Add support for dynamic DW_AT_byte_stride.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
981a3fb3 356maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
981a3fb3 365maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
29480c32
JB
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
61012eef 1179 if (startswith (encoded, "_ada_"))
4c4b4cd2 1180 encoded += 5;
14f9c5c9 1181
29480c32
JB
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
4c4b4cd2 1185 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1186 goto Suppress;
1187
4c4b4cd2 1188 len0 = strlen (encoded);
4c4b4cd2 1189
29480c32
JB
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1192
4c4b4cd2
PH
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1199 {
1200 if (p[3] == 'X')
4c4b4cd2 1201 len0 = p - encoded;
14f9c5c9 1202 else
4c4b4cd2 1203 goto Suppress;
14f9c5c9 1204 }
4c4b4cd2 1205
29480c32
JB
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
61012eef 1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1211 len0 -= 3;
76a01679 1212
a10967fa
JB
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
61012eef 1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1218 len0 -= 2;
1219
29480c32
JB
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
61012eef 1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1224 len0 -= 1;
1225
4c4b4cd2 1226 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1227
4c4b4cd2
PH
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
14f9c5c9 1230
29480c32
JB
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
4c4b4cd2 1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1234 {
4c4b4cd2
PH
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
d2e4a39e 1243 }
14f9c5c9 1244
29480c32
JB
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
4c4b4cd2
PH
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
14f9c5c9
AS
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
29480c32 1254 /* Is this a symbol function? */
4c4b4cd2
PH
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
5b4ee69b 1258
4c4b4cd2
PH
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
14f9c5c9
AS
1276 at_start_name = 0;
1277
529cad9c
PH
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
61012eef 1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1282 i += 2;
529cad9c 1283
29480c32
JB
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
529cad9c
PH
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1306 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
4c4b4cd2
PH
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
29480c32
JB
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
4c4b4cd2
PH
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
cdc7bb92 1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1371 {
29480c32 1372 /* Replace '__' by '.'. */
4c4b4cd2
PH
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
14f9c5c9 1378 else
4c4b4cd2 1379 {
29480c32
JB
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
4c4b4cd2
PH
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
14f9c5c9 1386 }
4c4b4cd2 1387 decoded[j] = '\000';
14f9c5c9 1388
29480c32
JB
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
4c4b4cd2
PH
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1394 goto Suppress;
1395
4c4b4cd2
PH
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
14f9c5c9
AS
1400
1401Suppress:
4c4b4cd2
PH
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
14f9c5c9 1406 else
88c15c34 1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1424 GSYMBOL).
4c4b4cd2
PH
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1427 when a decoded name is cached in it. */
4c4b4cd2 1428
45e6c716 1429const char *
f85f34ed 1430ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1431{
f85f34ed
TT
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
615b3f62 1434 &gsymbol->language_specific.demangled_name;
5b4ee69b 1435
f85f34ed 1436 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1439 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1440
f85f34ed 1441 gsymbol->ada_mangled = 1;
5b4ee69b 1442
f85f34ed 1443 if (obstack != NULL)
224c3ddb
SM
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1446 else
76a01679 1447 {
f85f34ed
TT
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
76a01679
JB
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
5b4ee69b 1455
76a01679
JB
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
4c4b4cd2 1460 }
14f9c5c9 1461
4c4b4cd2
PH
1462 return *resultp;
1463}
76a01679 1464
2c0b251b 1465static char *
76a01679 1466ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1467{
1468 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1469}
1470
8b302db8
TT
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
14f9c5c9 1510\f
d2e4a39e 1511
4c4b4cd2 1512 /* Arrays */
14f9c5c9 1513
28c85d6c
JB
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
0d5cff50 1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
4c4b4cd2 1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1570
a121b7c1 1571static const char *bound_name[] = {
d2e4a39e 1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
4c4b4cd2 1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1579
14f9c5c9 1580
4c4b4cd2
PH
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
14f9c5c9
AS
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1585 level of indirection, if needed. */
1586
d2e4a39e
AS
1587static struct type *
1588desc_base_type (struct type *type)
14f9c5c9
AS
1589{
1590 if (type == NULL)
1591 return NULL;
61ee279c 1592 type = ada_check_typedef (type);
720d1a40
JB
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1265e4aa
JB
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1600 else
1601 return type;
1602}
1603
4c4b4cd2
PH
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
14f9c5c9 1606static int
d2e4a39e 1607is_thin_pntr (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 return
14f9c5c9
AS
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
4c4b4cd2
PH
1614/* The descriptor type for thin pointer type TYPE. */
1615
d2e4a39e
AS
1616static struct type *
1617thin_descriptor_type (struct type *type)
14f9c5c9 1618{
d2e4a39e 1619 struct type *base_type = desc_base_type (type);
5b4ee69b 1620
14f9c5c9
AS
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
d2e4a39e 1625 else
14f9c5c9 1626 {
d2e4a39e 1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1628
14f9c5c9 1629 if (alt_type == NULL)
4c4b4cd2 1630 return base_type;
14f9c5c9 1631 else
4c4b4cd2 1632 return alt_type;
14f9c5c9
AS
1633 }
1634}
1635
4c4b4cd2
PH
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
d2e4a39e
AS
1638static struct value *
1639thin_data_pntr (struct value *val)
14f9c5c9 1640{
828292f2 1641 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1643
556bdfd4
UW
1644 data_type = lookup_pointer_type (data_type);
1645
14f9c5c9 1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1647 return value_cast (data_type, value_copy (val));
d2e4a39e 1648 else
42ae5230 1649 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1650}
1651
4c4b4cd2
PH
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
14f9c5c9 1654static int
d2e4a39e 1655is_thick_pntr (struct type *type)
14f9c5c9
AS
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1660}
1661
4c4b4cd2
PH
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1664
d2e4a39e
AS
1665static struct type *
1666desc_bounds_type (struct type *type)
14f9c5c9 1667{
d2e4a39e 1668 struct type *r;
14f9c5c9
AS
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
4c4b4cd2 1678 return NULL;
14f9c5c9
AS
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
61ee279c 1681 return ada_check_typedef (r);
14f9c5c9
AS
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_bounds (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1699
d2e4a39e 1700 if (is_thin_pntr (type))
14f9c5c9 1701 {
d2e4a39e 1702 struct type *bounds_type =
4c4b4cd2 1703 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1704 LONGEST addr;
1705
4cdfadb1 1706 if (bounds_type == NULL)
323e0a4a 1707 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1708
1709 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1710 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1711 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1713 addr = value_as_long (arr);
d2e4a39e 1714 else
42ae5230 1715 addr = value_address (arr);
14f9c5c9 1716
d2e4a39e 1717 return
4c4b4cd2
PH
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1720 }
1721
1722 else if (is_thick_pntr (type))
05e522ef
JB
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
14f9c5c9
AS
1743 else
1744 return NULL;
1745}
1746
4c4b4cd2
PH
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
14f9c5c9 1750static int
d2e4a39e 1751fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1757 size of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1761{
1762 type = desc_base_type (type);
1763
d2e4a39e 1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
61ee279c 1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1768}
1769
4c4b4cd2 1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
4c4b4cd2 1774
d2e4a39e 1775static struct type *
556bdfd4 1776desc_data_target_type (struct type *type)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
4c4b4cd2 1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1781 if (is_thin_pntr (type))
556bdfd4 1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1783 else if (is_thick_pntr (type))
556bdfd4
UW
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1790 }
1791
1792 return NULL;
14f9c5c9
AS
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
4c4b4cd2 1797
d2e4a39e
AS
1798static struct value *
1799desc_data (struct value *arr)
14f9c5c9 1800{
df407dfe 1801 struct type *type = value_type (arr);
5b4ee69b 1802
14f9c5c9
AS
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
d2e4a39e 1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1807 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1814 position of the field containing the address of the data. */
1815
14f9c5c9 1816static int
d2e4a39e 1817fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 size of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1832 else
14f9c5c9
AS
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
4c4b4cd2 1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
d2e4a39e
AS
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1842{
d2e4a39e 1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1844 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1853{
d2e4a39e 1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
76a01679 1861static int
d2e4a39e 1862desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1863{
1864 type = desc_base_type (type);
1865
d2e4a39e
AS
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
d2e4a39e
AS
1875static struct type *
1876desc_index_type (struct type *type, int i)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
14f9c5c9
AS
1883 return NULL;
1884}
1885
4c4b4cd2
PH
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
14f9c5c9 1889static int
d2e4a39e 1890desc_arity (struct type *type)
14f9c5c9
AS
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
76a01679
JB
1903static int
1904ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1905{
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
4c4b4cd2 1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1910 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1911}
1912
52ce6436 1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1914 * to one. */
52ce6436 1915
2c0b251b 1916static int
52ce6436
PH
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
4c4b4cd2 1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1927
14f9c5c9 1928int
4c4b4cd2 1929ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1930{
1931 if (type == NULL)
1932 return 0;
61ee279c 1933 type = ada_check_typedef (type);
14f9c5c9 1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1938}
1939
4c4b4cd2
PH
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
14f9c5c9 1942int
4c4b4cd2 1943ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1944{
556bdfd4 1945 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1946
1947 if (type == NULL)
1948 return 0;
61ee279c 1949 type = ada_check_typedef (type);
556bdfd4
UW
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1956 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1957 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1958 is still needed. */
1959
14f9c5c9 1960int
ebf56fd3 1961ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1962{
d2e4a39e 1963 return
14f9c5c9
AS
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1969}
1970
1971
4c4b4cd2 1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1973 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1975 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1978 a descriptor. */
d2e4a39e
AS
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1984
df407dfe
AC
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
d2e4a39e
AS
1987
1988 if (!bounds)
ad82864c
JB
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
14f9c5c9
AS
1999 else
2000 {
d2e4a39e 2001 struct type *elt_type;
14f9c5c9 2002 int arity;
d2e4a39e 2003 struct value *descriptor;
14f9c5c9 2004
df407dfe
AC
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
14f9c5c9 2007
d2e4a39e 2008 if (elt_type == NULL || arity == 0)
df407dfe 2009 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2010
2011 descriptor = desc_bounds (arr);
d2e4a39e 2012 if (value_as_long (descriptor) == 0)
4c4b4cd2 2013 return NULL;
d2e4a39e 2014 while (arity > 0)
4c4b4cd2 2015 {
e9bb382b
UW
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2020
5b4ee69b 2021 arity -= 1;
0c9c3474
SA
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
4c4b4cd2 2025 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
4c4b4cd2 2047 }
14f9c5c9
AS
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
d2e4a39e
AS
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2060{
df407dfe 2061 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2062 {
d2e4a39e 2063 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2064
14f9c5c9 2065 if (arrType == NULL)
4c4b4cd2 2066 return NULL;
14f9c5c9
AS
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
ad82864c
JB
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2077 be ARR itself if it already is in the proper form). */
2078
720d1a40 2079struct value *
d2e4a39e 2080ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2081{
df407dfe 2082 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2083 {
d2e4a39e 2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2085
14f9c5c9 2086 if (arrVal == NULL)
323e0a4a 2087 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2089 return value_ind (arrVal);
2090 }
ad82864c
JB
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
d2e4a39e 2093 else
14f9c5c9
AS
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2099 packing). For other types, is the identity. */
2100
d2e4a39e
AS
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2103{
ad82864c
JB
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
17280b9f
UW
2106
2107 if (ada_is_array_descriptor_type (type))
556bdfd4 2108 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2109
2110 return type;
14f9c5c9
AS
2111}
2112
4c4b4cd2
PH
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
ad82864c
JB
2115static int
2116ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2117{
2118 if (type == NULL)
2119 return 0;
4c4b4cd2 2120 type = desc_base_type (type);
61ee279c 2121 type = ada_check_typedef (type);
d2e4a39e 2122 return
14f9c5c9
AS
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
ad82864c
JB
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
0d5cff50
DE
2153 const char *raw_name;
2154 const char *tail;
ad82864c
JB
2155 long bits;
2156
720d1a40
JB
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
720d1a40 2171 gdb_assert (tail != NULL);
ad82864c
JB
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
14f9c5c9
AS
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2202{
d2e4a39e
AS
2203 struct type *new_elt_type;
2204 struct type *new_type;
99b1c762
JB
2205 struct type *index_type_desc;
2206 struct type *index_type;
14f9c5c9
AS
2207 LONGEST low_bound, high_bound;
2208
61ee279c 2209 type = ada_check_typedef (type);
14f9c5c9
AS
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
99b1c762
JB
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
e9bb382b 2220 new_type = alloc_type_copy (type);
ad82864c
JB
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
99b1c762 2224 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
4a46959e
JB
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2234 else
14f9c5c9
AS
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2237 TYPE_LENGTH (new_type) =
4c4b4cd2 2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2239 }
2240
876cecd0 2241 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2242 return new_type;
2243}
2244
ad82864c
JB
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2247
d2e4a39e 2248static struct type *
ad82864c 2249decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2250{
0d5cff50 2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2252 char *name;
0d5cff50 2253 const char *tail;
d2e4a39e 2254 struct type *shadow_type;
14f9c5c9 2255 long bits;
14f9c5c9 2256
727e3d2e
JB
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2265 type = desc_base_type (type);
2266
14f9c5c9
AS
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
b4ba55a1
JB
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
14f9c5c9 2273 {
323e0a4a 2274 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2275 return NULL;
2276 }
f168693b 2277 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
0963b4bd
MS
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
d2e4a39e 2285
ad82864c
JB
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2288}
2289
ad82864c
JB
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
4c4b4cd2 2294 type length is set appropriately. */
14f9c5c9 2295
d2e4a39e 2296static struct value *
ad82864c 2297decode_constrained_packed_array (struct value *arr)
14f9c5c9 2298{
4c4b4cd2 2299 struct type *type;
14f9c5c9 2300
11aa919a
PMR
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
828292f2 2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2310 arr = value_ind (arr);
4c4b4cd2 2311
ad82864c 2312 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2313 if (type == NULL)
2314 {
323e0a4a 2315 error (_("can't unpack array"));
14f9c5c9
AS
2316 return NULL;
2317 }
61ee279c 2318
50810684 2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2320 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
df407dfe 2329 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
df407dfe 2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
4c4b4cd2 2344 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2349 given in IND. ARR must be a simple array. */
14f9c5c9 2350
d2e4a39e
AS
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
d2e4a39e
AS
2357 struct type *elt_type;
2358 struct value *v;
14f9c5c9
AS
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
df407dfe 2362 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2363 for (i = 0; i < arity; i += 1)
14f9c5c9 2364 {
d2e4a39e 2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
0963b4bd
MS
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
14f9c5c9 2370 else
4c4b4cd2
PH
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
323e0a4a 2378 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2379 lowerbound = upperbound = 0;
2380 }
2381
3cb382c9 2382 idx = pos_atr (ind[i]);
4c4b4cd2 2383 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
4c4b4cd2
PH
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2389 }
14f9c5c9
AS
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2395 bits, elt_type);
14f9c5c9
AS
2396 return v;
2397}
2398
4c4b4cd2 2399/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2400
2401static int
d2e4a39e 2402has_negatives (struct type *type)
14f9c5c9 2403{
d2e4a39e
AS
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
14f9c5c9 2413}
d2e4a39e 2414
f93fca70 2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2417 the unpacked buffer.
14f9c5c9 2418
5b639dea
JB
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
f93fca70
JB
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
14f9c5c9 2424
f93fca70 2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2426
f93fca70
JB
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
a1c95e6b
JB
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
a1c95e6b
JB
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
4c4b4cd2 2445 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2446 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2447 unsigned char sign;
a1c95e6b 2448
4c4b4cd2
PH
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
f93fca70 2451 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2452
5b639dea
JB
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
14f9c5c9 2459 srcBitsLeft = bit_size;
086ca51f 2460 src_bytes_left = src_len;
f93fca70 2461 unpacked_bytes_left = unpacked_len;
14f9c5c9 2462 sign = 0;
f93fca70
JB
2463
2464 if (is_big_endian)
14f9c5c9 2465 {
086ca51f 2466 src_idx = src_len - 1;
f93fca70
JB
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2469 sign = ~0;
d2e4a39e
AS
2470
2471 unusedLS =
4c4b4cd2
PH
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
14f9c5c9 2474
f93fca70
JB
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
4c4b4cd2
PH
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
086ca51f
JB
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2489 }
14f9c5c9 2490 }
d2e4a39e 2491 else
14f9c5c9
AS
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
086ca51f 2495 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
f93fca70 2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2500 sign = ~0;
14f9c5c9 2501 }
d2e4a39e 2502
14f9c5c9 2503 accum = 0;
086ca51f 2504 while (src_bytes_left > 0)
14f9c5c9
AS
2505 {
2506 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2507 part of the value. */
d2e4a39e 2508 unsigned int unusedMSMask =
4c4b4cd2
PH
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
14f9c5c9 2512 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2513
d2e4a39e 2514 accum |=
086ca51f 2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2516 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2517 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2518 {
db297a65 2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
4c4b4cd2 2524 }
14f9c5c9
AS
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
086ca51f
JB
2527 src_bytes_left -= 1;
2528 src_idx += delta;
14f9c5c9 2529 }
086ca51f 2530 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2531 {
2532 accum |= sign << accumSize;
db297a65 2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2534 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2535 if (accumSize < 0)
2536 accumSize = 0;
14f9c5c9 2537 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
14f9c5c9 2540 }
f93fca70
JB
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
bfb1c796 2558 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2559 gdb_byte *unpacked;
220475ed 2560 const int is_scalar = is_scalar_type (type);
d0a9e810 2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2562 gdb::byte_vector staging;
f93fca70
JB
2563
2564 type = ada_check_typedef (type);
2565
d0a9e810 2566 if (obj == NULL)
bfb1c796 2567 src = valaddr + offset;
d0a9e810 2568 else
bfb1c796 2569 src = value_contents (obj) + offset;
d0a9e810
JB
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
d0a9e810
JB
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2584 staging.data (), staging.size (),
d0a9e810
JB
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
d5722aa2 2587 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
d0a9e810
JB
2599 }
2600
f93fca70
JB
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
bfb1c796 2604 src = valaddr + offset;
f93fca70
JB
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
0cafa88c 2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2609 gdb_byte *buf;
0cafa88c 2610
f93fca70 2611 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
f93fca70
JB
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
bfb1c796 2619 src = value_contents (obj) + offset;
f93fca70
JB
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
bfb1c796 2642 unpacked = value_contents_writeable (v);
f93fca70
JB
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
d5722aa2 2650 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2651 {
d0a9e810
JB
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
d5722aa2 2655 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2656 }
d0a9e810
JB
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2661
14f9c5c9
AS
2662 return v;
2663}
d2e4a39e 2664
14f9c5c9
AS
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2667 not overlap. */
14f9c5c9 2668static void
fc1a4b47 2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2670 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
50810684 2679 if (bits_big_endian_p)
14f9c5c9
AS
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 int unused_right;
5b4ee69b 2688
4c4b4cd2
PH
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
14f9c5c9
AS
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
d2e4a39e 2712 while (n > 0)
4c4b4cd2
PH
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
14f9c5c9
AS
2728 }
2729}
2730
14f9c5c9
AS
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2734 floating-point or non-scalar types. */
14f9c5c9 2735
d2e4a39e
AS
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2738{
df407dfe
AC
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
14f9c5c9 2741
52ce6436
PH
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
88e3b34b 2750 if (!deprecated_value_modifiable (toval))
323e0a4a 2751 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2752
d2e4a39e 2753 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2754 && bits > 0
d2e4a39e 2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2757 {
df407dfe
AC
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2760 int from_size;
224c3ddb 2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2762 struct value *val;
42ae5230 2763 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2766 fromval = value_cast (type, fromval);
14f9c5c9 2767
52ce6436 2768 read_memory (to_addr, buffer, len);
aced2898
PH
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2773 move_bits (buffer, value_bitpos (toval),
50810684 2774 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2775 else
50810684
UW
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
972daa01 2778 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2779
14f9c5c9 2780 val = value_copy (toval);
0fd88904 2781 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2782 TYPE_LENGTH (type));
04624583 2783 deprecated_set_value_type (val, type);
d2e4a39e 2784
14f9c5c9
AS
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
7c512744
JB
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
52ce6436
PH
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
42ae5230 2808 (LONGEST) (value_address (component) - value_address (container));
7c512744 2809 int bit_offset_in_container =
52ce6436
PH
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
7c512744 2812
52ce6436
PH
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
50810684 2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2821 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2825 bits, 1);
52ce6436 2826 else
7c512744 2827 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2828 value_bitpos (container) + bit_offset_in_container,
50810684 2829 value_contents (val), 0, bits, 0);
7c512744
JB
2830}
2831
4c4b4cd2
PH
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2834 thereto. */
2835
d2e4a39e
AS
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2838{
2839 int k;
d2e4a39e
AS
2840 struct value *elt;
2841 struct type *elt_type;
14f9c5c9
AS
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
df407dfe 2845 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
2497b498 2854 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2855 }
2856 return elt;
2857}
2858
deede10c
JB
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
14f9c5c9 2870
2c0b251b 2871static struct value *
deede10c 2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2873{
2874 int k;
919e6dbe 2875 struct value *array_ind = ada_value_ind (arr);
deede10c 2876 struct type *type
919e6dbe
PMR
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
aa715135 2886 struct value *lwb_value;
14f9c5c9
AS
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2889 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2891 value_copy (arr));
14f9c5c9 2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
0b5d8877 2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
0b5d8877 2905static struct value *
f5938064
JG
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
0b5d8877 2908{
b0dd7688 2909 struct type *type0 = ada_check_typedef (type);
aa715135 2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2911 struct type *index_type
aa715135 2912 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2913 struct type *slice_type =
b0dd7688 2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
5b4ee69b 2926
aa715135
JG
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2930 return value_at_lazy (slice_type, base);
0b5d8877
PH
2931}
2932
2933
2934static struct value *
2935ada_value_slice (struct value *array, int low, int high)
2936{
b0dd7688 2937 struct type *type = ada_check_typedef (value_type (array));
aa715135 2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2941 struct type *slice_type =
0b5d8877 2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2943 LONGEST low_pos, high_pos;
5b4ee69b 2944
aa715135
JG
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2955}
2956
14f9c5c9
AS
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2960 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2961
2962int
d2e4a39e 2963ada_array_arity (struct type *type)
14f9c5c9
AS
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
d2e4a39e 2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2974 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2977 {
4c4b4cd2 2978 arity += 1;
61ee279c 2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2980 }
d2e4a39e 2981
14f9c5c9
AS
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2988 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2989
d2e4a39e
AS
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2992{
2993 type = desc_base_type (type);
2994
d2e4a39e 2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2996 {
2997 int k;
d2e4a39e 2998 struct type *p_array_type;
14f9c5c9 2999
556bdfd4 3000 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
4c4b4cd2 3004 return NULL;
d2e4a39e 3005
4c4b4cd2 3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3007 if (nindices >= 0 && k > nindices)
4c4b4cd2 3008 k = nindices;
d2e4a39e 3009 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3010 {
61ee279c 3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3012 k -= 1;
3013 }
14f9c5c9
AS
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
14f9c5c9
AS
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
4c4b4cd2 3029/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
14f9c5c9 3034
1eea4ebd
UW
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3037{
4c4b4cd2
PH
3038 struct type *result_type;
3039
14f9c5c9
AS
3040 type = desc_base_type (type);
3041
1eea4ebd
UW
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3044
4c4b4cd2 3045 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
4c4b4cd2 3050 type = TYPE_TARGET_TYPE (type);
262452ec 3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3054 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
14f9c5c9 3057 }
d2e4a39e 3058 else
1eea4ebd
UW
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
14f9c5c9 3073
abb68b3e 3074static LONGEST
fb5e3d5c 3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3076{
8a48ac95 3077 struct type *type, *index_type_desc, *index_type;
1ce677a4 3078 int i;
262452ec
JK
3079
3080 gdb_assert (which == 0 || which == 1);
14f9c5c9 3081
ad82864c
JB
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3084
4c4b4cd2 3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3086 return (LONGEST) - which;
14f9c5c9
AS
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
bafffb51
JB
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
262452ec 3106 if (index_type_desc != NULL)
28c85d6c
JB
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
262452ec 3109 else
8a48ac95
JB
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
262452ec 3118
43bbcdc2
PH
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3128 supplied by run-time quantities other than discriminants. */
14f9c5c9 3129
1eea4ebd 3130static LONGEST
4dc81987 3131ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3132{
eb479039
JB
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
14f9c5c9 3138
ad82864c
JB
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3141 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3142 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3143 else
1eea4ebd 3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
14f9c5c9 3152
1eea4ebd 3153static LONGEST
d2e4a39e 3154ada_array_length (struct value *arr, int n)
14f9c5c9 3155{
aa715135
JG
3156 struct type *arr_type, *index_type;
3157 int low, high;
eb479039
JB
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
14f9c5c9 3162
ad82864c
JB
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3165
4c4b4cd2 3166 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
14f9c5c9 3171 else
aa715135
JG
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
f168693b 3177 arr_type = check_typedef (arr_type);
aa715135
JG
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
4c4b4cd2
PH
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
b0dd7688 3199 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3204
0b5d8877 3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3206}
14f9c5c9 3207\f
d2e4a39e 3208
4c4b4cd2 3209 /* Name resolution */
14f9c5c9 3210
4c4b4cd2
PH
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
14f9c5c9 3213
d2e4a39e 3214static const char *
4c4b4cd2 3215ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3216{
3217 int i;
3218
