remove trailing spaces in print-utils.c ("int_string" function)
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
39e7af3e 544/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 545
39e7af3e 546static std::string
41d27058
JB
547add_angle_brackets (const char *str)
548{
39e7af3e 549 return string_printf ("<%s>", str);
41d27058 550}
96d887e8 551
67cb5b2d 552static const char *
4c4b4cd2
PH
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
f27cf670 568/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 570 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 571
f27cf670
AS
572void *
573grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 574{
d2e4a39e
AS
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
4c4b4cd2 579 *size = min_size;
f27cf670 580 vect = xrealloc (vect, *size * element_size);
d2e4a39e 581 }
f27cf670 582 return vect;
14f9c5c9
AS
583}
584
585/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 586 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
587
588static int
ebf56fd3 589field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
590{
591 int len = strlen (target);
5b4ee69b 592
d2e4a39e 593 return
4c4b4cd2
PH
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
61012eef 596 || (startswith (field_name + len, "___")
76a01679
JB
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
14f9c5c9
AS
599}
600
601
872c8b51
JB
602/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
609
610int
611ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613{
614 int fieldno;
872c8b51
JB
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
619 return fieldno;
620
621 if (!maybe_missing)
323e0a4a 622 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 623 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
624
625 return -1;
626}
627
628/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
629
630int
d2e4a39e 631ada_name_prefix_len (const char *name)
14f9c5c9
AS
632{
633 if (name == NULL)
634 return 0;
d2e4a39e 635 else
14f9c5c9 636 {
d2e4a39e 637 const char *p = strstr (name, "___");
5b4ee69b 638
14f9c5c9 639 if (p == NULL)
4c4b4cd2 640 return strlen (name);
14f9c5c9 641 else
4c4b4cd2 642 return p - name;
14f9c5c9
AS
643 }
644}
645
4c4b4cd2
PH
646/* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
14f9c5c9 649static int
d2e4a39e 650is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
651{
652 int len1, len2;
5b4ee69b 653
14f9c5c9
AS
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
4c4b4cd2 658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
659}
660
4c4b4cd2
PH
661/* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
14f9c5c9 663
d2e4a39e 664static struct value *
4c4b4cd2 665coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 666{
61ee279c 667 type = ada_check_typedef (type);
df407dfe 668 if (value_type (val) == type)
4c4b4cd2 669 return val;
d2e4a39e 670 else
14f9c5c9 671 {
4c4b4cd2
PH
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
c1b5a1a6 676 ada_ensure_varsize_limit (type);
4c4b4cd2 677
41e8491f
JK
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
9a0dc9e3 684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 685 }
74bcbdf3 686 set_value_component_location (result, val);
9bbda503
AC
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
42ae5230 689 set_value_address (result, value_address (val));
14f9c5c9
AS
690 return result;
691 }
692}
693
fc1a4b47
AC
694static const gdb_byte *
695cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
696{
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701}
702
703static CORE_ADDR
ebf56fd3 704cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
705{
706 if (address == 0)
707 return 0;
d2e4a39e 708 else
14f9c5c9
AS
709 return address + offset;
710}
711
4c4b4cd2
PH
712/* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
a2249542 716
77109804
AC
717/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
a0b31db1 719static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 720
14f9c5c9 721static void
a2249542 722lim_warning (const char *format, ...)
14f9c5c9 723{
a2249542 724 va_list args;
a2249542 725
5b4ee69b 726 va_start (args, format);
4c4b4cd2
PH
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
a2249542
MK
729 vwarning (format, args);
730
731 va_end (args);
4c4b4cd2
PH
732}
733
714e53ab
PH
734/* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
c1b5a1a6
JB
738void
739ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
740{
741 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 742 error (_("object size is larger than varsize-limit"));
714e53ab
PH
743}
744
0963b4bd 745/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 746static LONGEST
c3e5cd34 747max_of_size (int size)
4c4b4cd2 748{
76a01679 749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 750
76a01679 751 return top_bit | (top_bit - 1);
4c4b4cd2
PH
752}
753
0963b4bd 754/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 755static LONGEST
c3e5cd34 756min_of_size (int size)
4c4b4cd2 757{
c3e5cd34 758 return -max_of_size (size) - 1;
4c4b4cd2
PH
759}
760
0963b4bd 761/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 762static ULONGEST
c3e5cd34 763umax_of_size (int size)
4c4b4cd2 764{
76a01679 765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 766
76a01679 767 return top_bit | (top_bit - 1);
4c4b4cd2
PH
768}
769
0963b4bd 770/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
771static LONGEST
772max_of_type (struct type *t)
4c4b4cd2 773{
c3e5cd34
PH
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778}
779
0963b4bd 780/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
781static LONGEST
782min_of_type (struct type *t)
783{
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
788}
789
790/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_HIGH_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return max_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
808 }
809}
810
14e75d8e 811/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
812LONGEST
813ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 814{
c3345124 815 type = resolve_dynamic_type (type, NULL, 0);
76a01679 816 switch (TYPE_CODE (type))
4c4b4cd2
PH
817 {
818 case TYPE_CODE_RANGE:
690cc4eb 819 return TYPE_LOW_BOUND (type);
4c4b4cd2 820 case TYPE_CODE_ENUM:
14e75d8e 821 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
76a01679 825 case TYPE_CODE_INT:
690cc4eb 826 return min_of_type (type);
4c4b4cd2 827 default:
43bbcdc2 828 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
829 }
830}
831
832/* The identity on non-range types. For range types, the underlying
76a01679 833 non-range scalar type. */
4c4b4cd2
PH
834
835static struct type *
18af8284 836get_base_type (struct type *type)
4c4b4cd2
PH
837{
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
76a01679
JB
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
4c4b4cd2
PH
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
14f9c5c9 845}
41246937
JB
846
847/* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852struct value *
853ada_get_decoded_value (struct value *value)
854{
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870}
871
872/* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877struct type *
878ada_get_decoded_type (struct type *type)
879{
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884}
885
4c4b4cd2 886\f
76a01679 887
4c4b4cd2 888 /* Language Selection */
14f9c5c9
AS
889
890/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 891 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 892
14f9c5c9 893enum language
ccefe4c4 894ada_update_initial_language (enum language lang)
14f9c5c9 895{
d2e4a39e 896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 897 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 898 return language_ada;
14f9c5c9
AS
899
900 return lang;
901}
96d887e8
PH
902
903/* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907char *
908ada_main_name (void)
909{
3b7344d5 910 struct bound_minimal_symbol msym;
e83e4e24 911 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 912
96d887e8
PH
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
3b7344d5 920 if (msym.minsym != NULL)
96d887e8 921 {
f9bc20b9
JB
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
77e371c0 925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 926 if (main_program_name_addr == 0)
323e0a4a 927 error (_("Invalid address for Ada main program name."));
96d887e8 928
f9bc20b9
JB
929 target_read_string (main_program_name_addr, &main_program_name,
930 1024, &err_code);
931
932 if (err_code != 0)
933 return NULL;
e83e4e24 934 return main_program_name.get ();
96d887e8
PH
935 }
936
937 /* The main procedure doesn't seem to be in Ada. */
938 return NULL;
939}
14f9c5c9 940\f
4c4b4cd2 941 /* Symbols */
d2e4a39e 942
4c4b4cd2
PH
943/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
944 of NULLs. */
14f9c5c9 945
d2e4a39e
AS
946const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
968 {NULL, NULL}
14f9c5c9
AS
969};
970
b5ec771e
PA
971/* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
4c4b4cd2 975
b5ec771e
PA
976static char *
977ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 978{
4c4b4cd2
PH
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
d2e4a39e 981 const char *p;
14f9c5c9 982 int k;
d2e4a39e 983
4c4b4cd2 984 if (decoded == NULL)
14f9c5c9
AS
985 return NULL;
986
4c4b4cd2
PH
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
14f9c5c9
AS
989
990 k = 0;
4c4b4cd2 991 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 992 {
cdc7bb92 993 if (*p == '.')
4c4b4cd2
PH
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
14f9c5c9 998 else if (*p == '"')
4c4b4cd2
PH
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1265e4aa 1003 mapping->encoded != NULL
61012eef 1004 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1005 ;
1006 if (mapping->encoded == NULL)
b5ec771e
PA
1007 {
1008 if (throw_errors)
1009 error (_("invalid Ada operator name: %s"), p);
1010 else
1011 return NULL;
1012 }
4c4b4cd2
PH
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
d2e4a39e 1017 else
4c4b4cd2
PH
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
14f9c5c9
AS
1022 }
1023
4c4b4cd2
PH
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
14f9c5c9
AS
1026}
1027
b5ec771e
PA
1028/* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1030
1031char *
1032ada_encode (const char *decoded)
1033{
1034 return ada_encode_1 (decoded, true);
1035}
1036
14f9c5c9 1037/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1038 quotes, unfolded, but with the quotes stripped away. Result good
1039 to next call. */
1040
d2e4a39e
AS
1041char *
1042ada_fold_name (const char *name)
14f9c5c9 1043{
d2e4a39e 1044 static char *fold_buffer = NULL;
14f9c5c9
AS
1045 static size_t fold_buffer_size = 0;
1046
1047 int len = strlen (name);
d2e4a39e 1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1049
1050 if (name[0] == '\'')
1051 {
d2e4a39e
AS
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1054 }
1055 else
1056 {
1057 int i;
5b4ee69b 1058
14f9c5c9 1059 for (i = 0; i <= len; i += 1)
4c4b4cd2 1060 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1061 }
1062
1063 return fold_buffer;
1064}
1065
529cad9c
PH
1066/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1067
1068static int
1069is_lower_alphanum (const char c)
1070{
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1072}
1073
c90092fe
JB
1074/* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
29480c32
JB
1077 . .{DIGIT}+
1078 . ${DIGIT}+
1079 . ___{DIGIT}+
1080 . __{DIGIT}+.
c90092fe 1081
29480c32
JB
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1085
1086static void
1087ada_remove_trailing_digits (const char *encoded, int *len)
1088{
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1090 {
1091 int i = *len - 2;
5b4ee69b 1092
29480c32
JB
1093 while (i > 0 && isdigit (encoded[i]))
1094 i--;
1095 if (i >= 0 && encoded[i] == '.')
1096 *len = i;
1097 else if (i >= 0 && encoded[i] == '$')
1098 *len = i;
61012eef 1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1100 *len = i - 2;
61012eef 1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1102 *len = i - 1;
1103 }
1104}
1105
1106/* Remove the suffix introduced by the compiler for protected object
1107 subprograms. */
1108
1109static void
1110ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1111{
1112 /* Remove trailing N. */
1113
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
0963b4bd 1117 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1121
1122 if (*len > 1
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1125 *len = *len - 1;
1126}
1127
69fadcdf
JB
1128/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1129
1130static void
1131ada_remove_Xbn_suffix (const char *encoded, int *len)
1132{
1133 int i = *len - 1;
1134
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1136 i--;
1137
1138 if (encoded[i] != 'X')
1139 return;
1140
1141 if (i == 0)
1142 return;
1143
1144 if (isalnum (encoded[i-1]))
1145 *len = i;
1146}
1147
29480c32
JB
1148/* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
14f9c5c9 1151
4c4b4cd2 1152 The resulting string is valid until the next call of ada_decode.
29480c32 1153 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1154 is returned. */
1155
1156const char *
1157ada_decode (const char *encoded)
14f9c5c9
AS
1158{
1159 int i, j;
1160 int len0;
d2e4a39e 1161 const char *p;
4c4b4cd2 1162 char *decoded;
14f9c5c9 1163 int at_start_name;
4c4b4cd2
PH
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
d2e4a39e 1166
0d81f350
JG
1167 /* With function descriptors on PPC64, the value of a symbol named
1168 ".FN", if it exists, is the entry point of the function "FN". */
1169 if (encoded[0] == '.')
1170 encoded += 1;
1171
29480c32
JB
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
61012eef 1175 if (startswith (encoded, "_ada_"))
4c4b4cd2 1176 encoded += 5;
14f9c5c9 1177
29480c32
JB
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
4c4b4cd2 1181 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1182 goto Suppress;
1183
4c4b4cd2 1184 len0 = strlen (encoded);
4c4b4cd2 1185
29480c32
JB
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1188
4c4b4cd2
PH
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1195 {
1196 if (p[3] == 'X')
4c4b4cd2 1197 len0 = p - encoded;
14f9c5c9 1198 else
4c4b4cd2 1199 goto Suppress;
14f9c5c9 1200 }
4c4b4cd2 1201
29480c32
JB
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
61012eef 1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1207 len0 -= 3;
76a01679 1208
a10967fa
JB
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
61012eef 1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1214 len0 -= 2;
1215
29480c32
JB
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
61012eef 1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1220 len0 -= 1;
1221
4c4b4cd2 1222 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1223
4c4b4cd2
PH
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
14f9c5c9 1226
29480c32
JB
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
4c4b4cd2 1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1230 {
4c4b4cd2
PH
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
d2e4a39e 1239 }
14f9c5c9 1240
29480c32
JB
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
4c4b4cd2
PH
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
14f9c5c9
AS
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
29480c32 1250 /* Is this a symbol function? */
4c4b4cd2
PH
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
5b4ee69b 1254
4c4b4cd2
PH
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
14f9c5c9
AS
1272 at_start_name = 0;
1273
529cad9c
PH
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
61012eef 1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1278 i += 2;
529cad9c 1279
29480c32
JB
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
529cad9c
PH
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1302 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
4c4b4cd2
PH
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
29480c32
JB
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
4c4b4cd2
PH
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
cdc7bb92 1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1367 {
29480c32 1368 /* Replace '__' by '.'. */
4c4b4cd2
PH
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
14f9c5c9 1374 else
4c4b4cd2 1375 {
29480c32
JB
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
4c4b4cd2
PH
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
14f9c5c9 1382 }
4c4b4cd2 1383 decoded[j] = '\000';
14f9c5c9 1384
29480c32
JB
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
4c4b4cd2
PH
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1390 goto Suppress;
1391
4c4b4cd2
PH
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
14f9c5c9
AS
1396
1397Suppress:
4c4b4cd2
PH
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
14f9c5c9 1402 else
88c15c34 1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1404 return decoded;
1405
1406}
1407
1408/* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413static struct htab *decoded_names_store;
1414
1415/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1420 GSYMBOL).
4c4b4cd2
PH
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1423 when a decoded name is cached in it. */
4c4b4cd2 1424
45e6c716 1425const char *
f85f34ed 1426ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1427{
f85f34ed
TT
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
615b3f62 1430 &gsymbol->language_specific.demangled_name;
5b4ee69b 1431
f85f34ed 1432 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1435 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1436
f85f34ed 1437 gsymbol->ada_mangled = 1;
5b4ee69b 1438
f85f34ed 1439 if (obstack != NULL)
224c3ddb
SM
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1442 else
76a01679 1443 {
f85f34ed
TT
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
76a01679
JB
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
5b4ee69b 1451
76a01679
JB
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
4c4b4cd2 1456 }
14f9c5c9 1457
4c4b4cd2
PH
1458 return *resultp;
1459}
76a01679 1460
2c0b251b 1461static char *
76a01679 1462ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1463{
1464 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1465}
1466
8b302db8
TT
1467/* Implement la_sniff_from_mangled_name for Ada. */
1468
1469static int
1470ada_sniff_from_mangled_name (const char *mangled, char **out)
1471{
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504}
1505
14f9c5c9 1506\f
d2e4a39e 1507
4c4b4cd2 1508 /* Arrays */
14f9c5c9 1509
28c85d6c
JB
1510/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533void
1534ada_fixup_array_indexes_type (struct type *index_desc_type)
1535{
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
0d5cff50 1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563}
1564
4c4b4cd2 1565/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1566
a121b7c1 1567static const char *bound_name[] = {
d2e4a39e 1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570};
1571
1572/* Maximum number of array dimensions we are prepared to handle. */
1573
4c4b4cd2 1574#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1575
14f9c5c9 1576
4c4b4cd2
PH
1577/* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
14f9c5c9
AS
1579
1580/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1581 level of indirection, if needed. */
1582
d2e4a39e
AS
1583static struct type *
1584desc_base_type (struct type *type)
14f9c5c9
AS
1585{
1586 if (type == NULL)
1587 return NULL;
61ee279c 1588 type = ada_check_typedef (type);
720d1a40
JB
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1265e4aa
JB
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1596 else
1597 return type;
1598}
1599
4c4b4cd2
PH
1600/* True iff TYPE indicates a "thin" array pointer type. */
1601
14f9c5c9 1602static int
d2e4a39e 1603is_thin_pntr (struct type *type)
14f9c5c9 1604{
d2e4a39e 1605 return
14f9c5c9
AS
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608}
1609
4c4b4cd2
PH
1610/* The descriptor type for thin pointer type TYPE. */
1611
d2e4a39e
AS
1612static struct type *
1613thin_descriptor_type (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 struct type *base_type = desc_base_type (type);
5b4ee69b 1616
14f9c5c9
AS
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
d2e4a39e 1621 else
14f9c5c9 1622 {
d2e4a39e 1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1624
14f9c5c9 1625 if (alt_type == NULL)
4c4b4cd2 1626 return base_type;
14f9c5c9 1627 else
4c4b4cd2 1628 return alt_type;
14f9c5c9
AS
1629 }
1630}
1631
4c4b4cd2
PH
1632/* A pointer to the array data for thin-pointer value VAL. */
1633
d2e4a39e
AS
1634static struct value *
1635thin_data_pntr (struct value *val)
14f9c5c9 1636{
828292f2 1637 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1639
556bdfd4
UW
1640 data_type = lookup_pointer_type (data_type);
1641
14f9c5c9 1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1643 return value_cast (data_type, value_copy (val));
d2e4a39e 1644 else
42ae5230 1645 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1646}
1647
4c4b4cd2
PH
1648/* True iff TYPE indicates a "thick" array pointer type. */
1649
14f9c5c9 1650static int
d2e4a39e 1651is_thick_pntr (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1660
d2e4a39e
AS
1661static struct type *
1662desc_bounds_type (struct type *type)
14f9c5c9 1663{
d2e4a39e 1664 struct type *r;
14f9c5c9
AS
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
4c4b4cd2 1674 return NULL;
14f9c5c9
AS
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
61ee279c 1677 return ada_check_typedef (r);
14f9c5c9
AS
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
61ee279c 1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1684 }
1685 return NULL;
1686}
1687
1688/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
d2e4a39e
AS
1691static struct value *
1692desc_bounds (struct value *arr)
14f9c5c9 1693{
df407dfe 1694 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1695
d2e4a39e 1696 if (is_thin_pntr (type))
14f9c5c9 1697 {
d2e4a39e 1698 struct type *bounds_type =
4c4b4cd2 1699 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1700 LONGEST addr;
1701
4cdfadb1 1702 if (bounds_type == NULL)
323e0a4a 1703 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1704
1705 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1706 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1707 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1709 addr = value_as_long (arr);
d2e4a39e 1710 else
42ae5230 1711 addr = value_address (arr);
14f9c5c9 1712
d2e4a39e 1713 return
4c4b4cd2
PH
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1716 }
1717
1718 else if (is_thick_pntr (type))
05e522ef
JB
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
14f9c5c9
AS
1739 else
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
14f9c5c9 1746static int
d2e4a39e 1747fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1748{
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750}
1751
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1753 size of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1757{
1758 type = desc_base_type (type);
1759
d2e4a39e 1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
61ee279c 1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1764}
1765
4c4b4cd2 1766/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
4c4b4cd2 1770
d2e4a39e 1771static struct type *
556bdfd4 1772desc_data_target_type (struct type *type)
14f9c5c9
AS
1773{
1774 type = desc_base_type (type);
1775
4c4b4cd2 1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1777 if (is_thin_pntr (type))
556bdfd4 1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1779 else if (is_thick_pntr (type))
556bdfd4
UW
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1786 }
1787
1788 return NULL;
14f9c5c9
AS
1789}
1790
1791/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
4c4b4cd2 1793
d2e4a39e
AS
1794static struct value *
1795desc_data (struct value *arr)
14f9c5c9 1796{
df407dfe 1797 struct type *type = value_type (arr);
5b4ee69b 1798
14f9c5c9
AS
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
d2e4a39e 1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1803 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1804 else
1805 return NULL;
1806}
1807
1808
1809/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1810 position of the field containing the address of the data. */
1811
14f9c5c9 1812static int
d2e4a39e 1813fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1814{
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816}
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 size of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1828 else
14f9c5c9
AS
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830}
1831
4c4b4cd2 1832/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
d2e4a39e
AS
1836static struct value *
1837desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1838{
d2e4a39e 1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1840 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1841}
1842
1843/* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
14f9c5c9 1847static int
d2e4a39e 1848desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
76a01679 1857static int
d2e4a39e 1858desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
d2e4a39e
AS
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1866}
1867
1868/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
d2e4a39e
AS
1871static struct type *
1872desc_index_type (struct type *type, int i)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
14f9c5c9
AS
1879 return NULL;
1880}
1881
4c4b4cd2
PH
1882/* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
14f9c5c9 1885static int
d2e4a39e 1886desc_arity (struct type *type)
14f9c5c9
AS
1887{
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893}
1894
4c4b4cd2
PH
1895/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
76a01679
JB
1899static int
1900ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1901{
1902 if (type == NULL)
1903 return 0;
61ee279c 1904 type = ada_check_typedef (type);
4c4b4cd2 1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1906 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1907}
1908
52ce6436 1909/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1910 * to one. */
52ce6436 1911
2c0b251b 1912static int
52ce6436
PH
1913ada_is_array_type (struct type *type)
1914{
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920}
1921
4c4b4cd2 1922/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1926{
1927 if (type == NULL)
1928 return 0;
61ee279c 1929 type = ada_check_typedef (type);
14f9c5c9 1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1934}
1935
4c4b4cd2
PH
1936/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
14f9c5c9 1938int
4c4b4cd2 1939ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1940{
556bdfd4 1941 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1942
1943 if (type == NULL)
1944 return 0;
61ee279c 1945 type = ada_check_typedef (type);
556bdfd4
UW
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1949}
1950
1951/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1952 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1953 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1954 is still needed. */
1955
14f9c5c9 1956int
ebf56fd3 1957ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1958{
d2e4a39e 1959 return
14f9c5c9
AS
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1965}
1966
1967
4c4b4cd2 1968/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1969 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1971 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1974 a descriptor. */
d2e4a39e
AS
1975struct type *
1976ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1977{
ad82864c
JB
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1980
df407dfe
AC
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
d2e4a39e
AS
1983
1984 if (!bounds)
ad82864c
JB
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
14f9c5c9
AS
1995 else
1996 {
d2e4a39e 1997 struct type *elt_type;
14f9c5c9 1998 int arity;
d2e4a39e 1999 struct value *descriptor;
14f9c5c9 2000
df407dfe
AC
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
14f9c5c9 2003
d2e4a39e 2004 if (elt_type == NULL || arity == 0)
df407dfe 2005 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2006
2007 descriptor = desc_bounds (arr);
d2e4a39e 2008 if (value_as_long (descriptor) == 0)
4c4b4cd2 2009 return NULL;
d2e4a39e 2010 while (arity > 0)
4c4b4cd2 2011 {
e9bb382b
UW
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2016
5b4ee69b 2017 arity -= 1;
0c9c3474
SA
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
4c4b4cd2 2021 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
4c4b4cd2 2043 }
14f9c5c9
AS
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047}
2048
2049/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
d2e4a39e
AS
2054struct value *
2055ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2056{
df407dfe 2057 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2058 {
d2e4a39e 2059 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2060
14f9c5c9 2061 if (arrType == NULL)
4c4b4cd2 2062 return NULL;
14f9c5c9
AS
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
ad82864c
JB
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2067 else
2068 return arr;
2069}
2070
2071/* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2073 be ARR itself if it already is in the proper form). */
2074
720d1a40 2075struct value *
d2e4a39e 2076ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2077{
df407dfe 2078 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2079 {
d2e4a39e 2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2081
14f9c5c9 2082 if (arrVal == NULL)
323e0a4a 2083 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2085 return value_ind (arrVal);
2086 }
ad82864c
JB
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
d2e4a39e 2089 else
14f9c5c9
AS
2090 return arr;
2091}
2092
2093/* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2095 packing). For other types, is the identity. */
2096
d2e4a39e
AS
2097struct type *
2098ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2099{
ad82864c
JB
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
17280b9f
UW
2102
2103 if (ada_is_array_descriptor_type (type))
556bdfd4 2104 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2105
2106 return type;
14f9c5c9
AS
2107}
2108
4c4b4cd2
PH
2109/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
ad82864c
JB
2111static int
2112ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2113{
2114 if (type == NULL)
2115 return 0;
4c4b4cd2 2116 type = desc_base_type (type);
61ee279c 2117 type = ada_check_typedef (type);
d2e4a39e 2118 return
14f9c5c9
AS
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121}
2122
ad82864c
JB
2123/* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126int
2127ada_is_constrained_packed_array_type (struct type *type)
2128{
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131}
2132
2133/* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136static int
2137ada_is_unconstrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141}
2142
2143/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146static long
2147decode_packed_array_bitsize (struct type *type)
2148{
0d5cff50
DE
2149 const char *raw_name;
2150 const char *tail;
ad82864c
JB
2151 long bits;
2152
720d1a40
JB
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
720d1a40 2167 gdb_assert (tail != NULL);
ad82864c
JB
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177}
2178
14f9c5c9
AS
2179/* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
4c4b4cd2 2195
d2e4a39e 2196static struct type *
ad82864c 2197constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2198{
d2e4a39e
AS
2199 struct type *new_elt_type;
2200 struct type *new_type;
99b1c762
JB
2201 struct type *index_type_desc;
2202 struct type *index_type;
14f9c5c9
AS
2203 LONGEST low_bound, high_bound;
2204
61ee279c 2205 type = ada_check_typedef (type);
14f9c5c9
AS
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
99b1c762
JB
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
e9bb382b 2216 new_type = alloc_type_copy (type);
ad82864c
JB
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
99b1c762 2220 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
4a46959e
JB
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2230 else
14f9c5c9
AS
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2233 TYPE_LENGTH (new_type) =
4c4b4cd2 2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2235 }
2236
876cecd0 2237 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2238 return new_type;
2239}
2240
ad82864c
JB
2241/* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2243
d2e4a39e 2244static struct type *
ad82864c 2245decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2246{
0d5cff50 2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2248 char *name;
0d5cff50 2249 const char *tail;
d2e4a39e 2250 struct type *shadow_type;
14f9c5c9 2251 long bits;
14f9c5c9 2252
727e3d2e
JB
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2261 type = desc_base_type (type);
2262
14f9c5c9
AS
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
b4ba55a1
JB
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
14f9c5c9 2269 {
323e0a4a 2270 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2271 return NULL;
2272 }
f168693b 2273 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
0963b4bd
MS
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
14f9c5c9
AS
2279 return NULL;
2280 }
d2e4a39e 2281
ad82864c
JB
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2284}
2285
ad82864c
JB
2286/* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
4c4b4cd2 2290 type length is set appropriately. */
14f9c5c9 2291
d2e4a39e 2292static struct value *
ad82864c 2293decode_constrained_packed_array (struct value *arr)
14f9c5c9 2294{
4c4b4cd2 2295 struct type *type;
14f9c5c9 2296
11aa919a
PMR
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
828292f2 2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2306 arr = value_ind (arr);
4c4b4cd2 2307
ad82864c 2308 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2309 if (type == NULL)
2310 {
323e0a4a 2311 error (_("can't unpack array"));
14f9c5c9
AS
2312 return NULL;
2313 }
61ee279c 2314
50810684 2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2316 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
df407dfe 2325 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
df407dfe 2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
4c4b4cd2 2340 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2341}
2342
2343
2344/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2345 given in IND. ARR must be a simple array. */
14f9c5c9 2346
d2e4a39e
AS
2347static struct value *
2348value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2349{
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
d2e4a39e
AS
2353 struct type *elt_type;
2354 struct value *v;
14f9c5c9
AS
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
df407dfe 2358 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2359 for (i = 0; i < arity; i += 1)
14f9c5c9 2360 {
d2e4a39e 2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
0963b4bd
MS
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
14f9c5c9 2366 else
4c4b4cd2
PH
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
323e0a4a 2374 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2375 lowerbound = upperbound = 0;
2376 }
2377
3cb382c9 2378 idx = pos_atr (ind[i]);
4c4b4cd2 2379 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
4c4b4cd2
PH
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2385 }
14f9c5c9
AS
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2391 bits, elt_type);
14f9c5c9
AS
2392 return v;
2393}
2394
4c4b4cd2 2395/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2396
2397static int
d2e4a39e 2398has_negatives (struct type *type)
14f9c5c9 2399{
d2e4a39e
AS
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
14f9c5c9 2409}
d2e4a39e 2410
f93fca70 2411/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2413 the unpacked buffer.
14f9c5c9 2414
5b639dea
JB
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
f93fca70
JB
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
14f9c5c9 2420
f93fca70 2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2422
f93fca70
JB
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425static void
2426ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430{
a1c95e6b
JB
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
a1c95e6b
JB
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
4c4b4cd2 2441 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2442 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2443 unsigned char sign;
a1c95e6b 2444
4c4b4cd2
PH
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
f93fca70 2447 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2448
5b639dea
JB
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
14f9c5c9 2455 srcBitsLeft = bit_size;
086ca51f 2456 src_bytes_left = src_len;
f93fca70 2457 unpacked_bytes_left = unpacked_len;
14f9c5c9 2458 sign = 0;
f93fca70
JB
2459
2460 if (is_big_endian)
14f9c5c9 2461 {
086ca51f 2462 src_idx = src_len - 1;
f93fca70
JB
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2465 sign = ~0;
d2e4a39e
AS
2466
2467 unusedLS =
4c4b4cd2
PH
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
14f9c5c9 2470
f93fca70
JB
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
4c4b4cd2
PH
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
086ca51f
JB
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2485 }
14f9c5c9 2486 }
d2e4a39e 2487 else
14f9c5c9
AS
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
086ca51f 2491 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
f93fca70 2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2496 sign = ~0;
14f9c5c9 2497 }
d2e4a39e 2498
14f9c5c9 2499 accum = 0;
086ca51f 2500 while (src_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2503 part of the value. */
d2e4a39e 2504 unsigned int unusedMSMask =
4c4b4cd2
PH
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
14f9c5c9 2508 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2509
d2e4a39e 2510 accum |=
086ca51f 2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2512 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2513 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2514 {
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
4c4b4cd2 2520 }
14f9c5c9
AS
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
086ca51f
JB
2523 src_bytes_left -= 1;
2524 src_idx += delta;
14f9c5c9 2525 }
086ca51f 2526 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2527 {
2528 accum |= sign << accumSize;
db297a65 2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2530 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2531 if (accumSize < 0)
2532 accumSize = 0;
14f9c5c9 2533 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
14f9c5c9 2536 }
f93fca70
JB
2537}
2538
2539/* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548struct value *
2549ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552{
2553 struct value *v;
bfb1c796 2554 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2555 gdb_byte *unpacked;
220475ed 2556 const int is_scalar = is_scalar_type (type);
d0a9e810 2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2558 gdb::byte_vector staging;
f93fca70
JB
2559
2560 type = ada_check_typedef (type);
2561
d0a9e810 2562 if (obj == NULL)
bfb1c796 2563 src = valaddr + offset;
d0a9e810 2564 else
bfb1c796 2565 src = value_contents (obj) + offset;
d0a9e810
JB
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
d0a9e810
JB
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2580 staging.data (), staging.size (),
d0a9e810
JB
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
d5722aa2 2583 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
d0a9e810
JB
2595 }
2596
f93fca70
JB
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
bfb1c796 2600 src = valaddr + offset;
f93fca70
JB
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
0cafa88c 2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2605 gdb_byte *buf;
0cafa88c 2606
f93fca70 2607 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
f93fca70
JB
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
bfb1c796 2615 src = value_contents (obj) + offset;
f93fca70
JB
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
bfb1c796 2638 unpacked = value_contents_writeable (v);
f93fca70
JB
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
d5722aa2 2646 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2647 {
d0a9e810
JB
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
d5722aa2 2651 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2652 }
d0a9e810
JB
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2657
14f9c5c9
AS
2658 return v;
2659}
d2e4a39e 2660
14f9c5c9
AS
2661/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2663 not overlap. */
14f9c5c9 2664static void
fc1a4b47 2665move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2666 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2667{
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
50810684 2675 if (bits_big_endian_p)
14f9c5c9
AS
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
d2e4a39e 2681 while (n > 0)
4c4b4cd2
PH
2682 {
2683 int unused_right;
5b4ee69b 2684
4c4b4cd2
PH
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
d2e4a39e 2708 while (n > 0)
4c4b4cd2
PH
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
14f9c5c9
AS
2724 }
2725}
2726
14f9c5c9
AS
2727/* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2730 floating-point or non-scalar types. */
14f9c5c9 2731
d2e4a39e
AS
2732static struct value *
2733ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2734{
df407dfe
AC
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
14f9c5c9 2737
52ce6436
PH
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
88e3b34b 2746 if (!deprecated_value_modifiable (toval))
323e0a4a 2747 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2748
d2e4a39e 2749 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2750 && bits > 0
d2e4a39e 2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2753 {
df407dfe
AC
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2756 int from_size;
224c3ddb 2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2758 struct value *val;
42ae5230 2759 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2762 fromval = value_cast (type, fromval);
14f9c5c9 2763
52ce6436 2764 read_memory (to_addr, buffer, len);
aced2898
PH
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2769 move_bits (buffer, value_bitpos (toval),
50810684 2770 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2771 else
50810684
UW
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
972daa01 2774 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2775
14f9c5c9 2776 val = value_copy (toval);
0fd88904 2777 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2778 TYPE_LENGTH (type));
04624583 2779 deprecated_set_value_type (val, type);
d2e4a39e 2780
14f9c5c9
AS
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785}
2786
2787
7c512744
JB
2788/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
52ce6436
PH
2799static void
2800value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802{
2803 LONGEST offset_in_container =
42ae5230 2804 (LONGEST) (value_address (component) - value_address (container));
7c512744 2805 int bit_offset_in_container =
52ce6436
PH
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
7c512744 2808
52ce6436
PH
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
50810684 2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2817 {
2818 int src_offset;
2819
2820 if (is_scalar_type (check_typedef (value_type (component))))
2821 src_offset
2822 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2823 else
2824 src_offset = 0;
2825 move_bits (value_contents_writeable (container) + offset_in_container,
2826 value_bitpos (container) + bit_offset_in_container,
2827 value_contents (val), src_offset, bits, 1);
2828 }
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
736ade86
XR
2835/* Determine if TYPE is an access to an unconstrained array. */
2836
d91e9ea8 2837bool
736ade86
XR
2838ada_is_access_to_unconstrained_array (struct type *type)
2839{
2840 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2841 && is_thick_pntr (ada_typedef_target_type (type)));
2842}
2843
4c4b4cd2
PH
2844/* The value of the element of array ARR at the ARITY indices given in IND.
2845 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2846 thereto. */
2847
d2e4a39e
AS
2848struct value *
2849ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2850{
2851 int k;
d2e4a39e
AS
2852 struct value *elt;
2853 struct type *elt_type;
14f9c5c9
AS
2854
2855 elt = ada_coerce_to_simple_array (arr);
2856
df407dfe 2857 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2858 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2859 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2860 return value_subscript_packed (elt, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
b9c50e9a
XR
2864 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2865
14f9c5c9 2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2867 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2868
2497b498 2869 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2870
2871 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2872 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2873 {
2874 /* The element is a typedef to an unconstrained array,
2875 except that the value_subscript call stripped the
2876 typedef layer. The typedef layer is GNAT's way to
2877 specify that the element is, at the source level, an
2878 access to the unconstrained array, rather than the
2879 unconstrained array. So, we need to restore that
2880 typedef layer, which we can do by forcing the element's
2881 type back to its original type. Otherwise, the returned
2882 value is going to be printed as the array, rather
2883 than as an access. Another symptom of the same issue
2884 would be that an expression trying to dereference the
2885 element would also be improperly rejected. */
2886 deprecated_set_value_type (elt, saved_elt_type);
2887 }
2888
2889 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2890 }
b9c50e9a 2891
14f9c5c9
AS
2892 return elt;
2893}
2894
deede10c
JB
2895/* Assuming ARR is a pointer to a GDB array, the value of the element
2896 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2897 Does not read the entire array into memory.
2898
2899 Note: Unlike what one would expect, this function is used instead of
2900 ada_value_subscript for basically all non-packed array types. The reason
2901 for this is that a side effect of doing our own pointer arithmetics instead
2902 of relying on value_subscript is that there is no implicit typedef peeling.
2903 This is important for arrays of array accesses, where it allows us to
2904 preserve the fact that the array's element is an array access, where the
2905 access part os encoded in a typedef layer. */
14f9c5c9 2906
2c0b251b 2907static struct value *
deede10c 2908ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2909{
2910 int k;
919e6dbe 2911 struct value *array_ind = ada_value_ind (arr);
deede10c 2912 struct type *type
919e6dbe
PMR
2913 = check_typedef (value_enclosing_type (array_ind));
2914
2915 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2916 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2917 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2918
2919 for (k = 0; k < arity; k += 1)
2920 {
2921 LONGEST lwb, upb;
aa715135 2922 struct value *lwb_value;
14f9c5c9
AS
2923
2924 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2925 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2926 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2927 value_copy (arr));
14f9c5c9 2928 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2929 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2930 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2931 type = TYPE_TARGET_TYPE (type);
2932 }
2933
2934 return value_ind (arr);
2935}
2936
0b5d8877 2937/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2938 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2939 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2940 this array is LOW, as per Ada rules. */
0b5d8877 2941static struct value *
f5938064
JG
2942ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2943 int low, int high)
0b5d8877 2944{
b0dd7688 2945 struct type *type0 = ada_check_typedef (type);
aa715135 2946 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2947 struct type *index_type
aa715135 2948 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2949 struct type *slice_type = create_array_type_with_stride
2950 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2951 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2952 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2953 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2954 LONGEST base_low_pos, low_pos;
2955 CORE_ADDR base;
2956
2957 if (!discrete_position (base_index_type, low, &low_pos)
2958 || !discrete_position (base_index_type, base_low, &base_low_pos))
2959 {
2960 warning (_("unable to get positions in slice, use bounds instead"));
2961 low_pos = low;
2962 base_low_pos = base_low;
2963 }
5b4ee69b 2964
aa715135
JG
2965 base = value_as_address (array_ptr)
2966 + ((low_pos - base_low_pos)
2967 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2968 return value_at_lazy (slice_type, base);
0b5d8877
PH
2969}
2970
2971
2972static struct value *
2973ada_value_slice (struct value *array, int low, int high)
2974{
b0dd7688 2975 struct type *type = ada_check_typedef (value_type (array));
aa715135 2976 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2977 struct type *index_type
2978 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2979 struct type *slice_type = create_array_type_with_stride
2980 (NULL, TYPE_TARGET_TYPE (type), index_type,
2981 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2982 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2983 LONGEST low_pos, high_pos;
5b4ee69b 2984
aa715135
JG
2985 if (!discrete_position (base_index_type, low, &low_pos)
2986 || !discrete_position (base_index_type, high, &high_pos))
2987 {
2988 warning (_("unable to get positions in slice, use bounds instead"));
2989 low_pos = low;
2990 high_pos = high;
2991 }
2992
2993 return value_cast (slice_type,
2994 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2995}
2996
14f9c5c9
AS
2997/* If type is a record type in the form of a standard GNAT array
2998 descriptor, returns the number of dimensions for type. If arr is a
2999 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 3000 type designation. Otherwise, returns 0. */
14f9c5c9
AS
3001
3002int
d2e4a39e 3003ada_array_arity (struct type *type)
14f9c5c9
AS
3004{
3005 int arity;
3006
3007 if (type == NULL)
3008 return 0;
3009
3010 type = desc_base_type (type);
3011
3012 arity = 0;
d2e4a39e 3013 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 3014 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
3015 else
3016 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 3017 {
4c4b4cd2 3018 arity += 1;
61ee279c 3019 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 3020 }
d2e4a39e 3021
14f9c5c9
AS
3022 return arity;
3023}
3024
3025/* If TYPE is a record type in the form of a standard GNAT array
3026 descriptor or a simple array type, returns the element type for
3027 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3028 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3029
d2e4a39e
AS
3030struct type *
3031ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3032{
3033 type = desc_base_type (type);
3034
d2e4a39e 3035 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3036 {
3037 int k;
d2e4a39e 3038 struct type *p_array_type;
14f9c5c9 3039
556bdfd4 3040 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3041
3042 k = ada_array_arity (type);
3043 if (k == 0)
4c4b4cd2 3044 return NULL;
d2e4a39e 3045
4c4b4cd2 3046 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3047 if (nindices >= 0 && k > nindices)
4c4b4cd2 3048 k = nindices;
d2e4a39e 3049 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3050 {
61ee279c 3051 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3052 k -= 1;
3053 }
14f9c5c9
AS
3054 return p_array_type;
3055 }
3056 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3057 {
3058 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3059 {
3060 type = TYPE_TARGET_TYPE (type);
3061 nindices -= 1;
3062 }
14f9c5c9
AS
3063 return type;
3064 }
3065
3066 return NULL;
3067}
3068
4c4b4cd2 3069/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3070 Does not examine memory. Throws an error if N is invalid or TYPE
3071 is not an array type. NAME is the name of the Ada attribute being
3072 evaluated ('range, 'first, 'last, or 'length); it is used in building
3073 the error message. */
14f9c5c9 3074
1eea4ebd
UW
3075static struct type *
3076ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3077{
4c4b4cd2
PH
3078 struct type *result_type;
3079
14f9c5c9
AS
3080 type = desc_base_type (type);
3081
1eea4ebd
UW
3082 if (n < 0 || n > ada_array_arity (type))
3083 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3084
4c4b4cd2 3085 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3086 {
3087 int i;
3088
3089 for (i = 1; i < n; i += 1)
4c4b4cd2 3090 type = TYPE_TARGET_TYPE (type);
262452ec 3091 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3092 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3093 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3094 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3095 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3096 result_type = NULL;
14f9c5c9 3097 }
d2e4a39e 3098 else
1eea4ebd
UW
3099 {
3100 result_type = desc_index_type (desc_bounds_type (type), n);
3101 if (result_type == NULL)
3102 error (_("attempt to take bound of something that is not an array"));
3103 }
3104
3105 return result_type;
14f9c5c9
AS
3106}
3107
3108/* Given that arr is an array type, returns the lower bound of the
3109 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3110 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3111 array-descriptor type. It works for other arrays with bounds supplied
3112 by run-time quantities other than discriminants. */
14f9c5c9 3113
abb68b3e 3114static LONGEST
fb5e3d5c 3115ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3116{
8a48ac95 3117 struct type *type, *index_type_desc, *index_type;
1ce677a4 3118 int i;
262452ec
JK
3119
3120 gdb_assert (which == 0 || which == 1);
14f9c5c9 3121
ad82864c
JB
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3124
4c4b4cd2 3125 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3126 return (LONGEST) - which;
14f9c5c9
AS
3127
3128 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3129 type = TYPE_TARGET_TYPE (arr_type);
3130 else
3131 type = arr_type;
3132
bafffb51
JB
3133 if (TYPE_FIXED_INSTANCE (type))
3134 {
3135 /* The array has already been fixed, so we do not need to
3136 check the parallel ___XA type again. That encoding has
3137 already been applied, so ignore it now. */
3138 index_type_desc = NULL;
3139 }
3140 else
3141 {
3142 index_type_desc = ada_find_parallel_type (type, "___XA");
3143 ada_fixup_array_indexes_type (index_type_desc);
3144 }
3145
262452ec 3146 if (index_type_desc != NULL)
28c85d6c
JB
3147 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3148 NULL);
262452ec 3149 else
8a48ac95
JB
3150 {
3151 struct type *elt_type = check_typedef (type);
3152
3153 for (i = 1; i < n; i++)
3154 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3155
3156 index_type = TYPE_INDEX_TYPE (elt_type);
3157 }
262452ec 3158
43bbcdc2
PH
3159 return
3160 (LONGEST) (which == 0
3161 ? ada_discrete_type_low_bound (index_type)
3162 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3163}
3164
3165/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3166 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3167 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3168 supplied by run-time quantities other than discriminants. */
14f9c5c9 3169
1eea4ebd 3170static LONGEST
4dc81987 3171ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3172{
eb479039
JB
3173 struct type *arr_type;
3174
3175 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3176 arr = value_ind (arr);
3177 arr_type = value_enclosing_type (arr);
14f9c5c9 3178
ad82864c
JB
3179 if (ada_is_constrained_packed_array_type (arr_type))
3180 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3181 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3182 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3183 else
1eea4ebd 3184 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3185}
3186
3187/* Given that arr is an array value, returns the length of the
3188 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3189 supplied by run-time quantities other than discriminants.
