 int constrained_packed_array_p;
931e5bc3 8000 static const char *xa_suffix = "___XA";
14f9c5c9 8001
b0dd7688 8002 type0 = ada_check_typedef (type0);
22c4c60c 8003 if (type0->is_fixed_instance ())
4c4b4cd2 8004 return type0;
14f9c5c9 8005
ad82864c
JB
8006 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8007 if (constrained_packed_array_p)
75fd6a26
TT
8008 {
8009 type0 = decode_constrained_packed_array_type (type0);
8010 if (type0 == nullptr)
8011 error (_("could not decode constrained packed array type"));
8012 }
284614f0 8013
931e5bc3
JG
8014 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8015
8016 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8017 encoding suffixed with 'P' may still be generated. If so,
8018 it should be used to find the XA type. */
8019
8020 if (index_type_desc == NULL)
8021 {
1da0522e 8022 const char *type_name = ada_type_name (type0);
931e5bc3 8023
1da0522e 8024 if (type_name != NULL)
931e5bc3 8025 {
1da0522e 8026 const int len = strlen (type_name);
931e5bc3
JG
8027 char *name = (char *) alloca (len + strlen (xa_suffix));
8028
1da0522e 8029 if (type_name[len - 1] == 'P')
931e5bc3 8030 {
1da0522e 8031 strcpy (name, type_name);
931e5bc3
JG
8032 strcpy (name + len - 1, xa_suffix);
8033 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8034 }
8035 }
8036 }
8037
28c85d6c 8038 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8039 if (index_type_desc != NULL
8040 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8041 {
8042 /* Ignore this ___XA parallel type, as it does not bring any
8043 useful information. This allows us to avoid creating fixed
8044 versions of the array's index types, which would be identical
8045 to the original ones. This, in turn, can also help avoid
8046 the creation of fixed versions of the array itself. */
8047 index_type_desc = NULL;
8048 }
8049
14f9c5c9
AS
8050 if (index_type_desc == NULL)
8051 {
61ee279c 8052 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8053
14f9c5c9 8054 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8055 depend on the contents of the array in properly constructed
8056 debugging data. */
529cad9c 8057 /* Create a fixed version of the array element type.
dda83cd7
SM
8058 We're not providing the address of an element here,
8059 and thus the actual object value cannot be inspected to do
8060 the conversion. This should not be a problem, since arrays of
8061 unconstrained objects are not allowed. In particular, all
8062 the elements of an array of a tagged type should all be of
8063 the same type specified in the debugging info. No need to
8064 consult the object tag. */
1ed6ede0 8065 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8066
284614f0
JB
8067 /* Make sure we always create a new array type when dealing with
8068 packed array types, since we're going to fix-up the array
8069 type length and element bitsize a little further down. */
ad82864c 8070 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8071 result = type0;
14f9c5c9 8072 else
dda83cd7
SM
8073 result = create_array_type (alloc_type_copy (type0),
8074 elt_type, type0->index_type ());
14f9c5c9
AS
8075 }
8076 else
8077 {
8078 int i;
8079 struct type *elt_type0;
8080
8081 elt_type0 = type0;
1f704f76 8082 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8083 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8084
8085 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8086 depend on the contents of the array in properly constructed
8087 debugging data. */
529cad9c 8088 /* Create a fixed version of the array element type.
dda83cd7
SM
8089 We're not providing the address of an element here,
8090 and thus the actual object value cannot be inspected to do
8091 the conversion. This should not be a problem, since arrays of
8092 unconstrained objects are not allowed. In particular, all
8093 the elements of an array of a tagged type should all be of
8094 the same type specified in the debugging info. No need to
8095 consult the object tag. */
1ed6ede0 8096 result =
dda83cd7 8097 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8098
8099 elt_type0 = type0;
1f704f76 8100 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8101 {
8102 struct type *range_type =
8103 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8104
dda83cd7
SM
8105 result = create_array_type (alloc_type_copy (elt_type0),
8106 result, range_type);
1ce677a4 8107 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8108 }
d2e4a39e 8109 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
dda83cd7 8110 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8111 }
8112
2e6fda7d
JB
8113 /* We want to preserve the type name. This can be useful when
8114 trying to get the type name of a value that has already been
8115 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8116 result->set_name (type0->name ());
2e6fda7d 8117
ad82864c 8118 if (constrained_packed_array_p)
284614f0
JB
8119 {
8120 /* So far, the resulting type has been created as if the original
8121 type was a regular (non-packed) array type. As a result, the
8122 bitsize of the array elements needs to be set again, and the array
8123 length needs to be recomputed based on that bitsize. */
8124 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8125 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8126
8127 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8128 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8129 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8130 TYPE_LENGTH (result)++;
284614f0
JB
8131 }
8132
9cdd0d12 8133 result->set_is_fixed_instance (true);
14f9c5c9 8134 return result;
d2e4a39e 8135}
14f9c5c9
AS
8136
8137
8138/* A standard type (containing no dynamically sized components)
8139 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8140 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8141 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8142 ADDRESS or in VALADDR contains these discriminants.
8143
1ed6ede0
JB
8144 If CHECK_TAG is not null, in the case of tagged types, this function
8145 attempts to locate the object's tag and use it to compute the actual
8146 type. However, when ADDRESS is null, we cannot use it to determine the
8147 location of the tag, and therefore compute the tagged type's actual type.
8148 So we return the tagged type without consulting the tag. */
529cad9c 8149
f192137b
JB
8150static struct type *
8151ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8152 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8153{
61ee279c 8154 type = ada_check_typedef (type);
8ecb59f8
TT
8155
8156 /* Only un-fixed types need to be handled here. */
8157 if (!HAVE_GNAT_AUX_INFO (type))
8158 return type;
8159
78134374 8160 switch (type->code ())
d2e4a39e
AS
8161 {
8162 default:
14f9c5c9 8163 return type;
d2e4a39e 8164 case TYPE_CODE_STRUCT:
4c4b4cd2 8165 {
dda83cd7
SM
8166 struct type *static_type = to_static_fixed_type (type);
8167 struct type *fixed_record_type =
8168 to_fixed_record_type (type, valaddr, address, NULL);
8169
8170 /* If STATIC_TYPE is a tagged type and we know the object's address,
8171 then we can determine its tag, and compute the object's actual
8172 type from there. Note that we have to use the fixed record
8173 type (the parent part of the record may have dynamic fields
8174 and the way the location of _tag is expressed may depend on
8175 them). */
8176
8177 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8178 {
b50d69b5
JG
8179 struct value *tag =
8180 value_tag_from_contents_and_address
8181 (fixed_record_type,
8182 valaddr,
8183 address);
8184 struct type *real_type = type_from_tag (tag);
8185 struct value *obj =
8186 value_from_contents_and_address (fixed_record_type,
8187 valaddr,
8188 address);
dda83cd7
SM
8189 fixed_record_type = value_type (obj);
8190 if (real_type != NULL)
8191 return to_fixed_record_type
b50d69b5
JG
8192 (real_type, NULL,
8193 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8194 }
8195
8196 /* Check to see if there is a parallel ___XVZ variable.
8197 If there is, then it provides the actual size of our type. */
8198 else if (ada_type_name (fixed_record_type) != NULL)
8199 {
8200 const char *name = ada_type_name (fixed_record_type);
8201 char *xvz_name
224c3ddb 8202 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8203 bool xvz_found = false;
dda83cd7 8204 LONGEST size;
4af88198 8205
dda83cd7 8206 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8207 try
eccab96d
JB
8208 {
8209 xvz_found = get_int_var_value (xvz_name, size);
8210 }
230d2906 8211 catch (const gdb_exception_error &except)
eccab96d
JB
8212 {
8213 /* We found the variable, but somehow failed to read
8214 its value. Rethrow the same error, but with a little
8215 bit more information, to help the user understand
8216 what went wrong (Eg: the variable might have been
8217 optimized out). */
8218 throw_error (except.error,
8219 _("unable to read value of %s (%s)"),
3d6e9d23 8220 xvz_name, except.what ());
eccab96d 8221 }
eccab96d 8222
dda83cd7
SM
8223 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8224 {
8225 fixed_record_type = copy_type (fixed_record_type);
8226 TYPE_LENGTH (fixed_record_type) = size;
8227
8228 /* The FIXED_RECORD_TYPE may have be a stub. We have
8229 observed this when the debugging info is STABS, and
8230 apparently it is something that is hard to fix.
8231
8232 In practice, we don't need the actual type definition
8233 at all, because the presence of the XVZ variable allows us
8234 to assume that there must be a XVS type as well, which we
8235 should be able to use later, when we need the actual type
8236 definition.
8237
8238 In the meantime, pretend that the "fixed" type we are
8239 returning is NOT a stub, because this can cause trouble
8240 when using this type to create new types targeting it.
8241 Indeed, the associated creation routines often check
8242 whether the target type is a stub and will try to replace
8243 it, thus using a type with the wrong size. This, in turn,
8244 might cause the new type to have the wrong size too.
8245 Consider the case of an array, for instance, where the size
8246 of the array is computed from the number of elements in
8247 our array multiplied by the size of its element. */
b4b73759 8248 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8249 }
8250 }
8251 return fixed_record_type;
4c4b4cd2 8252 }
d2e4a39e 8253 case TYPE_CODE_ARRAY:
4c4b4cd2 8254 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8255 case TYPE_CODE_UNION:
8256 if (dval == NULL)
dda83cd7 8257 return type;
d2e4a39e 8258 else
dda83cd7 8259 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8260 }
14f9c5c9
AS
8261}
8262
f192137b
JB
8263/* The same as ada_to_fixed_type_1, except that it preserves the type
8264 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8265
8266 The typedef layer needs be preserved in order to differentiate between
8267 arrays and array pointers when both types are implemented using the same
8268 fat pointer. In the array pointer case, the pointer is encoded as
8269 a typedef of the pointer type. For instance, considering:
8270
8271 type String_Access is access String;
8272 S1 : String_Access := null;
8273
8274 To the debugger, S1 is defined as a typedef of type String. But
8275 to the user, it is a pointer. So if the user tries to print S1,
8276 we should not dereference the array, but print the array address
8277 instead.
8278
8279 If we didn't preserve the typedef layer, we would lose the fact that
8280 the type is to be presented as a pointer (needs de-reference before
8281 being printed). And we would also use the source-level type name. */
f192137b
JB
8282
8283struct type *
8284ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8285 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8286
8287{
8288 struct type *fixed_type =
8289 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8290
96dbd2c1
JB
8291 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8292 then preserve the typedef layer.
8293
8294 Implementation note: We can only check the main-type portion of
8295 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8296 from TYPE now returns a type that has the same instance flags
8297 as TYPE. For instance, if TYPE is a "typedef const", and its
8298 target type is a "struct", then the typedef elimination will return
8299 a "const" version of the target type. See check_typedef for more
8300 details about how the typedef layer elimination is done.
8301
8302 brobecker/2010-11-19: It seems to me that the only case where it is
8303 useful to preserve the typedef layer is when dealing with fat pointers.
8304 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8305 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8306 because we call check_typedef/ada_check_typedef pretty much everywhere.
8307 */
78134374 8308 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8309 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8310 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8311 return type;
8312
8313 return fixed_type;
8314}
8315
14f9c5c9 8316/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8317 TYPE0, but based on no runtime data. */
14f9c5c9 8318
d2e4a39e
AS
8319static struct type *
8320to_static_fixed_type (struct type *type0)
14f9c5c9 8321{
d2e4a39e 8322 struct type *type;
14f9c5c9
AS
8323
8324 if (type0 == NULL)
8325 return NULL;
8326
22c4c60c 8327 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8328 return type0;
8329
61ee279c 8330 type0 = ada_check_typedef (type0);
d2e4a39e 8331
78134374 8332 switch (type0->code ())
14f9c5c9
AS
8333 {
8334 default:
8335 return type0;
8336 case TYPE_CODE_STRUCT:
8337 type = dynamic_template_type (type0);
d2e4a39e 8338 if (type != NULL)
dda83cd7 8339 return template_to_static_fixed_type (type);
4c4b4cd2 8340 else
dda83cd7 8341 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8342 case TYPE_CODE_UNION:
8343 type = ada_find_parallel_type (type0, "___XVU");
8344 if (type != NULL)
dda83cd7 8345 return template_to_static_fixed_type (type);
4c4b4cd2 8346 else
dda83cd7 8347 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8348 }
8349}
8350
4c4b4cd2
PH
8351/* A static approximation of TYPE with all type wrappers removed. */
8352
d2e4a39e
AS
8353static struct type *
8354static_unwrap_type (struct type *type)
14f9c5c9
AS
8355{
8356 if (ada_is_aligner_type (type))
8357 {
940da03e 8358 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8359 if (ada_type_name (type1) == NULL)
d0e39ea2 8360 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8361
8362 return static_unwrap_type (type1);
8363 }
d2e4a39e 8364 else
14f9c5c9 8365 {
d2e4a39e 8366 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8367
d2e4a39e 8368 if (raw_real_type == type)
dda83cd7 8369 return type;
14f9c5c9 8370 else
dda83cd7 8371 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8372 }
8373}
8374
8375/* In some cases, incomplete and private types require
4c4b4cd2 8376 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8377 type Foo;
8378 type FooP is access Foo;
8379 V: FooP;
8380 type Foo is array ...;
4c4b4cd2 8381 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8382 cross-references to such types, we instead substitute for FooP a
8383 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8384 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8385
8386/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8387 exists, otherwise TYPE. */
8388
d2e4a39e 8389struct type *
61ee279c 8390ada_check_typedef (struct type *type)
14f9c5c9 8391{
727e3d2e
JB
8392 if (type == NULL)
8393 return NULL;
8394
736ade86
XR
8395 /* If our type is an access to an unconstrained array, which is encoded
8396 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8397 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8398 what allows us to distinguish between fat pointers that represent
8399 array types, and fat pointers that represent array access types
8400 (in both cases, the compiler implements them as fat pointers). */
736ade86 8401 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8402 return type;
8403
f168693b 8404 type = check_typedef (type);
78134374 8405 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8406 || !type->is_stub ()
7d93a1e0 8407 || type->name () == NULL)
14f9c5c9 8408 return type;
d2e4a39e 8409 else
14f9c5c9 8410 {
7d93a1e0 8411 const char *name = type->name ();
d2e4a39e 8412 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8413
05e522ef 8414 if (type1 == NULL)
dda83cd7 8415 return type;
05e522ef
JB
8416
8417 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8418 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8419 types, only for the typedef-to-array types). If that's the case,
8420 strip the typedef layer. */
78134374 8421 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8422 type1 = ada_check_typedef (type1);
8423
8424 return type1;
14f9c5c9
AS
8425 }
8426}
8427
8428/* A value representing the data at VALADDR/ADDRESS as described by
8429 type TYPE0, but with a standard (static-sized) type that correctly
8430 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8431 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8432 creation of struct values]. */
14f9c5c9 8433
4c4b4cd2
PH
8434static struct value *
8435ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8436 struct value *val0)
14f9c5c9 8437{
1ed6ede0 8438 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8439
14f9c5c9
AS
8440 if (type == type0 && val0 != NULL)
8441 return val0;
cc0e770c
JB
8442
8443 if (VALUE_LVAL (val0) != lval_memory)
8444 {
8445 /* Our value does not live in memory; it could be a convenience
8446 variable, for instance. Create a not_lval value using val0's
8447 contents. */
8448 return value_from_contents (type, value_contents (val0));
8449 }
8450
8451 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8452}
8453
8454/* A value representing VAL, but with a standard (static-sized) type
8455 that correctly describes it. Does not necessarily create a new
8456 value. */
8457
0c3acc09 8458struct value *
4c4b4cd2
PH
8459ada_to_fixed_value (struct value *val)
8460{
c48db5ca 8461 val = unwrap_value (val);
d8ce9127 8462 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8463 return val;
14f9c5c9 8464}
d2e4a39e 8465\f
14f9c5c9 8466
14f9c5c9
AS
8467/* Attributes */
8468
4c4b4cd2
PH
8469/* Table mapping attribute numbers to names.
8470 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8471
27087b7f 8472static const char * const attribute_names[] = {
14f9c5c9
AS
8473 "<?>",
8474
d2e4a39e 8475 "first",
14f9c5c9
AS
8476 "last",
8477 "length",
8478 "image",
14f9c5c9
AS
8479 "max",
8480 "min",
4c4b4cd2
PH
8481 "modulus",
8482 "pos",
8483 "size",
8484 "tag",
14f9c5c9 8485 "val",
14f9c5c9
AS
8486 0
8487};
8488
de93309a 8489static const char *
4c4b4cd2 8490ada_attribute_name (enum exp_opcode n)
14f9c5c9 8491{
4c4b4cd2
PH
8492 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8493 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8494 else
8495 return attribute_names[0];
8496}
8497
4c4b4cd2 8498/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8499
4c4b4cd2
PH
8500static LONGEST
8501pos_atr (struct value *arg)
14f9c5c9 8502{
24209737
PH
8503 struct value *val = coerce_ref (arg);
8504 struct type *type = value_type (val);
14f9c5c9 8505
d2e4a39e 8506 if (!discrete_type_p (type))
323e0a4a 8507 error (_("'POS only defined on discrete types"));
14f9c5c9 8508
6244c119
SM
8509 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8510 if (!result.has_value ())
aa715135 8511 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8512
6244c119 8513 return *result;
4c4b4cd2
PH
8514}
8515
7631cf6c 8516struct value *
7992accc
TT
8517ada_pos_atr (struct type *expect_type,
8518 struct expression *exp,
8519 enum noside noside, enum exp_opcode op,
8520 struct value *arg)
4c4b4cd2 8521{
7992accc
TT
8522 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8523 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8524 return value_zero (type, not_lval);
3cb382c9 8525 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8526}
8527
4c4b4cd2 8528/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8529
d2e4a39e 8530static struct value *
53a47a3e 8531val_atr (struct type *type, LONGEST val)
14f9c5c9 8532{
53a47a3e 8533 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8534 if (type->code () == TYPE_CODE_RANGE)
8535 type = TYPE_TARGET_TYPE (type);
78134374 8536 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8537 {
53a47a3e 8538 if (val < 0 || val >= type->num_fields ())
dda83cd7 8539 error (_("argument to 'VAL out of range"));
53a47a3e 8540 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8541 }
53a47a3e
TT
8542 return value_from_longest (type, val);
8543}
8544
9e99f48f 8545struct value *
3848abd6 8546ada_val_atr (enum noside noside, struct type *type, struct value *arg)
53a47a3e 8547{
3848abd6
TT
8548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8549 return value_zero (type, not_lval);
8550
53a47a3e
TT
8551 if (!discrete_type_p (type))
8552 error (_("'VAL only defined on discrete types"));
8553 if (!integer_type_p (value_type (arg)))
8554 error (_("'VAL requires integral argument"));
8555
8556 return val_atr (type, value_as_long (arg));
14f9c5c9 8557}
14f9c5c9 8558\f
d2e4a39e 8559
dda83cd7 8560 /* Evaluation */
14f9c5c9 8561
4c4b4cd2
PH
8562/* True if TYPE appears to be an Ada character type.
8563 [At the moment, this is true only for Character and Wide_Character;
8564 It is a heuristic test that could stand improvement]. */
14f9c5c9 8565
fc913e53 8566bool
d2e4a39e 8567ada_is_character_type (struct type *type)
14f9c5c9 8568{
7b9f71f2
JB
8569 const char *name;
8570
8571 /* If the type code says it's a character, then assume it really is,
8572 and don't check any further. */
78134374 8573 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8574 return true;
7b9f71f2
JB
8575
8576 /* Otherwise, assume it's a character type iff it is a discrete type
8577 with a known character type name. */
8578 name = ada_type_name (type);
8579 return (name != NULL
dda83cd7
SM
8580 && (type->code () == TYPE_CODE_INT
8581 || type->code () == TYPE_CODE_RANGE)
8582 && (strcmp (name, "character") == 0
8583 || strcmp (name, "wide_character") == 0
8584 || strcmp (name, "wide_wide_character") == 0
8585 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8586}
8587
4c4b4cd2 8588/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8589
fc913e53 8590bool
ebf56fd3 8591ada_is_string_type (struct type *type)
14f9c5c9 8592{
61ee279c 8593 type = ada_check_typedef (type);
d2e4a39e 8594 if (type != NULL
78134374 8595 && type->code () != TYPE_CODE_PTR
76a01679 8596 && (ada_is_simple_array_type (type)
dda83cd7 8597 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8598 && ada_array_arity (type) == 1)
8599 {
8600 struct type *elttype = ada_array_element_type (type, 1);
8601
8602 return ada_is_character_type (elttype);
8603 }
d2e4a39e 8604 else
fc913e53 8605 return false;
14f9c5c9
AS
8606}
8607
5bf03f13
JB
8608/* The compiler sometimes provides a parallel XVS type for a given
8609 PAD type. Normally, it is safe to follow the PAD type directly,
8610 but older versions of the compiler have a bug that causes the offset
8611 of its "F" field to be wrong. Following that field in that case
8612 would lead to incorrect results, but this can be worked around
8613 by ignoring the PAD type and using the associated XVS type instead.
8614
8615 Set to True if the debugger should trust the contents of PAD types.
8616 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 8617static bool trust_pad_over_xvs = true;
14f9c5c9
AS
8618
8619/* True if TYPE is a struct type introduced by the compiler to force the
8620 alignment of a value. Such types have a single field with a
4c4b4cd2 8621 distinctive name. */
14f9c5c9
AS
8622
8623int
ebf56fd3 8624ada_is_aligner_type (struct type *type)
14f9c5c9 8625{
61ee279c 8626 type = ada_check_typedef (type);
714e53ab 8627
5bf03f13 8628 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8629 return 0;
8630
78134374 8631 return (type->code () == TYPE_CODE_STRUCT
dda83cd7
SM
8632 && type->num_fields () == 1
8633 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8634}
8635
8636/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8637 the parallel type. */
14f9c5c9 8638
d2e4a39e
AS
8639struct type *
8640ada_get_base_type (struct type *raw_type)
14f9c5c9 8641{
d2e4a39e
AS
8642 struct type *real_type_namer;
8643 struct type *raw_real_type;
14f9c5c9 8644
78134374 8645 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
8646 return raw_type;
8647
284614f0
JB
8648 if (ada_is_aligner_type (raw_type))
8649 /* The encoding specifies that we should always use the aligner type.
8650 So, even if this aligner type has an associated XVS type, we should
8651 simply ignore it.
8652
8653 According to the compiler gurus, an XVS type parallel to an aligner
8654 type may exist because of a stabs limitation. In stabs, aligner
8655 types are empty because the field has a variable-sized type, and
8656 thus cannot actually be used as an aligner type. As a result,
8657 we need the associated parallel XVS type to decode the type.