4c4b4cd2 3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3220 {
3221 if (ada_opname_table[i].op == op)
4c4b4cd2 3222 return ada_opname_table[i].decoded;
14f9c5c9 3223 }
323e0a4a 3224 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3225}
3226
3227
4c4b4cd2
PH
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3235 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3236
4c4b4cd2 3237static void
e9d9f57e 3238resolve (expression_up *expp, int void_context_p)
14f9c5c9 3239{
30b15541
UW
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3247}
3248
4c4b4cd2
PH
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
14f9c5c9 3257
d2e4a39e 3258static struct value *
e9d9f57e 3259resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3260 struct type *context_type)
14f9c5c9
AS
3261{
3262 int pc = *pos;
3263 int i;
4c4b4cd2 3264 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
52ce6436 3268 int oplen;
ec6a20c2 3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3270
3271 argvec = NULL;
3272 nargs = 0;
e9d9f57e 3273 exp = expp->get ();
14f9c5c9 3274
52ce6436
PH
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
14f9c5c9
AS
3277 switch (op)
3278 {
4c4b4cd2
PH
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
4c4b4cd2
PH
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3289 break;
3290
14f9c5c9 3291 case UNOP_ADDR:
4c4b4cd2
PH
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
52ce6436
PH
3296 case UNOP_QUAL:
3297 *pos += 3;
17466c1a 3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3299 break;
3300
52ce6436 3301 case OP_ATR_MODULUS:
4c4b4cd2
PH
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
4c4b4cd2
PH
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
4c4b4cd2
PH
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
52ce6436
PH
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
14f9c5c9
AS
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
4c4b4cd2
PH
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
df407dfe 3333 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3334 break;
14f9c5c9
AS
3335 }
3336
4c4b4cd2 3337 case UNOP_CAST:
4c4b4cd2
PH
3338 *pos += 3;
3339 nargs = 1;
3340 break;
14f9c5c9 3341
4c4b4cd2
PH
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
14f9c5c9 3355
4c4b4cd2
PH
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
14f9c5c9 3362
4c4b4cd2
PH
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
40c8aaa9
JB
3366 *pos += 1;
3367 nargs = 2;
3368 break;
14f9c5c9 3369
4c4b4cd2
PH
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
14f9c5c9 3378
4c4b4cd2 3379 case OP_LONG:
edd079d9 3380 case OP_FLOAT:
4c4b4cd2 3381 case OP_VAR_VALUE:
74ea4be4 3382 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3383 *pos += 4;
3384 break;
14f9c5c9 3385
4c4b4cd2
PH
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
4c4b4cd2
PH
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
14f9c5c9 3392
4c4b4cd2
PH
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
67f3407f
DJ
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
4c4b4cd2
PH
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
4c4b4cd2 3407 case TERNOP_SLICE:
4c4b4cd2
PH
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
52ce6436 3412 case OP_STRING:
14f9c5c9 3413 break;
4c4b4cd2
PH
3414
3415 default:
323e0a4a 3416 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3417 }
3418
8d749320 3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
e9d9f57e 3423 exp = expp->get ();
4c4b4cd2
PH
3424
3425 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
14f9c5c9 3431 case OP_VAR_VALUE:
4c4b4cd2 3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3433 {
d12307c1 3434 struct block_symbol *candidates;
76a01679
JB
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3441 &candidates);
ec6a20c2 3442 make_cleanup (xfree, candidates);
76a01679
JB
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
d12307c1 3451 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
76a01679
JB
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
76a01679 3458 case LOC_COMPUTED:
76a01679
JB
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
d12307c1 3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
323e0a4a 3481 error (_("No definition found for %s"),
76a01679
JB
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
06d5cf63
JB
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
76a01679 3492 if (i < 0)
323e0a4a 3493 error (_("Could not find a match for %s"),
76a01679
JB
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
323e0a4a 3498 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
e9d9f57e 3518 exp = expp->get ();
76a01679 3519 }
14f9c5c9
AS
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
4c4b4cd2 3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3526 {
d12307c1 3527 struct block_symbol *candidates;
4c4b4cd2
PH
3528 int n_candidates;
3529
3530 n_candidates =
76a01679
JB
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3534 &candidates);
ec6a20c2
JB
3535 make_cleanup (xfree, candidates);
3536
4c4b4cd2
PH
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
06d5cf63
JB
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
4c4b4cd2 3546 if (i < 0)
323e0a4a 3547 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3555 innermost_block = candidates[i].block;
3556 }
14f9c5c9
AS
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3581 {
d12307c1 3582 struct block_symbol *candidates;
4c4b4cd2
PH
3583 int n_candidates;
3584
3585 n_candidates =
b5ec771e 3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3587 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3588 &candidates);
ec6a20c2
JB
3589 make_cleanup (xfree, candidates);
3590
4c4b4cd2 3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3592 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3593 if (i < 0)
3594 break;
3595
d12307c1
PMR
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
e9d9f57e 3599 exp = expp->get ();
4c4b4cd2 3600 }
14f9c5c9 3601 break;
4c4b4cd2
PH
3602
3603 case OP_TYPE:
b3dbf008 3604 case OP_REGISTER:
ec6a20c2 3605 do_cleanups (old_chain);
4c4b4cd2 3606 return NULL;
14f9c5c9
AS
3607 }
3608
3609 *pos = pc;
ec6a20c2 3610 do_cleanups (old_chain);
ced9779b
JB
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3621 a non-pointer. */
14f9c5c9 3622/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3623 liberal. */
14f9c5c9
AS
3624
3625static int
4dc81987 3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3627{
61ee279c
PH
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
14f9c5c9
AS
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
d2e4a39e 3636 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3637 {
3638 default:
5b3d5b7d 3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3644 else
1265e4aa
JB
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
14f9c5c9
AS
3659
3660 case TYPE_CODE_ARRAY:
d2e4a39e 3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3662 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3663
3664 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
14f9c5c9 3668 else
4c4b4cd2
PH
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3681 argument function. */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3685{
3686 int i;
d2e4a39e 3687 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3688
1265e4aa
JB
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
4c4b4cd2 3700 if (actuals[i] == NULL)
76a01679
JB
3701 return 0;
3702 else
3703 {
5b4ee69b
MS
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
df407dfe 3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3707
76a01679
JB
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
14f9c5c9
AS
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
d2e4a39e 3721return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3722{
d2e4a39e 3723 struct type *return_type;
14f9c5c9
AS
3724
3725 if (func_type == NULL)
3726 return 1;
3727
4c4b4cd2 3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3730 else
18af8284 3731 return_type = get_base_type (func_type);
14f9c5c9
AS
3732 if (return_type == NULL)
3733 return 1;
3734
18af8284 3735 context_type = get_base_type (context_type);
14f9c5c9
AS
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
4c4b4cd2 3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3747 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
14f9c5c9
AS
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
14f9c5c9 3757
4c4b4cd2 3758static int
d12307c1 3759ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
14f9c5c9 3762{
30b15541 3763 int fallback;
14f9c5c9 3764 int k;
4c4b4cd2 3765 int m; /* Number of hits */
14f9c5c9 3766
d2e4a39e 3767 m = 0;
30b15541
UW
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3772 {
3773 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3774 {
d12307c1 3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3776
d12307c1 3777 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3778 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
14f9c5c9
AS
3784 }
3785
dc5c8746
PMR
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3790 if (m == 0)
3791 return -1;
dc5c8746 3792 else if (m > 1 && !parse_completion)
14f9c5c9 3793 {
323e0a4a 3794 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3795 user_select_syms (syms, m, 1);
14f9c5c9
AS
3796 return 0;
3797 }
3798 return 0;
3799}
3800
4c4b4cd2
PH
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
14f9c5c9 3807static int
0d5cff50 3808encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
5b4ee69b 3817
d2e4a39e 3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3819 ;
d2e4a39e 3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3821 ;
d2e4a39e 3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
5b4ee69b 3826
4c4b4cd2
PH
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
14f9c5c9
AS
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
d2e4a39e 3839
4c4b4cd2
PH
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
d2e4a39e 3843static void
d12307c1 3844sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3845{
4c4b4cd2 3846 int i;
5b4ee69b 3847
d2e4a39e 3848 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3849 {
d12307c1 3850 struct block_symbol sym = syms[i];
14f9c5c9
AS
3851 int j;
3852
d2e4a39e 3853 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3854 {
d12307c1
PMR
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
d2e4a39e 3860 syms[j + 1] = sym;
14f9c5c9
AS
3861 }
3862}
3863
d72413e6
PMR
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
4c4b4cd2
PH
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
14f9c5c9
AS
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3913 to be re-integrated one of these days. */
14f9c5c9
AS
3914
3915int
d12307c1 3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3917{
3918 int i;
8d749320 3919 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3922 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3923
3924 if (max_results < 1)
323e0a4a 3925 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3926 if (nsyms <= 1)
3927 return nsyms;
3928
717d2f5a
JB
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
323e0a4a 3940 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3941 if (max_results > 1)
323e0a4a 3942 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3943
4c4b4cd2 3944 sort_choices (syms, nsyms);
14f9c5c9
AS
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
d12307c1 3948 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3949 continue;
3950
d12307c1 3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3952 {
76a01679 3953 struct symtab_and_line sal =
d12307c1 3954 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3955
d72413e6
PMR
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
323e0a4a 3959 if (sal.symtab == NULL)
d72413e6 3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3961 sal.line);
3962 else
d72413e6 3963 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
4c4b4cd2
PH
3966 continue;
3967 }
d2e4a39e 3968 else
4c4b4cd2
PH
3969 {
3970 int is_enumeral =
d12307c1
PMR
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3974 struct symtab *symtab = NULL;
3975
d12307c1
PMR
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3978
d12307c1 3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
76a01679 3988 else if (is_enumeral
d12307c1 3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3990 {
a3f17187 3991 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3993 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3995 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3996 }
d72413e6
PMR
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4c4b4cd2 4013 }
14f9c5c9 4014 }
d2e4a39e 4015
14f9c5c9 4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4017 "overload-choice");
14f9c5c9
AS
4018
4019 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4020 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4026 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4c4b4cd2 4032 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4c4b4cd2 4036 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4039 prompts (for use with the -f switch). */
14f9c5c9
AS
4040
4041int
d2e4a39e 4042get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4043 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4044{
d2e4a39e 4045 char *args;
a121b7c1 4046 const char *prompt;
14f9c5c9
AS
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4049
14f9c5c9
AS
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
0bcd0149 4052 prompt = "> ";
14f9c5c9 4053
0bcd0149 4054 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4055
14f9c5c9 4056 if (args == NULL)
323e0a4a 4057 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4058
4059 n_chosen = 0;
76a01679 4060
4c4b4cd2
PH
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
14f9c5c9
AS
4063 while (1)
4064 {
d2e4a39e 4065 char *args2;
14f9c5c9
AS
4066 int choice, j;
4067
0fcd72ba 4068 args = skip_spaces (args);
14f9c5c9 4069 if (*args == '\0' && n_chosen == 0)
323e0a4a 4070 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4071 else if (*args == '\0')
4c4b4cd2 4072 break;
14f9c5c9
AS
4073
4074 choice = strtol (args, &args2, 10);
d2e4a39e 4075 if (args == args2 || choice < 0
4c4b4cd2 4076 || choice > n_choices + first_choice - 1)
323e0a4a 4077 error (_("Argument must be choice number"));
14f9c5c9
AS
4078 args = args2;
4079
d2e4a39e 4080 if (choice == 0)
323e0a4a 4081 error (_("cancelled"));
14f9c5c9
AS
4082
4083 if (choice < first_choice)
4c4b4cd2
PH
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
14f9c5c9
AS
4090 choice -= first_choice;
4091
d2e4a39e 4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4093 {
4094 }
14f9c5c9
AS
4095
4096 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4097 {
4098 int k;
5b4ee69b 4099
4c4b4cd2
PH
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
14f9c5c9
AS
4105 }
4106
4107 if (n_chosen > max_results)
323e0a4a 4108 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4109
14f9c5c9
AS
4110 return n_chosen;
4111}
4112
4c4b4cd2
PH
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4116
4117static void
e9d9f57e 4118replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4119 int oplen, struct symbol *sym,
270140bd 4120 const struct block *block)
14f9c5c9
AS
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4123 symbol, -oplen for operator being replaced). */
d2e4a39e 4124 struct expression *newexp = (struct expression *)
8c1a34e7 4125 xzalloc (sizeof (struct expression)
4c4b4cd2 4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4127 struct expression *exp = expp->get ();
14f9c5c9
AS
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
3489610d 4131 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
e9d9f57e 4143 expp->reset (newexp);
d2e4a39e 4144}
14f9c5c9
AS
4145
4146/* Type-class predicates */
4147
4c4b4cd2
PH
4148/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4149 or FLOAT). */
14f9c5c9
AS
4150
4151static int
d2e4a39e 4152numeric_type_p (struct type *type)
14f9c5c9
AS
4153{
4154 if (type == NULL)
4155 return 0;
d2e4a39e
AS
4156 else
4157 {
4158 switch (TYPE_CODE (type))
4c4b4cd2
PH
4159 {
4160 case TYPE_CODE_INT:
4161 case TYPE_CODE_FLT:
4162 return 1;
4163 case TYPE_CODE_RANGE:
4164 return (type == TYPE_TARGET_TYPE (type)
4165 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4166 default:
4167 return 0;
4168 }
d2e4a39e 4169 }
14f9c5c9
AS
4170}
4171
4c4b4cd2 4172/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4173
4174static int
d2e4a39e 4175integer_type_p (struct type *type)
14f9c5c9
AS
4176{
4177 if (type == NULL)
4178 return 0;
d2e4a39e
AS
4179 else
4180 {
4181 switch (TYPE_CODE (type))
4c4b4cd2
PH
4182 {
4183 case TYPE_CODE_INT:
4184 return 1;
4185 case TYPE_CODE_RANGE:
4186 return (type == TYPE_TARGET_TYPE (type)
4187 || integer_type_p (TYPE_TARGET_TYPE (type)));
4188 default:
4189 return 0;
4190 }
d2e4a39e 4191 }
14f9c5c9
AS
4192}
4193
4c4b4cd2 4194/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4195
4196static int
d2e4a39e 4197scalar_type_p (struct type *type)
14f9c5c9
AS
4198{
4199 if (type == NULL)
4200 return 0;
d2e4a39e
AS
4201 else
4202 {
4203 switch (TYPE_CODE (type))
4c4b4cd2
PH
4204 {
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_RANGE:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_FLT:
4209 return 1;
4210 default:
4211 return 0;
4212 }
d2e4a39e 4213 }
14f9c5c9
AS
4214}
4215
4c4b4cd2 4216/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4217
4218static int
d2e4a39e 4219discrete_type_p (struct type *type)
14f9c5c9
AS
4220{
4221 if (type == NULL)
4222 return 0;
d2e4a39e
AS
4223 else
4224 {
4225 switch (TYPE_CODE (type))
4c4b4cd2
PH
4226 {
4227 case TYPE_CODE_INT:
4228 case TYPE_CODE_RANGE:
4229 case TYPE_CODE_ENUM:
872f0337 4230 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4231 return 1;
4232 default:
4233 return 0;
4234 }
d2e4a39e 4235 }
14f9c5c9
AS
4236}
4237
4c4b4cd2
PH
4238/* Returns non-zero if OP with operands in the vector ARGS could be
4239 a user-defined function. Errs on the side of pre-defined operators
4240 (i.e., result 0). */
14f9c5c9
AS
4241
4242static int
d2e4a39e 4243possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4244{
76a01679 4245 struct type *type0 =
df407dfe 4246 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4247 struct type *type1 =
df407dfe 4248 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4249
4c4b4cd2
PH
4250 if (type0 == NULL)
4251 return 0;
4252
14f9c5c9
AS
4253 switch (op)
4254 {
4255 default:
4256 return 0;
4257
4258 case BINOP_ADD:
4259 case BINOP_SUB:
4260 case BINOP_MUL:
4261 case BINOP_DIV:
d2e4a39e 4262 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4263
4264 case BINOP_REM:
4265 case BINOP_MOD:
4266 case BINOP_BITWISE_AND:
4267 case BINOP_BITWISE_IOR:
4268 case BINOP_BITWISE_XOR:
d2e4a39e 4269 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4270
4271 case BINOP_EQUAL:
4272 case BINOP_NOTEQUAL:
4273 case BINOP_LESS:
4274 case BINOP_GTR:
4275 case BINOP_LEQ:
4276 case BINOP_GEQ:
d2e4a39e 4277 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4278
4279 case BINOP_CONCAT:
ee90b9ab 4280 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4281
4282 case BINOP_EXP:
d2e4a39e 4283 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4284
4285 case UNOP_NEG:
4286 case UNOP_PLUS:
4287 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4288 case UNOP_ABS:
4289 return (!numeric_type_p (type0));
14f9c5c9
AS
4290
4291 }
4292}
4293\f
4c4b4cd2 4294 /* Renaming */
14f9c5c9 4295
aeb5907d
JB
4296/* NOTES:
4297
4298 1. In the following, we assume that a renaming type's name may
4299 have an ___XD suffix. It would be nice if this went away at some
4300 point.
4301 2. We handle both the (old) purely type-based representation of
4302 renamings and the (new) variable-based encoding. At some point,
4303 it is devoutly to be hoped that the former goes away
4304 (FIXME: hilfinger-2007-07-09).
4305 3. Subprogram renamings are not implemented, although the XRS
4306 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4307
4308/* If SYM encodes a renaming,
4309
4310 <renaming> renames <renamed entity>,
4311
4312 sets *LEN to the length of the renamed entity's name,
4313 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4314 the string describing the subcomponent selected from the renamed
0963b4bd 4315 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4316 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4317 are undefined). Otherwise, returns a value indicating the category
4318 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4319 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4320 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4321 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4322 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4323 may be NULL, in which case they are not assigned.
4324
4325 [Currently, however, GCC does not generate subprogram renamings.] */
4326
4327enum ada_renaming_category
4328ada_parse_renaming (struct symbol *sym,
4329 const char **renamed_entity, int *len,
4330 const char **renaming_expr)
4331{
4332 enum ada_renaming_category kind;
4333 const char *info;
4334 const char *suffix;
4335
4336 if (sym == NULL)
4337 return ADA_NOT_RENAMING;
4338 switch (SYMBOL_CLASS (sym))
14f9c5c9 4339 {
aeb5907d
JB
4340 default:
4341 return ADA_NOT_RENAMING;
4342 case LOC_TYPEDEF:
4343 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4344 renamed_entity, len, renaming_expr);
4345 case LOC_LOCAL:
4346 case LOC_STATIC:
4347 case LOC_COMPUTED:
4348 case LOC_OPTIMIZED_OUT:
4349 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4350 if (info == NULL)
4351 return ADA_NOT_RENAMING;
4352 switch (info[5])
4353 {
4354 case '_':
4355 kind = ADA_OBJECT_RENAMING;
4356 info += 6;
4357 break;
4358 case 'E':
4359 kind = ADA_EXCEPTION_RENAMING;
4360 info += 7;
4361 break;
4362 case 'P':
4363 kind = ADA_PACKAGE_RENAMING;
4364 info += 7;
4365 break;
4366 case 'S':
4367 kind = ADA_SUBPROGRAM_RENAMING;
4368 info += 7;
4369 break;
4370 default:
4371 return ADA_NOT_RENAMING;
4372 }
14f9c5c9 4373 }
4c4b4cd2 4374
aeb5907d
JB
4375 if (renamed_entity != NULL)
4376 *renamed_entity = info;
4377 suffix = strstr (info, "___XE");
4378 if (suffix == NULL || suffix == info)
4379 return ADA_NOT_RENAMING;
4380 if (len != NULL)
4381 *len = strlen (info) - strlen (suffix);
4382 suffix += 5;
4383 if (renaming_expr != NULL)
4384 *renaming_expr = suffix;
4385 return kind;
4386}
4387
4388/* Assuming TYPE encodes a renaming according to the old encoding in
4389 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4390 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4391 ADA_NOT_RENAMING otherwise. */
4392static enum ada_renaming_category
4393parse_old_style_renaming (struct type *type,
4394 const char **renamed_entity, int *len,
4395 const char **renaming_expr)
4396{
4397 enum ada_renaming_category kind;
4398 const char *name;
4399 const char *info;
4400 const char *suffix;
14f9c5c9 4401
aeb5907d
JB
4402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4403 || TYPE_NFIELDS (type) != 1)
4404 return ADA_NOT_RENAMING;
14f9c5c9 4405
aeb5907d
JB
4406 name = type_name_no_tag (type);
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409
4410 name = strstr (name, "___XR");
4411 if (name == NULL)
4412 return ADA_NOT_RENAMING;
4413 switch (name[5])
4414 {
4415 case '\0':
4416 case '_':
4417 kind = ADA_OBJECT_RENAMING;
4418 break;
4419 case 'E':
4420 kind = ADA_EXCEPTION_RENAMING;
4421 break;
4422 case 'P':
4423 kind = ADA_PACKAGE_RENAMING;
4424 break;
4425 case 'S':
4426 kind = ADA_SUBPROGRAM_RENAMING;
4427 break;
4428 default:
4429 return ADA_NOT_RENAMING;
4430 }
14f9c5c9 4431
aeb5907d
JB
4432 info = TYPE_FIELD_NAME (type, 0);
4433 if (info == NULL)
4434 return ADA_NOT_RENAMING;
4435 if (renamed_entity != NULL)
4436 *renamed_entity = info;
4437 suffix = strstr (info, "___XE");
4438 if (renaming_expr != NULL)
4439 *renaming_expr = suffix + 5;
4440 if (suffix == NULL || suffix == info)
4441 return ADA_NOT_RENAMING;
4442 if (len != NULL)
4443 *len = suffix - info;
4444 return kind;
a5ee536b
JB
4445}
4446
4447/* Compute the value of the given RENAMING_SYM, which is expected to
4448 be a symbol encoding a renaming expression. BLOCK is the block
4449 used to evaluate the renaming. */
52ce6436 4450
a5ee536b
JB
4451static struct value *
4452ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4453 const struct block *block)
a5ee536b 4454{
bbc13ae3 4455 const char *sym_name;
a5ee536b 4456
bbc13ae3 4457 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4458 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4459 return evaluate_expression (expr.get ());
a5ee536b 4460}
14f9c5c9 4461\f
d2e4a39e 4462
4c4b4cd2 4463 /* Evaluation: Function Calls */
14f9c5c9 4464
4c4b4cd2 4465/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4466 lvalues, and otherwise has the side-effect of allocating memory
4467 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4468
d2e4a39e 4469static struct value *
40bc484c 4470ensure_lval (struct value *val)
14f9c5c9 4471{
40bc484c
JB
4472 if (VALUE_LVAL (val) == not_lval
4473 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4474 {
df407dfe 4475 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4476 const CORE_ADDR addr =
4477 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4478
a84a8a0d 4479 VALUE_LVAL (val) = lval_memory;
1a088441 4480 set_value_address (val, addr);
40bc484c 4481 write_memory (addr, value_contents (val), len);
c3e5cd34 4482 }
14f9c5c9
AS
4483
4484 return val;
4485}
4486
4487/* Return the value ACTUAL, converted to be an appropriate value for a
4488 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4489 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4490 values not residing in memory, updating it as needed. */
14f9c5c9 4491
a93c0eb6 4492struct value *
40bc484c 4493ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4494{
df407dfe 4495 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4496 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4497 struct type *formal_target =
4498 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4499 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4500 struct type *actual_target =
4501 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4502 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4503
4c4b4cd2 4504 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4505 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4506 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4507 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4508 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4509 {
a84a8a0d 4510 struct value *result;
5b4ee69b 4511
14f9c5c9 4512 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4513 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4514 result = desc_data (actual);
cb923fcc 4515 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4516 {
4517 if (VALUE_LVAL (actual) != lval_memory)
4518 {
4519 struct value *val;
5b4ee69b 4520
df407dfe 4521 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4522 val = allocate_value (actual_type);
990a07ab 4523 memcpy ((char *) value_contents_raw (val),
0fd88904 4524 (char *) value_contents (actual),
4c4b4cd2 4525 TYPE_LENGTH (actual_type));
40bc484c 4526 actual = ensure_lval (val);
4c4b4cd2 4527 }
a84a8a0d 4528 result = value_addr (actual);
4c4b4cd2 4529 }
a84a8a0d
JB
4530 else
4531 return actual;
b1af9e97 4532 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4533 }
4534 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4535 return ada_value_ind (actual);
8344af1e
JB
4536 else if (ada_is_aligner_type (formal_type))
4537 {
4538 /* We need to turn this parameter into an aligner type
4539 as well. */
4540 struct value *aligner = allocate_value (formal_type);
4541 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4542
4543 value_assign_to_component (aligner, component, actual);
4544 return aligner;
4545 }
14f9c5c9
AS
4546
4547 return actual;
4548}
4549
438c98a1
JB
4550/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4551 type TYPE. This is usually an inefficient no-op except on some targets
4552 (such as AVR) where the representation of a pointer and an address
4553 differs. */
4554
4555static CORE_ADDR
4556value_pointer (struct value *value, struct type *type)
4557{
4558 struct gdbarch *gdbarch = get_type_arch (type);
4559 unsigned len = TYPE_LENGTH (type);
224c3ddb 4560 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4561 CORE_ADDR addr;
4562
4563 addr = value_address (value);
4564 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4565 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4566 return addr;
4567}
4568
14f9c5c9 4569
4c4b4cd2
PH
4570/* Push a descriptor of type TYPE for array value ARR on the stack at
4571 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4572 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4573 to-descriptor type rather than a descriptor type), a struct value *
4574 representing a pointer to this descriptor. */
14f9c5c9 4575
d2e4a39e 4576static struct value *
40bc484c 4577make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4578{
d2e4a39e
AS
4579 struct type *bounds_type = desc_bounds_type (type);
4580 struct type *desc_type = desc_base_type (type);
4581 struct value *descriptor = allocate_value (desc_type);
4582 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4583 int i;
d2e4a39e 4584
0963b4bd
MS
4585 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4586 i > 0; i -= 1)
14f9c5c9 4587 {
19f220c3
JK
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 0),
4590 desc_bound_bitpos (bounds_type, i, 0),
4591 desc_bound_bitsize (bounds_type, i, 0));
4592 modify_field (value_type (bounds), value_contents_writeable (bounds),
4593 ada_array_bound (arr, i, 1),
4594 desc_bound_bitpos (bounds_type, i, 1),
4595 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4596 }
d2e4a39e 4597
40bc484c 4598 bounds = ensure_lval (bounds);
d2e4a39e 4599
19f220c3
JK
4600 modify_field (value_type (descriptor),
4601 value_contents_writeable (descriptor),
4602 value_pointer (ensure_lval (arr),
4603 TYPE_FIELD_TYPE (desc_type, 0)),
4604 fat_pntr_data_bitpos (desc_type),
4605 fat_pntr_data_bitsize (desc_type));
4606
4607 modify_field (value_type (descriptor),
4608 value_contents_writeable (descriptor),
4609 value_pointer (bounds,
4610 TYPE_FIELD_TYPE (desc_type, 1)),
4611 fat_pntr_bounds_bitpos (desc_type),
4612 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4613
40bc484c 4614 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4615
4616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4617 return value_addr (descriptor);
4618 else
4619 return descriptor;
4620}
14f9c5c9 4621\f
3d9434b5
JB
4622 /* Symbol Cache Module */
4623
3d9434b5 4624/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4625 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4626 on the type of entity being printed, the cache can make it as much
4627 as an order of magnitude faster than without it.
4628
4629 The descriptive type DWARF extension has significantly reduced
4630 the need for this cache, at least when DWARF is being used. However,
4631 even in this case, some expensive name-based symbol searches are still
4632 sometimes necessary - to find an XVZ variable, mostly. */
4633
ee01b665 4634/* Initialize the contents of SYM_CACHE. */
3d9434b5 4635
ee01b665
JB
4636static void
4637ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4638{
4639 obstack_init (&sym_cache->cache_space);
4640 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4641}
3d9434b5 4642
ee01b665
JB
4643/* Free the memory used by SYM_CACHE. */
4644
4645static void
4646ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4647{
ee01b665
JB
4648 obstack_free (&sym_cache->cache_space, NULL);
4649 xfree (sym_cache);
4650}
3d9434b5 4651
ee01b665
JB
4652/* Return the symbol cache associated to the given program space PSPACE.
4653 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4654
ee01b665
JB
4655static struct ada_symbol_cache *
4656ada_get_symbol_cache (struct program_space *pspace)
4657{
4658 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4659
66c168ae 4660 if (pspace_data->sym_cache == NULL)
ee01b665 4661 {
66c168ae
JB
4662 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4663 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4664 }
4665
66c168ae 4666 return pspace_data->sym_cache;
ee01b665 4667}
3d9434b5
JB
4668
4669/* Clear all entries from the symbol cache. */
4670
4671static void
4672ada_clear_symbol_cache (void)
4673{
ee01b665
JB
4674 struct ada_symbol_cache *sym_cache
4675 = ada_get_symbol_cache (current_program_space);
4676
4677 obstack_free (&sym_cache->cache_space, NULL);
4678 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4679}
4680
fe978cb0 4681/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4682 Return it if found, or NULL otherwise. */
4683
4684static struct cache_entry **
fe978cb0 4685find_entry (const char *name, domain_enum domain)
3d9434b5 4686{
ee01b665
JB
4687 struct ada_symbol_cache *sym_cache
4688 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4689 int h = msymbol_hash (name) % HASH_SIZE;
4690 struct cache_entry **e;
4691
ee01b665 4692 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4693 {
fe978cb0 4694 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4695 return e;
4696 }
4697 return NULL;
4698}
4699
fe978cb0 4700/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4701 Return 1 if found, 0 otherwise.
4702
4703 If an entry was found and SYM is not NULL, set *SYM to the entry's
4704 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4705
96d887e8 4706static int
fe978cb0 4707lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4708 struct symbol **sym, const struct block **block)
96d887e8 4709{
fe978cb0 4710 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4711
4712 if (e == NULL)
4713 return 0;
4714 if (sym != NULL)
4715 *sym = (*e)->sym;
4716 if (block != NULL)
4717 *block = (*e)->block;
4718 return 1;
96d887e8
PH
4719}
4720
3d9434b5 4721/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4722 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4723
96d887e8 4724static void
fe978cb0 4725cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4726 const struct block *block)
96d887e8 4727{
ee01b665
JB
4728 struct ada_symbol_cache *sym_cache
4729 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4730 int h;
4731 char *copy;
4732 struct cache_entry *e;
4733
1994afbf
DE
4734 /* Symbols for builtin types don't have a block.