3190 Does not work for arrays indexed by enumeration types with representation
3191 clauses at the moment. */
14f9c5c9 3192
1eea4ebd 3193static LONGEST
d2e4a39e 3194ada_array_length (struct value *arr, int n)
14f9c5c9 3195{
aa715135
JG
3196 struct type *arr_type, *index_type;
3197 int low, high;
eb479039
JB
3198
3199 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3200 arr = value_ind (arr);
3201 arr_type = value_enclosing_type (arr);
14f9c5c9 3202
ad82864c
JB
3203 if (ada_is_constrained_packed_array_type (arr_type))
3204 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3205
4c4b4cd2 3206 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3207 {
3208 low = ada_array_bound_from_type (arr_type, n, 0);
3209 high = ada_array_bound_from_type (arr_type, n, 1);
3210 }
14f9c5c9 3211 else
aa715135
JG
3212 {
3213 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3214 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3215 }
3216
f168693b 3217 arr_type = check_typedef (arr_type);
7150d33c 3218 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3219 if (index_type != NULL)
3220 {
3221 struct type *base_type;
3222 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3223 base_type = TYPE_TARGET_TYPE (index_type);
3224 else
3225 base_type = index_type;
3226
3227 low = pos_atr (value_from_longest (base_type, low));
3228 high = pos_atr (value_from_longest (base_type, high));
3229 }
3230 return high - low + 1;
4c4b4cd2
PH
3231}
3232
3233/* An empty array whose type is that of ARR_TYPE (an array type),
3234 with bounds LOW to LOW-1. */
3235
3236static struct value *
3237empty_array (struct type *arr_type, int low)
3238{
b0dd7688 3239 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3240 struct type *index_type
3241 = create_static_range_type
3242 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3243 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3244
0b5d8877 3245 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3246}
14f9c5c9 3247\f
d2e4a39e 3248
4c4b4cd2 3249 /* Name resolution */
14f9c5c9 3250
4c4b4cd2
PH
3251/* The "decoded" name for the user-definable Ada operator corresponding
3252 to OP. */
14f9c5c9 3253
d2e4a39e 3254static const char *
4c4b4cd2 3255ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3256{
3257 int i;
3258
4c4b4cd2 3259 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3260 {
3261 if (ada_opname_table[i].op == op)
4c4b4cd2 3262 return ada_opname_table[i].decoded;
14f9c5c9 3263 }
323e0a4a 3264 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3265}
3266
3267
4c4b4cd2
PH
3268/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3269 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3270 undefined namespace) and converts operators that are
3271 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3272 non-null, it provides a preferred result type [at the moment, only
3273 type void has any effect---causing procedures to be preferred over
3274 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3275 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3276
4c4b4cd2 3277static void
e9d9f57e 3278resolve (expression_up *expp, int void_context_p)
14f9c5c9 3279{
30b15541
UW
3280 struct type *context_type = NULL;
3281 int pc = 0;
3282
3283 if (void_context_p)
3284 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3285
3286 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3287}
3288
4c4b4cd2
PH
3289/* Resolve the operator of the subexpression beginning at
3290 position *POS of *EXPP. "Resolving" consists of replacing
3291 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3292 with their resolutions, replacing built-in operators with
3293 function calls to user-defined operators, where appropriate, and,
3294 when DEPROCEDURE_P is non-zero, converting function-valued variables
3295 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3296 are as in ada_resolve, above. */
14f9c5c9 3297
d2e4a39e 3298static struct value *
e9d9f57e 3299resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3300 struct type *context_type)
14f9c5c9
AS
3301{
3302 int pc = *pos;
3303 int i;
4c4b4cd2 3304 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3305 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3306 struct value **argvec; /* Vector of operand types (alloca'ed). */
3307 int nargs; /* Number of operands. */
52ce6436 3308 int oplen;
14f9c5c9
AS
3309
3310 argvec = NULL;
3311 nargs = 0;
e9d9f57e 3312 exp = expp->get ();
14f9c5c9 3313
52ce6436
PH
3314 /* Pass one: resolve operands, saving their types and updating *pos,
3315 if needed. */
14f9c5c9
AS
3316 switch (op)
3317 {
4c4b4cd2
PH
3318 case OP_FUNCALL:
3319 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3320 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3321 *pos += 7;
4c4b4cd2
PH
3322 else
3323 {
3324 *pos += 3;
3325 resolve_subexp (expp, pos, 0, NULL);
3326 }
3327 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3328 break;
3329
14f9c5c9 3330 case UNOP_ADDR:
4c4b4cd2
PH
3331 *pos += 1;
3332 resolve_subexp (expp, pos, 0, NULL);
3333 break;
3334
52ce6436
PH
3335 case UNOP_QUAL:
3336 *pos += 3;
17466c1a 3337 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3338 break;
3339
52ce6436 3340 case OP_ATR_MODULUS:
4c4b4cd2
PH
3341 case OP_ATR_SIZE:
3342 case OP_ATR_TAG:
4c4b4cd2
PH
3343 case OP_ATR_FIRST:
3344 case OP_ATR_LAST:
3345 case OP_ATR_LENGTH:
3346 case OP_ATR_POS:
3347 case OP_ATR_VAL:
4c4b4cd2
PH
3348 case OP_ATR_MIN:
3349 case OP_ATR_MAX:
52ce6436
PH
3350 case TERNOP_IN_RANGE:
3351 case BINOP_IN_BOUNDS:
3352 case UNOP_IN_RANGE:
3353 case OP_AGGREGATE:
3354 case OP_OTHERS:
3355 case OP_CHOICES:
3356 case OP_POSITIONAL:
3357 case OP_DISCRETE_RANGE:
3358 case OP_NAME:
3359 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3360 *pos += oplen;
14f9c5c9
AS
3361 break;
3362
3363 case BINOP_ASSIGN:
3364 {
4c4b4cd2
PH
3365 struct value *arg1;
3366
3367 *pos += 1;
3368 arg1 = resolve_subexp (expp, pos, 0, NULL);
3369 if (arg1 == NULL)
3370 resolve_subexp (expp, pos, 1, NULL);
3371 else
df407dfe 3372 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3373 break;
14f9c5c9
AS
3374 }
3375
4c4b4cd2 3376 case UNOP_CAST:
4c4b4cd2
PH
3377 *pos += 3;
3378 nargs = 1;
3379 break;
14f9c5c9 3380
4c4b4cd2
PH
3381 case BINOP_ADD:
3382 case BINOP_SUB:
3383 case BINOP_MUL:
3384 case BINOP_DIV:
3385 case BINOP_REM:
3386 case BINOP_MOD:
3387 case BINOP_EXP:
3388 case BINOP_CONCAT:
3389 case BINOP_LOGICAL_AND:
3390 case BINOP_LOGICAL_OR:
3391 case BINOP_BITWISE_AND:
3392 case BINOP_BITWISE_IOR:
3393 case BINOP_BITWISE_XOR:
14f9c5c9 3394
4c4b4cd2
PH
3395 case BINOP_EQUAL:
3396 case BINOP_NOTEQUAL:
3397 case BINOP_LESS:
3398 case BINOP_GTR:
3399 case BINOP_LEQ:
3400 case BINOP_GEQ:
14f9c5c9 3401
4c4b4cd2
PH
3402 case BINOP_REPEAT:
3403 case BINOP_SUBSCRIPT:
3404 case BINOP_COMMA:
40c8aaa9
JB
3405 *pos += 1;
3406 nargs = 2;
3407 break;
14f9c5c9 3408
4c4b4cd2
PH
3409 case UNOP_NEG:
3410 case UNOP_PLUS:
3411 case UNOP_LOGICAL_NOT:
3412 case UNOP_ABS:
3413 case UNOP_IND:
3414 *pos += 1;
3415 nargs = 1;
3416 break;
14f9c5c9 3417
4c4b4cd2 3418 case OP_LONG:
edd079d9 3419 case OP_FLOAT:
4c4b4cd2 3420 case OP_VAR_VALUE:
74ea4be4 3421 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3422 *pos += 4;
3423 break;
14f9c5c9 3424
4c4b4cd2
PH
3425 case OP_TYPE:
3426 case OP_BOOL:
3427 case OP_LAST:
4c4b4cd2
PH
3428 case OP_INTERNALVAR:
3429 *pos += 3;
3430 break;
14f9c5c9 3431
4c4b4cd2
PH
3432 case UNOP_MEMVAL:
3433 *pos += 3;
3434 nargs = 1;
3435 break;
3436
67f3407f
DJ
3437 case OP_REGISTER:
3438 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3439 break;
3440
4c4b4cd2
PH
3441 case STRUCTOP_STRUCT:
3442 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3443 nargs = 1;
3444 break;
3445
4c4b4cd2 3446 case TERNOP_SLICE:
4c4b4cd2
PH
3447 *pos += 1;
3448 nargs = 3;
3449 break;
3450
52ce6436 3451 case OP_STRING:
14f9c5c9 3452 break;
4c4b4cd2
PH
3453
3454 default:
323e0a4a 3455 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3456 }
3457
8d749320 3458 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3459 for (i = 0; i < nargs; i += 1)
3460 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3461 argvec[i] = NULL;
e9d9f57e 3462 exp = expp->get ();
4c4b4cd2
PH
3463
3464 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3465 switch (op)
3466 {
3467 default:
3468 break;
3469
14f9c5c9 3470 case OP_VAR_VALUE:
4c4b4cd2 3471 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3472 {
54d343a2 3473 std::vector<struct block_symbol> candidates;
76a01679
JB
3474 int n_candidates;
3475
3476 n_candidates =
3477 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3478 (exp->elts[pc + 2].symbol),
3479 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3480 &candidates);
76a01679
JB
3481
3482 if (n_candidates > 1)
3483 {
3484 /* Types tend to get re-introduced locally, so if there
3485 are any local symbols that are not types, first filter
3486 out all types. */
3487 int j;
3488 for (j = 0; j < n_candidates; j += 1)
d12307c1 3489 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3490 {
3491 case LOC_REGISTER:
3492 case LOC_ARG:
3493 case LOC_REF_ARG:
76a01679
JB
3494 case LOC_REGPARM_ADDR:
3495 case LOC_LOCAL:
76a01679 3496 case LOC_COMPUTED:
76a01679
JB
3497 goto FoundNonType;
3498 default:
3499 break;
3500 }
3501 FoundNonType:
3502 if (j < n_candidates)
3503 {
3504 j = 0;
3505 while (j < n_candidates)
3506 {
d12307c1 3507 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3508 {
3509 candidates[j] = candidates[n_candidates - 1];
3510 n_candidates -= 1;
3511 }
3512 else
3513 j += 1;
3514 }
3515 }
3516 }
3517
3518 if (n_candidates == 0)
323e0a4a 3519 error (_("No definition found for %s"),
76a01679
JB
3520 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3521 else if (n_candidates == 1)
3522 i = 0;
3523 else if (deprocedure_p
54d343a2 3524 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3525 {
06d5cf63 3526 i = ada_resolve_function
54d343a2 3527 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3528 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3529 context_type);
76a01679 3530 if (i < 0)
323e0a4a 3531 error (_("Could not find a match for %s"),
76a01679
JB
3532 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3533 }
3534 else
3535 {
323e0a4a 3536 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3537 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3538 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3539 i = 0;
3540 }
3541
3542 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3543 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3544 innermost_block.update (candidates[i]);
76a01679
JB
3545 }
3546
3547 if (deprocedure_p
3548 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3549 == TYPE_CODE_FUNC))
3550 {
424da6cf 3551 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3552 exp->elts[pc + 2].symbol,
3553 exp->elts[pc + 1].block);
e9d9f57e 3554 exp = expp->get ();
76a01679 3555 }
14f9c5c9
AS
3556 break;
3557
3558 case OP_FUNCALL:
3559 {
4c4b4cd2 3560 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3561 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3562 {
54d343a2 3563 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3564 int n_candidates;
3565
3566 n_candidates =
76a01679
JB
3567 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3568 (exp->elts[pc + 5].symbol),
3569 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3570 &candidates);
ec6a20c2 3571
4c4b4cd2
PH
3572 if (n_candidates == 1)
3573 i = 0;
3574 else
3575 {
06d5cf63 3576 i = ada_resolve_function
54d343a2 3577 (candidates.data (), n_candidates,
06d5cf63
JB
3578 argvec, nargs,
3579 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3580 context_type);
4c4b4cd2 3581 if (i < 0)
323e0a4a 3582 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3583 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3584 }
3585
3586 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3587 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3588 innermost_block.update (candidates[i]);
4c4b4cd2 3589 }
14f9c5c9
AS
3590 }
3591 break;
3592 case BINOP_ADD:
3593 case BINOP_SUB:
3594 case BINOP_MUL:
3595 case BINOP_DIV:
3596 case BINOP_REM:
3597 case BINOP_MOD:
3598 case BINOP_CONCAT:
3599 case BINOP_BITWISE_AND:
3600 case BINOP_BITWISE_IOR:
3601 case BINOP_BITWISE_XOR:
3602 case BINOP_EQUAL:
3603 case BINOP_NOTEQUAL:
3604 case BINOP_LESS:
3605 case BINOP_GTR:
3606 case BINOP_LEQ:
3607 case BINOP_GEQ:
3608 case BINOP_EXP:
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3614 {
54d343a2 3615 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3616 int n_candidates;
3617
3618 n_candidates =
b5ec771e 3619 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3620 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3621 &candidates);
ec6a20c2 3622
54d343a2
TT
3623 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3624 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3625 if (i < 0)
3626 break;
3627
d12307c1
PMR
3628 replace_operator_with_call (expp, pc, nargs, 1,
3629 candidates[i].symbol,
3630 candidates[i].block);
e9d9f57e 3631 exp = expp->get ();
4c4b4cd2 3632 }
14f9c5c9 3633 break;
4c4b4cd2
PH
3634
3635 case OP_TYPE:
b3dbf008 3636 case OP_REGISTER:
4c4b4cd2 3637 return NULL;
14f9c5c9
AS
3638 }
3639
3640 *pos = pc;
ced9779b
JB
3641 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3642 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3643 exp->elts[pc + 1].objfile,
3644 exp->elts[pc + 2].msymbol);
3645 else
3646 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3647}
3648
3649/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3650 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3651 a non-pointer. */
14f9c5c9 3652/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3653 liberal. */
14f9c5c9
AS
3654
3655static int
4dc81987 3656ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3657{
61ee279c
PH
3658 ftype = ada_check_typedef (ftype);
3659 atype = ada_check_typedef (atype);
14f9c5c9
AS
3660
3661 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3662 ftype = TYPE_TARGET_TYPE (ftype);
3663 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3664 atype = TYPE_TARGET_TYPE (atype);
3665
d2e4a39e 3666 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3667 {
3668 default:
5b3d5b7d 3669 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3670 case TYPE_CODE_PTR:
3671 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3672 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3673 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3674 else
1265e4aa
JB
3675 return (may_deref
3676 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3677 case TYPE_CODE_INT:
3678 case TYPE_CODE_ENUM:
3679 case TYPE_CODE_RANGE:
3680 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3681 {
3682 case TYPE_CODE_INT:
3683 case TYPE_CODE_ENUM:
3684 case TYPE_CODE_RANGE:
3685 return 1;
3686 default:
3687 return 0;
3688 }
14f9c5c9
AS
3689
3690 case TYPE_CODE_ARRAY:
d2e4a39e 3691 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3692 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3693
3694 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3695 if (ada_is_array_descriptor_type (ftype))
3696 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3697 || ada_is_array_descriptor_type (atype));
14f9c5c9 3698 else
4c4b4cd2
PH
3699 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3700 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3701
3702 case TYPE_CODE_UNION:
3703 case TYPE_CODE_FLT:
3704 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3705 }
3706}
3707
3708/* Return non-zero if the formals of FUNC "sufficiently match" the
3709 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3710 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3711 argument function. */
14f9c5c9
AS
3712
3713static int
d2e4a39e 3714ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3715{
3716 int i;
d2e4a39e 3717 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3718
1265e4aa
JB
3719 if (SYMBOL_CLASS (func) == LOC_CONST
3720 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3721 return (n_actuals == 0);
3722 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3723 return 0;
3724
3725 if (TYPE_NFIELDS (func_type) != n_actuals)
3726 return 0;
3727
3728 for (i = 0; i < n_actuals; i += 1)
3729 {
4c4b4cd2 3730 if (actuals[i] == NULL)
76a01679
JB
3731 return 0;
3732 else
3733 {
5b4ee69b
MS
3734 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3735 i));
df407dfe 3736 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3737
76a01679
JB
3738 if (!ada_type_match (ftype, atype, 1))
3739 return 0;
3740 }
14f9c5c9
AS
3741 }
3742 return 1;
3743}
3744
3745/* False iff function type FUNC_TYPE definitely does not produce a value
3746 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3747 FUNC_TYPE is not a valid function type with a non-null return type
3748 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3749
3750static int
d2e4a39e 3751return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3752{
d2e4a39e 3753 struct type *return_type;
14f9c5c9
AS
3754
3755 if (func_type == NULL)
3756 return 1;
3757
4c4b4cd2 3758 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3759 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3760 else
18af8284 3761 return_type = get_base_type (func_type);
14f9c5c9
AS
3762 if (return_type == NULL)
3763 return 1;
3764
18af8284 3765 context_type = get_base_type (context_type);
14f9c5c9
AS
3766
3767 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3768 return context_type == NULL || return_type == context_type;
3769 else if (context_type == NULL)
3770 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3771 else
3772 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3773}
3774
3775
4c4b4cd2 3776/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3777 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3778 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3779 that returns that type, then eliminate matches that don't. If
3780 CONTEXT_TYPE is void and there is at least one match that does not
3781 return void, eliminate all matches that do.
3782
14f9c5c9
AS
3783 Asks the user if there is more than one match remaining. Returns -1
3784 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3785 solely for messages. May re-arrange and modify SYMS in
3786 the process; the index returned is for the modified vector. */
14f9c5c9 3787
4c4b4cd2 3788static int
d12307c1 3789ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3790 int nsyms, struct value **args, int nargs,
3791 const char *name, struct type *context_type)
14f9c5c9 3792{
30b15541 3793 int fallback;
14f9c5c9 3794 int k;
4c4b4cd2 3795 int m; /* Number of hits */
14f9c5c9 3796
d2e4a39e 3797 m = 0;
30b15541
UW
3798 /* In the first pass of the loop, we only accept functions matching
3799 context_type. If none are found, we add a second pass of the loop
3800 where every function is accepted. */
3801 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3802 {
3803 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3804 {
d12307c1 3805 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3806
d12307c1 3807 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3808 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3809 {
3810 syms[m] = syms[k];
3811 m += 1;
3812 }
3813 }
14f9c5c9
AS
3814 }
3815
dc5c8746
PMR
3816 /* If we got multiple matches, ask the user which one to use. Don't do this
3817 interactive thing during completion, though, as the purpose of the
3818 completion is providing a list of all possible matches. Prompting the
3819 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3820 if (m == 0)
3821 return -1;
dc5c8746 3822 else if (m > 1 && !parse_completion)
14f9c5c9 3823 {
323e0a4a 3824 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3825 user_select_syms (syms, m, 1);
14f9c5c9
AS
3826 return 0;
3827 }
3828 return 0;
3829}
3830
4c4b4cd2
PH
3831/* Returns true (non-zero) iff decoded name N0 should appear before N1
3832 in a listing of choices during disambiguation (see sort_choices, below).
3833 The idea is that overloadings of a subprogram name from the
3834 same package should sort in their source order. We settle for ordering
3835 such symbols by their trailing number (__N or $N). */
3836
14f9c5c9 3837static int
0d5cff50 3838encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3839{
3840 if (N1 == NULL)
3841 return 0;
3842 else if (N0 == NULL)
3843 return 1;
3844 else
3845 {
3846 int k0, k1;
5b4ee69b 3847
d2e4a39e 3848 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3849 ;
d2e4a39e 3850 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3851 ;
d2e4a39e 3852 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3853 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3854 {
3855 int n0, n1;
5b4ee69b 3856
4c4b4cd2
PH
3857 n0 = k0;
3858 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3859 n0 -= 1;
3860 n1 = k1;
3861 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3862 n1 -= 1;
3863 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3864 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3865 }
14f9c5c9
AS
3866 return (strcmp (N0, N1) < 0);
3867 }
3868}
d2e4a39e 3869
4c4b4cd2
PH
3870/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3871 encoded names. */
3872
d2e4a39e 3873static void
d12307c1 3874sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3875{
4c4b4cd2 3876 int i;
5b4ee69b 3877
d2e4a39e 3878 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3879 {
d12307c1 3880 struct block_symbol sym = syms[i];
14f9c5c9
AS
3881 int j;
3882
d2e4a39e 3883 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3884 {
d12307c1
PMR
3885 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3886 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3887 break;
3888 syms[j + 1] = syms[j];
3889 }
d2e4a39e 3890 syms[j + 1] = sym;
14f9c5c9
AS
3891 }
3892}
3893
d72413e6
PMR
3894/* Whether GDB should display formals and return types for functions in the
3895 overloads selection menu. */
3896static int print_signatures = 1;
3897
3898/* Print the signature for SYM on STREAM according to the FLAGS options. For
3899 all but functions, the signature is just the name of the symbol. For
3900 functions, this is the name of the function, the list of types for formals
3901 and the return type (if any). */
3902
3903static void
3904ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3905 const struct type_print_options *flags)
3906{
3907 struct type *type = SYMBOL_TYPE (sym);
3908
3909 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3910 if (!print_signatures
3911 || type == NULL
3912 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3913 return;
3914
3915 if (TYPE_NFIELDS (type) > 0)
3916 {
3917 int i;
3918
3919 fprintf_filtered (stream, " (");
3920 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3921 {
3922 if (i > 0)
3923 fprintf_filtered (stream, "; ");
3924 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3925 flags);
3926 }
3927 fprintf_filtered (stream, ")");
3928 }
3929 if (TYPE_TARGET_TYPE (type) != NULL
3930 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3931 {
3932 fprintf_filtered (stream, " return ");
3933 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3934 }
3935}
3936
4c4b4cd2
PH
3937/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3938 by asking the user (if necessary), returning the number selected,
3939 and setting the first elements of SYMS items. Error if no symbols
3940 selected. */
14f9c5c9
AS
3941
3942/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3943 to be re-integrated one of these days. */
14f9c5c9
AS
3944
3945int
d12307c1 3946user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3947{
3948 int i;
8d749320 3949 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3950 int n_chosen;
3951 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3952 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3953
3954 if (max_results < 1)
323e0a4a 3955 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3956 if (nsyms <= 1)
3957 return nsyms;
3958
717d2f5a
JB
3959 if (select_mode == multiple_symbols_cancel)
3960 error (_("\
3961canceled because the command is ambiguous\n\
3962See set/show multiple-symbol."));
3963
3964 /* If select_mode is "all", then return all possible symbols.
3965 Only do that if more than one symbol can be selected, of course.
3966 Otherwise, display the menu as usual. */
3967 if (select_mode == multiple_symbols_all && max_results > 1)
3968 return nsyms;
3969
323e0a4a 3970 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3971 if (max_results > 1)
323e0a4a 3972 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3973
4c4b4cd2 3974 sort_choices (syms, nsyms);
14f9c5c9
AS
3975
3976 for (i = 0; i < nsyms; i += 1)
3977 {
d12307c1 3978 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3979 continue;
3980
d12307c1 3981 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3982 {
76a01679 3983 struct symtab_and_line sal =
d12307c1 3984 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3985
d72413e6
PMR
3986 printf_unfiltered ("[%d] ", i + first_choice);
3987 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3988 &type_print_raw_options);
323e0a4a 3989 if (sal.symtab == NULL)
d72413e6 3990 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3991 sal.line);
3992 else
d72413e6 3993 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3994 symtab_to_filename_for_display (sal.symtab),
3995 sal.line);
4c4b4cd2
PH
3996 continue;
3997 }
d2e4a39e 3998 else
4c4b4cd2
PH
3999 {
4000 int is_enumeral =
d12307c1
PMR
4001 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
4002 && SYMBOL_TYPE (syms[i].symbol) != NULL
4003 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
4004 struct symtab *symtab = NULL;
4005
d12307c1
PMR
4006 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
4007 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 4008
d12307c1 4009 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
4010 {
4011 printf_unfiltered ("[%d] ", i + first_choice);
4012 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4013 &type_print_raw_options);
4014 printf_unfiltered (_(" at %s:%d\n"),
4015 symtab_to_filename_for_display (symtab),
4016 SYMBOL_LINE (syms[i].symbol));
4017 }
76a01679 4018 else if (is_enumeral
d12307c1 4019 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 4020 {
a3f17187 4021 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 4022 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 4023 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 4024 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 4025 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 4026 }
d72413e6
PMR
4027 else
4028 {
4029 printf_unfiltered ("[%d] ", i + first_choice);
4030 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4031 &type_print_raw_options);
4032
4033 if (symtab != NULL)
4034 printf_unfiltered (is_enumeral
4035 ? _(" in %s (enumeral)\n")
4036 : _(" at %s:?\n"),
4037 symtab_to_filename_for_display (symtab));
4038 else
4039 printf_unfiltered (is_enumeral
4040 ? _(" (enumeral)\n")
4041 : _(" at ?\n"));
4042 }
4c4b4cd2 4043 }
14f9c5c9 4044 }
d2e4a39e 4045
14f9c5c9 4046 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4047 "overload-choice");
14f9c5c9
AS
4048
4049 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4050 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4051
4052 return n_chosen;
4053}
4054
4055/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4056 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4057 order in CHOICES[0 .. N-1], and return N.
4058
4059 The user types choices as a sequence of numbers on one line
4060 separated by blanks, encoding them as follows:
4061
4c4b4cd2 4062 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4063 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4064 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4065
4c4b4cd2 4066 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4067
4068 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4069 prompts (for use with the -f switch). */
14f9c5c9
AS
4070
4071int
d2e4a39e 4072get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4073 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4074{
d2e4a39e 4075 char *args;
a121b7c1 4076 const char *prompt;
14f9c5c9
AS
4077 int n_chosen;
4078 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4079
14f9c5c9
AS
4080 prompt = getenv ("PS2");
4081 if (prompt == NULL)
0bcd0149 4082 prompt = "> ";
14f9c5c9 4083
89fbedf3 4084 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4085
14f9c5c9 4086 if (args == NULL)
323e0a4a 4087 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4088
4089 n_chosen = 0;
76a01679 4090
4c4b4cd2
PH
4091 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4092 order, as given in args. Choices are validated. */
14f9c5c9
AS
4093 while (1)
4094 {
d2e4a39e 4095 char *args2;
14f9c5c9
AS
4096 int choice, j;
4097
0fcd72ba 4098 args = skip_spaces (args);
14f9c5c9 4099 if (*args == '\0' && n_chosen == 0)
323e0a4a 4100 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4101 else if (*args == '\0')
4c4b4cd2 4102 break;
14f9c5c9
AS
4103
4104 choice = strtol (args, &args2, 10);
d2e4a39e 4105 if (args == args2 || choice < 0
4c4b4cd2 4106 || choice > n_choices + first_choice - 1)
323e0a4a 4107 error (_("Argument must be choice number"));
14f9c5c9
AS
4108 args = args2;
4109
d2e4a39e 4110 if (choice == 0)
323e0a4a 4111 error (_("cancelled"));
14f9c5c9
AS
4112
4113 if (choice < first_choice)
4c4b4cd2
PH
4114 {
4115 n_chosen = n_choices;
4116 for (j = 0; j < n_choices; j += 1)
4117 choices[j] = j;
4118 break;
4119 }
14f9c5c9
AS
4120 choice -= first_choice;
4121
d2e4a39e 4122 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4123 {
4124 }
14f9c5c9
AS
4125
4126 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4127 {
4128 int k;
5b4ee69b 4129
4c4b4cd2
PH
4130 for (k = n_chosen - 1; k > j; k -= 1)
4131 choices[k + 1] = choices[k];
4132 choices[j + 1] = choice;
4133 n_chosen += 1;
4134 }
14f9c5c9
AS
4135 }
4136
4137 if (n_chosen > max_results)
323e0a4a 4138 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4139
14f9c5c9
AS
4140 return n_chosen;
4141}
4142
4c4b4cd2
PH
4143/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4144 on the function identified by SYM and BLOCK, and taking NARGS
4145 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4146
4147static void
e9d9f57e 4148replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4149 int oplen, struct symbol *sym,
270140bd 4150 const struct block *block)
14f9c5c9
AS
4151{
4152 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4153 symbol, -oplen for operator being replaced). */
d2e4a39e 4154 struct expression *newexp = (struct expression *)
8c1a34e7 4155 xzalloc (sizeof (struct expression)
4c4b4cd2 4156 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4157 struct expression *exp = expp->get ();
14f9c5c9
AS
4158
4159 newexp->nelts = exp->nelts + 7 - oplen;
4160 newexp->language_defn = exp->language_defn;
3489610d 4161 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4162 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4163 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4164 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4165
4166 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4167 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4168
4169 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4170 newexp->elts[pc + 4].block = block;
4171 newexp->elts[pc + 5].symbol = sym;
4172
e9d9f57e 4173 expp->reset (newexp);
d2e4a39e 4174}
14f9c5c9
AS
4175
4176/* Type-class predicates */
4177
4c4b4cd2
PH
4178/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4179 or FLOAT). */
14f9c5c9
AS
4180
4181static int
d2e4a39e 4182numeric_type_p (struct type *type)
14f9c5c9
AS
4183{
4184 if (type == NULL)
4185 return 0;
d2e4a39e
AS
4186 else
4187 {
4188 switch (TYPE_CODE (type))
4c4b4cd2
PH
4189 {
4190 case TYPE_CODE_INT:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 case TYPE_CODE_RANGE:
4194 return (type == TYPE_TARGET_TYPE (type)
4195 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4196 default:
4197 return 0;
4198 }
d2e4a39e 4199 }
14f9c5c9
AS
4200}
4201
4c4b4cd2 4202/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4203
4204static int
d2e4a39e 4205integer_type_p (struct type *type)
14f9c5c9
AS
4206{
4207 if (type == NULL)
4208 return 0;
d2e4a39e
AS
4209 else
4210 {
4211 switch (TYPE_CODE (type))
4c4b4cd2
PH
4212 {
4213 case TYPE_CODE_INT:
4214 return 1;
4215 case TYPE_CODE_RANGE:
4216 return (type == TYPE_TARGET_TYPE (type)
4217 || integer_type_p (TYPE_TARGET_TYPE (type)));
4218 default:
4219 return 0;
4220 }
d2e4a39e 4221 }
14f9c5c9
AS
4222}
4223
4c4b4cd2 4224/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4225
4226static int
d2e4a39e 4227scalar_type_p (struct type *type)
14f9c5c9
AS
4228{
4229 if (type == NULL)
4230 return 0;
d2e4a39e
AS
4231 else
4232 {
4233 switch (TYPE_CODE (type))
4c4b4cd2
PH
4234 {
4235 case TYPE_CODE_INT:
4236 case TYPE_CODE_RANGE:
4237 case TYPE_CODE_ENUM:
4238 case TYPE_CODE_FLT:
4239 return 1;
4240 default:
4241 return 0;
4242 }
d2e4a39e 4243 }
14f9c5c9
AS
4244}
4245
4c4b4cd2 4246/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4247
4248static int
d2e4a39e 4249discrete_type_p (struct type *type)
14f9c5c9
AS
4250{
4251 if (type == NULL)
4252 return 0;
d2e4a39e
AS
4253 else
4254 {
4255 switch (TYPE_CODE (type))
4c4b4cd2
PH
4256 {
4257 case TYPE_CODE_INT:
4258 case TYPE_CODE_RANGE:
4259 case TYPE_CODE_ENUM:
872f0337 4260 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4261 return 1;
4262 default:
4263 return 0;
4264 }
d2e4a39e 4265 }
14f9c5c9
AS
4266}
4267
4c4b4cd2
PH
4268/* Returns non-zero if OP with operands in the vector ARGS could be
4269 a user-defined function. Errs on the side of pre-defined operators
4270 (i.e., result 0). */
14f9c5c9
AS
4271
4272static int
d2e4a39e 4273possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4274{
76a01679 4275 struct type *type0 =
df407dfe 4276 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4277 struct type *type1 =
df407dfe 4278 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4279
4c4b4cd2
PH
4280 if (type0 == NULL)
4281 return 0;
4282
14f9c5c9
AS
4283 switch (op)
4284 {
4285 default:
4286 return 0;
4287
4288 case BINOP_ADD:
4289 case BINOP_SUB:
4290 case BINOP_MUL:
4291 case BINOP_DIV:
d2e4a39e 4292 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4293
4294 case BINOP_REM:
4295 case BINOP_MOD:
4296 case BINOP_BITWISE_AND:
4297 case BINOP_BITWISE_IOR:
4298 case BINOP_BITWISE_XOR:
d2e4a39e 4299 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4300
4301 case BINOP_EQUAL:
4302 case BINOP_NOTEQUAL:
4303 case BINOP_LESS:
4304 case BINOP_GTR:
4305 case BINOP_LEQ:
4306 case BINOP_GEQ:
d2e4a39e 4307 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4308
4309 case BINOP_CONCAT:
ee90b9ab 4310 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4311
4312 case BINOP_EXP:
d2e4a39e 4313 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4314
4315 case UNOP_NEG:
4316 case UNOP_PLUS:
4317 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4318 case UNOP_ABS:
4319 return (!numeric_type_p (type0));
14f9c5c9
AS
4320
4321 }
4322}
4323\f
4c4b4cd2 4324 /* Renaming */
14f9c5c9 4325
aeb5907d
JB
4326/* NOTES:
4327
4328 1. In the following, we assume that a renaming type's name may
4329 have an ___XD suffix. It would be nice if this went away at some
4330 point.
4331 2. We handle both the (old) purely type-based representation of
4332 renamings and the (new) variable-based encoding. At some point,
4333 it is devoutly to be hoped that the former goes away
4334 (FIXME: hilfinger-2007-07-09).
4335 3. Subprogram renamings are not implemented, although the XRS
4336 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4337
4338/* If SYM encodes a renaming,
4339
4340 <renaming> renames <renamed entity>,
4341
4342 sets *LEN to the length of the renamed entity's name,
4343 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4344 the string describing the subcomponent selected from the renamed
0963b4bd 4345 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4346 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4347 are undefined). Otherwise, returns a value indicating the category
4348 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4349 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4350 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4351 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4352 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4353 may be NULL, in which case they are not assigned.
4354
4355 [Currently, however, GCC does not generate subprogram renamings.] */
4356
4357enum ada_renaming_category
4358ada_parse_renaming (struct symbol *sym,
4359 const char **renamed_entity, int *len,
4360 const char **renaming_expr)
4361{
4362 enum ada_renaming_category kind;
4363 const char *info;
4364 const char *suffix;
4365
4366 if (sym == NULL)
4367 return ADA_NOT_RENAMING;
4368 switch (SYMBOL_CLASS (sym))
14f9c5c9 4369 {
aeb5907d
JB
4370 default:
4371 return ADA_NOT_RENAMING;
4372 case LOC_TYPEDEF:
4373 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4374 renamed_entity, len, renaming_expr);
4375 case LOC_LOCAL:
4376 case LOC_STATIC:
4377 case LOC_COMPUTED:
4378 case LOC_OPTIMIZED_OUT:
4379 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4380 if (info == NULL)
4381 return ADA_NOT_RENAMING;
4382 switch (info[5])
4383 {
4384 case '_':
4385 kind = ADA_OBJECT_RENAMING;
4386 info += 6;
4387 break;
4388 case 'E':
4389 kind = ADA_EXCEPTION_RENAMING;
4390 info += 7;
4391 break;
4392 case 'P':
4393 kind = ADA_PACKAGE_RENAMING;
4394 info += 7;
4395 break;
4396 case 'S':
4397 kind = ADA_SUBPROGRAM_RENAMING;
4398 info += 7;
4399 break;
4400 default:
4401 return ADA_NOT_RENAMING;
4402 }
14f9c5c9 4403 }
4c4b4cd2 4404
aeb5907d
JB
4405 if (renamed_entity != NULL)
4406 *renamed_entity = info;
4407 suffix = strstr (info, "___XE");
4408 if (suffix == NULL || suffix == info)
4409 return ADA_NOT_RENAMING;
4410 if (len != NULL)
4411 *len = strlen (info) - strlen (suffix);
4412 suffix += 5;
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix;
4415 return kind;
4416}
4417
4418/* Assuming TYPE encodes a renaming according to the old encoding in
4419 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4420 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4421 ADA_NOT_RENAMING otherwise. */
4422static enum ada_renaming_category
4423parse_old_style_renaming (struct type *type,
4424 const char **renamed_entity, int *len,
4425 const char **renaming_expr)
4426{
4427 enum ada_renaming_category kind;
4428 const char *name;
4429 const char *info;
4430 const char *suffix;
14f9c5c9 4431
aeb5907d
JB
4432 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4433 || TYPE_NFIELDS (type) != 1)
4434 return ADA_NOT_RENAMING;
14f9c5c9 4435
a737d952 4436 name = TYPE_NAME (type);
aeb5907d
JB
4437 if (name == NULL)
4438 return ADA_NOT_RENAMING;
4439
4440 name = strstr (name, "___XR");
4441 if (name == NULL)
4442 return ADA_NOT_RENAMING;
4443 switch (name[5])
4444 {
4445 case '\0':
4446 case '_':
4447 kind = ADA_OBJECT_RENAMING;
4448 break;
4449 case 'E':
4450 kind = ADA_EXCEPTION_RENAMING;
4451 break;
4452 case 'P':
4453 kind = ADA_PACKAGE_RENAMING;
4454 break;
4455 case 'S':
4456 kind = ADA_SUBPROGRAM_RENAMING;
4457 break;
4458 default:
4459 return ADA_NOT_RENAMING;
4460 }
14f9c5c9 4461
aeb5907d
JB
4462 info = TYPE_FIELD_NAME (type, 0);
4463 if (info == NULL)
4464 return ADA_NOT_RENAMING;
4465 if (renamed_entity != NULL)
4466 *renamed_entity = info;
4467 suffix = strstr (info, "___XE");
4468 if (renaming_expr != NULL)
4469 *renaming_expr = suffix + 5;
4470 if (suffix == NULL || suffix == info)
4471 return ADA_NOT_RENAMING;
4472 if (len != NULL)
4473 *len = suffix - info;
4474 return kind;
a5ee536b
JB
4475}
4476
4477/* Compute the value of the given RENAMING_SYM, which is expected to
4478 be a symbol encoding a renaming expression. BLOCK is the block
4479 used to evaluate the renaming. */
52ce6436 4480
a5ee536b
JB
4481static struct value *
4482ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4483 const struct block *block)
a5ee536b 4484{
bbc13ae3 4485 const char *sym_name;
a5ee536b 4486
bbc13ae3 4487 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4488 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4489 return evaluate_expression (expr.get ());
a5ee536b 4490}
14f9c5c9 4491\f
d2e4a39e 4492
4c4b4cd2 4493 /* Evaluation: Function Calls */
14f9c5c9 4494
4c4b4cd2 4495/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4496 lvalues, and otherwise has the side-effect of allocating memory
4497 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4498
d2e4a39e 4499static struct value *
40bc484c 4500ensure_lval (struct value *val)
14f9c5c9 4501{
40bc484c
JB
4502 if (VALUE_LVAL (val) == not_lval
4503 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4504 {
df407dfe 4505 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4506 const CORE_ADDR addr =
4507 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4508
a84a8a0d 4509 VALUE_LVAL (val) = lval_memory;
1a088441 4510 set_value_address (val, addr);
40bc484c 4511 write_memory (addr, value_contents (val), len);
c3e5cd34 4512 }
14f9c5c9
AS
4513
4514 return val;
4515}
4516
4517/* Return the value ACTUAL, converted to be an appropriate value for a
4518 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4519 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4520 values not residing in memory, updating it as needed. */
14f9c5c9 4521
a93c0eb6 4522struct value *
40bc484c 4523ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4524{
df407dfe 4525 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4526 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4527 struct type *formal_target =
4528 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4529 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4530 struct type *actual_target =
4531 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4532 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4533
4c4b4cd2 4534 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4535 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4536 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4537 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4538 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4539 {
a84a8a0d 4540 struct value *result;
5b4ee69b 4541
14f9c5c9 4542 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4543 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4544 result = desc_data (actual);
cb923fcc 4545 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4546 {
4547 if (VALUE_LVAL (actual) != lval_memory)
4548 {
4549 struct value *val;
5b4ee69b 4550
df407dfe 4551 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4552 val = allocate_value (actual_type);
990a07ab 4553 memcpy ((char *) value_contents_raw (val),
0fd88904 4554 (char *) value_contents (actual),
4c4b4cd2 4555 TYPE_LENGTH (actual_type));
40bc484c 4556 actual = ensure_lval (val);
4c4b4cd2 4557 }
a84a8a0d 4558 result = value_addr (actual);
4c4b4cd2 4559 }
a84a8a0d
JB
4560 else
4561 return actual;
b1af9e97 4562 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4563 }
4564 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4565 return ada_value_ind (actual);
8344af1e
JB
4566 else if (ada_is_aligner_type (formal_type))
4567 {
4568 /* We need to turn this parameter into an aligner type
4569 as well. */
4570 struct value *aligner = allocate_value (formal_type);
4571 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4572
4573 value_assign_to_component (aligner, component, actual);
4574 return aligner;
4575 }
14f9c5c9
AS
4576
4577 return actual;
4578}
4579
438c98a1
JB
4580/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4581 type TYPE. This is usually an inefficient no-op except on some targets
4582 (such as AVR) where the representation of a pointer and an address
4583 differs. */
4584
4585static CORE_ADDR
4586value_pointer (struct value *value, struct type *type)
4587{
4588 struct gdbarch *gdbarch = get_type_arch (type);
4589 unsigned len = TYPE_LENGTH (type);
224c3ddb 4590 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4591 CORE_ADDR addr;
4592
4593 addr = value_address (value);
4594 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4595 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4596 return addr;
4597}
4598
14f9c5c9 4599
4c4b4cd2
PH
4600/* Push a descriptor of type TYPE for array value ARR on the stack at
4601 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4602 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4603 to-descriptor type rather than a descriptor type), a struct value *
4604 representing a pointer to this descriptor. */
14f9c5c9 4605
d2e4a39e 4606static struct value *
40bc484c 4607make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4608{
d2e4a39e
AS
4609 struct type *bounds_type = desc_bounds_type (type);
4610 struct type *desc_type = desc_base_type (type);
4611 struct value *descriptor = allocate_value (desc_type);
4612 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4613 int i;
d2e4a39e 4614
0963b4bd
MS
4615 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4616 i > 0; i -= 1)
14f9c5c9 4617 {
19f220c3
JK
4618 modify_field (value_type (bounds), value_contents_writeable (bounds),
4619 ada_array_bound (arr, i, 0),
4620 desc_bound_bitpos (bounds_type, i, 0),
4621 desc_bound_bitsize (bounds_type, i, 0));
4622 modify_field (value_type (bounds), value_contents_writeable (bounds),
4623 ada_array_bound (arr, i, 1),
4624 desc_bound_bitpos (bounds_type, i, 1),
4625 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4626 }
d2e4a39e 4627
40bc484c 4628 bounds = ensure_lval (bounds);
d2e4a39e 4629
19f220c3
JK
4630 modify_field (value_type (descriptor),
4631 value_contents_writeable (descriptor),
4632 value_pointer (ensure_lval (arr),
4633 TYPE_FIELD_TYPE (desc_type, 0)),
4634 fat_pntr_data_bitpos (desc_type),
4635 fat_pntr_data_bitsize (desc_type));
4636
4637 modify_field (value_type (descriptor),
4638 value_contents_writeable (descriptor),
4639 value_pointer (bounds,
4640 TYPE_FIELD_TYPE (desc_type, 1)),
4641 fat_pntr_bounds_bitpos (desc_type),
4642 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4643
40bc484c 4644 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4645
4646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4647 return value_addr (descriptor);
4648 else
4649 return descriptor;
4650}
14f9c5c9 4651\f
3d9434b5
JB
4652 /* Symbol Cache Module */
4653
3d9434b5 4654/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4655 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4656 on the type of entity being printed, the cache can make it as much
4657 as an order of magnitude faster than without it.
4658
4659 The descriptive type DWARF extension has significantly reduced
4660 the need for this cache, at least when DWARF is being used. However,
4661 even in this case, some expensive name-based symbol searches are still
4662 sometimes necessary - to find an XVZ variable, mostly. */
4663
ee01b665 4664/* Initialize the contents of SYM_CACHE. */
3d9434b5 4665
ee01b665
JB
4666static void
4667ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4668{
4669 obstack_init (&sym_cache->cache_space);
4670 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4671}
3d9434b5 4672
ee01b665
JB
4673/* Free the memory used by SYM_CACHE. */
4674
4675static void
4676ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4677{
ee01b665
JB
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 xfree (sym_cache);
4680}
3d9434b5 4681
ee01b665
JB
4682/* Return the symbol cache associated to the given program space PSPACE.
4683 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4684
ee01b665
JB
4685static struct ada_symbol_cache *
4686ada_get_symbol_cache (struct program_space *pspace)
4687{
4688 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4689
66c168ae 4690 if (pspace_data->sym_cache == NULL)
ee01b665 4691 {
66c168ae
JB
4692 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4693 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4694 }
4695
66c168ae 4696 return pspace_data->sym_cache;
ee01b665 4697}
3d9434b5
JB
4698
4699/* Clear all entries from the symbol cache. */
4700
4701static void
4702ada_clear_symbol_cache (void)
4703{
ee01b665
JB
4704 struct ada_symbol_cache *sym_cache
4705 = ada_get_symbol_cache (current_program_space);
4706
4707 obstack_free (&sym_cache->cache_space, NULL);
4708 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4709}
4710
fe978cb0 4711/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4712 Return it if found, or NULL otherwise. */
4713
4714static struct cache_entry **
fe978cb0 4715find_entry (const char *name, domain_enum domain)
3d9434b5 4716{
ee01b665
JB
4717 struct ada_symbol_cache *sym_cache
4718 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4719 int h = msymbol_hash (name) % HASH_SIZE;
4720 struct cache_entry **e;
4721
ee01b665 4722 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4723 {
fe978cb0 4724 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4725 return e;
4726 }
4727 return NULL;
4728}
4729
fe978cb0 4730/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4731 Return 1 if found, 0 otherwise.
4732
4733 If an entry was found and SYM is not NULL, set *SYM to the entry's
4734 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4735
96d887e8 4736static int
fe978cb0 4737lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4738 struct symbol **sym, const struct block **block)
96d887e8 4739{
fe978cb0 4740 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4741
4742 if (e == NULL)
4743 return 0;
4744 if (sym != NULL)
4745 *sym = (*e)->sym;
4746 if (block != NULL)
4747 *block = (*e)->block;
4748 return 1;
96d887e8
PH
4749}
4750
3d9434b5 4751/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4752 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4753
96d887e8 4754static void
fe978cb0 4755cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4756 const struct block *block)
96d887e8 4757{
ee01b665
JB
4758 struct ada_symbol_cache *sym_cache
4759 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4760 int h;
4761 char *copy;
4762 struct cache_entry *e;
4763
1994afbf
DE
4764 /* Symbols for builtin types don't have a block.
4765 For now don't cache such symbols. */
4766 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4767 return;
4768
3d9434b5
JB
4769 /* If the symbol is a local symbol, then do not cache it, as a search
4770 for that symbol depends on the context. To determine whether
4771 the symbol is local or not, we check the block where we found it
4772 against the global and static blocks of its associated symtab. */
4773 if (sym
08be3fe3 4774 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4775 GLOBAL_BLOCK) != block
08be3fe3 4776 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4777 STATIC_BLOCK) != block)
3d9434b5
JB
4778 return;
4779
4780 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4781 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4782 e->next = sym_cache->root[h];
4783 sym_cache->root[h] = e;
224c3ddb
SM
4784 e->name = copy
4785 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4786 strcpy (copy, name);
4787 e->sym = sym;
fe978cb0 4788 e->domain = domain;
3d9434b5 4789 e->block = block;
96d887e8 4790}
4c4b4cd2
PH
4791\f
4792 /* Symbol Lookup */
4793
b5ec771e
PA
4794/* Return the symbol name match type that should be used used when
4795 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4796
4797 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4798 for Ada lookups. */
c0431670 4799
b5ec771e
PA
4800static symbol_name_match_type
4801name_match_type_from_name (const char *lookup_name)
c0431670 4802{
b5ec771e
PA
4803 return (strstr (lookup_name, "__") == NULL
4804 ? symbol_name_match_type::WILD
4805 : symbol_name_match_type::FULL);
c0431670
JB
4806}
4807
4c4b4cd2
PH
4808/* Return the result of a standard (literal, C-like) lookup of NAME in
4809 given DOMAIN, visible from lexical block BLOCK. */
4810
4811static struct symbol *
4812standard_lookup (const char *name, const struct block *block,
4813 domain_enum domain)
4814{
acbd605d 4815 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4816 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4817
d12307c1
PMR
4818 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4819 return sym.symbol;
2570f2b7 4820 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4821 cache_symbol (name, domain, sym.symbol, sym.block);
4822 return sym.symbol;
4c4b4cd2
PH
4823}
4824
4825
4826/* Non-zero iff there is at least one non-function/non-enumeral symbol
4827 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4828 since they contend in overloading in the same way. */
4829static int
d12307c1 4830is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4831{
4832 int i;
4833
4834 for (i = 0; i < n; i += 1)
d12307c1
PMR
4835 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4836 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4837 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4838 return 1;
4839
4840 return 0;
4841}
4842
4843/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4844 struct types. Otherwise, they may not. */
14f9c5c9
AS
4845
4846static int
d2e4a39e 4847equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4848{
d2e4a39e 4849 if (type0 == type1)
14f9c5c9 4850 return 1;
d2e4a39e 4851 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4852 || TYPE_CODE (type0) != TYPE_CODE (type1))
4853 return 0;
d2e4a39e 4854 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4855 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4856 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4857 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4858 return 1;
d2e4a39e 4859
14f9c5c9
AS
4860 return 0;
4861}
4862
4863/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4864 no more defined than that of SYM1. */
14f9c5c9
AS
4865
4866static int
d2e4a39e 4867lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4868{
4869 if (sym0 == sym1)
4870 return 1;
176620f1 4871 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4872 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4873 return 0;
4874
d2e4a39e 4875 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4876 {
4877 case LOC_UNDEF:
4878 return 1;
4879 case LOC_TYPEDEF:
4880 {
4c4b4cd2
PH
4881 struct type *type0 = SYMBOL_TYPE (sym0);
4882 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4883 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4884 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4885 int len0 = strlen (name0);
5b4ee69b 4886
4c4b4cd2
PH
4887 return
4888 TYPE_CODE (type0) == TYPE_CODE (type1)
4889 && (equiv_types (type0, type1)
4890 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4891 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4892 }
4893 case LOC_CONST:
4894 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4895 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4896 default:
4897 return 0;
14f9c5c9
AS
4898 }
4899}
4900
d12307c1 4901/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4902 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4903
4904static void
76a01679
JB
4905add_defn_to_vec (struct obstack *obstackp,
4906 struct symbol *sym,
f0c5f9b2 4907 const struct block *block)
14f9c5c9
AS
4908{
4909 int i;
d12307c1 4910 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4911
529cad9c
PH
4912 /* Do not try to complete stub types, as the debugger is probably
4913 already scanning all symbols matching a certain name at the
4914 time when this function is called. Trying to replace the stub
4915 type by its associated full type will cause us to restart a scan
4916 which may lead to an infinite recursion. Instead, the client
4917 collecting the matching symbols will end up collecting several
4918 matches, with at least one of them complete. It can then filter
4919 out the stub ones if needed. */
4920
4c4b4cd2
PH
4921 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4922 {
d12307c1 4923 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4924 return;
d12307c1 4925 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4926 {
d12307c1 4927 prevDefns[i].symbol = sym;
4c4b4cd2 4928 prevDefns[i].block = block;
4c4b4cd2 4929 return;
76a01679 4930 }
4c4b4cd2
PH
4931 }
4932
4933 {
d12307c1 4934 struct block_symbol info;
4c4b4cd2 4935
d12307c1 4936 info.symbol = sym;
4c4b4cd2 4937 info.block = block;
d12307c1 4938 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4939 }
4940}
4941
d12307c1
PMR
4942/* Number of block_symbol structures currently collected in current vector in
4943 OBSTACKP. */
4c4b4cd2 4944
76a01679
JB
4945static int
4946num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4947{
d12307c1 4948 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4949}
4950
d12307c1
PMR
4951/* Vector of block_symbol structures currently collected in current vector in
4952 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4953
d12307c1 4954static struct block_symbol *
4c4b4cd2
PH
4955defns_collected (struct obstack *obstackp, int finish)
4956{
4957 if (finish)
224c3ddb 4958 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4959 else
d12307c1 4960 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4961}
4962
7c7b6655
TT
4963/* Return a bound minimal symbol matching NAME according to Ada
4964 decoding rules. Returns an invalid symbol if there is no such
4965 minimal symbol. Names prefixed with "standard__" are handled
4966 specially: "standard__" is first stripped off, and only static and
4967 global symbols are searched. */
4c4b4cd2 4968
7c7b6655 4969struct bound_minimal_symbol
96d887e8 4970ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4971{
7c7b6655 4972 struct bound_minimal_symbol result;
4c4b4cd2 4973 struct objfile *objfile;
96d887e8 4974 struct minimal_symbol *msymbol;
4c4b4cd2 4975
7c7b6655
TT
4976 memset (&result, 0, sizeof (result));
4977
b5ec771e
PA
4978 symbol_name_match_type match_type = name_match_type_from_name (name);
4979 lookup_name_info lookup_name (name, match_type);
4980
4981 symbol_name_matcher_ftype *match_name
4982 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4983
96d887e8
PH
4984 ALL_MSYMBOLS (objfile, msymbol)
4985 {
b5ec771e 4986 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4987 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4988 {
4989 result.minsym = msymbol;
4990 result.objfile = objfile;
4991 break;
4992 }
96d887e8 4993 }
4c4b4cd2 4994
7c7b6655 4995 return result;
96d887e8 4996}
4c4b4cd2 4997
96d887e8
PH
4998/* For all subprograms that statically enclose the subprogram of the
4999 selected frame, add symbols matching identifier NAME in DOMAIN
5000 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
5001 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
5002 with a wildcard prefix. */
4c4b4cd2 5003
96d887e8
PH
5004static void
5005add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
5006 const lookup_name_info &lookup_name,
5007 domain_enum domain)
96d887e8 5008{
96d887e8 5009}
14f9c5c9 5010
96d887e8
PH
5011/* True if TYPE is definitely an artificial type supplied to a symbol
5012 for which no debugging information was given in the symbol file. */
14f9c5c9 5013
96d887e8
PH
5014static int
5015is_nondebugging_type (struct type *type)
5016{
0d5cff50 5017 const char *name = ada_type_name (type);
5b4ee69b 5018
96d887e8
PH
5019 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5020}
4c4b4cd2 5021
8f17729f
JB
5022/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5023 that are deemed "identical" for practical purposes.
5024
5025 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5026 types and that their number of enumerals is identical (in other
5027 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5028
5029static int
5030ada_identical_enum_types_p (struct type *type1, struct type *type2)
5031{
5032 int i;
5033
5034 /* The heuristic we use here is fairly conservative. We consider
5035 that 2 enumerate types are identical if they have the same
5036 number of enumerals and that all enumerals have the same
5037 underlying value and name. */
5038
5039 /* All enums in the type should have an identical underlying value. */
5040 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5041 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5042 return 0;
5043
5044 /* All enumerals should also have the same name (modulo any numerical
5045 suffix). */
5046 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5047 {
0d5cff50
DE
5048 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5049 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5050 int len_1 = strlen (name_1);
5051 int len_2 = strlen (name_2);
5052
5053 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5054 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5055 if (len_1 != len_2
5056 || strncmp (TYPE_FIELD_NAME (type1, i),
5057 TYPE_FIELD_NAME (type2, i),
5058 len_1) != 0)
5059 return 0;
5060 }
5061
5062 return 1;
5063}
5064
5065/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5066 that are deemed "identical" for practical purposes. Sometimes,
5067 enumerals are not strictly identical, but their types are so similar
5068 that they can be considered identical.