8658 Since the policy in the compiler is to not change the internal
8659 representation based on the debugging info format, we sometimes
8660 end up having a redundant XVS type parallel to the aligner type. */
8661 return raw_type;
8662
14f9c5c9 8663 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8664 if (real_type_namer == NULL
78134374 8665 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 8666 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
8667 return raw_type;
8668
940da03e 8669 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
8670 {
8671 /* This is an older encoding form where the base type needs to be
85102364 8672 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
8673 more efficient. */
8674 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8675 if (raw_real_type == NULL)
8676 return raw_type;
8677 else
8678 return raw_real_type;
8679 }
8680
8681 /* The field in our XVS type is a reference to the base type. */
940da03e 8682 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 8683}
14f9c5c9 8684
4c4b4cd2 8685/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8686
d2e4a39e
AS
8687struct type *
8688ada_aligned_type (struct type *type)
14f9c5c9
AS
8689{
8690 if (ada_is_aligner_type (type))
940da03e 8691 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
8692 else
8693 return ada_get_base_type (type);
8694}
8695
8696
8697/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8698 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8699
fc1a4b47
AC
8700const gdb_byte *
8701ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8702{
d2e4a39e 8703 if (ada_is_aligner_type (type))
940da03e 8704 return ada_aligned_value_addr (type->field (0).type (),
dda83cd7
SM
8705 valaddr +
8706 TYPE_FIELD_BITPOS (type,
8707 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8708 else
8709 return valaddr;
8710}
8711
4c4b4cd2
PH
8712
8713
14f9c5c9 8714/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8715 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8716const char *
8717ada_enum_name (const char *name)
14f9c5c9 8718{
5f9febe0 8719 static std::string storage;
e6a959d6 8720 const char *tmp;
14f9c5c9 8721
4c4b4cd2
PH
8722 /* First, unqualify the enumeration name:
8723 1. Search for the last '.' character. If we find one, then skip
177b42fe 8724 all the preceding characters, the unqualified name starts
76a01679 8725 right after that dot.
4c4b4cd2 8726 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8727 translates dots into "__". Search forward for double underscores,
8728 but stop searching when we hit an overloading suffix, which is
8729 of the form "__" followed by digits. */
4c4b4cd2 8730
c3e5cd34
PH
8731 tmp = strrchr (name, '.');
8732 if (tmp != NULL)
4c4b4cd2
PH
8733 name = tmp + 1;
8734 else
14f9c5c9 8735 {
4c4b4cd2 8736 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
8737 {
8738 if (isdigit (tmp[2]))
8739 break;
8740 else
8741 name = tmp + 2;
8742 }
14f9c5c9
AS
8743 }
8744
8745 if (name[0] == 'Q')
8746 {
14f9c5c9 8747 int v;
5b4ee69b 8748
14f9c5c9 8749 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
8750 {
8751 if (sscanf (name + 2, "%x", &v) != 1)
8752 return name;
8753 }
272560b5
TT
8754 else if (((name[1] >= '0' && name[1] <= '9')
8755 || (name[1] >= 'a' && name[1] <= 'z'))
8756 && name[2] == '\0')
8757 {
5f9febe0
TT
8758 storage = string_printf ("'%c'", name[1]);
8759 return storage.c_str ();
272560b5 8760 }
14f9c5c9 8761 else
dda83cd7 8762 return name;
14f9c5c9
AS
8763
8764 if (isascii (v) && isprint (v))
5f9febe0 8765 storage = string_printf ("'%c'", v);
14f9c5c9 8766 else if (name[1] == 'U')
5f9febe0 8767 storage = string_printf ("[\"%02x\"]", v);
14f9c5c9 8768 else
5f9febe0 8769 storage = string_printf ("[\"%04x\"]", v);
14f9c5c9 8770
5f9febe0 8771 return storage.c_str ();
14f9c5c9 8772 }
d2e4a39e 8773 else
4c4b4cd2 8774 {
c3e5cd34
PH
8775 tmp = strstr (name, "__");
8776 if (tmp == NULL)
8777 tmp = strstr (name, "$");
8778 if (tmp != NULL)
dda83cd7 8779 {
5f9febe0
TT
8780 storage = std::string (name, tmp - name);
8781 return storage.c_str ();
dda83cd7 8782 }
4c4b4cd2
PH
8783
8784 return name;
8785 }
14f9c5c9
AS
8786}
8787
14f9c5c9 8788/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8789 value it wraps. */
14f9c5c9 8790
d2e4a39e
AS
8791static struct value *
8792unwrap_value (struct value *val)
14f9c5c9 8793{
df407dfe 8794 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8795
14f9c5c9
AS
8796 if (ada_is_aligner_type (type))
8797 {
de4d072f 8798 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8799 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8800
14f9c5c9 8801 if (ada_type_name (val_type) == NULL)
d0e39ea2 8802 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
8803
8804 return unwrap_value (v);
8805 }
d2e4a39e 8806 else
14f9c5c9 8807 {
d2e4a39e 8808 struct type *raw_real_type =
dda83cd7 8809 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8810
5bf03f13
JB
8811 /* If there is no parallel XVS or XVE type, then the value is
8812 already unwrapped. Return it without further modification. */
8813 if ((type == raw_real_type)
8814 && ada_find_parallel_type (type, "___XVE") == NULL)
8815 return val;
14f9c5c9 8816
d2e4a39e 8817 return
dda83cd7
SM
8818 coerce_unspec_val_to_type
8819 (val, ada_to_fixed_type (raw_real_type, 0,
8820 value_address (val),
8821 NULL, 1));
14f9c5c9
AS
8822 }
8823}
d2e4a39e 8824
d99dcf51
JB
8825/* Given two array types T1 and T2, return nonzero iff both arrays
8826 contain the same number of elements. */
8827
8828static int
8829ada_same_array_size_p (struct type *t1, struct type *t2)
8830{
8831 LONGEST lo1, hi1, lo2, hi2;
8832
8833 /* Get the array bounds in order to verify that the size of
8834 the two arrays match. */
8835 if (!get_array_bounds (t1, &lo1, &hi1)
8836 || !get_array_bounds (t2, &lo2, &hi2))
8837 error (_("unable to determine array bounds"));
8838
8839 /* To make things easier for size comparison, normalize a bit
8840 the case of empty arrays by making sure that the difference
8841 between upper bound and lower bound is always -1. */
8842 if (lo1 > hi1)
8843 hi1 = lo1 - 1;
8844 if (lo2 > hi2)
8845 hi2 = lo2 - 1;
8846
8847 return (hi1 - lo1 == hi2 - lo2);
8848}
8849
8850/* Assuming that VAL is an array of integrals, and TYPE represents
8851 an array with the same number of elements, but with wider integral
8852 elements, return an array "casted" to TYPE. In practice, this
8853 means that the returned array is built by casting each element
8854 of the original array into TYPE's (wider) element type. */
8855
8856static struct value *
8857ada_promote_array_of_integrals (struct type *type, struct value *val)
8858{
8859 struct type *elt_type = TYPE_TARGET_TYPE (type);
8860 LONGEST lo, hi;
8861 struct value *res;
8862 LONGEST i;
8863
8864 /* Verify that both val and type are arrays of scalars, and
8865 that the size of val's elements is smaller than the size
8866 of type's element. */
78134374 8867 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 8868 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 8869 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
8870 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8871 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8872 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8873
8874 if (!get_array_bounds (type, &lo, &hi))
8875 error (_("unable to determine array bounds"));
8876
8877 res = allocate_value (type);
8878
8879 /* Promote each array element. */
8880 for (i = 0; i < hi - lo + 1; i++)
8881 {
8882 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8883
8884 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8885 value_contents_all (elt), TYPE_LENGTH (elt_type));
8886 }
8887
8888 return res;
8889}
8890
4c4b4cd2
PH
8891/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8892 return the converted value. */
8893
d2e4a39e
AS
8894static struct value *
8895coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8896{
df407dfe 8897 struct type *type2 = value_type (val);
5b4ee69b 8898
14f9c5c9
AS
8899 if (type == type2)
8900 return val;
8901
61ee279c
PH
8902 type2 = ada_check_typedef (type2);
8903 type = ada_check_typedef (type);
14f9c5c9 8904
78134374
SM
8905 if (type2->code () == TYPE_CODE_PTR
8906 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
8907 {
8908 val = ada_value_ind (val);
df407dfe 8909 type2 = value_type (val);
14f9c5c9
AS
8910 }
8911
78134374
SM
8912 if (type2->code () == TYPE_CODE_ARRAY
8913 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 8914 {
d99dcf51
JB
8915 if (!ada_same_array_size_p (type, type2))
8916 error (_("cannot assign arrays of different length"));
8917
8918 if (is_integral_type (TYPE_TARGET_TYPE (type))
8919 && is_integral_type (TYPE_TARGET_TYPE (type2))
8920 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8921 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8922 {
8923 /* Allow implicit promotion of the array elements to
8924 a wider type. */
8925 return ada_promote_array_of_integrals (type, val);
8926 }
8927
8928 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
8929 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8930 error (_("Incompatible types in assignment"));
04624583 8931 deprecated_set_value_type (val, type);
14f9c5c9 8932 }
d2e4a39e 8933 return val;
14f9c5c9
AS
8934}
8935
4c4b4cd2
PH
8936static struct value *
8937ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8938{
8939 struct value *val;
8940 struct type *type1, *type2;
8941 LONGEST v, v1, v2;
8942
994b9211
AC
8943 arg1 = coerce_ref (arg1);
8944 arg2 = coerce_ref (arg2);
18af8284
JB
8945 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8946 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8947
78134374
SM
8948 if (type1->code () != TYPE_CODE_INT
8949 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
8950 return value_binop (arg1, arg2, op);
8951
76a01679 8952 switch (op)
4c4b4cd2
PH
8953 {
8954 case BINOP_MOD:
8955 case BINOP_DIV:
8956 case BINOP_REM:
8957 break;
8958 default:
8959 return value_binop (arg1, arg2, op);
8960 }
8961
8962 v2 = value_as_long (arg2);
8963 if (v2 == 0)
b0f9164c
TT
8964 {
8965 const char *name;
8966 if (op == BINOP_MOD)
8967 name = "mod";
8968 else if (op == BINOP_DIV)
8969 name = "/";
8970 else
8971 {
8972 gdb_assert (op == BINOP_REM);
8973 name = "rem";
8974 }
8975
8976 error (_("second operand of %s must not be zero."), name);
8977 }
4c4b4cd2 8978
c6d940a9 8979 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
8980 return value_binop (arg1, arg2, op);
8981
8982 v1 = value_as_long (arg1);
8983 switch (op)
8984 {
8985 case BINOP_DIV:
8986 v = v1 / v2;
76a01679 8987 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 8988 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8989 break;
8990 case BINOP_REM:
8991 v = v1 % v2;
76a01679 8992 if (v * v1 < 0)
dda83cd7 8993 v -= v2;
4c4b4cd2
PH
8994 break;
8995 default:
8996 /* Should not reach this point. */
8997 v = 0;
8998 }
8999
9000 val = allocate_value (type1);
990a07ab 9001 store_unsigned_integer (value_contents_raw (val),
dda83cd7 9002 TYPE_LENGTH (value_type (val)),
34877895 9003 type_byte_order (type1), v);
4c4b4cd2
PH
9004 return val;
9005}
9006
9007static int
9008ada_value_equal (struct value *arg1, struct value *arg2)
9009{
df407dfe
AC
9010 if (ada_is_direct_array_type (value_type (arg1))
9011 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9012 {
79e8fcaa
JB
9013 struct type *arg1_type, *arg2_type;
9014
f58b38bf 9015 /* Automatically dereference any array reference before
dda83cd7 9016 we attempt to perform the comparison. */
f58b38bf
JB
9017 arg1 = ada_coerce_ref (arg1);
9018 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9019
4c4b4cd2
PH
9020 arg1 = ada_coerce_to_simple_array (arg1);
9021 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9022
9023 arg1_type = ada_check_typedef (value_type (arg1));
9024 arg2_type = ada_check_typedef (value_type (arg2));
9025
78134374 9026 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9027 || arg2_type->code () != TYPE_CODE_ARRAY)
9028 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9029 /* FIXME: The following works only for types whose
dda83cd7
SM
9030 representations use all bits (no padding or undefined bits)
9031 and do not have user-defined equality. */
79e8fcaa
JB
9032 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9033 && memcmp (value_contents (arg1), value_contents (arg2),
9034 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9035 }
9036 return value_equal (arg1, arg2);
9037}
9038
d3c54a1c
TT
9039namespace expr
9040{
9041
9042bool
9043check_objfile (const std::unique_ptr<ada_component> &comp,
9044 struct objfile *objfile)
9045{
9046 return comp->uses_objfile (objfile);
9047}
9048
9049/* Assign the result of evaluating ARG starting at *POS to the INDEXth
9050 component of LHS (a simple array or a record). Does not modify the
9051 inferior's memory, nor does it modify LHS (unless LHS ==
9052 CONTAINER). */
52ce6436
PH
9053
9054static void
9055assign_component (struct value *container, struct value *lhs, LONGEST index,
d3c54a1c 9056 struct expression *exp, operation_up &arg)
52ce6436 9057{
d3c54a1c
TT
9058 scoped_value_mark mark;
9059
52ce6436 9060 struct value *elt;
0e2da9f0 9061 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9062
78134374 9063 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9064 {
22601c15
UW
9065 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9066 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9067
52ce6436
PH
9068 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9069 }
9070 else
9071 {
9072 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9073 elt = ada_to_fixed_value (elt);
52ce6436
PH
9074 }
9075
d3c54a1c
TT
9076 ada_aggregate_operation *ag_op
9077 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9078 if (ag_op != nullptr)
9079 ag_op->assign_aggregate (container, elt, exp);
52ce6436 9080 else
d3c54a1c
TT
9081 value_assign_to_component (container, elt,
9082 arg->evaluate (nullptr, exp,
9083 EVAL_NORMAL));
9084}
52ce6436 9085
d3c54a1c
TT
9086bool
9087ada_aggregate_component::uses_objfile (struct objfile *objfile)
9088{
9089 for (const auto &item : m_components)
9090 if (item->uses_objfile (objfile))
9091 return true;
9092 return false;
9093}
9094
9095void
9096ada_aggregate_component::dump (ui_file *stream, int depth)
9097{
9098 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9099 for (const auto &item : m_components)
9100 item->dump (stream, depth + 1);
9101}
9102
9103void
9104ada_aggregate_component::assign (struct value *container,
9105 struct value *lhs, struct expression *exp,
9106 std::vector<LONGEST> &indices,
9107 LONGEST low, LONGEST high)
9108{
9109 for (auto &item : m_components)
9110 item->assign (container, lhs, exp, indices, low, high);
52ce6436
PH
9111}
9112
207582c0 9113/* See ada-exp.h. */
52ce6436 9114
207582c0 9115value *
d3c54a1c
TT
9116ada_aggregate_operation::assign_aggregate (struct value *container,
9117 struct value *lhs,
9118 struct expression *exp)
52ce6436
PH
9119{
9120 struct type *lhs_type;
52ce6436 9121 LONGEST low_index, high_index;
52ce6436
PH
9122
9123 container = ada_coerce_ref (container);
9124 if (ada_is_direct_array_type (value_type (container)))
9125 container = ada_coerce_to_simple_array (container);
9126 lhs = ada_coerce_ref (lhs);
9127 if (!deprecated_value_modifiable (lhs))
9128 error (_("Left operand of assignment is not a modifiable lvalue."));
9129
0e2da9f0 9130 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9131 if (ada_is_direct_array_type (lhs_type))
9132 {
9133 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9134 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9135 low_index = lhs_type->bounds ()->low.const_val ();
9136 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9137 }
78134374 9138 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9139 {
9140 low_index = 0;
9141 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9142 }
9143 else
9144 error (_("Left-hand side must be array or record."));
9145
cf608cc4 9146 std::vector<LONGEST> indices (4);
52ce6436
PH
9147 indices[0] = indices[1] = low_index - 1;
9148 indices[2] = indices[3] = high_index + 1;
52ce6436 9149
d3c54a1c
TT
9150 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9151 low_index, high_index);
207582c0
TT
9152
9153 return container;
d3c54a1c
TT
9154}
9155
9156bool
9157ada_positional_component::uses_objfile (struct objfile *objfile)
9158{
9159 return m_op->uses_objfile (objfile);
9160}
52ce6436 9161
d3c54a1c
TT
9162void
9163ada_positional_component::dump (ui_file *stream, int depth)
9164{
9165 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9166 depth, "", m_index);
9167 m_op->dump (stream, depth + 1);
52ce6436 9168}
d3c54a1c 9169
52ce6436 9170/* Assign into the component of LHS indexed by the OP_POSITIONAL
d3c54a1c
TT
9171 construct, given that the positions are relative to lower bound
9172 LOW, where HIGH is the upper bound. Record the position in
9173 INDICES. CONTAINER is as for assign_aggregate. */
9174void
9175ada_positional_component::assign (struct value *container,
9176 struct value *lhs, struct expression *exp,
9177 std::vector<LONGEST> &indices,
9178 LONGEST low, LONGEST high)
52ce6436 9179{
d3c54a1c
TT
9180 LONGEST ind = m_index + low;
9181
52ce6436 9182 if (ind - 1 == high)
e1d5a0d2 9183 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9184 if (ind <= high)
9185 {
cf608cc4 9186 add_component_interval (ind, ind, indices);
d3c54a1c 9187 assign_component (container, lhs, ind, exp, m_op);
52ce6436 9188 }
52ce6436
PH
9189}
9190
d3c54a1c
TT
9191bool
9192ada_discrete_range_association::uses_objfile (struct objfile *objfile)
a88c4354
TT
9193{
9194 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9195}
9196
9197void
9198ada_discrete_range_association::dump (ui_file *stream, int depth)
9199{
9200 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9201 m_low->dump (stream, depth + 1);
9202 m_high->dump (stream, depth + 1);
9203}
9204
9205void
9206ada_discrete_range_association::assign (struct value *container,
9207 struct value *lhs,
9208 struct expression *exp,
9209 std::vector<LONGEST> &indices,
9210 LONGEST low, LONGEST high,
9211 operation_up &op)
9212{
9213 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9214 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9215
9216 if (lower <= upper && (lower < low || upper > high))
9217 error (_("Index in component association out of bounds."));
9218
9219 add_component_interval (lower, upper, indices);
9220 while (lower <= upper)
9221 {
9222 assign_component (container, lhs, lower, exp, op);
9223 lower += 1;
9224 }
9225}
9226
9227bool
9228ada_name_association::uses_objfile (struct objfile *objfile)
9229{
9230 return m_val->uses_objfile (objfile);
9231}
9232
9233void
9234ada_name_association::dump (ui_file *stream, int depth)
9235{
9236 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9237 m_val->dump (stream, depth + 1);
9238}
9239
9240void
9241ada_name_association::assign (struct value *container,
9242 struct value *lhs,
9243 struct expression *exp,
9244 std::vector<LONGEST> &indices,
9245 LONGEST low, LONGEST high,
9246 operation_up &op)
9247{
9248 int index;
9249
9250 if (ada_is_direct_array_type (value_type (lhs)))
9251 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9252 EVAL_NORMAL)));
9253 else
9254 {
9255 ada_string_operation *strop
9256 = dynamic_cast<ada_string_operation *> (m_val.get ());
9257
9258 const char *name;
9259 if (strop != nullptr)
9260 name = strop->get_name ();
9261 else
9262 {
9263 ada_var_value_operation *vvo
9264 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9265 if (vvo != nullptr)
9266 error (_("Invalid record component association."));
9267 name = vvo->get_symbol ()->natural_name ();
9268 }
9269
9270 index = 0;
9271 if (! find_struct_field (name, value_type (lhs), 0,
9272 NULL, NULL, NULL, NULL, &index))
9273 error (_("Unknown component name: %s."), name);
9274 }
9275
9276 add_component_interval (index, index, indices);
9277 assign_component (container, lhs, index, exp, op);
9278}
9279
9280bool
9281ada_choices_component::uses_objfile (struct objfile *objfile)
9282{
9283 if (m_op->uses_objfile (objfile))
9284 return true;
9285 for (const auto &item : m_assocs)
9286 if (item->uses_objfile (objfile))
9287 return true;
9288 return false;
9289}
9290
9291void
9292ada_choices_component::dump (ui_file *stream, int depth)
9293{
9294 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9295 m_op->dump (stream, depth + 1);
9296 for (const auto &item : m_assocs)
9297 item->dump (stream, depth + 1);
9298}
9299
9300/* Assign into the components of LHS indexed by the OP_CHOICES
9301 construct at *POS, updating *POS past the construct, given that
9302 the allowable indices are LOW..HIGH. Record the indices assigned
9303 to in INDICES. CONTAINER is as for assign_aggregate. */
9304void
9305ada_choices_component::assign (struct value *container,
9306 struct value *lhs, struct expression *exp,
9307 std::vector<LONGEST> &indices,
9308 LONGEST low, LONGEST high)
9309{
9310 for (auto &item : m_assocs)
9311 item->assign (container, lhs, exp, indices, low, high, m_op);
9312}
9313
9314bool
9315ada_others_component::uses_objfile (struct objfile *objfile)
9316{
9317 return m_op->uses_objfile (objfile);
9318}
9319
9320void
9321ada_others_component::dump (ui_file *stream, int depth)
9322{
9323 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9324 m_op->dump (stream, depth + 1);
9325}
9326
9327/* Assign the value of the expression in the OP_OTHERS construct in
9328 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9329 have not been previously assigned. The index intervals already assigned
9330 are in INDICES. CONTAINER is as for assign_aggregate. */
9331void
9332ada_others_component::assign (struct value *container,
9333 struct value *lhs, struct expression *exp,
9334 std::vector<LONGEST> &indices,
9335 LONGEST low, LONGEST high)
9336{
9337 int num_indices = indices.size ();
9338 for (int i = 0; i < num_indices - 2; i += 2)
9339 {
9340 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9341 assign_component (container, lhs, ind, exp, m_op);
9342 }
9343}
9344
9345struct value *
9346ada_assign_operation::evaluate (struct type *expect_type,
9347 struct expression *exp,
9348 enum noside noside)
9349{
9350 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9351
9352 ada_aggregate_operation *ag_op
9353 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9354 if (ag_op != nullptr)
9355 {
9356 if (noside != EVAL_NORMAL)
9357 return arg1;
9358
207582c0 9359 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
a88c4354
TT
9360 return ada_value_assign (arg1, arg1);
9361 }
9362 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9363 except if the lhs of our assignment is a convenience variable.