4735 For now don't cache such symbols. */
4736 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4737 return;
4738
3d9434b5
JB
4739 /* If the symbol is a local symbol, then do not cache it, as a search
4740 for that symbol depends on the context. To determine whether
4741 the symbol is local or not, we check the block where we found it
4742 against the global and static blocks of its associated symtab. */
4743 if (sym
08be3fe3 4744 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4745 GLOBAL_BLOCK) != block
08be3fe3 4746 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4747 STATIC_BLOCK) != block)
3d9434b5
JB
4748 return;
4749
4750 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4751 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4752 sizeof (*e));
4753 e->next = sym_cache->root[h];
4754 sym_cache->root[h] = e;
224c3ddb
SM
4755 e->name = copy
4756 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4757 strcpy (copy, name);
4758 e->sym = sym;
fe978cb0 4759 e->domain = domain;
3d9434b5 4760 e->block = block;
96d887e8 4761}
4c4b4cd2
PH
4762\f
4763 /* Symbol Lookup */
4764
b5ec771e
PA
4765/* Return the symbol name match type that should be used used when
4766 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4767
4768 LOOKUP_NAME is expected to be a symbol name after transformation
4769 for Ada lookups (see ada_name_for_lookup). */
4770
b5ec771e
PA
4771static symbol_name_match_type
4772name_match_type_from_name (const char *lookup_name)
c0431670 4773{
b5ec771e
PA
4774 return (strstr (lookup_name, "__") == NULL
4775 ? symbol_name_match_type::WILD
4776 : symbol_name_match_type::FULL);
c0431670
JB
4777}
4778
4c4b4cd2
PH
4779/* Return the result of a standard (literal, C-like) lookup of NAME in
4780 given DOMAIN, visible from lexical block BLOCK. */
4781
4782static struct symbol *
4783standard_lookup (const char *name, const struct block *block,
4784 domain_enum domain)
4785{
acbd605d 4786 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4787 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4788
d12307c1
PMR
4789 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4790 return sym.symbol;
2570f2b7 4791 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4792 cache_symbol (name, domain, sym.symbol, sym.block);
4793 return sym.symbol;
4c4b4cd2
PH
4794}
4795
4796
4797/* Non-zero iff there is at least one non-function/non-enumeral symbol
4798 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4799 since they contend in overloading in the same way. */
4800static int
d12307c1 4801is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4802{
4803 int i;
4804
4805 for (i = 0; i < n; i += 1)
d12307c1
PMR
4806 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4807 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4808 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4809 return 1;
4810
4811 return 0;
4812}
4813
4814/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4815 struct types. Otherwise, they may not. */
14f9c5c9
AS
4816
4817static int
d2e4a39e 4818equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4819{
d2e4a39e 4820 if (type0 == type1)
14f9c5c9 4821 return 1;
d2e4a39e 4822 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4823 || TYPE_CODE (type0) != TYPE_CODE (type1))
4824 return 0;
d2e4a39e 4825 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4826 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4827 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4828 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4829 return 1;
d2e4a39e 4830
14f9c5c9
AS
4831 return 0;
4832}
4833
4834/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4835 no more defined than that of SYM1. */
14f9c5c9
AS
4836
4837static int
d2e4a39e 4838lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4839{
4840 if (sym0 == sym1)
4841 return 1;
176620f1 4842 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4843 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4844 return 0;
4845
d2e4a39e 4846 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4847 {
4848 case LOC_UNDEF:
4849 return 1;
4850 case LOC_TYPEDEF:
4851 {
4c4b4cd2
PH
4852 struct type *type0 = SYMBOL_TYPE (sym0);
4853 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4854 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4855 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4856 int len0 = strlen (name0);
5b4ee69b 4857
4c4b4cd2
PH
4858 return
4859 TYPE_CODE (type0) == TYPE_CODE (type1)
4860 && (equiv_types (type0, type1)
4861 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4862 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4863 }
4864 case LOC_CONST:
4865 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4866 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4867 default:
4868 return 0;
14f9c5c9
AS
4869 }
4870}
4871
d12307c1 4872/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4873 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4874
4875static void
76a01679
JB
4876add_defn_to_vec (struct obstack *obstackp,
4877 struct symbol *sym,
f0c5f9b2 4878 const struct block *block)
14f9c5c9
AS
4879{
4880 int i;
d12307c1 4881 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4882
529cad9c
PH
4883 /* Do not try to complete stub types, as the debugger is probably
4884 already scanning all symbols matching a certain name at the
4885 time when this function is called. Trying to replace the stub
4886 type by its associated full type will cause us to restart a scan
4887 which may lead to an infinite recursion. Instead, the client
4888 collecting the matching symbols will end up collecting several
4889 matches, with at least one of them complete. It can then filter
4890 out the stub ones if needed. */
4891
4c4b4cd2
PH
4892 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4893 {
d12307c1 4894 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4895 return;
d12307c1 4896 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4897 {
d12307c1 4898 prevDefns[i].symbol = sym;
4c4b4cd2 4899 prevDefns[i].block = block;
4c4b4cd2 4900 return;
76a01679 4901 }
4c4b4cd2
PH
4902 }
4903
4904 {
d12307c1 4905 struct block_symbol info;
4c4b4cd2 4906
d12307c1 4907 info.symbol = sym;
4c4b4cd2 4908 info.block = block;
d12307c1 4909 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4910 }
4911}
4912
d12307c1
PMR
4913/* Number of block_symbol structures currently collected in current vector in
4914 OBSTACKP. */
4c4b4cd2 4915
76a01679
JB
4916static int
4917num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4918{
d12307c1 4919 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4920}
4921
d12307c1
PMR
4922/* Vector of block_symbol structures currently collected in current vector in
4923 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4924
d12307c1 4925static struct block_symbol *
4c4b4cd2
PH
4926defns_collected (struct obstack *obstackp, int finish)
4927{
4928 if (finish)
224c3ddb 4929 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4930 else
d12307c1 4931 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4932}
4933
7c7b6655
TT
4934/* Return a bound minimal symbol matching NAME according to Ada
4935 decoding rules. Returns an invalid symbol if there is no such
4936 minimal symbol. Names prefixed with "standard__" are handled
4937 specially: "standard__" is first stripped off, and only static and
4938 global symbols are searched. */
4c4b4cd2 4939
7c7b6655 4940struct bound_minimal_symbol
96d887e8 4941ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4942{
7c7b6655 4943 struct bound_minimal_symbol result;
4c4b4cd2 4944 struct objfile *objfile;
96d887e8 4945 struct minimal_symbol *msymbol;
4c4b4cd2 4946
7c7b6655
TT
4947 memset (&result, 0, sizeof (result));
4948
b5ec771e
PA
4949 symbol_name_match_type match_type = name_match_type_from_name (name);
4950 lookup_name_info lookup_name (name, match_type);
4951
4952 symbol_name_matcher_ftype *match_name
4953 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4954
96d887e8
PH
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
b5ec771e 4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
96d887e8 4964 }
4c4b4cd2 4965
7c7b6655 4966 return result;
96d887e8 4967}
4c4b4cd2 4968
96d887e8
PH
4969/* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4c4b4cd2 4974
96d887e8
PH
4975static void
4976add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4977 const lookup_name_info &lookup_name,
4978 domain_enum domain)
96d887e8 4979{
96d887e8 4980}
14f9c5c9 4981
96d887e8
PH
4982/* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
14f9c5c9 4984
96d887e8
PH
4985static int
4986is_nondebugging_type (struct type *type)
4987{
0d5cff50 4988 const char *name = ada_type_name (type);
5b4ee69b 4989
96d887e8
PH
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991}
4c4b4cd2 4992
8f17729f
JB
4993/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000static int
5001ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002{
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
0d5cff50
DE
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034}
5035
5036/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056static int
d12307c1 5057symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5058{
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
d12307c1 5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
d12307c1 5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5090 return 0;
5091
5092 return 1;
5093}
5094
96d887e8
PH
5095/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
4c4b4cd2 5101
96d887e8 5102static int
d12307c1 5103remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5104{
5105 int i, j;
4c4b4cd2 5106
8f17729f
JB
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
96d887e8
PH
5113 i = 0;
5114 while (i < nsyms)
5115 {
a35ddb44 5116 int remove_p = 0;
339c13b6
JB
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
d12307c1
PMR
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
d12307c1
PMR
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5131 remove_p = 1;
339c13b6
JB
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
d12307c1
PMR
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
d12307c1
PMR
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5152 remove_p = 1;
4c4b4cd2 5153 }
4c4b4cd2 5154 }
339c13b6 5155
a35ddb44 5156 if (remove_p)
339c13b6
JB
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
96d887e8 5163 i += 1;
14f9c5c9 5164 }
8f17729f
JB
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
96d887e8 5181 return nsyms;
14f9c5c9
AS
5182}
5183
96d887e8
PH
5184/* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5188
96d887e8
PH
5189static char *
5190xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5191{
96d887e8 5192 /* The renaming types adhere to the following convention:
0963b4bd 5193 <scope>__<rename>___<XR extension>.
96d887e8
PH
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
76a01679 5196
96d887e8 5197 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
96d887e8
PH
5200 int scope_len;
5201 char *scope;
14f9c5c9 5202
96d887e8
PH
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5205
96d887e8
PH
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
76a01679 5209
96d887e8 5210 /* Make a copy of scope and return it. */
14f9c5c9 5211
96d887e8
PH
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5214
96d887e8
PH
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
4c4b4cd2 5217
96d887e8 5218 return scope;
4c4b4cd2
PH
5219}
5220
96d887e8 5221/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5222
96d887e8
PH
5223static int
5224is_package_name (const char *name)
4c4b4cd2 5225{
96d887e8
PH
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
4c4b4cd2 5231
96d887e8 5232 char *fun_name;
76a01679 5233
96d887e8
PH
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
14f9c5c9 5238
96d887e8
PH
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
14f9c5c9 5241
96d887e8 5242 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5243 functions names cannot contain "__" in them. */
96d887e8
PH
5244 if (strstr (name, "__") != NULL)
5245 return 0;
4c4b4cd2 5246
b435e160 5247 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5248
96d887e8
PH
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250}
14f9c5c9 5251
96d887e8 5252/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5253 not visible from FUNCTION_NAME. */
14f9c5c9 5254
96d887e8 5255static int
0d5cff50 5256old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5257{
aeb5907d 5258 char *scope;
1509e573 5259 struct cleanup *old_chain;
aeb5907d
JB
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5265 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5266
96d887e8
PH
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
1509e573
JB
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
14f9c5c9 5273
96d887e8
PH
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
76a01679 5276
96d887e8
PH
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
61012eef 5281 if (startswith (function_name, "_ada_"))
96d887e8 5282 function_name += 5;
f26caa11 5283
1509e573 5284 {
61012eef 5285 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
f26caa11
PH
5290}
5291
aeb5907d
JB
5292/* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
96d887e8
PH
5297
5298 Rationale:
aeb5907d
JB
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
f26caa11 5311
96d887e8
PH
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
4c4b4cd2 5328
14f9c5c9 5329static int
d12307c1 5330remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5331 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5332{
5333 struct symbol *current_function;
0d5cff50 5334 const char *current_function_name;
4c4b4cd2 5335 int i;
aeb5907d
JB
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
0963b4bd 5340 First, zero out such symbols, then compress. */
aeb5907d
JB
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
d12307c1 5344 struct symbol *sym = syms[i].symbol;
270140bd 5345 const struct block *block = syms[i].block;
aeb5907d
JB
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5b4ee69b 5358
aeb5907d
JB
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5363 name_len) == 0
5364 && block == syms[j].block)
d12307c1 5365 syms[j].symbol = NULL;
aeb5907d
JB
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5373 if (syms[j].symbol != NULL)
aeb5907d
JB
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
4c4b4cd2
PH
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
76a01679 5383
4c4b4cd2
PH
5384 if (current_block == NULL)
5385 return nsyms;
76a01679 5386
7f0df278 5387 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
d12307c1 5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5403 == ADA_OBJECT_RENAMING
d12307c1 5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5405 {
5406 int j;
5b4ee69b 5407
aeb5907d 5408 for (j = i + 1; j < nsyms; j += 1)
76a01679 5409 syms[j - 1] = syms[j];
4c4b4cd2
PH
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417}
5418
339c13b6
JB
5419/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429static void
b5ec771e
PA
5430ada_add_local_symbols (struct obstack *obstackp,
5431 const lookup_name_info &lookup_name,
5432 const struct block *block, domain_enum domain)
339c13b6
JB
5433{
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
b5ec771e 5439 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5452 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5453}
5454
ccefe4c4 5455/* An object of this type is used as the user_data argument when
40658b94 5456 calling the map_matching_symbols method. */
ccefe4c4 5457
40658b94 5458struct match_data
ccefe4c4 5459{
40658b94 5460 struct objfile *objfile;
ccefe4c4 5461 struct obstack *obstackp;
40658b94
PH
5462 struct symbol *arg_sym;
5463 int found_sym;
ccefe4c4
TT
5464};
5465
22cee43f 5466/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
ccefe4c4 5474
40658b94
PH
5475static int
5476aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5477{
40658b94
PH
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504}
5505
b5ec771e
PA
5506/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5507 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5508 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5509
5510static int
5511ada_add_block_renamings (struct obstack *obstackp,
5512 const struct block *block,
b5ec771e
PA
5513 const lookup_name_info &lookup_name,
5514 domain_enum domain)
22cee43f
PMR
5515{
5516 struct using_direct *renaming;
5517 int defns_mark = num_defns_collected (obstackp);
5518
b5ec771e
PA
5519 symbol_name_matcher_ftype *name_match
5520 = ada_get_symbol_name_matcher (lookup_name);
5521
22cee43f
PMR
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
22cee43f
PMR
5527
5528 /* Avoid infinite recursions: skip this renaming if we are actually
5529 already traversing it.
5530
5531 Currently, symbol lookup in Ada don't use the namespace machinery from
5532 C++/Fortran support: skip namespace imports that use them. */
5533 if (renaming->searched
5534 || (renaming->import_src != NULL
5535 && renaming->import_src[0] != '\0')
5536 || (renaming->import_dest != NULL
5537 && renaming->import_dest[0] != '\0'))
5538 continue;
5539 renaming->searched = 1;
5540
5541 /* TODO: here, we perform another name-based symbol lookup, which can
5542 pull its own multiple overloads. In theory, we should be able to do
5543 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5544 not a simple name. But in order to do this, we would need to enhance
5545 the DWARF reader to associate a symbol to this renaming, instead of a
5546 name. So, for now, we do something simpler: re-use the C++/Fortran
5547 namespace machinery. */
5548 r_name = (renaming->alias != NULL
5549 ? renaming->alias
5550 : renaming->declaration);
b5ec771e
PA
5551 if (name_match (r_name, lookup_name, NULL))
5552 {
5553 lookup_name_info decl_lookup_name (renaming->declaration,
5554 lookup_name.match_type ());
5555 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5556 1, NULL);
5557 }
22cee43f
PMR
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561}
5562
db230ce3
JB
5563/* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5b4ee69b 5565
40658b94 5566static int
db230ce3
JB
5567compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
40658b94
PH
5569{
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
db230ce3
JB
5572 char c1, c2;
5573
40658b94
PH
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
40658b94 5588 break;
db230ce3 5589
40658b94
PH
5590 string1 += 1;
5591 string2 += 1;
5592 }
db230ce3 5593
40658b94
PH
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
052874e8 5601 if (is_name_suffix (string1))
40658b94
PH
5602 return 0;
5603 else
1a1d5513 5604 return 1;
40658b94 5605 }
dbb8534f 5606 /* FALLTHROUGH */
40658b94
PH
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
db230ce3
JB
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
40658b94 5617 }
ccefe4c4
TT
5618}
5619
db230ce3
JB
5620/* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631static int
5632compare_names (const char *string1, const char *string2)
5633{
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646}
5647
b5ec771e
PA
5648/* Convenience function to get at the Ada encoded lookup name for
5649 LOOKUP_NAME, as a C string. */
5650
5651static const char *
5652ada_lookup_name (const lookup_name_info &lookup_name)
5653{
5654 return lookup_name.ada ().lookup_name ().c_str ();
5655}
5656
339c13b6 5657/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5658 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5659 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5660 symbols otherwise. */
339c13b6
JB
5661
5662static void
b5ec771e
PA
5663add_nonlocal_symbols (struct obstack *obstackp,
5664 const lookup_name_info &lookup_name,
5665 domain_enum domain, int global)
339c13b6
JB
5666{
5667 struct objfile *objfile;
22cee43f 5668 struct compunit_symtab *cu;
40658b94 5669 struct match_data data;
339c13b6 5670
6475f2fe 5671 memset (&data, 0, sizeof data);
ccefe4c4 5672 data.obstackp = obstackp;
339c13b6 5673
b5ec771e
PA
5674 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5675
ccefe4c4 5676 ALL_OBJFILES (objfile)
40658b94
PH
5677 {
5678 data.objfile = objfile;
5679
5680 if (is_wild_match)
b5ec771e
PA
5681 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5682 domain, global,
4186eb54 5683 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5684 symbol_name_match_type::WILD,
5685 NULL);
40658b94 5686 else
b5ec771e
PA
5687 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5688 domain, global,
4186eb54 5689 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5690 symbol_name_match_type::FULL,
5691 compare_names);
22cee43f
PMR
5692
5693 ALL_OBJFILE_COMPUNITS (objfile, cu)
5694 {
5695 const struct block *global_block
5696 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5697
b5ec771e
PA
5698 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5699 domain))
22cee43f
PMR
5700 data.found_sym = 1;
5701 }
40658b94
PH
5702 }
5703
5704 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5705 {
b5ec771e
PA
5706 const char *name = ada_lookup_name (lookup_name);
5707 std::string name1 = std::string ("<_ada_") + name + '>';
5708
40658b94
PH
5709 ALL_OBJFILES (objfile)
5710 {
40658b94 5711 data.objfile = objfile;
b5ec771e
PA
5712 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5713 domain, global,
0963b4bd
MS
5714 aux_add_nonlocal_symbols,
5715 &data,
b5ec771e
PA
5716 symbol_name_match_type::FULL,
5717 compare_names);
40658b94
PH
5718 }
5719 }
339c13b6
JB
5720}
5721
b5ec771e
PA
5722/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5723 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5724 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5725
22cee43f
PMR
5726 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5727 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5728 is the one match returned (no other matches in that or
d9680e73 5729 enclosing blocks is returned). If there are any matches in or
22cee43f 5730 surrounding BLOCK, then these alone are returned.
4eeaa230 5731
b5ec771e
PA
5732 Names prefixed with "standard__" are handled specially:
5733 "standard__" is first stripped off (by the lookup_name
5734 constructor), and only static and global symbols are searched.
14f9c5c9 5735
22cee43f
PMR
5736 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5737 to lookup global symbols. */
5738
5739static void
5740ada_add_all_symbols (struct obstack *obstackp,
5741 const struct block *block,
b5ec771e 5742 const lookup_name_info &lookup_name,
22cee43f
PMR
5743 domain_enum domain,
5744 int full_search,
5745 int *made_global_lookup_p)
14f9c5c9
AS
5746{
5747 struct symbol *sym;
14f9c5c9 5748
22cee43f
PMR
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 0;
339c13b6
JB
5751
5752 /* Special case: If the user specifies a symbol name inside package
5753 Standard, do a non-wild matching of the symbol name without
5754 the "standard__" prefix. This was primarily introduced in order
5755 to allow the user to specifically access the standard exceptions
5756 using, for instance, Standard.Constraint_Error when Constraint_Error
5757 is ambiguous (due to the user defining its own Constraint_Error
5758 entity inside its program). */
b5ec771e
PA
5759 if (lookup_name.ada ().standard_p ())
5760 block = NULL;
4c4b4cd2 5761
339c13b6 5762 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5763
4eeaa230
DE
5764 if (block != NULL)
5765 {
5766 if (full_search)
b5ec771e 5767 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5768 else
5769 {
5770 /* In the !full_search case we're are being called by
5771 ada_iterate_over_symbols, and we don't want to search
5772 superblocks. */
b5ec771e 5773 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5774 }
22cee43f
PMR
5775 if (num_defns_collected (obstackp) > 0 || !full_search)
5776 return;
4eeaa230 5777 }
d2e4a39e 5778
339c13b6
JB
5779 /* No non-global symbols found. Check our cache to see if we have
5780 already performed this search before. If we have, then return
5781 the same result. */
5782
b5ec771e
PA
5783 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5784 domain, &sym, &block))
4c4b4cd2
PH
5785 {
5786 if (sym != NULL)
b5ec771e 5787 add_defn_to_vec (obstackp, sym, block);
22cee43f 5788 return;
4c4b4cd2 5789 }
14f9c5c9 5790
22cee43f
PMR
5791 if (made_global_lookup_p)
5792 *made_global_lookup_p = 1;
b1eedac9 5793
339c13b6
JB
5794 /* Search symbols from all global blocks. */
5795
b5ec771e 5796 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5797
4c4b4cd2 5798 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5799 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5800
22cee43f 5801 if (num_defns_collected (obstackp) == 0)
b5ec771e 5802 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5803}
5804
b5ec771e
PA
5805/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5806 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5807 matches.
ec6a20c2 5808 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5809 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5810 any) in which they were found. This vector should be freed when
5811 no longer useful.
22cee43f
PMR
5812
5813 When full_search is non-zero, any non-function/non-enumeral
5814 symbol match within the nest of blocks whose innermost member is BLOCK,
5815 is the one match returned (no other matches in that or
5816 enclosing blocks is returned). If there are any matches in or
5817 surrounding BLOCK, then these alone are returned.
5818
5819 Names prefixed with "standard__" are handled specially: "standard__"
5820 is first stripped off, and only static and global symbols are searched. */
5821
5822static int
b5ec771e
PA
5823ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5824 const struct block *block,
22cee43f
PMR
5825 domain_enum domain,
5826 struct block_symbol **results,
5827 int full_search)
5828{
22cee43f
PMR
5829 int syms_from_global_search;
5830 int ndefns;
ec6a20c2
JB
5831 int results_size;
5832 auto_obstack obstack;
22cee43f 5833
ec6a20c2 5834 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5835 domain, full_search, &syms_from_global_search);
14f9c5c9 5836
ec6a20c2
JB
5837 ndefns = num_defns_collected (&obstack);
5838
5839 results_size = obstack_object_size (&obstack);
5840 *results = (struct block_symbol *) malloc (results_size);
5841 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5842
5843 ndefns = remove_extra_symbols (*results, ndefns);
5844
b1eedac9 5845 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5846 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5847
b1eedac9 5848 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5849 cache_symbol (ada_lookup_name (lookup_name), domain,
5850 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5851
22cee43f 5852 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5853
14f9c5c9
AS
5854 return ndefns;
5855}
5856
b5ec771e 5857/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5858 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5859 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5860 vector should be freed when no longer useful.
5861
4eeaa230
DE
5862 See ada_lookup_symbol_list_worker for further details. */
5863
5864int
b5ec771e 5865ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5866 domain_enum domain, struct block_symbol **results)
4eeaa230 5867{
b5ec771e
PA
5868 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5869 lookup_name_info lookup_name (name, name_match_type);
5870
5871 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5872}
5873
5874/* Implementation of the la_iterate_over_symbols method. */
5875
5876static void
14bc53a8 5877ada_iterate_over_symbols
b5ec771e
PA
5878 (const struct block *block, const lookup_name_info &name,
5879 domain_enum domain,
14bc53a8 5880 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5881{
5882 int ndefs, i;
d12307c1 5883 struct block_symbol *results;
ec6a20c2 5884 struct cleanup *old_chain;
4eeaa230
DE
5885
5886 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5887 old_chain = make_cleanup (xfree, results);
5888
4eeaa230
DE
5889 for (i = 0; i < ndefs; ++i)
5890 {
14bc53a8 5891 if (!callback (results[i].symbol))
4eeaa230
DE
5892 break;
5893 }
ec6a20c2
JB
5894
5895 do_cleanups (old_chain);
4eeaa230
DE
5896}
5897
4e5c77fe
JB
5898/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5899 to 1, but choosing the first symbol found if there are multiple
5900 choices.
5901
5e2336be
JB
5902 The result is stored in *INFO, which must be non-NULL.
5903 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5904
5905void
5906ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5907 domain_enum domain,
d12307c1 5908 struct block_symbol *info)
14f9c5c9 5909{
d12307c1 5910 struct block_symbol *candidates;
14f9c5c9 5911 int n_candidates;
ec6a20c2 5912 struct cleanup *old_chain;
14f9c5c9 5913
b5ec771e
PA
5914 /* Since we already have an encoded name, wrap it in '<>' to force a
5915 verbatim match. Otherwise, if the name happens to not look like
5916 an encoded name (because it doesn't include a "__"),
5917 ada_lookup_name_info would re-encode/fold it again, and that
5918 would e.g., incorrectly lowercase object renaming names like
5919 "R28b" -> "r28b". */
5920 std::string verbatim = std::string ("<") + name + '>';
5921
5e2336be 5922 gdb_assert (info != NULL);
d12307c1 5923 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5924
b5ec771e
PA
5925 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5926 domain, &candidates);
ec6a20c2
JB
5927 old_chain = make_cleanup (xfree, candidates);
5928
14f9c5c9 5929 if (n_candidates == 0)
ec6a20c2
JB
5930 {
5931 do_cleanups (old_chain);
5932 return;
5933 }
4c4b4cd2 5934
5e2336be 5935 *info = candidates[0];
d12307c1 5936 info->symbol = fixup_symbol_section (info->symbol, NULL);
ec6a20c2
JB
5937
5938 do_cleanups (old_chain);
4e5c77fe 5939}
aeb5907d
JB
5940
5941/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5942 scope and in global scopes, or NULL if none. NAME is folded and
5943 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5944 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5945 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5946
d12307c1 5947struct block_symbol
aeb5907d 5948ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5949 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5950{
d12307c1 5951 struct block_symbol info;
4e5c77fe 5952
aeb5907d
JB
5953 if (is_a_field_of_this != NULL)
5954 *is_a_field_of_this = 0;
5955
4e5c77fe 5956 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5957 block0, domain, &info);
d12307c1 5958 return info;
4c4b4cd2 5959}
14f9c5c9 5960
d12307c1 5961static struct block_symbol
f606139a
DE
5962ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5963 const char *name,
76a01679 5964 const struct block *block,
21b556f4 5965 const domain_enum domain)
4c4b4cd2 5966{
d12307c1 5967 struct block_symbol sym;
04dccad0
JB
5968
5969 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5970 if (sym.symbol != NULL)
04dccad0
JB
5971 return sym;
5972
5973 /* If we haven't found a match at this point, try the primitive
5974 types. In other languages, this search is performed before
5975 searching for global symbols in order to short-circuit that
5976 global-symbol search if it happens that the name corresponds
5977 to a primitive type. But we cannot do the same in Ada, because
5978 it is perfectly legitimate for a program to declare a type which
5979 has the same name as a standard type. If looking up a type in
5980 that situation, we have traditionally ignored the primitive type
5981 in favor of user-defined types. This is why, unlike most other
5982 languages, we search the primitive types this late and only after
5983 having searched the global symbols without success. */
5984
5985 if (domain == VAR_DOMAIN)
5986 {
5987 struct gdbarch *gdbarch;
5988
5989 if (block == NULL)
5990 gdbarch = target_gdbarch ();
5991 else
5992 gdbarch = block_gdbarch (block);
d12307c1
PMR
5993 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5994 if (sym.symbol != NULL)
04dccad0
JB
5995 return sym;
5996 }
5997
d12307c1 5998 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5999}
6000
6001
4c4b4cd2
PH
6002/* True iff STR is a possible encoded suffix of a normal Ada name
6003 that is to be ignored for matching purposes. Suffixes of parallel
6004 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 6005 are given by any of the regular expressions:
4c4b4cd2 6006
babe1480
JB
6007 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6008 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 6009 TKB [subprogram suffix for task bodies]
babe1480 6010 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 6011 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
6012
6013 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6014 match is performed. This sequence is used to differentiate homonyms,
6015 is an optional part of a valid name suffix. */
4c4b4cd2 6016
14f9c5c9 6017static int
d2e4a39e 6018is_name_suffix (const char *str)
14f9c5c9
AS
6019{
6020 int k;
4c4b4cd2
PH
6021 const char *matching;
6022 const int len = strlen (str);
6023
babe1480
JB
6024 /* Skip optional leading __[0-9]+. */
6025
4c4b4cd2
PH
6026 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6027 {
babe1480
JB
6028 str += 3;
6029 while (isdigit (str[0]))
6030 str += 1;
4c4b4cd2 6031 }
babe1480
JB
6032
6033 /* [.$][0-9]+ */
4c4b4cd2 6034
babe1480 6035 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6036 {
babe1480 6037 matching = str + 1;
4c4b4cd2
PH
6038 while (isdigit (matching[0]))
6039 matching += 1;
6040 if (matching[0] == '\0')
6041 return 1;
6042 }
6043
6044 /* ___[0-9]+ */
babe1480 6045
4c4b4cd2
PH
6046 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6047 {
6048 matching = str + 3;
6049 while (isdigit (matching[0]))
6050 matching += 1;
6051 if (matching[0] == '\0')
6052 return 1;
6053 }
6054
9ac7f98e
JB
6055 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6056
6057 if (strcmp (str, "TKB") == 0)
6058 return 1;
6059
529cad9c
PH
6060#if 0
6061 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6062 with a N at the end. Unfortunately, the compiler uses the same
6063 convention for other internal types it creates. So treating
529cad9c 6064 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6065 some regressions. For instance, consider the case of an enumerated
6066 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6067 name ends with N.