5069
5070 For instance, consider the following code:
5071
5072 type Color is (Black, Red, Green, Blue, White);
5073 type RGB_Color is new Color range Red .. Blue;
5074
5075 Type RGB_Color is a subrange of an implicit type which is a copy
5076 of type Color. If we call that implicit type RGB_ColorB ("B" is
5077 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5078 As a result, when an expression references any of the enumeral
5079 by name (Eg. "print green"), the expression is technically
5080 ambiguous and the user should be asked to disambiguate. But
5081 doing so would only hinder the user, since it wouldn't matter
5082 what choice he makes, the outcome would always be the same.
5083 So, for practical purposes, we consider them as the same. */
5084
5085static int
54d343a2 5086symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5087{
5088 int i;
5089
5090 /* Before performing a thorough comparison check of each type,
5091 we perform a series of inexpensive checks. We expect that these
5092 checks will quickly fail in the vast majority of cases, and thus
5093 help prevent the unnecessary use of a more expensive comparison.
5094 Said comparison also expects us to make some of these checks
5095 (see ada_identical_enum_types_p). */
5096
5097 /* Quick check: All symbols should have an enum type. */
54d343a2 5098 for (i = 0; i < syms.size (); i++)
d12307c1 5099 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5100 return 0;
5101
5102 /* Quick check: They should all have the same value. */
54d343a2 5103 for (i = 1; i < syms.size (); i++)
d12307c1 5104 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5105 return 0;
5106
5107 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5108 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5109 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5110 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5111 return 0;
5112
5113 /* All the sanity checks passed, so we might have a set of
5114 identical enumeration types. Perform a more complete
5115 comparison of the type of each symbol. */
54d343a2 5116 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5117 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5118 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5119 return 0;
5120
5121 return 1;
5122}
5123
54d343a2 5124/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5125 duplicate other symbols in the list (The only case I know of where
5126 this happens is when object files containing stabs-in-ecoff are
5127 linked with files containing ordinary ecoff debugging symbols (or no
5128 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5129 Returns the number of items in the modified list. */
4c4b4cd2 5130
96d887e8 5131static int
54d343a2 5132remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5133{
5134 int i, j;
4c4b4cd2 5135
8f17729f
JB
5136 /* We should never be called with less than 2 symbols, as there
5137 cannot be any extra symbol in that case. But it's easy to
5138 handle, since we have nothing to do in that case. */
54d343a2
TT
5139 if (syms->size () < 2)
5140 return syms->size ();
8f17729f 5141
96d887e8 5142 i = 0;
54d343a2 5143 while (i < syms->size ())
96d887e8 5144 {
a35ddb44 5145 int remove_p = 0;
339c13b6
JB
5146
5147 /* If two symbols have the same name and one of them is a stub type,
5148 the get rid of the stub. */
5149
54d343a2
TT
5150 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5151 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5152 {
54d343a2 5153 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5154 {
5155 if (j != i
54d343a2
TT
5156 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5157 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5158 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5159 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5160 remove_p = 1;
339c13b6
JB
5161 }
5162 }
5163
5164 /* Two symbols with the same name, same class and same address
5165 should be identical. */
5166
54d343a2
TT
5167 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5168 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5169 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5170 {
54d343a2 5171 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5172 {
5173 if (i != j
54d343a2
TT
5174 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5175 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5176 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5177 && SYMBOL_CLASS ((*syms)[i].symbol)
5178 == SYMBOL_CLASS ((*syms)[j].symbol)
5179 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5180 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5181 remove_p = 1;
4c4b4cd2 5182 }
4c4b4cd2 5183 }
339c13b6 5184
a35ddb44 5185 if (remove_p)
54d343a2 5186 syms->erase (syms->begin () + i);
339c13b6 5187
96d887e8 5188 i += 1;
14f9c5c9 5189 }
8f17729f
JB
5190
5191 /* If all the remaining symbols are identical enumerals, then
5192 just keep the first one and discard the rest.
5193
5194 Unlike what we did previously, we do not discard any entry
5195 unless they are ALL identical. This is because the symbol
5196 comparison is not a strict comparison, but rather a practical
5197 comparison. If all symbols are considered identical, then
5198 we can just go ahead and use the first one and discard the rest.
5199 But if we cannot reduce the list to a single element, we have
5200 to ask the user to disambiguate anyways. And if we have to
5201 present a multiple-choice menu, it's less confusing if the list
5202 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5203 if (symbols_are_identical_enums (*syms))
5204 syms->resize (1);
8f17729f 5205
54d343a2 5206 return syms->size ();
14f9c5c9
AS
5207}
5208
96d887e8
PH
5209/* Given a type that corresponds to a renaming entity, use the type name
5210 to extract the scope (package name or function name, fully qualified,
5211 and following the GNAT encoding convention) where this renaming has been
49d83361 5212 defined. */
4c4b4cd2 5213
49d83361 5214static std::string
96d887e8 5215xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5216{
96d887e8 5217 /* The renaming types adhere to the following convention:
0963b4bd 5218 <scope>__<rename>___<XR extension>.
96d887e8
PH
5219 So, to extract the scope, we search for the "___XR" extension,
5220 and then backtrack until we find the first "__". */
76a01679 5221
a737d952 5222 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5223 const char *suffix = strstr (name, "___XR");
5224 const char *last;
14f9c5c9 5225
96d887e8
PH
5226 /* Now, backtrack a bit until we find the first "__". Start looking
5227 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5228
96d887e8
PH
5229 for (last = suffix - 3; last > name; last--)
5230 if (last[0] == '_' && last[1] == '_')
5231 break;
76a01679 5232
96d887e8 5233 /* Make a copy of scope and return it. */
49d83361 5234 return std::string (name, last);
4c4b4cd2
PH
5235}
5236
96d887e8 5237/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5238
96d887e8
PH
5239static int
5240is_package_name (const char *name)
4c4b4cd2 5241{
96d887e8
PH
5242 /* Here, We take advantage of the fact that no symbols are generated
5243 for packages, while symbols are generated for each function.
5244 So the condition for NAME represent a package becomes equivalent
5245 to NAME not existing in our list of symbols. There is only one
5246 small complication with library-level functions (see below). */
4c4b4cd2 5247
96d887e8
PH
5248 /* If it is a function that has not been defined at library level,
5249 then we should be able to look it up in the symbols. */
5250 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5251 return 0;
14f9c5c9 5252
96d887e8
PH
5253 /* Library-level function names start with "_ada_". See if function
5254 "_ada_" followed by NAME can be found. */
14f9c5c9 5255
96d887e8 5256 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5257 functions names cannot contain "__" in them. */
96d887e8
PH
5258 if (strstr (name, "__") != NULL)
5259 return 0;
4c4b4cd2 5260
528e1572 5261 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5262
528e1572 5263 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5264}
14f9c5c9 5265
96d887e8 5266/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5267 not visible from FUNCTION_NAME. */
14f9c5c9 5268
96d887e8 5269static int
0d5cff50 5270old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5271{
aeb5907d
JB
5272 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5273 return 0;
5274
49d83361 5275 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5276
96d887e8 5277 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5278 if (is_package_name (scope.c_str ()))
5279 return 0;
14f9c5c9 5280
96d887e8
PH
5281 /* Check that the rename is in the current function scope by checking
5282 that its name starts with SCOPE. */
76a01679 5283
96d887e8
PH
5284 /* If the function name starts with "_ada_", it means that it is
5285 a library-level function. Strip this prefix before doing the
5286 comparison, as the encoding for the renaming does not contain
5287 this prefix. */
61012eef 5288 if (startswith (function_name, "_ada_"))
96d887e8 5289 function_name += 5;
f26caa11 5290
49d83361 5291 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5292}
5293
aeb5907d
JB
5294/* Remove entries from SYMS that corresponds to a renaming entity that
5295 is not visible from the function associated with CURRENT_BLOCK or
5296 that is superfluous due to the presence of more specific renaming
5297 information. Places surviving symbols in the initial entries of
5298 SYMS and returns the number of surviving symbols.
96d887e8
PH
5299
5300 Rationale:
aeb5907d
JB
5301 First, in cases where an object renaming is implemented as a
5302 reference variable, GNAT may produce both the actual reference
5303 variable and the renaming encoding. In this case, we discard the
5304 latter.
5305
5306 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5307 entity. Unfortunately, STABS currently does not support the definition
5308 of types that are local to a given lexical block, so all renamings types
5309 are emitted at library level. As a consequence, if an application
5310 contains two renaming entities using the same name, and a user tries to
5311 print the value of one of these entities, the result of the ada symbol
5312 lookup will also contain the wrong renaming type.
f26caa11 5313
96d887e8
PH
5314 This function partially covers for this limitation by attempting to
5315 remove from the SYMS list renaming symbols that should be visible
5316 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5317 method with the current information available. The implementation
5318 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5319
5320 - When the user tries to print a rename in a function while there
5321 is another rename entity defined in a package: Normally, the
5322 rename in the function has precedence over the rename in the
5323 package, so the latter should be removed from the list. This is
5324 currently not the case.
5325
5326 - This function will incorrectly remove valid renames if
5327 the CURRENT_BLOCK corresponds to a function which symbol name
5328 has been changed by an "Export" pragma. As a consequence,
5329 the user will be unable to print such rename entities. */
4c4b4cd2 5330
14f9c5c9 5331static int
54d343a2
TT
5332remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5333 const struct block *current_block)
4c4b4cd2
PH
5334{
5335 struct symbol *current_function;
0d5cff50 5336 const char *current_function_name;
4c4b4cd2 5337 int i;
aeb5907d
JB
5338 int is_new_style_renaming;
5339
5340 /* If there is both a renaming foo___XR... encoded as a variable and
5341 a simple variable foo in the same block, discard the latter.
0963b4bd 5342 First, zero out such symbols, then compress. */
aeb5907d 5343 is_new_style_renaming = 0;
54d343a2 5344 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5345 {
54d343a2
TT
5346 struct symbol *sym = (*syms)[i].symbol;
5347 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5348 const char *name;
5349 const char *suffix;
5350
5351 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5352 continue;
5353 name = SYMBOL_LINKAGE_NAME (sym);
5354 suffix = strstr (name, "___XR");
5355
5356 if (suffix != NULL)
5357 {
5358 int name_len = suffix - name;
5359 int j;
5b4ee69b 5360
aeb5907d 5361 is_new_style_renaming = 1;
54d343a2
TT
5362 for (j = 0; j < syms->size (); j += 1)
5363 if (i != j && (*syms)[j].symbol != NULL
5364 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5365 name_len) == 0
54d343a2
TT
5366 && block == (*syms)[j].block)
5367 (*syms)[j].symbol = NULL;
aeb5907d
JB
5368 }
5369 }
5370 if (is_new_style_renaming)
5371 {
5372 int j, k;
5373
54d343a2
TT
5374 for (j = k = 0; j < syms->size (); j += 1)
5375 if ((*syms)[j].symbol != NULL)
aeb5907d 5376 {
54d343a2 5377 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5378 k += 1;
5379 }
5380 return k;
5381 }
4c4b4cd2
PH
5382
5383 /* Extract the function name associated to CURRENT_BLOCK.
5384 Abort if unable to do so. */
76a01679 5385
4c4b4cd2 5386 if (current_block == NULL)
54d343a2 5387 return syms->size ();
76a01679 5388
7f0df278 5389 current_function = block_linkage_function (current_block);
4c4b4cd2 5390 if (current_function == NULL)
54d343a2 5391 return syms->size ();
4c4b4cd2
PH
5392
5393 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5394 if (current_function_name == NULL)
54d343a2 5395 return syms->size ();
4c4b4cd2
PH
5396
5397 /* Check each of the symbols, and remove it from the list if it is
5398 a type corresponding to a renaming that is out of the scope of
5399 the current block. */
5400
5401 i = 0;
54d343a2 5402 while (i < syms->size ())
4c4b4cd2 5403 {
54d343a2 5404 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5405 == ADA_OBJECT_RENAMING
54d343a2
TT
5406 && old_renaming_is_invisible ((*syms)[i].symbol,
5407 current_function_name))
5408 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5409 else
5410 i += 1;
5411 }
5412
54d343a2 5413 return syms->size ();
4c4b4cd2
PH
5414}
5415
339c13b6
JB
5416/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5417 whose name and domain match NAME and DOMAIN respectively.
5418 If no match was found, then extend the search to "enclosing"
5419 routines (in other words, if we're inside a nested function,
5420 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5421 If WILD_MATCH_P is nonzero, perform the naming matching in
5422 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5423
5424 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5425
5426static void
b5ec771e
PA
5427ada_add_local_symbols (struct obstack *obstackp,
5428 const lookup_name_info &lookup_name,
5429 const struct block *block, domain_enum domain)
339c13b6
JB
5430{
5431 int block_depth = 0;
5432
5433 while (block != NULL)
5434 {
5435 block_depth += 1;
b5ec771e 5436 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5437
5438 /* If we found a non-function match, assume that's the one. */
5439 if (is_nonfunction (defns_collected (obstackp, 0),
5440 num_defns_collected (obstackp)))
5441 return;
5442
5443 block = BLOCK_SUPERBLOCK (block);
5444 }
5445
5446 /* If no luck so far, try to find NAME as a local symbol in some lexically
5447 enclosing subprogram. */
5448 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5449 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5450}
5451
ccefe4c4 5452/* An object of this type is used as the user_data argument when
40658b94 5453 calling the map_matching_symbols method. */
ccefe4c4 5454
40658b94 5455struct match_data
ccefe4c4 5456{
40658b94 5457 struct objfile *objfile;
ccefe4c4 5458 struct obstack *obstackp;
40658b94
PH
5459 struct symbol *arg_sym;
5460 int found_sym;
ccefe4c4
TT
5461};
5462
22cee43f 5463/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5464 to a list of symbols. DATA0 is a pointer to a struct match_data *
5465 containing the obstack that collects the symbol list, the file that SYM
5466 must come from, a flag indicating whether a non-argument symbol has
5467 been found in the current block, and the last argument symbol
5468 passed in SYM within the current block (if any). When SYM is null,
5469 marking the end of a block, the argument symbol is added if no
5470 other has been found. */
ccefe4c4 5471
40658b94
PH
5472static int
5473aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5474{
40658b94
PH
5475 struct match_data *data = (struct match_data *) data0;
5476
5477 if (sym == NULL)
5478 {
5479 if (!data->found_sym && data->arg_sym != NULL)
5480 add_defn_to_vec (data->obstackp,
5481 fixup_symbol_section (data->arg_sym, data->objfile),
5482 block);
5483 data->found_sym = 0;
5484 data->arg_sym = NULL;
5485 }
5486 else
5487 {
5488 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5489 return 0;
5490 else if (SYMBOL_IS_ARGUMENT (sym))
5491 data->arg_sym = sym;
5492 else
5493 {
5494 data->found_sym = 1;
5495 add_defn_to_vec (data->obstackp,
5496 fixup_symbol_section (sym, data->objfile),
5497 block);
5498 }
5499 }
5500 return 0;
5501}
5502
b5ec771e
PA
5503/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5504 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5505 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5506
5507static int
5508ada_add_block_renamings (struct obstack *obstackp,
5509 const struct block *block,
b5ec771e
PA
5510 const lookup_name_info &lookup_name,
5511 domain_enum domain)
22cee43f
PMR
5512{
5513 struct using_direct *renaming;
5514 int defns_mark = num_defns_collected (obstackp);
5515
b5ec771e
PA
5516 symbol_name_matcher_ftype *name_match
5517 = ada_get_symbol_name_matcher (lookup_name);
5518
22cee43f
PMR
5519 for (renaming = block_using (block);
5520 renaming != NULL;
5521 renaming = renaming->next)
5522 {
5523 const char *r_name;
22cee43f
PMR
5524
5525 /* Avoid infinite recursions: skip this renaming if we are actually
5526 already traversing it.
5527
5528 Currently, symbol lookup in Ada don't use the namespace machinery from
5529 C++/Fortran support: skip namespace imports that use them. */
5530 if (renaming->searched
5531 || (renaming->import_src != NULL
5532 && renaming->import_src[0] != '\0')
5533 || (renaming->import_dest != NULL
5534 && renaming->import_dest[0] != '\0'))
5535 continue;
5536 renaming->searched = 1;
5537
5538 /* TODO: here, we perform another name-based symbol lookup, which can
5539 pull its own multiple overloads. In theory, we should be able to do
5540 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5541 not a simple name. But in order to do this, we would need to enhance
5542 the DWARF reader to associate a symbol to this renaming, instead of a
5543 name. So, for now, we do something simpler: re-use the C++/Fortran
5544 namespace machinery. */
5545 r_name = (renaming->alias != NULL
5546 ? renaming->alias
5547 : renaming->declaration);
b5ec771e
PA
5548 if (name_match (r_name, lookup_name, NULL))
5549 {
5550 lookup_name_info decl_lookup_name (renaming->declaration,
5551 lookup_name.match_type ());
5552 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5553 1, NULL);
5554 }
22cee43f
PMR
5555 renaming->searched = 0;
5556 }
5557 return num_defns_collected (obstackp) != defns_mark;
5558}
5559
db230ce3
JB
5560/* Implements compare_names, but only applying the comparision using
5561 the given CASING. */
5b4ee69b 5562
40658b94 5563static int
db230ce3
JB
5564compare_names_with_case (const char *string1, const char *string2,
5565 enum case_sensitivity casing)
40658b94
PH
5566{
5567 while (*string1 != '\0' && *string2 != '\0')
5568 {
db230ce3
JB
5569 char c1, c2;
5570
40658b94
PH
5571 if (isspace (*string1) || isspace (*string2))
5572 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5573
5574 if (casing == case_sensitive_off)
5575 {
5576 c1 = tolower (*string1);
5577 c2 = tolower (*string2);
5578 }
5579 else
5580 {
5581 c1 = *string1;
5582 c2 = *string2;
5583 }
5584 if (c1 != c2)
40658b94 5585 break;
db230ce3 5586
40658b94
PH
5587 string1 += 1;
5588 string2 += 1;
5589 }
db230ce3 5590
40658b94
PH
5591 switch (*string1)
5592 {
5593 case '(':
5594 return strcmp_iw_ordered (string1, string2);
5595 case '_':
5596 if (*string2 == '\0')
5597 {
052874e8 5598 if (is_name_suffix (string1))
40658b94
PH
5599 return 0;
5600 else
1a1d5513 5601 return 1;
40658b94 5602 }
dbb8534f 5603 /* FALLTHROUGH */
40658b94
PH
5604 default:
5605 if (*string2 == '(')
5606 return strcmp_iw_ordered (string1, string2);
5607 else
db230ce3
JB
5608 {
5609 if (casing == case_sensitive_off)
5610 return tolower (*string1) - tolower (*string2);
5611 else
5612 return *string1 - *string2;
5613 }
40658b94 5614 }
ccefe4c4
TT
5615}
5616
db230ce3
JB
5617/* Compare STRING1 to STRING2, with results as for strcmp.
5618 Compatible with strcmp_iw_ordered in that...
5619
5620 strcmp_iw_ordered (STRING1, STRING2) <= 0
5621
5622 ... implies...
5623
5624 compare_names (STRING1, STRING2) <= 0
5625
5626 (they may differ as to what symbols compare equal). */
5627
5628static int
5629compare_names (const char *string1, const char *string2)
5630{
5631 int result;
5632
5633 /* Similar to what strcmp_iw_ordered does, we need to perform
5634 a case-insensitive comparison first, and only resort to
5635 a second, case-sensitive, comparison if the first one was
5636 not sufficient to differentiate the two strings. */
5637
5638 result = compare_names_with_case (string1, string2, case_sensitive_off);
5639 if (result == 0)
5640 result = compare_names_with_case (string1, string2, case_sensitive_on);
5641
5642 return result;
5643}
5644
b5ec771e
PA
5645/* Convenience function to get at the Ada encoded lookup name for
5646 LOOKUP_NAME, as a C string. */
5647
5648static const char *
5649ada_lookup_name (const lookup_name_info &lookup_name)
5650{
5651 return lookup_name.ada ().lookup_name ().c_str ();
5652}
5653
339c13b6 5654/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5655 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5656 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5657 symbols otherwise. */
339c13b6
JB
5658
5659static void
b5ec771e
PA
5660add_nonlocal_symbols (struct obstack *obstackp,
5661 const lookup_name_info &lookup_name,
5662 domain_enum domain, int global)
339c13b6
JB
5663{
5664 struct objfile *objfile;
22cee43f 5665 struct compunit_symtab *cu;
40658b94 5666 struct match_data data;
339c13b6 5667
6475f2fe 5668 memset (&data, 0, sizeof data);
ccefe4c4 5669 data.obstackp = obstackp;
339c13b6 5670
b5ec771e
PA
5671 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5672
ccefe4c4 5673 ALL_OBJFILES (objfile)
40658b94
PH
5674 {
5675 data.objfile = objfile;
5676
5677 if (is_wild_match)
b5ec771e
PA
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
4186eb54 5680 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5681 symbol_name_match_type::WILD,
5682 NULL);
40658b94 5683 else
b5ec771e
PA
5684 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5685 domain, global,
4186eb54 5686 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5687 symbol_name_match_type::FULL,
5688 compare_names);
22cee43f
PMR
5689
5690 ALL_OBJFILE_COMPUNITS (objfile, cu)
5691 {
5692 const struct block *global_block
5693 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5694
b5ec771e
PA
5695 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5696 domain))
22cee43f
PMR
5697 data.found_sym = 1;
5698 }
40658b94
PH
5699 }
5700
5701 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5702 {
b5ec771e
PA
5703 const char *name = ada_lookup_name (lookup_name);
5704 std::string name1 = std::string ("<_ada_") + name + '>';
5705
40658b94
PH
5706 ALL_OBJFILES (objfile)
5707 {
40658b94 5708 data.objfile = objfile;
b5ec771e
PA
5709 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5710 domain, global,
0963b4bd
MS
5711 aux_add_nonlocal_symbols,
5712 &data,
b5ec771e
PA
5713 symbol_name_match_type::FULL,
5714 compare_names);
40658b94
PH
5715 }
5716 }
339c13b6
JB
5717}
5718
b5ec771e
PA
5719/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5720 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5721 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5722
22cee43f
PMR
5723 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5724 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5725 is the one match returned (no other matches in that or
d9680e73 5726 enclosing blocks is returned). If there are any matches in or
22cee43f 5727 surrounding BLOCK, then these alone are returned.
4eeaa230 5728
b5ec771e
PA
5729 Names prefixed with "standard__" are handled specially:
5730 "standard__" is first stripped off (by the lookup_name
5731 constructor), and only static and global symbols are searched.
14f9c5c9 5732
22cee43f
PMR
5733 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5734 to lookup global symbols. */
5735
5736static void
5737ada_add_all_symbols (struct obstack *obstackp,
5738 const struct block *block,
b5ec771e 5739 const lookup_name_info &lookup_name,
22cee43f
PMR
5740 domain_enum domain,
5741 int full_search,
5742 int *made_global_lookup_p)
14f9c5c9
AS
5743{
5744 struct symbol *sym;
14f9c5c9 5745
22cee43f
PMR
5746 if (made_global_lookup_p)
5747 *made_global_lookup_p = 0;
339c13b6
JB
5748
5749 /* Special case: If the user specifies a symbol name inside package
5750 Standard, do a non-wild matching of the symbol name without
5751 the "standard__" prefix. This was primarily introduced in order
5752 to allow the user to specifically access the standard exceptions
5753 using, for instance, Standard.Constraint_Error when Constraint_Error
5754 is ambiguous (due to the user defining its own Constraint_Error
5755 entity inside its program). */
b5ec771e
PA
5756 if (lookup_name.ada ().standard_p ())
5757 block = NULL;
4c4b4cd2 5758
339c13b6 5759 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5760
4eeaa230
DE
5761 if (block != NULL)
5762 {
5763 if (full_search)
b5ec771e 5764 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5765 else
5766 {
5767 /* In the !full_search case we're are being called by
5768 ada_iterate_over_symbols, and we don't want to search
5769 superblocks. */
b5ec771e 5770 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5771 }
22cee43f
PMR
5772 if (num_defns_collected (obstackp) > 0 || !full_search)
5773 return;
4eeaa230 5774 }
d2e4a39e 5775
339c13b6
JB
5776 /* No non-global symbols found. Check our cache to see if we have
5777 already performed this search before. If we have, then return
5778 the same result. */
5779
b5ec771e
PA
5780 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5781 domain, &sym, &block))
4c4b4cd2
PH
5782 {
5783 if (sym != NULL)
b5ec771e 5784 add_defn_to_vec (obstackp, sym, block);
22cee43f 5785 return;
4c4b4cd2 5786 }
14f9c5c9 5787
22cee43f
PMR
5788 if (made_global_lookup_p)
5789 *made_global_lookup_p = 1;
b1eedac9 5790
339c13b6
JB
5791 /* Search symbols from all global blocks. */
5792
b5ec771e 5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5794
4c4b4cd2 5795 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5796 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5797
22cee43f 5798 if (num_defns_collected (obstackp) == 0)
b5ec771e 5799 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5800}
5801
b5ec771e
PA
5802/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5803 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5804 matches.
54d343a2
TT
5805 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5806 found and the blocks and symbol tables (if any) in which they were
5807 found.
22cee43f
PMR
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818static int
b5ec771e
PA
5819ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
22cee43f 5821 domain_enum domain,
54d343a2 5822 std::vector<struct block_symbol> *results,
22cee43f
PMR
5823 int full_search)
5824{
22cee43f
PMR
5825 int syms_from_global_search;
5826 int ndefns;
ec6a20c2 5827 auto_obstack obstack;
22cee43f 5828
ec6a20c2 5829 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5830 domain, full_search, &syms_from_global_search);
14f9c5c9 5831
ec6a20c2
JB
5832 ndefns = num_defns_collected (&obstack);
5833
54d343a2
TT
5834 struct block_symbol *base = defns_collected (&obstack, 1);
5835 for (int i = 0; i < ndefns; ++i)
5836 results->push_back (base[i]);
4c4b4cd2 5837
54d343a2 5838 ndefns = remove_extra_symbols (results);
4c4b4cd2 5839
b1eedac9 5840 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5841 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5842
b1eedac9 5843 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5844 cache_symbol (ada_lookup_name (lookup_name), domain,
5845 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5846
54d343a2 5847 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5848
14f9c5c9
AS
5849 return ndefns;
5850}
5851
b5ec771e 5852/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5853 in global scopes, returning the number of matches, and filling *RESULTS
5854 with (SYM,BLOCK) tuples.
ec6a20c2 5855
4eeaa230
DE
5856 See ada_lookup_symbol_list_worker for further details. */
5857
5858int
b5ec771e 5859ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5860 domain_enum domain,
5861 std::vector<struct block_symbol> *results)
4eeaa230 5862{
b5ec771e
PA
5863 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5864 lookup_name_info lookup_name (name, name_match_type);
5865
5866 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5867}
5868
5869/* Implementation of the la_iterate_over_symbols method. */
5870
5871static void
14bc53a8 5872ada_iterate_over_symbols
b5ec771e
PA
5873 (const struct block *block, const lookup_name_info &name,
5874 domain_enum domain,
14bc53a8 5875 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5876{
5877 int ndefs, i;
54d343a2 5878 std::vector<struct block_symbol> results;
4eeaa230
DE
5879
5880 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5881
4eeaa230
DE
5882 for (i = 0; i < ndefs; ++i)
5883 {
7e41c8db 5884 if (!callback (&results[i]))
4eeaa230
DE
5885 break;
5886 }
5887}
5888
4e5c77fe
JB
5889/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5890 to 1, but choosing the first symbol found if there are multiple
5891 choices.
5892
5e2336be
JB
5893 The result is stored in *INFO, which must be non-NULL.
5894 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5895
5896void
5897ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5898 domain_enum domain,
d12307c1 5899 struct block_symbol *info)
14f9c5c9 5900{
b5ec771e
PA
5901 /* Since we already have an encoded name, wrap it in '<>' to force a
5902 verbatim match. Otherwise, if the name happens to not look like
5903 an encoded name (because it doesn't include a "__"),
5904 ada_lookup_name_info would re-encode/fold it again, and that
5905 would e.g., incorrectly lowercase object renaming names like
5906 "R28b" -> "r28b". */
5907 std::string verbatim = std::string ("<") + name + '>';
5908
5e2336be 5909 gdb_assert (info != NULL);
f98fc17b 5910 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5911}
aeb5907d
JB
5912
5913/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5916 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
d12307c1 5919struct block_symbol
aeb5907d 5920ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5921 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5922{
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
54d343a2 5926 std::vector<struct block_symbol> candidates;
f98fc17b 5927 int n_candidates;
f98fc17b
PA
5928
5929 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5930
5931 if (n_candidates == 0)
54d343a2 5932 return {};
f98fc17b
PA
5933
5934 block_symbol info = candidates[0];
5935 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5936 return info;
4c4b4cd2 5937}
14f9c5c9 5938
d12307c1 5939static struct block_symbol
f606139a
DE
5940ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5941 const char *name,
76a01679 5942 const struct block *block,
21b556f4 5943 const domain_enum domain)
4c4b4cd2 5944{
d12307c1 5945 struct block_symbol sym;
04dccad0
JB
5946
5947 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5948 if (sym.symbol != NULL)
04dccad0
JB
5949 return sym;
5950
5951 /* If we haven't found a match at this point, try the primitive
5952 types. In other languages, this search is performed before
5953 searching for global symbols in order to short-circuit that
5954 global-symbol search if it happens that the name corresponds
5955 to a primitive type. But we cannot do the same in Ada, because
5956 it is perfectly legitimate for a program to declare a type which
5957 has the same name as a standard type. If looking up a type in
5958 that situation, we have traditionally ignored the primitive type
5959 in favor of user-defined types. This is why, unlike most other
5960 languages, we search the primitive types this late and only after
5961 having searched the global symbols without success. */
5962
5963 if (domain == VAR_DOMAIN)
5964 {
5965 struct gdbarch *gdbarch;
5966
5967 if (block == NULL)
5968 gdbarch = target_gdbarch ();
5969 else
5970 gdbarch = block_gdbarch (block);
d12307c1
PMR
5971 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5972 if (sym.symbol != NULL)
04dccad0
JB
5973 return sym;
5974 }
5975
d12307c1 5976 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5977}
5978
5979
4c4b4cd2
PH
5980/* True iff STR is a possible encoded suffix of a normal Ada name
5981 that is to be ignored for matching purposes. Suffixes of parallel
5982 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5983 are given by any of the regular expressions:
4c4b4cd2 5984
babe1480
JB
5985 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5986 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5987 TKB [subprogram suffix for task bodies]
babe1480 5988 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5989 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5990
5991 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5992 match is performed. This sequence is used to differentiate homonyms,
5993 is an optional part of a valid name suffix. */
4c4b4cd2 5994
14f9c5c9 5995static int
d2e4a39e 5996is_name_suffix (const char *str)
14f9c5c9
AS
5997{
5998 int k;
4c4b4cd2
PH
5999 const char *matching;
6000 const int len = strlen (str);
6001
babe1480
JB
6002 /* Skip optional leading __[0-9]+. */
6003
4c4b4cd2
PH
6004 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6005 {
babe1480
JB
6006 str += 3;
6007 while (isdigit (str[0]))
6008 str += 1;
4c4b4cd2 6009 }
babe1480
JB
6010
6011 /* [.$][0-9]+ */
4c4b4cd2 6012
babe1480 6013 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6014 {
babe1480 6015 matching = str + 1;
4c4b4cd2
PH
6016 while (isdigit (matching[0]))
6017 matching += 1;
6018 if (matching[0] == '\0')
6019 return 1;
6020 }
6021
6022 /* ___[0-9]+ */
babe1480 6023
4c4b4cd2
PH
6024 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6025 {
6026 matching = str + 3;
6027 while (isdigit (matching[0]))
6028 matching += 1;
6029 if (matching[0] == '\0')
6030 return 1;
6031 }
6032
9ac7f98e
JB
6033 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6034
6035 if (strcmp (str, "TKB") == 0)
6036 return 1;
6037
529cad9c
PH
6038#if 0
6039 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6040 with a N at the end. Unfortunately, the compiler uses the same
6041 convention for other internal types it creates. So treating
529cad9c 6042 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6043 some regressions. For instance, consider the case of an enumerated
6044 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6045 name ends with N.
6046 Having a single character like this as a suffix carrying some
0963b4bd 6047 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6048 to be something like "_N" instead. In the meantime, do not do
6049 the following check. */
6050 /* Protected Object Subprograms */
6051 if (len == 1 && str [0] == 'N')
6052 return 1;
6053#endif
6054
6055 /* _E[0-9]+[bs]$ */
6056 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6057 {
6058 matching = str + 3;
6059 while (isdigit (matching[0]))
6060 matching += 1;
6061 if ((matching[0] == 'b' || matching[0] == 's')
6062 && matching [1] == '\0')
6063 return 1;
6064 }
6065
4c4b4cd2
PH
6066 /* ??? We should not modify STR directly, as we are doing below. This
6067 is fine in this case, but may become problematic later if we find
6068 that this alternative did not work, and want to try matching
6069 another one from the begining of STR. Since we modified it, we
6070 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6071 if (str[0] == 'X')
6072 {
6073 str += 1;
d2e4a39e 6074 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6075 {
6076 if (str[0] != 'n' && str[0] != 'b')
6077 return 0;
6078 str += 1;
6079 }
14f9c5c9 6080 }
babe1480 6081
14f9c5c9
AS
6082 if (str[0] == '\000')
6083 return 1;
babe1480 6084
d2e4a39e 6085 if (str[0] == '_')
14f9c5c9
AS
6086 {
6087 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6088 return 0;
d2e4a39e 6089 if (str[2] == '_')
4c4b4cd2 6090 {
61ee279c
PH
6091 if (strcmp (str + 3, "JM") == 0)
6092 return 1;
6093 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6094 the LJM suffix in favor of the JM one. But we will
6095 still accept LJM as a valid suffix for a reasonable
6096 amount of time, just to allow ourselves to debug programs
6097 compiled using an older version of GNAT. */
4c4b4cd2
PH
6098 if (strcmp (str + 3, "LJM") == 0)
6099 return 1;
6100 if (str[3] != 'X')
6101 return 0;
1265e4aa
JB
6102 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6103 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6104 return 1;
6105 if (str[4] == 'R' && str[5] != 'T')
6106 return 1;
6107 return 0;
6108 }
6109 if (!isdigit (str[2]))
6110 return 0;
6111 for (k = 3; str[k] != '\0'; k += 1)
6112 if (!isdigit (str[k]) && str[k] != '_')
6113 return 0;
14f9c5c9
AS
6114 return 1;
6115 }
4c4b4cd2 6116 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6117 {
4c4b4cd2
PH
6118 for (k = 2; str[k] != '\0'; k += 1)
6119 if (!isdigit (str[k]) && str[k] != '_')
6120 return 0;
14f9c5c9
AS
6121 return 1;
6122 }
6123 return 0;
6124}
d2e4a39e 6125
aeb5907d
JB
6126/* Return non-zero if the string starting at NAME and ending before
6127 NAME_END contains no capital letters. */
529cad9c
PH
6128
6129static int
6130is_valid_name_for_wild_match (const char *name0)
6131{
6132 const char *decoded_name = ada_decode (name0);
6133 int i;
6134
5823c3ef
JB
6135 /* If the decoded name starts with an angle bracket, it means that
6136 NAME0 does not follow the GNAT encoding format. It should then
6137 not be allowed as a possible wild match. */
6138 if (decoded_name[0] == '<')
6139 return 0;
6140
529cad9c
PH
6141 for (i=0; decoded_name[i] != '\0'; i++)
6142 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6143 return 0;
6144
6145 return 1;
6146}
6147
73589123
PH
6148/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6149 that could start a simple name. Assumes that *NAMEP points into
6150 the string beginning at NAME0. */
4c4b4cd2 6151
14f9c5c9 6152static int
73589123 6153advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6154{
73589123 6155 const char *name = *namep;
5b4ee69b 6156
5823c3ef 6157 while (1)
14f9c5c9 6158 {
aa27d0b3 6159 int t0, t1;
73589123
PH
6160
6161 t0 = *name;
6162 if (t0 == '_')
6163 {
6164 t1 = name[1];
6165 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6166 {
6167 name += 1;
61012eef 6168 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6169 break;
6170 else
6171 name += 1;
6172 }
aa27d0b3
JB
6173 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6174 || name[2] == target0))
73589123
PH
6175 {
6176 name += 2;
6177 break;
6178 }
6179 else
6180 return 0;
6181 }
6182 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6183 name += 1;
6184 else
5823c3ef 6185 return 0;
73589123
PH
6186 }
6187
6188 *namep = name;
6189 return 1;
6190}
6191
b5ec771e
PA
6192/* Return true iff NAME encodes a name of the form prefix.PATN.
6193 Ignores any informational suffixes of NAME (i.e., for which
6194 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6195 simple name. */
73589123 6196
b5ec771e 6197static bool
73589123
PH
6198wild_match (const char *name, const char *patn)
6199{
22e048c9 6200 const char *p;
73589123
PH
6201 const char *name0 = name;
6202
6203 while (1)
6204 {
6205 const char *match = name;
6206
6207 if (*name == *patn)
6208 {
6209 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6210 if (*p != *name)
6211 break;
6212 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6213 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6214
6215 if (name[-1] == '_')
6216 name -= 1;
6217 }
6218 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6219 return false;
96d887e8 6220 }
96d887e8
PH
6221}
6222
b5ec771e
PA
6223/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6224 any trailing suffixes that encode debugging information or leading
6225 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6226 information that is ignored). */
40658b94 6227
b5ec771e 6228static bool
c4d840bd
PH
6229full_match (const char *sym_name, const char *search_name)
6230{
b5ec771e
PA
6231 size_t search_name_len = strlen (search_name);
6232
6233 if (strncmp (sym_name, search_name, search_name_len) == 0
6234 && is_name_suffix (sym_name + search_name_len))
6235 return true;
6236
6237 if (startswith (sym_name, "_ada_")
6238 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6239 && is_name_suffix (sym_name + search_name_len + 5))
6240 return true;
c4d840bd 6241
b5ec771e
PA
6242 return false;
6243}
c4d840bd 6244
b5ec771e
PA
6245/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6246 *defn_symbols, updating the list of symbols in OBSTACKP (if
6247 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6248
6249static void
6250ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6251 const struct block *block,
6252 const lookup_name_info &lookup_name,
6253 domain_enum domain, struct objfile *objfile)
96d887e8 6254{
8157b174 6255 struct block_iterator iter;
96d887e8
PH
6256 /* A matching argument symbol, if any. */
6257 struct symbol *arg_sym;
6258 /* Set true when we find a matching non-argument symbol. */
6259 int found_sym;
6260 struct symbol *sym;
6261
6262 arg_sym = NULL;
6263 found_sym = 0;
b5ec771e
PA
6264 for (sym = block_iter_match_first (block, lookup_name, &iter);
6265 sym != NULL;
6266 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6267 {
b5ec771e
PA
6268 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6269 SYMBOL_DOMAIN (sym), domain))
6270 {
6271 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6272 {
6273 if (SYMBOL_IS_ARGUMENT (sym))
6274 arg_sym = sym;
6275 else
6276 {
6277 found_sym = 1;
6278 add_defn_to_vec (obstackp,
6279 fixup_symbol_section (sym, objfile),
6280 block);
6281 }
6282 }
6283 }
96d887e8
PH
6284 }
6285
22cee43f
PMR
6286 /* Handle renamings. */
6287
b5ec771e 6288 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6289 found_sym = 1;
6290
96d887e8
PH
6291 if (!found_sym && arg_sym != NULL)
6292 {
76a01679
JB
6293 add_defn_to_vec (obstackp,
6294 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6295 block);
96d887e8
PH
6296 }
6297
b5ec771e 6298 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6299 {
6300 arg_sym = NULL;
6301 found_sym = 0;
b5ec771e
PA
6302 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6303 const char *name = ada_lookup_name.c_str ();
6304 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6305
6306 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6307 {
4186eb54
KS
6308 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6309 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6310 {
6311 int cmp;
6312
6313 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6314 if (cmp == 0)
6315 {
61012eef 6316 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6317 if (cmp == 0)
6318 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6319 name_len);
6320 }
6321
6322 if (cmp == 0
6323 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6324 {
2a2d4dc3
AS
6325 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6326 {
6327 if (SYMBOL_IS_ARGUMENT (sym))
6328 arg_sym = sym;
6329 else
6330 {
6331 found_sym = 1;
6332 add_defn_to_vec (obstackp,
6333 fixup_symbol_section (sym, objfile),
6334 block);
6335 }
6336 }
76a01679
JB
6337 }
6338 }
76a01679 6339 }
96d887e8
PH
6340
6341 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6342 They aren't parameters, right? */
6343 if (!found_sym && arg_sym != NULL)
6344 {
6345 add_defn_to_vec (obstackp,
76a01679 6346 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6347 block);
96d887e8
PH
6348 }
6349 }
6350}
6351\f
41d27058
JB
6352
6353 /* Symbol Completion */
6354
b5ec771e 6355/* See symtab.h. */
41d27058 6356
b5ec771e
PA
6357bool
6358ada_lookup_name_info::matches
6359 (const char *sym_name,
6360 symbol_name_match_type match_type,
a207cff2 6361 completion_match_result *comp_match_res) const
41d27058 6362{
b5ec771e
PA
6363 bool match = false;
6364 const char *text = m_encoded_name.c_str ();
6365 size_t text_len = m_encoded_name.size ();
41d27058
JB
6366
6367 /* First, test against the fully qualified name of the symbol. */
6368
6369 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6370 match = true;
41d27058 6371
b5ec771e 6372 if (match && !m_encoded_p)
41d27058
JB
6373 {
6374 /* One needed check before declaring a positive match is to verify
6375 that iff we are doing a verbatim match, the decoded version
6376 of the symbol name starts with '<'. Otherwise, this symbol name
6377 is not a suitable completion. */
6378 const char *sym_name_copy = sym_name;
b5ec771e 6379 bool has_angle_bracket;
41d27058
JB
6380
6381 sym_name = ada_decode (sym_name);
6382 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6383 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6384 sym_name = sym_name_copy;
6385 }
6386
b5ec771e 6387 if (match && !m_verbatim_p)
41d27058
JB
6388 {
6389 /* When doing non-verbatim match, another check that needs to
6390 be done is to verify that the potentially matching symbol name
6391 does not include capital letters, because the ada-mode would
6392 not be able to understand these symbol names without the
6393 angle bracket notation. */
6394 const char *tmp;
6395
6396 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6397 if (*tmp != '\0')
b5ec771e 6398 match = false;
41d27058
JB
6399 }
6400
6401 /* Second: Try wild matching... */
6402
b5ec771e 6403 if (!match && m_wild_match_p)
41d27058
JB
6404 {
6405 /* Since we are doing wild matching, this means that TEXT
6406 may represent an unqualified symbol name. We therefore must
6407 also compare TEXT against the unqualified name of the symbol. */
6408 sym_name = ada_unqualified_name (ada_decode (sym_name));
6409
6410 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6411 match = true;
41d27058
JB
6412 }
6413
b5ec771e 6414 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6415
6416 if (!match)
b5ec771e 6417 return false;
41d27058 6418
a207cff2 6419 if (comp_match_res != NULL)
b5ec771e 6420 {
a207cff2 6421 std::string &match_str = comp_match_res->match.storage ();
41d27058 6422
b5ec771e 6423 if (!m_encoded_p)
a207cff2 6424 match_str = ada_decode (sym_name);
b5ec771e
PA
6425 else
6426 {
6427 if (m_verbatim_p)
6428 match_str = add_angle_brackets (sym_name);
6429 else
6430 match_str = sym_name;
41d27058 6431
b5ec771e 6432 }
a207cff2
PA
6433
6434 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6435 }
6436
b5ec771e 6437 return true;
41d27058
JB
6438}
6439
b5ec771e 6440/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6441 WORD is the entire command on which completion is made. */
41d27058 6442
eb3ff9a5
PA
6443static void
6444ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6445 complete_symbol_mode mode,
b5ec771e
PA
6446 symbol_name_match_type name_match_type,
6447 const char *text, const char *word,
eb3ff9a5 6448 enum type_code code)
41d27058 6449{
41d27058 6450 struct symbol *sym;
43f3e411 6451 struct compunit_symtab *s;
41d27058
JB
6452 struct minimal_symbol *msymbol;
6453 struct objfile *objfile;
3977b71f 6454 const struct block *b, *surrounding_static_block = 0;
8157b174 6455 struct block_iterator iter;
41d27058 6456
2f68a895
TT
6457 gdb_assert (code == TYPE_CODE_UNDEF);
6458
1b026119 6459 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6460
6461 /* First, look at the partial symtab symbols. */
14bc53a8 6462 expand_symtabs_matching (NULL,
b5ec771e
PA
6463 lookup_name,
6464 NULL,
14bc53a8
PA
6465 NULL,
6466 ALL_DOMAIN);
41d27058
JB
6467
6468 /* At this point scan through the misc symbol vectors and add each
6469 symbol you find to the list. Eventually we want to ignore
6470 anything that isn't a text symbol (everything else will be
6471 handled by the psymtab code above). */
6472
6473 ALL_MSYMBOLS (objfile, msymbol)
6474 {
6475 QUIT;
b5ec771e 6476
f9d67a22
PA
6477 if (completion_skip_symbol (mode, msymbol))
6478 continue;
6479
d4c2a405
PA
6480 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6481
6482 /* Ada minimal symbols won't have their language set to Ada. If
6483 we let completion_list_add_name compare using the
6484 default/C-like matcher, then when completing e.g., symbols in a
6485 package named "pck", we'd match internal Ada symbols like
6486 "pckS", which are invalid in an Ada expression, unless you wrap
6487 them in '<' '>' to request a verbatim match.
6488
6489 Unfortunately, some Ada encoded names successfully demangle as
6490 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6491 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6492 with the wrong language set. Paper over that issue here. */
6493 if (symbol_language == language_auto
6494 || symbol_language == language_cplus)
6495 symbol_language = language_ada;
6496
b5ec771e 6497 completion_list_add_name (tracker,
d4c2a405 6498 symbol_language,
b5ec771e 6499 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6500 lookup_name, text, word);
41d27058
JB
6501 }
6502
6503 /* Search upwards from currently selected frame (so that we can
6504 complete on local vars. */
6505
6506 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6507 {
6508 if (!BLOCK_SUPERBLOCK (b))
6509 surrounding_static_block = b; /* For elmin of dups */
6510
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6512 {
f9d67a22
PA
6513 if (completion_skip_symbol (mode, sym))
6514 continue;
6515
b5ec771e
PA
6516 completion_list_add_name (tracker,
6517 SYMBOL_LANGUAGE (sym),
6518 SYMBOL_LINKAGE_NAME (sym),
1b026119 6519 lookup_name, text, word);
41d27058
JB
6520 }
6521 }
6522
6523 /* Go through the symtabs and check the externs and statics for
43f3e411 6524 symbols which match. */
41d27058 6525
43f3e411 6526 ALL_COMPUNITS (objfile, s)
41d27058
JB
6527 {
6528 QUIT;
43f3e411 6529 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6530 ALL_BLOCK_SYMBOLS (b, iter, sym)
6531 {
f9d67a22
PA
6532 if (completion_skip_symbol (mode, sym))
6533 continue;
6534
b5ec771e
PA
6535 completion_list_add_name (tracker,
6536 SYMBOL_LANGUAGE (sym),
6537 SYMBOL_LINKAGE_NAME (sym),
1b026119 6538 lookup_name, text, word);
41d27058
JB
6539 }
6540 }
6541
43f3e411 6542 ALL_COMPUNITS (objfile, s)
41d27058
JB
6543 {
6544 QUIT;
43f3e411 6545 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6546 /* Don't do this block twice. */
6547 if (b == surrounding_static_block)
6548 continue;
6549 ALL_BLOCK_SYMBOLS (b, iter, sym)
6550 {
f9d67a22
PA
6551 if (completion_skip_symbol (mode, sym))
6552 continue;
6553
b5ec771e
PA
6554 completion_list_add_name (tracker,
6555 SYMBOL_LANGUAGE (sym),
6556 SYMBOL_LINKAGE_NAME (sym),
1b026119 6557 lookup_name, text, word);
41d27058
JB
6558 }
6559 }
41d27058
JB
6560}
6561
963a6417 6562 /* Field Access */
96d887e8 6563
73fb9985
JB
6564/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6565 for tagged types. */
6566
6567static int
6568ada_is_dispatch_table_ptr_type (struct type *type)
6569{
0d5cff50 6570 const char *name;
73fb9985
JB
6571
6572 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6573 return 0;
6574
6575 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6576 if (name == NULL)
6577 return 0;
6578
6579 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6580}
6581
ac4a2da4
JG
6582/* Return non-zero if TYPE is an interface tag. */
6583
6584static int
6585ada_is_interface_tag (struct type *type)
6586{
6587 const char *name = TYPE_NAME (type);
6588
6589 if (name == NULL)
6590 return 0;
6591
6592 return (strcmp (name, "ada__tags__interface_tag") == 0);
6593}
6594
963a6417
PH
6595/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6596 to be invisible to users. */
96d887e8 6597
963a6417
PH
6598int
6599ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6600{
963a6417
PH
6601 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6602 return 1;
ffde82bf 6603
73fb9985
JB
6604 /* Check the name of that field. */
6605 {
6606 const char *name = TYPE_FIELD_NAME (type, field_num);
6607
6608 /* Anonymous field names should not be printed.