9364 In the case of assigning to a convenience variable, the lhs
9365 should be exactly the result of the evaluation of the rhs. */
9366 struct type *type = value_type (arg1);
9367 if (VALUE_LVAL (arg1) == lval_internalvar)
9368 type = NULL;
9369 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
0b2b0b82 9370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
a88c4354
TT
9371 return arg1;
9372 if (VALUE_LVAL (arg1) == lval_internalvar)
9373 {
9374 /* Nothing. */
9375 }
9376 else
9377 arg2 = coerce_for_assign (value_type (arg1), arg2);
9378 return ada_value_assign (arg1, arg2);
9379}
9380
9381} /* namespace expr */
9382
cf608cc4
TT
9383/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9384 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9385 overlap. */
52ce6436
PH
9386static void
9387add_component_interval (LONGEST low, LONGEST high,
cf608cc4 9388 std::vector<LONGEST> &indices)
52ce6436
PH
9389{
9390 int i, j;
5b4ee69b 9391
cf608cc4
TT
9392 int size = indices.size ();
9393 for (i = 0; i < size; i += 2) {
52ce6436
PH
9394 if (high >= indices[i] && low <= indices[i + 1])
9395 {
9396 int kh;
5b4ee69b 9397
cf608cc4 9398 for (kh = i + 2; kh < size; kh += 2)
52ce6436
PH
9399 if (high < indices[kh])
9400 break;
9401 if (low < indices[i])
9402 indices[i] = low;
9403 indices[i + 1] = indices[kh - 1];
9404 if (high > indices[i + 1])
9405 indices[i + 1] = high;
cf608cc4
TT
9406 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9407 indices.resize (kh - i - 2);
52ce6436
PH
9408 return;
9409 }
9410 else if (high < indices[i])
9411 break;
9412 }
9413
cf608cc4 9414 indices.resize (indices.size () + 2);
d4813f10 9415 for (j = indices.size () - 1; j >= i + 2; j -= 1)
52ce6436
PH
9416 indices[j] = indices[j - 2];
9417 indices[i] = low;
9418 indices[i + 1] = high;
9419}
9420
6e48bd2c
JB
9421/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9422 is different. */
9423
9424static struct value *
b7e22850 9425ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9426{
9427 if (type == ada_check_typedef (value_type (arg2)))
9428 return arg2;
9429
6e48bd2c
JB
9430 return value_cast (type, arg2);
9431}
9432
284614f0
JB
9433/* Evaluating Ada expressions, and printing their result.
9434 ------------------------------------------------------
9435
21649b50
JB
9436 1. Introduction:
9437 ----------------
9438
284614f0
JB
9439 We usually evaluate an Ada expression in order to print its value.
9440 We also evaluate an expression in order to print its type, which
9441 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9442 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9443 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9444 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9445 similar.
9446
9447 Evaluating expressions is a little more complicated for Ada entities
9448 than it is for entities in languages such as C. The main reason for
9449 this is that Ada provides types whose definition might be dynamic.
9450 One example of such types is variant records. Or another example
9451 would be an array whose bounds can only be known at run time.
9452
9453 The following description is a general guide as to what should be
9454 done (and what should NOT be done) in order to evaluate an expression
9455 involving such types, and when. This does not cover how the semantic
9456 information is encoded by GNAT as this is covered separatly. For the
9457 document used as the reference for the GNAT encoding, see exp_dbug.ads
9458 in the GNAT sources.
9459
9460 Ideally, we should embed each part of this description next to its
9461 associated code. Unfortunately, the amount of code is so vast right
9462 now that it's hard to see whether the code handling a particular
9463 situation might be duplicated or not. One day, when the code is
9464 cleaned up, this guide might become redundant with the comments
9465 inserted in the code, and we might want to remove it.
9466
21649b50
JB
9467 2. ``Fixing'' an Entity, the Simple Case:
9468 -----------------------------------------
9469
284614f0
JB
9470 When evaluating Ada expressions, the tricky issue is that they may
9471 reference entities whose type contents and size are not statically
9472 known. Consider for instance a variant record:
9473
9474 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9475 case Empty is
9476 when True => null;
9477 when False => Value : Integer;
9478 end case;
284614f0
JB
9479 end record;
9480 Yes : Rec := (Empty => False, Value => 1);
9481 No : Rec := (empty => True);
9482
9483 The size and contents of that record depends on the value of the
9484 descriminant (Rec.Empty). At this point, neither the debugging
9485 information nor the associated type structure in GDB are able to
9486 express such dynamic types. So what the debugger does is to create
9487 "fixed" versions of the type that applies to the specific object.
30baf67b 9488 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9489 which means creating its associated fixed type.
9490
9491 Example: when printing the value of variable "Yes" above, its fixed
9492 type would look like this:
9493
9494 type Rec is record
dda83cd7
SM
9495 Empty : Boolean;
9496 Value : Integer;
284614f0
JB
9497 end record;
9498
9499 On the other hand, if we printed the value of "No", its fixed type
9500 would become:
9501
9502 type Rec is record
dda83cd7 9503 Empty : Boolean;
284614f0
JB
9504 end record;
9505
9506 Things become a little more complicated when trying to fix an entity
9507 with a dynamic type that directly contains another dynamic type,
9508 such as an array of variant records, for instance. There are
9509 two possible cases: Arrays, and records.
9510
21649b50
JB
9511 3. ``Fixing'' Arrays:
9512 ---------------------
9513
9514 The type structure in GDB describes an array in terms of its bounds,
9515 and the type of its elements. By design, all elements in the array
9516 have the same type and we cannot represent an array of variant elements
9517 using the current type structure in GDB. When fixing an array,
9518 we cannot fix the array element, as we would potentially need one
9519 fixed type per element of the array. As a result, the best we can do
9520 when fixing an array is to produce an array whose bounds and size
9521 are correct (allowing us to read it from memory), but without having
9522 touched its element type. Fixing each element will be done later,
9523 when (if) necessary.
9524
9525 Arrays are a little simpler to handle than records, because the same
9526 amount of memory is allocated for each element of the array, even if
1b536f04 9527 the amount of space actually used by each element differs from element
21649b50 9528 to element. Consider for instance the following array of type Rec:
284614f0
JB
9529
9530 type Rec_Array is array (1 .. 2) of Rec;
9531
1b536f04
JB
9532 The actual amount of memory occupied by each element might be different
9533 from element to element, depending on the value of their discriminant.
21649b50 9534 But the amount of space reserved for each element in the array remains
1b536f04 9535 fixed regardless. So we simply need to compute that size using
21649b50
JB
9536 the debugging information available, from which we can then determine
9537 the array size (we multiply the number of elements of the array by
9538 the size of each element).
9539
9540 The simplest case is when we have an array of a constrained element
9541 type. For instance, consider the following type declarations:
9542
dda83cd7
SM
9543 type Bounded_String (Max_Size : Integer) is
9544 Length : Integer;
9545 Buffer : String (1 .. Max_Size);
9546 end record;
9547 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9548
9549 In this case, the compiler describes the array as an array of
9550 variable-size elements (identified by its XVS suffix) for which
9551 the size can be read in the parallel XVZ variable.
9552
9553 In the case of an array of an unconstrained element type, the compiler
9554 wraps the array element inside a private PAD type. This type should not
9555 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9556 that we also use the adjective "aligner" in our code to designate
9557 these wrapper types.
9558
1b536f04 9559 In some cases, the size allocated for each element is statically
21649b50
JB
9560 known. In that case, the PAD type already has the correct size,
9561 and the array element should remain unfixed.
9562
9563 But there are cases when this size is not statically known.
9564 For instance, assuming that "Five" is an integer variable:
284614f0 9565
dda83cd7
SM
9566 type Dynamic is array (1 .. Five) of Integer;
9567 type Wrapper (Has_Length : Boolean := False) is record
9568 Data : Dynamic;
9569 case Has_Length is
9570 when True => Length : Integer;
9571 when False => null;
9572 end case;
9573 end record;
9574 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9575
dda83cd7
SM
9576 Hello : Wrapper_Array := (others => (Has_Length => True,
9577 Data => (others => 17),
9578 Length => 1));
284614f0
JB
9579
9580
9581 The debugging info would describe variable Hello as being an
9582 array of a PAD type. The size of that PAD type is not statically
9583 known, but can be determined using a parallel XVZ variable.
9584 In that case, a copy of the PAD type with the correct size should
9585 be used for the fixed array.
9586
21649b50
JB
9587 3. ``Fixing'' record type objects:
9588 ----------------------------------
9589
9590 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9591 record types. In this case, in order to compute the associated
9592 fixed type, we need to determine the size and offset of each of
9593 its components. This, in turn, requires us to compute the fixed
9594 type of each of these components.
9595
9596 Consider for instance the example:
9597
dda83cd7
SM
9598 type Bounded_String (Max_Size : Natural) is record
9599 Str : String (1 .. Max_Size);
9600 Length : Natural;
9601 end record;
9602 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
9603
9604 In that case, the position of field "Length" depends on the size
9605 of field Str, which itself depends on the value of the Max_Size
21649b50 9606 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9607 we need to fix the type of field Str. Therefore, fixing a variant
9608 record requires us to fix each of its components.
9609
9610 However, if a component does not have a dynamic size, the component
9611 should not be fixed. In particular, fields that use a PAD type
9612 should not fixed. Here is an example where this might happen
9613 (assuming type Rec above):
9614
9615 type Container (Big : Boolean) is record
dda83cd7
SM
9616 First : Rec;
9617 After : Integer;
9618 case Big is
9619 when True => Another : Integer;
9620 when False => null;
9621 end case;
284614f0
JB
9622 end record;
9623 My_Container : Container := (Big => False,
dda83cd7
SM
9624 First => (Empty => True),
9625 After => 42);
284614f0
JB
9626
9627 In that example, the compiler creates a PAD type for component First,
9628 whose size is constant, and then positions the component After just
9629 right after it. The offset of component After is therefore constant
9630 in this case.
9631
9632 The debugger computes the position of each field based on an algorithm
9633 that uses, among other things, the actual position and size of the field
21649b50
JB
9634 preceding it. Let's now imagine that the user is trying to print
9635 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9636 end up computing the offset of field After based on the size of the
9637 fixed version of field First. And since in our example First has
9638 only one actual field, the size of the fixed type is actually smaller
9639 than the amount of space allocated to that field, and thus we would
9640 compute the wrong offset of field After.
9641
21649b50
JB
9642 To make things more complicated, we need to watch out for dynamic
9643 components of variant records (identified by the ___XVL suffix in
9644 the component name). Even if the target type is a PAD type, the size
9645 of that type might not be statically known. So the PAD type needs
9646 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9647 we might end up with the wrong size for our component. This can be
9648 observed with the following type declarations:
284614f0 9649
dda83cd7
SM
9650 type Octal is new Integer range 0 .. 7;
9651 type Octal_Array is array (Positive range <>) of Octal;
9652 pragma Pack (Octal_Array);
284614f0 9653
dda83cd7
SM
9654 type Octal_Buffer (Size : Positive) is record
9655 Buffer : Octal_Array (1 .. Size);
9656 Length : Integer;
9657 end record;
284614f0
JB
9658
9659 In that case, Buffer is a PAD type whose size is unset and needs
9660 to be computed by fixing the unwrapped type.
9661
21649b50
JB
9662 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9663 ----------------------------------------------------------
9664
9665 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9666 thus far, be actually fixed?
9667
9668 The answer is: Only when referencing that element. For instance
9669 when selecting one component of a record, this specific component
9670 should be fixed at that point in time. Or when printing the value
9671 of a record, each component should be fixed before its value gets
9672 printed. Similarly for arrays, the element of the array should be
9673 fixed when printing each element of the array, or when extracting
9674 one element out of that array. On the other hand, fixing should
9675 not be performed on the elements when taking a slice of an array!
9676
31432a67 9677 Note that one of the side effects of miscomputing the offset and
284614f0
JB
9678 size of each field is that we end up also miscomputing the size
9679 of the containing type. This can have adverse results when computing
9680 the value of an entity. GDB fetches the value of an entity based
9681 on the size of its type, and thus a wrong size causes GDB to fetch
9682 the wrong amount of memory. In the case where the computed size is
9683 too small, GDB fetches too little data to print the value of our
31432a67 9684 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
9685 past the buffer containing the data =:-o. */
9686
62d4bd94
TT
9687/* A helper function for TERNOP_IN_RANGE. */
9688
9689static value *
9690eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9691 enum noside noside,
9692 value *arg1, value *arg2, value *arg3)
9693{
62d4bd94
TT
9694 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9696 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9697 return
9698 value_from_longest (type,
9699 (value_less (arg1, arg3)
9700 || value_equal (arg1, arg3))
9701 && (value_less (arg2, arg1)
9702 || value_equal (arg2, arg1)));
9703}
9704
82390ab8
TT
9705/* A helper function for UNOP_NEG. */
9706
7c15d377 9707value *
82390ab8
TT
9708ada_unop_neg (struct type *expect_type,
9709 struct expression *exp,
9710 enum noside noside, enum exp_opcode op,
9711 struct value *arg1)
9712{
82390ab8
TT
9713 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9714 return value_neg (arg1);
9715}
9716
7efc87ff
TT
9717/* A helper function for UNOP_IN_RANGE. */
9718
95d49dfb 9719value *
7efc87ff
TT
9720ada_unop_in_range (struct type *expect_type,
9721 struct expression *exp,
9722 enum noside noside, enum exp_opcode op,
9723 struct value *arg1, struct type *type)
9724{
7efc87ff
TT
9725 struct value *arg2, *arg3;
9726 switch (type->code ())
9727 {
9728 default:
9729 lim_warning (_("Membership test incompletely implemented; "
9730 "always returns true"));
9731 type = language_bool_type (exp->language_defn, exp->gdbarch);
9732 return value_from_longest (type, (LONGEST) 1);
9733
9734 case TYPE_CODE_RANGE:
9735 arg2 = value_from_longest (type,
9736 type->bounds ()->low.const_val ());
9737 arg3 = value_from_longest (type,
9738 type->bounds ()->high.const_val ());
9739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9740 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9741 type = language_bool_type (exp->language_defn, exp->gdbarch);
9742 return
9743 value_from_longest (type,
9744 (value_less (arg1, arg3)
9745 || value_equal (arg1, arg3))
9746 && (value_less (arg2, arg1)
9747 || value_equal (arg2, arg1)));
9748 }
9749}
9750
020dbabe
TT
9751/* A helper function for OP_ATR_TAG. */
9752
7c15d377 9753value *
020dbabe
TT
9754ada_atr_tag (struct type *expect_type,
9755 struct expression *exp,
9756 enum noside noside, enum exp_opcode op,
9757 struct value *arg1)
9758{
9759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9760 return value_zero (ada_tag_type (arg1), not_lval);
9761
9762 return ada_value_tag (arg1);
9763}
9764
68c75735
TT
9765/* A helper function for OP_ATR_SIZE. */
9766
7c15d377 9767value *
68c75735
TT
9768ada_atr_size (struct type *expect_type,
9769 struct expression *exp,
9770 enum noside noside, enum exp_opcode op,
9771 struct value *arg1)
9772{
9773 struct type *type = value_type (arg1);
9774
9775 /* If the argument is a reference, then dereference its type, since
9776 the user is really asking for the size of the actual object,
9777 not the size of the pointer. */
9778 if (type->code () == TYPE_CODE_REF)
9779 type = TYPE_TARGET_TYPE (type);
9780
0b2b0b82 9781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
68c75735
TT
9782 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9783 else
9784 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9785 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9786}
9787
d05e24e6
TT
9788/* A helper function for UNOP_ABS. */
9789
7c15d377 9790value *
d05e24e6
TT
9791ada_abs (struct type *expect_type,
9792 struct expression *exp,
9793 enum noside noside, enum exp_opcode op,
9794 struct value *arg1)
9795{
9796 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9797 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9798 return value_neg (arg1);
9799 else
9800 return arg1;
9801}
9802
faa1dfd7
TT
9803/* A helper function for BINOP_MUL. */
9804
d9e7db06 9805value *
faa1dfd7
TT
9806ada_mult_binop (struct type *expect_type,
9807 struct expression *exp,
9808 enum noside noside, enum exp_opcode op,
9809 struct value *arg1, struct value *arg2)
9810{
9811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9812 {
9813 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9814 return value_zero (value_type (arg1), not_lval);
9815 }
9816 else
9817 {
9818 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9819 return ada_value_binop (arg1, arg2, op);
9820 }
9821}
9822
214b13ac
TT
9823/* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9824
6e8fb7b7 9825value *
214b13ac
TT
9826ada_equal_binop (struct type *expect_type,
9827 struct expression *exp,
9828 enum noside noside, enum exp_opcode op,
9829 struct value *arg1, struct value *arg2)
9830{
9831 int tem;
9832 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9833 tem = 0;
9834 else
9835 {
9836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9837 tem = ada_value_equal (arg1, arg2);
9838 }
9839 if (op == BINOP_NOTEQUAL)
9840 tem = !tem;
9841 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9842 return value_from_longest (type, (LONGEST) tem);
9843}
9844
5ce19db8
TT
9845/* A helper function for TERNOP_SLICE. */
9846
1b1ebfab 9847value *
5ce19db8
TT
9848ada_ternop_slice (struct expression *exp,
9849 enum noside noside,
9850 struct value *array, struct value *low_bound_val,
9851 struct value *high_bound_val)
9852{
9853 LONGEST low_bound;
9854 LONGEST high_bound;
9855
9856 low_bound_val = coerce_ref (low_bound_val);
9857 high_bound_val = coerce_ref (high_bound_val);
9858 low_bound = value_as_long (low_bound_val);
9859 high_bound = value_as_long (high_bound_val);
9860
9861 /* If this is a reference to an aligner type, then remove all
9862 the aligners. */
9863 if (value_type (array)->code () == TYPE_CODE_REF
9864 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9865 TYPE_TARGET_TYPE (value_type (array)) =
9866 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9867
9868 if (ada_is_any_packed_array_type (value_type (array)))
9869 error (_("cannot slice a packed array"));
9870
9871 /* If this is a reference to an array or an array lvalue,
9872 convert to a pointer. */
9873 if (value_type (array)->code () == TYPE_CODE_REF
9874 || (value_type (array)->code () == TYPE_CODE_ARRAY
9875 && VALUE_LVAL (array) == lval_memory))
9876 array = value_addr (array);
9877
9878 if (noside == EVAL_AVOID_SIDE_EFFECTS
9879 && ada_is_array_descriptor_type (ada_check_typedef
9880 (value_type (array))))
9881 return empty_array (ada_type_of_array (array, 0), low_bound,
9882 high_bound);
9883
9884 array = ada_coerce_to_simple_array_ptr (array);
9885
9886 /* If we have more than one level of pointer indirection,
9887 dereference the value until we get only one level. */
9888 while (value_type (array)->code () == TYPE_CODE_PTR
9889 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9890 == TYPE_CODE_PTR))
9891 array = value_ind (array);
9892
9893 /* Make sure we really do have an array type before going further,
9894 to avoid a SEGV when trying to get the index type or the target
9895 type later down the road if the debug info generated by
9896 the compiler is incorrect or incomplete. */
9897 if (!ada_is_simple_array_type (value_type (array)))
9898 error (_("cannot take slice of non-array"));
9899
9900 if (ada_check_typedef (value_type (array))->code ()
9901 == TYPE_CODE_PTR)
9902 {
9903 struct type *type0 = ada_check_typedef (value_type (array));
9904
9905 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9906 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9907 else
9908 {
9909 struct type *arr_type0 =
9910 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9911
9912 return ada_value_slice_from_ptr (array, arr_type0,
9913 longest_to_int (low_bound),
9914 longest_to_int (high_bound));
9915 }
9916 }
9917 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9918 return array;
9919 else if (high_bound < low_bound)
9920 return empty_array (value_type (array), low_bound, high_bound);
9921 else
9922 return ada_value_slice (array, longest_to_int (low_bound),
9923 longest_to_int (high_bound));
9924}
9925
b467efaa
TT
9926/* A helper function for BINOP_IN_BOUNDS. */
9927
82c3886e 9928value *
b467efaa
TT
9929ada_binop_in_bounds (struct expression *exp, enum noside noside,
9930 struct value *arg1, struct value *arg2, int n)
9931{
9932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 {
9934 struct type *type = language_bool_type (exp->language_defn,
9935 exp->gdbarch);
9936 return value_zero (type, not_lval);
9937 }
9938
9939 struct type *type = ada_index_type (value_type (arg2), n, "range");
9940 if (!type)
9941 type = value_type (arg1);
9942
9943 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9944 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9945
9946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9947 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9948 type = language_bool_type (exp->language_defn, exp->gdbarch);
9949 return value_from_longest (type,
9950 (value_less (arg1, arg3)
9951 || value_equal (arg1, arg3))
9952 && (value_less (arg2, arg1)
9953 || value_equal (arg2, arg1)));
9954}
9955
b84564fc
TT
9956/* A helper function for some attribute operations. */
9957
9958static value *
9959ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9960 struct value *arg1, struct type *type_arg, int tem)
9961{
9962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9963 {
9964 if (type_arg == NULL)
9965 type_arg = value_type (arg1);
9966
9967 if (ada_is_constrained_packed_array_type (type_arg))
9968 type_arg = decode_constrained_packed_array_type (type_arg);
9969
9970 if (!discrete_type_p (type_arg))
9971 {
9972 switch (op)
9973 {
9974 default: /* Should never happen. */
9975 error (_("unexpected attribute encountered"));
9976 case OP_ATR_FIRST:
9977 case OP_ATR_LAST:
9978 type_arg = ada_index_type (type_arg, tem,
9979 ada_attribute_name (op));
9980 break;
9981 case OP_ATR_LENGTH:
9982 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9983 break;
9984 }
9985 }
9986
9987 return value_zero (type_arg, not_lval);
9988 }
9989 else if (type_arg == NULL)
9990 {
9991 arg1 = ada_coerce_ref (arg1);
9992
9993 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9994 arg1 = ada_coerce_to_simple_array (arg1);
9995
9996 struct type *type;
9997 if (op == OP_ATR_LENGTH)
9998 type = builtin_type (exp->gdbarch)->builtin_int;
9999 else
10000 {
10001 type = ada_index_type (value_type (arg1), tem,
10002 ada_attribute_name (op));
10003 if (type == NULL)
10004 type = builtin_type (exp->gdbarch)->builtin_int;
10005 }
10006
10007 switch (op)
10008 {
10009 default: /* Should never happen. */
10010 error (_("unexpected attribute encountered"));
10011 case OP_ATR_FIRST:
10012 return value_from_longest
10013 (type, ada_array_bound (arg1, tem, 0));
10014 case OP_ATR_LAST:
10015 return value_from_longest
10016 (type, ada_array_bound (arg1, tem, 1));
10017 case OP_ATR_LENGTH:
10018 return value_from_longest
10019 (type, ada_array_length (arg1, tem));
10020 }
10021 }
10022 else if (discrete_type_p (type_arg))
10023 {
10024 struct type *range_type;
10025 const char *name = ada_type_name (type_arg);
10026
10027 range_type = NULL;
10028 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10029 range_type = to_fixed_range_type (type_arg, NULL);
10030 if (range_type == NULL)
10031 range_type = type_arg;
10032 switch (op)
10033 {
10034 default:
10035 error (_("unexpected attribute encountered"));
10036 case OP_ATR_FIRST:
10037 return value_from_longest
10038 (range_type, ada_discrete_type_low_bound (range_type));
10039 case OP_ATR_LAST:
10040 return value_from_longest
10041 (range_type, ada_discrete_type_high_bound (range_type));
10042 case OP_ATR_LENGTH:
10043 error (_("the 'length attribute applies only to array types"));
10044 }
10045 }
10046 else if (type_arg->code () == TYPE_CODE_FLT)
10047 error (_("unimplemented type attribute"));
10048 else
10049 {
10050 LONGEST low, high;
10051
10052 if (ada_is_constrained_packed_array_type (type_arg))
10053 type_arg = decode_constrained_packed_array_type (type_arg);
10054
10055 struct type *type;
10056 if (op == OP_ATR_LENGTH)
10057 type = builtin_type (exp->gdbarch)->builtin_int;
10058 else
10059 {
10060 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10061 if (type == NULL)
10062 type = builtin_type (exp->gdbarch)->builtin_int;
10063 }
10064
10065 switch (op)
10066 {
10067 default:
10068 error (_("unexpected attribute encountered"));
10069 case OP_ATR_FIRST:
10070 low = ada_array_bound_from_type (type_arg, tem, 0);
10071 return value_from_longest (type, low);
10072 case OP_ATR_LAST:
10073 high = ada_array_bound_from_type (type_arg, tem, 1);
10074 return value_from_longest (type, high);
10075 case OP_ATR_LENGTH:
10076 low = ada_array_bound_from_type (type_arg, tem, 0);
10077 high = ada_array_bound_from_type (type_arg, tem, 1);
10078 return value_from_longest (type, high - low + 1);
10079 }
10080 }
10081}
10082
38dc70cf
TT
10083/* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10084
6ad3b8bf 10085struct value *
38dc70cf
TT
10086ada_binop_minmax (struct type *expect_type,
10087 struct expression *exp,
10088 enum noside noside, enum exp_opcode op,
10089 struct value *arg1, struct value *arg2)
10090{
10091 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10092 return value_zero (value_type (arg1), not_lval);
10093 else
10094 {
10095 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
0922dc84 10096 return value_binop (arg1, arg2, op);
38dc70cf
TT
10097 }
10098}
10099
dd5fd283
TT
10100/* A helper function for BINOP_EXP. */
10101
065ec826 10102struct value *
dd5fd283
TT
10103ada_binop_exp (struct type *expect_type,
10104 struct expression *exp,
10105 enum noside noside, enum exp_opcode op,
10106 struct value *arg1, struct value *arg2)
10107{
10108 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10109 return value_zero (value_type (arg1), not_lval);
10110 else
10111 {
10112 /* For integer exponentiation operations,
10113 only promote the first argument. */
10114 if (is_integral_type (value_type (arg2)))
10115 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10116 else
10117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10118
10119 return value_binop (arg1, arg2, op);
10120 }
10121}
10122
03070ee9
TT
10123namespace expr
10124{
10125
10126value *
10127ada_wrapped_operation::evaluate (struct type *expect_type,
10128 struct expression *exp,
10129 enum noside noside)
10130{
10131 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10132 if (noside == EVAL_NORMAL)
10133 result = unwrap_value (result);
10134
10135 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10136 then we need to perform the conversion manually, because
10137 evaluate_subexp_standard doesn't do it. This conversion is
10138 necessary in Ada because the different kinds of float/fixed
10139 types in Ada have different representations.