6068 Having a single character like this as a suffix carrying some
0963b4bd 6069 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6070 to be something like "_N" instead. In the meantime, do not do
6071 the following check. */
6072 /* Protected Object Subprograms */
6073 if (len == 1 && str [0] == 'N')
6074 return 1;
6075#endif
6076
6077 /* _E[0-9]+[bs]$ */
6078 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6079 {
6080 matching = str + 3;
6081 while (isdigit (matching[0]))
6082 matching += 1;
6083 if ((matching[0] == 'b' || matching[0] == 's')
6084 && matching [1] == '\0')
6085 return 1;
6086 }
6087
4c4b4cd2
PH
6088 /* ??? We should not modify STR directly, as we are doing below. This
6089 is fine in this case, but may become problematic later if we find
6090 that this alternative did not work, and want to try matching
6091 another one from the begining of STR. Since we modified it, we
6092 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6093 if (str[0] == 'X')
6094 {
6095 str += 1;
d2e4a39e 6096 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6097 {
6098 if (str[0] != 'n' && str[0] != 'b')
6099 return 0;
6100 str += 1;
6101 }
14f9c5c9 6102 }
babe1480 6103
14f9c5c9
AS
6104 if (str[0] == '\000')
6105 return 1;
babe1480 6106
d2e4a39e 6107 if (str[0] == '_')
14f9c5c9
AS
6108 {
6109 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6110 return 0;
d2e4a39e 6111 if (str[2] == '_')
4c4b4cd2 6112 {
61ee279c
PH
6113 if (strcmp (str + 3, "JM") == 0)
6114 return 1;
6115 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6116 the LJM suffix in favor of the JM one. But we will
6117 still accept LJM as a valid suffix for a reasonable
6118 amount of time, just to allow ourselves to debug programs
6119 compiled using an older version of GNAT. */
4c4b4cd2
PH
6120 if (strcmp (str + 3, "LJM") == 0)
6121 return 1;
6122 if (str[3] != 'X')
6123 return 0;
1265e4aa
JB
6124 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6125 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6126 return 1;
6127 if (str[4] == 'R' && str[5] != 'T')
6128 return 1;
6129 return 0;
6130 }
6131 if (!isdigit (str[2]))
6132 return 0;
6133 for (k = 3; str[k] != '\0'; k += 1)
6134 if (!isdigit (str[k]) && str[k] != '_')
6135 return 0;
14f9c5c9
AS
6136 return 1;
6137 }
4c4b4cd2 6138 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6139 {
4c4b4cd2
PH
6140 for (k = 2; str[k] != '\0'; k += 1)
6141 if (!isdigit (str[k]) && str[k] != '_')
6142 return 0;
14f9c5c9
AS
6143 return 1;
6144 }
6145 return 0;
6146}
d2e4a39e 6147
aeb5907d
JB
6148/* Return non-zero if the string starting at NAME and ending before
6149 NAME_END contains no capital letters. */
529cad9c
PH
6150
6151static int
6152is_valid_name_for_wild_match (const char *name0)
6153{
6154 const char *decoded_name = ada_decode (name0);
6155 int i;
6156
5823c3ef
JB
6157 /* If the decoded name starts with an angle bracket, it means that
6158 NAME0 does not follow the GNAT encoding format. It should then
6159 not be allowed as a possible wild match. */
6160 if (decoded_name[0] == '<')
6161 return 0;
6162
529cad9c
PH
6163 for (i=0; decoded_name[i] != '\0'; i++)
6164 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6165 return 0;
6166
6167 return 1;
6168}
6169
73589123
PH
6170/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6171 that could start a simple name. Assumes that *NAMEP points into
6172 the string beginning at NAME0. */
4c4b4cd2 6173
14f9c5c9 6174static int
73589123 6175advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6176{
73589123 6177 const char *name = *namep;
5b4ee69b 6178
5823c3ef 6179 while (1)
14f9c5c9 6180 {
aa27d0b3 6181 int t0, t1;
73589123
PH
6182
6183 t0 = *name;
6184 if (t0 == '_')
6185 {
6186 t1 = name[1];
6187 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6188 {
6189 name += 1;
61012eef 6190 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6191 break;
6192 else
6193 name += 1;
6194 }
aa27d0b3
JB
6195 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6196 || name[2] == target0))
73589123
PH
6197 {
6198 name += 2;
6199 break;
6200 }
6201 else
6202 return 0;
6203 }
6204 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6205 name += 1;
6206 else
5823c3ef 6207 return 0;
73589123
PH
6208 }
6209
6210 *namep = name;
6211 return 1;
6212}
6213
b5ec771e
PA
6214/* Return true iff NAME encodes a name of the form prefix.PATN.
6215 Ignores any informational suffixes of NAME (i.e., for which
6216 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6217 simple name. */
73589123 6218
b5ec771e 6219static bool
73589123
PH
6220wild_match (const char *name, const char *patn)
6221{
22e048c9 6222 const char *p;
73589123
PH
6223 const char *name0 = name;
6224
6225 while (1)
6226 {
6227 const char *match = name;
6228
6229 if (*name == *patn)
6230 {
6231 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6232 if (*p != *name)
6233 break;
6234 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6235 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6236
6237 if (name[-1] == '_')
6238 name -= 1;
6239 }
6240 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6241 return false;
96d887e8 6242 }
96d887e8
PH
6243}
6244
b5ec771e
PA
6245/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6246 any trailing suffixes that encode debugging information or leading
6247 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6248 information that is ignored). */
40658b94 6249
b5ec771e 6250static bool
c4d840bd
PH
6251full_match (const char *sym_name, const char *search_name)
6252{
b5ec771e
PA
6253 size_t search_name_len = strlen (search_name);
6254
6255 if (strncmp (sym_name, search_name, search_name_len) == 0
6256 && is_name_suffix (sym_name + search_name_len))
6257 return true;
6258
6259 if (startswith (sym_name, "_ada_")
6260 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6261 && is_name_suffix (sym_name + search_name_len + 5))
6262 return true;
c4d840bd 6263
b5ec771e
PA
6264 return false;
6265}
c4d840bd 6266
b5ec771e
PA
6267/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6268 *defn_symbols, updating the list of symbols in OBSTACKP (if
6269 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6270
6271static void
6272ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6273 const struct block *block,
6274 const lookup_name_info &lookup_name,
6275 domain_enum domain, struct objfile *objfile)
96d887e8 6276{
8157b174 6277 struct block_iterator iter;
96d887e8
PH
6278 /* A matching argument symbol, if any. */
6279 struct symbol *arg_sym;
6280 /* Set true when we find a matching non-argument symbol. */
6281 int found_sym;
6282 struct symbol *sym;
6283
6284 arg_sym = NULL;
6285 found_sym = 0;
b5ec771e
PA
6286 for (sym = block_iter_match_first (block, lookup_name, &iter);
6287 sym != NULL;
6288 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6289 {
b5ec771e
PA
6290 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6291 SYMBOL_DOMAIN (sym), domain))
6292 {
6293 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6294 {
6295 if (SYMBOL_IS_ARGUMENT (sym))
6296 arg_sym = sym;
6297 else
6298 {
6299 found_sym = 1;
6300 add_defn_to_vec (obstackp,
6301 fixup_symbol_section (sym, objfile),
6302 block);
6303 }
6304 }
6305 }
96d887e8
PH
6306 }
6307
22cee43f
PMR
6308 /* Handle renamings. */
6309
b5ec771e 6310 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6311 found_sym = 1;
6312
96d887e8
PH
6313 if (!found_sym && arg_sym != NULL)
6314 {
76a01679
JB
6315 add_defn_to_vec (obstackp,
6316 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6317 block);
96d887e8
PH
6318 }
6319
b5ec771e 6320 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6321 {
6322 arg_sym = NULL;
6323 found_sym = 0;
b5ec771e
PA
6324 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6325 const char *name = ada_lookup_name.c_str ();
6326 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6327
6328 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6329 {
4186eb54
KS
6330 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6331 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6332 {
6333 int cmp;
6334
6335 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6336 if (cmp == 0)
6337 {
61012eef 6338 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6339 if (cmp == 0)
6340 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6341 name_len);
6342 }
6343
6344 if (cmp == 0
6345 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6346 {
2a2d4dc3
AS
6347 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6348 {
6349 if (SYMBOL_IS_ARGUMENT (sym))
6350 arg_sym = sym;
6351 else
6352 {
6353 found_sym = 1;
6354 add_defn_to_vec (obstackp,
6355 fixup_symbol_section (sym, objfile),
6356 block);
6357 }
6358 }
76a01679
JB
6359 }
6360 }
76a01679 6361 }
96d887e8
PH
6362
6363 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6364 They aren't parameters, right? */
6365 if (!found_sym && arg_sym != NULL)
6366 {
6367 add_defn_to_vec (obstackp,
76a01679 6368 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6369 block);
96d887e8
PH
6370 }
6371 }
6372}
6373\f
41d27058
JB
6374
6375 /* Symbol Completion */
6376
b5ec771e 6377/* See symtab.h. */
41d27058 6378
b5ec771e
PA
6379bool
6380ada_lookup_name_info::matches
6381 (const char *sym_name,
6382 symbol_name_match_type match_type,
a207cff2 6383 completion_match_result *comp_match_res) const
41d27058 6384{
b5ec771e
PA
6385 bool match = false;
6386 const char *text = m_encoded_name.c_str ();
6387 size_t text_len = m_encoded_name.size ();
41d27058
JB
6388
6389 /* First, test against the fully qualified name of the symbol. */
6390
6391 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6392 match = true;
41d27058 6393
b5ec771e 6394 if (match && !m_encoded_p)
41d27058
JB
6395 {
6396 /* One needed check before declaring a positive match is to verify
6397 that iff we are doing a verbatim match, the decoded version
6398 of the symbol name starts with '<'. Otherwise, this symbol name
6399 is not a suitable completion. */
6400 const char *sym_name_copy = sym_name;
b5ec771e 6401 bool has_angle_bracket;
41d27058
JB
6402
6403 sym_name = ada_decode (sym_name);
6404 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6405 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6406 sym_name = sym_name_copy;
6407 }
6408
b5ec771e 6409 if (match && !m_verbatim_p)
41d27058
JB
6410 {
6411 /* When doing non-verbatim match, another check that needs to
6412 be done is to verify that the potentially matching symbol name
6413 does not include capital letters, because the ada-mode would
6414 not be able to understand these symbol names without the
6415 angle bracket notation. */
6416 const char *tmp;
6417
6418 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6419 if (*tmp != '\0')
b5ec771e 6420 match = false;
41d27058
JB
6421 }
6422
6423 /* Second: Try wild matching... */
6424
b5ec771e 6425 if (!match && m_wild_match_p)
41d27058
JB
6426 {
6427 /* Since we are doing wild matching, this means that TEXT
6428 may represent an unqualified symbol name. We therefore must
6429 also compare TEXT against the unqualified name of the symbol. */
6430 sym_name = ada_unqualified_name (ada_decode (sym_name));
6431
6432 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6433 match = true;
41d27058
JB
6434 }
6435
b5ec771e 6436 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6437
6438 if (!match)
b5ec771e 6439 return false;
41d27058 6440
a207cff2 6441 if (comp_match_res != NULL)
b5ec771e 6442 {
a207cff2 6443 std::string &match_str = comp_match_res->match.storage ();
41d27058 6444
b5ec771e 6445 if (!m_encoded_p)
a207cff2 6446 match_str = ada_decode (sym_name);
b5ec771e
PA
6447 else
6448 {
6449 if (m_verbatim_p)
6450 match_str = add_angle_brackets (sym_name);
6451 else
6452 match_str = sym_name;
41d27058 6453
b5ec771e 6454 }
a207cff2
PA
6455
6456 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6457 }
6458
b5ec771e 6459 return true;
41d27058
JB
6460}
6461
b5ec771e 6462/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6463 WORD is the entire command on which completion is made. */
41d27058 6464
eb3ff9a5
PA
6465static void
6466ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6467 complete_symbol_mode mode,
b5ec771e
PA
6468 symbol_name_match_type name_match_type,
6469 const char *text, const char *word,
eb3ff9a5 6470 enum type_code code)
41d27058 6471{
41d27058 6472 struct symbol *sym;
43f3e411 6473 struct compunit_symtab *s;
41d27058
JB
6474 struct minimal_symbol *msymbol;
6475 struct objfile *objfile;
3977b71f 6476 const struct block *b, *surrounding_static_block = 0;
8157b174 6477 struct block_iterator iter;
b8fea896 6478 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6479
2f68a895
TT
6480 gdb_assert (code == TYPE_CODE_UNDEF);
6481
1b026119 6482 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6483
6484 /* First, look at the partial symtab symbols. */
14bc53a8 6485 expand_symtabs_matching (NULL,
b5ec771e
PA
6486 lookup_name,
6487 NULL,
14bc53a8
PA
6488 NULL,
6489 ALL_DOMAIN);
41d27058
JB
6490
6491 /* At this point scan through the misc symbol vectors and add each
6492 symbol you find to the list. Eventually we want to ignore
6493 anything that isn't a text symbol (everything else will be
6494 handled by the psymtab code above). */
6495
6496 ALL_MSYMBOLS (objfile, msymbol)
6497 {
6498 QUIT;
b5ec771e 6499
f9d67a22
PA
6500 if (completion_skip_symbol (mode, msymbol))
6501 continue;
6502
b5ec771e
PA
6503 completion_list_add_name (tracker,
6504 MSYMBOL_LANGUAGE (msymbol),
6505 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6506 lookup_name, text, word);
41d27058
JB
6507 }
6508
6509 /* Search upwards from currently selected frame (so that we can
6510 complete on local vars. */
6511
6512 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6513 {
6514 if (!BLOCK_SUPERBLOCK (b))
6515 surrounding_static_block = b; /* For elmin of dups */
6516
6517 ALL_BLOCK_SYMBOLS (b, iter, sym)
6518 {
f9d67a22
PA
6519 if (completion_skip_symbol (mode, sym))
6520 continue;
6521
b5ec771e
PA
6522 completion_list_add_name (tracker,
6523 SYMBOL_LANGUAGE (sym),
6524 SYMBOL_LINKAGE_NAME (sym),
1b026119 6525 lookup_name, text, word);
41d27058
JB
6526 }
6527 }
6528
6529 /* Go through the symtabs and check the externs and statics for
43f3e411 6530 symbols which match. */
41d27058 6531
43f3e411 6532 ALL_COMPUNITS (objfile, s)
41d27058
JB
6533 {
6534 QUIT;
43f3e411 6535 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6536 ALL_BLOCK_SYMBOLS (b, iter, sym)
6537 {
f9d67a22
PA
6538 if (completion_skip_symbol (mode, sym))
6539 continue;
6540
b5ec771e
PA
6541 completion_list_add_name (tracker,
6542 SYMBOL_LANGUAGE (sym),
6543 SYMBOL_LINKAGE_NAME (sym),
1b026119 6544 lookup_name, text, word);
41d27058
JB
6545 }
6546 }
6547
43f3e411 6548 ALL_COMPUNITS (objfile, s)
41d27058
JB
6549 {
6550 QUIT;
43f3e411 6551 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6552 /* Don't do this block twice. */
6553 if (b == surrounding_static_block)
6554 continue;
6555 ALL_BLOCK_SYMBOLS (b, iter, sym)
6556 {
f9d67a22
PA
6557 if (completion_skip_symbol (mode, sym))
6558 continue;
6559
b5ec771e
PA
6560 completion_list_add_name (tracker,
6561 SYMBOL_LANGUAGE (sym),
6562 SYMBOL_LINKAGE_NAME (sym),
1b026119 6563 lookup_name, text, word);
41d27058
JB
6564 }
6565 }
6566
b8fea896 6567 do_cleanups (old_chain);
41d27058
JB
6568}
6569
963a6417 6570 /* Field Access */
96d887e8 6571
73fb9985
JB
6572/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6573 for tagged types. */
6574
6575static int
6576ada_is_dispatch_table_ptr_type (struct type *type)
6577{
0d5cff50 6578 const char *name;
73fb9985
JB
6579
6580 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6581 return 0;
6582
6583 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6584 if (name == NULL)
6585 return 0;
6586
6587 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6588}
6589
ac4a2da4
JG
6590/* Return non-zero if TYPE is an interface tag. */
6591
6592static int
6593ada_is_interface_tag (struct type *type)
6594{
6595 const char *name = TYPE_NAME (type);
6596
6597 if (name == NULL)
6598 return 0;
6599
6600 return (strcmp (name, "ada__tags__interface_tag") == 0);
6601}
6602
963a6417
PH
6603/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6604 to be invisible to users. */
96d887e8 6605
963a6417
PH
6606int
6607ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6608{
963a6417
PH
6609 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6610 return 1;
ffde82bf 6611
73fb9985
JB
6612 /* Check the name of that field. */
6613 {
6614 const char *name = TYPE_FIELD_NAME (type, field_num);
6615
6616 /* Anonymous field names should not be printed.
6617 brobecker/2007-02-20: I don't think this can actually happen
6618 but we don't want to print the value of annonymous fields anyway. */
6619 if (name == NULL)
6620 return 1;
6621
ffde82bf
JB
6622 /* Normally, fields whose name start with an underscore ("_")
6623 are fields that have been internally generated by the compiler,
6624 and thus should not be printed. The "_parent" field is special,
6625 however: This is a field internally generated by the compiler
6626 for tagged types, and it contains the components inherited from
6627 the parent type. This field should not be printed as is, but
6628 should not be ignored either. */
61012eef 6629 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6630 return 1;
6631 }
6632
ac4a2da4
JG
6633 /* If this is the dispatch table of a tagged type or an interface tag,
6634 then ignore. */
73fb9985 6635 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6636 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6637 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6638 return 1;
6639
6640 /* Not a special field, so it should not be ignored. */
6641 return 0;
963a6417 6642}
96d887e8 6643
963a6417 6644/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6645 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6646
963a6417
PH
6647int
6648ada_is_tagged_type (struct type *type, int refok)
6649{
988f6b3d 6650 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6651}
96d887e8 6652
963a6417 6653/* True iff TYPE represents the type of X'Tag */
96d887e8 6654
963a6417
PH
6655int
6656ada_is_tag_type (struct type *type)
6657{
460efde1
JB
6658 type = ada_check_typedef (type);
6659
963a6417
PH
6660 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6661 return 0;
6662 else
96d887e8 6663 {
963a6417 6664 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6665
963a6417
PH
6666 return (name != NULL
6667 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6668 }
96d887e8
PH
6669}
6670
963a6417 6671/* The type of the tag on VAL. */
76a01679 6672
963a6417
PH
6673struct type *
6674ada_tag_type (struct value *val)
96d887e8 6675{
988f6b3d 6676 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6677}
96d887e8 6678
b50d69b5
JG
6679/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6680 retired at Ada 05). */
6681
6682static int
6683is_ada95_tag (struct value *tag)
6684{
6685 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6686}
6687
963a6417 6688/* The value of the tag on VAL. */
96d887e8 6689
963a6417
PH
6690struct value *
6691ada_value_tag (struct value *val)
6692{
03ee6b2e 6693 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6694}
6695
963a6417
PH
6696/* The value of the tag on the object of type TYPE whose contents are
6697 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6698 ADDRESS. */
96d887e8 6699
963a6417 6700static struct value *
10a2c479 6701value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6702 const gdb_byte *valaddr,
963a6417 6703 CORE_ADDR address)
96d887e8 6704{
b5385fc0 6705 int tag_byte_offset;
963a6417 6706 struct type *tag_type;
5b4ee69b 6707
963a6417 6708 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6709 NULL, NULL, NULL))
96d887e8 6710 {
fc1a4b47 6711 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6712 ? NULL
6713 : valaddr + tag_byte_offset);
963a6417 6714 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6715
963a6417 6716 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6717 }
963a6417
PH
6718 return NULL;
6719}
96d887e8 6720
963a6417
PH
6721static struct type *
6722type_from_tag (struct value *tag)
6723{
6724 const char *type_name = ada_tag_name (tag);
5b4ee69b 6725
963a6417
PH
6726 if (type_name != NULL)
6727 return ada_find_any_type (ada_encode (type_name));
6728 return NULL;
6729}
96d887e8 6730
b50d69b5
JG
6731/* Given a value OBJ of a tagged type, return a value of this
6732 type at the base address of the object. The base address, as
6733 defined in Ada.Tags, it is the address of the primary tag of
6734 the object, and therefore where the field values of its full
6735 view can be fetched. */
6736
6737struct value *
6738ada_tag_value_at_base_address (struct value *obj)
6739{
b50d69b5
JG
6740 struct value *val;
6741 LONGEST offset_to_top = 0;
6742 struct type *ptr_type, *obj_type;
6743 struct value *tag;
6744 CORE_ADDR base_address;
6745
6746 obj_type = value_type (obj);
6747
6748 /* It is the responsability of the caller to deref pointers. */
6749
6750 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6751 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6752 return obj;
6753
6754 tag = ada_value_tag (obj);
6755 if (!tag)
6756 return obj;
6757
6758 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6759
6760 if (is_ada95_tag (tag))
6761 return obj;
6762
08f49010
XR
6763 ptr_type = language_lookup_primitive_type
6764 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6765 ptr_type = lookup_pointer_type (ptr_type);
6766 val = value_cast (ptr_type, tag);
6767 if (!val)
6768 return obj;
6769
6770 /* It is perfectly possible that an exception be raised while
6771 trying to determine the base address, just like for the tag;
6772 see ada_tag_name for more details. We do not print the error
6773 message for the same reason. */
6774
492d29ea 6775 TRY
b50d69b5
JG
6776 {
6777 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6778 }
6779
492d29ea
PA
6780 CATCH (e, RETURN_MASK_ERROR)
6781 {
6782 return obj;
6783 }
6784 END_CATCH
b50d69b5
JG
6785
6786 /* If offset is null, nothing to do. */
6787
6788 if (offset_to_top == 0)
6789 return obj;
6790
6791 /* -1 is a special case in Ada.Tags; however, what should be done
6792 is not quite clear from the documentation. So do nothing for
6793 now. */
6794
6795 if (offset_to_top == -1)
6796 return obj;
6797
08f49010
XR
6798 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6799 from the base address. This was however incompatible with
6800 C++ dispatch table: C++ uses a *negative* value to *add*
6801 to the base address. Ada's convention has therefore been
6802 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6803 use the same convention. Here, we support both cases by
6804 checking the sign of OFFSET_TO_TOP. */
6805
6806 if (offset_to_top > 0)
6807 offset_to_top = -offset_to_top;
6808
6809 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6810 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6811
6812 /* Make sure that we have a proper tag at the new address.
6813 Otherwise, offset_to_top is bogus (which can happen when
6814 the object is not initialized yet). */
6815
6816 if (!tag)
6817 return obj;
6818
6819 obj_type = type_from_tag (tag);
6820
6821 if (!obj_type)
6822 return obj;
6823
6824 return value_from_contents_and_address (obj_type, NULL, base_address);
6825}
6826
1b611343
JB
6827/* Return the "ada__tags__type_specific_data" type. */
6828
6829static struct type *
6830ada_get_tsd_type (struct inferior *inf)
963a6417 6831{
1b611343 6832 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6833
1b611343
JB
6834 if (data->tsd_type == 0)
6835 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6836 return data->tsd_type;
6837}
529cad9c 6838
1b611343
JB
6839/* Return the TSD (type-specific data) associated to the given TAG.
6840 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6841
1b611343 6842 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6843
1b611343
JB
6844static struct value *
6845ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6846{
4c4b4cd2 6847 struct value *val;
1b611343 6848 struct type *type;
5b4ee69b 6849
1b611343
JB
6850 /* First option: The TSD is simply stored as a field of our TAG.
6851 Only older versions of GNAT would use this format, but we have
6852 to test it first, because there are no visible markers for
6853 the current approach except the absence of that field. */
529cad9c 6854
1b611343
JB
6855 val = ada_value_struct_elt (tag, "tsd", 1);
6856 if (val)
6857 return val;
e802dbe0 6858
1b611343
JB
6859 /* Try the second representation for the dispatch table (in which
6860 there is no explicit 'tsd' field in the referent of the tag pointer,
6861 and instead the tsd pointer is stored just before the dispatch
6862 table. */
e802dbe0 6863
1b611343
JB
6864 type = ada_get_tsd_type (current_inferior());
6865 if (type == NULL)
6866 return NULL;
6867 type = lookup_pointer_type (lookup_pointer_type (type));
6868 val = value_cast (type, tag);
6869 if (val == NULL)
6870 return NULL;
6871 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6872}
6873
1b611343
JB
6874/* Given the TSD of a tag (type-specific data), return a string
6875 containing the name of the associated type.
6876
6877 The returned value is good until the next call. May return NULL
6878 if we are unable to determine the tag name. */
6879
6880static char *
6881ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6882{
529cad9c
PH
6883 static char name[1024];
6884 char *p;
1b611343 6885 struct value *val;
529cad9c 6886
1b611343 6887 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6888 if (val == NULL)
1b611343 6889 return NULL;
4c4b4cd2
PH
6890 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6891 for (p = name; *p != '\0'; p += 1)
6892 if (isalpha (*p))
6893 *p = tolower (*p);
1b611343 6894 return name;
4c4b4cd2
PH
6895}
6896
6897/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6898 a C string.
6899
6900 Return NULL if the TAG is not an Ada tag, or if we were unable to
6901 determine the name of that tag. The result is good until the next
6902 call. */
4c4b4cd2
PH
6903
6904const char *
6905ada_tag_name (struct value *tag)
6906{
1b611343 6907 char *name = NULL;
5b4ee69b 6908
df407dfe 6909 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6910 return NULL;
1b611343
JB
6911
6912 /* It is perfectly possible that an exception be raised while trying
6913 to determine the TAG's name, even under normal circumstances:
6914 The associated variable may be uninitialized or corrupted, for
6915 instance. We do not let any exception propagate past this point.
6916 instead we return NULL.
6917
6918 We also do not print the error message either (which often is very
6919 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6920 the caller print a more meaningful message if necessary. */
492d29ea 6921 TRY
1b611343
JB
6922 {
6923 struct value *tsd = ada_get_tsd_from_tag (tag);
6924
6925 if (tsd != NULL)
6926 name = ada_tag_name_from_tsd (tsd);
6927 }
492d29ea
PA
6928 CATCH (e, RETURN_MASK_ERROR)
6929 {
6930 }
6931 END_CATCH
1b611343
JB
6932
6933 return name;
4c4b4cd2
PH
6934}
6935
6936/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6937
d2e4a39e 6938struct type *
ebf56fd3 6939ada_parent_type (struct type *type)
14f9c5c9
AS
6940{
6941 int i;
6942
61ee279c 6943 type = ada_check_typedef (type);
14f9c5c9
AS
6944
6945 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6946 return NULL;
6947
6948 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6949 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6950 {
6951 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6952
6953 /* If the _parent field is a pointer, then dereference it. */
6954 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6955 parent_type = TYPE_TARGET_TYPE (parent_type);
6956 /* If there is a parallel XVS type, get the actual base type. */
6957 parent_type = ada_get_base_type (parent_type);
6958
6959 return ada_check_typedef (parent_type);
6960 }
14f9c5c9
AS
6961
6962 return NULL;
6963}
6964
4c4b4cd2
PH
6965/* True iff field number FIELD_NUM of structure type TYPE contains the
6966 parent-type (inherited) fields of a derived type. Assumes TYPE is
6967 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6968
6969int
ebf56fd3 6970ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6971{
61ee279c 6972 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6973
4c4b4cd2 6974 return (name != NULL
61012eef
GB
6975 && (startswith (name, "PARENT")
6976 || startswith (name, "_parent")));
14f9c5c9
AS
6977}
6978
4c4b4cd2 6979/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6980 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6981 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6982 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6983 structures. */
14f9c5c9
AS
6984
6985int
ebf56fd3 6986ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6987{
d2e4a39e 6988 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6989
dddc0e16
JB
6990 if (name != NULL && strcmp (name, "RETVAL") == 0)
6991 {
6992 /* This happens in functions with "out" or "in out" parameters
6993 which are passed by copy. For such functions, GNAT describes
6994 the function's return type as being a struct where the return
6995 value is in a field called RETVAL, and where the other "out"
6996 or "in out" parameters are fields of that struct. This is not
6997 a wrapper. */
6998 return 0;
6999 }
7000
d2e4a39e 7001 return (name != NULL
61012eef 7002 && (startswith (name, "PARENT")
4c4b4cd2 7003 || strcmp (name, "REP") == 0
61012eef 7004 || startswith (name, "_parent")
4c4b4cd2 7005 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7006}
7007
4c4b4cd2
PH
7008/* True iff field number FIELD_NUM of structure or union type TYPE
7009 is a variant wrapper. Assumes TYPE is a structure type with at least
7010 FIELD_NUM+1 fields. */
14f9c5c9
AS
7011
7012int
ebf56fd3 7013ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7014{
d2e4a39e 7015 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7016
14f9c5c9 7017 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7018 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7019 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7020 == TYPE_CODE_UNION)));
14f9c5c9
AS
7021}
7022
7023/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7024 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7025 returns the type of the controlling discriminant for the variant.