6609 brobecker/2007-02-20: I don't think this can actually happen
6610 but we don't want to print the value of annonymous fields anyway. */
6611 if (name == NULL)
6612 return 1;
6613
ffde82bf
JB
6614 /* Normally, fields whose name start with an underscore ("_")
6615 are fields that have been internally generated by the compiler,
6616 and thus should not be printed. The "_parent" field is special,
6617 however: This is a field internally generated by the compiler
6618 for tagged types, and it contains the components inherited from
6619 the parent type. This field should not be printed as is, but
6620 should not be ignored either. */
61012eef 6621 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6622 return 1;
6623 }
6624
ac4a2da4
JG
6625 /* If this is the dispatch table of a tagged type or an interface tag,
6626 then ignore. */
73fb9985 6627 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6628 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6629 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6630 return 1;
6631
6632 /* Not a special field, so it should not be ignored. */
6633 return 0;
963a6417 6634}
96d887e8 6635
963a6417 6636/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6637 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6638
963a6417
PH
6639int
6640ada_is_tagged_type (struct type *type, int refok)
6641{
988f6b3d 6642 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6643}
96d887e8 6644
963a6417 6645/* True iff TYPE represents the type of X'Tag */
96d887e8 6646
963a6417
PH
6647int
6648ada_is_tag_type (struct type *type)
6649{
460efde1
JB
6650 type = ada_check_typedef (type);
6651
963a6417
PH
6652 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6653 return 0;
6654 else
96d887e8 6655 {
963a6417 6656 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6657
963a6417
PH
6658 return (name != NULL
6659 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6660 }
96d887e8
PH
6661}
6662
963a6417 6663/* The type of the tag on VAL. */
76a01679 6664
963a6417
PH
6665struct type *
6666ada_tag_type (struct value *val)
96d887e8 6667{
988f6b3d 6668 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6669}
96d887e8 6670
b50d69b5
JG
6671/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6672 retired at Ada 05). */
6673
6674static int
6675is_ada95_tag (struct value *tag)
6676{
6677 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6678}
6679
963a6417 6680/* The value of the tag on VAL. */
96d887e8 6681
963a6417
PH
6682struct value *
6683ada_value_tag (struct value *val)
6684{
03ee6b2e 6685 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6686}
6687
963a6417
PH
6688/* The value of the tag on the object of type TYPE whose contents are
6689 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6690 ADDRESS. */
96d887e8 6691
963a6417 6692static struct value *
10a2c479 6693value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6694 const gdb_byte *valaddr,
963a6417 6695 CORE_ADDR address)
96d887e8 6696{
b5385fc0 6697 int tag_byte_offset;
963a6417 6698 struct type *tag_type;
5b4ee69b 6699
963a6417 6700 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6701 NULL, NULL, NULL))
96d887e8 6702 {
fc1a4b47 6703 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6704 ? NULL
6705 : valaddr + tag_byte_offset);
963a6417 6706 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6707
963a6417 6708 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6709 }
963a6417
PH
6710 return NULL;
6711}
96d887e8 6712
963a6417
PH
6713static struct type *
6714type_from_tag (struct value *tag)
6715{
6716 const char *type_name = ada_tag_name (tag);
5b4ee69b 6717
963a6417
PH
6718 if (type_name != NULL)
6719 return ada_find_any_type (ada_encode (type_name));
6720 return NULL;
6721}
96d887e8 6722
b50d69b5
JG
6723/* Given a value OBJ of a tagged type, return a value of this
6724 type at the base address of the object. The base address, as
6725 defined in Ada.Tags, it is the address of the primary tag of
6726 the object, and therefore where the field values of its full
6727 view can be fetched. */
6728
6729struct value *
6730ada_tag_value_at_base_address (struct value *obj)
6731{
b50d69b5
JG
6732 struct value *val;
6733 LONGEST offset_to_top = 0;
6734 struct type *ptr_type, *obj_type;
6735 struct value *tag;
6736 CORE_ADDR base_address;
6737
6738 obj_type = value_type (obj);
6739
6740 /* It is the responsability of the caller to deref pointers. */
6741
6742 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6743 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6744 return obj;
6745
6746 tag = ada_value_tag (obj);
6747 if (!tag)
6748 return obj;
6749
6750 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6751
6752 if (is_ada95_tag (tag))
6753 return obj;
6754
08f49010
XR
6755 ptr_type = language_lookup_primitive_type
6756 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6757 ptr_type = lookup_pointer_type (ptr_type);
6758 val = value_cast (ptr_type, tag);
6759 if (!val)
6760 return obj;
6761
6762 /* It is perfectly possible that an exception be raised while
6763 trying to determine the base address, just like for the tag;
6764 see ada_tag_name for more details. We do not print the error
6765 message for the same reason. */
6766
492d29ea 6767 TRY
b50d69b5
JG
6768 {
6769 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6770 }
6771
492d29ea
PA
6772 CATCH (e, RETURN_MASK_ERROR)
6773 {
6774 return obj;
6775 }
6776 END_CATCH
b50d69b5
JG
6777
6778 /* If offset is null, nothing to do. */
6779
6780 if (offset_to_top == 0)
6781 return obj;
6782
6783 /* -1 is a special case in Ada.Tags; however, what should be done
6784 is not quite clear from the documentation. So do nothing for
6785 now. */
6786
6787 if (offset_to_top == -1)
6788 return obj;
6789
08f49010
XR
6790 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6791 from the base address. This was however incompatible with
6792 C++ dispatch table: C++ uses a *negative* value to *add*
6793 to the base address. Ada's convention has therefore been
6794 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6795 use the same convention. Here, we support both cases by
6796 checking the sign of OFFSET_TO_TOP. */
6797
6798 if (offset_to_top > 0)
6799 offset_to_top = -offset_to_top;
6800
6801 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6802 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6803
6804 /* Make sure that we have a proper tag at the new address.
6805 Otherwise, offset_to_top is bogus (which can happen when
6806 the object is not initialized yet). */
6807
6808 if (!tag)
6809 return obj;
6810
6811 obj_type = type_from_tag (tag);
6812
6813 if (!obj_type)
6814 return obj;
6815
6816 return value_from_contents_and_address (obj_type, NULL, base_address);
6817}
6818
1b611343
JB
6819/* Return the "ada__tags__type_specific_data" type. */
6820
6821static struct type *
6822ada_get_tsd_type (struct inferior *inf)
963a6417 6823{
1b611343 6824 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6825
1b611343
JB
6826 if (data->tsd_type == 0)
6827 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6828 return data->tsd_type;
6829}
529cad9c 6830
1b611343
JB
6831/* Return the TSD (type-specific data) associated to the given TAG.
6832 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6833
1b611343 6834 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6835
1b611343
JB
6836static struct value *
6837ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6838{
4c4b4cd2 6839 struct value *val;
1b611343 6840 struct type *type;
5b4ee69b 6841
1b611343
JB
6842 /* First option: The TSD is simply stored as a field of our TAG.
6843 Only older versions of GNAT would use this format, but we have
6844 to test it first, because there are no visible markers for
6845 the current approach except the absence of that field. */
529cad9c 6846
1b611343
JB
6847 val = ada_value_struct_elt (tag, "tsd", 1);
6848 if (val)
6849 return val;
e802dbe0 6850
1b611343
JB
6851 /* Try the second representation for the dispatch table (in which
6852 there is no explicit 'tsd' field in the referent of the tag pointer,
6853 and instead the tsd pointer is stored just before the dispatch
6854 table. */
e802dbe0 6855
1b611343
JB
6856 type = ada_get_tsd_type (current_inferior());
6857 if (type == NULL)
6858 return NULL;
6859 type = lookup_pointer_type (lookup_pointer_type (type));
6860 val = value_cast (type, tag);
6861 if (val == NULL)
6862 return NULL;
6863 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6864}
6865
1b611343
JB
6866/* Given the TSD of a tag (type-specific data), return a string
6867 containing the name of the associated type.
6868
6869 The returned value is good until the next call. May return NULL
6870 if we are unable to determine the tag name. */
6871
6872static char *
6873ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6874{
529cad9c
PH
6875 static char name[1024];
6876 char *p;
1b611343 6877 struct value *val;
529cad9c 6878
1b611343 6879 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6880 if (val == NULL)
1b611343 6881 return NULL;
4c4b4cd2
PH
6882 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6883 for (p = name; *p != '\0'; p += 1)
6884 if (isalpha (*p))
6885 *p = tolower (*p);
1b611343 6886 return name;
4c4b4cd2
PH
6887}
6888
6889/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6890 a C string.
6891
6892 Return NULL if the TAG is not an Ada tag, or if we were unable to
6893 determine the name of that tag. The result is good until the next
6894 call. */
4c4b4cd2
PH
6895
6896const char *
6897ada_tag_name (struct value *tag)
6898{
1b611343 6899 char *name = NULL;
5b4ee69b 6900
df407dfe 6901 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6902 return NULL;
1b611343
JB
6903
6904 /* It is perfectly possible that an exception be raised while trying
6905 to determine the TAG's name, even under normal circumstances:
6906 The associated variable may be uninitialized or corrupted, for
6907 instance. We do not let any exception propagate past this point.
6908 instead we return NULL.
6909
6910 We also do not print the error message either (which often is very
6911 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6912 the caller print a more meaningful message if necessary. */
492d29ea 6913 TRY
1b611343
JB
6914 {
6915 struct value *tsd = ada_get_tsd_from_tag (tag);
6916
6917 if (tsd != NULL)
6918 name = ada_tag_name_from_tsd (tsd);
6919 }
492d29ea
PA
6920 CATCH (e, RETURN_MASK_ERROR)
6921 {
6922 }
6923 END_CATCH
1b611343
JB
6924
6925 return name;
4c4b4cd2
PH
6926}
6927
6928/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6929
d2e4a39e 6930struct type *
ebf56fd3 6931ada_parent_type (struct type *type)
14f9c5c9
AS
6932{
6933 int i;
6934
61ee279c 6935 type = ada_check_typedef (type);
14f9c5c9
AS
6936
6937 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6938 return NULL;
6939
6940 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6941 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6942 {
6943 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6944
6945 /* If the _parent field is a pointer, then dereference it. */
6946 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6947 parent_type = TYPE_TARGET_TYPE (parent_type);
6948 /* If there is a parallel XVS type, get the actual base type. */
6949 parent_type = ada_get_base_type (parent_type);
6950
6951 return ada_check_typedef (parent_type);
6952 }
14f9c5c9
AS
6953
6954 return NULL;
6955}
6956
4c4b4cd2
PH
6957/* True iff field number FIELD_NUM of structure type TYPE contains the
6958 parent-type (inherited) fields of a derived type. Assumes TYPE is
6959 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6960
6961int
ebf56fd3 6962ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6963{
61ee279c 6964 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6965
4c4b4cd2 6966 return (name != NULL
61012eef
GB
6967 && (startswith (name, "PARENT")
6968 || startswith (name, "_parent")));
14f9c5c9
AS
6969}
6970
4c4b4cd2 6971/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6972 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6973 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6974 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6975 structures. */
14f9c5c9
AS
6976
6977int
ebf56fd3 6978ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6979{
d2e4a39e 6980 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6981
dddc0e16
JB
6982 if (name != NULL && strcmp (name, "RETVAL") == 0)
6983 {
6984 /* This happens in functions with "out" or "in out" parameters
6985 which are passed by copy. For such functions, GNAT describes
6986 the function's return type as being a struct where the return
6987 value is in a field called RETVAL, and where the other "out"
6988 or "in out" parameters are fields of that struct. This is not
6989 a wrapper. */
6990 return 0;
6991 }
6992
d2e4a39e 6993 return (name != NULL
61012eef 6994 && (startswith (name, "PARENT")
4c4b4cd2 6995 || strcmp (name, "REP") == 0
61012eef 6996 || startswith (name, "_parent")
4c4b4cd2 6997 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6998}
6999
4c4b4cd2
PH
7000/* True iff field number FIELD_NUM of structure or union type TYPE
7001 is a variant wrapper. Assumes TYPE is a structure type with at least
7002 FIELD_NUM+1 fields. */
14f9c5c9
AS
7003
7004int
ebf56fd3 7005ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7006{
d2e4a39e 7007 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7008
14f9c5c9 7009 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7010 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7011 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7012 == TYPE_CODE_UNION)));
14f9c5c9
AS
7013}
7014
7015/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7016 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7017 returns the type of the controlling discriminant for the variant.
7018 May return NULL if the type could not be found. */
14f9c5c9 7019
d2e4a39e 7020struct type *
ebf56fd3 7021ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7022{
a121b7c1 7023 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7024
988f6b3d 7025 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7026}
7027
4c4b4cd2 7028/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7029 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7030 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7031
7032int
ebf56fd3 7033ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7034{
d2e4a39e 7035 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7036
14f9c5c9
AS
7037 return (name != NULL && name[0] == 'O');
7038}
7039
7040/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7041 returns the name of the discriminant controlling the variant.
7042 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7043
a121b7c1 7044const char *
ebf56fd3 7045ada_variant_discrim_name (struct type *type0)
14f9c5c9 7046{
d2e4a39e 7047 static char *result = NULL;
14f9c5c9 7048 static size_t result_len = 0;
d2e4a39e
AS
7049 struct type *type;
7050 const char *name;
7051 const char *discrim_end;
7052 const char *discrim_start;
14f9c5c9
AS
7053
7054 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7055 type = TYPE_TARGET_TYPE (type0);
7056 else
7057 type = type0;
7058
7059 name = ada_type_name (type);
7060
7061 if (name == NULL || name[0] == '\000')
7062 return "";
7063
7064 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7065 discrim_end -= 1)
7066 {
61012eef 7067 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7068 break;
14f9c5c9
AS
7069 }
7070 if (discrim_end == name)
7071 return "";
7072
d2e4a39e 7073 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7074 discrim_start -= 1)
7075 {
d2e4a39e 7076 if (discrim_start == name + 1)
4c4b4cd2 7077 return "";
76a01679 7078 if ((discrim_start > name + 3
61012eef 7079 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7080 || discrim_start[-1] == '.')
7081 break;
14f9c5c9
AS
7082 }
7083
7084 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7085 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7086 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7087 return result;
7088}
7089
4c4b4cd2
PH
7090/* Scan STR for a subtype-encoded number, beginning at position K.
7091 Put the position of the character just past the number scanned in
7092 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7093 Return 1 if there was a valid number at the given position, and 0
7094 otherwise. A "subtype-encoded" number consists of the absolute value
7095 in decimal, followed by the letter 'm' to indicate a negative number.
7096 Assumes 0m does not occur. */
14f9c5c9
AS
7097
7098int
d2e4a39e 7099ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7100{
7101 ULONGEST RU;
7102
d2e4a39e 7103 if (!isdigit (str[k]))
14f9c5c9
AS
7104 return 0;
7105
4c4b4cd2 7106 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7107 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7108 LONGEST. */
14f9c5c9
AS
7109 RU = 0;
7110 while (isdigit (str[k]))
7111 {
d2e4a39e 7112 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7113 k += 1;
7114 }
7115
d2e4a39e 7116 if (str[k] == 'm')
14f9c5c9
AS
7117 {
7118 if (R != NULL)
4c4b4cd2 7119 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7120 k += 1;
7121 }
7122 else if (R != NULL)
7123 *R = (LONGEST) RU;
7124
4c4b4cd2 7125 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7126 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7127 number representable as a LONGEST (although either would probably work
7128 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7129 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7130
7131 if (new_k != NULL)
7132 *new_k = k;
7133 return 1;
7134}
7135
4c4b4cd2
PH
7136/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7137 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7138 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7139
d2e4a39e 7140int
ebf56fd3 7141ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7142{
d2e4a39e 7143 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7144 int p;
7145
7146 p = 0;
7147 while (1)
7148 {
d2e4a39e 7149 switch (name[p])
4c4b4cd2
PH
7150 {
7151 case '\0':
7152 return 0;
7153 case 'S':
7154 {
7155 LONGEST W;
5b4ee69b 7156
4c4b4cd2
PH
7157 if (!ada_scan_number (name, p + 1, &W, &p))
7158 return 0;
7159 if (val == W)
7160 return 1;
7161 break;
7162 }
7163 case 'R':
7164 {
7165 LONGEST L, U;
5b4ee69b 7166
4c4b4cd2
PH
7167 if (!ada_scan_number (name, p + 1, &L, &p)
7168 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7169 return 0;
7170 if (val >= L && val <= U)
7171 return 1;
7172 break;
7173 }
7174 case 'O':
7175 return 1;
7176 default:
7177 return 0;
7178 }
7179 }
7180}
7181
0963b4bd 7182/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7183
7184/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7185 ARG_TYPE, extract and return the value of one of its (non-static)
7186 fields. FIELDNO says which field. Differs from value_primitive_field
7187 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7188
4c4b4cd2 7189static struct value *
d2e4a39e 7190ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7191 struct type *arg_type)
14f9c5c9 7192{
14f9c5c9
AS
7193 struct type *type;
7194
61ee279c 7195 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7196 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7197
4c4b4cd2 7198 /* Handle packed fields. */
14f9c5c9
AS
7199
7200 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7201 {
7202 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7203 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7204
0fd88904 7205 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7206 offset + bit_pos / 8,
7207 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7208 }
7209 else
7210 return value_primitive_field (arg1, offset, fieldno, arg_type);
7211}
7212
52ce6436
PH
7213/* Find field with name NAME in object of type TYPE. If found,
7214 set the following for each argument that is non-null:
7215 - *FIELD_TYPE_P to the field's type;
7216 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7217 an object of that type;
7218 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7219 - *BIT_SIZE_P to its size in bits if the field is packed, and
7220 0 otherwise;
7221 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7222 fields up to but not including the desired field, or by the total
7223 number of fields if not found. A NULL value of NAME never
7224 matches; the function just counts visible fields in this case.
7225
828d5846
XR
7226 Notice that we need to handle when a tagged record hierarchy
7227 has some components with the same name, like in this scenario:
7228
7229 type Top_T is tagged record
7230 N : Integer := 1;
7231 U : Integer := 974;
7232 A : Integer := 48;
7233 end record;
7234
7235 type Middle_T is new Top.Top_T with record
7236 N : Character := 'a';
7237 C : Integer := 3;
7238 end record;
7239
7240 type Bottom_T is new Middle.Middle_T with record
7241 N : Float := 4.0;
7242 C : Character := '5';
7243 X : Integer := 6;
7244 A : Character := 'J';
7245 end record;
7246
7247 Let's say we now have a variable declared and initialized as follow:
7248
7249 TC : Top_A := new Bottom_T;
7250
7251 And then we use this variable to call this function
7252
7253 procedure Assign (Obj: in out Top_T; TV : Integer);
7254
7255 as follow:
7256
7257 Assign (Top_T (B), 12);
7258
7259 Now, we're in the debugger, and we're inside that procedure
7260 then and we want to print the value of obj.c:
7261
7262 Usually, the tagged record or one of the parent type owns the
7263 component to print and there's no issue but in this particular
7264 case, what does it mean to ask for Obj.C? Since the actual
7265 type for object is type Bottom_T, it could mean two things: type
7266 component C from the Middle_T view, but also component C from
7267 Bottom_T. So in that "undefined" case, when the component is
7268 not found in the non-resolved type (which includes all the
7269 components of the parent type), then resolve it and see if we
7270 get better luck once expanded.
7271
7272 In the case of homonyms in the derived tagged type, we don't
7273 guaranty anything, and pick the one that's easiest for us
7274 to program.
7275
0963b4bd 7276 Returns 1 if found, 0 otherwise. */
52ce6436 7277
4c4b4cd2 7278static int
0d5cff50 7279find_struct_field (const char *name, struct type *type, int offset,
76a01679 7280 struct type **field_type_p,
52ce6436
PH
7281 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7282 int *index_p)
4c4b4cd2
PH
7283{
7284 int i;
828d5846 7285 int parent_offset = -1;
4c4b4cd2 7286
61ee279c 7287 type = ada_check_typedef (type);
76a01679 7288
52ce6436
PH
7289 if (field_type_p != NULL)
7290 *field_type_p = NULL;
7291 if (byte_offset_p != NULL)
d5d6fca5 7292 *byte_offset_p = 0;
52ce6436
PH
7293 if (bit_offset_p != NULL)
7294 *bit_offset_p = 0;
7295 if (bit_size_p != NULL)
7296 *bit_size_p = 0;
7297
7298 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7299 {
7300 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7301 int fld_offset = offset + bit_pos / 8;
0d5cff50 7302 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7303
4c4b4cd2
PH
7304 if (t_field_name == NULL)
7305 continue;
7306
828d5846
XR
7307 else if (ada_is_parent_field (type, i))
7308 {
7309 /* This is a field pointing us to the parent type of a tagged
7310 type. As hinted in this function's documentation, we give
7311 preference to fields in the current record first, so what
7312 we do here is just record the index of this field before
7313 we skip it. If it turns out we couldn't find our field
7314 in the current record, then we'll get back to it and search
7315 inside it whether the field might exist in the parent. */
7316
7317 parent_offset = i;
7318 continue;
7319 }
7320
52ce6436 7321 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7322 {
7323 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7324
52ce6436
PH
7325 if (field_type_p != NULL)
7326 *field_type_p = TYPE_FIELD_TYPE (type, i);
7327 if (byte_offset_p != NULL)
7328 *byte_offset_p = fld_offset;
7329 if (bit_offset_p != NULL)
7330 *bit_offset_p = bit_pos % 8;
7331 if (bit_size_p != NULL)
7332 *bit_size_p = bit_size;
76a01679
JB
7333 return 1;
7334 }
4c4b4cd2
PH
7335 else if (ada_is_wrapper_field (type, i))
7336 {
52ce6436
PH
7337 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7338 field_type_p, byte_offset_p, bit_offset_p,
7339 bit_size_p, index_p))
76a01679
JB
7340 return 1;
7341 }
4c4b4cd2
PH
7342 else if (ada_is_variant_part (type, i))
7343 {
52ce6436
PH
7344 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7345 fixed type?? */
4c4b4cd2 7346 int j;
52ce6436
PH
7347 struct type *field_type
7348 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7349
52ce6436 7350 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7351 {
76a01679
JB
7352 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7353 fld_offset
7354 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7355 field_type_p, byte_offset_p,
52ce6436 7356 bit_offset_p, bit_size_p, index_p))
76a01679 7357 return 1;
4c4b4cd2
PH
7358 }
7359 }
52ce6436
PH
7360 else if (index_p != NULL)
7361 *index_p += 1;
4c4b4cd2 7362 }
828d5846
XR
7363
7364 /* Field not found so far. If this is a tagged type which
7365 has a parent, try finding that field in the parent now. */
7366
7367 if (parent_offset != -1)
7368 {
7369 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7370 int fld_offset = offset + bit_pos / 8;
7371
7372 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7373 fld_offset, field_type_p, byte_offset_p,
7374 bit_offset_p, bit_size_p, index_p))
7375 return 1;
7376 }
7377
4c4b4cd2
PH
7378 return 0;
7379}
7380
0963b4bd 7381/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7382
52ce6436
PH
7383static int
7384num_visible_fields (struct type *type)
7385{
7386 int n;
5b4ee69b 7387
52ce6436
PH
7388 n = 0;
7389 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7390 return n;
7391}
14f9c5c9 7392
4c4b4cd2 7393/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7394 and search in it assuming it has (class) type TYPE.
7395 If found, return value, else return NULL.
7396
828d5846
XR
7397 Searches recursively through wrapper fields (e.g., '_parent').
7398
7399 In the case of homonyms in the tagged types, please refer to the
7400 long explanation in find_struct_field's function documentation. */
14f9c5c9 7401
4c4b4cd2 7402static struct value *
108d56a4 7403ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7404 struct type *type)
14f9c5c9
AS
7405{
7406 int i;
828d5846 7407 int parent_offset = -1;
14f9c5c9 7408
5b4ee69b 7409 type = ada_check_typedef (type);
52ce6436 7410 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7411 {
0d5cff50 7412 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7413
7414 if (t_field_name == NULL)
4c4b4cd2 7415 continue;
14f9c5c9 7416
828d5846
XR
7417 else if (ada_is_parent_field (type, i))
7418 {
7419 /* This is a field pointing us to the parent type of a tagged
7420 type. As hinted in this function's documentation, we give
7421 preference to fields in the current record first, so what
7422 we do here is just record the index of this field before
7423 we skip it. If it turns out we couldn't find our field
7424 in the current record, then we'll get back to it and search
7425 inside it whether the field might exist in the parent. */
7426
7427 parent_offset = i;
7428 continue;
7429 }
7430
14f9c5c9 7431 else if (field_name_match (t_field_name, name))
4c4b4cd2 7432 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7433
7434 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7435 {
0963b4bd 7436 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7437 ada_search_struct_field (name, arg,
7438 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7439 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7440
4c4b4cd2
PH
7441 if (v != NULL)
7442 return v;
7443 }
14f9c5c9
AS
7444
7445 else if (ada_is_variant_part (type, i))
4c4b4cd2 7446 {
0963b4bd 7447 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7448 int j;
5b4ee69b
MS
7449 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7450 i));
4c4b4cd2
PH
7451 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7452
52ce6436 7453 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7454 {
0963b4bd
MS
7455 struct value *v = ada_search_struct_field /* Force line
7456 break. */
06d5cf63
JB
7457 (name, arg,
7458 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7459 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7460
4c4b4cd2
PH
7461 if (v != NULL)
7462 return v;
7463 }
7464 }
14f9c5c9 7465 }
828d5846
XR
7466
7467 /* Field not found so far. If this is a tagged type which
7468 has a parent, try finding that field in the parent now. */
7469
7470 if (parent_offset != -1)
7471 {
7472 struct value *v = ada_search_struct_field (
7473 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7474 TYPE_FIELD_TYPE (type, parent_offset));
7475
7476 if (v != NULL)
7477 return v;
7478 }
7479
14f9c5c9
AS
7480 return NULL;
7481}
d2e4a39e 7482
52ce6436
PH
7483static struct value *ada_index_struct_field_1 (int *, struct value *,
7484 int, struct type *);
7485
7486
7487/* Return field #INDEX in ARG, where the index is that returned by
7488 * find_struct_field through its INDEX_P argument. Adjust the address
7489 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7490 * If found, return value, else return NULL. */
52ce6436
PH
7491
7492static struct value *
7493ada_index_struct_field (int index, struct value *arg, int offset,
7494 struct type *type)
7495{
7496 return ada_index_struct_field_1 (&index, arg, offset, type);
7497}
7498
7499
7500/* Auxiliary function for ada_index_struct_field. Like
7501 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7502 * *INDEX_P. */
52ce6436
PH
7503
7504static struct value *
7505ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7506 struct type *type)
7507{
7508 int i;
7509 type = ada_check_typedef (type);
7510
7511 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7512 {
7513 if (TYPE_FIELD_NAME (type, i) == NULL)
7514 continue;
7515 else if (ada_is_wrapper_field (type, i))
7516 {
0963b4bd 7517 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7518 ada_index_struct_field_1 (index_p, arg,
7519 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7520 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7521
52ce6436
PH
7522 if (v != NULL)
7523 return v;
7524 }
7525
7526 else if (ada_is_variant_part (type, i))
7527 {
7528 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7529 find_struct_field. */
52ce6436
PH
7530 error (_("Cannot assign this kind of variant record"));
7531 }
7532 else if (*index_p == 0)
7533 return ada_value_primitive_field (arg, offset, i, type);
7534 else
7535 *index_p -= 1;
7536 }
7537 return NULL;
7538}
7539
4c4b4cd2
PH
7540/* Given ARG, a value of type (pointer or reference to a)*
7541 structure/union, extract the component named NAME from the ultimate
7542 target structure/union and return it as a value with its
f5938064 7543 appropriate type.
14f9c5c9 7544
4c4b4cd2
PH
7545 The routine searches for NAME among all members of the structure itself
7546 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7547 (e.g., '_parent').
7548
03ee6b2e
PH
7549 If NO_ERR, then simply return NULL in case of error, rather than
7550 calling error. */
14f9c5c9 7551
d2e4a39e 7552struct value *
a121b7c1 7553ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7554{
4c4b4cd2 7555 struct type *t, *t1;
d2e4a39e 7556 struct value *v;
1f5d1570 7557 int check_tag;
14f9c5c9 7558
4c4b4cd2 7559 v = NULL;
df407dfe 7560 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7561 if (TYPE_CODE (t) == TYPE_CODE_REF)
7562 {
7563 t1 = TYPE_TARGET_TYPE (t);
7564 if (t1 == NULL)
03ee6b2e 7565 goto BadValue;
61ee279c 7566 t1 = ada_check_typedef (t1);
4c4b4cd2 7567 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7568 {
994b9211 7569 arg = coerce_ref (arg);
76a01679
JB
7570 t = t1;
7571 }
4c4b4cd2 7572 }
14f9c5c9 7573
4c4b4cd2
PH
7574 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7575 {
7576 t1 = TYPE_TARGET_TYPE (t);
7577 if (t1 == NULL)
03ee6b2e 7578 goto BadValue;
61ee279c 7579 t1 = ada_check_typedef (t1);
4c4b4cd2 7580 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7581 {
7582 arg = value_ind (arg);
7583 t = t1;
7584 }
4c4b4cd2 7585 else
76a01679 7586 break;
4c4b4cd2 7587 }
14f9c5c9 7588
4c4b4cd2 7589 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7590 goto BadValue;
14f9c5c9 7591
4c4b4cd2
PH
7592 if (t1 == t)
7593 v = ada_search_struct_field (name, arg, 0, t);
7594 else
7595 {
7596 int bit_offset, bit_size, byte_offset;
7597 struct type *field_type;
7598 CORE_ADDR address;
7599
76a01679 7600 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7601 address = value_address (ada_value_ind (arg));
4c4b4cd2 7602 else
b50d69b5 7603 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7604
828d5846
XR
7605 /* Check to see if this is a tagged type. We also need to handle
7606 the case where the type is a reference to a tagged type, but
7607 we have to be careful to exclude pointers to tagged types.
7608 The latter should be shown as usual (as a pointer), whereas
7609 a reference should mostly be transparent to the user. */
7610
7611 if (ada_is_tagged_type (t1, 0)
7612 || (TYPE_CODE (t1) == TYPE_CODE_REF
7613 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7614 {
7615 /* We first try to find the searched field in the current type.
7616 If not found then let's look in the fixed type. */
7617
7618 if (!find_struct_field (name, t1, 0,
7619 &field_type, &byte_offset, &bit_offset,
7620 &bit_size, NULL))
1f5d1570
JG
7621 check_tag = 1;
7622 else
7623 check_tag = 0;
828d5846
XR
7624 }
7625 else
1f5d1570
JG
7626 check_tag = 0;
7627
7628 /* Convert to fixed type in all cases, so that we have proper
7629 offsets to each field in unconstrained record types. */
7630 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7631 address, NULL, check_tag);
828d5846 7632
76a01679
JB
7633 if (find_struct_field (name, t1, 0,
7634 &field_type, &byte_offset, &bit_offset,
52ce6436 7635 &bit_size, NULL))
76a01679
JB
7636 {
7637 if (bit_size != 0)
7638 {
714e53ab
PH
7639 if (TYPE_CODE (t) == TYPE_CODE_REF)
7640 arg = ada_coerce_ref (arg);
7641 else
7642 arg = ada_value_ind (arg);
76a01679
JB
7643 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7644 bit_offset, bit_size,
7645 field_type);
7646 }
7647 else
f5938064 7648 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7649 }
7650 }
7651
03ee6b2e
PH
7652 if (v != NULL || no_err)
7653 return v;
7654 else
323e0a4a 7655 error (_("There is no member named %s."), name);
14f9c5c9 7656
03ee6b2e
PH
7657 BadValue:
7658 if (no_err)
7659 return NULL;
7660 else
0963b4bd
MS
7661 error (_("Attempt to extract a component of "
7662 "a value that is not a record."));
14f9c5c9
AS
7663}
7664
3b4de39c 7665/* Return a string representation of type TYPE. */
99bbb428 7666
3b4de39c 7667static std::string
99bbb428
PA
7668type_as_string (struct type *type)
7669{
d7e74731 7670 string_file tmp_stream;
99bbb428 7671
d7e74731 7672 type_print (type, "", &tmp_stream, -1);
99bbb428 7673
d7e74731 7674 return std::move (tmp_stream.string ());
99bbb428
PA
7675}
7676
14f9c5c9 7677/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7678 If DISPP is non-null, add its byte displacement from the beginning of a
7679 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7680 work for packed fields).
7681
7682 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7683 followed by "___".
14f9c5c9 7684
0963b4bd 7685 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7686 be a (pointer or reference)+ to a struct or union, and the
7687 ultimate target type will be searched.
14f9c5c9
AS
7688
7689 Looks recursively into variant clauses and parent types.
7690
828d5846
XR
7691 In the case of homonyms in the tagged types, please refer to the
7692 long explanation in find_struct_field's function documentation.
7693
4c4b4cd2
PH
7694 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7695 TYPE is not a type of the right kind. */
14f9c5c9 7696
4c4b4cd2 7697static struct type *
a121b7c1 7698ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7699 int noerr)
14f9c5c9
AS
7700{
7701 int i;
828d5846 7702 int parent_offset = -1;
14f9c5c9
AS
7703
7704 if (name == NULL)
7705 goto BadName;
7706
76a01679 7707 if (refok && type != NULL)
4c4b4cd2
PH
7708 while (1)
7709 {
61ee279c 7710 type = ada_check_typedef (type);
76a01679
JB
7711 if (TYPE_CODE (type) != TYPE_CODE_PTR
7712 && TYPE_CODE (type) != TYPE_CODE_REF)
7713 break;
7714 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7715 }
14f9c5c9 7716
76a01679 7717 if (type == NULL
1265e4aa
JB
7718 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7719 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7720 {
4c4b4cd2 7721 if (noerr)
76a01679 7722 return NULL;
99bbb428 7723
3b4de39c
PA
7724 error (_("Type %s is not a structure or union type"),
7725 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7726 }
7727
7728 type = to_static_fixed_type (type);
7729
7730 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7731 {
0d5cff50 7732 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7733 struct type *t;
d2e4a39e 7734
14f9c5c9 7735 if (t_field_name == NULL)
4c4b4cd2 7736 continue;
14f9c5c9 7737
828d5846
XR
7738 else if (ada_is_parent_field (type, i))
7739 {
7740 /* This is a field pointing us to the parent type of a tagged
7741 type. As hinted in this function's documentation, we give
7742 preference to fields in the current record first, so what
7743 we do here is just record the index of this field before
7744 we skip it. If it turns out we couldn't find our field
7745 in the current record, then we'll get back to it and search
7746 inside it whether the field might exist in the parent. */
7747
7748 parent_offset = i;
7749 continue;
7750 }
7751
14f9c5c9 7752 else if (field_name_match (t_field_name, name))
988f6b3d 7753 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7754
7755 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7756 {
4c4b4cd2 7757 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7758 0, 1);
4c4b4cd2 7759 if (t != NULL)
988f6b3d 7760 return t;
4c4b4cd2 7761 }
14f9c5c9
AS
7762
7763 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7764 {
7765 int j;
5b4ee69b
MS
7766 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7767 i));
4c4b4cd2
PH
7768
7769 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7770 {
b1f33ddd
JB
7771 /* FIXME pnh 2008/01/26: We check for a field that is
7772 NOT wrapped in a struct, since the compiler sometimes
7773 generates these for unchecked variant types. Revisit
0963b4bd 7774 if the compiler changes this practice. */
0d5cff50 7775 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7776
b1f33ddd
JB
7777 if (v_field_name != NULL
7778 && field_name_match (v_field_name, name))
460efde1 7779 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7780 else
0963b4bd
MS
7781 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7782 j),
988f6b3d 7783 name, 0, 1);
b1f33ddd 7784
4c4b4cd2 7785 if (t != NULL)
988f6b3d 7786 return t;
4c4b4cd2
PH
7787 }
7788 }
14f9c5c9
AS
7789
7790 }
7791
828d5846
XR
7792 /* Field not found so far. If this is a tagged type which
7793 has a parent, try finding that field in the parent now. */
7794
7795 if (parent_offset != -1)
7796 {
7797 struct type *t;
7798
7799 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7800 name, 0, 1);
7801 if (t != NULL)
7802 return t;
7803 }
7804
14f9c5c9 7805BadName:
d2e4a39e 7806 if (!noerr)
14f9c5c9 7807 {
2b2798cc 7808 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7809
7810 error (_("Type %s has no component named %s"),
3b4de39c 7811 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7812 }
7813
7814 return NULL;
7815}
7816
b1f33ddd
JB
7817/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7818 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7819 represents an unchecked union (that is, the variant part of a
0963b4bd 7820 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7821
7822static int
7823is_unchecked_variant (struct type *var_type, struct type *outer_type)
7824{
a121b7c1 7825 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7826
988f6b3d 7827 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7828}
7829
7830
14f9c5c9
AS
7831/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7832 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7833 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7834 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7835
d2e4a39e 7836int
ebf56fd3 7837ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7838 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7839{
7840 int others_clause;
7841 int i;
a121b7c1 7842 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7843 struct value *outer;
7844 struct value *discrim;
14f9c5c9
AS
7845 LONGEST discrim_val;
7846
012370f6
TT
7847 /* Using plain value_from_contents_and_address here causes problems
7848 because we will end up trying to resolve a type that is currently
7849 being constructed. */
7850 outer = value_from_contents_and_address_unresolved (outer_type,
7851 outer_valaddr, 0);
0c281816
JB
7852 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7853 if (discrim == NULL)
14f9c5c9 7854 return -1;
0c281816 7855 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7856
7857 others_clause = -1;
7858 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7859 {
7860 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7861 others_clause = i;
14f9c5c9 7862 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7863 return i;
14f9c5c9
AS
7864 }
7865
7866 return others_clause;
7867}
d2e4a39e 7868\f
14f9c5c9
AS
7869
7870
4c4b4cd2 7871 /* Dynamic-Sized Records */
14f9c5c9
AS
7872
7873/* Strategy: The type ostensibly attached to a value with dynamic size
7874 (i.e., a size that is not statically recorded in the debugging
7875 data) does not accurately reflect the size or layout of the value.
7876 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7877 conventional types that are constructed on the fly. */
14f9c5c9
AS
7878
7879/* There is a subtle and tricky problem here. In general, we cannot
7880 determine the size of dynamic records without its data. However,
7881 the 'struct value' data structure, which GDB uses to represent
7882 quantities in the inferior process (the target), requires the size
7883 of the type at the time of its allocation in order to reserve space
7884 for GDB's internal copy of the data. That's why the
7885 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7886 rather than struct value*s.
14f9c5c9
AS
7887
7888 However, GDB's internal history variables ($1, $2, etc.) are
7889 struct value*s containing internal copies of the data that are not, in
7890 general, the same as the data at their corresponding addresses in
7891 the target. Fortunately, the types we give to these values are all
7892 conventional, fixed-size types (as per the strategy described
7893 above), so that we don't usually have to perform the
7894 'to_fixed_xxx_type' conversions to look at their values.
7895 Unfortunately, there is one exception: if one of the internal
7896 history variables is an array whose elements are unconstrained
7897 records, then we will need to create distinct fixed types for each
7898 element selected. */
7899
7900/* The upshot of all of this is that many routines take a (type, host
7901 address, target address) triple as arguments to represent a value.
7902 The host address, if non-null, is supposed to contain an internal
7903 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7904 target at the target address. */
14f9c5c9
AS
7905
7906/* Assuming that VAL0 represents a pointer value, the result of
7907 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7908 dynamic-sized types. */
14f9c5c9 7909
d2e4a39e
AS
7910struct value *
7911ada_value_ind (struct value *val0)
14f9c5c9 7912{
c48db5ca 7913 struct value *val = value_ind (val0);
5b4ee69b 7914
b50d69b5
JG
7915 if (ada_is_tagged_type (value_type (val), 0))
7916 val = ada_tag_value_at_base_address (val);
7917
4c4b4cd2 7918 return ada_to_fixed_value (val);
14f9c5c9
AS
7919}
7920
7921/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7922 qualifiers on VAL0. */
7923
d2e4a39e
AS
7924static struct value *
7925ada_coerce_ref (struct value *val0)
7926{
df407dfe 7927 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7928 {
7929 struct value *val = val0;
5b4ee69b 7930
994b9211 7931 val = coerce_ref (val);
b50d69b5
JG
7932
7933 if (ada_is_tagged_type (value_type (val), 0))
7934 val = ada_tag_value_at_base_address (val);
7935
4c4b4cd2 7936 return ada_to_fixed_value (val);
d2e4a39e
AS
7937 }
7938 else
14f9c5c9
AS
7939 return val0;
7940}
7941
7942/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7943 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7944
7945static unsigned int
ebf56fd3 7946align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7947{
7948 return (off + alignment - 1) & ~(alignment - 1);
7949}
7950
4c4b4cd2 7951/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7952
7953static unsigned int
ebf56fd3 7954field_alignment (struct type *type, int f)
14f9c5c9 7955{
d2e4a39e 7956 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7957 int len;
14f9c5c9
AS
7958 int align_offset;
7959
64a1bf19
JB
7960 /* The field name should never be null, unless the debugging information
7961 is somehow malformed. In this case, we assume the field does not
7962 require any alignment. */
7963 if (name == NULL)
7964 return 1;
7965
7966 len = strlen (name);
7967
4c4b4cd2
PH
7968 if (!isdigit (name[len - 1]))
7969 return 1;
14f9c5c9 7970
d2e4a39e 7971 if (isdigit (name[len - 2]))
14f9c5c9
AS
7972 align_offset = len - 2;
7973 else
7974 align_offset = len - 1;
7975
61012eef 7976 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7977 return TARGET_CHAR_BIT;
7978
4c4b4cd2
PH
7979 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7980}
7981
852dff6c 7982/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7983
852dff6c
JB
7984static struct symbol *
7985ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7986{
7987 struct symbol *sym;
7988
7989 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7990 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7991 return sym;
7992
4186eb54
KS
7993 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7994 return sym;
14f9c5c9
AS
7995}
7996
dddfab26
UW
7997/* Find a type named NAME. Ignores ambiguity. This routine will look
7998 solely for types defined by debug info, it will not search the GDB
7999 primitive types. */
4c4b4cd2 8000
852dff6c 8001static struct type *
ebf56fd3 8002ada_find_any_type (const char *name)
14f9c5c9 8003{
852dff6c 8004 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 8005
14f9c5c9 8006 if (sym != NULL)
dddfab26 8007 return SYMBOL_TYPE (sym);
14f9c5c9 8008
dddfab26 8009 return NULL;
14f9c5c9
AS
8010}
8011
739593e0
JB
8012/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8013 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8014 symbol, in which case it is returned. Otherwise, this looks for
8015 symbols whose name is that of NAME_SYM suffixed with "___XR".
8016 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8017
8018struct symbol *
270140bd 8019ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8020{
739593e0 8021 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8022 struct symbol *sym;
8023
739593e0
JB
8024 if (strstr (name, "___XR") != NULL)
8025 return name_sym;
8026
aeb5907d
JB
8027 sym = find_old_style_renaming_symbol (name, block);
8028
8029 if (sym != NULL)
8030 return sym;
8031
0963b4bd 8032 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8033 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8034 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8035 return sym;
8036 else
8037 return NULL;
8038}
8039
8040static struct symbol *
270140bd 8041find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8042{
7f0df278 8043 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8044 char *rename;
8045
8046 if (function_sym != NULL)
8047 {
8048 /* If the symbol is defined inside a function, NAME is not fully
8049 qualified. This means we need to prepend the function name
8050 as well as adding the ``___XR'' suffix to build the name of
8051 the associated renaming symbol. */
0d5cff50 8052 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8053 /* Function names sometimes contain suffixes used
8054 for instance to qualify nested subprograms. When building
8055 the XR type name, we need to make sure that this suffix is
8056 not included. So do not include any suffix in the function
8057 name length below. */
69fadcdf 8058 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8059 const int rename_len = function_name_len + 2 /* "__" */
8060 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8061
529cad9c 8062 /* Strip the suffix if necessary. */
69fadcdf
JB
8063 ada_remove_trailing_digits (function_name, &function_name_len);
8064 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8065 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8066
4c4b4cd2
PH
8067 /* Library-level functions are a special case, as GNAT adds
8068 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8069 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8070 have this prefix, so we need to skip this prefix if present. */
8071 if (function_name_len > 5 /* "_ada_" */
8072 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8073 {
8074 function_name += 5;
8075 function_name_len -= 5;
8076 }
4c4b4cd2
PH
8077
8078 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8079 strncpy (rename, function_name, function_name_len);
8080 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8081 "__%s___XR", name);
4c4b4cd2
PH
8082 }
8083 else
8084 {
8085 const int rename_len = strlen (name) + 6;
5b4ee69b 8086
4c4b4cd2 8087 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8088 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8089 }
8090
852dff6c 8091 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8092}
8093
14f9c5c9 8094/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8095 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8096 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8097 otherwise return 0. */
8098
14f9c5c9 8099int
d2e4a39e 8100ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8101{
8102 if (type1 == NULL)
8103 return 1;
8104 else if (type0 == NULL)
8105 return 0;
8106 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8107 return 1;
8108 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8109 return 0;
4c4b4cd2
PH
8110 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8111 return 1;
ad82864c 8112 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8113 return 1;
4c4b4cd2
PH
8114 else if (ada_is_array_descriptor_type (type0)
8115 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8116 return 1;
aeb5907d
JB
8117 else
8118 {
a737d952
TT
8119 const char *type0_name = TYPE_NAME (type0);
8120 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8121
8122 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8123 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8124 return 1;
8125 }
14f9c5c9
AS
8126 return 0;
8127}
8128
e86ca25f
TT
8129/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8130 null. */
4c4b4cd2 8131
0d5cff50 8132const char *
d2e4a39e 8133ada_type_name (struct type *type)
14f9c5c9 8134{
d2e4a39e 8135 if (type == NULL)
14f9c5c9 8136 return NULL;
e86ca25f 8137 return TYPE_NAME (type);
14f9c5c9
AS
8138}
8139
b4ba55a1
JB
8140/* Search the list of "descriptive" types associated to TYPE for a type
8141 whose name is NAME. */
8142
8143static struct type *
8144find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8145{
931e5bc3 8146 struct type *result, *tmp;
b4ba55a1 8147
c6044dd1
JB
8148 if (ada_ignore_descriptive_types_p)
8149 return NULL;
8150
b4ba55a1
JB
8151 /* If there no descriptive-type info, then there is no parallel type
8152 to be found. */
8153 if (!HAVE_GNAT_AUX_INFO (type))
8154 return NULL;
8155
8156 result = TYPE_DESCRIPTIVE_TYPE (type);
8157 while (result != NULL)
8158 {
0d5cff50 8159 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8160
8161 if (result_name == NULL)
8162 {
8163 warning (_("unexpected null name on descriptive type"));
8164 return NULL;
8165 }
8166
8167 /* If the names match, stop. */
8168 if (strcmp (result_name, name) == 0)
8169 break;
8170
8171 /* Otherwise, look at the next item on the list, if any. */
8172 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8173 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8174 else
8175 tmp = NULL;
8176
8177 /* If not found either, try after having resolved the typedef. */
8178 if (tmp != NULL)
8179 result = tmp;
b4ba55a1 8180 else
931e5bc3 8181 {
f168693b 8182 result = check_typedef (result);
931e5bc3
JG
8183 if (HAVE_GNAT_AUX_INFO (result))
8184 result = TYPE_DESCRIPTIVE_TYPE (result);
8185 else
8186 result = NULL;
8187 }
b4ba55a1
JB
8188 }
8189
8190 /* If we didn't find a match, see whether this is a packed array. With
8191 older compilers, the descriptive type information is either absent or
8192 irrelevant when it comes to packed arrays so the above lookup fails.
8193 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8194 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8195 return ada_find_any_type (name);
8196
8197 return result;
8198}
8199
8200/* Find a parallel type to TYPE with the specified NAME, using the
8201 descriptive type taken from the debugging information, if available,
8202 and otherwise using the (slower) name-based method. */
8203
8204static struct type *
8205ada_find_parallel_type_with_name (struct type *type, const char *name)
8206{
8207 struct type *result = NULL;
8208
8209 if (HAVE_GNAT_AUX_INFO (type))
8210 result = find_parallel_type_by_descriptive_type (type, name);
8211 else
8212 result = ada_find_any_type (name);
8213
8214 return result;
8215}
8216
8217/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8218 SUFFIX to the name of TYPE. */
14f9c5c9 8219
d2e4a39e 8220struct type *
ebf56fd3 8221ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8222{
0d5cff50 8223 char *name;
fe978cb0 8224 const char *type_name = ada_type_name (type);
14f9c5c9 8225 int len;
d2e4a39e 8226
fe978cb0 8227 if (type_name == NULL)
14f9c5c9
AS
8228 return NULL;
8229
fe978cb0 8230 len = strlen (type_name);
14f9c5c9 8231
b4ba55a1 8232 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8233
fe978cb0 8234 strcpy (name, type_name);
14f9c5c9
AS
8235 strcpy (name + len, suffix);
8236
b4ba55a1 8237 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8238}
8239
14f9c5c9 8240/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8241 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8242
d2e4a39e
AS
8243static struct type *
8244dynamic_template_type (struct type *type)
14f9c5c9 8245{
61ee279c 8246 type = ada_check_typedef (type);
14f9c5c9
AS
8247
8248 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8249 || ada_type_name (type) == NULL)
14f9c5c9 8250 return NULL;
d2e4a39e 8251 else
14f9c5c9
AS
8252 {
8253 int len = strlen (ada_type_name (type));
5b4ee69b 8254
4c4b4cd2
PH
8255 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8256 return type;
14f9c5c9 8257 else
4c4b4cd2 8258 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8259 }
8260}
8261
8262/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8263 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8264
d2e4a39e
AS
8265static int
8266is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8267{
8268 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8269
d2e4a39e 8270 return name != NULL
14f9c5c9
AS
8271 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8272 && strstr (name, "___XVL") != NULL;
8273}
8274
4c4b4cd2
PH
8275/* The index of the variant field of TYPE, or -1 if TYPE does not
8276 represent a variant record type. */
14f9c5c9 8277
d2e4a39e 8278static int
4c4b4cd2 8279variant_field_index (struct type *type)
14f9c5c9
AS
8280{
8281 int f;
8282
4c4b4cd2
PH
8283 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8284 return -1;
8285
8286 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8287 {
8288 if (ada_is_variant_part (type, f))
8289 return f;
8290 }
8291 return -1;
14f9c5c9
AS
8292}
8293
4c4b4cd2
PH
8294/* A record type with no fields. */
8295
d2e4a39e 8296static struct type *
fe978cb0 8297empty_record (struct type *templ)
14f9c5c9 8298{
fe978cb0 8299 struct type *type = alloc_type_copy (templ);
5b4ee69b 8300
14f9c5c9
AS
8301 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8302 TYPE_NFIELDS (type) = 0;
8303 TYPE_FIELDS (type) = NULL;
b1f33ddd 8304 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8305 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8306 TYPE_LENGTH (type) = 0;
8307 return type;
8308}
8309
8310/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8311 the value of type TYPE at VALADDR or ADDRESS (see comments at
8312 the beginning of this section) VAL according to GNAT conventions.
8313 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8314 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8315 an outer-level type (i.e., as opposed to a branch of a variant.) A
8316 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8317 of the variant.