10140
10141 Similarly, we need to perform the conversion from OP_LONG
10142 ourselves. */
10143 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10144 result = ada_value_cast (expect_type, result);
10145
10146 return result;
10147}
10148
42fecb61
TT
10149value *
10150ada_string_operation::evaluate (struct type *expect_type,
10151 struct expression *exp,
10152 enum noside noside)
10153{
10154 value *result = string_operation::evaluate (expect_type, exp, noside);
10155 /* The result type will have code OP_STRING, bashed there from
10156 OP_ARRAY. Bash it back. */
10157 if (value_type (result)->code () == TYPE_CODE_STRING)
10158 value_type (result)->set_code (TYPE_CODE_ARRAY);
10159 return result;
10160}
10161
cc6bd32e
TT
10162value *
10163ada_qual_operation::evaluate (struct type *expect_type,
10164 struct expression *exp,
10165 enum noside noside)
10166{
10167 struct type *type = std::get<1> (m_storage);
10168 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10169}
10170
fc715eb2
TT
10171value *
10172ada_ternop_range_operation::evaluate (struct type *expect_type,
10173 struct expression *exp,
10174 enum noside noside)
10175{
10176 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10177 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10178 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10179 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10180}
10181
73796c73
TT
10182value *
10183ada_binop_addsub_operation::evaluate (struct type *expect_type,
10184 struct expression *exp,
10185 enum noside noside)
10186{
10187 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10188 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10189
10190 auto do_op = [=] (LONGEST x, LONGEST y)
10191 {
10192 if (std::get<0> (m_storage) == BINOP_ADD)
10193 return x + y;
10194 return x - y;
10195 };
10196
10197 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10198 return (value_from_longest
10199 (value_type (arg1),
10200 do_op (value_as_long (arg1), value_as_long (arg2))));
10201 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10202 return (value_from_longest
10203 (value_type (arg2),
10204 do_op (value_as_long (arg1), value_as_long (arg2))));
10205 /* Preserve the original type for use by the range case below.
10206 We cannot cast the result to a reference type, so if ARG1 is
10207 a reference type, find its underlying type. */
10208 struct type *type = value_type (arg1);
10209 while (type->code () == TYPE_CODE_REF)
10210 type = TYPE_TARGET_TYPE (type);
10211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10212 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10213 /* We need to special-case the result with a range.
10214 This is done for the benefit of "ptype". gdb's Ada support
10215 historically used the LHS to set the result type here, so
10216 preserve this behavior. */
10217 if (type->code () == TYPE_CODE_RANGE)
10218 arg1 = value_cast (type, arg1);
10219 return arg1;
10220}
10221
60fa02ca
TT
10222value *
10223ada_unop_atr_operation::evaluate (struct type *expect_type,
10224 struct expression *exp,
10225 enum noside noside)
10226{
10227 struct type *type_arg = nullptr;
10228 value *val = nullptr;
10229
10230 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10231 {
10232 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10233 EVAL_AVOID_SIDE_EFFECTS);
10234 type_arg = value_type (tem);
10235 }
10236 else
10237 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10238
10239 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10240 val, type_arg, std::get<2> (m_storage));
10241}
10242
3f4a0053
TT
10243value *
10244ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10245 struct expression *exp,
10246 enum noside noside)
10247{
10248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10249 return value_zero (expect_type, not_lval);
10250
9c79936b
TT
10251 const bound_minimal_symbol &b = std::get<0> (m_storage);
10252 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
3f4a0053
TT
10253
10254 val = ada_value_cast (expect_type, val);
10255
10256 /* Follow the Ada language semantics that do not allow taking
10257 an address of the result of a cast (view conversion in Ada). */
10258 if (VALUE_LVAL (val) == lval_memory)
10259 {
10260 if (value_lazy (val))
10261 value_fetch_lazy (val);
10262 VALUE_LVAL (val) = not_lval;
10263 }
10264 return val;
10265}
10266
99a3b1e7
TT
10267value *
10268ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10269 struct expression *exp,
10270 enum noside noside)
10271{
10272 value *val = evaluate_var_value (noside,
9e5e03df
TT
10273 std::get<0> (m_storage).block,
10274 std::get<0> (m_storage).symbol);
99a3b1e7
TT
10275
10276 val = ada_value_cast (expect_type, val);
10277
10278 /* Follow the Ada language semantics that do not allow taking
10279 an address of the result of a cast (view conversion in Ada). */
10280 if (VALUE_LVAL (val) == lval_memory)
10281 {
10282 if (value_lazy (val))
10283 value_fetch_lazy (val);
10284 VALUE_LVAL (val) = not_lval;
10285 }
10286 return val;
10287}
10288
10289value *
10290ada_var_value_operation::evaluate (struct type *expect_type,
10291 struct expression *exp,
10292 enum noside noside)
10293{
9e5e03df 10294 symbol *sym = std::get<0> (m_storage).symbol;
99a3b1e7
TT
10295
10296 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10297 /* Only encountered when an unresolved symbol occurs in a
10298 context other than a function call, in which case, it is
10299 invalid. */
10300 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10301 sym->print_name ());
10302
10303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10304 {
10305 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10306 /* Check to see if this is a tagged type. We also need to handle
10307 the case where the type is a reference to a tagged type, but
10308 we have to be careful to exclude pointers to tagged types.
10309 The latter should be shown as usual (as a pointer), whereas
10310 a reference should mostly be transparent to the user. */
10311 if (ada_is_tagged_type (type, 0)
10312 || (type->code () == TYPE_CODE_REF
10313 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10314 {
10315 /* Tagged types are a little special in the fact that the real
10316 type is dynamic and can only be determined by inspecting the
10317 object's tag. This means that we need to get the object's
10318 value first (EVAL_NORMAL) and then extract the actual object
10319 type from its tag.
10320
10321 Note that we cannot skip the final step where we extract
10322 the object type from its tag, because the EVAL_NORMAL phase
10323 results in dynamic components being resolved into fixed ones.
10324 This can cause problems when trying to print the type
10325 description of tagged types whose parent has a dynamic size:
10326 We use the type name of the "_parent" component in order
10327 to print the name of the ancestor type in the type description.
10328 If that component had a dynamic size, the resolution into
10329 a fixed type would result in the loss of that type name,
10330 thus preventing us from printing the name of the ancestor
10331 type in the type description. */
9863c3b5 10332 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
99a3b1e7
TT
10333
10334 if (type->code () != TYPE_CODE_REF)
10335 {
10336 struct type *actual_type;
10337
10338 actual_type = type_from_tag (ada_value_tag (arg1));
10339 if (actual_type == NULL)
10340 /* If, for some reason, we were unable to determine
10341 the actual type from the tag, then use the static
10342 approximation that we just computed as a fallback.
10343 This can happen if the debugging information is
10344 incomplete, for instance. */
10345 actual_type = type;
10346 return value_zero (actual_type, not_lval);
10347 }
10348 else
10349 {
10350 /* In the case of a ref, ada_coerce_ref takes care
10351 of determining the actual type. But the evaluation
10352 should return a ref as it should be valid to ask
10353 for its address; so rebuild a ref after coerce. */
10354 arg1 = ada_coerce_ref (arg1);
10355 return value_ref (arg1, TYPE_CODE_REF);
10356 }
10357 }
10358
10359 /* Records and unions for which GNAT encodings have been
10360 generated need to be statically fixed as well.
10361 Otherwise, non-static fixing produces a type where
10362 all dynamic properties are removed, which prevents "ptype"
10363 from being able to completely describe the type.
10364 For instance, a case statement in a variant record would be
10365 replaced by the relevant components based on the actual
10366 value of the discriminants. */
10367 if ((type->code () == TYPE_CODE_STRUCT
10368 && dynamic_template_type (type) != NULL)
10369 || (type->code () == TYPE_CODE_UNION
10370 && ada_find_parallel_type (type, "___XVU") != NULL))
10371 return value_zero (to_static_fixed_type (type), not_lval);
10372 }
10373
10374 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10375 return ada_to_fixed_value (arg1);
10376}
10377
d8a4ed8a
TT
10378bool
10379ada_var_value_operation::resolve (struct expression *exp,
10380 bool deprocedure_p,
10381 bool parse_completion,
10382 innermost_block_tracker *tracker,
10383 struct type *context_type)
10384{
9e5e03df 10385 symbol *sym = std::get<0> (m_storage).symbol;
d8a4ed8a
TT
10386 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10387 {
10388 block_symbol resolved
9e5e03df 10389 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
d8a4ed8a
TT
10390 context_type, parse_completion,
10391 deprocedure_p, tracker);
9e5e03df 10392 std::get<0> (m_storage) = resolved;
d8a4ed8a
TT
10393 }
10394
10395 if (deprocedure_p
9e5e03df
TT
10396 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10397 == TYPE_CODE_FUNC))
d8a4ed8a
TT
10398 return true;
10399
10400 return false;
10401}
10402
9e99f48f
TT
10403value *
10404ada_atr_val_operation::evaluate (struct type *expect_type,
10405 struct expression *exp,
10406 enum noside noside)
10407{
10408 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10409 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10410}
10411
e8c33fa1
TT
10412value *
10413ada_unop_ind_operation::evaluate (struct type *expect_type,
10414 struct expression *exp,
10415 enum noside noside)
10416{
10417 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10418
10419 struct type *type = ada_check_typedef (value_type (arg1));
10420 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10421 {
10422 if (ada_is_array_descriptor_type (type))
10423 /* GDB allows dereferencing GNAT array descriptors. */
10424 {
10425 struct type *arrType = ada_type_of_array (arg1, 0);
10426
10427 if (arrType == NULL)
10428 error (_("Attempt to dereference null array pointer."));
10429 return value_at_lazy (arrType, 0);
10430 }
10431 else if (type->code () == TYPE_CODE_PTR
10432 || type->code () == TYPE_CODE_REF
10433 /* In C you can dereference an array to get the 1st elt. */
10434 || type->code () == TYPE_CODE_ARRAY)
10435 {
10436 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10437 only be determined by inspecting the object's tag.
10438 This means that we need to evaluate completely the
10439 expression in order to get its type. */
10440
10441 if ((type->code () == TYPE_CODE_REF
10442 || type->code () == TYPE_CODE_PTR)
10443 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10444 {
10445 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10446 EVAL_NORMAL);
10447 type = value_type (ada_value_ind (arg1));
10448 }
10449 else
10450 {
10451 type = to_static_fixed_type
10452 (ada_aligned_type
10453 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10454 }
10455 ada_ensure_varsize_limit (type);
10456 return value_zero (type, lval_memory);
10457 }
10458 else if (type->code () == TYPE_CODE_INT)
10459 {
10460 /* GDB allows dereferencing an int. */
10461 if (expect_type == NULL)
10462 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10463 lval_memory);
10464 else
10465 {
10466 expect_type =
10467 to_static_fixed_type (ada_aligned_type (expect_type));
10468 return value_zero (expect_type, lval_memory);
10469 }
10470 }
10471 else
10472 error (_("Attempt to take contents of a non-pointer value."));
10473 }
10474 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10475 type = ada_check_typedef (value_type (arg1));
10476
10477 if (type->code () == TYPE_CODE_INT)
10478 /* GDB allows dereferencing an int. If we were given
10479 the expect_type, then use that as the target type.
10480 Otherwise, assume that the target type is an int. */
10481 {
10482 if (expect_type != NULL)
10483 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10484 arg1));
10485 else
10486 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10487 (CORE_ADDR) value_as_address (arg1));
10488 }
10489
3b5c4de0
TT
10490 struct type *target_type = (to_static_fixed_type
10491 (ada_aligned_type
10492 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10493 ada_ensure_varsize_limit (target_type);
10494
e8c33fa1
TT
10495 if (ada_is_array_descriptor_type (type))
10496 /* GDB allows dereferencing GNAT array descriptors. */
10497 return ada_coerce_to_simple_array (arg1);
10498 else
10499 return ada_value_ind (arg1);
10500}
10501
ebc06ad8
TT
10502value *
10503ada_structop_operation::evaluate (struct type *expect_type,
10504 struct expression *exp,
10505 enum noside noside)
10506{
10507 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10508 const char *str = std::get<1> (m_storage).c_str ();
10509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10510 {
10511 struct type *type;
10512 struct type *type1 = value_type (arg1);
10513
10514 if (ada_is_tagged_type (type1, 1))
10515 {
10516 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10517
10518 /* If the field is not found, check if it exists in the
10519 extension of this object's type. This means that we
10520 need to evaluate completely the expression. */
10521
10522 if (type == NULL)
10523 {
10524 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10525 EVAL_NORMAL);
10526 arg1 = ada_value_struct_elt (arg1, str, 0);
10527 arg1 = unwrap_value (arg1);
10528 type = value_type (ada_to_fixed_value (arg1));
10529 }
10530 }
10531 else
10532 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10533
10534 return value_zero (ada_aligned_type (type), lval_memory);
10535 }
10536 else
10537 {
10538 arg1 = ada_value_struct_elt (arg1, str, 0);
10539 arg1 = unwrap_value (arg1);
10540 return ada_to_fixed_value (arg1);
10541 }
10542}
10543
efe3af2f
TT
10544value *
10545ada_funcall_operation::evaluate (struct type *expect_type,
10546 struct expression *exp,
10547 enum noside noside)
10548{
10549 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10550 int nargs = args_up.size ();
10551 std::vector<value *> argvec (nargs);
10552 operation_up &callee_op = std::get<0> (m_storage);
10553
10554 ada_var_value_operation *avv
10555 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10556 if (avv != nullptr
10557 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10558 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10559 avv->get_symbol ()->print_name ());
10560
10561 value *callee = callee_op->evaluate (nullptr, exp, noside);
10562 for (int i = 0; i < args_up.size (); ++i)
10563 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10564
10565 if (ada_is_constrained_packed_array_type
10566 (desc_base_type (value_type (callee))))
10567 callee = ada_coerce_to_simple_array (callee);
10568 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10569 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10570 /* This is a packed array that has already been fixed, and
10571 therefore already coerced to a simple array. Nothing further
10572 to do. */
10573 ;
10574 else if (value_type (callee)->code () == TYPE_CODE_REF)
10575 {
10576 /* Make sure we dereference references so that all the code below
10577 feels like it's really handling the referenced value. Wrapping
10578 types (for alignment) may be there, so make sure we strip them as
10579 well. */
10580 callee = ada_to_fixed_value (coerce_ref (callee));
10581 }
10582 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10583 && VALUE_LVAL (callee) == lval_memory)
10584 callee = value_addr (callee);
10585
10586 struct type *type = ada_check_typedef (value_type (callee));
10587
10588 /* Ada allows us to implicitly dereference arrays when subscripting
10589 them. So, if this is an array typedef (encoding use for array
10590 access types encoded as fat pointers), strip it now. */
10591 if (type->code () == TYPE_CODE_TYPEDEF)
10592 type = ada_typedef_target_type (type);
10593
10594 if (type->code () == TYPE_CODE_PTR)
10595 {
10596 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10597 {
10598 case TYPE_CODE_FUNC:
10599 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10600 break;
10601 case TYPE_CODE_ARRAY:
10602 break;
10603 case TYPE_CODE_STRUCT:
10604 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10605 callee = ada_value_ind (callee);
10606 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10607 break;
10608 default:
10609 error (_("cannot subscript or call something of type `%s'"),
10610 ada_type_name (value_type (callee)));
10611 break;
10612 }
10613 }
10614
10615 switch (type->code ())
10616 {
10617 case TYPE_CODE_FUNC:
10618 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10619 {
10620 if (TYPE_TARGET_TYPE (type) == NULL)
10621 error_call_unknown_return_type (NULL);
10622 return allocate_value (TYPE_TARGET_TYPE (type));
10623 }
10624 return call_function_by_hand (callee, NULL, argvec);
10625 case TYPE_CODE_INTERNAL_FUNCTION:
10626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10627 /* We don't know anything about what the internal
10628 function might return, but we have to return
10629 something. */
10630 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10631 not_lval);
10632 else
10633 return call_internal_function (exp->gdbarch, exp->language_defn,
10634 callee, nargs,
10635 argvec.data ());
10636
d3c54a1c
TT
10637 case TYPE_CODE_STRUCT:
10638 {
10639 int arity;
4c4b4cd2 10640
d3c54a1c
TT
10641 arity = ada_array_arity (type);
10642 type = ada_array_element_type (type, nargs);
10643 if (type == NULL)
10644 error (_("cannot subscript or call a record"));
10645 if (arity != nargs)
10646 error (_("wrong number of subscripts; expecting %d"), arity);
10647 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10648 return value_zero (ada_aligned_type (type), lval_memory);
10649 return
10650 unwrap_value (ada_value_subscript
10651 (callee, nargs, argvec.data ()));
10652 }
10653 case TYPE_CODE_ARRAY:
14f9c5c9 10654 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10655 {
d3c54a1c
TT
10656 type = ada_array_element_type (type, nargs);
10657 if (type == NULL)
10658 error (_("element type of array unknown"));
dda83cd7 10659 else
d3c54a1c 10660 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10661 }
d3c54a1c
TT
10662 return
10663 unwrap_value (ada_value_subscript
10664 (ada_coerce_to_simple_array (callee),
10665 nargs, argvec.data ()));
10666 case TYPE_CODE_PTR: /* Pointer to array */
10667 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10668 {
d3c54a1c
TT
10669 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10670 type = ada_array_element_type (type, nargs);
10671 if (type == NULL)
10672 error (_("element type of array unknown"));
96967637 10673 else
d3c54a1c 10674 return value_zero (ada_aligned_type (type), lval_memory);
dda83cd7 10675 }
d3c54a1c
TT
10676 return
10677 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10678 argvec.data ()));
6b0d7253 10679
d3c54a1c
TT
10680 default:
10681 error (_("Attempt to index or call something other than an "
10682 "array or function"));
10683 }
10684}
5b4ee69b 10685
d3c54a1c
TT
10686bool
10687ada_funcall_operation::resolve (struct expression *exp,
10688 bool deprocedure_p,
10689 bool parse_completion,
10690 innermost_block_tracker *tracker,
10691 struct type *context_type)
10692{
10693 operation_up &callee_op = std::get<0> (m_storage);
5ec18f2b 10694
d3c54a1c
TT
10695 ada_var_value_operation *avv
10696 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10697 if (avv == nullptr)
10698 return false;
5ec18f2b 10699
d3c54a1c
TT
10700 symbol *sym = avv->get_symbol ();
10701 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10702 return false;
dda83cd7 10703
d3c54a1c
TT
10704 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10705 int nargs = args_up.size ();
10706 std::vector<value *> argvec (nargs);
284614f0 10707
d3c54a1c
TT
10708 for (int i = 0; i < args_up.size (); ++i)
10709 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
52ce6436 10710
d3c54a1c
TT
10711 const block *block = avv->get_block ();
10712 block_symbol resolved
10713 = ada_resolve_funcall (sym, block,
10714 context_type, parse_completion,
10715 nargs, argvec.data (),
10716 tracker);
10717
10718 std::get<0> (m_storage)
9e5e03df 10719 = make_operation<ada_var_value_operation> (resolved);
d3c54a1c
TT
10720 return false;
10721}
10722
10723bool
10724ada_ternop_slice_operation::resolve (struct expression *exp,
10725 bool deprocedure_p,
10726 bool parse_completion,
10727 innermost_block_tracker *tracker,
10728 struct type *context_type)
10729{
10730 /* Historically this check was done during resolution, so we
10731 continue that here. */
10732 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10733 EVAL_AVOID_SIDE_EFFECTS);
10734 if (ada_is_any_packed_array_type (value_type (v)))
10735 error (_("cannot slice a packed array"));
10736 return false;
10737}
14f9c5c9 10738
14f9c5c9 10739}
d3c54a1c 10740
14f9c5c9 10741\f
d2e4a39e 10742
4c4b4cd2
PH
10743/* Return non-zero iff TYPE represents a System.Address type. */
10744
10745int
10746ada_is_system_address_type (struct type *type)
10747{
7d93a1e0 10748 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
10749}
10750
14f9c5c9 10751\f
d2e4a39e 10752
dda83cd7 10753 /* Range types */
14f9c5c9
AS
10754
10755/* Scan STR beginning at position K for a discriminant name, and
10756 return the value of that discriminant field of DVAL in *PX. If
10757 PNEW_K is not null, put the position of the character beyond the
10758 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10759 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10760
10761static int
108d56a4 10762scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 10763 int *pnew_k)
14f9c5c9 10764{
5f9febe0 10765 static std::string storage;
5da1a4d3 10766 const char *pstart, *pend, *bound;
d2e4a39e 10767 struct value *bound_val;
14f9c5c9
AS
10768
10769 if (dval == NULL || str == NULL || str[k] == '\0')
10770 return 0;
10771
5da1a4d3
SM
10772 pstart = str + k;
10773 pend = strstr (pstart, "__");
14f9c5c9
AS
10774 if (pend == NULL)
10775 {
5da1a4d3 10776 bound = pstart;
14f9c5c9
AS
10777 k += strlen (bound);
10778 }
d2e4a39e 10779 else
14f9c5c9 10780 {
5da1a4d3
SM
10781 int len = pend - pstart;
10782
10783 /* Strip __ and beyond. */
5f9febe0
TT
10784 storage = std::string (pstart, len);
10785 bound = storage.c_str ();
d2e4a39e 10786 k = pend - str;
14f9c5c9 10787 }
d2e4a39e 10788
df407dfe 10789 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10790 if (bound_val == NULL)
10791 return 0;
10792
10793 *px = value_as_long (bound_val);
10794 if (pnew_k != NULL)
10795 *pnew_k = k;
10796 return 1;
10797}
10798
25a1127b
TT
10799/* Value of variable named NAME. Only exact matches are considered.