7026 May return NULL if the type could not be found. */
14f9c5c9 7027
d2e4a39e 7028struct type *
ebf56fd3 7029ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7030{
a121b7c1 7031 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7032
988f6b3d 7033 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7034}
7035
4c4b4cd2 7036/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7037 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7038 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7039
7040int
ebf56fd3 7041ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7042{
d2e4a39e 7043 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7044
14f9c5c9
AS
7045 return (name != NULL && name[0] == 'O');
7046}
7047
7048/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7049 returns the name of the discriminant controlling the variant.
7050 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7051
a121b7c1 7052const char *
ebf56fd3 7053ada_variant_discrim_name (struct type *type0)
14f9c5c9 7054{
d2e4a39e 7055 static char *result = NULL;
14f9c5c9 7056 static size_t result_len = 0;
d2e4a39e
AS
7057 struct type *type;
7058 const char *name;
7059 const char *discrim_end;
7060 const char *discrim_start;
14f9c5c9
AS
7061
7062 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7063 type = TYPE_TARGET_TYPE (type0);
7064 else
7065 type = type0;
7066
7067 name = ada_type_name (type);
7068
7069 if (name == NULL || name[0] == '\000')
7070 return "";
7071
7072 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7073 discrim_end -= 1)
7074 {
61012eef 7075 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7076 break;
14f9c5c9
AS
7077 }
7078 if (discrim_end == name)
7079 return "";
7080
d2e4a39e 7081 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7082 discrim_start -= 1)
7083 {
d2e4a39e 7084 if (discrim_start == name + 1)
4c4b4cd2 7085 return "";
76a01679 7086 if ((discrim_start > name + 3
61012eef 7087 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7088 || discrim_start[-1] == '.')
7089 break;
14f9c5c9
AS
7090 }
7091
7092 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7093 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7094 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7095 return result;
7096}
7097
4c4b4cd2
PH
7098/* Scan STR for a subtype-encoded number, beginning at position K.
7099 Put the position of the character just past the number scanned in
7100 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7101 Return 1 if there was a valid number at the given position, and 0
7102 otherwise. A "subtype-encoded" number consists of the absolute value
7103 in decimal, followed by the letter 'm' to indicate a negative number.
7104 Assumes 0m does not occur. */
14f9c5c9
AS
7105
7106int
d2e4a39e 7107ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7108{
7109 ULONGEST RU;
7110
d2e4a39e 7111 if (!isdigit (str[k]))
14f9c5c9
AS
7112 return 0;
7113
4c4b4cd2 7114 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7115 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7116 LONGEST. */
14f9c5c9
AS
7117 RU = 0;
7118 while (isdigit (str[k]))
7119 {
d2e4a39e 7120 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7121 k += 1;
7122 }
7123
d2e4a39e 7124 if (str[k] == 'm')
14f9c5c9
AS
7125 {
7126 if (R != NULL)
4c4b4cd2 7127 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7128 k += 1;
7129 }
7130 else if (R != NULL)
7131 *R = (LONGEST) RU;
7132
4c4b4cd2 7133 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7134 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7135 number representable as a LONGEST (although either would probably work
7136 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7137 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7138
7139 if (new_k != NULL)
7140 *new_k = k;
7141 return 1;
7142}
7143
4c4b4cd2
PH
7144/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7145 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7146 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7147
d2e4a39e 7148int
ebf56fd3 7149ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7150{
d2e4a39e 7151 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7152 int p;
7153
7154 p = 0;
7155 while (1)
7156 {
d2e4a39e 7157 switch (name[p])
4c4b4cd2
PH
7158 {
7159 case '\0':
7160 return 0;
7161 case 'S':
7162 {
7163 LONGEST W;
5b4ee69b 7164
4c4b4cd2
PH
7165 if (!ada_scan_number (name, p + 1, &W, &p))
7166 return 0;
7167 if (val == W)
7168 return 1;
7169 break;
7170 }
7171 case 'R':
7172 {
7173 LONGEST L, U;
5b4ee69b 7174
4c4b4cd2
PH
7175 if (!ada_scan_number (name, p + 1, &L, &p)
7176 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7177 return 0;
7178 if (val >= L && val <= U)
7179 return 1;
7180 break;
7181 }
7182 case 'O':
7183 return 1;
7184 default:
7185 return 0;
7186 }
7187 }
7188}
7189
0963b4bd 7190/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7191
7192/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7193 ARG_TYPE, extract and return the value of one of its (non-static)
7194 fields. FIELDNO says which field. Differs from value_primitive_field
7195 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7196
4c4b4cd2 7197static struct value *
d2e4a39e 7198ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7199 struct type *arg_type)
14f9c5c9 7200{
14f9c5c9
AS
7201 struct type *type;
7202
61ee279c 7203 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7204 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7205
4c4b4cd2 7206 /* Handle packed fields. */
14f9c5c9
AS
7207
7208 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7209 {
7210 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7211 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7212
0fd88904 7213 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7214 offset + bit_pos / 8,
7215 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7216 }
7217 else
7218 return value_primitive_field (arg1, offset, fieldno, arg_type);
7219}
7220
52ce6436
PH
7221/* Find field with name NAME in object of type TYPE. If found,
7222 set the following for each argument that is non-null:
7223 - *FIELD_TYPE_P to the field's type;
7224 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7225 an object of that type;
7226 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7227 - *BIT_SIZE_P to its size in bits if the field is packed, and
7228 0 otherwise;
7229 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7230 fields up to but not including the desired field, or by the total
7231 number of fields if not found. A NULL value of NAME never
7232 matches; the function just counts visible fields in this case.
7233
828d5846
XR
7234 Notice that we need to handle when a tagged record hierarchy
7235 has some components with the same name, like in this scenario:
7236
7237 type Top_T is tagged record
7238 N : Integer := 1;
7239 U : Integer := 974;
7240 A : Integer := 48;
7241 end record;
7242
7243 type Middle_T is new Top.Top_T with record
7244 N : Character := 'a';
7245 C : Integer := 3;
7246 end record;
7247
7248 type Bottom_T is new Middle.Middle_T with record
7249 N : Float := 4.0;
7250 C : Character := '5';
7251 X : Integer := 6;
7252 A : Character := 'J';
7253 end record;
7254
7255 Let's say we now have a variable declared and initialized as follow:
7256
7257 TC : Top_A := new Bottom_T;
7258
7259 And then we use this variable to call this function
7260
7261 procedure Assign (Obj: in out Top_T; TV : Integer);
7262
7263 as follow:
7264
7265 Assign (Top_T (B), 12);
7266
7267 Now, we're in the debugger, and we're inside that procedure
7268 then and we want to print the value of obj.c:
7269
7270 Usually, the tagged record or one of the parent type owns the
7271 component to print and there's no issue but in this particular
7272 case, what does it mean to ask for Obj.C? Since the actual
7273 type for object is type Bottom_T, it could mean two things: type
7274 component C from the Middle_T view, but also component C from
7275 Bottom_T. So in that "undefined" case, when the component is
7276 not found in the non-resolved type (which includes all the
7277 components of the parent type), then resolve it and see if we
7278 get better luck once expanded.
7279
7280 In the case of homonyms in the derived tagged type, we don't
7281 guaranty anything, and pick the one that's easiest for us
7282 to program.
7283
0963b4bd 7284 Returns 1 if found, 0 otherwise. */
52ce6436 7285
4c4b4cd2 7286static int
0d5cff50 7287find_struct_field (const char *name, struct type *type, int offset,
76a01679 7288 struct type **field_type_p,
52ce6436
PH
7289 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7290 int *index_p)
4c4b4cd2
PH
7291{
7292 int i;
828d5846 7293 int parent_offset = -1;
4c4b4cd2 7294
61ee279c 7295 type = ada_check_typedef (type);
76a01679 7296
52ce6436
PH
7297 if (field_type_p != NULL)
7298 *field_type_p = NULL;
7299 if (byte_offset_p != NULL)
d5d6fca5 7300 *byte_offset_p = 0;
52ce6436
PH
7301 if (bit_offset_p != NULL)
7302 *bit_offset_p = 0;
7303 if (bit_size_p != NULL)
7304 *bit_size_p = 0;
7305
7306 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7307 {
7308 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7309 int fld_offset = offset + bit_pos / 8;
0d5cff50 7310 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7311
4c4b4cd2
PH
7312 if (t_field_name == NULL)
7313 continue;
7314
828d5846
XR
7315 else if (ada_is_parent_field (type, i))
7316 {
7317 /* This is a field pointing us to the parent type of a tagged
7318 type. As hinted in this function's documentation, we give
7319 preference to fields in the current record first, so what
7320 we do here is just record the index of this field before
7321 we skip it. If it turns out we couldn't find our field
7322 in the current record, then we'll get back to it and search
7323 inside it whether the field might exist in the parent. */
7324
7325 parent_offset = i;
7326 continue;
7327 }
7328
52ce6436 7329 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7330 {
7331 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7332
52ce6436
PH
7333 if (field_type_p != NULL)
7334 *field_type_p = TYPE_FIELD_TYPE (type, i);
7335 if (byte_offset_p != NULL)
7336 *byte_offset_p = fld_offset;
7337 if (bit_offset_p != NULL)
7338 *bit_offset_p = bit_pos % 8;
7339 if (bit_size_p != NULL)
7340 *bit_size_p = bit_size;
76a01679
JB
7341 return 1;
7342 }
4c4b4cd2
PH
7343 else if (ada_is_wrapper_field (type, i))
7344 {
52ce6436
PH
7345 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7346 field_type_p, byte_offset_p, bit_offset_p,
7347 bit_size_p, index_p))
76a01679
JB
7348 return 1;
7349 }
4c4b4cd2
PH
7350 else if (ada_is_variant_part (type, i))
7351 {
52ce6436
PH
7352 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7353 fixed type?? */
4c4b4cd2 7354 int j;
52ce6436
PH
7355 struct type *field_type
7356 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7357
52ce6436 7358 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7359 {
76a01679
JB
7360 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7361 fld_offset
7362 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7363 field_type_p, byte_offset_p,
52ce6436 7364 bit_offset_p, bit_size_p, index_p))
76a01679 7365 return 1;
4c4b4cd2
PH
7366 }
7367 }
52ce6436
PH
7368 else if (index_p != NULL)
7369 *index_p += 1;
4c4b4cd2 7370 }
828d5846
XR
7371
7372 /* Field not found so far. If this is a tagged type which
7373 has a parent, try finding that field in the parent now. */
7374
7375 if (parent_offset != -1)
7376 {
7377 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7378 int fld_offset = offset + bit_pos / 8;
7379
7380 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7381 fld_offset, field_type_p, byte_offset_p,
7382 bit_offset_p, bit_size_p, index_p))
7383 return 1;
7384 }
7385
4c4b4cd2
PH
7386 return 0;
7387}
7388
0963b4bd 7389/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7390
52ce6436
PH
7391static int
7392num_visible_fields (struct type *type)
7393{
7394 int n;
5b4ee69b 7395
52ce6436
PH
7396 n = 0;
7397 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7398 return n;
7399}
14f9c5c9 7400
4c4b4cd2 7401/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7402 and search in it assuming it has (class) type TYPE.
7403 If found, return value, else return NULL.
7404
828d5846
XR
7405 Searches recursively through wrapper fields (e.g., '_parent').
7406
7407 In the case of homonyms in the tagged types, please refer to the
7408 long explanation in find_struct_field's function documentation. */
14f9c5c9 7409
4c4b4cd2 7410static struct value *
108d56a4 7411ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7412 struct type *type)
14f9c5c9
AS
7413{
7414 int i;
828d5846 7415 int parent_offset = -1;
14f9c5c9 7416
5b4ee69b 7417 type = ada_check_typedef (type);
52ce6436 7418 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7419 {
0d5cff50 7420 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7421
7422 if (t_field_name == NULL)
4c4b4cd2 7423 continue;
14f9c5c9 7424
828d5846
XR
7425 else if (ada_is_parent_field (type, i))
7426 {
7427 /* This is a field pointing us to the parent type of a tagged
7428 type. As hinted in this function's documentation, we give
7429 preference to fields in the current record first, so what
7430 we do here is just record the index of this field before
7431 we skip it. If it turns out we couldn't find our field
7432 in the current record, then we'll get back to it and search
7433 inside it whether the field might exist in the parent. */
7434
7435 parent_offset = i;
7436 continue;
7437 }
7438
14f9c5c9 7439 else if (field_name_match (t_field_name, name))
4c4b4cd2 7440 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7441
7442 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7443 {
0963b4bd 7444 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7445 ada_search_struct_field (name, arg,
7446 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7447 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7448
4c4b4cd2
PH
7449 if (v != NULL)
7450 return v;
7451 }
14f9c5c9
AS
7452
7453 else if (ada_is_variant_part (type, i))
4c4b4cd2 7454 {
0963b4bd 7455 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7456 int j;
5b4ee69b
MS
7457 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7458 i));
4c4b4cd2
PH
7459 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7460
52ce6436 7461 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7462 {
0963b4bd
MS
7463 struct value *v = ada_search_struct_field /* Force line
7464 break. */
06d5cf63
JB
7465 (name, arg,
7466 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7467 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7468
4c4b4cd2
PH
7469 if (v != NULL)
7470 return v;
7471 }
7472 }
14f9c5c9 7473 }
828d5846
XR
7474
7475 /* Field not found so far. If this is a tagged type which
7476 has a parent, try finding that field in the parent now. */
7477
7478 if (parent_offset != -1)
7479 {
7480 struct value *v = ada_search_struct_field (
7481 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7482 TYPE_FIELD_TYPE (type, parent_offset));
7483
7484 if (v != NULL)
7485 return v;
7486 }
7487
14f9c5c9
AS
7488 return NULL;
7489}
d2e4a39e 7490
52ce6436
PH
7491static struct value *ada_index_struct_field_1 (int *, struct value *,
7492 int, struct type *);
7493
7494
7495/* Return field #INDEX in ARG, where the index is that returned by
7496 * find_struct_field through its INDEX_P argument. Adjust the address
7497 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7498 * If found, return value, else return NULL. */
52ce6436
PH
7499
7500static struct value *
7501ada_index_struct_field (int index, struct value *arg, int offset,
7502 struct type *type)
7503{
7504 return ada_index_struct_field_1 (&index, arg, offset, type);
7505}
7506
7507
7508/* Auxiliary function for ada_index_struct_field. Like
7509 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7510 * *INDEX_P. */
52ce6436
PH
7511
7512static struct value *
7513ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7514 struct type *type)
7515{
7516 int i;
7517 type = ada_check_typedef (type);
7518
7519 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7520 {
7521 if (TYPE_FIELD_NAME (type, i) == NULL)
7522 continue;
7523 else if (ada_is_wrapper_field (type, i))
7524 {
0963b4bd 7525 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7526 ada_index_struct_field_1 (index_p, arg,
7527 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7528 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7529
52ce6436
PH
7530 if (v != NULL)
7531 return v;
7532 }
7533
7534 else if (ada_is_variant_part (type, i))
7535 {
7536 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7537 find_struct_field. */
52ce6436
PH
7538 error (_("Cannot assign this kind of variant record"));
7539 }
7540 else if (*index_p == 0)
7541 return ada_value_primitive_field (arg, offset, i, type);
7542 else
7543 *index_p -= 1;
7544 }
7545 return NULL;
7546}
7547
4c4b4cd2
PH
7548/* Given ARG, a value of type (pointer or reference to a)*
7549 structure/union, extract the component named NAME from the ultimate
7550 target structure/union and return it as a value with its
f5938064 7551 appropriate type.
14f9c5c9 7552
4c4b4cd2
PH
7553 The routine searches for NAME among all members of the structure itself
7554 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7555 (e.g., '_parent').
7556
03ee6b2e
PH
7557 If NO_ERR, then simply return NULL in case of error, rather than
7558 calling error. */
14f9c5c9 7559
d2e4a39e 7560struct value *
a121b7c1 7561ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7562{
4c4b4cd2 7563 struct type *t, *t1;
d2e4a39e 7564 struct value *v;
14f9c5c9 7565
4c4b4cd2 7566 v = NULL;
df407dfe 7567 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7568 if (TYPE_CODE (t) == TYPE_CODE_REF)
7569 {
7570 t1 = TYPE_TARGET_TYPE (t);
7571 if (t1 == NULL)
03ee6b2e 7572 goto BadValue;
61ee279c 7573 t1 = ada_check_typedef (t1);
4c4b4cd2 7574 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7575 {
994b9211 7576 arg = coerce_ref (arg);
76a01679
JB
7577 t = t1;
7578 }
4c4b4cd2 7579 }
14f9c5c9 7580
4c4b4cd2
PH
7581 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7582 {
7583 t1 = TYPE_TARGET_TYPE (t);
7584 if (t1 == NULL)
03ee6b2e 7585 goto BadValue;
61ee279c 7586 t1 = ada_check_typedef (t1);
4c4b4cd2 7587 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7588 {
7589 arg = value_ind (arg);
7590 t = t1;
7591 }
4c4b4cd2 7592 else
76a01679 7593 break;
4c4b4cd2 7594 }
14f9c5c9 7595
4c4b4cd2 7596 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7597 goto BadValue;
14f9c5c9 7598
4c4b4cd2
PH
7599 if (t1 == t)
7600 v = ada_search_struct_field (name, arg, 0, t);
7601 else
7602 {
7603 int bit_offset, bit_size, byte_offset;
7604 struct type *field_type;
7605 CORE_ADDR address;
7606
76a01679 7607 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7608 address = value_address (ada_value_ind (arg));
4c4b4cd2 7609 else
b50d69b5 7610 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7611
828d5846
XR
7612 /* Check to see if this is a tagged type. We also need to handle
7613 the case where the type is a reference to a tagged type, but
7614 we have to be careful to exclude pointers to tagged types.
7615 The latter should be shown as usual (as a pointer), whereas
7616 a reference should mostly be transparent to the user. */
7617
7618 if (ada_is_tagged_type (t1, 0)
7619 || (TYPE_CODE (t1) == TYPE_CODE_REF
7620 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7621 {
7622 /* We first try to find the searched field in the current type.
7623 If not found then let's look in the fixed type. */
7624
7625 if (!find_struct_field (name, t1, 0,
7626 &field_type, &byte_offset, &bit_offset,
7627 &bit_size, NULL))
7628 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7629 address, NULL, 1);
7630 }
7631 else
7632 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7633 address, NULL, 1);
7634
76a01679
JB
7635 if (find_struct_field (name, t1, 0,
7636 &field_type, &byte_offset, &bit_offset,
52ce6436 7637 &bit_size, NULL))
76a01679
JB
7638 {
7639 if (bit_size != 0)
7640 {
714e53ab
PH
7641 if (TYPE_CODE (t) == TYPE_CODE_REF)
7642 arg = ada_coerce_ref (arg);
7643 else
7644 arg = ada_value_ind (arg);
76a01679
JB
7645 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7646 bit_offset, bit_size,
7647 field_type);
7648 }
7649 else
f5938064 7650 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7651 }
7652 }
7653
03ee6b2e
PH
7654 if (v != NULL || no_err)
7655 return v;
7656 else
323e0a4a 7657 error (_("There is no member named %s."), name);
14f9c5c9 7658
03ee6b2e
PH
7659 BadValue:
7660 if (no_err)
7661 return NULL;
7662 else
0963b4bd
MS
7663 error (_("Attempt to extract a component of "
7664 "a value that is not a record."));
14f9c5c9
AS
7665}
7666
3b4de39c 7667/* Return a string representation of type TYPE. */
99bbb428 7668
3b4de39c 7669static std::string
99bbb428
PA
7670type_as_string (struct type *type)
7671{
d7e74731 7672 string_file tmp_stream;
99bbb428 7673
d7e74731 7674 type_print (type, "", &tmp_stream, -1);
99bbb428 7675
d7e74731 7676 return std::move (tmp_stream.string ());
99bbb428
PA
7677}
7678
14f9c5c9 7679/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7680 If DISPP is non-null, add its byte displacement from the beginning of a
7681 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7682 work for packed fields).
7683
7684 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7685 followed by "___".
14f9c5c9 7686
0963b4bd 7687 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7688 be a (pointer or reference)+ to a struct or union, and the
7689 ultimate target type will be searched.
14f9c5c9
AS
7690
7691 Looks recursively into variant clauses and parent types.
7692
828d5846
XR
7693 In the case of homonyms in the tagged types, please refer to the
7694 long explanation in find_struct_field's function documentation.
7695
4c4b4cd2
PH
7696 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7697 TYPE is not a type of the right kind. */
14f9c5c9 7698
4c4b4cd2 7699static struct type *
a121b7c1 7700ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7701 int noerr)
14f9c5c9
AS
7702{
7703 int i;
828d5846 7704 int parent_offset = -1;
14f9c5c9
AS
7705
7706 if (name == NULL)
7707 goto BadName;
7708
76a01679 7709 if (refok && type != NULL)
4c4b4cd2
PH
7710 while (1)
7711 {
61ee279c 7712 type = ada_check_typedef (type);
76a01679
JB
7713 if (TYPE_CODE (type) != TYPE_CODE_PTR
7714 && TYPE_CODE (type) != TYPE_CODE_REF)
7715 break;
7716 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7717 }
14f9c5c9 7718
76a01679 7719 if (type == NULL
1265e4aa
JB
7720 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7721 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7722 {
4c4b4cd2 7723 if (noerr)
76a01679 7724 return NULL;
99bbb428 7725
3b4de39c
PA
7726 error (_("Type %s is not a structure or union type"),
7727 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7728 }
7729
7730 type = to_static_fixed_type (type);
7731
7732 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7733 {
0d5cff50 7734 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7735 struct type *t;
d2e4a39e 7736
14f9c5c9 7737 if (t_field_name == NULL)
4c4b4cd2 7738 continue;
14f9c5c9 7739
828d5846
XR
7740 else if (ada_is_parent_field (type, i))
7741 {
7742 /* This is a field pointing us to the parent type of a tagged
7743 type. As hinted in this function's documentation, we give
7744 preference to fields in the current record first, so what
7745 we do here is just record the index of this field before
7746 we skip it. If it turns out we couldn't find our field
7747 in the current record, then we'll get back to it and search
7748 inside it whether the field might exist in the parent. */
7749
7750 parent_offset = i;
7751 continue;
7752 }
7753
14f9c5c9 7754 else if (field_name_match (t_field_name, name))
988f6b3d 7755 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7756
7757 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7758 {
4c4b4cd2 7759 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7760 0, 1);
4c4b4cd2 7761 if (t != NULL)
988f6b3d 7762 return t;
4c4b4cd2 7763 }
14f9c5c9
AS
7764
7765 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7766 {
7767 int j;
5b4ee69b
MS
7768 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7769 i));
4c4b4cd2
PH
7770
7771 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7772 {
b1f33ddd
JB
7773 /* FIXME pnh 2008/01/26: We check for a field that is
7774 NOT wrapped in a struct, since the compiler sometimes
7775 generates these for unchecked variant types. Revisit
0963b4bd 7776 if the compiler changes this practice. */
0d5cff50 7777 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7778
b1f33ddd
JB
7779 if (v_field_name != NULL
7780 && field_name_match (v_field_name, name))
460efde1 7781 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7782 else
0963b4bd
MS
7783 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7784 j),
988f6b3d 7785 name, 0, 1);
b1f33ddd 7786
4c4b4cd2 7787 if (t != NULL)
988f6b3d 7788 return t;
4c4b4cd2
PH
7789 }
7790 }
14f9c5c9
AS
7791
7792 }
7793
828d5846
XR
7794 /* Field not found so far. If this is a tagged type which
7795 has a parent, try finding that field in the parent now. */
7796
7797 if (parent_offset != -1)
7798 {
7799 struct type *t;
7800
7801 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7802 name, 0, 1);
7803 if (t != NULL)
7804 return t;
7805 }
7806
14f9c5c9 7807BadName:
d2e4a39e 7808 if (!noerr)
14f9c5c9 7809 {
2b2798cc 7810 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7811
7812 error (_("Type %s has no component named %s"),
3b4de39c 7813 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7814 }
7815
7816 return NULL;
7817}
7818
b1f33ddd
JB
7819/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7820 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7821 represents an unchecked union (that is, the variant part of a
0963b4bd 7822 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7823
7824static int
7825is_unchecked_variant (struct type *var_type, struct type *outer_type)
7826{
a121b7c1 7827 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7828
988f6b3d 7829 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7830}
7831
7832
14f9c5c9
AS
7833/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7834 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7835 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7836 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7837
d2e4a39e 7838int
ebf56fd3 7839ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7840 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7841{
7842 int others_clause;
7843 int i;
a121b7c1 7844 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7845 struct value *outer;
7846 struct value *discrim;
14f9c5c9
AS
7847 LONGEST discrim_val;
7848
012370f6
TT
7849 /* Using plain value_from_contents_and_address here causes problems
7850 because we will end up trying to resolve a type that is currently
7851 being constructed. */
7852 outer = value_from_contents_and_address_unresolved (outer_type,
7853 outer_valaddr, 0);
0c281816
JB
7854 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7855 if (discrim == NULL)
14f9c5c9 7856 return -1;
0c281816 7857 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7858
7859 others_clause = -1;
7860 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7861 {
7862 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7863 others_clause = i;
14f9c5c9 7864 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7865 return i;
14f9c5c9
AS
7866 }
7867
7868 return others_clause;
7869}
d2e4a39e 7870\f
14f9c5c9
AS
7871
7872
4c4b4cd2 7873 /* Dynamic-Sized Records */
14f9c5c9
AS
7874
7875/* Strategy: The type ostensibly attached to a value with dynamic size
7876 (i.e., a size that is not statically recorded in the debugging
7877 data) does not accurately reflect the size or layout of the value.
7878 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7879 conventional types that are constructed on the fly. */
14f9c5c9
AS
7880
7881/* There is a subtle and tricky problem here. In general, we cannot
7882 determine the size of dynamic records without its data. However,
7883 the 'struct value' data structure, which GDB uses to represent
7884 quantities in the inferior process (the target), requires the size
7885 of the type at the time of its allocation in order to reserve space
7886 for GDB's internal copy of the data. That's why the
7887 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7888 rather than struct value*s.
14f9c5c9
AS
7889
7890 However, GDB's internal history variables ($1, $2, etc.) are
7891 struct value*s containing internal copies of the data that are not, in
7892 general, the same as the data at their corresponding addresses in
7893 the target. Fortunately, the types we give to these values are all
7894 conventional, fixed-size types (as per the strategy described
7895 above), so that we don't usually have to perform the
7896 'to_fixed_xxx_type' conversions to look at their values.
7897 Unfortunately, there is one exception: if one of the internal
7898 history variables is an array whose elements are unconstrained
7899 records, then we will need to create distinct fixed types for each
7900 element selected. */
7901
7902/* The upshot of all of this is that many routines take a (type, host
7903 address, target address) triple as arguments to represent a value.