14f9c5c9 8318
4c4b4cd2
PH
8319 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8320 length are not statically known are discarded. As a consequence,
8321 VALADDR, ADDRESS and DVAL0 are ignored.
8322
8323 NOTE: Limitations: For now, we assume that dynamic fields and
8324 variants occupy whole numbers of bytes. However, they need not be
8325 byte-aligned. */
8326
8327struct type *
10a2c479 8328ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8329 const gdb_byte *valaddr,
4c4b4cd2
PH
8330 CORE_ADDR address, struct value *dval0,
8331 int keep_dynamic_fields)
14f9c5c9 8332{
d2e4a39e
AS
8333 struct value *mark = value_mark ();
8334 struct value *dval;
8335 struct type *rtype;
14f9c5c9 8336 int nfields, bit_len;
4c4b4cd2 8337 int variant_field;
14f9c5c9 8338 long off;
d94e4f4f 8339 int fld_bit_len;
14f9c5c9
AS
8340 int f;
8341
4c4b4cd2
PH
8342 /* Compute the number of fields in this record type that are going
8343 to be processed: unless keep_dynamic_fields, this includes only
8344 fields whose position and length are static will be processed. */
8345 if (keep_dynamic_fields)
8346 nfields = TYPE_NFIELDS (type);
8347 else
8348 {
8349 nfields = 0;
76a01679 8350 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8351 && !ada_is_variant_part (type, nfields)
8352 && !is_dynamic_field (type, nfields))
8353 nfields++;
8354 }
8355
e9bb382b 8356 rtype = alloc_type_copy (type);
14f9c5c9
AS
8357 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8358 INIT_CPLUS_SPECIFIC (rtype);
8359 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8360 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8361 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8362 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8363 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8364 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8365
d2e4a39e
AS
8366 off = 0;
8367 bit_len = 0;
4c4b4cd2
PH
8368 variant_field = -1;
8369
14f9c5c9
AS
8370 for (f = 0; f < nfields; f += 1)
8371 {
6c038f32
PH
8372 off = align_value (off, field_alignment (type, f))
8373 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8374 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8375 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8376
d2e4a39e 8377 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8378 {
8379 variant_field = f;
d94e4f4f 8380 fld_bit_len = 0;
4c4b4cd2 8381 }
14f9c5c9 8382 else if (is_dynamic_field (type, f))
4c4b4cd2 8383 {
284614f0
JB
8384 const gdb_byte *field_valaddr = valaddr;
8385 CORE_ADDR field_address = address;
8386 struct type *field_type =
8387 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8388
4c4b4cd2 8389 if (dval0 == NULL)
b5304971
JG
8390 {
8391 /* rtype's length is computed based on the run-time
8392 value of discriminants. If the discriminants are not
8393 initialized, the type size may be completely bogus and
0963b4bd 8394 GDB may fail to allocate a value for it. So check the
b5304971 8395 size first before creating the value. */
c1b5a1a6 8396 ada_ensure_varsize_limit (rtype);
012370f6
TT
8397 /* Using plain value_from_contents_and_address here
8398 causes problems because we will end up trying to
8399 resolve a type that is currently being
8400 constructed. */
8401 dval = value_from_contents_and_address_unresolved (rtype,
8402 valaddr,
8403 address);
9f1f738a 8404 rtype = value_type (dval);
b5304971 8405 }
4c4b4cd2
PH
8406 else
8407 dval = dval0;
8408
284614f0
JB
8409 /* If the type referenced by this field is an aligner type, we need
8410 to unwrap that aligner type, because its size might not be set.
8411 Keeping the aligner type would cause us to compute the wrong
8412 size for this field, impacting the offset of the all the fields
8413 that follow this one. */
8414 if (ada_is_aligner_type (field_type))
8415 {
8416 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8417
8418 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8419 field_address = cond_offset_target (field_address, field_offset);
8420 field_type = ada_aligned_type (field_type);
8421 }
8422
8423 field_valaddr = cond_offset_host (field_valaddr,
8424 off / TARGET_CHAR_BIT);
8425 field_address = cond_offset_target (field_address,
8426 off / TARGET_CHAR_BIT);
8427
8428 /* Get the fixed type of the field. Note that, in this case,
8429 we do not want to get the real type out of the tag: if
8430 the current field is the parent part of a tagged record,
8431 we will get the tag of the object. Clearly wrong: the real
8432 type of the parent is not the real type of the child. We
8433 would end up in an infinite loop. */
8434 field_type = ada_get_base_type (field_type);
8435 field_type = ada_to_fixed_type (field_type, field_valaddr,
8436 field_address, dval, 0);
27f2a97b
JB
8437 /* If the field size is already larger than the maximum
8438 object size, then the record itself will necessarily
8439 be larger than the maximum object size. We need to make
8440 this check now, because the size might be so ridiculously
8441 large (due to an uninitialized variable in the inferior)
8442 that it would cause an overflow when adding it to the
8443 record size. */
c1b5a1a6 8444 ada_ensure_varsize_limit (field_type);
284614f0
JB
8445
8446 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8447 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8448 /* The multiplication can potentially overflow. But because
8449 the field length has been size-checked just above, and
8450 assuming that the maximum size is a reasonable value,
8451 an overflow should not happen in practice. So rather than
8452 adding overflow recovery code to this already complex code,
8453 we just assume that it's not going to happen. */
d94e4f4f 8454 fld_bit_len =
4c4b4cd2
PH
8455 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8456 }
14f9c5c9 8457 else
4c4b4cd2 8458 {
5ded5331
JB
8459 /* Note: If this field's type is a typedef, it is important
8460 to preserve the typedef layer.
8461
8462 Otherwise, we might be transforming a typedef to a fat
8463 pointer (encoding a pointer to an unconstrained array),
8464 into a basic fat pointer (encoding an unconstrained
8465 array). As both types are implemented using the same
8466 structure, the typedef is the only clue which allows us
8467 to distinguish between the two options. Stripping it
8468 would prevent us from printing this field appropriately. */
8469 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8470 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8471 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8472 fld_bit_len =
4c4b4cd2
PH
8473 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8474 else
5ded5331
JB
8475 {
8476 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8477
8478 /* We need to be careful of typedefs when computing
8479 the length of our field. If this is a typedef,
8480 get the length of the target type, not the length
8481 of the typedef. */
8482 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8483 field_type = ada_typedef_target_type (field_type);
8484
8485 fld_bit_len =
8486 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8487 }
4c4b4cd2 8488 }
14f9c5c9 8489 if (off + fld_bit_len > bit_len)
4c4b4cd2 8490 bit_len = off + fld_bit_len;
d94e4f4f 8491 off += fld_bit_len;
4c4b4cd2
PH
8492 TYPE_LENGTH (rtype) =
8493 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8494 }
4c4b4cd2
PH
8495
8496 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8497 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8498 the record. This can happen in the presence of representation
8499 clauses. */
8500 if (variant_field >= 0)
8501 {
8502 struct type *branch_type;
8503
8504 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8505
8506 if (dval0 == NULL)
9f1f738a 8507 {
012370f6
TT
8508 /* Using plain value_from_contents_and_address here causes
8509 problems because we will end up trying to resolve a type
8510 that is currently being constructed. */
8511 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8512 address);
9f1f738a
SA
8513 rtype = value_type (dval);
8514 }
4c4b4cd2
PH
8515 else
8516 dval = dval0;
8517
8518 branch_type =
8519 to_fixed_variant_branch_type
8520 (TYPE_FIELD_TYPE (type, variant_field),
8521 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8522 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8523 if (branch_type == NULL)
8524 {
8525 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8526 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8527 TYPE_NFIELDS (rtype) -= 1;
8528 }
8529 else
8530 {
8531 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8532 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8533 fld_bit_len =
8534 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8535 TARGET_CHAR_BIT;
8536 if (off + fld_bit_len > bit_len)
8537 bit_len = off + fld_bit_len;
8538 TYPE_LENGTH (rtype) =
8539 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8540 }
8541 }
8542
714e53ab
PH
8543 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8544 should contain the alignment of that record, which should be a strictly
8545 positive value. If null or negative, then something is wrong, most
8546 probably in the debug info. In that case, we don't round up the size
0963b4bd 8547 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8548 the current RTYPE length might be good enough for our purposes. */
8549 if (TYPE_LENGTH (type) <= 0)
8550 {
323e0a4a
AC
8551 if (TYPE_NAME (rtype))
8552 warning (_("Invalid type size for `%s' detected: %d."),
8553 TYPE_NAME (rtype), TYPE_LENGTH (type));
8554 else
8555 warning (_("Invalid type size for <unnamed> detected: %d."),
8556 TYPE_LENGTH (type));
714e53ab
PH
8557 }
8558 else
8559 {
8560 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8561 TYPE_LENGTH (type));
8562 }
14f9c5c9
AS
8563
8564 value_free_to_mark (mark);
d2e4a39e 8565 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8566 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8567 return rtype;
8568}
8569
4c4b4cd2
PH
8570/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8571 of 1. */
14f9c5c9 8572
d2e4a39e 8573static struct type *
fc1a4b47 8574template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8575 CORE_ADDR address, struct value *dval0)
8576{
8577 return ada_template_to_fixed_record_type_1 (type, valaddr,
8578 address, dval0, 1);
8579}
8580
8581/* An ordinary record type in which ___XVL-convention fields and
8582 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8583 static approximations, containing all possible fields. Uses
8584 no runtime values. Useless for use in values, but that's OK,
8585 since the results are used only for type determinations. Works on both
8586 structs and unions. Representation note: to save space, we memorize
8587 the result of this function in the TYPE_TARGET_TYPE of the
8588 template type. */
8589
8590static struct type *
8591template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8592{
8593 struct type *type;
8594 int nfields;
8595 int f;
8596
9e195661
PMR
8597 /* No need no do anything if the input type is already fixed. */
8598 if (TYPE_FIXED_INSTANCE (type0))
8599 return type0;
8600
8601 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8602 if (TYPE_TARGET_TYPE (type0) != NULL)
8603 return TYPE_TARGET_TYPE (type0);
8604
9e195661 8605 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8606 type = type0;
9e195661
PMR
8607 nfields = TYPE_NFIELDS (type0);
8608
8609 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8610 recompute all over next time. */
8611 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8612
8613 for (f = 0; f < nfields; f += 1)
8614 {
460efde1 8615 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8616 struct type *new_type;
14f9c5c9 8617
4c4b4cd2 8618 if (is_dynamic_field (type0, f))
460efde1
JB
8619 {
8620 field_type = ada_check_typedef (field_type);
8621 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8622 }
14f9c5c9 8623 else
f192137b 8624 new_type = static_unwrap_type (field_type);
9e195661
PMR
8625
8626 if (new_type != field_type)
8627 {
8628 /* Clone TYPE0 only the first time we get a new field type. */
8629 if (type == type0)
8630 {
8631 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8632 TYPE_CODE (type) = TYPE_CODE (type0);
8633 INIT_CPLUS_SPECIFIC (type);
8634 TYPE_NFIELDS (type) = nfields;
8635 TYPE_FIELDS (type) = (struct field *)
8636 TYPE_ALLOC (type, nfields * sizeof (struct field));
8637 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8638 sizeof (struct field) * nfields);
8639 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8640 TYPE_FIXED_INSTANCE (type) = 1;
8641 TYPE_LENGTH (type) = 0;
8642 }
8643 TYPE_FIELD_TYPE (type, f) = new_type;
8644 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8645 }
14f9c5c9 8646 }
9e195661 8647
14f9c5c9
AS
8648 return type;
8649}
8650
4c4b4cd2 8651/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8652 whose address in memory is ADDRESS, returns a revision of TYPE,
8653 which should be a non-dynamic-sized record, in which the variant
8654 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8655 for discriminant values in DVAL0, which can be NULL if the record
8656 contains the necessary discriminant values. */
8657
d2e4a39e 8658static struct type *
fc1a4b47 8659to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8660 CORE_ADDR address, struct value *dval0)
14f9c5c9 8661{
d2e4a39e 8662 struct value *mark = value_mark ();
4c4b4cd2 8663 struct value *dval;
d2e4a39e 8664 struct type *rtype;
14f9c5c9
AS
8665 struct type *branch_type;
8666 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8667 int variant_field = variant_field_index (type);
14f9c5c9 8668
4c4b4cd2 8669 if (variant_field == -1)
14f9c5c9
AS
8670 return type;
8671
4c4b4cd2 8672 if (dval0 == NULL)
9f1f738a
SA
8673 {
8674 dval = value_from_contents_and_address (type, valaddr, address);
8675 type = value_type (dval);
8676 }
4c4b4cd2
PH
8677 else
8678 dval = dval0;
8679
e9bb382b 8680 rtype = alloc_type_copy (type);
14f9c5c9 8681 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8682 INIT_CPLUS_SPECIFIC (rtype);
8683 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8684 TYPE_FIELDS (rtype) =
8685 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8686 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8687 sizeof (struct field) * nfields);
14f9c5c9 8688 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8689 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8690 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8691
4c4b4cd2
PH
8692 branch_type = to_fixed_variant_branch_type
8693 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8694 cond_offset_host (valaddr,
4c4b4cd2
PH
8695 TYPE_FIELD_BITPOS (type, variant_field)
8696 / TARGET_CHAR_BIT),
d2e4a39e 8697 cond_offset_target (address,
4c4b4cd2
PH
8698 TYPE_FIELD_BITPOS (type, variant_field)
8699 / TARGET_CHAR_BIT), dval);
d2e4a39e 8700 if (branch_type == NULL)
14f9c5c9 8701 {
4c4b4cd2 8702 int f;
5b4ee69b 8703
4c4b4cd2
PH
8704 for (f = variant_field + 1; f < nfields; f += 1)
8705 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8706 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8707 }
8708 else
8709 {
4c4b4cd2
PH
8710 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8711 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8712 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8713 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8714 }
4c4b4cd2 8715 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8716
4c4b4cd2 8717 value_free_to_mark (mark);
14f9c5c9
AS
8718 return rtype;
8719}
8720
8721/* An ordinary record type (with fixed-length fields) that describes
8722 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8723 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8724 should be in DVAL, a record value; it may be NULL if the object
8725 at ADDR itself contains any necessary discriminant values.
8726 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8727 values from the record are needed. Except in the case that DVAL,
8728 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8729 unchecked) is replaced by a particular branch of the variant.
8730
8731 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8732 is questionable and may be removed. It can arise during the
8733 processing of an unconstrained-array-of-record type where all the
8734 variant branches have exactly the same size. This is because in
8735 such cases, the compiler does not bother to use the XVS convention
8736 when encoding the record. I am currently dubious of this
8737 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8738
d2e4a39e 8739static struct type *
fc1a4b47 8740to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8741 CORE_ADDR address, struct value *dval)
14f9c5c9 8742{
d2e4a39e 8743 struct type *templ_type;
14f9c5c9 8744
876cecd0 8745 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8746 return type0;
8747
d2e4a39e 8748 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8749
8750 if (templ_type != NULL)
8751 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8752 else if (variant_field_index (type0) >= 0)
8753 {
8754 if (dval == NULL && valaddr == NULL && address == 0)
8755 return type0;
8756 return to_record_with_fixed_variant_part (type0, valaddr, address,
8757 dval);
8758 }
14f9c5c9
AS
8759 else
8760 {
876cecd0 8761 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8762 return type0;
8763 }
8764
8765}
8766
8767/* An ordinary record type (with fixed-length fields) that describes
8768 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8769 union type. Any necessary discriminants' values should be in DVAL,
8770 a record value. That is, this routine selects the appropriate
8771 branch of the union at ADDR according to the discriminant value
b1f33ddd 8772 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8773 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8774
d2e4a39e 8775static struct type *
fc1a4b47 8776to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8777 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8778{
8779 int which;
d2e4a39e
AS
8780 struct type *templ_type;
8781 struct type *var_type;
14f9c5c9
AS
8782
8783 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8784 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8785 else
14f9c5c9
AS
8786 var_type = var_type0;
8787
8788 templ_type = ada_find_parallel_type (var_type, "___XVU");
8789
8790 if (templ_type != NULL)
8791 var_type = templ_type;
8792
b1f33ddd
JB
8793 if (is_unchecked_variant (var_type, value_type (dval)))
8794 return var_type0;
d2e4a39e
AS
8795 which =
8796 ada_which_variant_applies (var_type,
0fd88904 8797 value_type (dval), value_contents (dval));
14f9c5c9
AS
8798
8799 if (which < 0)
e9bb382b 8800 return empty_record (var_type);
14f9c5c9 8801 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8802 return to_fixed_record_type
d2e4a39e
AS
8803 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8804 valaddr, address, dval);
4c4b4cd2 8805 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8806 return
8807 to_fixed_record_type
8808 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8809 else
8810 return TYPE_FIELD_TYPE (var_type, which);
8811}
8812
8908fca5
JB
8813/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8814 ENCODING_TYPE, a type following the GNAT conventions for discrete
8815 type encodings, only carries redundant information. */
8816
8817static int
8818ada_is_redundant_range_encoding (struct type *range_type,
8819 struct type *encoding_type)
8820{
108d56a4 8821 const char *bounds_str;
8908fca5
JB
8822 int n;
8823 LONGEST lo, hi;
8824
8825 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8826
005e2509
JB
8827 if (TYPE_CODE (get_base_type (range_type))
8828 != TYPE_CODE (get_base_type (encoding_type)))
8829 {
8830 /* The compiler probably used a simple base type to describe
8831 the range type instead of the range's actual base type,
8832 expecting us to get the real base type from the encoding
8833 anyway. In this situation, the encoding cannot be ignored
8834 as redundant. */
8835 return 0;
8836 }
8837
8908fca5
JB
8838 if (is_dynamic_type (range_type))
8839 return 0;
8840
8841 if (TYPE_NAME (encoding_type) == NULL)
8842 return 0;
8843
8844 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8845 if (bounds_str == NULL)
8846 return 0;
8847
8848 n = 8; /* Skip "___XDLU_". */
8849 if (!ada_scan_number (bounds_str, n, &lo, &n))
8850 return 0;
8851 if (TYPE_LOW_BOUND (range_type) != lo)
8852 return 0;
8853
8854 n += 2; /* Skip the "__" separator between the two bounds. */
8855 if (!ada_scan_number (bounds_str, n, &hi, &n))
8856 return 0;
8857 if (TYPE_HIGH_BOUND (range_type) != hi)
8858 return 0;
8859
8860 return 1;
8861}
8862
8863/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8864 a type following the GNAT encoding for describing array type
8865 indices, only carries redundant information. */
8866
8867static int
8868ada_is_redundant_index_type_desc (struct type *array_type,
8869 struct type *desc_type)
8870{
8871 struct type *this_layer = check_typedef (array_type);
8872 int i;
8873
8874 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8875 {
8876 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8877 TYPE_FIELD_TYPE (desc_type, i)))
8878 return 0;
8879 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8880 }
8881
8882 return 1;
8883}
8884
14f9c5c9
AS
8885/* Assuming that TYPE0 is an array type describing the type of a value
8886 at ADDR, and that DVAL describes a record containing any
8887 discriminants used in TYPE0, returns a type for the value that
8888 contains no dynamic components (that is, no components whose sizes
8889 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8890 true, gives an error message if the resulting type's size is over
4c4b4cd2 8891 varsize_limit. */
14f9c5c9 8892
d2e4a39e
AS
8893static struct type *
8894to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8895 int ignore_too_big)
14f9c5c9 8896{
d2e4a39e
AS
8897 struct type *index_type_desc;
8898 struct type *result;
ad82864c 8899 int constrained_packed_array_p;
931e5bc3 8900 static const char *xa_suffix = "___XA";
14f9c5c9 8901
b0dd7688 8902 type0 = ada_check_typedef (type0);
284614f0 8903 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8904 return type0;
14f9c5c9 8905
ad82864c
JB
8906 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8907 if (constrained_packed_array_p)
8908 type0 = decode_constrained_packed_array_type (type0);
284614f0 8909
931e5bc3
JG
8910 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8911
8912 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8913 encoding suffixed with 'P' may still be generated. If so,
8914 it should be used to find the XA type. */
8915
8916 if (index_type_desc == NULL)
8917 {
1da0522e 8918 const char *type_name = ada_type_name (type0);
931e5bc3 8919
1da0522e 8920 if (type_name != NULL)
931e5bc3 8921 {
1da0522e 8922 const int len = strlen (type_name);
931e5bc3
JG
8923 char *name = (char *) alloca (len + strlen (xa_suffix));
8924
1da0522e 8925 if (type_name[len - 1] == 'P')
931e5bc3 8926 {
1da0522e 8927 strcpy (name, type_name);
931e5bc3
JG
8928 strcpy (name + len - 1, xa_suffix);
8929 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8930 }
8931 }
8932 }
8933
28c85d6c 8934 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8935 if (index_type_desc != NULL
8936 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8937 {
8938 /* Ignore this ___XA parallel type, as it does not bring any
8939 useful information. This allows us to avoid creating fixed
8940 versions of the array's index types, which would be identical
8941 to the original ones. This, in turn, can also help avoid
8942 the creation of fixed versions of the array itself. */
8943 index_type_desc = NULL;
8944 }
8945
14f9c5c9
AS
8946 if (index_type_desc == NULL)
8947 {
61ee279c 8948 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8949
14f9c5c9 8950 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8951 depend on the contents of the array in properly constructed
8952 debugging data. */
529cad9c
PH
8953 /* Create a fixed version of the array element type.
8954 We're not providing the address of an element here,
e1d5a0d2 8955 and thus the actual object value cannot be inspected to do
529cad9c
PH
8956 the conversion. This should not be a problem, since arrays of
8957 unconstrained objects are not allowed. In particular, all
8958 the elements of an array of a tagged type should all be of
8959 the same type specified in the debugging info. No need to
8960 consult the object tag. */
1ed6ede0 8961 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8962
284614f0
JB
8963 /* Make sure we always create a new array type when dealing with
8964 packed array types, since we're going to fix-up the array
8965 type length and element bitsize a little further down. */
ad82864c 8966 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8967 result = type0;
14f9c5c9 8968 else
e9bb382b 8969 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8970 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8971 }
8972 else
8973 {
8974 int i;
8975 struct type *elt_type0;
8976
8977 elt_type0 = type0;
8978 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8979 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8980
8981 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8982 depend on the contents of the array in properly constructed
8983 debugging data. */
529cad9c
PH
8984 /* Create a fixed version of the array element type.
8985 We're not providing the address of an element here,
e1d5a0d2 8986 and thus the actual object value cannot be inspected to do
529cad9c
PH
8987 the conversion. This should not be a problem, since arrays of
8988 unconstrained objects are not allowed. In particular, all
8989 the elements of an array of a tagged type should all be of
8990 the same type specified in the debugging info. No need to
8991 consult the object tag. */
1ed6ede0
JB
8992 result =
8993 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8994
8995 elt_type0 = type0;
14f9c5c9 8996 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8997 {
8998 struct type *range_type =
28c85d6c 8999 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 9000
e9bb382b 9001 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 9002 result, range_type);
1ce677a4 9003 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 9004 }
d2e4a39e 9005 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9006 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9007 }
9008
2e6fda7d
JB
9009 /* We want to preserve the type name. This can be useful when
9010 trying to get the type name of a value that has already been
9011 printed (for instance, if the user did "print VAR; whatis $". */
9012 TYPE_NAME (result) = TYPE_NAME (type0);
9013
ad82864c 9014 if (constrained_packed_array_p)
284614f0
JB
9015 {
9016 /* So far, the resulting type has been created as if the original
9017 type was a regular (non-packed) array type. As a result, the
9018 bitsize of the array elements needs to be set again, and the array
9019 length needs to be recomputed based on that bitsize. */
9020 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9021 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9022
9023 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9024 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9025 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9026 TYPE_LENGTH (result)++;
9027 }
9028
876cecd0 9029 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9030 return result;
d2e4a39e 9031}
14f9c5c9
AS
9032
9033
9034/* A standard type (containing no dynamically sized components)
9035 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9036 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9037 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9038 ADDRESS or in VALADDR contains these discriminants.
9039
1ed6ede0
JB
9040 If CHECK_TAG is not null, in the case of tagged types, this function
9041 attempts to locate the object's tag and use it to compute the actual
9042 type. However, when ADDRESS is null, we cannot use it to determine the
9043 location of the tag, and therefore compute the tagged type's actual type.
9044 So we return the tagged type without consulting the tag. */
529cad9c 9045
f192137b
JB
9046static struct type *
9047ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9048 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9049{
61ee279c 9050 type = ada_check_typedef (type);
d2e4a39e
AS
9051 switch (TYPE_CODE (type))
9052 {
9053 default:
14f9c5c9 9054 return type;
d2e4a39e 9055 case TYPE_CODE_STRUCT:
4c4b4cd2 9056 {
76a01679 9057 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9058 struct type *fixed_record_type =
9059 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9060
529cad9c
PH
9061 /* If STATIC_TYPE is a tagged type and we know the object's address,
9062 then we can determine its tag, and compute the object's actual
0963b4bd 9063 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9064 type (the parent part of the record may have dynamic fields
9065 and the way the location of _tag is expressed may depend on
9066 them). */
529cad9c 9067
1ed6ede0 9068 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9069 {
b50d69b5
JG
9070 struct value *tag =
9071 value_tag_from_contents_and_address
9072 (fixed_record_type,
9073 valaddr,
9074 address);
9075 struct type *real_type = type_from_tag (tag);
9076 struct value *obj =
9077 value_from_contents_and_address (fixed_record_type,
9078 valaddr,
9079 address);
9f1f738a 9080 fixed_record_type = value_type (obj);
76a01679 9081 if (real_type != NULL)
b50d69b5
JG
9082 return to_fixed_record_type
9083 (real_type, NULL,
9084 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9085 }
4af88198
JB
9086
9087 /* Check to see if there is a parallel ___XVZ variable.
9088 If there is, then it provides the actual size of our type. */
9089 else if (ada_type_name (fixed_record_type) != NULL)
9090 {
0d5cff50 9091 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9092 char *xvz_name
9093 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9094 bool xvz_found = false;
4af88198
JB
9095 LONGEST size;
9096
88c15c34 9097 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9098 TRY
9099 {
9100 xvz_found = get_int_var_value (xvz_name, size);
9101 }
9102 CATCH (except, RETURN_MASK_ERROR)
9103 {
9104 /* We found the variable, but somehow failed to read
9105 its value. Rethrow the same error, but with a little
9106 bit more information, to help the user understand
9107 what went wrong (Eg: the variable might have been
9108 optimized out). */
9109 throw_error (except.error,
9110 _("unable to read value of %s (%s)"),
9111 xvz_name, except.message);
9112 }
9113 END_CATCH
9114
9115 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9116 {
9117 fixed_record_type = copy_type (fixed_record_type);
9118 TYPE_LENGTH (fixed_record_type) = size;
9119
9120 /* The FIXED_RECORD_TYPE may have be a stub. We have
9121 observed this when the debugging info is STABS, and
9122 apparently it is something that is hard to fix.
9123
9124 In practice, we don't need the actual type definition
9125 at all, because the presence of the XVZ variable allows us
9126 to assume that there must be a XVS type as well, which we
9127 should be able to use later, when we need the actual type
9128 definition.
9129
9130 In the meantime, pretend that the "fixed" type we are
9131 returning is NOT a stub, because this can cause trouble
9132 when using this type to create new types targeting it.
9133 Indeed, the associated creation routines often check
9134 whether the target type is a stub and will try to replace
0963b4bd 9135 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9136 might cause the new type to have the wrong size too.
9137 Consider the case of an array, for instance, where the size
9138 of the array is computed from the number of elements in
9139 our array multiplied by the size of its element. */
9140 TYPE_STUB (fixed_record_type) = 0;
9141 }
9142 }
1ed6ede0 9143 return fixed_record_type;
4c4b4cd2 9144 }
d2e4a39e 9145 case TYPE_CODE_ARRAY:
4c4b4cd2 9146 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9147 case TYPE_CODE_UNION:
9148 if (dval == NULL)
4c4b4cd2 9149 return type;
d2e4a39e 9150 else
4c4b4cd2 9151 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9152 }
14f9c5c9
AS
9153}
9154
f192137b
JB
9155/* The same as ada_to_fixed_type_1, except that it preserves the type
9156 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9157
9158 The typedef layer needs be preserved in order to differentiate between
9159 arrays and array pointers when both types are implemented using the same
9160 fat pointer. In the array pointer case, the pointer is encoded as
9161 a typedef of the pointer type. For instance, considering:
9162
9163 type String_Access is access String;
9164 S1 : String_Access := null;
9165
9166 To the debugger, S1 is defined as a typedef of type String. But
9167 to the user, it is a pointer. So if the user tries to print S1,
9168 we should not dereference the array, but print the array address
9169 instead.
9170
9171 If we didn't preserve the typedef layer, we would lose the fact that
9172 the type is to be presented as a pointer (needs de-reference before
9173 being printed). And we would also use the source-level type name. */
f192137b
JB
9174
9175struct type *
9176ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9177 CORE_ADDR address, struct value *dval, int check_tag)
9178
9179{
9180 struct type *fixed_type =
9181 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9182
96dbd2c1
JB
9183 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9184 then preserve the typedef layer.
9185
9186 Implementation note: We can only check the main-type portion of
9187 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9188 from TYPE now returns a type that has the same instance flags
9189 as TYPE. For instance, if TYPE is a "typedef const", and its
9190 target type is a "struct", then the typedef elimination will return
9191 a "const" version of the target type. See check_typedef for more
9192 details about how the typedef layer elimination is done.
9193
9194 brobecker/2010-11-19: It seems to me that the only case where it is
9195 useful to preserve the typedef layer is when dealing with fat pointers.
9196 Perhaps, we could add a check for that and preserve the typedef layer
9197 only in that situation. But this seems unecessary so far, probably
9198 because we call check_typedef/ada_check_typedef pretty much everywhere.
9199 */
f192137b 9200 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9201 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9202 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9203 return type;
9204
9205 return fixed_type;
9206}
9207
14f9c5c9 9208/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9209 TYPE0, but based on no runtime data. */
14f9c5c9 9210
d2e4a39e
AS
9211static struct type *
9212to_static_fixed_type (struct type *type0)
14f9c5c9 9213{
d2e4a39e 9214 struct type *type;
14f9c5c9
AS
9215
9216 if (type0 == NULL)
9217 return NULL;
9218
876cecd0 9219 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9220 return type0;
9221
61ee279c 9222 type0 = ada_check_typedef (type0);
d2e4a39e 9223
14f9c5c9
AS
9224 switch (TYPE_CODE (type0))
9225 {
9226 default:
9227 return type0;
9228 case TYPE_CODE_STRUCT:
9229 type = dynamic_template_type (type0);
d2e4a39e 9230 if (type != NULL)
4c4b4cd2
PH
9231 return template_to_static_fixed_type (type);
9232 else
9233 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9234 case TYPE_CODE_UNION:
9235 type = ada_find_parallel_type (type0, "___XVU");
9236 if (type != NULL)
4c4b4cd2
PH
9237 return template_to_static_fixed_type (type);
9238 else
9239 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9240 }
9241}
9242
4c4b4cd2
PH
9243/* A static approximation of TYPE with all type wrappers removed. */
9244
d2e4a39e
AS
9245static struct type *
9246static_unwrap_type (struct type *type)
14f9c5c9
AS
9247{
9248 if (ada_is_aligner_type (type))
9249 {
61ee279c 9250 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9251 if (ada_type_name (type1) == NULL)
4c4b4cd2 9252 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9253
9254 return static_unwrap_type (type1);
9255 }
d2e4a39e 9256 else
14f9c5c9 9257 {
d2e4a39e 9258 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9259
d2e4a39e 9260 if (raw_real_type == type)
4c4b4cd2 9261 return type;
14f9c5c9 9262 else
4c4b4cd2 9263 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9264 }
9265}
9266
9267/* In some cases, incomplete and private types require
4c4b4cd2 9268 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9269 type Foo;
9270 type FooP is access Foo;
9271 V: FooP;
9272 type Foo is array ...;
4c4b4cd2 9273 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9274 cross-references to such types, we instead substitute for FooP a
9275 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9276 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9277
9278/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9279 exists, otherwise TYPE. */
9280
d2e4a39e 9281struct type *
61ee279c 9282ada_check_typedef (struct type *type)
14f9c5c9 9283{
727e3d2e
JB
9284 if (type == NULL)
9285 return NULL;
9286
736ade86
XR
9287 /* If our type is an access to an unconstrained array, which is encoded
9288 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9289 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9290 what allows us to distinguish between fat pointers that represent
9291 array types, and fat pointers that represent array access types
9292 (in both cases, the compiler implements them as fat pointers). */
736ade86 9293 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9294 return type;
9295
f168693b 9296 type = check_typedef (type);
14f9c5c9 9297 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9298 || !TYPE_STUB (type)
e86ca25f 9299 || TYPE_NAME (type) == NULL)
14f9c5c9 9300 return type;
d2e4a39e 9301 else
14f9c5c9 9302 {
e86ca25f 9303 const char *name = TYPE_NAME (type);
d2e4a39e 9304 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9305
05e522ef
JB
9306 if (type1 == NULL)
9307 return type;
9308
9309 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9310 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9311 types, only for the typedef-to-array types). If that's the case,
9312 strip the typedef layer. */
9313 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9314 type1 = ada_check_typedef (type1);
9315
9316 return type1;
14f9c5c9
AS
9317 }
9318}
9319
9320/* A value representing the data at VALADDR/ADDRESS as described by
9321 type TYPE0, but with a standard (static-sized) type that correctly
9322 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9323 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9324 creation of struct values]. */
14f9c5c9 9325
4c4b4cd2
PH
9326static struct value *
9327ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9328 struct value *val0)
14f9c5c9 9329{
1ed6ede0 9330 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9331
14f9c5c9
AS
9332 if (type == type0 && val0 != NULL)
9333 return val0;
cc0e770c
JB
9334
9335 if (VALUE_LVAL (val0) != lval_memory)
9336 {
9337 /* Our value does not live in memory; it could be a convenience
9338 variable, for instance. Create a not_lval value using val0's
9339 contents. */
9340 return value_from_contents (type, value_contents (val0));
9341 }
9342
9343 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9344}
9345
9346/* A value representing VAL, but with a standard (static-sized) type
9347 that correctly describes it. Does not necessarily create a new
9348 value. */
9349
0c3acc09 9350struct value *
4c4b4cd2
PH
9351ada_to_fixed_value (struct value *val)
9352{
c48db5ca 9353 val = unwrap_value (val);
d8ce9127 9354 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9355 return val;
14f9c5c9 9356}
d2e4a39e 9357\f
14f9c5c9 9358
14f9c5c9
AS
9359/* Attributes */
9360
4c4b4cd2
PH
9361/* Table mapping attribute numbers to names.
9362 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9363
d2e4a39e 9364static const char *attribute_names[] = {
14f9c5c9
AS
9365 "<?>",
9366
d2e4a39e 9367 "first",
14f9c5c9
AS
9368 "last",
9369 "length",
9370 "image",
14f9c5c9
AS
9371 "max",
9372 "min",
4c4b4cd2
PH
9373 "modulus",
9374 "pos",
9375 "size",
9376 "tag",
14f9c5c9 9377 "val",
14f9c5c9
AS
9378 0
9379};
9380
d2e4a39e 9381const char *
4c4b4cd2 9382ada_attribute_name (enum exp_opcode n)
14f9c5c9 9383{
4c4b4cd2
PH
9384 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9385 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9386 else
9387 return attribute_names[0];
9388}
9389
4c4b4cd2 9390/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9391
4c4b4cd2
PH
9392static LONGEST
9393pos_atr (struct value *arg)
14f9c5c9 9394{
24209737
PH
9395 struct value *val = coerce_ref (arg);
9396 struct type *type = value_type (val);
aa715135 9397 LONGEST result;
14f9c5c9 9398
d2e4a39e 9399 if (!discrete_type_p (type))
323e0a4a 9400 error (_("'POS only defined on discrete types"));
14f9c5c9 9401
aa715135
JG
9402 if (!discrete_position (type, value_as_long (val), &result))
9403 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9404
aa715135 9405 return result;
4c4b4cd2
PH
9406}
9407
9408static struct value *
3cb382c9 9409value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9410{
3cb382c9 9411 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9412}
9413
4c4b4cd2 9414/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9415
d2e4a39e
AS
9416static struct value *
9417value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9418{
d2e4a39e 9419 if (!discrete_type_p (type))
323e0a4a 9420 error (_("'VAL only defined on discrete types"));
df407dfe 9421 if (!integer_type_p (value_type (arg)))
323e0a4a 9422 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9423
9424 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9425 {
9426 long pos = value_as_long (arg);
5b4ee69b 9427
14f9c5c9 9428 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9429 error (_("argument to 'VAL out of range"));
14e75d8e 9430 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9431 }
9432 else
9433 return value_from_longest (type, value_as_long (arg));
9434}
14f9c5c9 9435\f
d2e4a39e 9436
4c4b4cd2 9437 /* Evaluation */
14f9c5c9 9438
4c4b4cd2
PH
9439/* True if TYPE appears to be an Ada character type.
9440 [At the moment, this is true only for Character and Wide_Character;
9441 It is a heuristic test that could stand improvement]. */
14f9c5c9 9442
d2e4a39e
AS
9443int
9444ada_is_character_type (struct type *type)
14f9c5c9 9445{
7b9f71f2
JB
9446 const char *name;
9447
9448 /* If the type code says it's a character, then assume it really is,
9449 and don't check any further. */
9450 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9451 return 1;
9452
9453 /* Otherwise, assume it's a character type iff it is a discrete type
9454 with a known character type name. */
9455 name = ada_type_name (type);
9456 return (name != NULL
9457 && (TYPE_CODE (type) == TYPE_CODE_INT
9458 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9459 && (strcmp (name, "character") == 0
9460 || strcmp (name, "wide_character") == 0
5a517ebd 9461 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9462 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9463}
9464
4c4b4cd2 9465/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9466
9467int
ebf56fd3 9468ada_is_string_type (struct type *type)
14f9c5c9 9469{
61ee279c 9470 type = ada_check_typedef (type);
d2e4a39e 9471 if (type != NULL
14f9c5c9 9472 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9473 && (ada_is_simple_array_type (type)
9474 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9475 && ada_array_arity (type) == 1)
9476 {
9477 struct type *elttype = ada_array_element_type (type, 1);
9478
9479 return ada_is_character_type (elttype);
9480 }
d2e4a39e 9481 else
14f9c5c9
AS
9482 return 0;
9483}
9484
5bf03f13
JB
9485/* The compiler sometimes provides a parallel XVS type for a given
9486 PAD type. Normally, it is safe to follow the PAD type directly,
9487 but older versions of the compiler have a bug that causes the offset
9488 of its "F" field to be wrong. Following that field in that case
9489 would lead to incorrect results, but this can be worked around
9490 by ignoring the PAD type and using the associated XVS type instead.
9491
9492 Set to True if the debugger should trust the contents of PAD types.
9493 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9494static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9495
9496/* True if TYPE is a struct type introduced by the compiler to force the
9497 alignment of a value. Such types have a single field with a
4c4b4cd2 9498 distinctive name. */
14f9c5c9
AS
9499
9500int
ebf56fd3 9501ada_is_aligner_type (struct type *type)
14f9c5c9 9502{
61ee279c 9503 type = ada_check_typedef (type);
714e53ab 9504
5bf03f13 9505 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9506 return 0;
9507
14f9c5c9 9508 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9509 && TYPE_NFIELDS (type) == 1
9510 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9511}
9512
9513/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9514 the parallel type. */
14f9c5c9 9515
d2e4a39e
AS
9516struct type *
9517ada_get_base_type (struct type *raw_type)
14f9c5c9 9518{
d2e4a39e
AS
9519 struct type *real_type_namer;
9520 struct type *raw_real_type;
14f9c5c9
AS
9521
9522 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9523 return raw_type;
9524
284614f0
JB
9525 if (ada_is_aligner_type (raw_type))
9526 /* The encoding specifies that we should always use the aligner type.
9527 So, even if this aligner type has an associated XVS type, we should
9528 simply ignore it.
9529
9530 According to the compiler gurus, an XVS type parallel to an aligner
9531 type may exist because of a stabs limitation. In stabs, aligner
9532 types are empty because the field has a variable-sized type, and
9533 thus cannot actually be used as an aligner type. As a result,
9534 we need the associated parallel XVS type to decode the type.
9535 Since the policy in the compiler is to not change the internal
9536 representation based on the debugging info format, we sometimes
9537 end up having a redundant XVS type parallel to the aligner type. */
9538 return raw_type;
9539
14f9c5c9 9540 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9541 if (real_type_namer == NULL
14f9c5c9
AS
9542 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9543 || TYPE_NFIELDS (real_type_namer) != 1)
9544 return raw_type;
9545
f80d3ff2
JB
9546 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9547 {
9548 /* This is an older encoding form where the base type needs to be
9549 looked up by name. We prefer the newer enconding because it is
9550 more efficient. */
9551 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9552 if (raw_real_type == NULL)
9553 return raw_type;
9554 else
9555 return raw_real_type;
9556 }
9557
9558 /* The field in our XVS type is a reference to the base type. */
9559 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9560}
14f9c5c9 9561
4c4b4cd2 9562/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9563
d2e4a39e
AS
9564struct type *
9565ada_aligned_type (struct type *type)
14f9c5c9
AS
9566{
9567 if (ada_is_aligner_type (type))
9568 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9569 else
9570 return ada_get_base_type (type);
9571}
9572
9573
9574/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9575 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9576
fc1a4b47
AC
9577const gdb_byte *
9578ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9579{
d2e4a39e 9580 if (ada_is_aligner_type (type))
14f9c5c9 9581 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9582 valaddr +
9583 TYPE_FIELD_BITPOS (type,
9584 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9585 else
9586 return valaddr;
9587}
9588
4c4b4cd2
PH
9589
9590
14f9c5c9 9591/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9592 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9593const char *
9594ada_enum_name (const char *name)
14f9c5c9 9595{
4c4b4cd2
PH
9596 static char *result;
9597 static size_t result_len = 0;
e6a959d6 9598 const char *tmp;
14f9c5c9 9599
4c4b4cd2
PH
9600 /* First, unqualify the enumeration name:
9601 1. Search for the last '.' character. If we find one, then skip
177b42fe 9602 all the preceding characters, the unqualified name starts
76a01679 9603 right after that dot.