10800 If no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10801 otherwise causes an error with message ERR_MSG. */
10802
d2e4a39e 10803static struct value *
edb0c9cb 10804get_var_value (const char *name, const char *err_msg)
14f9c5c9 10805{
25a1127b
TT
10806 std::string quoted_name = add_angle_brackets (name);
10807
10808 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
14f9c5c9 10809
d1183b06
TT
10810 std::vector<struct block_symbol> syms
10811 = ada_lookup_symbol_list_worker (lookup_name,
10812 get_selected_block (0),
10813 VAR_DOMAIN, 1);
14f9c5c9 10814
d1183b06 10815 if (syms.size () != 1)
14f9c5c9
AS
10816 {
10817 if (err_msg == NULL)
dda83cd7 10818 return 0;
14f9c5c9 10819 else
dda83cd7 10820 error (("%s"), err_msg);
14f9c5c9
AS
10821 }
10822
54d343a2 10823 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 10824}
d2e4a39e 10825
edb0c9cb
PA
10826/* Value of integer variable named NAME in the current environment.
10827 If no such variable is found, returns false. Otherwise, sets VALUE
10828 to the variable's value and returns true. */
4c4b4cd2 10829
edb0c9cb
PA
10830bool
10831get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 10832{
4c4b4cd2 10833 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10834
14f9c5c9 10835 if (var_val == 0)
edb0c9cb
PA
10836 return false;
10837
10838 value = value_as_long (var_val);
10839 return true;
14f9c5c9 10840}
d2e4a39e 10841
14f9c5c9
AS
10842
10843/* Return a range type whose base type is that of the range type named
10844 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10845 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10846 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10847 corresponding range type from debug information; fall back to using it
10848 if symbol lookup fails. If a new type must be created, allocate it
10849 like ORIG_TYPE was. The bounds information, in general, is encoded
10850 in NAME, the base type given in the named range type. */
14f9c5c9 10851
d2e4a39e 10852static struct type *
28c85d6c 10853to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10854{
0d5cff50 10855 const char *name;
14f9c5c9 10856 struct type *base_type;
108d56a4 10857 const char *subtype_info;
14f9c5c9 10858
28c85d6c 10859 gdb_assert (raw_type != NULL);
7d93a1e0 10860 gdb_assert (raw_type->name () != NULL);
dddfab26 10861
78134374 10862 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
10863 base_type = TYPE_TARGET_TYPE (raw_type);
10864 else
10865 base_type = raw_type;
10866
7d93a1e0 10867 name = raw_type->name ();
14f9c5c9
AS
10868 subtype_info = strstr (name, "___XD");
10869 if (subtype_info == NULL)
690cc4eb 10870 {
43bbcdc2
PH
10871 LONGEST L = ada_discrete_type_low_bound (raw_type);
10872 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10873
690cc4eb
PH
10874 if (L < INT_MIN || U > INT_MAX)
10875 return raw_type;
10876 else
0c9c3474
SA
10877 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10878 L, U);
690cc4eb 10879 }
14f9c5c9
AS
10880 else
10881 {
14f9c5c9
AS
10882 int prefix_len = subtype_info - name;
10883 LONGEST L, U;
10884 struct type *type;
108d56a4 10885 const char *bounds_str;
14f9c5c9
AS
10886 int n;
10887
14f9c5c9
AS
10888 subtype_info += 5;
10889 bounds_str = strchr (subtype_info, '_');
10890 n = 1;
10891
d2e4a39e 10892 if (*subtype_info == 'L')
dda83cd7
SM
10893 {
10894 if (!ada_scan_number (bounds_str, n, &L, &n)
10895 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10896 return raw_type;
10897 if (bounds_str[n] == '_')
10898 n += 2;
10899 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10900 n += 1;
10901 subtype_info += 1;
10902 }
d2e4a39e 10903 else
dda83cd7 10904 {
5f9febe0
TT
10905 std::string name_buf = std::string (name, prefix_len) + "___L";
10906 if (!get_int_var_value (name_buf.c_str (), L))
dda83cd7
SM
10907 {
10908 lim_warning (_("Unknown lower bound, using 1."));
10909 L = 1;
10910 }
10911 }
14f9c5c9 10912
d2e4a39e 10913 if (*subtype_info == 'U')
dda83cd7
SM
10914 {
10915 if (!ada_scan_number (bounds_str, n, &U, &n)
10916 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10917 return raw_type;
10918 }
d2e4a39e 10919 else
dda83cd7 10920 {
5f9febe0
TT
10921 std::string name_buf = std::string (name, prefix_len) + "___U";
10922 if (!get_int_var_value (name_buf.c_str (), U))
dda83cd7
SM
10923 {
10924 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10925 U = L;
10926 }
10927 }
14f9c5c9 10928
0c9c3474
SA
10929 type = create_static_range_type (alloc_type_copy (raw_type),
10930 base_type, L, U);
f5a91472 10931 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
10932 to match the size of the base_type, which is not what we want.
10933 Set it back to the original range type's length. */
f5a91472 10934 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 10935 type->set_name (name);
14f9c5c9
AS
10936 return type;
10937 }
10938}
10939
4c4b4cd2
PH
10940/* True iff NAME is the name of a range type. */
10941
14f9c5c9 10942int
d2e4a39e 10943ada_is_range_type_name (const char *name)
14f9c5c9
AS
10944{
10945 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10946}
14f9c5c9 10947\f
d2e4a39e 10948
dda83cd7 10949 /* Modular types */
4c4b4cd2
PH
10950
10951/* True iff TYPE is an Ada modular type. */
14f9c5c9 10952
14f9c5c9 10953int
d2e4a39e 10954ada_is_modular_type (struct type *type)
14f9c5c9 10955{
18af8284 10956 struct type *subranged_type = get_base_type (type);
14f9c5c9 10957
78134374 10958 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
10959 && subranged_type->code () == TYPE_CODE_INT
10960 && subranged_type->is_unsigned ());
14f9c5c9
AS
10961}
10962
4c4b4cd2
PH
10963/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10964
61ee279c 10965ULONGEST
0056e4d5 10966ada_modulus (struct type *type)
14f9c5c9 10967{
5e500d33
SM
10968 const dynamic_prop &high = type->bounds ()->high;
10969
10970 if (high.kind () == PROP_CONST)
10971 return (ULONGEST) high.const_val () + 1;
10972
10973 /* If TYPE is unresolved, the high bound might be a location list. Return
10974 0, for lack of a better value to return. */
10975 return 0;
14f9c5c9 10976}
d2e4a39e 10977\f
f7f9143b
JB
10978
10979/* Ada exception catchpoint support:
10980 ---------------------------------
10981
10982 We support 3 kinds of exception catchpoints:
10983 . catchpoints on Ada exceptions
10984 . catchpoints on unhandled Ada exceptions
10985 . catchpoints on failed assertions
10986
10987 Exceptions raised during failed assertions, or unhandled exceptions
10988 could perfectly be caught with the general catchpoint on Ada exceptions.
10989 However, we can easily differentiate these two special cases, and having
10990 the option to distinguish these two cases from the rest can be useful
10991 to zero-in on certain situations.
10992
10993 Exception catchpoints are a specialized form of breakpoint,
10994 since they rely on inserting breakpoints inside known routines
10995 of the GNAT runtime. The implementation therefore uses a standard
10996 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10997 of breakpoint_ops.
10998
0259addd
JB
10999 Support in the runtime for exception catchpoints have been changed
11000 a few times already, and these changes affect the implementation
11001 of these catchpoints. In order to be able to support several
11002 variants of the runtime, we use a sniffer that will determine
28010a5d 11003 the runtime variant used by the program being debugged. */
f7f9143b 11004
82eacd52
JB
11005/* Ada's standard exceptions.
11006
11007 The Ada 83 standard also defined Numeric_Error. But there so many
11008 situations where it was unclear from the Ada 83 Reference Manual
11009 (RM) whether Constraint_Error or Numeric_Error should be raised,
11010 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11011 Interpretation saying that anytime the RM says that Numeric_Error
11012 should be raised, the implementation may raise Constraint_Error.
11013 Ada 95 went one step further and pretty much removed Numeric_Error
11014 from the list of standard exceptions (it made it a renaming of
11015 Constraint_Error, to help preserve compatibility when compiling
11016 an Ada83 compiler). As such, we do not include Numeric_Error from
11017 this list of standard exceptions. */
3d0b0fa3 11018
27087b7f 11019static const char * const standard_exc[] = {
3d0b0fa3
JB
11020 "constraint_error",
11021 "program_error",
11022 "storage_error",
11023 "tasking_error"
11024};
11025
0259addd
JB
11026typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11027
11028/* A structure that describes how to support exception catchpoints
11029 for a given executable. */
11030
11031struct exception_support_info
11032{
11033 /* The name of the symbol to break on in order to insert
11034 a catchpoint on exceptions. */
11035 const char *catch_exception_sym;
11036
11037 /* The name of the symbol to break on in order to insert
11038 a catchpoint on unhandled exceptions. */
11039 const char *catch_exception_unhandled_sym;
11040
11041 /* The name of the symbol to break on in order to insert
11042 a catchpoint on failed assertions. */
11043 const char *catch_assert_sym;
11044
9f757bf7
XR
11045 /* The name of the symbol to break on in order to insert
11046 a catchpoint on exception handling. */
11047 const char *catch_handlers_sym;
11048
0259addd
JB
11049 /* Assuming that the inferior just triggered an unhandled exception
11050 catchpoint, this function is responsible for returning the address
11051 in inferior memory where the name of that exception is stored.
11052 Return zero if the address could not be computed. */
11053 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11054};
11055
11056static CORE_ADDR ada_unhandled_exception_name_addr (void);
11057static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11058
11059/* The following exception support info structure describes how to
11060 implement exception catchpoints with the latest version of the
ca683e3a 11061 Ada runtime (as of 2019-08-??). */
0259addd
JB
11062
11063static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11064{
11065 "__gnat_debug_raise_exception", /* catch_exception_sym */
11066 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11067 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11068 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11069 ada_unhandled_exception_name_addr
11070};
11071
11072/* The following exception support info structure describes how to
11073 implement exception catchpoints with an earlier version of the
11074 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11075
11076static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11077{
11078 "__gnat_debug_raise_exception", /* catch_exception_sym */
11079 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11080 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11081 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11082 ada_unhandled_exception_name_addr
11083};
11084
11085/* The following exception support info structure describes how to
11086 implement exception catchpoints with a slightly older version
11087 of the Ada runtime. */
11088
11089static const struct exception_support_info exception_support_info_fallback =
11090{
11091 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11092 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11093 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11094 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11095 ada_unhandled_exception_name_addr_from_raise
11096};
11097
f17011e0
JB
11098/* Return nonzero if we can detect the exception support routines
11099 described in EINFO.
11100
11101 This function errors out if an abnormal situation is detected
11102 (for instance, if we find the exception support routines, but
11103 that support is found to be incomplete). */
11104
11105static int
11106ada_has_this_exception_support (const struct exception_support_info *einfo)
11107{
11108 struct symbol *sym;
11109
11110 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11111 that should be compiled with debugging information. As a result, we
11112 expect to find that symbol in the symtabs. */
11113
11114 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11115 if (sym == NULL)
a6af7abe
JB
11116 {
11117 /* Perhaps we did not find our symbol because the Ada runtime was
11118 compiled without debugging info, or simply stripped of it.
11119 It happens on some GNU/Linux distributions for instance, where
11120 users have to install a separate debug package in order to get
11121 the runtime's debugging info. In that situation, let the user
11122 know why we cannot insert an Ada exception catchpoint.
11123
11124 Note: Just for the purpose of inserting our Ada exception
11125 catchpoint, we could rely purely on the associated minimal symbol.
11126 But we would be operating in degraded mode anyway, since we are
11127 still lacking the debugging info needed later on to extract
11128 the name of the exception being raised (this name is printed in
11129 the catchpoint message, and is also used when trying to catch
11130 a specific exception). We do not handle this case for now. */
3b7344d5 11131 struct bound_minimal_symbol msym
1c8e84b0
JB
11132 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11133
3b7344d5 11134 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11135 error (_("Your Ada runtime appears to be missing some debugging "
11136 "information.\nCannot insert Ada exception catchpoint "
11137 "in this configuration."));
11138
11139 return 0;
11140 }
f17011e0
JB
11141
11142 /* Make sure that the symbol we found corresponds to a function. */
11143
11144 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11145 {
11146 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11147 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11148 return 0;
11149 }
11150
11151 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11152 if (sym == NULL)
11153 {
11154 struct bound_minimal_symbol msym
11155 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11156
11157 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11158 error (_("Your Ada runtime appears to be missing some debugging "
11159 "information.\nCannot insert Ada exception catchpoint "
11160 "in this configuration."));
11161
11162 return 0;
11163 }
11164
11165 /* Make sure that the symbol we found corresponds to a function. */
11166
11167 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11168 {
11169 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11170 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11171 return 0;
11172 }
f17011e0
JB
11173
11174 return 1;
11175}
11176
0259addd
JB
11177/* Inspect the Ada runtime and determine which exception info structure
11178 should be used to provide support for exception catchpoints.
11179
3eecfa55
JB
11180 This function will always set the per-inferior exception_info,
11181 or raise an error. */
0259addd
JB
11182
11183static void
11184ada_exception_support_info_sniffer (void)
11185{
3eecfa55 11186 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11187
11188 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11189 if (data->exception_info != NULL)
0259addd
JB
11190 return;
11191
11192 /* Check the latest (default) exception support info. */
f17011e0 11193 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11194 {
3eecfa55 11195 data->exception_info = &default_exception_support_info;
0259addd
JB
11196 return;
11197 }
11198
ca683e3a
AO
11199 /* Try the v0 exception suport info. */
11200 if (ada_has_this_exception_support (&exception_support_info_v0))
11201 {
11202 data->exception_info = &exception_support_info_v0;
11203 return;
11204 }
11205
0259addd 11206 /* Try our fallback exception suport info. */
f17011e0 11207 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11208 {
3eecfa55 11209 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11210 return;
11211 }
11212
11213 /* Sometimes, it is normal for us to not be able to find the routine
11214 we are looking for. This happens when the program is linked with
11215 the shared version of the GNAT runtime, and the program has not been
11216 started yet. Inform the user of these two possible causes if
11217 applicable. */
11218
ccefe4c4 11219 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11220 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11221
11222 /* If the symbol does not exist, then check that the program is
11223 already started, to make sure that shared libraries have been
11224 loaded. If it is not started, this may mean that the symbol is
11225 in a shared library. */
11226
e99b03dc 11227 if (inferior_ptid.pid () == 0)
0259addd
JB
11228 error (_("Unable to insert catchpoint. Try to start the program first."));
11229
11230 /* At this point, we know that we are debugging an Ada program and
11231 that the inferior has been started, but we still are not able to
0963b4bd 11232 find the run-time symbols. That can mean that we are in
0259addd
JB
11233 configurable run time mode, or that a-except as been optimized
11234 out by the linker... In any case, at this point it is not worth
11235 supporting this feature. */
11236
7dda8cff 11237 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11238}
11239
f7f9143b
JB
11240/* True iff FRAME is very likely to be that of a function that is
11241 part of the runtime system. This is all very heuristic, but is
11242 intended to be used as advice as to what frames are uninteresting
11243 to most users. */
11244
11245static int
11246is_known_support_routine (struct frame_info *frame)
11247{
692465f1 11248 enum language func_lang;
f7f9143b 11249 int i;
f35a17b5 11250 const char *fullname;
f7f9143b 11251
4ed6b5be
JB
11252 /* If this code does not have any debugging information (no symtab),
11253 This cannot be any user code. */
f7f9143b 11254
51abb421 11255 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11256 if (sal.symtab == NULL)
11257 return 1;
11258
4ed6b5be
JB
11259 /* If there is a symtab, but the associated source file cannot be
11260 located, then assume this is not user code: Selecting a frame
11261 for which we cannot display the code would not be very helpful
11262 for the user. This should also take care of case such as VxWorks
11263 where the kernel has some debugging info provided for a few units. */
f7f9143b 11264
f35a17b5
JK
11265 fullname = symtab_to_fullname (sal.symtab);
11266 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11267 return 1;
11268
85102364 11269 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11270 We also check the name of the objfile against the name of some
11271 known system libraries that sometimes come with debugging info
11272 too. */
11273
f7f9143b
JB
11274 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11275 {
11276 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11277 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11278 return 1;
eb822aa6 11279 if (SYMTAB_OBJFILE (sal.symtab) != NULL
dda83cd7
SM
11280 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11281 return 1;
f7f9143b
JB
11282 }
11283
4ed6b5be 11284 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11285
c6dc63a1
TT
11286 gdb::unique_xmalloc_ptr<char> func_name
11287 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11288 if (func_name == NULL)
11289 return 1;
11290
11291 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11292 {
11293 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11294 if (re_exec (func_name.get ()))
11295 return 1;
f7f9143b
JB
11296 }
11297
11298 return 0;
11299}
11300
11301/* Find the first frame that contains debugging information and that is not
11302 part of the Ada run-time, starting from FI and moving upward. */
11303
0ef643c8 11304void
f7f9143b
JB
11305ada_find_printable_frame (struct frame_info *fi)
11306{
11307 for (; fi != NULL; fi = get_prev_frame (fi))
11308 {
11309 if (!is_known_support_routine (fi))
dda83cd7
SM
11310 {
11311 select_frame (fi);
11312 break;
11313 }
f7f9143b
JB
11314 }
11315
11316}
11317
11318/* Assuming that the inferior just triggered an unhandled exception
11319 catchpoint, return the address in inferior memory where the name
11320 of the exception is stored.
11321
11322 Return zero if the address could not be computed. */
11323
11324static CORE_ADDR
11325ada_unhandled_exception_name_addr (void)
0259addd
JB
11326{
11327 return parse_and_eval_address ("e.full_name");
11328}
11329
11330/* Same as ada_unhandled_exception_name_addr, except that this function
11331 should be used when the inferior uses an older version of the runtime,
11332 where the exception name needs to be extracted from a specific frame
11333 several frames up in the callstack. */
11334
11335static CORE_ADDR
11336ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11337{
11338 int frame_level;
11339 struct frame_info *fi;
3eecfa55 11340 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11341
11342 /* To determine the name of this exception, we need to select
11343 the frame corresponding to RAISE_SYM_NAME. This frame is
11344 at least 3 levels up, so we simply skip the first 3 frames
11345 without checking the name of their associated function. */
11346 fi = get_current_frame ();
11347 for (frame_level = 0; frame_level < 3; frame_level += 1)
11348 if (fi != NULL)
11349 fi = get_prev_frame (fi);
11350
11351 while (fi != NULL)
11352 {
692465f1
JB
11353 enum language func_lang;
11354
c6dc63a1
TT
11355 gdb::unique_xmalloc_ptr<char> func_name
11356 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11357 if (func_name != NULL)
11358 {
dda83cd7 11359 if (strcmp (func_name.get (),
55b87a52
KS
11360 data->exception_info->catch_exception_sym) == 0)
11361 break; /* We found the frame we were looking for... */
55b87a52 11362 }
fb44b1a7 11363 fi = get_prev_frame (fi);
f7f9143b
JB
11364 }
11365
11366 if (fi == NULL)
11367 return 0;
11368
11369 select_frame (fi);
11370 return parse_and_eval_address ("id.full_name");
11371}
11372
11373/* Assuming the inferior just triggered an Ada exception catchpoint
11374 (of any type), return the address in inferior memory where the name
11375 of the exception is stored, if applicable.
11376
45db7c09
PA
11377 Assumes the selected frame is the current frame.
11378
f7f9143b
JB
11379 Return zero if the address could not be computed, or if not relevant. */
11380
11381static CORE_ADDR
761269c8 11382ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11383 struct breakpoint *b)
f7f9143b 11384{
3eecfa55
JB
11385 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11386
f7f9143b
JB
11387 switch (ex)
11388 {
761269c8 11389 case ada_catch_exception:
dda83cd7
SM
11390 return (parse_and_eval_address ("e.full_name"));
11391 break;
f7f9143b 11392
761269c8 11393 case ada_catch_exception_unhandled:
dda83cd7
SM
11394 return data->exception_info->unhandled_exception_name_addr ();
11395 break;
9f757bf7
XR
11396
11397 case ada_catch_handlers:
dda83cd7 11398 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11399 name. */
dda83cd7 11400 break;
9f757bf7 11401
761269c8 11402 case ada_catch_assert:
dda83cd7
SM
11403 return 0; /* Exception name is not relevant in this case. */
11404 break;
f7f9143b
JB
11405
11406 default:
dda83cd7
SM
11407 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11408 break;
f7f9143b
JB
11409 }
11410
11411 return 0; /* Should never be reached. */
11412}
11413
e547c119
JB
11414/* Assuming the inferior is stopped at an exception catchpoint,
11415 return the message which was associated to the exception, if
11416 available. Return NULL if the message could not be retrieved.