7904 The host address, if non-null, is supposed to contain an internal
7905 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7906 target at the target address. */
14f9c5c9
AS
7907
7908/* Assuming that VAL0 represents a pointer value, the result of
7909 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7910 dynamic-sized types. */
14f9c5c9 7911
d2e4a39e
AS
7912struct value *
7913ada_value_ind (struct value *val0)
14f9c5c9 7914{
c48db5ca 7915 struct value *val = value_ind (val0);
5b4ee69b 7916
b50d69b5
JG
7917 if (ada_is_tagged_type (value_type (val), 0))
7918 val = ada_tag_value_at_base_address (val);
7919
4c4b4cd2 7920 return ada_to_fixed_value (val);
14f9c5c9
AS
7921}
7922
7923/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7924 qualifiers on VAL0. */
7925
d2e4a39e
AS
7926static struct value *
7927ada_coerce_ref (struct value *val0)
7928{
df407dfe 7929 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7930 {
7931 struct value *val = val0;
5b4ee69b 7932
994b9211 7933 val = coerce_ref (val);
b50d69b5
JG
7934
7935 if (ada_is_tagged_type (value_type (val), 0))
7936 val = ada_tag_value_at_base_address (val);
7937
4c4b4cd2 7938 return ada_to_fixed_value (val);
d2e4a39e
AS
7939 }
7940 else
14f9c5c9
AS
7941 return val0;
7942}
7943
7944/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7945 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7946
7947static unsigned int
ebf56fd3 7948align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7949{
7950 return (off + alignment - 1) & ~(alignment - 1);
7951}
7952
4c4b4cd2 7953/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7954
7955static unsigned int
ebf56fd3 7956field_alignment (struct type *type, int f)
14f9c5c9 7957{
d2e4a39e 7958 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7959 int len;
14f9c5c9
AS
7960 int align_offset;
7961
64a1bf19
JB
7962 /* The field name should never be null, unless the debugging information
7963 is somehow malformed. In this case, we assume the field does not
7964 require any alignment. */
7965 if (name == NULL)
7966 return 1;
7967
7968 len = strlen (name);
7969
4c4b4cd2
PH
7970 if (!isdigit (name[len - 1]))
7971 return 1;
14f9c5c9 7972
d2e4a39e 7973 if (isdigit (name[len - 2]))
14f9c5c9
AS
7974 align_offset = len - 2;
7975 else
7976 align_offset = len - 1;
7977
61012eef 7978 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7979 return TARGET_CHAR_BIT;
7980
4c4b4cd2
PH
7981 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7982}
7983
852dff6c 7984/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7985
852dff6c
JB
7986static struct symbol *
7987ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7988{
7989 struct symbol *sym;
7990
7991 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7992 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7993 return sym;
7994
4186eb54
KS
7995 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7996 return sym;
14f9c5c9
AS
7997}
7998
dddfab26
UW
7999/* Find a type named NAME. Ignores ambiguity. This routine will look
8000 solely for types defined by debug info, it will not search the GDB
8001 primitive types. */
4c4b4cd2 8002
852dff6c 8003static struct type *
ebf56fd3 8004ada_find_any_type (const char *name)
14f9c5c9 8005{
852dff6c 8006 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 8007
14f9c5c9 8008 if (sym != NULL)
dddfab26 8009 return SYMBOL_TYPE (sym);
14f9c5c9 8010
dddfab26 8011 return NULL;
14f9c5c9
AS
8012}
8013
739593e0
JB
8014/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8015 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8016 symbol, in which case it is returned. Otherwise, this looks for
8017 symbols whose name is that of NAME_SYM suffixed with "___XR".
8018 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8019
8020struct symbol *
270140bd 8021ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8022{
739593e0 8023 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8024 struct symbol *sym;
8025
739593e0
JB
8026 if (strstr (name, "___XR") != NULL)
8027 return name_sym;
8028
aeb5907d
JB
8029 sym = find_old_style_renaming_symbol (name, block);
8030
8031 if (sym != NULL)
8032 return sym;
8033
0963b4bd 8034 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8035 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8036 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8037 return sym;
8038 else
8039 return NULL;
8040}
8041
8042static struct symbol *
270140bd 8043find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8044{
7f0df278 8045 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8046 char *rename;
8047
8048 if (function_sym != NULL)
8049 {
8050 /* If the symbol is defined inside a function, NAME is not fully
8051 qualified. This means we need to prepend the function name
8052 as well as adding the ``___XR'' suffix to build the name of
8053 the associated renaming symbol. */
0d5cff50 8054 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8055 /* Function names sometimes contain suffixes used
8056 for instance to qualify nested subprograms. When building
8057 the XR type name, we need to make sure that this suffix is
8058 not included. So do not include any suffix in the function
8059 name length below. */
69fadcdf 8060 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8061 const int rename_len = function_name_len + 2 /* "__" */
8062 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8063
529cad9c 8064 /* Strip the suffix if necessary. */
69fadcdf
JB
8065 ada_remove_trailing_digits (function_name, &function_name_len);
8066 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8067 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8068
4c4b4cd2
PH
8069 /* Library-level functions are a special case, as GNAT adds
8070 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8071 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8072 have this prefix, so we need to skip this prefix if present. */
8073 if (function_name_len > 5 /* "_ada_" */
8074 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8075 {
8076 function_name += 5;
8077 function_name_len -= 5;
8078 }
4c4b4cd2
PH
8079
8080 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8081 strncpy (rename, function_name, function_name_len);
8082 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8083 "__%s___XR", name);
4c4b4cd2
PH
8084 }
8085 else
8086 {
8087 const int rename_len = strlen (name) + 6;
5b4ee69b 8088
4c4b4cd2 8089 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8090 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8091 }
8092
852dff6c 8093 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8094}
8095
14f9c5c9 8096/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8097 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8098 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8099 otherwise return 0. */
8100
14f9c5c9 8101int
d2e4a39e 8102ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8103{
8104 if (type1 == NULL)
8105 return 1;
8106 else if (type0 == NULL)
8107 return 0;
8108 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8109 return 1;
8110 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8111 return 0;
4c4b4cd2
PH
8112 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8113 return 1;
ad82864c 8114 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8115 return 1;
4c4b4cd2
PH
8116 else if (ada_is_array_descriptor_type (type0)
8117 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8118 return 1;
aeb5907d
JB
8119 else
8120 {
8121 const char *type0_name = type_name_no_tag (type0);
8122 const char *type1_name = type_name_no_tag (type1);
8123
8124 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8125 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8126 return 1;
8127 }
14f9c5c9
AS
8128 return 0;
8129}
8130
8131/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8132 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8133
0d5cff50 8134const char *
d2e4a39e 8135ada_type_name (struct type *type)
14f9c5c9 8136{
d2e4a39e 8137 if (type == NULL)
14f9c5c9
AS
8138 return NULL;
8139 else if (TYPE_NAME (type) != NULL)
8140 return TYPE_NAME (type);
8141 else
8142 return TYPE_TAG_NAME (type);
8143}
8144
b4ba55a1
JB
8145/* Search the list of "descriptive" types associated to TYPE for a type
8146 whose name is NAME. */
8147
8148static struct type *
8149find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8150{
931e5bc3 8151 struct type *result, *tmp;
b4ba55a1 8152
c6044dd1
JB
8153 if (ada_ignore_descriptive_types_p)
8154 return NULL;
8155
b4ba55a1
JB
8156 /* If there no descriptive-type info, then there is no parallel type
8157 to be found. */
8158 if (!HAVE_GNAT_AUX_INFO (type))
8159 return NULL;
8160
8161 result = TYPE_DESCRIPTIVE_TYPE (type);
8162 while (result != NULL)
8163 {
0d5cff50 8164 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8165
8166 if (result_name == NULL)
8167 {
8168 warning (_("unexpected null name on descriptive type"));
8169 return NULL;
8170 }
8171
8172 /* If the names match, stop. */
8173 if (strcmp (result_name, name) == 0)
8174 break;
8175
8176 /* Otherwise, look at the next item on the list, if any. */
8177 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8178 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8179 else
8180 tmp = NULL;
8181
8182 /* If not found either, try after having resolved the typedef. */
8183 if (tmp != NULL)
8184 result = tmp;
b4ba55a1 8185 else
931e5bc3 8186 {
f168693b 8187 result = check_typedef (result);
931e5bc3
JG
8188 if (HAVE_GNAT_AUX_INFO (result))
8189 result = TYPE_DESCRIPTIVE_TYPE (result);
8190 else
8191 result = NULL;
8192 }
b4ba55a1
JB
8193 }
8194
8195 /* If we didn't find a match, see whether this is a packed array. With
8196 older compilers, the descriptive type information is either absent or
8197 irrelevant when it comes to packed arrays so the above lookup fails.
8198 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8199 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8200 return ada_find_any_type (name);
8201
8202 return result;
8203}
8204
8205/* Find a parallel type to TYPE with the specified NAME, using the
8206 descriptive type taken from the debugging information, if available,
8207 and otherwise using the (slower) name-based method. */
8208
8209static struct type *
8210ada_find_parallel_type_with_name (struct type *type, const char *name)
8211{
8212 struct type *result = NULL;
8213
8214 if (HAVE_GNAT_AUX_INFO (type))
8215 result = find_parallel_type_by_descriptive_type (type, name);
8216 else
8217 result = ada_find_any_type (name);
8218
8219 return result;
8220}
8221
8222/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8223 SUFFIX to the name of TYPE. */
14f9c5c9 8224
d2e4a39e 8225struct type *
ebf56fd3 8226ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8227{
0d5cff50 8228 char *name;
fe978cb0 8229 const char *type_name = ada_type_name (type);
14f9c5c9 8230 int len;
d2e4a39e 8231
fe978cb0 8232 if (type_name == NULL)
14f9c5c9
AS
8233 return NULL;
8234
fe978cb0 8235 len = strlen (type_name);
14f9c5c9 8236
b4ba55a1 8237 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8238
fe978cb0 8239 strcpy (name, type_name);
14f9c5c9
AS
8240 strcpy (name + len, suffix);
8241
b4ba55a1 8242 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8243}
8244
14f9c5c9 8245/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8246 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8247
d2e4a39e
AS
8248static struct type *
8249dynamic_template_type (struct type *type)
14f9c5c9 8250{
61ee279c 8251 type = ada_check_typedef (type);
14f9c5c9
AS
8252
8253 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8254 || ada_type_name (type) == NULL)
14f9c5c9 8255 return NULL;
d2e4a39e 8256 else
14f9c5c9
AS
8257 {
8258 int len = strlen (ada_type_name (type));
5b4ee69b 8259
4c4b4cd2
PH
8260 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8261 return type;
14f9c5c9 8262 else
4c4b4cd2 8263 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8264 }
8265}
8266
8267/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8268 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8269
d2e4a39e
AS
8270static int
8271is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8272{
8273 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8274
d2e4a39e 8275 return name != NULL
14f9c5c9
AS
8276 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8277 && strstr (name, "___XVL") != NULL;
8278}
8279
4c4b4cd2
PH
8280/* The index of the variant field of TYPE, or -1 if TYPE does not
8281 represent a variant record type. */
14f9c5c9 8282
d2e4a39e 8283static int
4c4b4cd2 8284variant_field_index (struct type *type)
14f9c5c9
AS
8285{
8286 int f;
8287
4c4b4cd2
PH
8288 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8289 return -1;
8290
8291 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8292 {
8293 if (ada_is_variant_part (type, f))
8294 return f;
8295 }
8296 return -1;
14f9c5c9
AS
8297}
8298
4c4b4cd2
PH
8299/* A record type with no fields. */
8300
d2e4a39e 8301static struct type *
fe978cb0 8302empty_record (struct type *templ)
14f9c5c9 8303{
fe978cb0 8304 struct type *type = alloc_type_copy (templ);
5b4ee69b 8305
14f9c5c9
AS
8306 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8307 TYPE_NFIELDS (type) = 0;
8308 TYPE_FIELDS (type) = NULL;
b1f33ddd 8309 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8310 TYPE_NAME (type) = "<empty>";
8311 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8312 TYPE_LENGTH (type) = 0;
8313 return type;
8314}
8315
8316/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8317 the value of type TYPE at VALADDR or ADDRESS (see comments at
8318 the beginning of this section) VAL according to GNAT conventions.
8319 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8320 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8321 an outer-level type (i.e., as opposed to a branch of a variant.) A
8322 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8323 of the variant.
14f9c5c9 8324
4c4b4cd2
PH
8325 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8326 length are not statically known are discarded. As a consequence,
8327 VALADDR, ADDRESS and DVAL0 are ignored.
8328
8329 NOTE: Limitations: For now, we assume that dynamic fields and
8330 variants occupy whole numbers of bytes. However, they need not be
8331 byte-aligned. */
8332
8333struct type *
10a2c479 8334ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8335 const gdb_byte *valaddr,
4c4b4cd2
PH
8336 CORE_ADDR address, struct value *dval0,
8337 int keep_dynamic_fields)
14f9c5c9 8338{
d2e4a39e
AS
8339 struct value *mark = value_mark ();
8340 struct value *dval;
8341 struct type *rtype;
14f9c5c9 8342 int nfields, bit_len;
4c4b4cd2 8343 int variant_field;
14f9c5c9 8344 long off;
d94e4f4f 8345 int fld_bit_len;
14f9c5c9
AS
8346 int f;
8347
4c4b4cd2
PH
8348 /* Compute the number of fields in this record type that are going
8349 to be processed: unless keep_dynamic_fields, this includes only
8350 fields whose position and length are static will be processed. */
8351 if (keep_dynamic_fields)
8352 nfields = TYPE_NFIELDS (type);
8353 else
8354 {
8355 nfields = 0;
76a01679 8356 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8357 && !ada_is_variant_part (type, nfields)
8358 && !is_dynamic_field (type, nfields))
8359 nfields++;
8360 }
8361
e9bb382b 8362 rtype = alloc_type_copy (type);
14f9c5c9
AS
8363 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8364 INIT_CPLUS_SPECIFIC (rtype);
8365 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8366 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8367 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8368 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8369 TYPE_NAME (rtype) = ada_type_name (type);
8370 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8371 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8372
d2e4a39e
AS
8373 off = 0;
8374 bit_len = 0;
4c4b4cd2
PH
8375 variant_field = -1;
8376
14f9c5c9
AS
8377 for (f = 0; f < nfields; f += 1)
8378 {
6c038f32
PH
8379 off = align_value (off, field_alignment (type, f))
8380 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8381 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8382 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8383
d2e4a39e 8384 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8385 {
8386 variant_field = f;
d94e4f4f 8387 fld_bit_len = 0;
4c4b4cd2 8388 }
14f9c5c9 8389 else if (is_dynamic_field (type, f))
4c4b4cd2 8390 {
284614f0
JB
8391 const gdb_byte *field_valaddr = valaddr;
8392 CORE_ADDR field_address = address;
8393 struct type *field_type =
8394 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8395
4c4b4cd2 8396 if (dval0 == NULL)
b5304971
JG
8397 {
8398 /* rtype's length is computed based on the run-time
8399 value of discriminants. If the discriminants are not
8400 initialized, the type size may be completely bogus and
0963b4bd 8401 GDB may fail to allocate a value for it. So check the
b5304971 8402 size first before creating the value. */
c1b5a1a6 8403 ada_ensure_varsize_limit (rtype);
012370f6
TT
8404 /* Using plain value_from_contents_and_address here
8405 causes problems because we will end up trying to
8406 resolve a type that is currently being
8407 constructed. */
8408 dval = value_from_contents_and_address_unresolved (rtype,
8409 valaddr,
8410 address);
9f1f738a 8411 rtype = value_type (dval);
b5304971 8412 }
4c4b4cd2
PH
8413 else
8414 dval = dval0;
8415
284614f0
JB
8416 /* If the type referenced by this field is an aligner type, we need
8417 to unwrap that aligner type, because its size might not be set.
8418 Keeping the aligner type would cause us to compute the wrong
8419 size for this field, impacting the offset of the all the fields
8420 that follow this one. */
8421 if (ada_is_aligner_type (field_type))
8422 {
8423 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8424
8425 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8426 field_address = cond_offset_target (field_address, field_offset);
8427 field_type = ada_aligned_type (field_type);
8428 }
8429
8430 field_valaddr = cond_offset_host (field_valaddr,
8431 off / TARGET_CHAR_BIT);
8432 field_address = cond_offset_target (field_address,
8433 off / TARGET_CHAR_BIT);
8434
8435 /* Get the fixed type of the field. Note that, in this case,
8436 we do not want to get the real type out of the tag: if
8437 the current field is the parent part of a tagged record,
8438 we will get the tag of the object. Clearly wrong: the real
8439 type of the parent is not the real type of the child. We
8440 would end up in an infinite loop. */
8441 field_type = ada_get_base_type (field_type);
8442 field_type = ada_to_fixed_type (field_type, field_valaddr,
8443 field_address, dval, 0);
27f2a97b
JB
8444 /* If the field size is already larger than the maximum
8445 object size, then the record itself will necessarily
8446 be larger than the maximum object size. We need to make
8447 this check now, because the size might be so ridiculously
8448 large (due to an uninitialized variable in the inferior)
8449 that it would cause an overflow when adding it to the
8450 record size. */
c1b5a1a6 8451 ada_ensure_varsize_limit (field_type);
284614f0
JB
8452
8453 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8454 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8455 /* The multiplication can potentially overflow. But because
8456 the field length has been size-checked just above, and
8457 assuming that the maximum size is a reasonable value,
8458 an overflow should not happen in practice. So rather than
8459 adding overflow recovery code to this already complex code,
8460 we just assume that it's not going to happen. */
d94e4f4f 8461 fld_bit_len =
4c4b4cd2
PH
8462 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8463 }
14f9c5c9 8464 else
4c4b4cd2 8465 {
5ded5331
JB
8466 /* Note: If this field's type is a typedef, it is important
8467 to preserve the typedef layer.
8468
8469 Otherwise, we might be transforming a typedef to a fat
8470 pointer (encoding a pointer to an unconstrained array),
8471 into a basic fat pointer (encoding an unconstrained
8472 array). As both types are implemented using the same
8473 structure, the typedef is the only clue which allows us
8474 to distinguish between the two options. Stripping it
8475 would prevent us from printing this field appropriately. */
8476 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8477 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8478 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8479 fld_bit_len =
4c4b4cd2
PH
8480 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8481 else
5ded5331
JB
8482 {
8483 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8484
8485 /* We need to be careful of typedefs when computing
8486 the length of our field. If this is a typedef,
8487 get the length of the target type, not the length
8488 of the typedef. */
8489 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8490 field_type = ada_typedef_target_type (field_type);
8491
8492 fld_bit_len =
8493 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8494 }
4c4b4cd2 8495 }
14f9c5c9 8496 if (off + fld_bit_len > bit_len)
4c4b4cd2 8497 bit_len = off + fld_bit_len;
d94e4f4f 8498 off += fld_bit_len;
4c4b4cd2
PH
8499 TYPE_LENGTH (rtype) =
8500 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8501 }
4c4b4cd2
PH
8502
8503 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8504 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8505 the record. This can happen in the presence of representation
8506 clauses. */
8507 if (variant_field >= 0)
8508 {
8509 struct type *branch_type;
8510
8511 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8512
8513 if (dval0 == NULL)
9f1f738a 8514 {
012370f6
TT
8515 /* Using plain value_from_contents_and_address here causes
8516 problems because we will end up trying to resolve a type
8517 that is currently being constructed. */
8518 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8519 address);
9f1f738a
SA
8520 rtype = value_type (dval);
8521 }
4c4b4cd2
PH
8522 else
8523 dval = dval0;
8524
8525 branch_type =
8526 to_fixed_variant_branch_type
8527 (TYPE_FIELD_TYPE (type, variant_field),
8528 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8529 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8530 if (branch_type == NULL)
8531 {
8532 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8533 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8534 TYPE_NFIELDS (rtype) -= 1;
8535 }
8536 else
8537 {
8538 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8539 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8540 fld_bit_len =
8541 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8542 TARGET_CHAR_BIT;
8543 if (off + fld_bit_len > bit_len)
8544 bit_len = off + fld_bit_len;
8545 TYPE_LENGTH (rtype) =
8546 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8547 }
8548 }
8549
714e53ab
PH
8550 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8551 should contain the alignment of that record, which should be a strictly
8552 positive value. If null or negative, then something is wrong, most
8553 probably in the debug info. In that case, we don't round up the size
0963b4bd 8554 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8555 the current RTYPE length might be good enough for our purposes. */
8556 if (TYPE_LENGTH (type) <= 0)
8557 {
323e0a4a
AC
8558 if (TYPE_NAME (rtype))
8559 warning (_("Invalid type size for `%s' detected: %d."),
8560 TYPE_NAME (rtype), TYPE_LENGTH (type));
8561 else
8562 warning (_("Invalid type size for <unnamed> detected: %d."),
8563 TYPE_LENGTH (type));
714e53ab
PH
8564 }
8565 else
8566 {
8567 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8568 TYPE_LENGTH (type));
8569 }
14f9c5c9
AS
8570
8571 value_free_to_mark (mark);
d2e4a39e 8572 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8573 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8574 return rtype;
8575}
8576
4c4b4cd2
PH
8577/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8578 of 1. */
14f9c5c9 8579
d2e4a39e 8580static struct type *
fc1a4b47 8581template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8582 CORE_ADDR address, struct value *dval0)
8583{
8584 return ada_template_to_fixed_record_type_1 (type, valaddr,
8585 address, dval0, 1);
8586}
8587
8588/* An ordinary record type in which ___XVL-convention fields and
8589 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8590 static approximations, containing all possible fields. Uses
8591 no runtime values. Useless for use in values, but that's OK,
8592 since the results are used only for type determinations. Works on both
8593 structs and unions. Representation note: to save space, we memorize
8594 the result of this function in the TYPE_TARGET_TYPE of the
8595 template type. */
8596
8597static struct type *
8598template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8599{
8600 struct type *type;
8601 int nfields;
8602 int f;
8603
9e195661
PMR
8604 /* No need no do anything if the input type is already fixed. */
8605 if (TYPE_FIXED_INSTANCE (type0))
8606 return type0;
8607
8608 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8609 if (TYPE_TARGET_TYPE (type0) != NULL)
8610 return TYPE_TARGET_TYPE (type0);
8611
9e195661 8612 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8613 type = type0;
9e195661
PMR
8614 nfields = TYPE_NFIELDS (type0);
8615
8616 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8617 recompute all over next time. */
8618 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8619
8620 for (f = 0; f < nfields; f += 1)
8621 {
460efde1 8622 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8623 struct type *new_type;
14f9c5c9 8624
4c4b4cd2 8625 if (is_dynamic_field (type0, f))
460efde1
JB
8626 {
8627 field_type = ada_check_typedef (field_type);
8628 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8629 }
14f9c5c9 8630 else
f192137b 8631 new_type = static_unwrap_type (field_type);
9e195661
PMR
8632
8633 if (new_type != field_type)
8634 {
8635 /* Clone TYPE0 only the first time we get a new field type. */
8636 if (type == type0)
8637 {
8638 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8639 TYPE_CODE (type) = TYPE_CODE (type0);
8640 INIT_CPLUS_SPECIFIC (type);
8641 TYPE_NFIELDS (type) = nfields;
8642 TYPE_FIELDS (type) = (struct field *)
8643 TYPE_ALLOC (type, nfields * sizeof (struct field));
8644 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8645 sizeof (struct field) * nfields);
8646 TYPE_NAME (type) = ada_type_name (type0);
8647 TYPE_TAG_NAME (type) = NULL;
8648 TYPE_FIXED_INSTANCE (type) = 1;
8649 TYPE_LENGTH (type) = 0;
8650 }
8651 TYPE_FIELD_TYPE (type, f) = new_type;
8652 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8653 }
14f9c5c9 8654 }
9e195661 8655
14f9c5c9
AS
8656 return type;
8657}
8658
4c4b4cd2 8659/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8660 whose address in memory is ADDRESS, returns a revision of TYPE,
8661 which should be a non-dynamic-sized record, in which the variant
8662 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8663 for discriminant values in DVAL0, which can be NULL if the record
8664 contains the necessary discriminant values. */
8665
d2e4a39e 8666static struct type *
fc1a4b47 8667to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8668 CORE_ADDR address, struct value *dval0)
14f9c5c9 8669{
d2e4a39e 8670 struct value *mark = value_mark ();
4c4b4cd2 8671 struct value *dval;
d2e4a39e 8672 struct type *rtype;
14f9c5c9
AS
8673 struct type *branch_type;
8674 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8675 int variant_field = variant_field_index (type);
14f9c5c9 8676
4c4b4cd2 8677 if (variant_field == -1)
14f9c5c9
AS
8678 return type;
8679
4c4b4cd2 8680 if (dval0 == NULL)
9f1f738a
SA
8681 {
8682 dval = value_from_contents_and_address (type, valaddr, address);
8683 type = value_type (dval);
8684 }
4c4b4cd2
PH
8685 else
8686 dval = dval0;
8687
e9bb382b 8688 rtype = alloc_type_copy (type);
14f9c5c9 8689 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8690 INIT_CPLUS_SPECIFIC (rtype);
8691 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8692 TYPE_FIELDS (rtype) =
8693 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8694 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8695 sizeof (struct field) * nfields);
14f9c5c9
AS
8696 TYPE_NAME (rtype) = ada_type_name (type);
8697 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8698 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8699 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8700
4c4b4cd2
PH
8701 branch_type = to_fixed_variant_branch_type
8702 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8703 cond_offset_host (valaddr,
4c4b4cd2
PH
8704 TYPE_FIELD_BITPOS (type, variant_field)
8705 / TARGET_CHAR_BIT),
d2e4a39e 8706 cond_offset_target (address,
4c4b4cd2
PH
8707 TYPE_FIELD_BITPOS (type, variant_field)
8708 / TARGET_CHAR_BIT), dval);
d2e4a39e 8709 if (branch_type == NULL)
14f9c5c9 8710 {
4c4b4cd2 8711 int f;
5b4ee69b 8712
4c4b4cd2
PH
8713 for (f = variant_field + 1; f < nfields; f += 1)
8714 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8715 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8716 }
8717 else
8718 {
4c4b4cd2
PH
8719 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8720 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8721 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8722 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8723 }
4c4b4cd2 8724 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8725
4c4b4cd2 8726 value_free_to_mark (mark);
14f9c5c9
AS
8727 return rtype;
8728}
8729
8730/* An ordinary record type (with fixed-length fields) that describes
8731 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8732 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8733 should be in DVAL, a record value; it may be NULL if the object
8734 at ADDR itself contains any necessary discriminant values.
8735 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8736 values from the record are needed. Except in the case that DVAL,
8737 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8738 unchecked) is replaced by a particular branch of the variant.