4c4b4cd2 9604 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9605 translates dots into "__". Search forward for double underscores,
9606 but stop searching when we hit an overloading suffix, which is
9607 of the form "__" followed by digits. */
4c4b4cd2 9608
c3e5cd34
PH
9609 tmp = strrchr (name, '.');
9610 if (tmp != NULL)
4c4b4cd2
PH
9611 name = tmp + 1;
9612 else
14f9c5c9 9613 {
4c4b4cd2
PH
9614 while ((tmp = strstr (name, "__")) != NULL)
9615 {
9616 if (isdigit (tmp[2]))
9617 break;
9618 else
9619 name = tmp + 2;
9620 }
14f9c5c9
AS
9621 }
9622
9623 if (name[0] == 'Q')
9624 {
14f9c5c9 9625 int v;
5b4ee69b 9626
14f9c5c9 9627 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9628 {
9629 if (sscanf (name + 2, "%x", &v) != 1)
9630 return name;
9631 }
14f9c5c9 9632 else
4c4b4cd2 9633 return name;
14f9c5c9 9634
4c4b4cd2 9635 GROW_VECT (result, result_len, 16);
14f9c5c9 9636 if (isascii (v) && isprint (v))
88c15c34 9637 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9638 else if (name[1] == 'U')
88c15c34 9639 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9640 else
88c15c34 9641 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9642
9643 return result;
9644 }
d2e4a39e 9645 else
4c4b4cd2 9646 {
c3e5cd34
PH
9647 tmp = strstr (name, "__");
9648 if (tmp == NULL)
9649 tmp = strstr (name, "$");
9650 if (tmp != NULL)
4c4b4cd2
PH
9651 {
9652 GROW_VECT (result, result_len, tmp - name + 1);
9653 strncpy (result, name, tmp - name);
9654 result[tmp - name] = '\0';
9655 return result;
9656 }
9657
9658 return name;
9659 }
14f9c5c9
AS
9660}
9661
14f9c5c9
AS
9662/* Evaluate the subexpression of EXP starting at *POS as for
9663 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9664 expression. */
14f9c5c9 9665
d2e4a39e
AS
9666static struct value *
9667evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9668{
4b27a620 9669 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9670}
9671
9672/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9673 value it wraps. */
14f9c5c9 9674
d2e4a39e
AS
9675static struct value *
9676unwrap_value (struct value *val)
14f9c5c9 9677{
df407dfe 9678 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9679
14f9c5c9
AS
9680 if (ada_is_aligner_type (type))
9681 {
de4d072f 9682 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9683 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9684
14f9c5c9 9685 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9686 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9687
9688 return unwrap_value (v);
9689 }
d2e4a39e 9690 else
14f9c5c9 9691 {
d2e4a39e 9692 struct type *raw_real_type =
61ee279c 9693 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9694
5bf03f13
JB
9695 /* If there is no parallel XVS or XVE type, then the value is
9696 already unwrapped. Return it without further modification. */
9697 if ((type == raw_real_type)
9698 && ada_find_parallel_type (type, "___XVE") == NULL)
9699 return val;
14f9c5c9 9700
d2e4a39e 9701 return
4c4b4cd2
PH
9702 coerce_unspec_val_to_type
9703 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9704 value_address (val),
1ed6ede0 9705 NULL, 1));
14f9c5c9
AS
9706 }
9707}
d2e4a39e
AS
9708
9709static struct value *
50eff16b 9710cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9711{
50eff16b
UW
9712 struct value *scale = ada_scaling_factor (value_type (arg));
9713 arg = value_cast (value_type (scale), arg);
14f9c5c9 9714
50eff16b
UW
9715 arg = value_binop (arg, scale, BINOP_MUL);
9716 return value_cast (type, arg);
14f9c5c9
AS
9717}
9718
d2e4a39e 9719static struct value *
50eff16b 9720cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9721{
50eff16b
UW
9722 if (type == value_type (arg))
9723 return arg;
5b4ee69b 9724
50eff16b
UW
9725 struct value *scale = ada_scaling_factor (type);
9726 if (ada_is_fixed_point_type (value_type (arg)))
9727 arg = cast_from_fixed (value_type (scale), arg);
9728 else
9729 arg = value_cast (value_type (scale), arg);
9730
9731 arg = value_binop (arg, scale, BINOP_DIV);
9732 return value_cast (type, arg);
14f9c5c9
AS
9733}
9734
d99dcf51
JB
9735/* Given two array types T1 and T2, return nonzero iff both arrays
9736 contain the same number of elements. */
9737
9738static int
9739ada_same_array_size_p (struct type *t1, struct type *t2)
9740{
9741 LONGEST lo1, hi1, lo2, hi2;
9742
9743 /* Get the array bounds in order to verify that the size of
9744 the two arrays match. */
9745 if (!get_array_bounds (t1, &lo1, &hi1)
9746 || !get_array_bounds (t2, &lo2, &hi2))
9747 error (_("unable to determine array bounds"));
9748
9749 /* To make things easier for size comparison, normalize a bit
9750 the case of empty arrays by making sure that the difference
9751 between upper bound and lower bound is always -1. */
9752 if (lo1 > hi1)
9753 hi1 = lo1 - 1;
9754 if (lo2 > hi2)
9755 hi2 = lo2 - 1;
9756
9757 return (hi1 - lo1 == hi2 - lo2);
9758}
9759
9760/* Assuming that VAL is an array of integrals, and TYPE represents
9761 an array with the same number of elements, but with wider integral
9762 elements, return an array "casted" to TYPE. In practice, this
9763 means that the returned array is built by casting each element
9764 of the original array into TYPE's (wider) element type. */
9765
9766static struct value *
9767ada_promote_array_of_integrals (struct type *type, struct value *val)
9768{
9769 struct type *elt_type = TYPE_TARGET_TYPE (type);
9770 LONGEST lo, hi;
9771 struct value *res;
9772 LONGEST i;
9773
9774 /* Verify that both val and type are arrays of scalars, and
9775 that the size of val's elements is smaller than the size
9776 of type's element. */
9777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9778 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9779 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9780 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9781 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9782 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9783
9784 if (!get_array_bounds (type, &lo, &hi))
9785 error (_("unable to determine array bounds"));
9786
9787 res = allocate_value (type);
9788
9789 /* Promote each array element. */
9790 for (i = 0; i < hi - lo + 1; i++)
9791 {
9792 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9793
9794 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9795 value_contents_all (elt), TYPE_LENGTH (elt_type));
9796 }
9797
9798 return res;
9799}
9800
4c4b4cd2
PH
9801/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9802 return the converted value. */
9803
d2e4a39e
AS
9804static struct value *
9805coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9806{
df407dfe 9807 struct type *type2 = value_type (val);
5b4ee69b 9808
14f9c5c9
AS
9809 if (type == type2)
9810 return val;
9811
61ee279c
PH
9812 type2 = ada_check_typedef (type2);
9813 type = ada_check_typedef (type);
14f9c5c9 9814
d2e4a39e
AS
9815 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9816 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9817 {
9818 val = ada_value_ind (val);
df407dfe 9819 type2 = value_type (val);
14f9c5c9
AS
9820 }
9821
d2e4a39e 9822 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9823 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9824 {
d99dcf51
JB
9825 if (!ada_same_array_size_p (type, type2))
9826 error (_("cannot assign arrays of different length"));
9827
9828 if (is_integral_type (TYPE_TARGET_TYPE (type))
9829 && is_integral_type (TYPE_TARGET_TYPE (type2))
9830 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9831 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9832 {
9833 /* Allow implicit promotion of the array elements to
9834 a wider type. */
9835 return ada_promote_array_of_integrals (type, val);
9836 }
9837
9838 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9839 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9840 error (_("Incompatible types in assignment"));
04624583 9841 deprecated_set_value_type (val, type);
14f9c5c9 9842 }
d2e4a39e 9843 return val;
14f9c5c9
AS
9844}
9845
4c4b4cd2
PH
9846static struct value *
9847ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9848{
9849 struct value *val;
9850 struct type *type1, *type2;
9851 LONGEST v, v1, v2;
9852
994b9211
AC
9853 arg1 = coerce_ref (arg1);
9854 arg2 = coerce_ref (arg2);
18af8284
JB
9855 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9856 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9857
76a01679
JB
9858 if (TYPE_CODE (type1) != TYPE_CODE_INT
9859 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9860 return value_binop (arg1, arg2, op);
9861
76a01679 9862 switch (op)
4c4b4cd2
PH
9863 {
9864 case BINOP_MOD:
9865 case BINOP_DIV:
9866 case BINOP_REM:
9867 break;
9868 default:
9869 return value_binop (arg1, arg2, op);
9870 }
9871
9872 v2 = value_as_long (arg2);
9873 if (v2 == 0)
323e0a4a 9874 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9875
9876 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9877 return value_binop (arg1, arg2, op);
9878
9879 v1 = value_as_long (arg1);
9880 switch (op)
9881 {
9882 case BINOP_DIV:
9883 v = v1 / v2;
76a01679
JB
9884 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9885 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9886 break;
9887 case BINOP_REM:
9888 v = v1 % v2;
76a01679
JB
9889 if (v * v1 < 0)
9890 v -= v2;
4c4b4cd2
PH
9891 break;
9892 default:
9893 /* Should not reach this point. */
9894 v = 0;
9895 }
9896
9897 val = allocate_value (type1);
990a07ab 9898 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9899 TYPE_LENGTH (value_type (val)),
9900 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9901 return val;
9902}
9903
9904static int
9905ada_value_equal (struct value *arg1, struct value *arg2)
9906{
df407dfe
AC
9907 if (ada_is_direct_array_type (value_type (arg1))
9908 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9909 {
79e8fcaa
JB
9910 struct type *arg1_type, *arg2_type;
9911
f58b38bf
JB
9912 /* Automatically dereference any array reference before
9913 we attempt to perform the comparison. */
9914 arg1 = ada_coerce_ref (arg1);
9915 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9916
4c4b4cd2
PH
9917 arg1 = ada_coerce_to_simple_array (arg1);
9918 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9919
9920 arg1_type = ada_check_typedef (value_type (arg1));
9921 arg2_type = ada_check_typedef (value_type (arg2));
9922
9923 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9924 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9925 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9926 /* FIXME: The following works only for types whose
76a01679
JB
9927 representations use all bits (no padding or undefined bits)
9928 and do not have user-defined equality. */
79e8fcaa
JB
9929 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9930 && memcmp (value_contents (arg1), value_contents (arg2),
9931 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9932 }
9933 return value_equal (arg1, arg2);
9934}
9935
52ce6436
PH
9936/* Total number of component associations in the aggregate starting at
9937 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9938 OP_AGGREGATE. */
52ce6436
PH
9939
9940static int
9941num_component_specs (struct expression *exp, int pc)
9942{
9943 int n, m, i;
5b4ee69b 9944
52ce6436
PH
9945 m = exp->elts[pc + 1].longconst;
9946 pc += 3;
9947 n = 0;
9948 for (i = 0; i < m; i += 1)
9949 {
9950 switch (exp->elts[pc].opcode)
9951 {
9952 default:
9953 n += 1;
9954 break;
9955 case OP_CHOICES:
9956 n += exp->elts[pc + 1].longconst;
9957 break;
9958 }
9959 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9960 }
9961 return n;
9962}
9963
9964/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9965 component of LHS (a simple array or a record), updating *POS past
9966 the expression, assuming that LHS is contained in CONTAINER. Does
9967 not modify the inferior's memory, nor does it modify LHS (unless
9968 LHS == CONTAINER). */
9969
9970static void
9971assign_component (struct value *container, struct value *lhs, LONGEST index,
9972 struct expression *exp, int *pos)
9973{
9974 struct value *mark = value_mark ();
9975 struct value *elt;
0e2da9f0 9976 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9977
0e2da9f0 9978 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9979 {
22601c15
UW
9980 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9981 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9982
52ce6436
PH
9983 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9984 }
9985 else
9986 {
9987 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9988 elt = ada_to_fixed_value (elt);
52ce6436
PH
9989 }
9990
9991 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9992 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9993 else
9994 value_assign_to_component (container, elt,
9995 ada_evaluate_subexp (NULL, exp, pos,
9996 EVAL_NORMAL));
9997
9998 value_free_to_mark (mark);
9999}
10000
10001/* Assuming that LHS represents an lvalue having a record or array
10002 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10003 of that aggregate's value to LHS, advancing *POS past the
10004 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10005 lvalue containing LHS (possibly LHS itself). Does not modify
10006 the inferior's memory, nor does it modify the contents of
0963b4bd 10007 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10008
10009static struct value *
10010assign_aggregate (struct value *container,
10011 struct value *lhs, struct expression *exp,
10012 int *pos, enum noside noside)
10013{
10014 struct type *lhs_type;
10015 int n = exp->elts[*pos+1].longconst;
10016 LONGEST low_index, high_index;
10017 int num_specs;
10018 LONGEST *indices;
10019 int max_indices, num_indices;
52ce6436 10020 int i;
52ce6436
PH
10021
10022 *pos += 3;
10023 if (noside != EVAL_NORMAL)
10024 {
52ce6436
PH
10025 for (i = 0; i < n; i += 1)
10026 ada_evaluate_subexp (NULL, exp, pos, noside);
10027 return container;
10028 }
10029
10030 container = ada_coerce_ref (container);
10031 if (ada_is_direct_array_type (value_type (container)))
10032 container = ada_coerce_to_simple_array (container);
10033 lhs = ada_coerce_ref (lhs);
10034 if (!deprecated_value_modifiable (lhs))
10035 error (_("Left operand of assignment is not a modifiable lvalue."));
10036
0e2da9f0 10037 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10038 if (ada_is_direct_array_type (lhs_type))
10039 {
10040 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10041 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10042 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10043 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10044 }
10045 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10046 {
10047 low_index = 0;
10048 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10049 }
10050 else
10051 error (_("Left-hand side must be array or record."));
10052
10053 num_specs = num_component_specs (exp, *pos - 3);
10054 max_indices = 4 * num_specs + 4;
8d749320 10055 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10056 indices[0] = indices[1] = low_index - 1;
10057 indices[2] = indices[3] = high_index + 1;
10058 num_indices = 4;
10059
10060 for (i = 0; i < n; i += 1)
10061 {
10062 switch (exp->elts[*pos].opcode)
10063 {
1fbf5ada
JB
10064 case OP_CHOICES:
10065 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10066 &num_indices, max_indices,
10067 low_index, high_index);
10068 break;
10069 case OP_POSITIONAL:
10070 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10071 &num_indices, max_indices,
10072 low_index, high_index);
1fbf5ada
JB
10073 break;
10074 case OP_OTHERS:
10075 if (i != n-1)
10076 error (_("Misplaced 'others' clause"));
10077 aggregate_assign_others (container, lhs, exp, pos, indices,
10078 num_indices, low_index, high_index);
10079 break;
10080 default:
10081 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10082 }
10083 }
10084
10085 return container;
10086}
10087
10088/* Assign into the component of LHS indexed by the OP_POSITIONAL
10089 construct at *POS, updating *POS past the construct, given that
10090 the positions are relative to lower bound LOW, where HIGH is the
10091 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10092 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10093 assign_aggregate. */
52ce6436
PH
10094static void
10095aggregate_assign_positional (struct value *container,
10096 struct value *lhs, struct expression *exp,
10097 int *pos, LONGEST *indices, int *num_indices,
10098 int max_indices, LONGEST low, LONGEST high)
10099{
10100 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10101
10102 if (ind - 1 == high)
e1d5a0d2 10103 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10104 if (ind <= high)
10105 {
10106 add_component_interval (ind, ind, indices, num_indices, max_indices);
10107 *pos += 3;
10108 assign_component (container, lhs, ind, exp, pos);
10109 }
10110 else
10111 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10112}
10113
10114/* Assign into the components of LHS indexed by the OP_CHOICES
10115 construct at *POS, updating *POS past the construct, given that
10116 the allowable indices are LOW..HIGH. Record the indices assigned
10117 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10118 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10119static void
10120aggregate_assign_from_choices (struct value *container,
10121 struct value *lhs, struct expression *exp,
10122 int *pos, LONGEST *indices, int *num_indices,
10123 int max_indices, LONGEST low, LONGEST high)
10124{
10125 int j;
10126 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10127 int choice_pos, expr_pc;
10128 int is_array = ada_is_direct_array_type (value_type (lhs));
10129
10130 choice_pos = *pos += 3;
10131
10132 for (j = 0; j < n_choices; j += 1)
10133 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10134 expr_pc = *pos;
10135 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10136
10137 for (j = 0; j < n_choices; j += 1)
10138 {
10139 LONGEST lower, upper;
10140 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10141
52ce6436
PH
10142 if (op == OP_DISCRETE_RANGE)
10143 {
10144 choice_pos += 1;
10145 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10146 EVAL_NORMAL));
10147 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10148 EVAL_NORMAL));
10149 }
10150 else if (is_array)
10151 {
10152 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10153 EVAL_NORMAL));
10154 upper = lower;
10155 }
10156 else
10157 {
10158 int ind;
0d5cff50 10159 const char *name;
5b4ee69b 10160
52ce6436
PH
10161 switch (op)
10162 {
10163 case OP_NAME:
10164 name = &exp->elts[choice_pos + 2].string;
10165 break;
10166 case OP_VAR_VALUE:
10167 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10168 break;
10169 default:
10170 error (_("Invalid record component association."));
10171 }
10172 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10173 ind = 0;
10174 if (! find_struct_field (name, value_type (lhs), 0,
10175 NULL, NULL, NULL, NULL, &ind))
10176 error (_("Unknown component name: %s."), name);
10177 lower = upper = ind;
10178 }
10179
10180 if (lower <= upper && (lower < low || upper > high))
10181 error (_("Index in component association out of bounds."));
10182
10183 add_component_interval (lower, upper, indices, num_indices,
10184 max_indices);
10185 while (lower <= upper)
10186 {
10187 int pos1;
5b4ee69b 10188
52ce6436
PH
10189 pos1 = expr_pc;
10190 assign_component (container, lhs, lower, exp, &pos1);
10191 lower += 1;
10192 }
10193 }
10194}
10195
10196/* Assign the value of the expression in the OP_OTHERS construct in
10197 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10198 have not been previously assigned. The index intervals already assigned
10199 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10200 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10201static void
10202aggregate_assign_others (struct value *container,
10203 struct value *lhs, struct expression *exp,
10204 int *pos, LONGEST *indices, int num_indices,
10205 LONGEST low, LONGEST high)
10206{
10207 int i;
5ce64950 10208 int expr_pc = *pos + 1;
52ce6436
PH
10209
10210 for (i = 0; i < num_indices - 2; i += 2)
10211 {
10212 LONGEST ind;
5b4ee69b 10213
52ce6436
PH
10214 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10215 {
5ce64950 10216 int localpos;
5b4ee69b 10217
5ce64950
MS
10218 localpos = expr_pc;
10219 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10220 }
10221 }
10222 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10223}
10224
10225/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10226 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10227 modifying *SIZE as needed. It is an error if *SIZE exceeds
10228 MAX_SIZE. The resulting intervals do not overlap. */
10229static void
10230add_component_interval (LONGEST low, LONGEST high,
10231 LONGEST* indices, int *size, int max_size)
10232{
10233 int i, j;
5b4ee69b 10234
52ce6436
PH
10235 for (i = 0; i < *size; i += 2) {
10236 if (high >= indices[i] && low <= indices[i + 1])
10237 {
10238 int kh;
5b4ee69b 10239
52ce6436
PH
10240 for (kh = i + 2; kh < *size; kh += 2)
10241 if (high < indices[kh])
10242 break;
10243 if (low < indices[i])
10244 indices[i] = low;
10245 indices[i + 1] = indices[kh - 1];
10246 if (high > indices[i + 1])
10247 indices[i + 1] = high;
10248 memcpy (indices + i + 2, indices + kh, *size - kh);
10249 *size -= kh - i - 2;
10250 return;
10251 }
10252 else if (high < indices[i])
10253 break;
10254 }
10255
10256 if (*size == max_size)
10257 error (_("Internal error: miscounted aggregate components."));
10258 *size += 2;
10259 for (j = *size-1; j >= i+2; j -= 1)
10260 indices[j] = indices[j - 2];
10261 indices[i] = low;
10262 indices[i + 1] = high;
10263}
10264
6e48bd2c
JB
10265/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10266 is different. */
10267
10268static struct value *
b7e22850 10269ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10270{
10271 if (type == ada_check_typedef (value_type (arg2)))
10272 return arg2;
10273
10274 if (ada_is_fixed_point_type (type))
95f39a5b 10275 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10276
10277 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10278 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10279
10280 return value_cast (type, arg2);
10281}
10282
284614f0
JB
10283/* Evaluating Ada expressions, and printing their result.
10284 ------------------------------------------------------
10285
21649b50
JB
10286 1. Introduction:
10287 ----------------
10288
284614f0
JB
10289 We usually evaluate an Ada expression in order to print its value.
10290 We also evaluate an expression in order to print its type, which
10291 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10292 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10293 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10294 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10295 similar.
10296
10297 Evaluating expressions is a little more complicated for Ada entities
10298 than it is for entities in languages such as C. The main reason for
10299 this is that Ada provides types whose definition might be dynamic.
10300 One example of such types is variant records. Or another example
10301 would be an array whose bounds can only be known at run time.
10302
10303 The following description is a general guide as to what should be
10304 done (and what should NOT be done) in order to evaluate an expression
10305 involving such types, and when. This does not cover how the semantic
10306 information is encoded by GNAT as this is covered separatly. For the
10307 document used as the reference for the GNAT encoding, see exp_dbug.ads
10308 in the GNAT sources.
10309
10310 Ideally, we should embed each part of this description next to its
10311 associated code. Unfortunately, the amount of code is so vast right
10312 now that it's hard to see whether the code handling a particular
10313 situation might be duplicated or not. One day, when the code is
10314 cleaned up, this guide might become redundant with the comments
10315 inserted in the code, and we might want to remove it.
10316
21649b50
JB
10317 2. ``Fixing'' an Entity, the Simple Case:
10318 -----------------------------------------
10319
284614f0
JB
10320 When evaluating Ada expressions, the tricky issue is that they may
10321 reference entities whose type contents and size are not statically
10322 known. Consider for instance a variant record:
10323
10324 type Rec (Empty : Boolean := True) is record
10325 case Empty is
10326 when True => null;
10327 when False => Value : Integer;
10328 end case;
10329 end record;
10330 Yes : Rec := (Empty => False, Value => 1);
10331 No : Rec := (empty => True);
10332
10333 The size and contents of that record depends on the value of the
10334 descriminant (Rec.Empty). At this point, neither the debugging
10335 information nor the associated type structure in GDB are able to
10336 express such dynamic types. So what the debugger does is to create
10337 "fixed" versions of the type that applies to the specific object.
10338 We also informally refer to this opperation as "fixing" an object,
10339 which means creating its associated fixed type.
10340
10341 Example: when printing the value of variable "Yes" above, its fixed
10342 type would look like this:
10343
10344 type Rec is record
10345 Empty : Boolean;
10346 Value : Integer;
10347 end record;
10348
10349 On the other hand, if we printed the value of "No", its fixed type
10350 would become:
10351
10352 type Rec is record
10353 Empty : Boolean;
10354 end record;
10355
10356 Things become a little more complicated when trying to fix an entity
10357 with a dynamic type that directly contains another dynamic type,
10358 such as an array of variant records, for instance. There are
10359 two possible cases: Arrays, and records.
10360
21649b50
JB
10361 3. ``Fixing'' Arrays:
10362 ---------------------
10363
10364 The type structure in GDB describes an array in terms of its bounds,
10365 and the type of its elements. By design, all elements in the array
10366 have the same type and we cannot represent an array of variant elements
10367 using the current type structure in GDB. When fixing an array,
10368 we cannot fix the array element, as we would potentially need one
10369 fixed type per element of the array. As a result, the best we can do
10370 when fixing an array is to produce an array whose bounds and size
10371 are correct (allowing us to read it from memory), but without having
10372 touched its element type. Fixing each element will be done later,
10373 when (if) necessary.
10374
10375 Arrays are a little simpler to handle than records, because the same
10376 amount of memory is allocated for each element of the array, even if
1b536f04 10377 the amount of space actually used by each element differs from element
21649b50 10378 to element. Consider for instance the following array of type Rec:
284614f0
JB
10379
10380 type Rec_Array is array (1 .. 2) of Rec;
10381
1b536f04
JB
10382 The actual amount of memory occupied by each element might be different
10383 from element to element, depending on the value of their discriminant.
21649b50 10384 But the amount of space reserved for each element in the array remains
1b536f04 10385 fixed regardless. So we simply need to compute that size using
21649b50
JB
10386 the debugging information available, from which we can then determine
10387 the array size (we multiply the number of elements of the array by
10388 the size of each element).
10389
10390 The simplest case is when we have an array of a constrained element
10391 type. For instance, consider the following type declarations:
10392
10393 type Bounded_String (Max_Size : Integer) is
10394 Length : Integer;
10395 Buffer : String (1 .. Max_Size);
10396 end record;
10397 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10398
10399 In this case, the compiler describes the array as an array of
10400 variable-size elements (identified by its XVS suffix) for which
10401 the size can be read in the parallel XVZ variable.
10402
10403 In the case of an array of an unconstrained element type, the compiler
10404 wraps the array element inside a private PAD type. This type should not
10405 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10406 that we also use the adjective "aligner" in our code to designate
10407 these wrapper types.
10408
1b536f04 10409 In some cases, the size allocated for each element is statically
21649b50
JB
10410 known. In that case, the PAD type already has the correct size,
10411 and the array element should remain unfixed.
10412
10413 But there are cases when this size is not statically known.
10414 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10415
10416 type Dynamic is array (1 .. Five) of Integer;
10417 type Wrapper (Has_Length : Boolean := False) is record
10418 Data : Dynamic;
10419 case Has_Length is
10420 when True => Length : Integer;
10421 when False => null;
10422 end case;
10423 end record;
10424 type Wrapper_Array is array (1 .. 2) of Wrapper;
10425
10426 Hello : Wrapper_Array := (others => (Has_Length => True,
10427 Data => (others => 17),
10428 Length => 1));
10429
10430
10431 The debugging info would describe variable Hello as being an
10432 array of a PAD type. The size of that PAD type is not statically
10433 known, but can be determined using a parallel XVZ variable.
10434 In that case, a copy of the PAD type with the correct size should
10435 be used for the fixed array.
10436
21649b50
JB
10437 3. ``Fixing'' record type objects:
10438 ----------------------------------
10439
10440 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10441 record types. In this case, in order to compute the associated
10442 fixed type, we need to determine the size and offset of each of
10443 its components. This, in turn, requires us to compute the fixed
10444 type of each of these components.
10445
10446 Consider for instance the example:
10447
10448 type Bounded_String (Max_Size : Natural) is record
10449 Str : String (1 .. Max_Size);
10450 Length : Natural;
10451 end record;
10452 My_String : Bounded_String (Max_Size => 10);
10453
10454 In that case, the position of field "Length" depends on the size
10455 of field Str, which itself depends on the value of the Max_Size
21649b50 10456 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10457 we need to fix the type of field Str. Therefore, fixing a variant
10458 record requires us to fix each of its components.
10459
10460 However, if a component does not have a dynamic size, the component
10461 should not be fixed. In particular, fields that use a PAD type
10462 should not fixed. Here is an example where this might happen
10463 (assuming type Rec above):
10464
10465 type Container (Big : Boolean) is record
10466 First : Rec;
10467 After : Integer;
10468 case Big is
10469 when True => Another : Integer;
10470 when False => null;
10471 end case;
10472 end record;
10473 My_Container : Container := (Big => False,
10474 First => (Empty => True),
10475 After => 42);
10476
10477 In that example, the compiler creates a PAD type for component First,
10478 whose size is constant, and then positions the component After just
10479 right after it. The offset of component After is therefore constant
10480 in this case.
10481
10482 The debugger computes the position of each field based on an algorithm
10483 that uses, among other things, the actual position and size of the field
21649b50
JB
10484 preceding it. Let's now imagine that the user is trying to print
10485 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10486 end up computing the offset of field After based on the size of the
10487 fixed version of field First. And since in our example First has
10488 only one actual field, the size of the fixed type is actually smaller
10489 than the amount of space allocated to that field, and thus we would
10490 compute the wrong offset of field After.
10491
21649b50
JB
10492 To make things more complicated, we need to watch out for dynamic
10493 components of variant records (identified by the ___XVL suffix in
10494 the component name). Even if the target type is a PAD type, the size
10495 of that type might not be statically known. So the PAD type needs
10496 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10497 we might end up with the wrong size for our component. This can be
10498 observed with the following type declarations:
284614f0
JB
10499
10500 type Octal is new Integer range 0 .. 7;
10501 type Octal_Array is array (Positive range <>) of Octal;
10502 pragma Pack (Octal_Array);
10503
10504 type Octal_Buffer (Size : Positive) is record
10505 Buffer : Octal_Array (1 .. Size);
10506 Length : Integer;
10507 end record;
10508
10509 In that case, Buffer is a PAD type whose size is unset and needs
10510 to be computed by fixing the unwrapped type.
10511
21649b50
JB
10512 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10513 ----------------------------------------------------------
10514
10515 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10516 thus far, be actually fixed?
10517
10518 The answer is: Only when referencing that element. For instance
10519 when selecting one component of a record, this specific component
10520 should be fixed at that point in time. Or when printing the value
10521 of a record, each component should be fixed before its value gets
10522 printed. Similarly for arrays, the element of the array should be
10523 fixed when printing each element of the array, or when extracting
10524 one element out of that array. On the other hand, fixing should
10525 not be performed on the elements when taking a slice of an array!
10526
31432a67 10527 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10528 size of each field is that we end up also miscomputing the size
10529 of the containing type. This can have adverse results when computing
10530 the value of an entity. GDB fetches the value of an entity based
10531 on the size of its type, and thus a wrong size causes GDB to fetch
10532 the wrong amount of memory. In the case where the computed size is
10533 too small, GDB fetches too little data to print the value of our
31432a67 10534 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10535 past the buffer containing the data =:-o. */
10536
ced9779b
JB
10537/* Evaluate a subexpression of EXP, at index *POS, and return a value
10538 for that subexpression cast to TO_TYPE. Advance *POS over the
10539 subexpression. */
10540
10541static value *
10542ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10543 enum noside noside, struct type *to_type)
10544{
10545 int pc = *pos;
10546
10547 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10548 || exp->elts[pc].opcode == OP_VAR_VALUE)
10549 {
10550 (*pos) += 4;
10551
10552 value *val;
10553 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10554 {
10555 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10556 return value_zero (to_type, not_lval);
10557
10558 val = evaluate_var_msym_value (noside,
10559 exp->elts[pc + 1].objfile,
10560 exp->elts[pc + 2].msymbol);
10561 }
10562 else
10563 val = evaluate_var_value (noside,
10564 exp->elts[pc + 1].block,
10565 exp->elts[pc + 2].symbol);
10566
10567 if (noside == EVAL_SKIP)
10568 return eval_skip_value (exp);
10569
10570 val = ada_value_cast (to_type, val);
10571
10572 /* Follow the Ada language semantics that do not allow taking
10573 an address of the result of a cast (view conversion in Ada). */
10574 if (VALUE_LVAL (val) == lval_memory)
10575 {
10576 if (value_lazy (val))
10577 value_fetch_lazy (val);
10578 VALUE_LVAL (val) = not_lval;
10579 }
10580 return val;
10581 }
10582
10583 value *val = evaluate_subexp (to_type, exp, pos, noside);
10584 if (noside == EVAL_SKIP)
10585 return eval_skip_value (exp);
10586 return ada_value_cast (to_type, val);
10587}
10588
284614f0
JB
10589/* Implement the evaluate_exp routine in the exp_descriptor structure
10590 for the Ada language. */
10591
52ce6436 10592static struct value *
ebf56fd3 10593ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10594 int *pos, enum noside noside)
14f9c5c9
AS
10595{
10596 enum exp_opcode op;
b5385fc0 10597 int tem;
14f9c5c9 10598 int pc;
5ec18f2b 10599 int preeval_pos;
14f9c5c9
AS
10600 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10601 struct type *type;
52ce6436 10602 int nargs, oplen;
d2e4a39e 10603 struct value **argvec;
14f9c5c9 10604
d2e4a39e
AS
10605 pc = *pos;
10606 *pos += 1;
14f9c5c9
AS
10607 op = exp->elts[pc].opcode;
10608
d2e4a39e 10609 switch (op)
14f9c5c9
AS
10610 {
10611 default:
10612 *pos -= 1;
6e48bd2c 10613 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10614
10615 if (noside == EVAL_NORMAL)
10616 arg1 = unwrap_value (arg1);
6e48bd2c 10617
edd079d9 10618 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10619 then we need to perform the conversion manually, because
10620 evaluate_subexp_standard doesn't do it. This conversion is
10621 necessary in Ada because the different kinds of float/fixed
10622 types in Ada have different representations.
10623
10624 Similarly, we need to perform the conversion from OP_LONG
10625 ourselves. */
edd079d9 10626 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10627 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10628
10629 return arg1;
4c4b4cd2
PH
10630
10631 case OP_STRING:
10632 {
76a01679 10633 struct value *result;
5b4ee69b 10634
76a01679
JB
10635 *pos -= 1;
10636 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10637 /* The result type will have code OP_STRING, bashed there from
10638 OP_ARRAY. Bash it back. */
df407dfe
AC
10639 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10640 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10641 return result;
4c4b4cd2 10642 }
14f9c5c9
AS
10643
10644 case UNOP_CAST:
10645 (*pos) += 2;
10646 type = exp->elts[pc + 1].type;
ced9779b 10647 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10648
4c4b4cd2
PH
10649 case UNOP_QUAL:
10650 (*pos) += 2;
10651 type = exp->elts[pc + 1].type;
10652 return ada_evaluate_subexp (type, exp, pos, noside);
10653
14f9c5c9
AS
10654 case BINOP_ASSIGN:
10655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10656 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10657 {
10658 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10659 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10660 return arg1;
10661 return ada_value_assign (arg1, arg1);
10662 }
003f3813
JB
10663 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10664 except if the lhs of our assignment is a convenience variable.
10665 In the case of assigning to a convenience variable, the lhs
10666 should be exactly the result of the evaluation of the rhs. */
10667 type = value_type (arg1);
10668 if (VALUE_LVAL (arg1) == lval_internalvar)
10669 type = NULL;
10670 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10671 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10672 return arg1;
df407dfe
AC
10673 if (ada_is_fixed_point_type (value_type (arg1)))
10674 arg2 = cast_to_fixed (value_type (arg1), arg2);
10675 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10676 error
323e0a4a 10677 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10678 else
df407dfe 10679 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10680 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10681
10682 case BINOP_ADD:
10683 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10684 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10685 if (noside == EVAL_SKIP)
4c4b4cd2 10686 goto nosideret;
2ac8a782
JB
10687 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10688 return (value_from_longest
10689 (value_type (arg1),
10690 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10691 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10692 return (value_from_longest
10693 (value_type (arg2),
10694 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10695 if ((ada_is_fixed_point_type (value_type (arg1))
10696 || ada_is_fixed_point_type (value_type (arg2)))
10697 && value_type (arg1) != value_type (arg2))
323e0a4a 10698 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10699 /* Do the addition, and cast the result to the type of the first
10700 argument. We cannot cast the result to a reference type, so if
10701 ARG1 is a reference type, find its underlying type. */
10702 type = value_type (arg1);
10703 while (TYPE_CODE (type) == TYPE_CODE_REF)
10704 type = TYPE_TARGET_TYPE (type);
f44316fa 10705 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10706 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10707
10708 case BINOP_SUB:
10709 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10710 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10711 if (noside == EVAL_SKIP)
4c4b4cd2 10712 goto nosideret;
2ac8a782
JB
10713 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10714 return (value_from_longest
10715 (value_type (arg1),
10716 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10717 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10718 return (value_from_longest
10719 (value_type (arg2),
10720 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10721 if ((ada_is_fixed_point_type (value_type (arg1))
10722 || ada_is_fixed_point_type (value_type (arg2)))
10723 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10724 error (_("Operands of fixed-point subtraction "
10725 "must have the same type"));
b7789565
JB
10726 /* Do the substraction, and cast the result to the type of the first
10727 argument. We cannot cast the result to a reference type, so if
10728 ARG1 is a reference type, find its underlying type. */
10729 type = value_type (arg1);
10730 while (TYPE_CODE (type) == TYPE_CODE_REF)
10731 type = TYPE_TARGET_TYPE (type);
f44316fa 10732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10733 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10734
10735 case BINOP_MUL:
10736 case BINOP_DIV:
e1578042
JB
10737 case BINOP_REM:
10738 case BINOP_MOD:
14f9c5c9
AS
10739 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 if (noside == EVAL_SKIP)
4c4b4cd2 10742 goto nosideret;
e1578042 10743 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10744 {
10745 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10746 return value_zero (value_type (arg1), not_lval);
10747 }
14f9c5c9 10748 else
4c4b4cd2 10749 {
a53b7a21 10750 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10751 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10752 arg1 = cast_from_fixed (type, arg1);
df407dfe 10753 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10754 arg2 = cast_from_fixed (type, arg2);
f44316fa 10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10756 return ada_value_binop (arg1, arg2, op);
10757 }
10758
4c4b4cd2
PH
10759 case BINOP_EQUAL:
10760 case BINOP_NOTEQUAL:
14f9c5c9 10761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10762 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10763 if (noside == EVAL_SKIP)
76a01679 10764 goto nosideret;
4c4b4cd2 10765 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10766 tem = 0;
4c4b4cd2 10767 else
f44316fa
UW
10768 {
10769 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10770 tem = ada_value_equal (arg1, arg2);
10771 }
4c4b4cd2 10772 if (op == BINOP_NOTEQUAL)
76a01679 10773 tem = !tem;
fbb06eb1
UW
10774 type = language_bool_type (exp->language_defn, exp->gdbarch);
10775 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10776
10777 case UNOP_NEG:
10778 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10779 if (noside == EVAL_SKIP)
10780 goto nosideret;
df407dfe
AC
10781 else if (ada_is_fixed_point_type (value_type (arg1)))
10782 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10783 else
f44316fa
UW
10784 {
10785 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10786 return value_neg (arg1);
10787 }
4c4b4cd2 10788
2330c6c6
JB
10789 case BINOP_LOGICAL_AND:
10790 case BINOP_LOGICAL_OR:
10791 case UNOP_LOGICAL_NOT:
000d5124
JB
10792 {
10793 struct value *val;
10794
10795 *pos -= 1;
10796 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10797 type = language_bool_type (exp->language_defn, exp->gdbarch);
10798 return value_cast (type, val);
000d5124 10799 }
2330c6c6
JB
10800
10801 case BINOP_BITWISE_AND:
10802 case BINOP_BITWISE_IOR:
10803 case BINOP_BITWISE_XOR:
000d5124
JB
10804 {
10805 struct value *val;
10806
10807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10808 *pos = pc;
10809 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10810
10811 return value_cast (value_type (arg1), val);
10812 }
2330c6c6 10813
14f9c5c9
AS
10814 case OP_VAR_VALUE:
10815 *pos -= 1;
6799def4 10816
14f9c5c9 10817 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10818 {
10819 *pos += 4;
10820 goto nosideret;
10821 }
da5c522f
JB
10822
10823 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10824 /* Only encountered when an unresolved symbol occurs in a
10825 context other than a function call, in which case, it is
52ce6436 10826 invalid. */
323e0a4a 10827 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10828 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10829
10830 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10831 {
0c1f74cf 10832 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10833 /* Check to see if this is a tagged type. We also need to handle
10834 the case where the type is a reference to a tagged type, but
10835 we have to be careful to exclude pointers to tagged types.
10836 The latter should be shown as usual (as a pointer), whereas
10837 a reference should mostly be transparent to the user. */
10838 if (ada_is_tagged_type (type, 0)
023db19c 10839 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10840 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10841 {
10842 /* Tagged types are a little special in the fact that the real
10843 type is dynamic and can only be determined by inspecting the
10844 object's tag. This means that we need to get the object's
10845 value first (EVAL_NORMAL) and then extract the actual object
10846 type from its tag.
10847
10848 Note that we cannot skip the final step where we extract
10849 the object type from its tag, because the EVAL_NORMAL phase
10850 results in dynamic components being resolved into fixed ones.
10851 This can cause problems when trying to print the type
10852 description of tagged types whose parent has a dynamic size:
10853 We use the type name of the "_parent" component in order
10854 to print the name of the ancestor type in the type description.
10855 If that component had a dynamic size, the resolution into
10856 a fixed type would result in the loss of that type name,
10857 thus preventing us from printing the name of the ancestor
10858 type in the type description. */
10859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10860
10861 if (TYPE_CODE (type) != TYPE_CODE_REF)
10862 {
10863 struct type *actual_type;
10864
10865 actual_type = type_from_tag (ada_value_tag (arg1));
10866 if (actual_type == NULL)
10867 /* If, for some reason, we were unable to determine
10868 the actual type from the tag, then use the static
10869 approximation that we just computed as a fallback.
10870 This can happen if the debugging information is
10871 incomplete, for instance. */
10872 actual_type = type;
10873 return value_zero (actual_type, not_lval);
10874 }
10875 else
10876 {
10877 /* In the case of a ref, ada_coerce_ref takes care
10878 of determining the actual type. But the evaluation
10879 should return a ref as it should be valid to ask
10880 for its address; so rebuild a ref after coerce. */
10881 arg1 = ada_coerce_ref (arg1);
a65cfae5 10882 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10883 }
10884 }
0c1f74cf 10885
84754697
JB
10886 /* Records and unions for which GNAT encodings have been
10887 generated need to be statically fixed as well.
10888 Otherwise, non-static fixing produces a type where
10889 all dynamic properties are removed, which prevents "ptype"
10890 from being able to completely describe the type.
10891 For instance, a case statement in a variant record would be
10892 replaced by the relevant components based on the actual
10893 value of the discriminants. */
10894 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10895 && dynamic_template_type (type) != NULL)
10896 || (TYPE_CODE (type) == TYPE_CODE_UNION
10897 && ada_find_parallel_type (type, "___XVU") != NULL))
10898 {
10899 *pos += 4;
10900 return value_zero (to_static_fixed_type (type), not_lval);
10901 }
4c4b4cd2 10902 }
da5c522f
JB
10903
10904 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10905 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10906
10907 case OP_FUNCALL:
10908 (*pos) += 2;
10909
10910 /* Allocate arg vector, including space for the function to be
10911 called in argvec[0] and a terminating NULL. */
10912 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10913 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10914
10915 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10916 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10917 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10918 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10919 else
10920 {
10921 for (tem = 0; tem <= nargs; tem += 1)
10922 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10923 argvec[tem] = 0;
10924
10925 if (noside == EVAL_SKIP)
10926 goto nosideret;
10927 }
10928
ad82864c
JB
10929 if (ada_is_constrained_packed_array_type
10930 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10931 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10932 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10933 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10934 /* This is a packed array that has already been fixed, and
10935 therefore already coerced to a simple array. Nothing further
10936 to do. */
10937 ;
e6c2c623
PMR
10938 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10939 {
10940 /* Make sure we dereference references so that all the code below
10941 feels like it's really handling the referenced value. Wrapping
10942 types (for alignment) may be there, so make sure we strip them as
10943 well. */
10944 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10945 }
10946 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10947 && VALUE_LVAL (argvec[0]) == lval_memory)
10948 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10949
df407dfe 10950 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10951
10952 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10953 them. So, if this is an array typedef (encoding use for array
10954 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10955 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10956 type = ada_typedef_target_type (type);
10957
4c4b4cd2
PH
10958 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10959 {
61ee279c 10960 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10961 {
10962 case TYPE_CODE_FUNC:
61ee279c 10963 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10964 break;
10965 case TYPE_CODE_ARRAY:
10966 break;
10967 case TYPE_CODE_STRUCT:
10968 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10969 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10970 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10971 break;
10972 default:
323e0a4a 10973 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10974 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10975 break;
10976 }
10977 }
10978
10979 switch (TYPE_CODE (type))
10980 {
10981 case TYPE_CODE_FUNC:
10982 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10983 {
7022349d
PA
10984 if (TYPE_TARGET_TYPE (type) == NULL)
10985 error_call_unknown_return_type (NULL);
10986 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10987 }
7022349d 10988 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10989 case TYPE_CODE_INTERNAL_FUNCTION:
10990 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10991 /* We don't know anything about what the internal
10992 function might return, but we have to return
10993 something. */
10994 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10995 not_lval);
10996 else
10997 return call_internal_function (exp->gdbarch, exp->language_defn,
10998 argvec[0], nargs, argvec + 1);
10999
4c4b4cd2
PH
11000 case TYPE_CODE_STRUCT:
11001 {
11002 int arity;
11003
4c4b4cd2
PH
11004 arity = ada_array_arity (type);
11005 type = ada_array_element_type (type, nargs);
11006 if (type == NULL)
323e0a4a 11007 error (_("cannot subscript or call a record"));
4c4b4cd2 11008 if (arity != nargs)
323e0a4a 11009 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11010 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11011 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11012 return
11013 unwrap_value (ada_value_subscript
11014 (argvec[0], nargs, argvec + 1));
11015 }
11016 case TYPE_CODE_ARRAY:
11017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11018 {
11019 type = ada_array_element_type (type, nargs);
11020 if (type == NULL)
323e0a4a 11021 error (_("element type of array unknown"));
4c4b4cd2 11022 else
0a07e705 11023 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11024 }
11025 return
11026 unwrap_value (ada_value_subscript
11027 (ada_coerce_to_simple_array (argvec[0]),
11028 nargs, argvec + 1));
11029 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11031 {
deede10c 11032 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11033 type = ada_array_element_type (type, nargs);
11034 if (type == NULL)
323e0a4a 11035 error (_("element type of array unknown"));
4c4b4cd2 11036 else
0a07e705 11037 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11038 }
11039 return
deede10c
JB
11040 unwrap_value (ada_value_ptr_subscript (argvec[0],
11041 nargs, argvec + 1));
4c4b4cd2
PH
11042
11043 default:
e1d5a0d2
PH
11044 error (_("Attempt to index or call something other than an "
11045 "array or function"));
4c4b4cd2
PH
11046 }
11047
11048 case TERNOP_SLICE:
11049 {
11050 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11051 struct value *low_bound_val =
11052 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11053 struct value *high_bound_val =
11054 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 LONGEST low_bound;
11056 LONGEST high_bound;
5b4ee69b 11057
994b9211
AC
11058 low_bound_val = coerce_ref (low_bound_val);
11059 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11060 low_bound = value_as_long (low_bound_val);
11061 high_bound = value_as_long (high_bound_val);
963a6417 11062
4c4b4cd2
PH
11063 if (noside == EVAL_SKIP)
11064 goto nosideret;
11065
4c4b4cd2
PH
11066 /* If this is a reference to an aligner type, then remove all
11067 the aligners. */
df407dfe
AC
11068 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11069 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11070 TYPE_TARGET_TYPE (value_type (array)) =
11071 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11072
ad82864c 11073 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11074 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11075
11076 /* If this is a reference to an array or an array lvalue,
11077 convert to a pointer. */
df407dfe
AC
11078 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11079 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11080 && VALUE_LVAL (array) == lval_memory))
11081 array = value_addr (array);
11082
1265e4aa 11083 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11084 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11085 (value_type (array))))
0b5d8877 11086 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11087
11088 array = ada_coerce_to_simple_array_ptr (array);
11089
714e53ab
PH
11090 /* If we have more than one level of pointer indirection,
11091 dereference the value until we get only one level. */
df407dfe
AC
11092 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11093 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11094 == TYPE_CODE_PTR))
11095 array = value_ind (array);
11096
11097 /* Make sure we really do have an array type before going further,
11098 to avoid a SEGV when trying to get the index type or the target
11099 type later down the road if the debug info generated by
11100 the compiler is incorrect or incomplete. */
df407dfe 11101 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11102 error (_("cannot take slice of non-array"));
714e53ab 11103
828292f2
JB
11104 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11105 == TYPE_CODE_PTR)
4c4b4cd2 11106 {
828292f2
JB
11107 struct type *type0 = ada_check_typedef (value_type (array));
11108
0b5d8877 11109 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11110 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11111 else
11112 {
11113 struct type *arr_type0 =
828292f2 11114 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11115
f5938064
JG
11116 return ada_value_slice_from_ptr (array, arr_type0,
11117 longest_to_int (low_bound),
11118 longest_to_int (high_bound));
4c4b4cd2
PH
11119 }
11120 }
11121 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11122 return array;
11123 else if (high_bound < low_bound)
df407dfe 11124 return empty_array (value_type (array), low_bound);
4c4b4cd2 11125 else
529cad9c
PH
11126 return ada_value_slice (array, longest_to_int (low_bound),
11127 longest_to_int (high_bound));
4c4b4cd2 11128 }
14f9c5c9 11129
4c4b4cd2
PH
11130 case UNOP_IN_RANGE:
11131 (*pos) += 2;
11132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11133 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11134
14f9c5c9 11135 if (noside == EVAL_SKIP)
4c4b4cd2 11136 goto nosideret;
14f9c5c9 11137
4c4b4cd2
PH
11138 switch (TYPE_CODE (type))
11139 {
11140 default:
e1d5a0d2
PH
11141 lim_warning (_("Membership test incompletely implemented; "
11142 "always returns true"));
fbb06eb1
UW
11143 type = language_bool_type (exp->language_defn, exp->gdbarch);
11144 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11145
11146 case TYPE_CODE_RANGE:
030b4912
UW
11147 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11148 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11149 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11151 type = language_bool_type (exp->language_defn, exp->gdbarch);
11152 return
11153 value_from_longest (type,
4c4b4cd2
PH
11154 (value_less (arg1, arg3)
11155 || value_equal (arg1, arg3))
11156 && (value_less (arg2, arg1)
11157 || value_equal (arg2, arg1)));
11158 }
11159
11160 case BINOP_IN_BOUNDS:
14f9c5c9 11161 (*pos) += 2;
4c4b4cd2
PH
11162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11164
4c4b4cd2
PH
11165 if (noside == EVAL_SKIP)
11166 goto nosideret;
14f9c5c9 11167
4c4b4cd2 11168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11169 {
11170 type = language_bool_type (exp->language_defn, exp->gdbarch);
11171 return value_zero (type, not_lval);
11172 }
14f9c5c9 11173
4c4b4cd2 11174 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11175
1eea4ebd
UW
11176 type = ada_index_type (value_type (arg2), tem, "range");
11177 if (!type)
11178 type = value_type (arg1);
14f9c5c9 11179
1eea4ebd
UW
11180 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11181 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11182
f44316fa
UW
11183 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11185 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11186 return
fbb06eb1 11187 value_from_longest (type,
4c4b4cd2
PH
11188 (value_less (arg1, arg3)
11189 || value_equal (arg1, arg3))
11190 && (value_less (arg2, arg1)
11191 || value_equal (arg2, arg1)));
11192
11193 case TERNOP_IN_RANGE:
11194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11197
11198 if (noside == EVAL_SKIP)
11199 goto nosideret;
11200
f44316fa
UW
11201 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11203 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11204 return
fbb06eb1 11205 value_from_longest (type,
4c4b4cd2
PH
11206 (value_less (arg1, arg3)
11207 || value_equal (arg1, arg3))
11208 && (value_less (arg2, arg1)
11209 || value_equal (arg2, arg1)));
11210
11211 case OP_ATR_FIRST:
11212 case OP_ATR_LAST:
11213 case OP_ATR_LENGTH:
11214 {
76a01679 11215 struct type *type_arg;
5b4ee69b 11216
76a01679
JB
11217 if (exp->elts[*pos].opcode == OP_TYPE)
11218 {
11219 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11220 arg1 = NULL;
5bc23cb3 11221 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11222 }
11223 else
11224 {
11225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 type_arg = NULL;
11227 }
11228
11229 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11230 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11231 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11232 *pos += 4;
11233
11234 if (noside == EVAL_SKIP)
11235 goto nosideret;
11236
11237 if (type_arg == NULL)
11238 {
11239 arg1 = ada_coerce_ref (arg1);
11240
ad82864c 11241 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11242 arg1 = ada_coerce_to_simple_array (arg1);
11243
aa4fb036 11244 if (op == OP_ATR_LENGTH)
1eea4ebd 11245 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11246 else
11247 {
11248 type = ada_index_type (value_type (arg1), tem,
11249 ada_attribute_name (op));
11250 if (type == NULL)
11251 type = builtin_type (exp->gdbarch)->builtin_int;
11252 }
76a01679
JB
11253
11254 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11255 return allocate_value (type);
76a01679
JB
11256
11257 switch (op)
11258 {
11259 default: /* Should never happen. */
323e0a4a 11260 error (_("unexpected attribute encountered"));
76a01679 11261 case OP_ATR_FIRST:
1eea4ebd
UW
11262 return value_from_longest
11263 (type, ada_array_bound (arg1, tem, 0));
76a01679 11264 case OP_ATR_LAST:
1eea4ebd
UW
11265 return value_from_longest
11266 (type, ada_array_bound (arg1, tem, 1));
76a01679 11267 case OP_ATR_LENGTH:
1eea4ebd
UW
11268 return value_from_longest
11269 (type, ada_array_length (arg1, tem));
76a01679
JB
11270 }
11271 }
11272 else if (discrete_type_p (type_arg))
11273 {
11274 struct type *range_type;
0d5cff50 11275 const char *name = ada_type_name (type_arg);
5b4ee69b 11276
76a01679
JB
11277 range_type = NULL;
11278 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11279 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11280 if (range_type == NULL)
11281 range_type = type_arg;
11282 switch (op)
11283 {
11284 default:
323e0a4a 11285 error (_("unexpected attribute encountered"));
76a01679 11286 case OP_ATR_FIRST:
690cc4eb 11287 return value_from_longest
43bbcdc2 11288 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11289 case OP_ATR_LAST:
690cc4eb 11290 return value_from_longest
43bbcdc2 11291 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11292 case OP_ATR_LENGTH:
323e0a4a 11293 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11294 }
11295 }
11296 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11297 error (_("unimplemented type attribute"));
76a01679
JB
11298 else
11299 {
11300 LONGEST low, high;
11301
ad82864c
JB
11302 if (ada_is_constrained_packed_array_type (type_arg))
11303 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11304
aa4fb036 11305 if (op == OP_ATR_LENGTH)
1eea4ebd 11306 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11307 else
11308 {
11309 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11310 if (type == NULL)
11311 type = builtin_type (exp->gdbarch)->builtin_int;
11312 }
1eea4ebd 11313
76a01679
JB
11314 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11315 return allocate_value (type);
11316
11317 switch (op)
11318 {
11319 default:
323e0a4a 11320 error (_("unexpected attribute encountered"));
76a01679 11321 case OP_ATR_FIRST:
1eea4ebd 11322 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11323 return value_from_longest (type, low);
11324 case OP_ATR_LAST:
1eea4ebd 11325 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11326 return value_from_longest (type, high);
11327 case OP_ATR_LENGTH:
1eea4ebd
UW
11328 low = ada_array_bound_from_type (type_arg, tem, 0);
11329 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11330 return value_from_longest (type, high - low + 1);
11331 }
11332 }
14f9c5c9
AS
11333 }
11334
4c4b4cd2
PH
11335 case OP_ATR_TAG:
11336 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11337 if (noside == EVAL_SKIP)
76a01679 11338 goto nosideret;
4c4b4cd2
PH
11339
11340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11341 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11342
11343 return ada_value_tag (arg1);
11344
11345 case OP_ATR_MIN:
11346 case OP_ATR_MAX:
11347 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 if (noside == EVAL_SKIP)
76a01679 11351 goto nosideret;
d2e4a39e 11352 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11353 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11354 else
f44316fa
UW
11355 {
11356 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11357 return value_binop (arg1, arg2,
11358 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11359 }
14f9c5c9 11360
4c4b4cd2
PH
11361 case OP_ATR_MODULUS:
11362 {
31dedfee 11363 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11364
5b4ee69b 11365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11366 if (noside == EVAL_SKIP)
11367 goto nosideret;
4c4b4cd2 11368
76a01679 11369 if (!ada_is_modular_type (type_arg))
323e0a4a 11370 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11371
76a01679
JB
11372 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11373 ada_modulus (type_arg));
4c4b4cd2
PH
11374 }
11375
11376
11377 case OP_ATR_POS:
11378 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11379 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11380 if (noside == EVAL_SKIP)
76a01679 11381 goto nosideret;
3cb382c9
UW
11382 type = builtin_type (exp->gdbarch)->builtin_int;
11383 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11384 return value_zero (type, not_lval);
14f9c5c9 11385 else
3cb382c9 11386 return value_pos_atr (type, arg1);
14f9c5c9 11387
4c4b4cd2
PH
11388 case OP_ATR_SIZE:
11389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11390 type = value_type (arg1);
11391
11392 /* If the argument is a reference, then dereference its type, since
11393 the user is really asking for the size of the actual object,
11394 not the size of the pointer. */
11395 if (TYPE_CODE (type) == TYPE_CODE_REF)
11396 type = TYPE_TARGET_TYPE (type);
11397
4c4b4cd2 11398 if (noside == EVAL_SKIP)
76a01679 11399 goto nosideret;
4c4b4cd2 11400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11401 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11402 else
22601c15 11403 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11404 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11405
11406 case OP_ATR_VAL:
11407 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11408 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11409 type = exp->elts[pc + 2].type;
14f9c5c9 11410 if (noside == EVAL_SKIP)
76a01679 11411 goto nosideret;
4c4b4cd2 11412 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11413 return value_zero (type, not_lval);
4c4b4cd2 11414 else
76a01679 11415 return value_val_atr (type, arg1);
4c4b4cd2
PH
11416
11417 case BINOP_EXP:
11418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11419 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11420 if (noside == EVAL_SKIP)
11421 goto nosideret;
11422 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11423 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11424 else
f44316fa
UW
11425 {
11426 /* For integer exponentiation operations,
11427 only promote the first argument. */
11428 if (is_integral_type (value_type (arg2)))
11429 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11430 else
11431 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11432
11433 return value_binop (arg1, arg2, op);
11434 }
4c4b4cd2
PH
11435
11436 case UNOP_PLUS:
11437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11438 if (noside == EVAL_SKIP)
11439 goto nosideret;
11440 else
11441 return arg1;
11442
11443 case UNOP_ABS:
11444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11445 if (noside == EVAL_SKIP)
11446 goto nosideret;
f44316fa 11447 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11448 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11449 return value_neg (arg1);
14f9c5c9 11450 else
4c4b4cd2 11451 return arg1;
14f9c5c9
AS
11452
11453 case UNOP_IND:
5ec18f2b 11454 preeval_pos = *pos;
6b0d7253 11455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11456 if (noside == EVAL_SKIP)
4c4b4cd2 11457 goto nosideret;
df407dfe 11458 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11459 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11460 {
11461 if (ada_is_array_descriptor_type (type))
11462 /* GDB allows dereferencing GNAT array descriptors. */
11463 {
11464 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11465
4c4b4cd2 11466 if (arrType == NULL)
323e0a4a 11467 error (_("Attempt to dereference null array pointer."));
00a4c844 11468 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11469 }
11470 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11471 || TYPE_CODE (type) == TYPE_CODE_REF
11472 /* In C you can dereference an array to get the 1st elt. */
11473 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11474 {
5ec18f2b
JG
11475 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11476 only be determined by inspecting the object's tag.