11417
e547c119
JB
11418 Note: The exception message can be associated to an exception
11419 either through the use of the Raise_Exception function, or
11420 more simply (Ada 2005 and later), via:
11421
11422 raise Exception_Name with "exception message";
11423
11424 */
11425
6f46ac85 11426static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11427ada_exception_message_1 (void)
11428{
11429 struct value *e_msg_val;
e547c119 11430 int e_msg_len;
e547c119
JB
11431
11432 /* For runtimes that support this feature, the exception message
11433 is passed as an unbounded string argument called "message". */
11434 e_msg_val = parse_and_eval ("message");
11435 if (e_msg_val == NULL)
11436 return NULL; /* Exception message not supported. */
11437
11438 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11439 gdb_assert (e_msg_val != NULL);
11440 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11441
11442 /* If the message string is empty, then treat it as if there was
11443 no exception message. */
11444 if (e_msg_len <= 0)
11445 return NULL;
11446
15f3b077
TT
11447 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11448 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11449 e_msg_len);
11450 e_msg.get ()[e_msg_len] = '\0';
11451
11452 return e_msg;
e547c119
JB
11453}
11454
11455/* Same as ada_exception_message_1, except that all exceptions are
11456 contained here (returning NULL instead). */
11457
6f46ac85 11458static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11459ada_exception_message (void)
11460{
6f46ac85 11461 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 11462
a70b8144 11463 try
e547c119
JB
11464 {
11465 e_msg = ada_exception_message_1 ();
11466 }
230d2906 11467 catch (const gdb_exception_error &e)
e547c119 11468 {
6f46ac85 11469 e_msg.reset (nullptr);
e547c119 11470 }
e547c119
JB
11471
11472 return e_msg;
11473}
11474
f7f9143b
JB
11475/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11476 any error that ada_exception_name_addr_1 might cause to be thrown.
11477 When an error is intercepted, a warning with the error message is printed,
11478 and zero is returned. */
11479
11480static CORE_ADDR
761269c8 11481ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 11482 struct breakpoint *b)
f7f9143b 11483{
f7f9143b
JB
11484 CORE_ADDR result = 0;
11485
a70b8144 11486 try
f7f9143b
JB
11487 {
11488 result = ada_exception_name_addr_1 (ex, b);
11489 }
11490
230d2906 11491 catch (const gdb_exception_error &e)
f7f9143b 11492 {
3d6e9d23 11493 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
11494 return 0;
11495 }
11496
11497 return result;
11498}
11499
cb7de75e 11500static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
11501 (const char *excep_string,
11502 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
11503
11504/* Ada catchpoints.
11505
11506 In the case of catchpoints on Ada exceptions, the catchpoint will
11507 stop the target on every exception the program throws. When a user
11508 specifies the name of a specific exception, we translate this
11509 request into a condition expression (in text form), and then parse
11510 it into an expression stored in each of the catchpoint's locations.
11511 We then use this condition to check whether the exception that was
11512 raised is the one the user is interested in. If not, then the
11513 target is resumed again. We store the name of the requested
11514 exception, in order to be able to re-set the condition expression
11515 when symbols change. */
11516
11517/* An instance of this type is used to represent an Ada catchpoint
5625a286 11518 breakpoint location. */
28010a5d 11519
5625a286 11520class ada_catchpoint_location : public bp_location
28010a5d 11521{
5625a286 11522public:
5f486660 11523 ada_catchpoint_location (breakpoint *owner)
f06f1252 11524 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 11525 {}
28010a5d
PA
11526
11527 /* The condition that checks whether the exception that was raised
11528 is the specific exception the user specified on catchpoint
11529 creation. */
4d01a485 11530 expression_up excep_cond_expr;
28010a5d
PA
11531};
11532
c1fc2657 11533/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 11534
c1fc2657 11535struct ada_catchpoint : public breakpoint
28010a5d 11536{
37f6a7f4
TT
11537 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11538 : m_kind (kind)
11539 {
11540 }
11541
28010a5d 11542 /* The name of the specific exception the user specified. */
bc18fbb5 11543 std::string excep_string;
37f6a7f4
TT
11544
11545 /* What kind of catchpoint this is. */
11546 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
11547};
11548
11549/* Parse the exception condition string in the context of each of the
11550 catchpoint's locations, and store them for later evaluation. */
11551
11552static void
9f757bf7 11553create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 11554 enum ada_exception_catchpoint_kind ex)
28010a5d 11555{
28010a5d 11556 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 11557 if (c->excep_string.empty ())
28010a5d
PA
11558 return;
11559
11560 /* Same if there are no locations... */
c1fc2657 11561 if (c->loc == NULL)
28010a5d
PA
11562 return;
11563
fccf9de1
TT
11564 /* Compute the condition expression in text form, from the specific
11565 expection we want to catch. */
11566 std::string cond_string
11567 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 11568
fccf9de1
TT
11569 /* Iterate over all the catchpoint's locations, and parse an
11570 expression for each. */
40cb8ca5 11571 for (bp_location *bl : c->locations ())
28010a5d
PA
11572 {
11573 struct ada_catchpoint_location *ada_loc
fccf9de1 11574 = (struct ada_catchpoint_location *) bl;
4d01a485 11575 expression_up exp;
28010a5d 11576
fccf9de1 11577 if (!bl->shlib_disabled)
28010a5d 11578 {
bbc13ae3 11579 const char *s;
28010a5d 11580
cb7de75e 11581 s = cond_string.c_str ();
a70b8144 11582 try
28010a5d 11583 {
fccf9de1
TT
11584 exp = parse_exp_1 (&s, bl->address,
11585 block_for_pc (bl->address),
036e657b 11586 0);
28010a5d 11587 }
230d2906 11588 catch (const gdb_exception_error &e)
849f2b52
JB
11589 {
11590 warning (_("failed to reevaluate internal exception condition "
11591 "for catchpoint %d: %s"),
3d6e9d23 11592 c->number, e.what ());
849f2b52 11593 }
28010a5d
PA
11594 }
11595
b22e99fd 11596 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 11597 }
28010a5d
PA
11598}
11599
28010a5d
PA
11600/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11601 structure for all exception catchpoint kinds. */
11602
11603static struct bp_location *
37f6a7f4 11604allocate_location_exception (struct breakpoint *self)
28010a5d 11605{
5f486660 11606 return new ada_catchpoint_location (self);
28010a5d
PA
11607}
11608
11609/* Implement the RE_SET method in the breakpoint_ops structure for all
11610 exception catchpoint kinds. */
11611
11612static void
37f6a7f4 11613re_set_exception (struct breakpoint *b)
28010a5d
PA
11614{
11615 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11616
11617 /* Call the base class's method. This updates the catchpoint's
11618 locations. */
2060206e 11619 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11620
11621 /* Reparse the exception conditional expressions. One for each
11622 location. */
37f6a7f4 11623 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
11624}
11625
11626/* Returns true if we should stop for this breakpoint hit. If the
11627 user specified a specific exception, we only want to cause a stop
11628 if the program thrown that exception. */
11629
11630static int
11631should_stop_exception (const struct bp_location *bl)
11632{
11633 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11634 const struct ada_catchpoint_location *ada_loc
11635 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
11636 int stop;
11637
37f6a7f4
TT
11638 struct internalvar *var = lookup_internalvar ("_ada_exception");
11639 if (c->m_kind == ada_catch_assert)
11640 clear_internalvar (var);
11641 else
11642 {
11643 try
11644 {
11645 const char *expr;
11646
11647 if (c->m_kind == ada_catch_handlers)
11648 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11649 ".all.occurrence.id");
11650 else
11651 expr = "e";
11652
11653 struct value *exc = parse_and_eval (expr);
11654 set_internalvar (var, exc);
11655 }
11656 catch (const gdb_exception_error &ex)
11657 {
11658 clear_internalvar (var);
11659 }
11660 }
11661
28010a5d 11662 /* With no specific exception, should always stop. */
bc18fbb5 11663 if (c->excep_string.empty ())
28010a5d
PA
11664 return 1;
11665
11666 if (ada_loc->excep_cond_expr == NULL)
11667 {
11668 /* We will have a NULL expression if back when we were creating
11669 the expressions, this location's had failed to parse. */
11670 return 1;
11671 }
11672
11673 stop = 1;
a70b8144 11674 try
28010a5d
PA
11675 {
11676 struct value *mark;
11677
11678 mark = value_mark ();
4d01a485 11679 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
11680 value_free_to_mark (mark);
11681 }
230d2906 11682 catch (const gdb_exception &ex)
492d29ea
PA
11683 {
11684 exception_fprintf (gdb_stderr, ex,
11685 _("Error in testing exception condition:\n"));
11686 }
492d29ea 11687
28010a5d
PA
11688 return stop;
11689}
11690
11691/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11692 for all exception catchpoint kinds. */
11693
11694static void
37f6a7f4 11695check_status_exception (bpstat bs)
28010a5d 11696{
b6433ede 11697 bs->stop = should_stop_exception (bs->bp_location_at.get ());
28010a5d
PA
11698}
11699
f7f9143b
JB
11700/* Implement the PRINT_IT method in the breakpoint_ops structure
11701 for all exception catchpoint kinds. */
11702
11703static enum print_stop_action
37f6a7f4 11704print_it_exception (bpstat bs)
f7f9143b 11705{
79a45e25 11706 struct ui_out *uiout = current_uiout;
348d480f
PA
11707 struct breakpoint *b = bs->breakpoint_at;
11708
956a9fb9 11709 annotate_catchpoint (b->number);
f7f9143b 11710
112e8700 11711 if (uiout->is_mi_like_p ())
f7f9143b 11712 {
112e8700 11713 uiout->field_string ("reason",
956a9fb9 11714 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 11715 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
11716 }
11717
112e8700
SM
11718 uiout->text (b->disposition == disp_del
11719 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 11720 uiout->field_signed ("bkptno", b->number);
112e8700 11721 uiout->text (", ");
f7f9143b 11722
45db7c09
PA
11723 /* ada_exception_name_addr relies on the selected frame being the
11724 current frame. Need to do this here because this function may be
11725 called more than once when printing a stop, and below, we'll
11726 select the first frame past the Ada run-time (see
11727 ada_find_printable_frame). */
11728 select_frame (get_current_frame ());
11729
37f6a7f4
TT
11730 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11731 switch (c->m_kind)
f7f9143b 11732 {
761269c8
JB
11733 case ada_catch_exception:
11734 case ada_catch_exception_unhandled:
9f757bf7 11735 case ada_catch_handlers:
956a9fb9 11736 {
37f6a7f4 11737 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
11738 char exception_name[256];
11739
11740 if (addr != 0)
11741 {
c714b426
PA
11742 read_memory (addr, (gdb_byte *) exception_name,
11743 sizeof (exception_name) - 1);
956a9fb9
JB
11744 exception_name [sizeof (exception_name) - 1] = '\0';
11745 }
11746 else
11747 {
11748 /* For some reason, we were unable to read the exception
11749 name. This could happen if the Runtime was compiled
11750 without debugging info, for instance. In that case,
11751 just replace the exception name by the generic string
11752 "exception" - it will read as "an exception" in the
11753 notification we are about to print. */
967cff16 11754 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11755 }
11756 /* In the case of unhandled exception breakpoints, we print
11757 the exception name as "unhandled EXCEPTION_NAME", to make
11758 it clearer to the user which kind of catchpoint just got
11759 hit. We used ui_out_text to make sure that this extra
11760 info does not pollute the exception name in the MI case. */
37f6a7f4 11761 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
11762 uiout->text ("unhandled ");
11763 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
11764 }
11765 break;
761269c8 11766 case ada_catch_assert:
956a9fb9
JB
11767 /* In this case, the name of the exception is not really
11768 important. Just print "failed assertion" to make it clearer
11769 that his program just hit an assertion-failure catchpoint.
11770 We used ui_out_text because this info does not belong in
11771 the MI output. */
112e8700 11772 uiout->text ("failed assertion");
956a9fb9 11773 break;
f7f9143b 11774 }
e547c119 11775
6f46ac85 11776 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
11777 if (exception_message != NULL)
11778 {
e547c119 11779 uiout->text (" (");
6f46ac85 11780 uiout->field_string ("exception-message", exception_message.get ());
e547c119 11781 uiout->text (")");
e547c119
JB
11782 }
11783
112e8700 11784 uiout->text (" at ");
956a9fb9 11785 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11786
11787 return PRINT_SRC_AND_LOC;
11788}
11789
11790/* Implement the PRINT_ONE method in the breakpoint_ops structure
11791 for all exception catchpoint kinds. */
11792
11793static void
37f6a7f4 11794print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11795{
79a45e25 11796 struct ui_out *uiout = current_uiout;
28010a5d 11797 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11798 struct value_print_options opts;
11799
11800 get_user_print_options (&opts);
f06f1252 11801
79a45b7d 11802 if (opts.addressprint)
f06f1252 11803 uiout->field_skip ("addr");
f7f9143b
JB
11804
11805 annotate_field (5);
37f6a7f4 11806 switch (c->m_kind)
f7f9143b 11807 {
761269c8 11808 case ada_catch_exception:
dda83cd7
SM
11809 if (!c->excep_string.empty ())
11810 {
bc18fbb5
TT
11811 std::string msg = string_printf (_("`%s' Ada exception"),
11812 c->excep_string.c_str ());
28010a5d 11813
dda83cd7
SM
11814 uiout->field_string ("what", msg);
11815 }
11816 else
11817 uiout->field_string ("what", "all Ada exceptions");
11818
11819 break;
f7f9143b 11820
761269c8 11821 case ada_catch_exception_unhandled:
dda83cd7
SM
11822 uiout->field_string ("what", "unhandled Ada exceptions");
11823 break;
f7f9143b 11824
9f757bf7 11825 case ada_catch_handlers:
dda83cd7
SM
11826 if (!c->excep_string.empty ())
11827 {
9f757bf7
XR
11828 uiout->field_fmt ("what",
11829 _("`%s' Ada exception handlers"),
bc18fbb5 11830 c->excep_string.c_str ());
dda83cd7
SM
11831 }
11832 else
9f757bf7 11833 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 11834 break;
9f757bf7 11835
761269c8 11836 case ada_catch_assert:
dda83cd7
SM
11837 uiout->field_string ("what", "failed Ada assertions");
11838 break;
f7f9143b
JB
11839
11840 default:
dda83cd7
SM
11841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11842 break;
f7f9143b
JB
11843 }
11844}
11845
11846/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11847 for all exception catchpoint kinds. */
11848
11849static void
37f6a7f4 11850print_mention_exception (struct breakpoint *b)
f7f9143b 11851{
28010a5d 11852 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11853 struct ui_out *uiout = current_uiout;
28010a5d 11854
112e8700 11855 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 11856 : _("Catchpoint "));
381befee 11857 uiout->field_signed ("bkptno", b->number);
112e8700 11858 uiout->text (": ");
00eb2c4a 11859
37f6a7f4 11860 switch (c->m_kind)
f7f9143b 11861 {
761269c8 11862 case ada_catch_exception:
dda83cd7 11863 if (!c->excep_string.empty ())
00eb2c4a 11864 {
862d101a 11865 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 11866 c->excep_string.c_str ());
4915bfdc 11867 uiout->text (info);
00eb2c4a 11868 }
dda83cd7
SM
11869 else
11870 uiout->text (_("all Ada exceptions"));
11871 break;
f7f9143b 11872
761269c8 11873 case ada_catch_exception_unhandled:
dda83cd7
SM
11874 uiout->text (_("unhandled Ada exceptions"));
11875 break;
9f757bf7
XR
11876
11877 case ada_catch_handlers:
dda83cd7 11878 if (!c->excep_string.empty ())
9f757bf7
XR
11879 {
11880 std::string info
11881 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 11882 c->excep_string.c_str ());
4915bfdc 11883 uiout->text (info);
9f757bf7 11884 }
dda83cd7
SM
11885 else
11886 uiout->text (_("all Ada exceptions handlers"));
11887 break;
9f757bf7 11888
761269c8 11889 case ada_catch_assert:
dda83cd7
SM
11890 uiout->text (_("failed Ada assertions"));
11891 break;
f7f9143b
JB
11892
11893 default:
dda83cd7
SM
11894 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11895 break;
f7f9143b
JB
11896 }
11897}
11898
6149aea9
PA
11899/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11900 for all exception catchpoint kinds. */
11901
11902static void
37f6a7f4 11903print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 11904{
28010a5d
PA
11905 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11906
37f6a7f4 11907 switch (c->m_kind)
6149aea9 11908 {
761269c8 11909 case ada_catch_exception:
6149aea9 11910 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
11911 if (!c->excep_string.empty ())
11912 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
11913 break;
11914
761269c8 11915 case ada_catch_exception_unhandled:
78076abc 11916 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11917 break;
11918
9f757bf7
XR
11919 case ada_catch_handlers:
11920 fprintf_filtered (fp, "catch handlers");
11921 break;
11922
761269c8 11923 case ada_catch_assert:
6149aea9
PA
11924 fprintf_filtered (fp, "catch assert");
11925 break;
11926
11927 default:
11928 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11929 }
d9b3f62e 11930 print_recreate_thread (b, fp);
6149aea9
PA
11931}
11932
37f6a7f4 11933/* Virtual tables for various breakpoint types. */
2060206e 11934static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 11935static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 11936static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
11937static struct breakpoint_ops catch_handlers_breakpoint_ops;
11938
f06f1252
TT
11939/* See ada-lang.h. */
11940
11941bool
11942is_ada_exception_catchpoint (breakpoint *bp)
11943{
11944 return (bp->ops == &catch_exception_breakpoint_ops
11945 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11946 || bp->ops == &catch_assert_breakpoint_ops
11947 || bp->ops == &catch_handlers_breakpoint_ops);
11948}
11949
f7f9143b
JB
11950/* Split the arguments specified in a "catch exception" command.
11951 Set EX to the appropriate catchpoint type.
28010a5d 11952 Set EXCEP_STRING to the name of the specific exception if
5845583d 11953 specified by the user.
9f757bf7
XR
11954 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11955 "catch handlers" command. False otherwise.
5845583d
JB
11956 If a condition is found at the end of the arguments, the condition
11957 expression is stored in COND_STRING (memory must be deallocated
11958 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11959
11960static void
a121b7c1 11961catch_ada_exception_command_split (const char *args,
9f757bf7 11962 bool is_catch_handlers_cmd,
dda83cd7 11963 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
11964 std::string *excep_string,
11965 std::string *cond_string)
f7f9143b 11966{
bc18fbb5 11967 std::string exception_name;
f7f9143b 11968
bc18fbb5
TT
11969 exception_name = extract_arg (&args);
11970 if (exception_name == "if")
5845583d
JB
11971 {
11972 /* This is not an exception name; this is the start of a condition
11973 expression for a catchpoint on all exceptions. So, "un-get"
11974 this token, and set exception_name to NULL. */
bc18fbb5 11975 exception_name.clear ();
5845583d
JB
11976 args -= 2;
11977 }
f7f9143b 11978
5845583d 11979 /* Check to see if we have a condition. */
f7f9143b 11980
f1735a53 11981 args = skip_spaces (args);
61012eef 11982 if (startswith (args, "if")
5845583d
JB
11983 && (isspace (args[2]) || args[2] == '\0'))
11984 {
11985 args += 2;
f1735a53 11986 args = skip_spaces (args);
5845583d
JB
11987
11988 if (args[0] == '\0')
dda83cd7 11989 error (_("Condition missing after `if' keyword"));
bc18fbb5 11990 *cond_string = args;
5845583d
JB
11991
11992 args += strlen (args);
11993 }
11994
11995 /* Check that we do not have any more arguments. Anything else
11996 is unexpected. */
f7f9143b
JB
11997
11998 if (args[0] != '\0')
11999 error (_("Junk at end of expression"));
12000
9f757bf7
XR
12001 if (is_catch_handlers_cmd)
12002 {
12003 /* Catch handling of exceptions. */
12004 *ex = ada_catch_handlers;
12005 *excep_string = exception_name;
12006 }
bc18fbb5 12007 else if (exception_name.empty ())
f7f9143b
JB
12008 {
12009 /* Catch all exceptions. */
761269c8 12010 *ex = ada_catch_exception;
bc18fbb5 12011 excep_string->clear ();
f7f9143b 12012 }
bc18fbb5 12013 else if (exception_name == "unhandled")
f7f9143b
JB
12014 {
12015 /* Catch unhandled exceptions. */
761269c8 12016 *ex = ada_catch_exception_unhandled;
bc18fbb5 12017 excep_string->clear ();
f7f9143b
JB
12018 }
12019 else
12020 {
12021 /* Catch a specific exception. */
761269c8 12022 *ex = ada_catch_exception;
28010a5d 12023 *excep_string = exception_name;
f7f9143b
JB
12024 }
12025}
12026
12027/* Return the name of the symbol on which we should break in order to
12028 implement a catchpoint of the EX kind. */
12029
12030static const char *
761269c8 12031ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12032{
3eecfa55
JB
12033 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12034
12035 gdb_assert (data->exception_info != NULL);
0259addd 12036
f7f9143b
JB
12037 switch (ex)
12038 {
761269c8 12039 case ada_catch_exception:
dda83cd7
SM
12040 return (data->exception_info->catch_exception_sym);
12041 break;
761269c8 12042 case ada_catch_exception_unhandled:
dda83cd7
SM
12043 return (data->exception_info->catch_exception_unhandled_sym);
12044 break;
761269c8 12045 case ada_catch_assert:
dda83cd7
SM
12046 return (data->exception_info->catch_assert_sym);
12047 break;
9f757bf7 12048 case ada_catch_handlers:
dda83cd7
SM
12049 return (data->exception_info->catch_handlers_sym);
12050 break;
f7f9143b 12051 default:
dda83cd7
SM
12052 internal_error (__FILE__, __LINE__,
12053 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12054 }
12055}
12056
12057/* Return the breakpoint ops "virtual table" used for catchpoints
12058 of the EX kind. */
12059
c0a91b2b 12060static const struct breakpoint_ops *
761269c8 12061ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12062{
12063 switch (ex)
12064 {
761269c8 12065 case ada_catch_exception:
dda83cd7
SM
12066 return (&catch_exception_breakpoint_ops);
12067 break;
761269c8 12068 case ada_catch_exception_unhandled:
dda83cd7
SM
12069 return (&catch_exception_unhandled_breakpoint_ops);
12070 break;
761269c8 12071 case ada_catch_assert:
dda83cd7
SM
12072 return (&catch_assert_breakpoint_ops);
12073 break;
9f757bf7 12074 case ada_catch_handlers:
dda83cd7
SM
12075 return (&catch_handlers_breakpoint_ops);
12076 break;
f7f9143b 12077 default:
dda83cd7
SM
12078 internal_error (__FILE__, __LINE__,
12079 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12080 }
12081}
12082
12083/* Return the condition that will be used to match the current exception
12084 being raised with the exception that the user wants to catch. This
12085 assumes that this condition is used when the inferior just triggered
12086 an exception catchpoint.
cb7de75e 12087 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12088
cb7de75e 12089static std::string
9f757bf7 12090ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12091 enum ada_exception_catchpoint_kind ex)
f7f9143b 12092{
3d0b0fa3 12093 int i;
fccf9de1 12094 bool is_standard_exc = false;
cb7de75e 12095 std::string result;
9f757bf7
XR
12096
12097 if (ex == ada_catch_handlers)
12098 {
12099 /* For exception handlers catchpoints, the condition string does
dda83cd7 12100 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12101 result = ("long_integer (GNAT_GCC_exception_Access"
12102 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12103 }
12104 else
fccf9de1 12105 result = "long_integer (e)";
3d0b0fa3 12106
0963b4bd 12107 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12108 runtime units that have been compiled without debugging info; if
28010a5d 12109 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12110 exception (e.g. "constraint_error") then, during the evaluation
12111 of the condition expression, the symbol lookup on this name would
0963b4bd 12112 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12113 may then be set only on user-defined exceptions which have the
12114 same not-fully-qualified name (e.g. my_package.constraint_error).