8739
8740 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8741 is questionable and may be removed. It can arise during the
8742 processing of an unconstrained-array-of-record type where all the
8743 variant branches have exactly the same size. This is because in
8744 such cases, the compiler does not bother to use the XVS convention
8745 when encoding the record. I am currently dubious of this
8746 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8747
d2e4a39e 8748static struct type *
fc1a4b47 8749to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8750 CORE_ADDR address, struct value *dval)
14f9c5c9 8751{
d2e4a39e 8752 struct type *templ_type;
14f9c5c9 8753
876cecd0 8754 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8755 return type0;
8756
d2e4a39e 8757 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8758
8759 if (templ_type != NULL)
8760 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8761 else if (variant_field_index (type0) >= 0)
8762 {
8763 if (dval == NULL && valaddr == NULL && address == 0)
8764 return type0;
8765 return to_record_with_fixed_variant_part (type0, valaddr, address,
8766 dval);
8767 }
14f9c5c9
AS
8768 else
8769 {
876cecd0 8770 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8771 return type0;
8772 }
8773
8774}
8775
8776/* An ordinary record type (with fixed-length fields) that describes
8777 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8778 union type. Any necessary discriminants' values should be in DVAL,
8779 a record value. That is, this routine selects the appropriate
8780 branch of the union at ADDR according to the discriminant value
b1f33ddd 8781 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8782 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8783
d2e4a39e 8784static struct type *
fc1a4b47 8785to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8786 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8787{
8788 int which;
d2e4a39e
AS
8789 struct type *templ_type;
8790 struct type *var_type;
14f9c5c9
AS
8791
8792 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8793 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8794 else
14f9c5c9
AS
8795 var_type = var_type0;
8796
8797 templ_type = ada_find_parallel_type (var_type, "___XVU");
8798
8799 if (templ_type != NULL)
8800 var_type = templ_type;
8801
b1f33ddd
JB
8802 if (is_unchecked_variant (var_type, value_type (dval)))
8803 return var_type0;
d2e4a39e
AS
8804 which =
8805 ada_which_variant_applies (var_type,
0fd88904 8806 value_type (dval), value_contents (dval));
14f9c5c9
AS
8807
8808 if (which < 0)
e9bb382b 8809 return empty_record (var_type);
14f9c5c9 8810 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8811 return to_fixed_record_type
d2e4a39e
AS
8812 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8813 valaddr, address, dval);
4c4b4cd2 8814 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8815 return
8816 to_fixed_record_type
8817 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8818 else
8819 return TYPE_FIELD_TYPE (var_type, which);
8820}
8821
8908fca5
JB
8822/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8823 ENCODING_TYPE, a type following the GNAT conventions for discrete
8824 type encodings, only carries redundant information. */
8825
8826static int
8827ada_is_redundant_range_encoding (struct type *range_type,
8828 struct type *encoding_type)
8829{
108d56a4 8830 const char *bounds_str;
8908fca5
JB
8831 int n;
8832 LONGEST lo, hi;
8833
8834 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8835
005e2509
JB
8836 if (TYPE_CODE (get_base_type (range_type))
8837 != TYPE_CODE (get_base_type (encoding_type)))
8838 {
8839 /* The compiler probably used a simple base type to describe
8840 the range type instead of the range's actual base type,
8841 expecting us to get the real base type from the encoding
8842 anyway. In this situation, the encoding cannot be ignored
8843 as redundant. */
8844 return 0;
8845 }
8846
8908fca5
JB
8847 if (is_dynamic_type (range_type))
8848 return 0;
8849
8850 if (TYPE_NAME (encoding_type) == NULL)
8851 return 0;
8852
8853 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8854 if (bounds_str == NULL)
8855 return 0;
8856
8857 n = 8; /* Skip "___XDLU_". */
8858 if (!ada_scan_number (bounds_str, n, &lo, &n))
8859 return 0;
8860 if (TYPE_LOW_BOUND (range_type) != lo)
8861 return 0;
8862
8863 n += 2; /* Skip the "__" separator between the two bounds. */
8864 if (!ada_scan_number (bounds_str, n, &hi, &n))
8865 return 0;
8866 if (TYPE_HIGH_BOUND (range_type) != hi)
8867 return 0;
8868
8869 return 1;
8870}
8871
8872/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8873 a type following the GNAT encoding for describing array type
8874 indices, only carries redundant information. */
8875
8876static int
8877ada_is_redundant_index_type_desc (struct type *array_type,
8878 struct type *desc_type)
8879{
8880 struct type *this_layer = check_typedef (array_type);
8881 int i;
8882
8883 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8884 {
8885 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8886 TYPE_FIELD_TYPE (desc_type, i)))
8887 return 0;
8888 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8889 }
8890
8891 return 1;
8892}
8893
14f9c5c9
AS
8894/* Assuming that TYPE0 is an array type describing the type of a value
8895 at ADDR, and that DVAL describes a record containing any
8896 discriminants used in TYPE0, returns a type for the value that
8897 contains no dynamic components (that is, no components whose sizes
8898 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8899 true, gives an error message if the resulting type's size is over
4c4b4cd2 8900 varsize_limit. */
14f9c5c9 8901
d2e4a39e
AS
8902static struct type *
8903to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8904 int ignore_too_big)
14f9c5c9 8905{
d2e4a39e
AS
8906 struct type *index_type_desc;
8907 struct type *result;
ad82864c 8908 int constrained_packed_array_p;
931e5bc3 8909 static const char *xa_suffix = "___XA";
14f9c5c9 8910
b0dd7688 8911 type0 = ada_check_typedef (type0);
284614f0 8912 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8913 return type0;
14f9c5c9 8914
ad82864c
JB
8915 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8916 if (constrained_packed_array_p)
8917 type0 = decode_constrained_packed_array_type (type0);
284614f0 8918
931e5bc3
JG
8919 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8920
8921 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8922 encoding suffixed with 'P' may still be generated. If so,
8923 it should be used to find the XA type. */
8924
8925 if (index_type_desc == NULL)
8926 {
1da0522e 8927 const char *type_name = ada_type_name (type0);
931e5bc3 8928
1da0522e 8929 if (type_name != NULL)
931e5bc3 8930 {
1da0522e 8931 const int len = strlen (type_name);
931e5bc3
JG
8932 char *name = (char *) alloca (len + strlen (xa_suffix));
8933
1da0522e 8934 if (type_name[len - 1] == 'P')
931e5bc3 8935 {
1da0522e 8936 strcpy (name, type_name);
931e5bc3
JG
8937 strcpy (name + len - 1, xa_suffix);
8938 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8939 }
8940 }
8941 }
8942
28c85d6c 8943 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8944 if (index_type_desc != NULL
8945 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8946 {
8947 /* Ignore this ___XA parallel type, as it does not bring any
8948 useful information. This allows us to avoid creating fixed
8949 versions of the array's index types, which would be identical
8950 to the original ones. This, in turn, can also help avoid
8951 the creation of fixed versions of the array itself. */
8952 index_type_desc = NULL;
8953 }
8954
14f9c5c9
AS
8955 if (index_type_desc == NULL)
8956 {
61ee279c 8957 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8958
14f9c5c9 8959 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8960 depend on the contents of the array in properly constructed
8961 debugging data. */
529cad9c
PH
8962 /* Create a fixed version of the array element type.
8963 We're not providing the address of an element here,
e1d5a0d2 8964 and thus the actual object value cannot be inspected to do
529cad9c
PH
8965 the conversion. This should not be a problem, since arrays of
8966 unconstrained objects are not allowed. In particular, all
8967 the elements of an array of a tagged type should all be of
8968 the same type specified in the debugging info. No need to
8969 consult the object tag. */
1ed6ede0 8970 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8971
284614f0
JB
8972 /* Make sure we always create a new array type when dealing with
8973 packed array types, since we're going to fix-up the array
8974 type length and element bitsize a little further down. */
ad82864c 8975 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8976 result = type0;
14f9c5c9 8977 else
e9bb382b 8978 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8979 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8980 }
8981 else
8982 {
8983 int i;
8984 struct type *elt_type0;
8985
8986 elt_type0 = type0;
8987 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8988 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8989
8990 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8991 depend on the contents of the array in properly constructed
8992 debugging data. */
529cad9c
PH
8993 /* Create a fixed version of the array element type.
8994 We're not providing the address of an element here,
e1d5a0d2 8995 and thus the actual object value cannot be inspected to do
529cad9c
PH
8996 the conversion. This should not be a problem, since arrays of
8997 unconstrained objects are not allowed. In particular, all
8998 the elements of an array of a tagged type should all be of
8999 the same type specified in the debugging info. No need to
9000 consult the object tag. */
1ed6ede0
JB
9001 result =
9002 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
9003
9004 elt_type0 = type0;
14f9c5c9 9005 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
9006 {
9007 struct type *range_type =
28c85d6c 9008 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 9009
e9bb382b 9010 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 9011 result, range_type);
1ce677a4 9012 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 9013 }
d2e4a39e 9014 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9015 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9016 }
9017
2e6fda7d
JB
9018 /* We want to preserve the type name. This can be useful when
9019 trying to get the type name of a value that has already been
9020 printed (for instance, if the user did "print VAR; whatis $". */
9021 TYPE_NAME (result) = TYPE_NAME (type0);
9022
ad82864c 9023 if (constrained_packed_array_p)
284614f0
JB
9024 {
9025 /* So far, the resulting type has been created as if the original
9026 type was a regular (non-packed) array type. As a result, the
9027 bitsize of the array elements needs to be set again, and the array
9028 length needs to be recomputed based on that bitsize. */
9029 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9030 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9031
9032 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9033 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9034 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9035 TYPE_LENGTH (result)++;
9036 }
9037
876cecd0 9038 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9039 return result;
d2e4a39e 9040}
14f9c5c9
AS
9041
9042
9043/* A standard type (containing no dynamically sized components)
9044 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9045 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9046 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9047 ADDRESS or in VALADDR contains these discriminants.
9048
1ed6ede0
JB
9049 If CHECK_TAG is not null, in the case of tagged types, this function
9050 attempts to locate the object's tag and use it to compute the actual
9051 type. However, when ADDRESS is null, we cannot use it to determine the
9052 location of the tag, and therefore compute the tagged type's actual type.
9053 So we return the tagged type without consulting the tag. */
529cad9c 9054
f192137b
JB
9055static struct type *
9056ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9057 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9058{
61ee279c 9059 type = ada_check_typedef (type);
d2e4a39e
AS
9060 switch (TYPE_CODE (type))
9061 {
9062 default:
14f9c5c9 9063 return type;
d2e4a39e 9064 case TYPE_CODE_STRUCT:
4c4b4cd2 9065 {
76a01679 9066 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9067 struct type *fixed_record_type =
9068 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9069
529cad9c
PH
9070 /* If STATIC_TYPE is a tagged type and we know the object's address,
9071 then we can determine its tag, and compute the object's actual
0963b4bd 9072 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9073 type (the parent part of the record may have dynamic fields
9074 and the way the location of _tag is expressed may depend on
9075 them). */
529cad9c 9076
1ed6ede0 9077 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9078 {
b50d69b5
JG
9079 struct value *tag =
9080 value_tag_from_contents_and_address
9081 (fixed_record_type,
9082 valaddr,
9083 address);
9084 struct type *real_type = type_from_tag (tag);
9085 struct value *obj =
9086 value_from_contents_and_address (fixed_record_type,
9087 valaddr,
9088 address);
9f1f738a 9089 fixed_record_type = value_type (obj);
76a01679 9090 if (real_type != NULL)
b50d69b5
JG
9091 return to_fixed_record_type
9092 (real_type, NULL,
9093 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9094 }
4af88198
JB
9095
9096 /* Check to see if there is a parallel ___XVZ variable.
9097 If there is, then it provides the actual size of our type. */
9098 else if (ada_type_name (fixed_record_type) != NULL)
9099 {
0d5cff50 9100 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9101 char *xvz_name
9102 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9103 bool xvz_found = false;
4af88198
JB
9104 LONGEST size;
9105
88c15c34 9106 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9107 TRY
9108 {
9109 xvz_found = get_int_var_value (xvz_name, size);
9110 }
9111 CATCH (except, RETURN_MASK_ERROR)
9112 {
9113 /* We found the variable, but somehow failed to read
9114 its value. Rethrow the same error, but with a little
9115 bit more information, to help the user understand
9116 what went wrong (Eg: the variable might have been
9117 optimized out). */
9118 throw_error (except.error,
9119 _("unable to read value of %s (%s)"),
9120 xvz_name, except.message);
9121 }
9122 END_CATCH
9123
9124 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9125 {
9126 fixed_record_type = copy_type (fixed_record_type);
9127 TYPE_LENGTH (fixed_record_type) = size;
9128
9129 /* The FIXED_RECORD_TYPE may have be a stub. We have
9130 observed this when the debugging info is STABS, and
9131 apparently it is something that is hard to fix.
9132
9133 In practice, we don't need the actual type definition
9134 at all, because the presence of the XVZ variable allows us
9135 to assume that there must be a XVS type as well, which we
9136 should be able to use later, when we need the actual type
9137 definition.
9138
9139 In the meantime, pretend that the "fixed" type we are
9140 returning is NOT a stub, because this can cause trouble
9141 when using this type to create new types targeting it.
9142 Indeed, the associated creation routines often check
9143 whether the target type is a stub and will try to replace
0963b4bd 9144 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9145 might cause the new type to have the wrong size too.
9146 Consider the case of an array, for instance, where the size
9147 of the array is computed from the number of elements in
9148 our array multiplied by the size of its element. */
9149 TYPE_STUB (fixed_record_type) = 0;
9150 }
9151 }
1ed6ede0 9152 return fixed_record_type;
4c4b4cd2 9153 }
d2e4a39e 9154 case TYPE_CODE_ARRAY:
4c4b4cd2 9155 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9156 case TYPE_CODE_UNION:
9157 if (dval == NULL)
4c4b4cd2 9158 return type;
d2e4a39e 9159 else
4c4b4cd2 9160 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9161 }
14f9c5c9
AS
9162}
9163
f192137b
JB
9164/* The same as ada_to_fixed_type_1, except that it preserves the type
9165 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9166
9167 The typedef layer needs be preserved in order to differentiate between
9168 arrays and array pointers when both types are implemented using the same
9169 fat pointer. In the array pointer case, the pointer is encoded as
9170 a typedef of the pointer type. For instance, considering:
9171
9172 type String_Access is access String;
9173 S1 : String_Access := null;
9174
9175 To the debugger, S1 is defined as a typedef of type String. But
9176 to the user, it is a pointer. So if the user tries to print S1,
9177 we should not dereference the array, but print the array address
9178 instead.
9179
9180 If we didn't preserve the typedef layer, we would lose the fact that
9181 the type is to be presented as a pointer (needs de-reference before
9182 being printed). And we would also use the source-level type name. */
f192137b
JB
9183
9184struct type *
9185ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9186 CORE_ADDR address, struct value *dval, int check_tag)
9187
9188{
9189 struct type *fixed_type =
9190 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9191
96dbd2c1
JB
9192 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9193 then preserve the typedef layer.
9194
9195 Implementation note: We can only check the main-type portion of
9196 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9197 from TYPE now returns a type that has the same instance flags
9198 as TYPE. For instance, if TYPE is a "typedef const", and its
9199 target type is a "struct", then the typedef elimination will return
9200 a "const" version of the target type. See check_typedef for more
9201 details about how the typedef layer elimination is done.
9202
9203 brobecker/2010-11-19: It seems to me that the only case where it is
9204 useful to preserve the typedef layer is when dealing with fat pointers.
9205 Perhaps, we could add a check for that and preserve the typedef layer
9206 only in that situation. But this seems unecessary so far, probably
9207 because we call check_typedef/ada_check_typedef pretty much everywhere.
9208 */
f192137b 9209 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9210 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9211 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9212 return type;
9213
9214 return fixed_type;
9215}
9216
14f9c5c9 9217/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9218 TYPE0, but based on no runtime data. */
14f9c5c9 9219
d2e4a39e
AS
9220static struct type *
9221to_static_fixed_type (struct type *type0)
14f9c5c9 9222{
d2e4a39e 9223 struct type *type;
14f9c5c9
AS
9224
9225 if (type0 == NULL)
9226 return NULL;
9227
876cecd0 9228 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9229 return type0;
9230
61ee279c 9231 type0 = ada_check_typedef (type0);
d2e4a39e 9232
14f9c5c9
AS
9233 switch (TYPE_CODE (type0))
9234 {
9235 default:
9236 return type0;
9237 case TYPE_CODE_STRUCT:
9238 type = dynamic_template_type (type0);
d2e4a39e 9239 if (type != NULL)
4c4b4cd2
PH
9240 return template_to_static_fixed_type (type);
9241 else
9242 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9243 case TYPE_CODE_UNION:
9244 type = ada_find_parallel_type (type0, "___XVU");
9245 if (type != NULL)
4c4b4cd2
PH
9246 return template_to_static_fixed_type (type);
9247 else
9248 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9249 }
9250}
9251
4c4b4cd2
PH
9252/* A static approximation of TYPE with all type wrappers removed. */
9253
d2e4a39e
AS
9254static struct type *
9255static_unwrap_type (struct type *type)
14f9c5c9
AS
9256{
9257 if (ada_is_aligner_type (type))
9258 {
61ee279c 9259 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9260 if (ada_type_name (type1) == NULL)
4c4b4cd2 9261 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9262
9263 return static_unwrap_type (type1);
9264 }
d2e4a39e 9265 else
14f9c5c9 9266 {
d2e4a39e 9267 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9268
d2e4a39e 9269 if (raw_real_type == type)
4c4b4cd2 9270 return type;
14f9c5c9 9271 else
4c4b4cd2 9272 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9273 }
9274}
9275
9276/* In some cases, incomplete and private types require
4c4b4cd2 9277 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9278 type Foo;
9279 type FooP is access Foo;
9280 V: FooP;
9281 type Foo is array ...;
4c4b4cd2 9282 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9283 cross-references to such types, we instead substitute for FooP a
9284 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9285 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9286
9287/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9288 exists, otherwise TYPE. */
9289
d2e4a39e 9290struct type *
61ee279c 9291ada_check_typedef (struct type *type)
14f9c5c9 9292{
727e3d2e
JB
9293 if (type == NULL)
9294 return NULL;
9295
720d1a40
JB
9296 /* If our type is a typedef type of a fat pointer, then we're done.
9297 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9298 what allows us to distinguish between fat pointers that represent
9299 array types, and fat pointers that represent array access types
9300 (in both cases, the compiler implements them as fat pointers). */
9301 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9302 && is_thick_pntr (ada_typedef_target_type (type)))
9303 return type;
9304
f168693b 9305 type = check_typedef (type);
14f9c5c9 9306 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9307 || !TYPE_STUB (type)
14f9c5c9
AS
9308 || TYPE_TAG_NAME (type) == NULL)
9309 return type;
d2e4a39e 9310 else
14f9c5c9 9311 {
0d5cff50 9312 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9313 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9314
05e522ef
JB
9315 if (type1 == NULL)
9316 return type;
9317
9318 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9319 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9320 types, only for the typedef-to-array types). If that's the case,
9321 strip the typedef layer. */
9322 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9323 type1 = ada_check_typedef (type1);
9324
9325 return type1;
14f9c5c9
AS
9326 }
9327}
9328
9329/* A value representing the data at VALADDR/ADDRESS as described by
9330 type TYPE0, but with a standard (static-sized) type that correctly
9331 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9332 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9333 creation of struct values]. */
14f9c5c9 9334
4c4b4cd2
PH
9335static struct value *
9336ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9337 struct value *val0)
14f9c5c9 9338{
1ed6ede0 9339 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9340
14f9c5c9
AS
9341 if (type == type0 && val0 != NULL)
9342 return val0;
d2e4a39e 9343 else
4c4b4cd2
PH
9344 return value_from_contents_and_address (type, 0, address);
9345}
9346
9347/* A value representing VAL, but with a standard (static-sized) type
9348 that correctly describes it. Does not necessarily create a new
9349 value. */
9350
0c3acc09 9351struct value *
4c4b4cd2
PH
9352ada_to_fixed_value (struct value *val)
9353{
c48db5ca
JB
9354 val = unwrap_value (val);
9355 val = ada_to_fixed_value_create (value_type (val),
9356 value_address (val),
9357 val);
9358 return val;
14f9c5c9 9359}
d2e4a39e 9360\f
14f9c5c9 9361
14f9c5c9
AS
9362/* Attributes */
9363
4c4b4cd2
PH
9364/* Table mapping attribute numbers to names.
9365 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9366
d2e4a39e 9367static const char *attribute_names[] = {
14f9c5c9
AS
9368 "<?>",
9369
d2e4a39e 9370 "first",
14f9c5c9
AS
9371 "last",
9372 "length",
9373 "image",
14f9c5c9
AS
9374 "max",
9375 "min",
4c4b4cd2
PH
9376 "modulus",
9377 "pos",
9378 "size",
9379 "tag",
14f9c5c9 9380 "val",
14f9c5c9
AS
9381 0
9382};
9383
d2e4a39e 9384const char *
4c4b4cd2 9385ada_attribute_name (enum exp_opcode n)
14f9c5c9 9386{
4c4b4cd2
PH
9387 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9388 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9389 else
9390 return attribute_names[0];
9391}
9392
4c4b4cd2 9393/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9394
4c4b4cd2
PH
9395static LONGEST
9396pos_atr (struct value *arg)
14f9c5c9 9397{
24209737
PH
9398 struct value *val = coerce_ref (arg);
9399 struct type *type = value_type (val);
aa715135 9400 LONGEST result;
14f9c5c9 9401
d2e4a39e 9402 if (!discrete_type_p (type))
323e0a4a 9403 error (_("'POS only defined on discrete types"));
14f9c5c9 9404
aa715135
JG
9405 if (!discrete_position (type, value_as_long (val), &result))
9406 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9407
aa715135 9408 return result;
4c4b4cd2
PH
9409}
9410
9411static struct value *
3cb382c9 9412value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9413{
3cb382c9 9414 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9415}
9416
4c4b4cd2 9417/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9418
d2e4a39e
AS
9419static struct value *
9420value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9421{
d2e4a39e 9422 if (!discrete_type_p (type))
323e0a4a 9423 error (_("'VAL only defined on discrete types"));
df407dfe 9424 if (!integer_type_p (value_type (arg)))
323e0a4a 9425 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9426
9427 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9428 {
9429 long pos = value_as_long (arg);
5b4ee69b 9430
14f9c5c9 9431 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9432 error (_("argument to 'VAL out of range"));
14e75d8e 9433 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9434 }
9435 else
9436 return value_from_longest (type, value_as_long (arg));
9437}
14f9c5c9 9438\f
d2e4a39e 9439
4c4b4cd2 9440 /* Evaluation */
14f9c5c9 9441
4c4b4cd2
PH
9442/* True if TYPE appears to be an Ada character type.
9443 [At the moment, this is true only for Character and Wide_Character;
9444 It is a heuristic test that could stand improvement]. */
14f9c5c9 9445
d2e4a39e
AS
9446int
9447ada_is_character_type (struct type *type)
14f9c5c9 9448{
7b9f71f2
JB
9449 const char *name;
9450
9451 /* If the type code says it's a character, then assume it really is,
9452 and don't check any further. */
9453 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9454 return 1;
9455
9456 /* Otherwise, assume it's a character type iff it is a discrete type
9457 with a known character type name. */
9458 name = ada_type_name (type);
9459 return (name != NULL
9460 && (TYPE_CODE (type) == TYPE_CODE_INT
9461 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9462 && (strcmp (name, "character") == 0
9463 || strcmp (name, "wide_character") == 0
5a517ebd 9464 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9465 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9466}
9467
4c4b4cd2 9468/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9469
9470int
ebf56fd3 9471ada_is_string_type (struct type *type)
14f9c5c9 9472{
61ee279c 9473 type = ada_check_typedef (type);
d2e4a39e 9474 if (type != NULL
14f9c5c9 9475 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9476 && (ada_is_simple_array_type (type)
9477 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9478 && ada_array_arity (type) == 1)
9479 {
9480 struct type *elttype = ada_array_element_type (type, 1);
9481
9482 return ada_is_character_type (elttype);
9483 }
d2e4a39e 9484 else
14f9c5c9
AS
9485 return 0;
9486}
9487
5bf03f13
JB
9488/* The compiler sometimes provides a parallel XVS type for a given
9489 PAD type. Normally, it is safe to follow the PAD type directly,
9490 but older versions of the compiler have a bug that causes the offset
9491 of its "F" field to be wrong. Following that field in that case
9492 would lead to incorrect results, but this can be worked around
9493 by ignoring the PAD type and using the associated XVS type instead.
9494
9495 Set to True if the debugger should trust the contents of PAD types.
9496 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9497static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9498
9499/* True if TYPE is a struct type introduced by the compiler to force the
9500 alignment of a value. Such types have a single field with a
4c4b4cd2 9501 distinctive name. */
14f9c5c9
AS
9502
9503int
ebf56fd3 9504ada_is_aligner_type (struct type *type)
14f9c5c9 9505{
61ee279c 9506 type = ada_check_typedef (type);
714e53ab 9507
5bf03f13 9508 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9509 return 0;
9510
14f9c5c9 9511 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9512 && TYPE_NFIELDS (type) == 1
9513 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9514}
9515
9516/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9517 the parallel type. */
14f9c5c9 9518
d2e4a39e
AS
9519struct type *
9520ada_get_base_type (struct type *raw_type)
14f9c5c9 9521{
d2e4a39e
AS
9522 struct type *real_type_namer;
9523 struct type *raw_real_type;
14f9c5c9
AS
9524
9525 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9526 return raw_type;
9527
284614f0
JB
9528 if (ada_is_aligner_type (raw_type))
9529 /* The encoding specifies that we should always use the aligner type.
9530 So, even if this aligner type has an associated XVS type, we should
9531 simply ignore it.
9532
9533 According to the compiler gurus, an XVS type parallel to an aligner
9534 type may exist because of a stabs limitation. In stabs, aligner
9535 types are empty because the field has a variable-sized type, and
9536 thus cannot actually be used as an aligner type. As a result,
9537 we need the associated parallel XVS type to decode the type.
9538 Since the policy in the compiler is to not change the internal
9539 representation based on the debugging info format, we sometimes
9540 end up having a redundant XVS type parallel to the aligner type. */
9541 return raw_type;
9542
14f9c5c9 9543 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9544 if (real_type_namer == NULL
14f9c5c9
AS
9545 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9546 || TYPE_NFIELDS (real_type_namer) != 1)
9547 return raw_type;
9548
f80d3ff2
JB
9549 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9550 {
9551 /* This is an older encoding form where the base type needs to be
9552 looked up by name. We prefer the newer enconding because it is
9553 more efficient. */
9554 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9555 if (raw_real_type == NULL)
9556 return raw_type;
9557 else
9558 return raw_real_type;
9559 }
9560
9561 /* The field in our XVS type is a reference to the base type. */
9562 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9563}
14f9c5c9 9564
4c4b4cd2 9565/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9566
d2e4a39e
AS
9567struct type *
9568ada_aligned_type (struct type *type)
14f9c5c9
AS
9569{
9570 if (ada_is_aligner_type (type))
9571 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9572 else
9573 return ada_get_base_type (type);
9574}
9575
9576
9577/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9578 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9579
fc1a4b47
AC
9580const gdb_byte *
9581ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9582{
d2e4a39e 9583 if (ada_is_aligner_type (type))
14f9c5c9 9584 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9585 valaddr +
9586 TYPE_FIELD_BITPOS (type,
9587 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9588 else
9589 return valaddr;
9590}
9591
4c4b4cd2
PH
9592
9593
14f9c5c9 9594/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9595 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9596const char *
9597ada_enum_name (const char *name)
14f9c5c9 9598{
4c4b4cd2
PH
9599 static char *result;
9600 static size_t result_len = 0;
e6a959d6 9601 const char *tmp;
14f9c5c9 9602
4c4b4cd2
PH
9603 /* First, unqualify the enumeration name:
9604 1. Search for the last '.' character. If we find one, then skip
177b42fe 9605 all the preceding characters, the unqualified name starts
76a01679 9606 right after that dot.