11477 This means that we need to evaluate completely the
11478 expression in order to get its type. */
11479
023db19c
JB
11480 if ((TYPE_CODE (type) == TYPE_CODE_REF
11481 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11482 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11483 {
11484 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11485 EVAL_NORMAL);
11486 type = value_type (ada_value_ind (arg1));
11487 }
11488 else
11489 {
11490 type = to_static_fixed_type
11491 (ada_aligned_type
11492 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11493 }
c1b5a1a6 11494 ada_ensure_varsize_limit (type);
714e53ab
PH
11495 return value_zero (type, lval_memory);
11496 }
4c4b4cd2 11497 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11498 {
11499 /* GDB allows dereferencing an int. */
11500 if (expect_type == NULL)
11501 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11502 lval_memory);
11503 else
11504 {
11505 expect_type =
11506 to_static_fixed_type (ada_aligned_type (expect_type));
11507 return value_zero (expect_type, lval_memory);
11508 }
11509 }
4c4b4cd2 11510 else
323e0a4a 11511 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11512 }
0963b4bd 11513 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11514 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11515
96967637
JB
11516 if (TYPE_CODE (type) == TYPE_CODE_INT)
11517 /* GDB allows dereferencing an int. If we were given
11518 the expect_type, then use that as the target type.
11519 Otherwise, assume that the target type is an int. */
11520 {
11521 if (expect_type != NULL)
11522 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11523 arg1));
11524 else
11525 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11526 (CORE_ADDR) value_as_address (arg1));
11527 }
6b0d7253 11528
4c4b4cd2
PH
11529 if (ada_is_array_descriptor_type (type))
11530 /* GDB allows dereferencing GNAT array descriptors. */
11531 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11532 else
4c4b4cd2 11533 return ada_value_ind (arg1);
14f9c5c9
AS
11534
11535 case STRUCTOP_STRUCT:
11536 tem = longest_to_int (exp->elts[pc + 1].longconst);
11537 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11538 preeval_pos = *pos;
14f9c5c9
AS
11539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11540 if (noside == EVAL_SKIP)
4c4b4cd2 11541 goto nosideret;
14f9c5c9 11542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11543 {
df407dfe 11544 struct type *type1 = value_type (arg1);
5b4ee69b 11545
76a01679
JB
11546 if (ada_is_tagged_type (type1, 1))
11547 {
11548 type = ada_lookup_struct_elt_type (type1,
11549 &exp->elts[pc + 2].string,
988f6b3d 11550 1, 1);
5ec18f2b
JG
11551
11552 /* If the field is not found, check if it exists in the
11553 extension of this object's type. This means that we
11554 need to evaluate completely the expression. */
11555
76a01679 11556 if (type == NULL)
5ec18f2b
JG
11557 {
11558 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11559 EVAL_NORMAL);
11560 arg1 = ada_value_struct_elt (arg1,
11561 &exp->elts[pc + 2].string,
11562 0);
11563 arg1 = unwrap_value (arg1);
11564 type = value_type (ada_to_fixed_value (arg1));
11565 }
76a01679
JB
11566 }
11567 else
11568 type =
11569 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11570 0);
76a01679
JB
11571
11572 return value_zero (ada_aligned_type (type), lval_memory);
11573 }
14f9c5c9 11574 else
a579cd9a
MW
11575 {
11576 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11577 arg1 = unwrap_value (arg1);
11578 return ada_to_fixed_value (arg1);
11579 }
284614f0 11580
14f9c5c9 11581 case OP_TYPE:
4c4b4cd2
PH
11582 /* The value is not supposed to be used. This is here to make it
11583 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11584 (*pos) += 2;
11585 if (noside == EVAL_SKIP)
4c4b4cd2 11586 goto nosideret;
14f9c5c9 11587 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11588 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11589 else
323e0a4a 11590 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11591
11592 case OP_AGGREGATE:
11593 case OP_CHOICES:
11594 case OP_OTHERS:
11595 case OP_DISCRETE_RANGE:
11596 case OP_POSITIONAL:
11597 case OP_NAME:
11598 if (noside == EVAL_NORMAL)
11599 switch (op)
11600 {
11601 case OP_NAME:
11602 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11603 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11604 case OP_AGGREGATE:
11605 error (_("Aggregates only allowed on the right of an assignment"));
11606 default:
0963b4bd
MS
11607 internal_error (__FILE__, __LINE__,
11608 _("aggregate apparently mangled"));
52ce6436
PH
11609 }
11610
11611 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11612 *pos += oplen - 1;
11613 for (tem = 0; tem < nargs; tem += 1)
11614 ada_evaluate_subexp (NULL, exp, pos, noside);
11615 goto nosideret;
14f9c5c9
AS
11616 }
11617
11618nosideret:
ced9779b 11619 return eval_skip_value (exp);
14f9c5c9 11620}
14f9c5c9 11621\f
d2e4a39e 11622
4c4b4cd2 11623 /* Fixed point */
14f9c5c9
AS
11624
11625/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11626 type name that encodes the 'small and 'delta information.
4c4b4cd2 11627 Otherwise, return NULL. */
14f9c5c9 11628
d2e4a39e 11629static const char *
ebf56fd3 11630fixed_type_info (struct type *type)
14f9c5c9 11631{
d2e4a39e 11632 const char *name = ada_type_name (type);
14f9c5c9
AS
11633 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11634
d2e4a39e
AS
11635 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11636 {
14f9c5c9 11637 const char *tail = strstr (name, "___XF_");
5b4ee69b 11638
14f9c5c9 11639 if (tail == NULL)
4c4b4cd2 11640 return NULL;
d2e4a39e 11641 else
4c4b4cd2 11642 return tail + 5;
14f9c5c9
AS
11643 }
11644 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11645 return fixed_type_info (TYPE_TARGET_TYPE (type));
11646 else
11647 return NULL;
11648}
11649
4c4b4cd2 11650/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11651
11652int
ebf56fd3 11653ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11654{
11655 return fixed_type_info (type) != NULL;
11656}
11657
4c4b4cd2
PH
11658/* Return non-zero iff TYPE represents a System.Address type. */
11659
11660int
11661ada_is_system_address_type (struct type *type)
11662{
11663 return (TYPE_NAME (type)
11664 && strcmp (TYPE_NAME (type), "system__address") == 0);
11665}
11666
14f9c5c9 11667/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11668 type, return the target floating-point type to be used to represent
11669 of this type during internal computation. */
11670
11671static struct type *
11672ada_scaling_type (struct type *type)
11673{
11674 return builtin_type (get_type_arch (type))->builtin_long_double;
11675}
11676
11677/* Assuming that TYPE is the representation of an Ada fixed-point
11678 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11679 delta cannot be determined. */
14f9c5c9 11680
50eff16b 11681struct value *
ebf56fd3 11682ada_delta (struct type *type)
14f9c5c9
AS
11683{
11684 const char *encoding = fixed_type_info (type);
50eff16b
UW
11685 struct type *scale_type = ada_scaling_type (type);
11686
11687 long long num, den;
11688
11689 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11690 return nullptr;
d2e4a39e 11691 else
50eff16b
UW
11692 return value_binop (value_from_longest (scale_type, num),
11693 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11694}
11695
11696/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11697 factor ('SMALL value) associated with the type. */
14f9c5c9 11698
50eff16b
UW
11699struct value *
11700ada_scaling_factor (struct type *type)
14f9c5c9
AS
11701{
11702 const char *encoding = fixed_type_info (type);
50eff16b
UW
11703 struct type *scale_type = ada_scaling_type (type);
11704
11705 long long num0, den0, num1, den1;
14f9c5c9 11706 int n;
d2e4a39e 11707
50eff16b 11708 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11709 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11710
11711 if (n < 2)
50eff16b 11712 return value_from_longest (scale_type, 1);
14f9c5c9 11713 else if (n == 4)
50eff16b
UW
11714 return value_binop (value_from_longest (scale_type, num1),
11715 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11716 else
50eff16b
UW
11717 return value_binop (value_from_longest (scale_type, num0),
11718 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11719}
11720
14f9c5c9 11721\f
d2e4a39e 11722
4c4b4cd2 11723 /* Range types */
14f9c5c9
AS
11724
11725/* Scan STR beginning at position K for a discriminant name, and
11726 return the value of that discriminant field of DVAL in *PX. If
11727 PNEW_K is not null, put the position of the character beyond the
11728 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11729 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11730
11731static int
108d56a4 11732scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11733 int *pnew_k)
14f9c5c9
AS
11734{
11735 static char *bound_buffer = NULL;
11736 static size_t bound_buffer_len = 0;
5da1a4d3 11737 const char *pstart, *pend, *bound;
d2e4a39e 11738 struct value *bound_val;
14f9c5c9
AS
11739
11740 if (dval == NULL || str == NULL || str[k] == '\0')
11741 return 0;
11742
5da1a4d3
SM
11743 pstart = str + k;
11744 pend = strstr (pstart, "__");
14f9c5c9
AS
11745 if (pend == NULL)
11746 {
5da1a4d3 11747 bound = pstart;
14f9c5c9
AS
11748 k += strlen (bound);
11749 }
d2e4a39e 11750 else
14f9c5c9 11751 {
5da1a4d3
SM
11752 int len = pend - pstart;
11753
11754 /* Strip __ and beyond. */
11755 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11756 strncpy (bound_buffer, pstart, len);
11757 bound_buffer[len] = '\0';
11758
14f9c5c9 11759 bound = bound_buffer;
d2e4a39e 11760 k = pend - str;
14f9c5c9 11761 }
d2e4a39e 11762
df407dfe 11763 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11764 if (bound_val == NULL)
11765 return 0;
11766
11767 *px = value_as_long (bound_val);
11768 if (pnew_k != NULL)
11769 *pnew_k = k;
11770 return 1;
11771}
11772
11773/* Value of variable named NAME in the current environment. If
11774 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11775 otherwise causes an error with message ERR_MSG. */
11776
d2e4a39e 11777static struct value *
edb0c9cb 11778get_var_value (const char *name, const char *err_msg)
14f9c5c9 11779{
b5ec771e 11780 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11781
54d343a2 11782 std::vector<struct block_symbol> syms;
b5ec771e
PA
11783 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11784 get_selected_block (0),
11785 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11786
11787 if (nsyms != 1)
11788 {
11789 if (err_msg == NULL)
4c4b4cd2 11790 return 0;
14f9c5c9 11791 else
8a3fe4f8 11792 error (("%s"), err_msg);
14f9c5c9
AS
11793 }
11794
54d343a2 11795 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11796}
d2e4a39e 11797
edb0c9cb
PA
11798/* Value of integer variable named NAME in the current environment.
11799 If no such variable is found, returns false. Otherwise, sets VALUE
11800 to the variable's value and returns true. */
4c4b4cd2 11801
edb0c9cb
PA
11802bool
11803get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11804{
4c4b4cd2 11805 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11806
14f9c5c9 11807 if (var_val == 0)
edb0c9cb
PA
11808 return false;
11809
11810 value = value_as_long (var_val);
11811 return true;
14f9c5c9 11812}
d2e4a39e 11813
14f9c5c9
AS
11814
11815/* Return a range type whose base type is that of the range type named
11816 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11817 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11818 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11819 corresponding range type from debug information; fall back to using it
11820 if symbol lookup fails. If a new type must be created, allocate it
11821 like ORIG_TYPE was. The bounds information, in general, is encoded
11822 in NAME, the base type given in the named range type. */
14f9c5c9 11823
d2e4a39e 11824static struct type *
28c85d6c 11825to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11826{
0d5cff50 11827 const char *name;
14f9c5c9 11828 struct type *base_type;
108d56a4 11829 const char *subtype_info;
14f9c5c9 11830
28c85d6c
JB
11831 gdb_assert (raw_type != NULL);
11832 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11833
1ce677a4 11834 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11835 base_type = TYPE_TARGET_TYPE (raw_type);
11836 else
11837 base_type = raw_type;
11838
28c85d6c 11839 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11840 subtype_info = strstr (name, "___XD");
11841 if (subtype_info == NULL)
690cc4eb 11842 {
43bbcdc2
PH
11843 LONGEST L = ada_discrete_type_low_bound (raw_type);
11844 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11845
690cc4eb
PH
11846 if (L < INT_MIN || U > INT_MAX)
11847 return raw_type;
11848 else
0c9c3474
SA
11849 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11850 L, U);
690cc4eb 11851 }
14f9c5c9
AS
11852 else
11853 {
11854 static char *name_buf = NULL;
11855 static size_t name_len = 0;
11856 int prefix_len = subtype_info - name;
11857 LONGEST L, U;
11858 struct type *type;
108d56a4 11859 const char *bounds_str;
14f9c5c9
AS
11860 int n;
11861
11862 GROW_VECT (name_buf, name_len, prefix_len + 5);
11863 strncpy (name_buf, name, prefix_len);
11864 name_buf[prefix_len] = '\0';
11865
11866 subtype_info += 5;
11867 bounds_str = strchr (subtype_info, '_');
11868 n = 1;
11869
d2e4a39e 11870 if (*subtype_info == 'L')
4c4b4cd2
PH
11871 {
11872 if (!ada_scan_number (bounds_str, n, &L, &n)
11873 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11874 return raw_type;
11875 if (bounds_str[n] == '_')
11876 n += 2;
0963b4bd 11877 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11878 n += 1;
11879 subtype_info += 1;
11880 }
d2e4a39e 11881 else
4c4b4cd2 11882 {
4c4b4cd2 11883 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11884 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11885 {
323e0a4a 11886 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11887 L = 1;
11888 }
11889 }
14f9c5c9 11890
d2e4a39e 11891 if (*subtype_info == 'U')
4c4b4cd2
PH
11892 {
11893 if (!ada_scan_number (bounds_str, n, &U, &n)
11894 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11895 return raw_type;
11896 }
d2e4a39e 11897 else
4c4b4cd2 11898 {
4c4b4cd2 11899 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11900 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11901 {
323e0a4a 11902 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11903 U = L;
11904 }
11905 }
14f9c5c9 11906
0c9c3474
SA
11907 type = create_static_range_type (alloc_type_copy (raw_type),
11908 base_type, L, U);
f5a91472
JB
11909 /* create_static_range_type alters the resulting type's length
11910 to match the size of the base_type, which is not what we want.
11911 Set it back to the original range type's length. */
11912 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11913 TYPE_NAME (type) = name;
14f9c5c9
AS
11914 return type;
11915 }
11916}
11917
4c4b4cd2
PH
11918/* True iff NAME is the name of a range type. */
11919
14f9c5c9 11920int
d2e4a39e 11921ada_is_range_type_name (const char *name)
14f9c5c9
AS
11922{
11923 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11924}
14f9c5c9 11925\f
d2e4a39e 11926
4c4b4cd2
PH
11927 /* Modular types */
11928
11929/* True iff TYPE is an Ada modular type. */
14f9c5c9 11930
14f9c5c9 11931int
d2e4a39e 11932ada_is_modular_type (struct type *type)
14f9c5c9 11933{
18af8284 11934 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11935
11936 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11937 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11938 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11939}
11940
4c4b4cd2
PH
11941/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11942
61ee279c 11943ULONGEST
0056e4d5 11944ada_modulus (struct type *type)
14f9c5c9 11945{
43bbcdc2 11946 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11947}
d2e4a39e 11948\f
f7f9143b
JB
11949
11950/* Ada exception catchpoint support:
11951 ---------------------------------
11952
11953 We support 3 kinds of exception catchpoints:
11954 . catchpoints on Ada exceptions
11955 . catchpoints on unhandled Ada exceptions
11956 . catchpoints on failed assertions
11957
11958 Exceptions raised during failed assertions, or unhandled exceptions
11959 could perfectly be caught with the general catchpoint on Ada exceptions.
11960 However, we can easily differentiate these two special cases, and having
11961 the option to distinguish these two cases from the rest can be useful
11962 to zero-in on certain situations.
11963
11964 Exception catchpoints are a specialized form of breakpoint,
11965 since they rely on inserting breakpoints inside known routines
11966 of the GNAT runtime. The implementation therefore uses a standard
11967 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11968 of breakpoint_ops.
11969
0259addd
JB
11970 Support in the runtime for exception catchpoints have been changed
11971 a few times already, and these changes affect the implementation
11972 of these catchpoints. In order to be able to support several
11973 variants of the runtime, we use a sniffer that will determine
28010a5d 11974 the runtime variant used by the program being debugged. */
f7f9143b 11975
82eacd52
JB
11976/* Ada's standard exceptions.
11977
11978 The Ada 83 standard also defined Numeric_Error. But there so many
11979 situations where it was unclear from the Ada 83 Reference Manual
11980 (RM) whether Constraint_Error or Numeric_Error should be raised,
11981 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11982 Interpretation saying that anytime the RM says that Numeric_Error
11983 should be raised, the implementation may raise Constraint_Error.
11984 Ada 95 went one step further and pretty much removed Numeric_Error
11985 from the list of standard exceptions (it made it a renaming of
11986 Constraint_Error, to help preserve compatibility when compiling
11987 an Ada83 compiler). As such, we do not include Numeric_Error from
11988 this list of standard exceptions. */
3d0b0fa3 11989
a121b7c1 11990static const char *standard_exc[] = {
3d0b0fa3
JB
11991 "constraint_error",
11992 "program_error",
11993 "storage_error",
11994 "tasking_error"
11995};
11996
0259addd
JB
11997typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11998
11999/* A structure that describes how to support exception catchpoints
12000 for a given executable. */
12001
12002struct exception_support_info
12003{
12004 /* The name of the symbol to break on in order to insert
12005 a catchpoint on exceptions. */
12006 const char *catch_exception_sym;
12007
12008 /* The name of the symbol to break on in order to insert
12009 a catchpoint on unhandled exceptions. */
12010 const char *catch_exception_unhandled_sym;
12011
12012 /* The name of the symbol to break on in order to insert
12013 a catchpoint on failed assertions. */
12014 const char *catch_assert_sym;
12015
9f757bf7
XR
12016 /* The name of the symbol to break on in order to insert
12017 a catchpoint on exception handling. */
12018 const char *catch_handlers_sym;
12019
0259addd
JB
12020 /* Assuming that the inferior just triggered an unhandled exception
12021 catchpoint, this function is responsible for returning the address
12022 in inferior memory where the name of that exception is stored.
12023 Return zero if the address could not be computed. */
12024 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12025};
12026
12027static CORE_ADDR ada_unhandled_exception_name_addr (void);
12028static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12029
12030/* The following exception support info structure describes how to
12031 implement exception catchpoints with the latest version of the
12032 Ada runtime (as of 2007-03-06). */
12033
12034static const struct exception_support_info default_exception_support_info =
12035{
12036 "__gnat_debug_raise_exception", /* catch_exception_sym */
12037 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12038 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12039 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12040 ada_unhandled_exception_name_addr
12041};
12042
12043/* The following exception support info structure describes how to
12044 implement exception catchpoints with a slightly older version
12045 of the Ada runtime. */
12046
12047static const struct exception_support_info exception_support_info_fallback =
12048{
12049 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12050 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12051 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12052 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12053 ada_unhandled_exception_name_addr_from_raise
12054};
12055
f17011e0
JB
12056/* Return nonzero if we can detect the exception support routines
12057 described in EINFO.
12058
12059 This function errors out if an abnormal situation is detected
12060 (for instance, if we find the exception support routines, but
12061 that support is found to be incomplete). */
12062
12063static int
12064ada_has_this_exception_support (const struct exception_support_info *einfo)
12065{
12066 struct symbol *sym;
12067
12068 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12069 that should be compiled with debugging information. As a result, we
12070 expect to find that symbol in the symtabs. */
12071
12072 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12073 if (sym == NULL)
a6af7abe
JB
12074 {
12075 /* Perhaps we did not find our symbol because the Ada runtime was
12076 compiled without debugging info, or simply stripped of it.
12077 It happens on some GNU/Linux distributions for instance, where
12078 users have to install a separate debug package in order to get
12079 the runtime's debugging info. In that situation, let the user
12080 know why we cannot insert an Ada exception catchpoint.
12081
12082 Note: Just for the purpose of inserting our Ada exception
12083 catchpoint, we could rely purely on the associated minimal symbol.
12084 But we would be operating in degraded mode anyway, since we are
12085 still lacking the debugging info needed later on to extract
12086 the name of the exception being raised (this name is printed in
12087 the catchpoint message, and is also used when trying to catch
12088 a specific exception). We do not handle this case for now. */
3b7344d5 12089 struct bound_minimal_symbol msym
1c8e84b0
JB
12090 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12091
3b7344d5 12092 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12093 error (_("Your Ada runtime appears to be missing some debugging "
12094 "information.\nCannot insert Ada exception catchpoint "
12095 "in this configuration."));
12096
12097 return 0;
12098 }
f17011e0
JB
12099
12100 /* Make sure that the symbol we found corresponds to a function. */
12101
12102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12103 error (_("Symbol \"%s\" is not a function (class = %d)"),
12104 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12105
12106 return 1;
12107}
12108
0259addd
JB
12109/* Inspect the Ada runtime and determine which exception info structure
12110 should be used to provide support for exception catchpoints.
12111
3eecfa55
JB
12112 This function will always set the per-inferior exception_info,
12113 or raise an error. */
0259addd
JB
12114
12115static void
12116ada_exception_support_info_sniffer (void)
12117{
3eecfa55 12118 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12119
12120 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12121 if (data->exception_info != NULL)
0259addd
JB
12122 return;
12123
12124 /* Check the latest (default) exception support info. */
f17011e0 12125 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12126 {
3eecfa55 12127 data->exception_info = &default_exception_support_info;
0259addd
JB
12128 return;
12129 }
12130
12131 /* Try our fallback exception suport info. */
f17011e0 12132 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12133 {
3eecfa55 12134 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12135 return;
12136 }
12137
12138 /* Sometimes, it is normal for us to not be able to find the routine
12139 we are looking for. This happens when the program is linked with
12140 the shared version of the GNAT runtime, and the program has not been
12141 started yet. Inform the user of these two possible causes if
12142 applicable. */
12143
ccefe4c4 12144 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12145 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12146
12147 /* If the symbol does not exist, then check that the program is
12148 already started, to make sure that shared libraries have been
12149 loaded. If it is not started, this may mean that the symbol is
12150 in a shared library. */
12151
e99b03dc 12152 if (inferior_ptid.pid () == 0)
0259addd
JB
12153 error (_("Unable to insert catchpoint. Try to start the program first."));
12154
12155 /* At this point, we know that we are debugging an Ada program and
12156 that the inferior has been started, but we still are not able to
0963b4bd 12157 find the run-time symbols. That can mean that we are in
0259addd
JB
12158 configurable run time mode, or that a-except as been optimized
12159 out by the linker... In any case, at this point it is not worth
12160 supporting this feature. */
12161
7dda8cff 12162 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12163}
12164
f7f9143b
JB
12165/* True iff FRAME is very likely to be that of a function that is
12166 part of the runtime system. This is all very heuristic, but is
12167 intended to be used as advice as to what frames are uninteresting
12168 to most users. */
12169
12170static int
12171is_known_support_routine (struct frame_info *frame)
12172{
692465f1 12173 enum language func_lang;
f7f9143b 12174 int i;
f35a17b5 12175 const char *fullname;
f7f9143b 12176
4ed6b5be
JB
12177 /* If this code does not have any debugging information (no symtab),
12178 This cannot be any user code. */
f7f9143b 12179
51abb421 12180 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12181 if (sal.symtab == NULL)
12182 return 1;
12183
4ed6b5be
JB
12184 /* If there is a symtab, but the associated source file cannot be
12185 located, then assume this is not user code: Selecting a frame
12186 for which we cannot display the code would not be very helpful
12187 for the user. This should also take care of case such as VxWorks
12188 where the kernel has some debugging info provided for a few units. */
f7f9143b 12189
f35a17b5
JK
12190 fullname = symtab_to_fullname (sal.symtab);
12191 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12192 return 1;
12193
4ed6b5be
JB
12194 /* Check the unit filename againt the Ada runtime file naming.
12195 We also check the name of the objfile against the name of some
12196 known system libraries that sometimes come with debugging info
12197 too. */
12198
f7f9143b
JB
12199 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12200 {
12201 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12202 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12203 return 1;
eb822aa6
DE
12204 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12205 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12206 return 1;
f7f9143b
JB
12207 }
12208
4ed6b5be 12209 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12210
c6dc63a1
TT
12211 gdb::unique_xmalloc_ptr<char> func_name
12212 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12213 if (func_name == NULL)
12214 return 1;
12215
12216 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12217 {
12218 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12219 if (re_exec (func_name.get ()))
12220 return 1;
f7f9143b
JB
12221 }
12222
12223 return 0;
12224}
12225
12226/* Find the first frame that contains debugging information and that is not
12227 part of the Ada run-time, starting from FI and moving upward. */
12228
0ef643c8 12229void
f7f9143b
JB
12230ada_find_printable_frame (struct frame_info *fi)
12231{
12232 for (; fi != NULL; fi = get_prev_frame (fi))
12233 {
12234 if (!is_known_support_routine (fi))
12235 {
12236 select_frame (fi);
12237 break;
12238 }
12239 }
12240
12241}
12242
12243/* Assuming that the inferior just triggered an unhandled exception
12244 catchpoint, return the address in inferior memory where the name
12245 of the exception is stored.
12246
12247 Return zero if the address could not be computed. */
12248
12249static CORE_ADDR
12250ada_unhandled_exception_name_addr (void)
0259addd
JB
12251{
12252 return parse_and_eval_address ("e.full_name");
12253}
12254
12255/* Same as ada_unhandled_exception_name_addr, except that this function
12256 should be used when the inferior uses an older version of the runtime,
12257 where the exception name needs to be extracted from a specific frame
12258 several frames up in the callstack. */
12259
12260static CORE_ADDR
12261ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12262{
12263 int frame_level;
12264 struct frame_info *fi;
3eecfa55 12265 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12266
12267 /* To determine the name of this exception, we need to select
12268 the frame corresponding to RAISE_SYM_NAME. This frame is
12269 at least 3 levels up, so we simply skip the first 3 frames
12270 without checking the name of their associated function. */
12271 fi = get_current_frame ();
12272 for (frame_level = 0; frame_level < 3; frame_level += 1)
12273 if (fi != NULL)
12274 fi = get_prev_frame (fi);
12275
12276 while (fi != NULL)
12277 {
692465f1
JB
12278 enum language func_lang;
12279
c6dc63a1
TT
12280 gdb::unique_xmalloc_ptr<char> func_name
12281 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12282 if (func_name != NULL)
12283 {
c6dc63a1 12284 if (strcmp (func_name.get (),
55b87a52
KS
12285 data->exception_info->catch_exception_sym) == 0)
12286 break; /* We found the frame we were looking for... */
55b87a52 12287 }
fb44b1a7 12288 fi = get_prev_frame (fi);
f7f9143b
JB
12289 }
12290
12291 if (fi == NULL)
12292 return 0;
12293
12294 select_frame (fi);
12295 return parse_and_eval_address ("id.full_name");
12296}
12297
12298/* Assuming the inferior just triggered an Ada exception catchpoint
12299 (of any type), return the address in inferior memory where the name
12300 of the exception is stored, if applicable.
12301
45db7c09
PA
12302 Assumes the selected frame is the current frame.
12303
f7f9143b
JB
12304 Return zero if the address could not be computed, or if not relevant. */
12305
12306static CORE_ADDR
761269c8 12307ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12308 struct breakpoint *b)
12309{
3eecfa55
JB
12310 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12311
f7f9143b
JB
12312 switch (ex)
12313 {
761269c8 12314 case ada_catch_exception:
f7f9143b
JB
12315 return (parse_and_eval_address ("e.full_name"));
12316 break;
12317
761269c8 12318 case ada_catch_exception_unhandled:
3eecfa55 12319 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12320 break;
9f757bf7
XR
12321
12322 case ada_catch_handlers:
12323 return 0; /* The runtimes does not provide access to the exception
12324 name. */
12325 break;
12326
761269c8 12327 case ada_catch_assert:
f7f9143b
JB
12328 return 0; /* Exception name is not relevant in this case. */
12329 break;
12330
12331 default:
12332 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12333 break;
12334 }
12335
12336 return 0; /* Should never be reached. */
12337}
12338
e547c119
JB
12339/* Assuming the inferior is stopped at an exception catchpoint,
12340 return the message which was associated to the exception, if
12341 available. Return NULL if the message could not be retrieved.
12342
e547c119
JB
12343 Note: The exception message can be associated to an exception
12344 either through the use of the Raise_Exception function, or
12345 more simply (Ada 2005 and later), via:
12346
12347 raise Exception_Name with "exception message";
12348
12349 */
12350
6f46ac85 12351static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12352ada_exception_message_1 (void)
12353{
12354 struct value *e_msg_val;
e547c119 12355 int e_msg_len;
e547c119
JB
12356
12357 /* For runtimes that support this feature, the exception message
12358 is passed as an unbounded string argument called "message". */
12359 e_msg_val = parse_and_eval ("message");
12360 if (e_msg_val == NULL)
12361 return NULL; /* Exception message not supported. */
12362
12363 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12364 gdb_assert (e_msg_val != NULL);
12365 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12366
12367 /* If the message string is empty, then treat it as if there was
12368 no exception message. */
12369 if (e_msg_len <= 0)
12370 return NULL;
12371
6f46ac85
TT
12372 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12373 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12374 e_msg.get ()[e_msg_len] = '\0';
e547c119 12375
e547c119
JB
12376 return e_msg;
12377}
12378
12379/* Same as ada_exception_message_1, except that all exceptions are
12380 contained here (returning NULL instead). */
12381
6f46ac85 12382static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12383ada_exception_message (void)
12384{
6f46ac85 12385 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12386
12387 TRY
12388 {
12389 e_msg = ada_exception_message_1 ();
12390 }
12391 CATCH (e, RETURN_MASK_ERROR)
12392 {
6f46ac85 12393 e_msg.reset (nullptr);
e547c119
JB
12394 }
12395 END_CATCH
12396
12397 return e_msg;
12398}
12399
f7f9143b
JB
12400/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12401 any error that ada_exception_name_addr_1 might cause to be thrown.
12402 When an error is intercepted, a warning with the error message is printed,
12403 and zero is returned. */
12404
12405static CORE_ADDR
761269c8 12406ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12407 struct breakpoint *b)
12408{
f7f9143b
JB
12409 CORE_ADDR result = 0;
12410
492d29ea 12411 TRY
f7f9143b
JB
12412 {
12413 result = ada_exception_name_addr_1 (ex, b);
12414 }
12415
492d29ea 12416 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12417 {
12418 warning (_("failed to get exception name: %s"), e.message);
12419 return 0;
12420 }
492d29ea 12421 END_CATCH
f7f9143b
JB
12422
12423 return result;
12424}
12425
cb7de75e 12426static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12427 (const char *excep_string,
12428 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12429
12430/* Ada catchpoints.
12431
12432 In the case of catchpoints on Ada exceptions, the catchpoint will
12433 stop the target on every exception the program throws. When a user
12434 specifies the name of a specific exception, we translate this
12435 request into a condition expression (in text form), and then parse
12436 it into an expression stored in each of the catchpoint's locations.
12437 We then use this condition to check whether the exception that was
12438 raised is the one the user is interested in. If not, then the
12439 target is resumed again. We store the name of the requested
12440 exception, in order to be able to re-set the condition expression
12441 when symbols change. */
12442
12443/* An instance of this type is used to represent an Ada catchpoint
5625a286 12444 breakpoint location. */
28010a5d 12445
5625a286 12446class ada_catchpoint_location : public bp_location
28010a5d 12447{
5625a286
PA
12448public:
12449 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12450 : bp_location (ops, owner)
12451 {}
28010a5d
PA
12452
12453 /* The condition that checks whether the exception that was raised
12454 is the specific exception the user specified on catchpoint
12455 creation. */
4d01a485 12456 expression_up excep_cond_expr;
28010a5d
PA
12457};
12458
12459/* Implement the DTOR method in the bp_location_ops structure for all
12460 Ada exception catchpoint kinds. */
12461
12462static void
12463ada_catchpoint_location_dtor (struct bp_location *bl)
12464{
12465 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12466
4d01a485 12467 al->excep_cond_expr.reset ();
28010a5d
PA
12468}
12469
12470/* The vtable to be used in Ada catchpoint locations. */
12471
12472static const struct bp_location_ops ada_catchpoint_location_ops =
12473{
12474 ada_catchpoint_location_dtor
12475};
12476
c1fc2657 12477/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12478
c1fc2657 12479struct ada_catchpoint : public breakpoint
28010a5d 12480{
28010a5d 12481 /* The name of the specific exception the user specified. */
bc18fbb5 12482 std::string excep_string;
28010a5d
PA
12483};
12484
12485/* Parse the exception condition string in the context of each of the
12486 catchpoint's locations, and store them for later evaluation. */
12487
12488static void
9f757bf7
XR
12489create_excep_cond_exprs (struct ada_catchpoint *c,
12490 enum ada_exception_catchpoint_kind ex)
28010a5d 12491{
28010a5d 12492 struct bp_location *bl;
28010a5d
PA
12493
12494 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12495 if (c->excep_string.empty ())
28010a5d
PA
12496 return;
12497
12498 /* Same if there are no locations... */
c1fc2657 12499 if (c->loc == NULL)
28010a5d
PA
12500 return;
12501
12502 /* Compute the condition expression in text form, from the specific
12503 expection we want to catch. */
cb7de75e 12504 std::string cond_string
bc18fbb5 12505 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12506
12507 /* Iterate over all the catchpoint's locations, and parse an
12508 expression for each. */
c1fc2657 12509 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12510 {
12511 struct ada_catchpoint_location *ada_loc
12512 = (struct ada_catchpoint_location *) bl;
4d01a485 12513 expression_up exp;
28010a5d
PA
12514
12515 if (!bl->shlib_disabled)
12516 {
bbc13ae3 12517 const char *s;
28010a5d 12518
cb7de75e 12519 s = cond_string.c_str ();
492d29ea 12520 TRY
28010a5d 12521 {
036e657b
JB
12522 exp = parse_exp_1 (&s, bl->address,
12523 block_for_pc (bl->address),
12524 0);
28010a5d 12525 }
492d29ea 12526 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12527 {
12528 warning (_("failed to reevaluate internal exception condition "
12529 "for catchpoint %d: %s"),
c1fc2657 12530 c->number, e.message);
849f2b52 12531 }
492d29ea 12532 END_CATCH
28010a5d
PA
12533 }
12534
b22e99fd 12535 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12536 }
28010a5d
PA
12537}
12538
28010a5d
PA
12539/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12540 structure for all exception catchpoint kinds. */
12541
12542static struct bp_location *
761269c8 12543allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12544 struct breakpoint *self)
12545{
5625a286 12546 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12547}
12548
12549/* Implement the RE_SET method in the breakpoint_ops structure for all
12550 exception catchpoint kinds. */
12551
12552static void
761269c8 12553re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12554{
12555 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12556
12557 /* Call the base class's method. This updates the catchpoint's
12558 locations. */
2060206e 12559 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12560
12561 /* Reparse the exception conditional expressions. One for each
12562 location. */
9f757bf7 12563 create_excep_cond_exprs (c, ex);
28010a5d
PA
12564}
12565
12566/* Returns true if we should stop for this breakpoint hit. If the
12567 user specified a specific exception, we only want to cause a stop
12568 if the program thrown that exception. */
12569
12570static int
12571should_stop_exception (const struct bp_location *bl)
12572{
12573 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12574 const struct ada_catchpoint_location *ada_loc
12575 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12576 int stop;
12577
12578 /* With no specific exception, should always stop. */
bc18fbb5 12579 if (c->excep_string.empty ())
28010a5d
PA
12580 return 1;
12581
12582 if (ada_loc->excep_cond_expr == NULL)
12583 {
12584 /* We will have a NULL expression if back when we were creating
12585 the expressions, this location's had failed to parse. */
12586 return 1;
12587 }
12588
12589 stop = 1;
492d29ea 12590 TRY
28010a5d
PA
12591 {
12592 struct value *mark;
12593
12594 mark = value_mark ();
4d01a485 12595 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12596 value_free_to_mark (mark);
12597 }
492d29ea
PA
12598 CATCH (ex, RETURN_MASK_ALL)
12599 {
12600 exception_fprintf (gdb_stderr, ex,
12601 _("Error in testing exception condition:\n"));
12602 }
12603 END_CATCH
12604
28010a5d
PA
12605 return stop;
12606}
12607
12608/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12609 for all exception catchpoint kinds. */
12610
12611static void
761269c8 12612check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12613{
12614 bs->stop = should_stop_exception (bs->bp_location_at);
12615}
12616
f7f9143b
JB
12617/* Implement the PRINT_IT method in the breakpoint_ops structure
12618 for all exception catchpoint kinds. */
12619
12620static enum print_stop_action
761269c8 12621print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12622{
79a45e25 12623 struct ui_out *uiout = current_uiout;
348d480f
PA
12624 struct breakpoint *b = bs->breakpoint_at;
12625
956a9fb9 12626 annotate_catchpoint (b->number);
f7f9143b 12627
112e8700 12628 if (uiout->is_mi_like_p ())
f7f9143b 12629 {
112e8700 12630 uiout->field_string ("reason",
956a9fb9 12631 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12632 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12633 }
12634
112e8700
SM
12635 uiout->text (b->disposition == disp_del
12636 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12637 uiout->field_int ("bkptno", b->number);
12638 uiout->text (", ");
f7f9143b 12639
45db7c09
PA
12640 /* ada_exception_name_addr relies on the selected frame being the
12641 current frame. Need to do this here because this function may be
12642 called more than once when printing a stop, and below, we'll
12643 select the first frame past the Ada run-time (see
12644 ada_find_printable_frame). */
12645 select_frame (get_current_frame ());
12646
f7f9143b
JB
12647 switch (ex)
12648 {
761269c8
JB
12649 case ada_catch_exception:
12650 case ada_catch_exception_unhandled:
9f757bf7 12651 case ada_catch_handlers:
956a9fb9
JB
12652 {
12653 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12654 char exception_name[256];
12655
12656 if (addr != 0)
12657 {
c714b426
PA
12658 read_memory (addr, (gdb_byte *) exception_name,
12659 sizeof (exception_name) - 1);
956a9fb9
JB
12660 exception_name [sizeof (exception_name) - 1] = '\0';
12661 }
12662 else
12663 {
12664 /* For some reason, we were unable to read the exception
12665 name. This could happen if the Runtime was compiled
12666 without debugging info, for instance. In that case,
12667 just replace the exception name by the generic string
12668 "exception" - it will read as "an exception" in the
12669 notification we are about to print. */
967cff16 12670 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12671 }
12672 /* In the case of unhandled exception breakpoints, we print
12673 the exception name as "unhandled EXCEPTION_NAME", to make
12674 it clearer to the user which kind of catchpoint just got
12675 hit. We used ui_out_text to make sure that this extra
12676 info does not pollute the exception name in the MI case. */
761269c8 12677 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12678 uiout->text ("unhandled ");
12679 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12680 }
12681 break;
761269c8 12682 case ada_catch_assert:
956a9fb9
JB
12683 /* In this case, the name of the exception is not really
12684 important. Just print "failed assertion" to make it clearer
12685 that his program just hit an assertion-failure catchpoint.
12686 We used ui_out_text because this info does not belong in
12687 the MI output. */
112e8700 12688 uiout->text ("failed assertion");
956a9fb9 12689 break;
f7f9143b 12690 }
e547c119 12691
6f46ac85 12692 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12693 if (exception_message != NULL)
12694 {
e547c119 12695 uiout->text (" (");
6f46ac85 12696 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12697 uiout->text (")");
e547c119
JB
12698 }
12699
112e8700 12700 uiout->text (" at ");
956a9fb9 12701 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12702
12703 return PRINT_SRC_AND_LOC;
12704}
12705
12706/* Implement the PRINT_ONE method in the breakpoint_ops structure
12707 for all exception catchpoint kinds. */
12708
12709static void
761269c8 12710print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12711 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12712{
79a45e25 12713 struct ui_out *uiout = current_uiout;
28010a5d 12714 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12715 struct value_print_options opts;
12716
12717 get_user_print_options (&opts);
12718 if (opts.addressprint)
f7f9143b
JB
12719 {
12720 annotate_field (4);
112e8700 12721 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12722 }
12723
12724 annotate_field (5);
a6d9a66e 12725 *last_loc = b->loc;
f7f9143b
JB
12726 switch (ex)
12727 {
761269c8 12728 case ada_catch_exception:
bc18fbb5 12729 if (!c->excep_string.empty ())
f7f9143b 12730 {
bc18fbb5
TT
12731 std::string msg = string_printf (_("`%s' Ada exception"),
12732 c->excep_string.c_str ());
28010a5d 12733
112e8700 12734 uiout->field_string ("what", msg);
f7f9143b
JB
12735 }
12736 else
112e8700 12737 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12738
12739 break;
12740
761269c8 12741 case ada_catch_exception_unhandled:
112e8700 12742 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12743 break;
12744
9f757bf7 12745 case ada_catch_handlers:
bc18fbb5 12746 if (!c->excep_string.empty ())
9f757bf7
XR
12747 {
12748 uiout->field_fmt ("what",
12749 _("`%s' Ada exception handlers"),
bc18fbb5 12750 c->excep_string.c_str ());
9f757bf7
XR
12751 }
12752 else
12753 uiout->field_string ("what", "all Ada exceptions handlers");
12754 break;
12755
761269c8 12756 case ada_catch_assert:
112e8700 12757 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12758 break;
12759
12760 default:
12761 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12762 break;
12763 }
12764}
12765
12766/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12767 for all exception catchpoint kinds. */
12768
12769static void
761269c8 12770print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12771 struct breakpoint *b)
12772{
28010a5d 12773 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12774 struct ui_out *uiout = current_uiout;
28010a5d 12775
112e8700 12776 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12777 : _("Catchpoint "));
112e8700
SM
12778 uiout->field_int ("bkptno", b->number);
12779 uiout->text (": ");
00eb2c4a 12780
f7f9143b
JB
12781 switch (ex)
12782 {
761269c8 12783 case ada_catch_exception:
bc18fbb5 12784 if (!c->excep_string.empty ())
00eb2c4a 12785 {
862d101a 12786 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12787 c->excep_string.c_str ());
862d101a 12788 uiout->text (info.c_str ());
00eb2c4a 12789 }
f7f9143b 12790 else
112e8700 12791 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12792 break;
12793
761269c8 12794 case ada_catch_exception_unhandled:
112e8700 12795 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12796 break;
9f757bf7
XR
12797
12798 case ada_catch_handlers:
bc18fbb5 12799 if (!c->excep_string.empty ())
9f757bf7
XR
12800 {
12801 std::string info
12802 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12803 c->excep_string.c_str ());
9f757bf7
XR
12804 uiout->text (info.c_str ());
12805 }
12806 else
12807 uiout->text (_("all Ada exceptions handlers"));
12808 break;
12809
761269c8 12810 case ada_catch_assert:
112e8700 12811 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12812 break;
12813
12814 default:
12815 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12816 break;
12817 }
12818}
12819
6149aea9
PA
12820/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12821 for all exception catchpoint kinds. */
12822
12823static void
761269c8 12824print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12825 struct breakpoint *b, struct ui_file *fp)
12826{
28010a5d
PA
12827 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12828
6149aea9
PA
12829 switch (ex)
12830 {
761269c8 12831 case ada_catch_exception:
6149aea9 12832 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12833 if (!c->excep_string.empty ())
12834 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12835 break;
12836
761269c8 12837 case ada_catch_exception_unhandled:
78076abc 12838 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12839 break;
12840
9f757bf7
XR
12841 case ada_catch_handlers:
12842 fprintf_filtered (fp, "catch handlers");
12843 break;
12844
761269c8 12845 case ada_catch_assert:
6149aea9
PA
12846 fprintf_filtered (fp, "catch assert");
12847 break;
12848
12849 default:
12850 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12851 }
d9b3f62e 12852 print_recreate_thread (b, fp);
6149aea9
PA
12853}
12854
f7f9143b
JB
12855/* Virtual table for "catch exception" breakpoints. */
12856
28010a5d
PA
12857static struct bp_location *
12858allocate_location_catch_exception (struct breakpoint *self)
12859{
761269c8 12860 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12861}
12862
12863static void
12864re_set_catch_exception (struct breakpoint *b)
12865{
761269c8 12866 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12867}
12868
12869static void
12870check_status_catch_exception (bpstat bs)
12871{
761269c8 12872 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12873}
12874
f7f9143b 12875static enum print_stop_action
348d480f 12876print_it_catch_exception (bpstat bs)
f7f9143b 12877{
761269c8 12878 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12879}
12880
12881static void
a6d9a66e 12882print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12883{
761269c8 12884 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12885}
12886
12887static void
12888print_mention_catch_exception (struct breakpoint *b)
12889{
761269c8 12890 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12891}
12892
6149aea9
PA
12893static void
12894print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12895{
761269c8 12896 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12897}
12898
2060206e 12899static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12900
12901/* Virtual table for "catch exception unhandled" breakpoints. */
12902
28010a5d
PA
12903static struct bp_location *
12904allocate_location_catch_exception_unhandled (struct breakpoint *self)
12905{
761269c8 12906 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12907}
12908
12909static void
12910re_set_catch_exception_unhandled (struct breakpoint *b)
12911{
761269c8 12912 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12913}
12914
12915static void
12916check_status_catch_exception_unhandled (bpstat bs)
12917{
761269c8 12918 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12919}
12920
f7f9143b 12921static enum print_stop_action
348d480f 12922print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12923{
761269c8 12924 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12925}
12926
12927static void
a6d9a66e
UW
12928print_one_catch_exception_unhandled (struct breakpoint *b,
12929 struct bp_location **last_loc)
f7f9143b 12930{
761269c8 12931 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12932}
12933
12934static void
12935print_mention_catch_exception_unhandled (struct breakpoint *b)
12936{
761269c8 12937 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12938}
12939
6149aea9
PA
12940static void
12941print_recreate_catch_exception_unhandled (struct breakpoint *b,
12942 struct ui_file *fp)
12943{
761269c8 12944 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12945}
12946
2060206e 12947static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12948
12949/* Virtual table for "catch assert" breakpoints. */
12950
28010a5d
PA
12951static struct bp_location *
12952allocate_location_catch_assert (struct breakpoint *self)
12953{
761269c8 12954 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12955}
12956
12957static void
12958re_set_catch_assert (struct breakpoint *b)
12959{
761269c8 12960 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12961}
12962
12963static void
12964check_status_catch_assert (bpstat bs)
12965{
761269c8 12966 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12967}
12968
f7f9143b 12969static enum print_stop_action
348d480f 12970print_it_catch_assert (bpstat bs)
f7f9143b 12971{
761269c8 12972 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12973}
12974
12975static void
a6d9a66e 12976print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12977{
761269c8 12978 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12979}
12980
12981static void
12982print_mention_catch_assert (struct breakpoint *b)
12983{
761269c8 12984 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12985}
12986
6149aea9
PA
12987static void
12988print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12989{
761269c8 12990 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12991}
12992
2060206e 12993static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12994
9f757bf7
XR
12995/* Virtual table for "catch handlers" breakpoints. */
12996
12997static struct bp_location *
12998allocate_location_catch_handlers (struct breakpoint *self)
12999{
13000 return allocate_location_exception (ada_catch_handlers, self);
13001}
13002
13003static void
13004re_set_catch_handlers (struct breakpoint *b)
13005{
13006 re_set_exception (ada_catch_handlers, b);
13007}
13008
13009static void
13010check_status_catch_handlers (bpstat bs)
13011{
13012 check_status_exception (ada_catch_handlers, bs);
13013}
13014
13015static enum print_stop_action
13016print_it_catch_handlers (bpstat bs)
13017{
13018 return print_it_exception (ada_catch_handlers, bs);
13019}
13020
13021static void
13022print_one_catch_handlers (struct breakpoint *b,
13023 struct bp_location **last_loc)
13024{
13025 print_one_exception (ada_catch_handlers, b, last_loc);
13026}
13027
13028static void
13029print_mention_catch_handlers (struct breakpoint *b)
13030{
13031 print_mention_exception (ada_catch_handlers, b);
13032}
13033
13034static void
13035print_recreate_catch_handlers (struct breakpoint *b,
13036 struct ui_file *fp)
13037{
13038 print_recreate_exception (ada_catch_handlers, b, fp);
13039}
13040
13041static struct breakpoint_ops catch_handlers_breakpoint_ops;
13042
f7f9143b
JB
13043/* Split the arguments specified in a "catch exception" command.
13044 Set EX to the appropriate catchpoint type.
28010a5d 13045 Set EXCEP_STRING to the name of the specific exception if
5845583d 13046 specified by the user.
9f757bf7
XR
13047 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13048 "catch handlers" command. False otherwise.