12115
12116 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12117 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12118 exception constraint_error" is rewritten into "catch exception
12119 standard.constraint_error".
12120
85102364 12121 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12122 the inferior program, then the only way to specify this exception as a
12123 breakpoint condition is to use its fully-qualified named:
fccf9de1 12124 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12125
12126 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12127 {
28010a5d 12128 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12129 {
fccf9de1 12130 is_standard_exc = true;
9f757bf7 12131 break;
3d0b0fa3
JB
12132 }
12133 }
9f757bf7 12134
fccf9de1
TT
12135 result += " = ";
12136
12137 if (is_standard_exc)
12138 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12139 else
12140 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12141
9f757bf7 12142 return result;
f7f9143b
JB
12143}
12144
12145/* Return the symtab_and_line that should be used to insert an exception
12146 catchpoint of the TYPE kind.
12147
28010a5d
PA
12148 ADDR_STRING returns the name of the function where the real
12149 breakpoint that implements the catchpoints is set, depending on the
12150 type of catchpoint we need to create. */
f7f9143b
JB
12151
12152static struct symtab_and_line
bc18fbb5 12153ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12154 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12155{
12156 const char *sym_name;
12157 struct symbol *sym;
f7f9143b 12158
0259addd
JB
12159 /* First, find out which exception support info to use. */
12160 ada_exception_support_info_sniffer ();
12161
12162 /* Then lookup the function on which we will break in order to catch
f7f9143b 12163 the Ada exceptions requested by the user. */
f7f9143b
JB
12164 sym_name = ada_exception_sym_name (ex);
12165 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12166
57aff202
JB
12167 if (sym == NULL)
12168 error (_("Catchpoint symbol not found: %s"), sym_name);
12169
12170 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12171 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12172
12173 /* Set ADDR_STRING. */
cc12f4a8 12174 *addr_string = sym_name;
f7f9143b 12175
f7f9143b 12176 /* Set OPS. */
4b9eee8c 12177 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12178
f17011e0 12179 return find_function_start_sal (sym, 1);
f7f9143b
JB
12180}
12181
b4a5b78b 12182/* Create an Ada exception catchpoint.
f7f9143b 12183
b4a5b78b 12184 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12185
bc18fbb5 12186 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12187 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12188 of the exception to which this catchpoint applies.
2df4d1d5 12189
bc18fbb5 12190 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12191
b4a5b78b
JB
12192 TEMPFLAG, if nonzero, means that the underlying breakpoint
12193 should be temporary.
28010a5d 12194
b4a5b78b 12195 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12196
349774ef 12197void
28010a5d 12198create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12199 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12200 const std::string &excep_string,
56ecd069 12201 const std::string &cond_string,
28010a5d 12202 int tempflag,
349774ef 12203 int disabled,
28010a5d
PA
12204 int from_tty)
12205{
cc12f4a8 12206 std::string addr_string;
b4a5b78b 12207 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12208 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12209
37f6a7f4 12210 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12211 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12212 ops, tempflag, disabled, from_tty);
28010a5d 12213 c->excep_string = excep_string;
9f757bf7 12214 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12215 if (!cond_string.empty ())
733d554a 12216 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12217 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12218}
12219
9ac4176b
PA
12220/* Implement the "catch exception" command. */
12221
12222static void
eb4c3f4a 12223catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12224 struct cmd_list_element *command)
12225{
a121b7c1 12226 const char *arg = arg_entry;
9ac4176b
PA
12227 struct gdbarch *gdbarch = get_current_arch ();
12228 int tempflag;
761269c8 12229 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12230 std::string excep_string;
56ecd069 12231 std::string cond_string;
9ac4176b 12232
0f8e2034 12233 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12234
12235 if (!arg)
12236 arg = "";
9f757bf7 12237 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12238 &cond_string);
9f757bf7
XR
12239 create_ada_exception_catchpoint (gdbarch, ex_kind,
12240 excep_string, cond_string,
12241 tempflag, 1 /* enabled */,
12242 from_tty);
12243}
12244
12245/* Implement the "catch handlers" command. */
12246
12247static void
12248catch_ada_handlers_command (const char *arg_entry, int from_tty,
12249 struct cmd_list_element *command)
12250{
12251 const char *arg = arg_entry;
12252 struct gdbarch *gdbarch = get_current_arch ();
12253 int tempflag;
12254 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12255 std::string excep_string;
56ecd069 12256 std::string cond_string;
9f757bf7 12257
0f8e2034 12258 tempflag = command->context () == CATCH_TEMPORARY;
9f757bf7
XR
12259
12260 if (!arg)
12261 arg = "";
12262 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12263 &cond_string);
b4a5b78b
JB
12264 create_ada_exception_catchpoint (gdbarch, ex_kind,
12265 excep_string, cond_string,
349774ef
JB
12266 tempflag, 1 /* enabled */,
12267 from_tty);
9ac4176b
PA
12268}
12269
71bed2db
TT
12270/* Completion function for the Ada "catch" commands. */
12271
12272static void
12273catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12274 const char *text, const char *word)
12275{
12276 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12277
12278 for (const ada_exc_info &info : exceptions)
12279 {
12280 if (startswith (info.name, word))
b02f78f9 12281 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12282 }
12283}
12284
b4a5b78b 12285/* Split the arguments specified in a "catch assert" command.
5845583d 12286
b4a5b78b
JB
12287 ARGS contains the command's arguments (or the empty string if
12288 no arguments were passed).
5845583d
JB
12289
12290 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12291 (the memory needs to be deallocated after use). */
5845583d 12292
b4a5b78b 12293static void
56ecd069 12294catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12295{
f1735a53 12296 args = skip_spaces (args);
f7f9143b 12297
5845583d 12298 /* Check whether a condition was provided. */
61012eef 12299 if (startswith (args, "if")
5845583d 12300 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12301 {
5845583d 12302 args += 2;
f1735a53 12303 args = skip_spaces (args);
5845583d 12304 if (args[0] == '\0')
dda83cd7 12305 error (_("condition missing after `if' keyword"));
56ecd069 12306 cond_string.assign (args);
f7f9143b
JB
12307 }
12308
5845583d
JB
12309 /* Otherwise, there should be no other argument at the end of
12310 the command. */
12311 else if (args[0] != '\0')
12312 error (_("Junk at end of arguments."));
f7f9143b
JB
12313}
12314
9ac4176b
PA
12315/* Implement the "catch assert" command. */
12316
12317static void
eb4c3f4a 12318catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12319 struct cmd_list_element *command)
12320{
a121b7c1 12321 const char *arg = arg_entry;
9ac4176b
PA
12322 struct gdbarch *gdbarch = get_current_arch ();
12323 int tempflag;
56ecd069 12324 std::string cond_string;
9ac4176b 12325
0f8e2034 12326 tempflag = command->context () == CATCH_TEMPORARY;
9ac4176b
PA
12327
12328 if (!arg)
12329 arg = "";
56ecd069 12330 catch_ada_assert_command_split (arg, cond_string);
761269c8 12331 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12332 "", cond_string,
349774ef
JB
12333 tempflag, 1 /* enabled */,
12334 from_tty);
9ac4176b 12335}
778865d3
JB
12336
12337/* Return non-zero if the symbol SYM is an Ada exception object. */
12338
12339static int
12340ada_is_exception_sym (struct symbol *sym)
12341{
7d93a1e0 12342 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12343
12344 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
dda83cd7
SM
12345 && SYMBOL_CLASS (sym) != LOC_BLOCK
12346 && SYMBOL_CLASS (sym) != LOC_CONST
12347 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12348 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12349}
12350
12351/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12352 Ada exception object. This matches all exceptions except the ones
12353 defined by the Ada language. */
12354
12355static int
12356ada_is_non_standard_exception_sym (struct symbol *sym)
12357{
12358 int i;
12359
12360 if (!ada_is_exception_sym (sym))
12361 return 0;
12362
12363 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12364 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12365 return 0; /* A standard exception. */
12366
12367 /* Numeric_Error is also a standard exception, so exclude it.
12368 See the STANDARD_EXC description for more details as to why
12369 this exception is not listed in that array. */
987012b8 12370 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12371 return 0;
12372
12373 return 1;
12374}
12375
ab816a27 12376/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12377 objects.
12378
12379 The comparison is determined first by exception name, and then
12380 by exception address. */
12381
ab816a27 12382bool
cc536b21 12383ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12384{
778865d3
JB
12385 int result;
12386
ab816a27
TT
12387 result = strcmp (name, other.name);
12388 if (result < 0)
12389 return true;
12390 if (result == 0 && addr < other.addr)
12391 return true;
12392 return false;
12393}
778865d3 12394
ab816a27 12395bool
cc536b21 12396ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12397{
12398 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12399}
12400
12401/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12402 routine, but keeping the first SKIP elements untouched.
12403
12404 All duplicates are also removed. */
12405
12406static void
ab816a27 12407sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12408 int skip)
12409{
ab816a27
TT
12410 std::sort (exceptions->begin () + skip, exceptions->end ());
12411 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12412 exceptions->end ());
778865d3
JB
12413}
12414
778865d3
JB
12415/* Add all exceptions defined by the Ada standard whose name match
12416 a regular expression.
12417
12418 If PREG is not NULL, then this regexp_t object is used to
12419 perform the symbol name matching. Otherwise, no name-based
12420 filtering is performed.
12421
12422 EXCEPTIONS is a vector of exceptions to which matching exceptions
12423 gets pushed. */
12424
12425static void
2d7cc5c7 12426ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12427 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12428{
12429 int i;
12430
12431 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12432 {
12433 if (preg == NULL
2d7cc5c7 12434 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12435 {
12436 struct bound_minimal_symbol msymbol
12437 = ada_lookup_simple_minsym (standard_exc[i]);
12438
12439 if (msymbol.minsym != NULL)
12440 {
12441 struct ada_exc_info info
77e371c0 12442 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12443
ab816a27 12444 exceptions->push_back (info);
778865d3
JB
12445 }
12446 }
12447 }
12448}
12449
12450/* Add all Ada exceptions defined locally and accessible from the given
12451 FRAME.
12452
12453 If PREG is not NULL, then this regexp_t object is used to
12454 perform the symbol name matching. Otherwise, no name-based
12455 filtering is performed.
12456
12457 EXCEPTIONS is a vector of exceptions to which matching exceptions
12458 gets pushed. */
12459
12460static void
2d7cc5c7
PA
12461ada_add_exceptions_from_frame (compiled_regex *preg,
12462 struct frame_info *frame,
ab816a27 12463 std::vector<ada_exc_info> *exceptions)
778865d3 12464{
3977b71f 12465 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12466
12467 while (block != 0)
12468 {
12469 struct block_iterator iter;
12470 struct symbol *sym;
12471
12472 ALL_BLOCK_SYMBOLS (block, iter, sym)
12473 {
12474 switch (SYMBOL_CLASS (sym))
12475 {
12476 case LOC_TYPEDEF:
12477 case LOC_BLOCK:
12478 case LOC_CONST:
12479 break;
12480 default:
12481 if (ada_is_exception_sym (sym))
12482 {
987012b8 12483 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
12484 SYMBOL_VALUE_ADDRESS (sym)};
12485
ab816a27 12486 exceptions->push_back (info);
778865d3
JB
12487 }
12488 }
12489 }
12490 if (BLOCK_FUNCTION (block) != NULL)
12491 break;
12492 block = BLOCK_SUPERBLOCK (block);
12493 }
12494}
12495
14bc53a8
PA
12496/* Return true if NAME matches PREG or if PREG is NULL. */
12497
12498static bool
2d7cc5c7 12499name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
12500{
12501 return (preg == NULL
f945dedf 12502 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
12503}
12504
778865d3
JB
12505/* Add all exceptions defined globally whose name name match
12506 a regular expression, excluding standard exceptions.
12507
12508 The reason we exclude standard exceptions is that they need
12509 to be handled separately: Standard exceptions are defined inside
12510 a runtime unit which is normally not compiled with debugging info,
12511 and thus usually do not show up in our symbol search. However,
12512 if the unit was in fact built with debugging info, we need to
12513 exclude them because they would duplicate the entry we found
12514 during the special loop that specifically searches for those
12515 standard exceptions.
12516
12517 If PREG is not NULL, then this regexp_t object is used to
12518 perform the symbol name matching. Otherwise, no name-based
12519 filtering is performed.
12520
12521 EXCEPTIONS is a vector of exceptions to which matching exceptions
12522 gets pushed. */
12523
12524static void
2d7cc5c7 12525ada_add_global_exceptions (compiled_regex *preg,
ab816a27 12526 std::vector<ada_exc_info> *exceptions)
778865d3 12527{
14bc53a8
PA
12528 /* In Ada, the symbol "search name" is a linkage name, whereas the
12529 regular expression used to do the matching refers to the natural
12530 name. So match against the decoded name. */
12531 expand_symtabs_matching (NULL,
b5ec771e 12532 lookup_name_info::match_any (),
14bc53a8
PA
12533 [&] (const char *search_name)
12534 {
f945dedf
CB
12535 std::string decoded = ada_decode (search_name);
12536 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
12537 },
12538 NULL,
03a8ea51 12539 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
14bc53a8 12540 VARIABLES_DOMAIN);
778865d3 12541
2030c079 12542 for (objfile *objfile : current_program_space->objfiles ())
778865d3 12543 {
b669c953 12544 for (compunit_symtab *s : objfile->compunits ())
778865d3 12545 {
d8aeb77f
TT
12546 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12547 int i;
778865d3 12548
d8aeb77f
TT
12549 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12550 {
582942f4 12551 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
12552 struct block_iterator iter;
12553 struct symbol *sym;
778865d3 12554
d8aeb77f
TT
12555 ALL_BLOCK_SYMBOLS (b, iter, sym)
12556 if (ada_is_non_standard_exception_sym (sym)
987012b8 12557 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
12558 {
12559 struct ada_exc_info info
987012b8 12560 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
12561
12562 exceptions->push_back (info);
12563 }
12564 }
778865d3
JB
12565 }
12566 }
12567}
12568
12569/* Implements ada_exceptions_list with the regular expression passed
12570 as a regex_t, rather than a string.
12571
12572 If not NULL, PREG is used to filter out exceptions whose names
12573 do not match. Otherwise, all exceptions are listed. */
12574
ab816a27 12575static std::vector<ada_exc_info>
2d7cc5c7 12576ada_exceptions_list_1 (compiled_regex *preg)
778865d3 12577{
ab816a27 12578 std::vector<ada_exc_info> result;
778865d3
JB
12579 int prev_len;
12580
12581 /* First, list the known standard exceptions. These exceptions
12582 need to be handled separately, as they are usually defined in
12583 runtime units that have been compiled without debugging info. */
12584
12585 ada_add_standard_exceptions (preg, &result);
12586
12587 /* Next, find all exceptions whose scope is local and accessible
12588 from the currently selected frame. */
12589
12590 if (has_stack_frames ())
12591 {
ab816a27 12592 prev_len = result.size ();
778865d3
JB
12593 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12594 &result);
ab816a27 12595 if (result.size () > prev_len)
778865d3
JB
12596 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12597 }
12598
12599 /* Add all exceptions whose scope is global. */
12600
ab816a27 12601 prev_len = result.size ();
778865d3 12602 ada_add_global_exceptions (preg, &result);
ab816a27 12603 if (result.size () > prev_len)
778865d3
JB
12604 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12605
778865d3
JB
12606 return result;
12607}
12608
12609/* Return a vector of ada_exc_info.
12610
12611 If REGEXP is NULL, all exceptions are included in the result.
12612 Otherwise, it should contain a valid regular expression,
12613 and only the exceptions whose names match that regular expression
12614 are included in the result.
12615
12616 The exceptions are sorted in the following order:
12617 - Standard exceptions (defined by the Ada language), in
12618 alphabetical order;
12619 - Exceptions only visible from the current frame, in
12620 alphabetical order;
12621 - Exceptions whose scope is global, in alphabetical order. */
12622
ab816a27 12623std::vector<ada_exc_info>
778865d3
JB
12624ada_exceptions_list (const char *regexp)
12625{
2d7cc5c7
PA
12626 if (regexp == NULL)
12627 return ada_exceptions_list_1 (NULL);
778865d3 12628
2d7cc5c7
PA
12629 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12630 return ada_exceptions_list_1 (&reg);
778865d3
JB
12631}
12632
12633/* Implement the "info exceptions" command. */
12634
12635static void
1d12d88f 12636info_exceptions_command (const char *regexp, int from_tty)
778865d3 12637{
778865d3 12638 struct gdbarch *gdbarch = get_current_arch ();
778865d3 12639
ab816a27 12640 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
12641
12642 if (regexp != NULL)
12643 printf_filtered
12644 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12645 else
12646 printf_filtered (_("All defined Ada exceptions:\n"));
12647
ab816a27
TT
12648 for (const ada_exc_info &info : exceptions)
12649 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
12650}
12651
6c038f32
PH
12652\f
12653 /* Language vector */
12654
b5ec771e
PA
12655/* symbol_name_matcher_ftype adapter for wild_match. */
12656
12657static bool
12658do_wild_match (const char *symbol_search_name,
12659 const lookup_name_info &lookup_name,
a207cff2 12660 completion_match_result *comp_match_res)
b5ec771e
PA
12661{
12662 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12663}
12664
12665/* symbol_name_matcher_ftype adapter for full_match. */
12666
12667static bool
12668do_full_match (const char *symbol_search_name,
12669 const lookup_name_info &lookup_name,
a207cff2 12670 completion_match_result *comp_match_res)
b5ec771e 12671{
959d6a67
TT
12672 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12673
12674 /* If both symbols start with "_ada_", just let the loop below
12675 handle the comparison. However, if only the symbol name starts
12676 with "_ada_", skip the prefix and let the match proceed as
12677 usual. */
12678 if (startswith (symbol_search_name, "_ada_")
12679 && !startswith (lname, "_ada"))
86b44259
TT
12680 symbol_search_name += 5;
12681
86b44259
TT
12682 int uscore_count = 0;
12683 while (*lname != '\0')
12684 {
12685 if (*symbol_search_name != *lname)
12686 {
12687 if (*symbol_search_name == 'B' && uscore_count == 2
12688 && symbol_search_name[1] == '_')
12689 {
12690 symbol_search_name += 2;
12691 while (isdigit (*symbol_search_name))
12692 ++symbol_search_name;
12693 if (symbol_search_name[0] == '_'
12694 && symbol_search_name[1] == '_')
12695 {
12696 symbol_search_name += 2;
12697 continue;
12698 }
12699 }
12700 return false;
12701 }
12702
12703 if (*symbol_search_name == '_')
12704 ++uscore_count;
12705 else
12706 uscore_count = 0;
12707
12708 ++symbol_search_name;
12709 ++lname;
12710 }
12711
12712 return is_name_suffix (symbol_search_name);
b5ec771e
PA
12713}
12714
a2cd4f14
JB
12715/* symbol_name_matcher_ftype for exact (verbatim) matches. */
12716
12717static bool
12718do_exact_match (const char *symbol_search_name,
12719 const lookup_name_info &lookup_name,
12720 completion_match_result *comp_match_res)
12721{
12722 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12723}
12724
b5ec771e
PA
12725/* Build the Ada lookup name for LOOKUP_NAME. */
12726
12727ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12728{
e0802d59 12729 gdb::string_view user_name = lookup_name.name ();
b5ec771e 12730
6a780b67 12731 if (!user_name.empty () && user_name[0] == '<')
b5ec771e
PA
12732 {
12733 if (user_name.back () == '>')
e0802d59 12734 m_encoded_name
5ac58899 12735 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 12736 else
e0802d59 12737 m_encoded_name
5ac58899 12738 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
12739 m_encoded_p = true;
12740 m_verbatim_p = true;
12741 m_wild_match_p = false;
12742 m_standard_p = false;
12743 }
12744 else
12745 {
12746 m_verbatim_p = false;
12747
e0802d59 12748 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
12749
12750 if (!m_encoded_p)
12751 {
e0802d59 12752 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
12753 m_encoded_name = ada_encode_1 (folded, false);
12754 if (m_encoded_name.empty ())
5ac58899 12755 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12756 }
12757 else
5ac58899 12758 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
12759
12760 /* Handle the 'package Standard' special case. See description
12761 of m_standard_p. */
12762 if (startswith (m_encoded_name.c_str (), "standard__"))
12763 {
12764 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12765 m_standard_p = true;
12766 }
12767 else
12768 m_standard_p = false;
74ccd7f5 12769
b5ec771e
PA
12770 /* If the name contains a ".", then the user is entering a fully
12771 qualified entity name, and the match must not be done in wild
12772 mode. Similarly, if the user wants to complete what looks
12773 like an encoded name, the match must not be done in wild
12774 mode. Also, in the standard__ special case always do
12775 non-wild matching. */
12776 m_wild_match_p
12777 = (lookup_name.match_type () != symbol_name_match_type::FULL
12778 && !m_encoded_p
12779 && !m_standard_p
12780 && user_name.find ('.') == std::string::npos);
12781 }
12782}
12783
12784/* symbol_name_matcher_ftype method for Ada. This only handles
12785 completion mode. */
12786
12787static bool
12788ada_symbol_name_matches (const char *symbol_search_name,
12789 const lookup_name_info &lookup_name,
a207cff2 12790 completion_match_result *comp_match_res)
74ccd7f5 12791{
b5ec771e
PA
12792 return lookup_name.ada ().matches (symbol_search_name,
12793 lookup_name.match_type (),
a207cff2 12794 comp_match_res);
b5ec771e
PA
12795}
12796
de63c46b
PA
12797/* A name matcher that matches the symbol name exactly, with
12798 strcmp. */
12799
12800static bool
12801literal_symbol_name_matcher (const char *symbol_search_name,
12802 const lookup_name_info &lookup_name,
12803 completion_match_result *comp_match_res)
12804{
e0802d59 12805 gdb::string_view name_view = lookup_name.name ();
de63c46b 12806
e0802d59
TT
12807 if (lookup_name.completion_mode ()
12808 ? (strncmp (symbol_search_name, name_view.data (),
12809 name_view.size ()) == 0)
12810 : symbol_search_name == name_view)
de63c46b
PA
12811 {
12812 if (comp_match_res != NULL)
12813 comp_match_res->set_match (symbol_search_name);
12814 return true;
12815 }
12816 else
12817 return false;
12818}
12819
c9debfb9 12820/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
12821 Ada. */
12822
12823static symbol_name_matcher_ftype *
12824ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12825{
de63c46b
PA
12826 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12827 return literal_symbol_name_matcher;
12828
b5ec771e
PA
12829 if (lookup_name.completion_mode ())
12830 return ada_symbol_name_matches;
74ccd7f5 12831 else
b5ec771e
PA
12832 {
12833 if (lookup_name.ada ().wild_match_p ())
12834 return do_wild_match;
a2cd4f14
JB
12835 else if (lookup_name.ada ().verbatim_p ())
12836 return do_exact_match;
b5ec771e
PA
12837 else
12838 return do_full_match;
12839 }
74ccd7f5
JB
12840}
12841
0874fd07
AB
12842/* Class representing the Ada language. */
12843
12844class ada_language : public language_defn
12845{
12846public:
12847 ada_language ()
0e25e767 12848 : language_defn (language_ada)
0874fd07 12849 { /* Nothing. */ }
5bd40f2a 12850
6f7664a9
AB
12851 /* See language.h. */
12852
12853 const char *name () const override
12854 { return "ada"; }
12855
12856 /* See language.h. */
12857
12858 const char *natural_name () const override
12859 { return "Ada"; }
12860
e171d6f1
AB
12861 /* See language.h. */
12862
12863 const std::vector<const char *> &filename_extensions () const override
12864 {
12865 static const std::vector<const char *> extensions
12866 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12867 return extensions;
12868 }
12869
5bd40f2a
AB
12870 /* Print an array element index using the Ada syntax. */
12871
12872 void print_array_index (struct type *index_type,
12873 LONGEST index,
12874 struct ui_file *stream,
12875 const value_print_options *options) const override
12876 {
12877 struct value *index_value = val_atr (index_type, index);
12878
00c696a6 12879 value_print (index_value, stream, options);
5bd40f2a
AB
12880 fprintf_filtered (stream, " => ");
12881 }
15e5fd35
AB
12882
12883 /* Implement the "read_var_value" language_defn method for Ada. */
12884
12885 struct value *read_var_value (struct symbol *var,
12886 const struct block *var_block,
12887 struct frame_info *frame) const override
12888 {
12889 /* The only case where default_read_var_value is not sufficient
12890 is when VAR is a renaming... */
12891 if (frame != nullptr)
12892 {
12893 const struct block *frame_block = get_frame_block (frame, NULL);
12894 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12895 return ada_read_renaming_var_value (var, frame_block);
12896 }
12897
12898 /* This is a typical case where we expect the default_read_var_value
12899 function to work. */
12900 return language_defn::read_var_value (var, var_block, frame);
12901 }
1fb314aa
AB
12902
12903 /* See language.h. */
12904 void language_arch_info (struct gdbarch *gdbarch,
12905 struct language_arch_info *lai) const override
12906 {
12907 const struct builtin_type *builtin = builtin_type (gdbarch);
12908
7bea47f0
AB
12909 /* Helper function to allow shorter lines below. */
12910 auto add = [&] (struct type *t)
12911 {
12912 lai->add_primitive_type (t);
12913 };
12914
12915 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12916 0, "integer"));
12917 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12918 0, "long_integer"));
12919 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12920 0, "short_integer"));
12921 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12922 0, "character");
12923 lai->set_string_char_type (char_type);
12924 add (char_type);
12925 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12926 "float", gdbarch_float_format (gdbarch)));
12927 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12928 "long_float", gdbarch_double_format (gdbarch)));
12929 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12930 0, "long_long_integer"));
12931 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12932 "long_long_float",
12933 gdbarch_long_double_format (gdbarch)));
12934 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12935 0, "natural"));
12936 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12937 0, "positive"));
12938 add (builtin->builtin_void);
12939
12940 struct type *system_addr_ptr
1fb314aa
AB
12941 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12942 "void"));
7bea47f0
AB
12943 system_addr_ptr->set_name ("system__address");
12944 add (system_addr_ptr);
1fb314aa
AB
12945
12946 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12947 type. This is a signed integral type whose size is the same as
12948 the size of addresses. */
7bea47f0
AB
12949 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12950 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12951 "storage_offset"));
1fb314aa 12952
7bea47f0 12953 lai->set_bool_type (builtin->builtin_bool);
1fb314aa 12954 }
4009ee92
AB
12955
12956 /* See language.h. */
12957
12958 bool iterate_over_symbols
12959 (const struct block *block, const lookup_name_info &name,
12960 domain_enum domain,
12961 gdb::function_view<symbol_found_callback_ftype> callback) const override
12962 {
d1183b06
TT
12963 std::vector<struct block_symbol> results
12964 = ada_lookup_symbol_list_worker (name, block, domain, 0);
4009ee92
AB
12965 for (block_symbol &sym : results)
12966 {
12967 if (!callback (&sym))
12968 return false;
12969 }
12970
12971 return true;
12972 }
6f827019
AB
12973
12974 /* See language.h. */
12975 bool sniff_from_mangled_name (const char *mangled,
12976 char **out) const override
12977 {
12978 std::string demangled = ada_decode (mangled);
12979
12980 *out = NULL;
12981
12982 if (demangled != mangled && demangled[0] != '<')
12983 {
12984 /* Set the gsymbol language to Ada, but still return 0.
12985 Two reasons for that:
12986
12987 1. For Ada, we prefer computing the symbol's decoded name
12988 on the fly rather than pre-compute it, in order to save
12989 memory (Ada projects are typically very large).
12990
12991 2. There are some areas in the definition of the GNAT
12992 encoding where, with a bit of bad luck, we might be able
12993 to decode a non-Ada symbol, generating an incorrect
12994 demangled name (Eg: names ending with "TB" for instance
12995 are identified as task bodies and so stripped from
12996 the decoded name returned).
12997
12998 Returning true, here, but not setting *DEMANGLED, helps us get
12999 a little bit of the best of both worlds. Because we're last,
13000 we should not affect any of the other languages that were
13001 able to demangle the symbol before us; we get to correctly
13002 tag Ada symbols as such; and even if we incorrectly tagged a
13003 non-Ada symbol, which should be rare, any routing through the
13004 Ada language should be transparent (Ada tries to behave much
13005 like C/C++ with non-Ada symbols). */
13006 return true;
13007 }
13008
13009 return false;
13010 }
fbfb0a46
AB
13011
13012 /* See language.h. */
13013
5399db93 13014 char *demangle_symbol (const char *mangled, int options) const override
0a50df5d
AB
13015 {
13016 return ada_la_decode (mangled, options);
13017 }
13018
13019 /* See language.h. */
13020
fbfb0a46
AB
13021 void print_type (struct type *type, const char *varstring,
13022 struct ui_file *stream, int show, int level,
13023 const struct type_print_options *flags) const override
13024 {
13025 ada_print_type (type, varstring, stream, show, level, flags);
13026 }
c9debfb9 13027
53fc67f8
AB
13028 /* See language.h. */
13029
13030 const char *word_break_characters (void) const override
13031 {
13032 return ada_completer_word_break_characters;
13033 }
13034
7e56227d
AB
13035 /* See language.h. */
13036
13037 void collect_symbol_completion_matches (completion_tracker &tracker,
13038 complete_symbol_mode mode,
13039 symbol_name_match_type name_match_type,
13040 const char *text, const char *word,
13041 enum type_code code) const override
13042 {
13043 struct symbol *sym;
13044 const struct block *b, *surrounding_static_block = 0;
13045 struct block_iterator iter;
13046
13047 gdb_assert (code == TYPE_CODE_UNDEF);
13048
13049 lookup_name_info lookup_name (text, name_match_type, true);
13050
13051 /* First, look at the partial symtab symbols. */
13052 expand_symtabs_matching (NULL,
13053 lookup_name,
13054 NULL,
13055 NULL,
03a8ea51 13056 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
7e56227d
AB
13057 ALL_DOMAIN);
13058
13059 /* At this point scan through the misc symbol vectors and add each
13060 symbol you find to the list. Eventually we want to ignore
13061 anything that isn't a text symbol (everything else will be
13062 handled by the psymtab code above). */
13063
13064 for (objfile *objfile : current_program_space->objfiles ())
13065 {
13066 for (minimal_symbol *msymbol : objfile->msymbols ())
13067 {
13068 QUIT;
13069
13070 if (completion_skip_symbol (mode, msymbol))
13071 continue;
13072
13073 language symbol_language = msymbol->language ();
13074
13075 /* Ada minimal symbols won't have their language set to Ada. If
13076 we let completion_list_add_name compare using the
13077 default/C-like matcher, then when completing e.g., symbols in a
13078 package named "pck", we'd match internal Ada symbols like
13079 "pckS", which are invalid in an Ada expression, unless you wrap
13080 them in '<' '>' to request a verbatim match.
13081
13082 Unfortunately, some Ada encoded names successfully demangle as
13083 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13084 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13085 with the wrong language set. Paper over that issue here. */
13086 if (symbol_language == language_auto
13087 || symbol_language == language_cplus)
13088 symbol_language = language_ada;
13089
13090 completion_list_add_name (tracker,
13091 symbol_language,
13092 msymbol->linkage_name (),
13093 lookup_name, text, word);
13094 }
13095 }
13096
13097 /* Search upwards from currently selected frame (so that we can
13098 complete on local vars. */
13099
13100 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13101 {
13102 if (!BLOCK_SUPERBLOCK (b))
13103 surrounding_static_block = b; /* For elmin of dups */
13104
13105 ALL_BLOCK_SYMBOLS (b, iter, sym)
13106 {
13107 if (completion_skip_symbol (mode, sym))
13108 continue;
13109
13110 completion_list_add_name (tracker,
13111 sym->language (),
13112 sym->linkage_name (),
13113 lookup_name, text, word);
13114 }
13115 }
13116
13117 /* Go through the symtabs and check the externs and statics for
13118 symbols which match. */
13119
13120 for (objfile *objfile : current_program_space->objfiles ())
13121 {
13122 for (compunit_symtab *s : objfile->compunits ())
13123 {
13124 QUIT;
13125 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13126 ALL_BLOCK_SYMBOLS (b, iter, sym)
13127 {
13128 if (completion_skip_symbol (mode, sym))
13129 continue;
13130
13131 completion_list_add_name (tracker,
13132 sym->language (),
13133 sym->linkage_name (),
13134 lookup_name, text, word);
13135 }
13136 }
13137 }
13138
13139 for (objfile *objfile : current_program_space->objfiles ())
13140 {
13141 for (compunit_symtab *s : objfile->compunits ())
13142 {
13143 QUIT;
13144 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13145 /* Don't do this block twice. */
13146 if (b == surrounding_static_block)
13147 continue;
13148 ALL_BLOCK_SYMBOLS (b, iter, sym)
13149 {
13150 if (completion_skip_symbol (mode, sym))
13151 continue;
13152
13153 completion_list_add_name (tracker,
13154 sym->language (),
13155 sym->linkage_name (),
13156 lookup_name, text, word);
13157 }
13158 }
13159 }
13160 }
13161
f16a9f57
AB
13162 /* See language.h. */
13163
13164 gdb::unique_xmalloc_ptr<char> watch_location_expression
13165 (struct type *type, CORE_ADDR addr) const override
13166 {
13167 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13168 std::string name = type_to_string (type);
13169 return gdb::unique_xmalloc_ptr<char>
13170 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13171 }
13172
a1d1fa3e
AB
13173 /* See language.h. */
13174
13175 void value_print (struct value *val, struct ui_file *stream,
13176 const struct value_print_options *options) const override
13177 {
13178 return ada_value_print (val, stream, options);
13179 }
13180
ebe2334e
AB
13181 /* See language.h. */
13182
13183 void value_print_inner
13184 (struct value *val, struct ui_file *stream, int recurse,
13185 const struct value_print_options *options) const override
13186 {
13187 return ada_value_print_inner (val, stream, recurse, options);
13188 }
13189
a78a19b1
AB
13190 /* See language.h. */
13191
13192 struct block_symbol lookup_symbol_nonlocal
13193 (const char *name, const struct block *block,
13194 const domain_enum domain) const override
13195 {
13196 struct block_symbol sym;
13197
13198 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13199 if (sym.symbol != NULL)
13200 return sym;
13201
13202 /* If we haven't found a match at this point, try the primitive
13203 types. In other languages, this search is performed before
13204 searching for global symbols in order to short-circuit that
13205 global-symbol search if it happens that the name corresponds
13206 to a primitive type. But we cannot do the same in Ada, because
13207 it is perfectly legitimate for a program to declare a type which
13208 has the same name as a standard type. If looking up a type in
13209 that situation, we have traditionally ignored the primitive type
13210 in favor of user-defined types. This is why, unlike most other
13211 languages, we search the primitive types this late and only after
13212 having searched the global symbols without success. */
13213
13214 if (domain == VAR_DOMAIN)
13215 {
13216 struct gdbarch *gdbarch;
13217
13218 if (block == NULL)
13219 gdbarch = target_gdbarch ();
13220 else
13221 gdbarch = block_gdbarch (block);
13222 sym.symbol
13223 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13224 if (sym.symbol != NULL)
13225 return sym;
13226 }
13227
13228 return {};
13229 }
13230
87afa652
AB
13231 /* See language.h. */
13232
13233 int parser (struct parser_state *ps) const override
13234 {
13235 warnings_issued = 0;
13236 return ada_parse (ps);
13237 }
13238
ec8cec5b
AB
13239 /* See language.h. */
13240
13241 void emitchar (int ch, struct type *chtype,
13242 struct ui_file *stream, int quoter) const override
13243 {
13244 ada_emit_char (ch, chtype, stream, quoter, 1);
13245 }
13246
52b50f2c
AB
13247 /* See language.h. */
13248
13249 void printchar (int ch, struct type *chtype,
13250 struct ui_file *stream) const override
13251 {
13252 ada_printchar (ch, chtype, stream);
13253 }
13254
d711ee67
AB
13255 /* See language.h. */
13256
13257 void printstr (struct ui_file *stream, struct type *elttype,
13258 const gdb_byte *string, unsigned int length,
13259 const char *encoding, int force_ellipses,
13260 const struct value_print_options *options) const override
13261 {
13262 ada_printstr (stream, elttype, string, length, encoding,
13263 force_ellipses, options);
13264 }
13265
4ffc13fb
AB
13266 /* See language.h. */
13267
13268 void print_typedef (struct type *type, struct symbol *new_symbol,
13269 struct ui_file *stream) const override
13270 {
13271 ada_print_typedef (type, new_symbol, stream);
13272 }
13273
39e7ecca
AB
13274 /* See language.h. */
13275
13276 bool is_string_type_p (struct type *type) const override
13277 {
13278 return ada_is_string_type (type);
13279 }
13280
22e3f3ed
AB
13281 /* See language.h. */
13282
13283 const char *struct_too_deep_ellipsis () const override
13284 { return "(...)"; }
39e7ecca 13285
67bd3fd5
AB
13286 /* See language.h. */
13287
13288 bool c_style_arrays_p () const override
13289 { return false; }
13290
d3355e4d
AB
13291 /* See language.h. */
13292
13293 bool store_sym_names_in_linkage_form_p () const override
13294 { return true; }
13295
b63a3f3f
AB
13296 /* See language.h. */
13297
13298 const struct lang_varobj_ops *varobj_ops () const override
13299 { return &ada_varobj_ops; }
13300
c9debfb9
AB
13301protected:
13302 /* See language.h. */
13303
13304 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13305 (const lookup_name_info &lookup_name) const override
13306 {
13307 return ada_get_symbol_name_matcher (lookup_name);
13308 }
0874fd07
AB
13309};
13310
13311/* Single instance of the Ada language class. */
13312
13313static ada_language ada_language_defn;
13314
5bf03f13
JB
13315/* Command-list for the "set/show ada" prefix command. */
13316static struct cmd_list_element *set_ada_list;
13317static struct cmd_list_element *show_ada_list;
13318
2060206e
PA
13319static void
13320initialize_ada_catchpoint_ops (void)
13321{
13322 struct breakpoint_ops *ops;
13323
13324 initialize_breakpoint_ops ();
13325
13326 ops = &catch_exception_breakpoint_ops;
13327 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13328 ops->allocate_location = allocate_location_exception;
13329 ops->re_set = re_set_exception;
13330 ops->check_status = check_status_exception;
13331 ops->print_it = print_it_exception;
13332 ops->print_one = print_one_exception;
13333 ops->print_mention = print_mention_exception;
13334 ops->print_recreate = print_recreate_exception;
2060206e
PA
13335
13336 ops = &catch_exception_unhandled_breakpoint_ops;
13337 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13338 ops->allocate_location = allocate_location_exception;
13339 ops->re_set = re_set_exception;
13340 ops->check_status = check_status_exception;
13341 ops->print_it = print_it_exception;
13342 ops->print_one = print_one_exception;
13343 ops->print_mention = print_mention_exception;
13344 ops->print_recreate = print_recreate_exception;
2060206e
PA
13345
13346 ops = &catch_assert_breakpoint_ops;
13347 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13348 ops->allocate_location = allocate_location_exception;
13349 ops->re_set = re_set_exception;
13350 ops->check_status = check_status_exception;
13351 ops->print_it = print_it_exception;
13352 ops->print_one = print_one_exception;
13353 ops->print_mention = print_mention_exception;
13354 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
13355
13356 ops = &catch_handlers_breakpoint_ops;
13357 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
13358 ops->allocate_location = allocate_location_exception;
13359 ops->re_set = re_set_exception;
13360 ops->check_status = check_status_exception;
13361 ops->print_it = print_it_exception;
13362 ops->print_one = print_one_exception;
13363 ops->print_mention = print_mention_exception;
13364 ops->print_recreate = print_recreate_exception;
2060206e
PA
13365}
13366
3d9434b5
JB
13367/* This module's 'new_objfile' observer. */
13368
13369static void
13370ada_new_objfile_observer (struct objfile *objfile)
13371{
13372 ada_clear_symbol_cache ();
13373}
13374
13375/* This module's 'free_objfile' observer. */
13376
13377static void
13378ada_free_objfile_observer (struct objfile *objfile)
13379{
13380 ada_clear_symbol_cache ();
13381}
13382
6c265988 13383void _initialize_ada_language ();
d2e4a39e 13384void
6c265988 13385_initialize_ada_language ()
14f9c5c9 13386{
2060206e
PA
13387 initialize_ada_catchpoint_ops ();
13388
0743fc83
TT
13389 add_basic_prefix_cmd ("ada", no_class,
13390 _("Prefix command for changing Ada-specific settings."),
2f822da5 13391 &set_ada_list, 0, &setlist);
5bf03f13 13392
0743fc83
TT
13393 add_show_prefix_cmd ("ada", no_class,
13394 _("Generic command for showing Ada-specific settings."),
2f822da5 13395 &show_ada_list, 0, &showlist);
5bf03f13
JB
13396
13397 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 13398 &trust_pad_over_xvs, _("\
590042fc
PW
13399Enable or disable an optimization trusting PAD types over XVS types."), _("\
13400Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 13401 _("\
5bf03f13
JB
13402This is related to the encoding used by the GNAT compiler. The debugger\n\
13403should normally trust the contents of PAD types, but certain older versions\n\
13404of GNAT have a bug that sometimes causes the information in the PAD type\n\
13405to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13406work around this bug. It is always safe to turn this option \"off\", but\n\
13407this incurs a slight performance penalty, so it is recommended to NOT change\n\
13408this option to \"off\" unless necessary."),
dda83cd7 13409 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 13410
d72413e6
PMR
13411 add_setshow_boolean_cmd ("print-signatures", class_vars,
13412 &print_signatures, _("\
13413Enable or disable the output of formal and return types for functions in the \
590042fc 13414overloads selection menu."), _("\
d72413e6 13415Show whether the output of formal and return types for functions in the \
590042fc 13416overloads selection menu is activated."),
d72413e6
PMR
13417 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13418
9ac4176b
PA
13419 add_catch_command ("exception", _("\
13420Catch Ada exceptions, when raised.\n\
9bf7038b 13421Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
13422Without any argument, stop when any Ada exception is raised.\n\
13423If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13424being raised does not have a handler (and will therefore lead to the task's\n\
13425termination).\n\
13426Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
13427raised is the same as ARG.\n\
13428CONDITION is a boolean expression that is evaluated to see whether the\n\
13429exception should cause a stop."),
9ac4176b 13430 catch_ada_exception_command,
71bed2db 13431 catch_ada_completer,
9ac4176b
PA
13432 CATCH_PERMANENT,
13433 CATCH_TEMPORARY);
9f757bf7
XR
13434
13435 add_catch_command ("handlers", _("\
13436Catch Ada exceptions, when handled.\n\
9bf7038b
TT
13437Usage: catch handlers [ARG] [if CONDITION]\n\
13438Without any argument, stop when any Ada exception is handled.\n\
13439With an argument, catch only exceptions with the given name.\n\
13440CONDITION is a boolean expression that is evaluated to see whether the\n\
13441exception should cause a stop."),
9f757bf7 13442 catch_ada_handlers_command,
dda83cd7 13443 catch_ada_completer,
9f757bf7
XR
13444 CATCH_PERMANENT,
13445 CATCH_TEMPORARY);
9ac4176b
PA
13446 add_catch_command ("assert", _("\
13447Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
13448Usage: catch assert [if CONDITION]\n\
13449CONDITION is a boolean expression that is evaluated to see whether the\n\
13450exception should cause a stop."),
9ac4176b 13451 catch_assert_command,
dda83cd7 13452 NULL,
9ac4176b
PA
13453 CATCH_PERMANENT,
13454 CATCH_TEMPORARY);
13455
6c038f32 13456 varsize_limit = 65536;
3fcded8f
JB
13457 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13458 &varsize_limit, _("\
13459Set the maximum number of bytes allowed in a variable-size object."), _("\
13460Show the maximum number of bytes allowed in a variable-size object."), _("\
13461Attempts to access an object whose size is not a compile-time constant\n\
13462and exceeds this limit will cause an error."),
13463 NULL, NULL, &setlist, &showlist);
6c038f32 13464
778865d3
JB
13465 add_info ("exceptions", info_exceptions_command,
13466 _("\
13467List all Ada exception names.\n\
9bf7038b 13468Usage: info exceptions [REGEXP]\n\
778865d3
JB
13469If a regular expression is passed as an argument, only those matching\n\
13470the regular expression are listed."));
13471
0743fc83
TT
13472 add_basic_prefix_cmd ("ada", class_maintenance,
13473 _("Set Ada maintenance-related variables."),
2f822da5 13474 &maint_set_ada_cmdlist,
0743fc83 13475 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 13476
0743fc83
TT
13477 add_show_prefix_cmd ("ada", class_maintenance,
13478 _("Show Ada maintenance-related variables."),
2f822da5 13479 &maint_show_ada_cmdlist,
0743fc83 13480 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
13481
13482 add_setshow_boolean_cmd
13483 ("ignore-descriptive-types", class_maintenance,
13484 &ada_ignore_descriptive_types_p,
13485 _("Set whether descriptive types generated by GNAT should be ignored."),
13486 _("Show whether descriptive types generated by GNAT should be ignored."),
13487 _("\
13488When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13489DWARF attribute."),
13490 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13491
2698f5ea
TT
13492 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13493 htab_eq_string,
459a2e4c 13494 NULL, xcalloc, xfree);
6b69afc4 13495
3d9434b5 13496 /* The ada-lang observers. */
c90e7d63
SM
13497 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13498 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13499 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14f9c5c9 13500}
This page took 3.277468 seconds and 4 git commands to generate.