5845583d
JB
13049 If a condition is found at the end of the arguments, the condition
13050 expression is stored in COND_STRING (memory must be deallocated
13051 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13052
13053static void
a121b7c1 13054catch_ada_exception_command_split (const char *args,
9f757bf7 13055 bool is_catch_handlers_cmd,
761269c8 13056 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13057 std::string *excep_string,
13058 std::string *cond_string)
f7f9143b 13059{
bc18fbb5 13060 std::string exception_name;
f7f9143b 13061
bc18fbb5
TT
13062 exception_name = extract_arg (&args);
13063 if (exception_name == "if")
5845583d
JB
13064 {
13065 /* This is not an exception name; this is the start of a condition
13066 expression for a catchpoint on all exceptions. So, "un-get"
13067 this token, and set exception_name to NULL. */
bc18fbb5 13068 exception_name.clear ();
5845583d
JB
13069 args -= 2;
13070 }
f7f9143b 13071
5845583d 13072 /* Check to see if we have a condition. */
f7f9143b 13073
f1735a53 13074 args = skip_spaces (args);
61012eef 13075 if (startswith (args, "if")
5845583d
JB
13076 && (isspace (args[2]) || args[2] == '\0'))
13077 {
13078 args += 2;
f1735a53 13079 args = skip_spaces (args);
5845583d
JB
13080
13081 if (args[0] == '\0')
13082 error (_("Condition missing after `if' keyword"));
bc18fbb5 13083 *cond_string = args;
5845583d
JB
13084
13085 args += strlen (args);
13086 }
13087
13088 /* Check that we do not have any more arguments. Anything else
13089 is unexpected. */
f7f9143b
JB
13090
13091 if (args[0] != '\0')
13092 error (_("Junk at end of expression"));
13093
9f757bf7
XR
13094 if (is_catch_handlers_cmd)
13095 {
13096 /* Catch handling of exceptions. */
13097 *ex = ada_catch_handlers;
13098 *excep_string = exception_name;
13099 }
bc18fbb5 13100 else if (exception_name.empty ())
f7f9143b
JB
13101 {
13102 /* Catch all exceptions. */
761269c8 13103 *ex = ada_catch_exception;
bc18fbb5 13104 excep_string->clear ();
f7f9143b 13105 }
bc18fbb5 13106 else if (exception_name == "unhandled")
f7f9143b
JB
13107 {
13108 /* Catch unhandled exceptions. */
761269c8 13109 *ex = ada_catch_exception_unhandled;
bc18fbb5 13110 excep_string->clear ();
f7f9143b
JB
13111 }
13112 else
13113 {
13114 /* Catch a specific exception. */
761269c8 13115 *ex = ada_catch_exception;
28010a5d 13116 *excep_string = exception_name;
f7f9143b
JB
13117 }
13118}
13119
13120/* Return the name of the symbol on which we should break in order to
13121 implement a catchpoint of the EX kind. */
13122
13123static const char *
761269c8 13124ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13125{
3eecfa55
JB
13126 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13127
13128 gdb_assert (data->exception_info != NULL);
0259addd 13129
f7f9143b
JB
13130 switch (ex)
13131 {
761269c8 13132 case ada_catch_exception:
3eecfa55 13133 return (data->exception_info->catch_exception_sym);
f7f9143b 13134 break;
761269c8 13135 case ada_catch_exception_unhandled:
3eecfa55 13136 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13137 break;
761269c8 13138 case ada_catch_assert:
3eecfa55 13139 return (data->exception_info->catch_assert_sym);
f7f9143b 13140 break;
9f757bf7
XR
13141 case ada_catch_handlers:
13142 return (data->exception_info->catch_handlers_sym);
13143 break;
f7f9143b
JB
13144 default:
13145 internal_error (__FILE__, __LINE__,
13146 _("unexpected catchpoint kind (%d)"), ex);
13147 }
13148}
13149
13150/* Return the breakpoint ops "virtual table" used for catchpoints
13151 of the EX kind. */
13152
c0a91b2b 13153static const struct breakpoint_ops *
761269c8 13154ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13155{
13156 switch (ex)
13157 {
761269c8 13158 case ada_catch_exception:
f7f9143b
JB
13159 return (&catch_exception_breakpoint_ops);
13160 break;
761269c8 13161 case ada_catch_exception_unhandled:
f7f9143b
JB
13162 return (&catch_exception_unhandled_breakpoint_ops);
13163 break;
761269c8 13164 case ada_catch_assert:
f7f9143b
JB
13165 return (&catch_assert_breakpoint_ops);
13166 break;
9f757bf7
XR
13167 case ada_catch_handlers:
13168 return (&catch_handlers_breakpoint_ops);
13169 break;
f7f9143b
JB
13170 default:
13171 internal_error (__FILE__, __LINE__,
13172 _("unexpected catchpoint kind (%d)"), ex);
13173 }
13174}
13175
13176/* Return the condition that will be used to match the current exception
13177 being raised with the exception that the user wants to catch. This
13178 assumes that this condition is used when the inferior just triggered
13179 an exception catchpoint.
cb7de75e 13180 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13181
cb7de75e 13182static std::string
9f757bf7
XR
13183ada_exception_catchpoint_cond_string (const char *excep_string,
13184 enum ada_exception_catchpoint_kind ex)
f7f9143b 13185{
3d0b0fa3 13186 int i;
9f757bf7 13187 bool is_standard_exc = false;
cb7de75e 13188 std::string result;
9f757bf7
XR
13189
13190 if (ex == ada_catch_handlers)
13191 {
13192 /* For exception handlers catchpoints, the condition string does
13193 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13194 result = ("long_integer (GNAT_GCC_exception_Access"
13195 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13196 }
13197 else
cb7de75e 13198 result = "long_integer (e)";
3d0b0fa3 13199
0963b4bd 13200 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13201 runtime units that have been compiled without debugging info; if
28010a5d 13202 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13203 exception (e.g. "constraint_error") then, during the evaluation
13204 of the condition expression, the symbol lookup on this name would
0963b4bd 13205 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13206 may then be set only on user-defined exceptions which have the
13207 same not-fully-qualified name (e.g. my_package.constraint_error).
13208
13209 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13210 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13211 exception constraint_error" is rewritten into "catch exception
13212 standard.constraint_error".
13213
13214 If an exception named contraint_error is defined in another package of
13215 the inferior program, then the only way to specify this exception as a
13216 breakpoint condition is to use its fully-qualified named:
13217 e.g. my_package.constraint_error. */
13218
13219 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13220 {
28010a5d 13221 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13222 {
9f757bf7
XR
13223 is_standard_exc = true;
13224 break;
3d0b0fa3
JB
13225 }
13226 }
9f757bf7 13227
cb7de75e
TT
13228 result += " = ";
13229
9f757bf7 13230 if (is_standard_exc)
cb7de75e 13231 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13232 else
cb7de75e 13233 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13234
9f757bf7 13235 return result;
f7f9143b
JB
13236}
13237
13238/* Return the symtab_and_line that should be used to insert an exception
13239 catchpoint of the TYPE kind.
13240
28010a5d
PA
13241 ADDR_STRING returns the name of the function where the real
13242 breakpoint that implements the catchpoints is set, depending on the
13243 type of catchpoint we need to create. */
f7f9143b
JB
13244
13245static struct symtab_and_line
bc18fbb5 13246ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13247 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13248{
13249 const char *sym_name;
13250 struct symbol *sym;
f7f9143b 13251
0259addd
JB
13252 /* First, find out which exception support info to use. */
13253 ada_exception_support_info_sniffer ();
13254
13255 /* Then lookup the function on which we will break in order to catch
f7f9143b 13256 the Ada exceptions requested by the user. */
f7f9143b
JB
13257 sym_name = ada_exception_sym_name (ex);
13258 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13259
57aff202
JB
13260 if (sym == NULL)
13261 error (_("Catchpoint symbol not found: %s"), sym_name);
13262
13263 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13264 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13265
13266 /* Set ADDR_STRING. */
f7f9143b
JB
13267 *addr_string = xstrdup (sym_name);
13268
f7f9143b 13269 /* Set OPS. */
4b9eee8c 13270 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13271
f17011e0 13272 return find_function_start_sal (sym, 1);
f7f9143b
JB
13273}
13274
b4a5b78b 13275/* Create an Ada exception catchpoint.
f7f9143b 13276
b4a5b78b 13277 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13278
bc18fbb5 13279 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13280 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13281 of the exception to which this catchpoint applies.
2df4d1d5 13282
bc18fbb5 13283 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13284
b4a5b78b
JB
13285 TEMPFLAG, if nonzero, means that the underlying breakpoint
13286 should be temporary.
28010a5d 13287
b4a5b78b 13288 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13289
349774ef 13290void
28010a5d 13291create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13292 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13293 const std::string &excep_string,
56ecd069 13294 const std::string &cond_string,
28010a5d 13295 int tempflag,
349774ef 13296 int disabled,
28010a5d
PA
13297 int from_tty)
13298{
f2fc3015 13299 const char *addr_string = NULL;
b4a5b78b 13300 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13301 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13302
b270e6f9
TT
13303 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13304 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13305 ops, tempflag, disabled, from_tty);
28010a5d 13306 c->excep_string = excep_string;
9f757bf7 13307 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13308 if (!cond_string.empty ())
13309 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13310 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13311}
13312
9ac4176b
PA
13313/* Implement the "catch exception" command. */
13314
13315static void
eb4c3f4a 13316catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13317 struct cmd_list_element *command)
13318{
a121b7c1 13319 const char *arg = arg_entry;
9ac4176b
PA
13320 struct gdbarch *gdbarch = get_current_arch ();
13321 int tempflag;
761269c8 13322 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13323 std::string excep_string;
56ecd069 13324 std::string cond_string;
9ac4176b
PA
13325
13326 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13327
13328 if (!arg)
13329 arg = "";
9f757bf7 13330 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13331 &cond_string);
9f757bf7
XR
13332 create_ada_exception_catchpoint (gdbarch, ex_kind,
13333 excep_string, cond_string,
13334 tempflag, 1 /* enabled */,
13335 from_tty);
13336}
13337
13338/* Implement the "catch handlers" command. */
13339
13340static void
13341catch_ada_handlers_command (const char *arg_entry, int from_tty,
13342 struct cmd_list_element *command)
13343{
13344 const char *arg = arg_entry;
13345 struct gdbarch *gdbarch = get_current_arch ();
13346 int tempflag;
13347 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13348 std::string excep_string;
56ecd069 13349 std::string cond_string;
9f757bf7
XR
13350
13351 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13352
13353 if (!arg)
13354 arg = "";
13355 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13356 &cond_string);
b4a5b78b
JB
13357 create_ada_exception_catchpoint (gdbarch, ex_kind,
13358 excep_string, cond_string,
349774ef
JB
13359 tempflag, 1 /* enabled */,
13360 from_tty);
9ac4176b
PA
13361}
13362
b4a5b78b 13363/* Split the arguments specified in a "catch assert" command.
5845583d 13364
b4a5b78b
JB
13365 ARGS contains the command's arguments (or the empty string if
13366 no arguments were passed).
5845583d
JB
13367
13368 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13369 (the memory needs to be deallocated after use). */
5845583d 13370
b4a5b78b 13371static void
56ecd069 13372catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13373{
f1735a53 13374 args = skip_spaces (args);
f7f9143b 13375
5845583d 13376 /* Check whether a condition was provided. */
61012eef 13377 if (startswith (args, "if")
5845583d 13378 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13379 {
5845583d 13380 args += 2;
f1735a53 13381 args = skip_spaces (args);
5845583d
JB
13382 if (args[0] == '\0')
13383 error (_("condition missing after `if' keyword"));
56ecd069 13384 cond_string.assign (args);
f7f9143b
JB
13385 }
13386
5845583d
JB
13387 /* Otherwise, there should be no other argument at the end of
13388 the command. */
13389 else if (args[0] != '\0')
13390 error (_("Junk at end of arguments."));
f7f9143b
JB
13391}
13392
9ac4176b
PA
13393/* Implement the "catch assert" command. */
13394
13395static void
eb4c3f4a 13396catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13397 struct cmd_list_element *command)
13398{
a121b7c1 13399 const char *arg = arg_entry;
9ac4176b
PA
13400 struct gdbarch *gdbarch = get_current_arch ();
13401 int tempflag;
56ecd069 13402 std::string cond_string;
9ac4176b
PA
13403
13404 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13405
13406 if (!arg)
13407 arg = "";
56ecd069 13408 catch_ada_assert_command_split (arg, cond_string);
761269c8 13409 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13410 "", cond_string,
349774ef
JB
13411 tempflag, 1 /* enabled */,
13412 from_tty);
9ac4176b 13413}
778865d3
JB
13414
13415/* Return non-zero if the symbol SYM is an Ada exception object. */
13416
13417static int
13418ada_is_exception_sym (struct symbol *sym)
13419{
a737d952 13420 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13421
13422 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13423 && SYMBOL_CLASS (sym) != LOC_BLOCK
13424 && SYMBOL_CLASS (sym) != LOC_CONST
13425 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13426 && type_name != NULL && strcmp (type_name, "exception") == 0);
13427}
13428
13429/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13430 Ada exception object. This matches all exceptions except the ones
13431 defined by the Ada language. */
13432
13433static int
13434ada_is_non_standard_exception_sym (struct symbol *sym)
13435{
13436 int i;
13437
13438 if (!ada_is_exception_sym (sym))
13439 return 0;
13440
13441 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13442 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13443 return 0; /* A standard exception. */
13444
13445 /* Numeric_Error is also a standard exception, so exclude it.
13446 See the STANDARD_EXC description for more details as to why
13447 this exception is not listed in that array. */
13448 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13449 return 0;
13450
13451 return 1;
13452}
13453
ab816a27 13454/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13455 objects.
13456
13457 The comparison is determined first by exception name, and then
13458 by exception address. */
13459
ab816a27 13460bool
cc536b21 13461ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13462{
778865d3
JB
13463 int result;
13464
ab816a27
TT
13465 result = strcmp (name, other.name);
13466 if (result < 0)
13467 return true;
13468 if (result == 0 && addr < other.addr)
13469 return true;
13470 return false;
13471}
778865d3 13472
ab816a27 13473bool
cc536b21 13474ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13475{
13476 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13477}
13478
13479/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13480 routine, but keeping the first SKIP elements untouched.
13481
13482 All duplicates are also removed. */
13483
13484static void
ab816a27 13485sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13486 int skip)
13487{
ab816a27
TT
13488 std::sort (exceptions->begin () + skip, exceptions->end ());
13489 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13490 exceptions->end ());
778865d3
JB
13491}
13492
778865d3
JB
13493/* Add all exceptions defined by the Ada standard whose name match
13494 a regular expression.
13495
13496 If PREG is not NULL, then this regexp_t object is used to
13497 perform the symbol name matching. Otherwise, no name-based
13498 filtering is performed.
13499
13500 EXCEPTIONS is a vector of exceptions to which matching exceptions
13501 gets pushed. */
13502
13503static void
2d7cc5c7 13504ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13505 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13506{
13507 int i;
13508
13509 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13510 {
13511 if (preg == NULL
2d7cc5c7 13512 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13513 {
13514 struct bound_minimal_symbol msymbol
13515 = ada_lookup_simple_minsym (standard_exc[i]);
13516
13517 if (msymbol.minsym != NULL)
13518 {
13519 struct ada_exc_info info
77e371c0 13520 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13521
ab816a27 13522 exceptions->push_back (info);
778865d3
JB
13523 }
13524 }
13525 }
13526}
13527
13528/* Add all Ada exceptions defined locally and accessible from the given
13529 FRAME.
13530
13531 If PREG is not NULL, then this regexp_t object is used to
13532 perform the symbol name matching. Otherwise, no name-based
13533 filtering is performed.
13534
13535 EXCEPTIONS is a vector of exceptions to which matching exceptions
13536 gets pushed. */
13537
13538static void
2d7cc5c7
PA
13539ada_add_exceptions_from_frame (compiled_regex *preg,
13540 struct frame_info *frame,
ab816a27 13541 std::vector<ada_exc_info> *exceptions)
778865d3 13542{
3977b71f 13543 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13544
13545 while (block != 0)
13546 {
13547 struct block_iterator iter;
13548 struct symbol *sym;
13549
13550 ALL_BLOCK_SYMBOLS (block, iter, sym)
13551 {
13552 switch (SYMBOL_CLASS (sym))
13553 {
13554 case LOC_TYPEDEF:
13555 case LOC_BLOCK:
13556 case LOC_CONST:
13557 break;
13558 default:
13559 if (ada_is_exception_sym (sym))
13560 {
13561 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13562 SYMBOL_VALUE_ADDRESS (sym)};
13563
ab816a27 13564 exceptions->push_back (info);
778865d3
JB
13565 }
13566 }
13567 }
13568 if (BLOCK_FUNCTION (block) != NULL)
13569 break;
13570 block = BLOCK_SUPERBLOCK (block);
13571 }
13572}
13573
14bc53a8
PA
13574/* Return true if NAME matches PREG or if PREG is NULL. */
13575
13576static bool
2d7cc5c7 13577name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13578{
13579 return (preg == NULL
2d7cc5c7 13580 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13581}
13582
778865d3
JB
13583/* Add all exceptions defined globally whose name name match
13584 a regular expression, excluding standard exceptions.
13585
13586 The reason we exclude standard exceptions is that they need
13587 to be handled separately: Standard exceptions are defined inside
13588 a runtime unit which is normally not compiled with debugging info,
13589 and thus usually do not show up in our symbol search. However,
13590 if the unit was in fact built with debugging info, we need to
13591 exclude them because they would duplicate the entry we found
13592 during the special loop that specifically searches for those
13593 standard exceptions.
13594
13595 If PREG is not NULL, then this regexp_t object is used to
13596 perform the symbol name matching. Otherwise, no name-based
13597 filtering is performed.
13598
13599 EXCEPTIONS is a vector of exceptions to which matching exceptions
13600 gets pushed. */
13601
13602static void
2d7cc5c7 13603ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13604 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13605{
13606 struct objfile *objfile;
43f3e411 13607 struct compunit_symtab *s;
778865d3 13608
14bc53a8
PA
13609 /* In Ada, the symbol "search name" is a linkage name, whereas the
13610 regular expression used to do the matching refers to the natural
13611 name. So match against the decoded name. */
13612 expand_symtabs_matching (NULL,
b5ec771e 13613 lookup_name_info::match_any (),
14bc53a8
PA
13614 [&] (const char *search_name)
13615 {
13616 const char *decoded = ada_decode (search_name);
13617 return name_matches_regex (decoded, preg);
13618 },
13619 NULL,
13620 VARIABLES_DOMAIN);
778865d3 13621
43f3e411 13622 ALL_COMPUNITS (objfile, s)
778865d3 13623 {
43f3e411 13624 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13625 int i;
13626
13627 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13628 {
13629 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13630 struct block_iterator iter;
13631 struct symbol *sym;
13632
13633 ALL_BLOCK_SYMBOLS (b, iter, sym)
13634 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13635 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13636 {
13637 struct ada_exc_info info
13638 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13639
ab816a27 13640 exceptions->push_back (info);
778865d3
JB
13641 }
13642 }
13643 }
13644}
13645
13646/* Implements ada_exceptions_list with the regular expression passed
13647 as a regex_t, rather than a string.
13648
13649 If not NULL, PREG is used to filter out exceptions whose names
13650 do not match. Otherwise, all exceptions are listed. */
13651
ab816a27 13652static std::vector<ada_exc_info>
2d7cc5c7 13653ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13654{
ab816a27 13655 std::vector<ada_exc_info> result;
778865d3
JB
13656 int prev_len;
13657
13658 /* First, list the known standard exceptions. These exceptions
13659 need to be handled separately, as they are usually defined in
13660 runtime units that have been compiled without debugging info. */
13661
13662 ada_add_standard_exceptions (preg, &result);
13663
13664 /* Next, find all exceptions whose scope is local and accessible
13665 from the currently selected frame. */
13666
13667 if (has_stack_frames ())
13668 {
ab816a27 13669 prev_len = result.size ();
778865d3
JB
13670 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13671 &result);
ab816a27 13672 if (result.size () > prev_len)
778865d3
JB
13673 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13674 }
13675
13676 /* Add all exceptions whose scope is global. */
13677
ab816a27 13678 prev_len = result.size ();
778865d3 13679 ada_add_global_exceptions (preg, &result);
ab816a27 13680 if (result.size () > prev_len)
778865d3
JB
13681 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13682
778865d3
JB
13683 return result;
13684}
13685
13686/* Return a vector of ada_exc_info.
13687
13688 If REGEXP is NULL, all exceptions are included in the result.
13689 Otherwise, it should contain a valid regular expression,
13690 and only the exceptions whose names match that regular expression
13691 are included in the result.
13692
13693 The exceptions are sorted in the following order:
13694 - Standard exceptions (defined by the Ada language), in
13695 alphabetical order;
13696 - Exceptions only visible from the current frame, in
13697 alphabetical order;
13698 - Exceptions whose scope is global, in alphabetical order. */
13699
ab816a27 13700std::vector<ada_exc_info>
778865d3
JB
13701ada_exceptions_list (const char *regexp)
13702{
2d7cc5c7
PA
13703 if (regexp == NULL)
13704 return ada_exceptions_list_1 (NULL);
778865d3 13705
2d7cc5c7
PA
13706 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13707 return ada_exceptions_list_1 (&reg);
778865d3
JB
13708}
13709
13710/* Implement the "info exceptions" command. */
13711
13712static void
1d12d88f 13713info_exceptions_command (const char *regexp, int from_tty)
778865d3 13714{
778865d3 13715 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13716
ab816a27 13717 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13718
13719 if (regexp != NULL)
13720 printf_filtered
13721 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13722 else
13723 printf_filtered (_("All defined Ada exceptions:\n"));
13724
ab816a27
TT
13725 for (const ada_exc_info &info : exceptions)
13726 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13727}
13728
4c4b4cd2
PH
13729 /* Operators */
13730/* Information about operators given special treatment in functions
13731 below. */
13732/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13733
13734#define ADA_OPERATORS \
13735 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13736 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13737 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13738 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13739 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13741 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13742 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13743 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13744 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13745 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13746 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13747 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13748 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13749 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13750 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13751 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13752 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13753 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13754
13755static void
554794dc
SDJ
13756ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13757 int *argsp)
4c4b4cd2
PH
13758{
13759 switch (exp->elts[pc - 1].opcode)
13760 {
76a01679 13761 default:
4c4b4cd2
PH
13762 operator_length_standard (exp, pc, oplenp, argsp);
13763 break;
13764
13765#define OP_DEFN(op, len, args, binop) \
13766 case op: *oplenp = len; *argsp = args; break;
13767 ADA_OPERATORS;
13768#undef OP_DEFN
52ce6436
PH
13769
13770 case OP_AGGREGATE:
13771 *oplenp = 3;
13772 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13773 break;
13774
13775 case OP_CHOICES:
13776 *oplenp = 3;
13777 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13778 break;
4c4b4cd2
PH
13779 }
13780}
13781
c0201579
JK
13782/* Implementation of the exp_descriptor method operator_check. */
13783
13784static int
13785ada_operator_check (struct expression *exp, int pos,
13786 int (*objfile_func) (struct objfile *objfile, void *data),
13787 void *data)
13788{
13789 const union exp_element *const elts = exp->elts;
13790 struct type *type = NULL;
13791
13792 switch (elts[pos].opcode)
13793 {
13794 case UNOP_IN_RANGE:
13795 case UNOP_QUAL:
13796 type = elts[pos + 1].type;
13797 break;
13798
13799 default:
13800 return operator_check_standard (exp, pos, objfile_func, data);
13801 }
13802
13803 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13804
13805 if (type && TYPE_OBJFILE (type)
13806 && (*objfile_func) (TYPE_OBJFILE (type), data))
13807 return 1;
13808
13809 return 0;
13810}
13811
a121b7c1 13812static const char *
4c4b4cd2
PH
13813ada_op_name (enum exp_opcode opcode)
13814{
13815 switch (opcode)
13816 {
76a01679 13817 default:
4c4b4cd2 13818 return op_name_standard (opcode);
52ce6436 13819
4c4b4cd2
PH
13820#define OP_DEFN(op, len, args, binop) case op: return #op;
13821 ADA_OPERATORS;
13822#undef OP_DEFN
52ce6436
PH
13823
13824 case OP_AGGREGATE:
13825 return "OP_AGGREGATE";
13826 case OP_CHOICES:
13827 return "OP_CHOICES";
13828 case OP_NAME:
13829 return "OP_NAME";
4c4b4cd2
PH
13830 }
13831}
13832
13833/* As for operator_length, but assumes PC is pointing at the first
13834 element of the operator, and gives meaningful results only for the
52ce6436 13835 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13836
13837static void
76a01679
JB
13838ada_forward_operator_length (struct expression *exp, int pc,
13839 int *oplenp, int *argsp)
4c4b4cd2 13840{
76a01679 13841 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13842 {
13843 default:
13844 *oplenp = *argsp = 0;
13845 break;
52ce6436 13846
4c4b4cd2
PH
13847#define OP_DEFN(op, len, args, binop) \
13848 case op: *oplenp = len; *argsp = args; break;
13849 ADA_OPERATORS;
13850#undef OP_DEFN
52ce6436
PH
13851
13852 case OP_AGGREGATE:
13853 *oplenp = 3;
13854 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13855 break;
13856
13857 case OP_CHOICES:
13858 *oplenp = 3;
13859 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13860 break;
13861
13862 case OP_STRING:
13863 case OP_NAME:
13864 {
13865 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13866
52ce6436
PH
13867 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13868 *argsp = 0;
13869 break;
13870 }
4c4b4cd2
PH
13871 }
13872}
13873
13874static int
13875ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13876{
13877 enum exp_opcode op = exp->elts[elt].opcode;
13878 int oplen, nargs;
13879 int pc = elt;
13880 int i;
76a01679 13881
4c4b4cd2
PH
13882 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13883
76a01679 13884 switch (op)
4c4b4cd2 13885 {
76a01679 13886 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13887 case OP_ATR_FIRST:
13888 case OP_ATR_LAST:
13889 case OP_ATR_LENGTH:
13890 case OP_ATR_IMAGE:
13891 case OP_ATR_MAX:
13892 case OP_ATR_MIN:
13893 case OP_ATR_MODULUS:
13894 case OP_ATR_POS:
13895 case OP_ATR_SIZE:
13896 case OP_ATR_TAG:
13897 case OP_ATR_VAL:
13898 break;
13899
13900 case UNOP_IN_RANGE:
13901 case UNOP_QUAL:
323e0a4a
AC
13902 /* XXX: gdb_sprint_host_address, type_sprint */
13903 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13904 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13905 fprintf_filtered (stream, " (");
13906 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13907 fprintf_filtered (stream, ")");
13908 break;
13909 case BINOP_IN_BOUNDS:
52ce6436
PH
13910 fprintf_filtered (stream, " (%d)",
13911 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13912 break;
13913 case TERNOP_IN_RANGE:
13914 break;
13915
52ce6436
PH
13916 case OP_AGGREGATE:
13917 case OP_OTHERS:
13918 case OP_DISCRETE_RANGE:
13919 case OP_POSITIONAL:
13920 case OP_CHOICES:
13921 break;
13922
13923 case OP_NAME:
13924 case OP_STRING:
13925 {
13926 char *name = &exp->elts[elt + 2].string;
13927 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13928
52ce6436
PH
13929 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13930 break;
13931 }
13932
4c4b4cd2
PH
13933 default:
13934 return dump_subexp_body_standard (exp, stream, elt);
13935 }
13936
13937 elt += oplen;
13938 for (i = 0; i < nargs; i += 1)
13939 elt = dump_subexp (exp, stream, elt);
13940
13941 return elt;
13942}
13943
13944/* The Ada extension of print_subexp (q.v.). */
13945
76a01679
JB
13946static void
13947ada_print_subexp (struct expression *exp, int *pos,
13948 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13949{
52ce6436 13950 int oplen, nargs, i;
4c4b4cd2
PH
13951 int pc = *pos;
13952 enum exp_opcode op = exp->elts[pc].opcode;
13953
13954 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13955
52ce6436 13956 *pos += oplen;
4c4b4cd2
PH
13957 switch (op)
13958 {
13959 default:
52ce6436 13960 *pos -= oplen;
4c4b4cd2
PH
13961 print_subexp_standard (exp, pos, stream, prec);
13962 return;
13963
13964 case OP_VAR_VALUE:
4c4b4cd2
PH
13965 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13966 return;
13967
13968 case BINOP_IN_BOUNDS:
323e0a4a 13969 /* XXX: sprint_subexp */
4c4b4cd2 13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13971 fputs_filtered (" in ", stream);
4c4b4cd2 13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13973 fputs_filtered ("'range", stream);
4c4b4cd2 13974 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13975 fprintf_filtered (stream, "(%ld)",
13976 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13977 return;
13978
13979 case TERNOP_IN_RANGE:
4c4b4cd2 13980 if (prec >= PREC_EQUAL)
76a01679 13981 fputs_filtered ("(", stream);
323e0a4a 13982 /* XXX: sprint_subexp */
4c4b4cd2 13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13984 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13985 print_subexp (exp, pos, stream, PREC_EQUAL);
13986 fputs_filtered (" .. ", stream);
13987 print_subexp (exp, pos, stream, PREC_EQUAL);
13988 if (prec >= PREC_EQUAL)
76a01679
JB
13989 fputs_filtered (")", stream);
13990 return;
4c4b4cd2
PH
13991
13992 case OP_ATR_FIRST:
13993 case OP_ATR_LAST:
13994 case OP_ATR_LENGTH:
13995 case OP_ATR_IMAGE:
13996 case OP_ATR_MAX:
13997 case OP_ATR_MIN:
13998 case OP_ATR_MODULUS:
13999 case OP_ATR_POS:
14000 case OP_ATR_SIZE:
14001 case OP_ATR_TAG:
14002 case OP_ATR_VAL:
4c4b4cd2 14003 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
14004 {
14005 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14006 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14007 &type_print_raw_options);
76a01679
JB
14008 *pos += 3;
14009 }
4c4b4cd2 14010 else
76a01679 14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14012 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14013 if (nargs > 1)
76a01679
JB
14014 {
14015 int tem;
5b4ee69b 14016
76a01679
JB
14017 for (tem = 1; tem < nargs; tem += 1)
14018 {
14019 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14020 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14021 }
14022 fputs_filtered (")", stream);
14023 }
4c4b4cd2 14024 return;
14f9c5c9 14025
4c4b4cd2 14026 case UNOP_QUAL:
4c4b4cd2
PH
14027 type_print (exp->elts[pc + 1].type, "", stream, 0);
14028 fputs_filtered ("'(", stream);
14029 print_subexp (exp, pos, stream, PREC_PREFIX);
14030 fputs_filtered (")", stream);
14031 return;
14f9c5c9 14032
4c4b4cd2 14033 case UNOP_IN_RANGE:
323e0a4a 14034 /* XXX: sprint_subexp */
4c4b4cd2 14035 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14036 fputs_filtered (" in ", stream);
79d43c61
TT
14037 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14038 &type_print_raw_options);
4c4b4cd2 14039 return;
52ce6436
PH
14040
14041 case OP_DISCRETE_RANGE:
14042 print_subexp (exp, pos, stream, PREC_SUFFIX);
14043 fputs_filtered ("..", stream);
14044 print_subexp (exp, pos, stream, PREC_SUFFIX);
14045 return;
14046
14047 case OP_OTHERS:
14048 fputs_filtered ("others => ", stream);
14049 print_subexp (exp, pos, stream, PREC_SUFFIX);
14050 return;
14051
14052 case OP_CHOICES:
14053 for (i = 0; i < nargs-1; i += 1)
14054 {
14055 if (i > 0)
14056 fputs_filtered ("|", stream);
14057 print_subexp (exp, pos, stream, PREC_SUFFIX);
14058 }
14059 fputs_filtered (" => ", stream);
14060 print_subexp (exp, pos, stream, PREC_SUFFIX);
14061 return;
14062
14063 case OP_POSITIONAL:
14064 print_subexp (exp, pos, stream, PREC_SUFFIX);
14065 return;
14066
14067 case OP_AGGREGATE:
14068 fputs_filtered ("(", stream);
14069 for (i = 0; i < nargs; i += 1)
14070 {
14071 if (i > 0)
14072 fputs_filtered (", ", stream);
14073 print_subexp (exp, pos, stream, PREC_SUFFIX);
14074 }
14075 fputs_filtered (")", stream);
14076 return;
4c4b4cd2
PH
14077 }
14078}
14f9c5c9
AS
14079
14080/* Table mapping opcodes into strings for printing operators
14081 and precedences of the operators. */
14082
d2e4a39e
AS
14083static const struct op_print ada_op_print_tab[] = {
14084 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14085 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14086 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14087 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14088 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14089 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14090 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14091 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14092 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14093 {">=", BINOP_GEQ, PREC_ORDER, 0},
14094 {">", BINOP_GTR, PREC_ORDER, 0},
14095 {"<", BINOP_LESS, PREC_ORDER, 0},
14096 {">>", BINOP_RSH, PREC_SHIFT, 0},
14097 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14098 {"+", BINOP_ADD, PREC_ADD, 0},
14099 {"-", BINOP_SUB, PREC_ADD, 0},
14100 {"&", BINOP_CONCAT, PREC_ADD, 0},
14101 {"*", BINOP_MUL, PREC_MUL, 0},
14102 {"/", BINOP_DIV, PREC_MUL, 0},
14103 {"rem", BINOP_REM, PREC_MUL, 0},
14104 {"mod", BINOP_MOD, PREC_MUL, 0},
14105 {"**", BINOP_EXP, PREC_REPEAT, 0},
14106 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14107 {"-", UNOP_NEG, PREC_PREFIX, 0},
14108 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14109 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14110 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14111 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14112 {".all", UNOP_IND, PREC_SUFFIX, 1},
14113 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14114 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14115 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14116};
14117\f
72d5681a
PH
14118enum ada_primitive_types {
14119 ada_primitive_type_int,
14120 ada_primitive_type_long,
14121 ada_primitive_type_short,
14122 ada_primitive_type_char,
14123 ada_primitive_type_float,
14124 ada_primitive_type_double,
14125 ada_primitive_type_void,
14126 ada_primitive_type_long_long,
14127 ada_primitive_type_long_double,
14128 ada_primitive_type_natural,
14129 ada_primitive_type_positive,
14130 ada_primitive_type_system_address,
08f49010 14131 ada_primitive_type_storage_offset,
72d5681a
PH
14132 nr_ada_primitive_types
14133};
6c038f32
PH
14134
14135static void
d4a9a881 14136ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14137 struct language_arch_info *lai)
14138{
d4a9a881 14139 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14140
72d5681a 14141 lai->primitive_type_vector
d4a9a881 14142 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14143 struct type *);
e9bb382b
UW
14144
14145 lai->primitive_type_vector [ada_primitive_type_int]
14146 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14147 0, "integer");
14148 lai->primitive_type_vector [ada_primitive_type_long]
14149 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14150 0, "long_integer");
14151 lai->primitive_type_vector [ada_primitive_type_short]
14152 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14153 0, "short_integer");
14154 lai->string_char_type
14155 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14156 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14157 lai->primitive_type_vector [ada_primitive_type_float]
14158 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14159 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14160 lai->primitive_type_vector [ada_primitive_type_double]
14161 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14162 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14163 lai->primitive_type_vector [ada_primitive_type_long_long]
14164 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14165 0, "long_long_integer");
14166 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14167 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14168 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14169 lai->primitive_type_vector [ada_primitive_type_natural]
14170 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14171 0, "natural");
14172 lai->primitive_type_vector [ada_primitive_type_positive]
14173 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14174 0, "positive");
14175 lai->primitive_type_vector [ada_primitive_type_void]
14176 = builtin->builtin_void;
14177
14178 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14179 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14180 "void"));
72d5681a
PH
14181 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14182 = "system__address";
fbb06eb1 14183
08f49010
XR
14184 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14185 type. This is a signed integral type whose size is the same as
14186 the size of addresses. */
14187 {
14188 unsigned int addr_length = TYPE_LENGTH
14189 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14190
14191 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14192 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14193 "storage_offset");
14194 }
14195
47e729a8 14196 lai->bool_type_symbol = NULL;
fbb06eb1 14197 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14198}
6c038f32
PH
14199\f
14200 /* Language vector */
14201
14202/* Not really used, but needed in the ada_language_defn. */
14203
14204static void
6c7a06a3 14205emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14206{
6c7a06a3 14207 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14208}
14209
14210static int
410a0ff2 14211parse (struct parser_state *ps)
6c038f32
PH
14212{
14213 warnings_issued = 0;
410a0ff2 14214 return ada_parse (ps);
6c038f32
PH
14215}
14216
14217static const struct exp_descriptor ada_exp_descriptor = {
14218 ada_print_subexp,
14219 ada_operator_length,
c0201579 14220 ada_operator_check,
6c038f32
PH
14221 ada_op_name,
14222 ada_dump_subexp_body,
14223 ada_evaluate_subexp
14224};
14225
b5ec771e
PA
14226/* symbol_name_matcher_ftype adapter for wild_match. */
14227
14228static bool
14229do_wild_match (const char *symbol_search_name,
14230 const lookup_name_info &lookup_name,
a207cff2 14231 completion_match_result *comp_match_res)
b5ec771e
PA
14232{
14233 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14234}
14235
14236/* symbol_name_matcher_ftype adapter for full_match. */
14237
14238static bool
14239do_full_match (const char *symbol_search_name,
14240 const lookup_name_info &lookup_name,
a207cff2 14241 completion_match_result *comp_match_res)
b5ec771e
PA
14242{
14243 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14244}
14245
14246/* Build the Ada lookup name for LOOKUP_NAME. */
14247
14248ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14249{
14250 const std::string &user_name = lookup_name.name ();
14251
14252 if (user_name[0] == '<')
14253 {
14254 if (user_name.back () == '>')
14255 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14256 else
14257 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14258 m_encoded_p = true;
14259 m_verbatim_p = true;
14260 m_wild_match_p = false;
14261 m_standard_p = false;
14262 }
14263 else
14264 {
14265 m_verbatim_p = false;
14266
14267 m_encoded_p = user_name.find ("__") != std::string::npos;
14268
14269 if (!m_encoded_p)
14270 {
14271 const char *folded = ada_fold_name (user_name.c_str ());
14272 const char *encoded = ada_encode_1 (folded, false);
14273 if (encoded != NULL)
14274 m_encoded_name = encoded;
14275 else
14276 m_encoded_name = user_name;
14277 }
14278 else
14279 m_encoded_name = user_name;
14280
14281 /* Handle the 'package Standard' special case. See description
14282 of m_standard_p. */
14283 if (startswith (m_encoded_name.c_str (), "standard__"))
14284 {
14285 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14286 m_standard_p = true;
14287 }
14288 else
14289 m_standard_p = false;
74ccd7f5 14290
b5ec771e
PA
14291 /* If the name contains a ".", then the user is entering a fully
14292 qualified entity name, and the match must not be done in wild
14293 mode. Similarly, if the user wants to complete what looks
14294 like an encoded name, the match must not be done in wild
14295 mode. Also, in the standard__ special case always do
14296 non-wild matching. */
14297 m_wild_match_p
14298 = (lookup_name.match_type () != symbol_name_match_type::FULL
14299 && !m_encoded_p
14300 && !m_standard_p
14301 && user_name.find ('.') == std::string::npos);
14302 }
14303}
14304
14305/* symbol_name_matcher_ftype method for Ada. This only handles
14306 completion mode. */
14307
14308static bool
14309ada_symbol_name_matches (const char *symbol_search_name,
14310 const lookup_name_info &lookup_name,
a207cff2 14311 completion_match_result *comp_match_res)
74ccd7f5 14312{
b5ec771e
PA
14313 return lookup_name.ada ().matches (symbol_search_name,
14314 lookup_name.match_type (),
a207cff2 14315 comp_match_res);
b5ec771e
PA
14316}
14317
de63c46b
PA
14318/* A name matcher that matches the symbol name exactly, with
14319 strcmp. */
14320
14321static bool
14322literal_symbol_name_matcher (const char *symbol_search_name,
14323 const lookup_name_info &lookup_name,
14324 completion_match_result *comp_match_res)
14325{
14326 const std::string &name = lookup_name.name ();
14327
14328 int cmp = (lookup_name.completion_mode ()
14329 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14330 : strcmp (symbol_search_name, name.c_str ()));
14331 if (cmp == 0)
14332 {
14333 if (comp_match_res != NULL)
14334 comp_match_res->set_match (symbol_search_name);
14335 return true;
14336 }
14337 else
14338 return false;
14339}
14340
b5ec771e
PA
14341/* Implement the "la_get_symbol_name_matcher" language_defn method for
14342 Ada. */
14343
14344static symbol_name_matcher_ftype *
14345ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14346{
de63c46b
PA
14347 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14348 return literal_symbol_name_matcher;
14349
b5ec771e
PA
14350 if (lookup_name.completion_mode ())
14351 return ada_symbol_name_matches;
74ccd7f5 14352 else
b5ec771e
PA
14353 {
14354 if (lookup_name.ada ().wild_match_p ())
14355 return do_wild_match;
14356 else
14357 return do_full_match;
14358 }
74ccd7f5
JB
14359}
14360
a5ee536b
JB
14361/* Implement the "la_read_var_value" language_defn method for Ada. */
14362
14363static struct value *
63e43d3a
PMR
14364ada_read_var_value (struct symbol *var, const struct block *var_block,
14365 struct frame_info *frame)
a5ee536b 14366{
3977b71f 14367 const struct block *frame_block = NULL;
a5ee536b
JB
14368 struct symbol *renaming_sym = NULL;
14369
14370 /* The only case where default_read_var_value is not sufficient
14371 is when VAR is a renaming... */
14372 if (frame)
14373 frame_block = get_frame_block (frame, NULL);
14374 if (frame_block)
14375 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14376 if (renaming_sym != NULL)
14377 return ada_read_renaming_var_value (renaming_sym, frame_block);
14378
14379 /* This is a typical case where we expect the default_read_var_value
14380 function to work. */
63e43d3a 14381 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14382}
14383
56618e20
TT
14384static const char *ada_extensions[] =
14385{
14386 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14387};
14388
47e77640 14389extern const struct language_defn ada_language_defn = {
6c038f32 14390 "ada", /* Language name */
6abde28f 14391 "Ada",
6c038f32 14392 language_ada,
6c038f32 14393 range_check_off,
6c038f32
PH
14394 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14395 that's not quite what this means. */
6c038f32 14396 array_row_major,
9a044a89 14397 macro_expansion_no,
56618e20 14398 ada_extensions,
6c038f32
PH
14399 &ada_exp_descriptor,
14400 parse,
6c038f32
PH
14401 resolve,
14402 ada_printchar, /* Print a character constant */
14403 ada_printstr, /* Function to print string constant */
14404 emit_char, /* Function to print single char (not used) */
6c038f32 14405 ada_print_type, /* Print a type using appropriate syntax */
be942545 14406 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14407 ada_val_print, /* Print a value using appropriate syntax */
14408 ada_value_print, /* Print a top-level value */
a5ee536b 14409 ada_read_var_value, /* la_read_var_value */
6c038f32 14410 NULL, /* Language specific skip_trampoline */
2b2d9e11 14411 NULL, /* name_of_this */
59cc4834 14412 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14413 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14414 basic_lookup_transparent_type, /* lookup_transparent_type */
14415 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14416 ada_sniff_from_mangled_name,
0963b4bd
MS
14417 NULL, /* Language specific
14418 class_name_from_physname */
6c038f32
PH
14419 ada_op_print_tab, /* expression operators for printing */
14420 0, /* c-style arrays */
14421 1, /* String lower bound */
6c038f32 14422 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14423 ada_collect_symbol_completion_matches,
72d5681a 14424 ada_language_arch_info,
e79af960 14425 ada_print_array_index,
41f1b697 14426 default_pass_by_reference,
ae6a3a4c 14427 c_get_string,
43cc5389 14428 c_watch_location_expression,
b5ec771e 14429 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14430 ada_iterate_over_symbols,
5ffa0793 14431 default_search_name_hash,
a53b64ea 14432 &ada_varobj_ops,
bb2ec1b3
TT
14433 NULL,
14434 NULL,
6c038f32
PH
14435 LANG_MAGIC
14436};
14437
5bf03f13
JB
14438/* Command-list for the "set/show ada" prefix command. */
14439static struct cmd_list_element *set_ada_list;
14440static struct cmd_list_element *show_ada_list;
14441
14442/* Implement the "set ada" prefix command. */
14443
14444static void
981a3fb3 14445set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14446{
14447 printf_unfiltered (_(\
14448"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14449 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14450}
14451
14452/* Implement the "show ada" prefix command. */
14453
14454static void
981a3fb3 14455show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14456{
14457 cmd_show_list (show_ada_list, from_tty, "");
14458}
14459
2060206e
PA
14460static void
14461initialize_ada_catchpoint_ops (void)
14462{
14463 struct breakpoint_ops *ops;
14464
14465 initialize_breakpoint_ops ();
14466
14467 ops = &catch_exception_breakpoint_ops;
14468 *ops = bkpt_breakpoint_ops;
2060206e
PA
14469 ops->allocate_location = allocate_location_catch_exception;
14470 ops->re_set = re_set_catch_exception;
14471 ops->check_status = check_status_catch_exception;
14472 ops->print_it = print_it_catch_exception;
14473 ops->print_one = print_one_catch_exception;
14474 ops->print_mention = print_mention_catch_exception;
14475 ops->print_recreate = print_recreate_catch_exception;
14476
14477 ops = &catch_exception_unhandled_breakpoint_ops;
14478 *ops = bkpt_breakpoint_ops;
2060206e
PA
14479 ops->allocate_location = allocate_location_catch_exception_unhandled;
14480 ops->re_set = re_set_catch_exception_unhandled;
14481 ops->check_status = check_status_catch_exception_unhandled;
14482 ops->print_it = print_it_catch_exception_unhandled;
14483 ops->print_one = print_one_catch_exception_unhandled;
14484 ops->print_mention = print_mention_catch_exception_unhandled;
14485 ops->print_recreate = print_recreate_catch_exception_unhandled;
14486
14487 ops = &catch_assert_breakpoint_ops;
14488 *ops = bkpt_breakpoint_ops;
2060206e
PA
14489 ops->allocate_location = allocate_location_catch_assert;
14490 ops->re_set = re_set_catch_assert;
14491 ops->check_status = check_status_catch_assert;
14492 ops->print_it = print_it_catch_assert;
14493 ops->print_one = print_one_catch_assert;
14494 ops->print_mention = print_mention_catch_assert;
14495 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14496
14497 ops = &catch_handlers_breakpoint_ops;
14498 *ops = bkpt_breakpoint_ops;
14499 ops->allocate_location = allocate_location_catch_handlers;
14500 ops->re_set = re_set_catch_handlers;
14501 ops->check_status = check_status_catch_handlers;
14502 ops->print_it = print_it_catch_handlers;
14503 ops->print_one = print_one_catch_handlers;
14504 ops->print_mention = print_mention_catch_handlers;
14505 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14506}
14507
3d9434b5
JB
14508/* This module's 'new_objfile' observer. */
14509
14510static void
14511ada_new_objfile_observer (struct objfile *objfile)
14512{
14513 ada_clear_symbol_cache ();
14514}
14515
14516/* This module's 'free_objfile' observer. */
14517
14518static void
14519ada_free_objfile_observer (struct objfile *objfile)
14520{
14521 ada_clear_symbol_cache ();
14522}
14523
d2e4a39e 14524void
6c038f32 14525_initialize_ada_language (void)
14f9c5c9 14526{
2060206e
PA
14527 initialize_ada_catchpoint_ops ();
14528
5bf03f13
JB
14529 add_prefix_cmd ("ada", no_class, set_ada_command,
14530 _("Prefix command for changing Ada-specfic settings"),
14531 &set_ada_list, "set ada ", 0, &setlist);
14532
14533 add_prefix_cmd ("ada", no_class, show_ada_command,
14534 _("Generic command for showing Ada-specific settings."),
14535 &show_ada_list, "show ada ", 0, &showlist);
14536
14537 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14538 &trust_pad_over_xvs, _("\
14539Enable or disable an optimization trusting PAD types over XVS types"), _("\
14540Show whether an optimization trusting PAD types over XVS types is activated"),
14541 _("\
14542This is related to the encoding used by the GNAT compiler. The debugger\n\
14543should normally trust the contents of PAD types, but certain older versions\n\
14544of GNAT have a bug that sometimes causes the information in the PAD type\n\
14545to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14546work around this bug. It is always safe to turn this option \"off\", but\n\
14547this incurs a slight performance penalty, so it is recommended to NOT change\n\
14548this option to \"off\" unless necessary."),
14549 NULL, NULL, &set_ada_list, &show_ada_list);
14550
d72413e6
PMR
14551 add_setshow_boolean_cmd ("print-signatures", class_vars,
14552 &print_signatures, _("\
14553Enable or disable the output of formal and return types for functions in the \
14554overloads selection menu"), _("\
14555Show whether the output of formal and return types for functions in the \
14556overloads selection menu is activated"),
14557 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14558
9ac4176b
PA
14559 add_catch_command ("exception", _("\
14560Catch Ada exceptions, when raised.\n\
14561With an argument, catch only exceptions with the given name."),
14562 catch_ada_exception_command,
14563 NULL,
14564 CATCH_PERMANENT,
14565 CATCH_TEMPORARY);
9f757bf7
XR
14566
14567 add_catch_command ("handlers", _("\
14568Catch Ada exceptions, when handled.\n\
14569With an argument, catch only exceptions with the given name."),
14570 catch_ada_handlers_command,
14571 NULL,
14572 CATCH_PERMANENT,
14573 CATCH_TEMPORARY);
9ac4176b
PA
14574 add_catch_command ("assert", _("\
14575Catch failed Ada assertions, when raised.\n\
14576With an argument, catch only exceptions with the given name."),
14577 catch_assert_command,
14578 NULL,
14579 CATCH_PERMANENT,
14580 CATCH_TEMPORARY);
14581
6c038f32 14582 varsize_limit = 65536;
3fcded8f
JB
14583 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14584 &varsize_limit, _("\
14585Set the maximum number of bytes allowed in a variable-size object."), _("\
14586Show the maximum number of bytes allowed in a variable-size object."), _("\
14587Attempts to access an object whose size is not a compile-time constant\n\
14588and exceeds this limit will cause an error."),
14589 NULL, NULL, &setlist, &showlist);
6c038f32 14590
778865d3
JB
14591 add_info ("exceptions", info_exceptions_command,
14592 _("\
14593List all Ada exception names.\n\
14594If a regular expression is passed as an argument, only those matching\n\
14595the regular expression are listed."));
14596
c6044dd1
JB
14597 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14598 _("Set Ada maintenance-related variables."),
14599 &maint_set_ada_cmdlist, "maintenance set ada ",
14600 0/*allow-unknown*/, &maintenance_set_cmdlist);
14601
14602 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14603 _("Show Ada maintenance-related variables"),
14604 &maint_show_ada_cmdlist, "maintenance show ada ",
14605 0/*allow-unknown*/, &maintenance_show_cmdlist);
14606
14607 add_setshow_boolean_cmd
14608 ("ignore-descriptive-types", class_maintenance,
14609 &ada_ignore_descriptive_types_p,
14610 _("Set whether descriptive types generated by GNAT should be ignored."),
14611 _("Show whether descriptive types generated by GNAT should be ignored."),
14612 _("\
14613When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14614DWARF attribute."),
14615 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14616
459a2e4c
TT
14617 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14618 NULL, xcalloc, xfree);
6b69afc4 14619
3d9434b5 14620 /* The ada-lang observers. */
76727919
TT
14621 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14622 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14623 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14624
14625 /* Setup various context-specific data. */
e802dbe0 14626 ada_inferior_data
8e260fc0 14627 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14628 ada_pspace_data_handle
14629 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14630}
This page took 3.563815 seconds and 4 git commands to generate.