4c4b4cd2 9607 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9608 translates dots into "__". Search forward for double underscores,
9609 but stop searching when we hit an overloading suffix, which is
9610 of the form "__" followed by digits. */
4c4b4cd2 9611
c3e5cd34
PH
9612 tmp = strrchr (name, '.');
9613 if (tmp != NULL)
4c4b4cd2
PH
9614 name = tmp + 1;
9615 else
14f9c5c9 9616 {
4c4b4cd2
PH
9617 while ((tmp = strstr (name, "__")) != NULL)
9618 {
9619 if (isdigit (tmp[2]))
9620 break;
9621 else
9622 name = tmp + 2;
9623 }
14f9c5c9
AS
9624 }
9625
9626 if (name[0] == 'Q')
9627 {
14f9c5c9 9628 int v;
5b4ee69b 9629
14f9c5c9 9630 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9631 {
9632 if (sscanf (name + 2, "%x", &v) != 1)
9633 return name;
9634 }
14f9c5c9 9635 else
4c4b4cd2 9636 return name;
14f9c5c9 9637
4c4b4cd2 9638 GROW_VECT (result, result_len, 16);
14f9c5c9 9639 if (isascii (v) && isprint (v))
88c15c34 9640 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9641 else if (name[1] == 'U')
88c15c34 9642 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9643 else
88c15c34 9644 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9645
9646 return result;
9647 }
d2e4a39e 9648 else
4c4b4cd2 9649 {
c3e5cd34
PH
9650 tmp = strstr (name, "__");
9651 if (tmp == NULL)
9652 tmp = strstr (name, "$");
9653 if (tmp != NULL)
4c4b4cd2
PH
9654 {
9655 GROW_VECT (result, result_len, tmp - name + 1);
9656 strncpy (result, name, tmp - name);
9657 result[tmp - name] = '\0';
9658 return result;
9659 }
9660
9661 return name;
9662 }
14f9c5c9
AS
9663}
9664
14f9c5c9
AS
9665/* Evaluate the subexpression of EXP starting at *POS as for
9666 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9667 expression. */
14f9c5c9 9668
d2e4a39e
AS
9669static struct value *
9670evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9671{
4b27a620 9672 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9673}
9674
9675/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9676 value it wraps. */
14f9c5c9 9677
d2e4a39e
AS
9678static struct value *
9679unwrap_value (struct value *val)
14f9c5c9 9680{
df407dfe 9681 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9682
14f9c5c9
AS
9683 if (ada_is_aligner_type (type))
9684 {
de4d072f 9685 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9686 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9687
14f9c5c9 9688 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9689 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9690
9691 return unwrap_value (v);
9692 }
d2e4a39e 9693 else
14f9c5c9 9694 {
d2e4a39e 9695 struct type *raw_real_type =
61ee279c 9696 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9697
5bf03f13
JB
9698 /* If there is no parallel XVS or XVE type, then the value is
9699 already unwrapped. Return it without further modification. */
9700 if ((type == raw_real_type)
9701 && ada_find_parallel_type (type, "___XVE") == NULL)
9702 return val;
14f9c5c9 9703
d2e4a39e 9704 return
4c4b4cd2
PH
9705 coerce_unspec_val_to_type
9706 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9707 value_address (val),
1ed6ede0 9708 NULL, 1));
14f9c5c9
AS
9709 }
9710}
d2e4a39e
AS
9711
9712static struct value *
50eff16b 9713cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9714{
50eff16b
UW
9715 struct value *scale = ada_scaling_factor (value_type (arg));
9716 arg = value_cast (value_type (scale), arg);
14f9c5c9 9717
50eff16b
UW
9718 arg = value_binop (arg, scale, BINOP_MUL);
9719 return value_cast (type, arg);
14f9c5c9
AS
9720}
9721
d2e4a39e 9722static struct value *
50eff16b 9723cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9724{
50eff16b
UW
9725 if (type == value_type (arg))
9726 return arg;
5b4ee69b 9727
50eff16b
UW
9728 struct value *scale = ada_scaling_factor (type);
9729 if (ada_is_fixed_point_type (value_type (arg)))
9730 arg = cast_from_fixed (value_type (scale), arg);
9731 else
9732 arg = value_cast (value_type (scale), arg);
9733
9734 arg = value_binop (arg, scale, BINOP_DIV);
9735 return value_cast (type, arg);
14f9c5c9
AS
9736}
9737
d99dcf51
JB
9738/* Given two array types T1 and T2, return nonzero iff both arrays
9739 contain the same number of elements. */
9740
9741static int
9742ada_same_array_size_p (struct type *t1, struct type *t2)
9743{
9744 LONGEST lo1, hi1, lo2, hi2;
9745
9746 /* Get the array bounds in order to verify that the size of
9747 the two arrays match. */
9748 if (!get_array_bounds (t1, &lo1, &hi1)
9749 || !get_array_bounds (t2, &lo2, &hi2))
9750 error (_("unable to determine array bounds"));
9751
9752 /* To make things easier for size comparison, normalize a bit
9753 the case of empty arrays by making sure that the difference
9754 between upper bound and lower bound is always -1. */
9755 if (lo1 > hi1)
9756 hi1 = lo1 - 1;
9757 if (lo2 > hi2)
9758 hi2 = lo2 - 1;
9759
9760 return (hi1 - lo1 == hi2 - lo2);
9761}
9762
9763/* Assuming that VAL is an array of integrals, and TYPE represents
9764 an array with the same number of elements, but with wider integral
9765 elements, return an array "casted" to TYPE. In practice, this
9766 means that the returned array is built by casting each element
9767 of the original array into TYPE's (wider) element type. */
9768
9769static struct value *
9770ada_promote_array_of_integrals (struct type *type, struct value *val)
9771{
9772 struct type *elt_type = TYPE_TARGET_TYPE (type);
9773 LONGEST lo, hi;
9774 struct value *res;
9775 LONGEST i;
9776
9777 /* Verify that both val and type are arrays of scalars, and
9778 that the size of val's elements is smaller than the size
9779 of type's element. */
9780 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9781 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9782 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9783 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9784 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9785 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9786
9787 if (!get_array_bounds (type, &lo, &hi))
9788 error (_("unable to determine array bounds"));
9789
9790 res = allocate_value (type);
9791
9792 /* Promote each array element. */
9793 for (i = 0; i < hi - lo + 1; i++)
9794 {
9795 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9796
9797 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9798 value_contents_all (elt), TYPE_LENGTH (elt_type));
9799 }
9800
9801 return res;
9802}
9803
4c4b4cd2
PH
9804/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9805 return the converted value. */
9806
d2e4a39e
AS
9807static struct value *
9808coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9809{
df407dfe 9810 struct type *type2 = value_type (val);
5b4ee69b 9811
14f9c5c9
AS
9812 if (type == type2)
9813 return val;
9814
61ee279c
PH
9815 type2 = ada_check_typedef (type2);
9816 type = ada_check_typedef (type);
14f9c5c9 9817
d2e4a39e
AS
9818 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9819 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9820 {
9821 val = ada_value_ind (val);
df407dfe 9822 type2 = value_type (val);
14f9c5c9
AS
9823 }
9824
d2e4a39e 9825 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9826 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9827 {
d99dcf51
JB
9828 if (!ada_same_array_size_p (type, type2))
9829 error (_("cannot assign arrays of different length"));
9830
9831 if (is_integral_type (TYPE_TARGET_TYPE (type))
9832 && is_integral_type (TYPE_TARGET_TYPE (type2))
9833 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9834 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9835 {
9836 /* Allow implicit promotion of the array elements to
9837 a wider type. */
9838 return ada_promote_array_of_integrals (type, val);
9839 }
9840
9841 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9842 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9843 error (_("Incompatible types in assignment"));
04624583 9844 deprecated_set_value_type (val, type);
14f9c5c9 9845 }
d2e4a39e 9846 return val;
14f9c5c9
AS
9847}
9848
4c4b4cd2
PH
9849static struct value *
9850ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9851{
9852 struct value *val;
9853 struct type *type1, *type2;
9854 LONGEST v, v1, v2;
9855
994b9211
AC
9856 arg1 = coerce_ref (arg1);
9857 arg2 = coerce_ref (arg2);
18af8284
JB
9858 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9859 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9860
76a01679
JB
9861 if (TYPE_CODE (type1) != TYPE_CODE_INT
9862 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9863 return value_binop (arg1, arg2, op);
9864
76a01679 9865 switch (op)
4c4b4cd2
PH
9866 {
9867 case BINOP_MOD:
9868 case BINOP_DIV:
9869 case BINOP_REM:
9870 break;
9871 default:
9872 return value_binop (arg1, arg2, op);
9873 }
9874
9875 v2 = value_as_long (arg2);
9876 if (v2 == 0)
323e0a4a 9877 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9878
9879 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9880 return value_binop (arg1, arg2, op);
9881
9882 v1 = value_as_long (arg1);
9883 switch (op)
9884 {
9885 case BINOP_DIV:
9886 v = v1 / v2;
76a01679
JB
9887 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9888 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9889 break;
9890 case BINOP_REM:
9891 v = v1 % v2;
76a01679
JB
9892 if (v * v1 < 0)
9893 v -= v2;
4c4b4cd2
PH
9894 break;
9895 default:
9896 /* Should not reach this point. */
9897 v = 0;
9898 }
9899
9900 val = allocate_value (type1);
990a07ab 9901 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9902 TYPE_LENGTH (value_type (val)),
9903 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9904 return val;
9905}
9906
9907static int
9908ada_value_equal (struct value *arg1, struct value *arg2)
9909{
df407dfe
AC
9910 if (ada_is_direct_array_type (value_type (arg1))
9911 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9912 {
79e8fcaa
JB
9913 struct type *arg1_type, *arg2_type;
9914
f58b38bf
JB
9915 /* Automatically dereference any array reference before
9916 we attempt to perform the comparison. */
9917 arg1 = ada_coerce_ref (arg1);
9918 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9919
4c4b4cd2
PH
9920 arg1 = ada_coerce_to_simple_array (arg1);
9921 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9922
9923 arg1_type = ada_check_typedef (value_type (arg1));
9924 arg2_type = ada_check_typedef (value_type (arg2));
9925
9926 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9927 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9928 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9929 /* FIXME: The following works only for types whose
76a01679
JB
9930 representations use all bits (no padding or undefined bits)
9931 and do not have user-defined equality. */
79e8fcaa
JB
9932 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9933 && memcmp (value_contents (arg1), value_contents (arg2),
9934 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9935 }
9936 return value_equal (arg1, arg2);
9937}
9938
52ce6436
PH
9939/* Total number of component associations in the aggregate starting at
9940 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9941 OP_AGGREGATE. */
52ce6436
PH
9942
9943static int
9944num_component_specs (struct expression *exp, int pc)
9945{
9946 int n, m, i;
5b4ee69b 9947
52ce6436
PH
9948 m = exp->elts[pc + 1].longconst;
9949 pc += 3;
9950 n = 0;
9951 for (i = 0; i < m; i += 1)
9952 {
9953 switch (exp->elts[pc].opcode)
9954 {
9955 default:
9956 n += 1;
9957 break;
9958 case OP_CHOICES:
9959 n += exp->elts[pc + 1].longconst;
9960 break;
9961 }
9962 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9963 }
9964 return n;
9965}
9966
9967/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9968 component of LHS (a simple array or a record), updating *POS past
9969 the expression, assuming that LHS is contained in CONTAINER. Does
9970 not modify the inferior's memory, nor does it modify LHS (unless
9971 LHS == CONTAINER). */
9972
9973static void
9974assign_component (struct value *container, struct value *lhs, LONGEST index,
9975 struct expression *exp, int *pos)
9976{
9977 struct value *mark = value_mark ();
9978 struct value *elt;
0e2da9f0 9979 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9980
0e2da9f0 9981 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9982 {
22601c15
UW
9983 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9984 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9985
52ce6436
PH
9986 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9987 }
9988 else
9989 {
9990 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9991 elt = ada_to_fixed_value (elt);
52ce6436
PH
9992 }
9993
9994 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9995 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9996 else
9997 value_assign_to_component (container, elt,
9998 ada_evaluate_subexp (NULL, exp, pos,
9999 EVAL_NORMAL));
10000
10001 value_free_to_mark (mark);
10002}
10003
10004/* Assuming that LHS represents an lvalue having a record or array
10005 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10006 of that aggregate's value to LHS, advancing *POS past the
10007 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10008 lvalue containing LHS (possibly LHS itself). Does not modify
10009 the inferior's memory, nor does it modify the contents of
0963b4bd 10010 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10011
10012static struct value *
10013assign_aggregate (struct value *container,
10014 struct value *lhs, struct expression *exp,
10015 int *pos, enum noside noside)
10016{
10017 struct type *lhs_type;
10018 int n = exp->elts[*pos+1].longconst;
10019 LONGEST low_index, high_index;
10020 int num_specs;
10021 LONGEST *indices;
10022 int max_indices, num_indices;
52ce6436 10023 int i;
52ce6436
PH
10024
10025 *pos += 3;
10026 if (noside != EVAL_NORMAL)
10027 {
52ce6436
PH
10028 for (i = 0; i < n; i += 1)
10029 ada_evaluate_subexp (NULL, exp, pos, noside);
10030 return container;
10031 }
10032
10033 container = ada_coerce_ref (container);
10034 if (ada_is_direct_array_type (value_type (container)))
10035 container = ada_coerce_to_simple_array (container);
10036 lhs = ada_coerce_ref (lhs);
10037 if (!deprecated_value_modifiable (lhs))
10038 error (_("Left operand of assignment is not a modifiable lvalue."));
10039
0e2da9f0 10040 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10041 if (ada_is_direct_array_type (lhs_type))
10042 {
10043 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10044 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10045 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10046 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10047 }
10048 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10049 {
10050 low_index = 0;
10051 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10052 }
10053 else
10054 error (_("Left-hand side must be array or record."));
10055
10056 num_specs = num_component_specs (exp, *pos - 3);
10057 max_indices = 4 * num_specs + 4;
8d749320 10058 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10059 indices[0] = indices[1] = low_index - 1;
10060 indices[2] = indices[3] = high_index + 1;
10061 num_indices = 4;
10062
10063 for (i = 0; i < n; i += 1)
10064 {
10065 switch (exp->elts[*pos].opcode)
10066 {
1fbf5ada
JB
10067 case OP_CHOICES:
10068 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10069 &num_indices, max_indices,
10070 low_index, high_index);
10071 break;
10072 case OP_POSITIONAL:
10073 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10074 &num_indices, max_indices,
10075 low_index, high_index);
1fbf5ada
JB
10076 break;
10077 case OP_OTHERS:
10078 if (i != n-1)
10079 error (_("Misplaced 'others' clause"));
10080 aggregate_assign_others (container, lhs, exp, pos, indices,
10081 num_indices, low_index, high_index);
10082 break;
10083 default:
10084 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10085 }
10086 }
10087
10088 return container;
10089}
10090
10091/* Assign into the component of LHS indexed by the OP_POSITIONAL
10092 construct at *POS, updating *POS past the construct, given that
10093 the positions are relative to lower bound LOW, where HIGH is the
10094 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10095 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10096 assign_aggregate. */
52ce6436
PH
10097static void
10098aggregate_assign_positional (struct value *container,
10099 struct value *lhs, struct expression *exp,
10100 int *pos, LONGEST *indices, int *num_indices,
10101 int max_indices, LONGEST low, LONGEST high)
10102{
10103 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10104
10105 if (ind - 1 == high)
e1d5a0d2 10106 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10107 if (ind <= high)
10108 {
10109 add_component_interval (ind, ind, indices, num_indices, max_indices);
10110 *pos += 3;
10111 assign_component (container, lhs, ind, exp, pos);
10112 }
10113 else
10114 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10115}
10116
10117/* Assign into the components of LHS indexed by the OP_CHOICES
10118 construct at *POS, updating *POS past the construct, given that
10119 the allowable indices are LOW..HIGH. Record the indices assigned
10120 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10121 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10122static void
10123aggregate_assign_from_choices (struct value *container,
10124 struct value *lhs, struct expression *exp,
10125 int *pos, LONGEST *indices, int *num_indices,
10126 int max_indices, LONGEST low, LONGEST high)
10127{
10128 int j;
10129 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10130 int choice_pos, expr_pc;
10131 int is_array = ada_is_direct_array_type (value_type (lhs));
10132
10133 choice_pos = *pos += 3;
10134
10135 for (j = 0; j < n_choices; j += 1)
10136 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10137 expr_pc = *pos;
10138 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10139
10140 for (j = 0; j < n_choices; j += 1)
10141 {
10142 LONGEST lower, upper;
10143 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10144
52ce6436
PH
10145 if (op == OP_DISCRETE_RANGE)
10146 {
10147 choice_pos += 1;
10148 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10149 EVAL_NORMAL));
10150 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10151 EVAL_NORMAL));
10152 }
10153 else if (is_array)
10154 {
10155 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10156 EVAL_NORMAL));
10157 upper = lower;
10158 }
10159 else
10160 {
10161 int ind;
0d5cff50 10162 const char *name;
5b4ee69b 10163
52ce6436
PH
10164 switch (op)
10165 {
10166 case OP_NAME:
10167 name = &exp->elts[choice_pos + 2].string;
10168 break;
10169 case OP_VAR_VALUE:
10170 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10171 break;
10172 default:
10173 error (_("Invalid record component association."));
10174 }
10175 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10176 ind = 0;
10177 if (! find_struct_field (name, value_type (lhs), 0,
10178 NULL, NULL, NULL, NULL, &ind))
10179 error (_("Unknown component name: %s."), name);
10180 lower = upper = ind;
10181 }
10182
10183 if (lower <= upper && (lower < low || upper > high))
10184 error (_("Index in component association out of bounds."));
10185
10186 add_component_interval (lower, upper, indices, num_indices,
10187 max_indices);
10188 while (lower <= upper)
10189 {
10190 int pos1;
5b4ee69b 10191
52ce6436
PH
10192 pos1 = expr_pc;
10193 assign_component (container, lhs, lower, exp, &pos1);
10194 lower += 1;
10195 }
10196 }
10197}
10198
10199/* Assign the value of the expression in the OP_OTHERS construct in
10200 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10201 have not been previously assigned. The index intervals already assigned
10202 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10203 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10204static void
10205aggregate_assign_others (struct value *container,
10206 struct value *lhs, struct expression *exp,
10207 int *pos, LONGEST *indices, int num_indices,
10208 LONGEST low, LONGEST high)
10209{
10210 int i;
5ce64950 10211 int expr_pc = *pos + 1;
52ce6436
PH
10212
10213 for (i = 0; i < num_indices - 2; i += 2)
10214 {
10215 LONGEST ind;
5b4ee69b 10216
52ce6436
PH
10217 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10218 {
5ce64950 10219 int localpos;
5b4ee69b 10220
5ce64950
MS
10221 localpos = expr_pc;
10222 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10223 }
10224 }
10225 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10226}
10227
10228/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10229 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10230 modifying *SIZE as needed. It is an error if *SIZE exceeds
10231 MAX_SIZE. The resulting intervals do not overlap. */
10232static void
10233add_component_interval (LONGEST low, LONGEST high,
10234 LONGEST* indices, int *size, int max_size)
10235{
10236 int i, j;
5b4ee69b 10237
52ce6436
PH
10238 for (i = 0; i < *size; i += 2) {
10239 if (high >= indices[i] && low <= indices[i + 1])
10240 {
10241 int kh;
5b4ee69b 10242
52ce6436
PH
10243 for (kh = i + 2; kh < *size; kh += 2)
10244 if (high < indices[kh])
10245 break;
10246 if (low < indices[i])
10247 indices[i] = low;
10248 indices[i + 1] = indices[kh - 1];
10249 if (high > indices[i + 1])
10250 indices[i + 1] = high;
10251 memcpy (indices + i + 2, indices + kh, *size - kh);
10252 *size -= kh - i - 2;
10253 return;
10254 }
10255 else if (high < indices[i])
10256 break;
10257 }
10258
10259 if (*size == max_size)
10260 error (_("Internal error: miscounted aggregate components."));
10261 *size += 2;
10262 for (j = *size-1; j >= i+2; j -= 1)
10263 indices[j] = indices[j - 2];
10264 indices[i] = low;
10265 indices[i + 1] = high;
10266}
10267
6e48bd2c
JB
10268/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10269 is different. */
10270
10271static struct value *
b7e22850 10272ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10273{
10274 if (type == ada_check_typedef (value_type (arg2)))
10275 return arg2;
10276
10277 if (ada_is_fixed_point_type (type))
10278 return (cast_to_fixed (type, arg2));
10279
10280 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10281 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10282
10283 return value_cast (type, arg2);
10284}
10285
284614f0
JB
10286/* Evaluating Ada expressions, and printing their result.
10287 ------------------------------------------------------
10288
21649b50
JB
10289 1. Introduction:
10290 ----------------
10291
284614f0
JB
10292 We usually evaluate an Ada expression in order to print its value.
10293 We also evaluate an expression in order to print its type, which
10294 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10295 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10296 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10297 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10298 similar.
10299
10300 Evaluating expressions is a little more complicated for Ada entities
10301 than it is for entities in languages such as C. The main reason for
10302 this is that Ada provides types whose definition might be dynamic.
10303 One example of such types is variant records. Or another example
10304 would be an array whose bounds can only be known at run time.
10305
10306 The following description is a general guide as to what should be
10307 done (and what should NOT be done) in order to evaluate an expression
10308 involving such types, and when. This does not cover how the semantic
10309 information is encoded by GNAT as this is covered separatly. For the
10310 document used as the reference for the GNAT encoding, see exp_dbug.ads
10311 in the GNAT sources.
10312
10313 Ideally, we should embed each part of this description next to its
10314 associated code. Unfortunately, the amount of code is so vast right
10315 now that it's hard to see whether the code handling a particular
10316 situation might be duplicated or not. One day, when the code is
10317 cleaned up, this guide might become redundant with the comments
10318 inserted in the code, and we might want to remove it.
10319
21649b50
JB
10320 2. ``Fixing'' an Entity, the Simple Case:
10321 -----------------------------------------
10322
284614f0
JB
10323 When evaluating Ada expressions, the tricky issue is that they may
10324 reference entities whose type contents and size are not statically
10325 known. Consider for instance a variant record:
10326
10327 type Rec (Empty : Boolean := True) is record
10328 case Empty is
10329 when True => null;
10330 when False => Value : Integer;
10331 end case;
10332 end record;
10333 Yes : Rec := (Empty => False, Value => 1);
10334 No : Rec := (empty => True);
10335
10336 The size and contents of that record depends on the value of the
10337 descriminant (Rec.Empty). At this point, neither the debugging
10338 information nor the associated type structure in GDB are able to
10339 express such dynamic types. So what the debugger does is to create
10340 "fixed" versions of the type that applies to the specific object.
10341 We also informally refer to this opperation as "fixing" an object,
10342 which means creating its associated fixed type.
10343
10344 Example: when printing the value of variable "Yes" above, its fixed
10345 type would look like this:
10346
10347 type Rec is record
10348 Empty : Boolean;
10349 Value : Integer;
10350 end record;
10351
10352 On the other hand, if we printed the value of "No", its fixed type
10353 would become:
10354
10355 type Rec is record
10356 Empty : Boolean;
10357 end record;
10358
10359 Things become a little more complicated when trying to fix an entity
10360 with a dynamic type that directly contains another dynamic type,
10361 such as an array of variant records, for instance. There are
10362 two possible cases: Arrays, and records.
10363
21649b50
JB
10364 3. ``Fixing'' Arrays:
10365 ---------------------
10366
10367 The type structure in GDB describes an array in terms of its bounds,
10368 and the type of its elements. By design, all elements in the array
10369 have the same type and we cannot represent an array of variant elements
10370 using the current type structure in GDB. When fixing an array,
10371 we cannot fix the array element, as we would potentially need one
10372 fixed type per element of the array. As a result, the best we can do
10373 when fixing an array is to produce an array whose bounds and size
10374 are correct (allowing us to read it from memory), but without having
10375 touched its element type. Fixing each element will be done later,
10376 when (if) necessary.
10377
10378 Arrays are a little simpler to handle than records, because the same
10379 amount of memory is allocated for each element of the array, even if
1b536f04 10380 the amount of space actually used by each element differs from element
21649b50 10381 to element. Consider for instance the following array of type Rec:
284614f0
JB
10382
10383 type Rec_Array is array (1 .. 2) of Rec;
10384
1b536f04
JB
10385 The actual amount of memory occupied by each element might be different
10386 from element to element, depending on the value of their discriminant.
21649b50 10387 But the amount of space reserved for each element in the array remains
1b536f04 10388 fixed regardless. So we simply need to compute that size using
21649b50
JB
10389 the debugging information available, from which we can then determine
10390 the array size (we multiply the number of elements of the array by
10391 the size of each element).
10392
10393 The simplest case is when we have an array of a constrained element
10394 type. For instance, consider the following type declarations:
10395
10396 type Bounded_String (Max_Size : Integer) is
10397 Length : Integer;
10398 Buffer : String (1 .. Max_Size);
10399 end record;
10400 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10401
10402 In this case, the compiler describes the array as an array of
10403 variable-size elements (identified by its XVS suffix) for which
10404 the size can be read in the parallel XVZ variable.
10405
10406 In the case of an array of an unconstrained element type, the compiler
10407 wraps the array element inside a private PAD type. This type should not
10408 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10409 that we also use the adjective "aligner" in our code to designate
10410 these wrapper types.
10411
1b536f04 10412 In some cases, the size allocated for each element is statically
21649b50
JB
10413 known. In that case, the PAD type already has the correct size,
10414 and the array element should remain unfixed.
10415
10416 But there are cases when this size is not statically known.
10417 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10418
10419 type Dynamic is array (1 .. Five) of Integer;
10420 type Wrapper (Has_Length : Boolean := False) is record
10421 Data : Dynamic;
10422 case Has_Length is
10423 when True => Length : Integer;
10424 when False => null;
10425 end case;
10426 end record;
10427 type Wrapper_Array is array (1 .. 2) of Wrapper;
10428
10429 Hello : Wrapper_Array := (others => (Has_Length => True,
10430 Data => (others => 17),
10431 Length => 1));
10432
10433
10434 The debugging info would describe variable Hello as being an
10435 array of a PAD type. The size of that PAD type is not statically
10436 known, but can be determined using a parallel XVZ variable.
10437 In that case, a copy of the PAD type with the correct size should
10438 be used for the fixed array.
10439
21649b50
JB
10440 3. ``Fixing'' record type objects:
10441 ----------------------------------
10442
10443 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10444 record types. In this case, in order to compute the associated
10445 fixed type, we need to determine the size and offset of each of
10446 its components. This, in turn, requires us to compute the fixed
10447 type of each of these components.
10448
10449 Consider for instance the example:
10450
10451 type Bounded_String (Max_Size : Natural) is record
10452 Str : String (1 .. Max_Size);
10453 Length : Natural;
10454 end record;
10455 My_String : Bounded_String (Max_Size => 10);
10456
10457 In that case, the position of field "Length" depends on the size
10458 of field Str, which itself depends on the value of the Max_Size
21649b50 10459 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10460 we need to fix the type of field Str. Therefore, fixing a variant
10461 record requires us to fix each of its components.
10462
10463 However, if a component does not have a dynamic size, the component
10464 should not be fixed. In particular, fields that use a PAD type
10465 should not fixed. Here is an example where this might happen
10466 (assuming type Rec above):
10467
10468 type Container (Big : Boolean) is record
10469 First : Rec;
10470 After : Integer;
10471 case Big is
10472 when True => Another : Integer;
10473 when False => null;
10474 end case;
10475 end record;
10476 My_Container : Container := (Big => False,
10477 First => (Empty => True),
10478 After => 42);
10479
10480 In that example, the compiler creates a PAD type for component First,
10481 whose size is constant, and then positions the component After just
10482 right after it. The offset of component After is therefore constant
10483 in this case.
10484
10485 The debugger computes the position of each field based on an algorithm
10486 that uses, among other things, the actual position and size of the field
21649b50
JB
10487 preceding it. Let's now imagine that the user is trying to print
10488 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10489 end up computing the offset of field After based on the size of the
10490 fixed version of field First. And since in our example First has
10491 only one actual field, the size of the fixed type is actually smaller
10492 than the amount of space allocated to that field, and thus we would
10493 compute the wrong offset of field After.
10494
21649b50
JB
10495 To make things more complicated, we need to watch out for dynamic
10496 components of variant records (identified by the ___XVL suffix in
10497 the component name). Even if the target type is a PAD type, the size
10498 of that type might not be statically known. So the PAD type needs
10499 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10500 we might end up with the wrong size for our component. This can be
10501 observed with the following type declarations:
284614f0
JB
10502
10503 type Octal is new Integer range 0 .. 7;
10504 type Octal_Array is array (Positive range <>) of Octal;
10505 pragma Pack (Octal_Array);
10506
10507 type Octal_Buffer (Size : Positive) is record
10508 Buffer : Octal_Array (1 .. Size);
10509 Length : Integer;
10510 end record;
10511
10512 In that case, Buffer is a PAD type whose size is unset and needs
10513 to be computed by fixing the unwrapped type.
10514
21649b50
JB
10515 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10516 ----------------------------------------------------------
10517
10518 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10519 thus far, be actually fixed?
10520
10521 The answer is: Only when referencing that element. For instance
10522 when selecting one component of a record, this specific component
10523 should be fixed at that point in time. Or when printing the value
10524 of a record, each component should be fixed before its value gets
10525 printed. Similarly for arrays, the element of the array should be
10526 fixed when printing each element of the array, or when extracting
10527 one element out of that array. On the other hand, fixing should
10528 not be performed on the elements when taking a slice of an array!
10529
31432a67 10530 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10531 size of each field is that we end up also miscomputing the size
10532 of the containing type. This can have adverse results when computing
10533 the value of an entity. GDB fetches the value of an entity based
10534 on the size of its type, and thus a wrong size causes GDB to fetch
10535 the wrong amount of memory. In the case where the computed size is
10536 too small, GDB fetches too little data to print the value of our
31432a67 10537 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10538 past the buffer containing the data =:-o. */
10539
ced9779b
JB
10540/* Evaluate a subexpression of EXP, at index *POS, and return a value
10541 for that subexpression cast to TO_TYPE. Advance *POS over the
10542 subexpression. */
10543
10544static value *
10545ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10546 enum noside noside, struct type *to_type)
10547{
10548 int pc = *pos;
10549
10550 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10551 || exp->elts[pc].opcode == OP_VAR_VALUE)
10552 {
10553 (*pos) += 4;
10554
10555 value *val;
10556 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10557 {
10558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10559 return value_zero (to_type, not_lval);
10560
10561 val = evaluate_var_msym_value (noside,
10562 exp->elts[pc + 1].objfile,
10563 exp->elts[pc + 2].msymbol);
10564 }
10565 else
10566 val = evaluate_var_value (noside,
10567 exp->elts[pc + 1].block,
10568 exp->elts[pc + 2].symbol);
10569
10570 if (noside == EVAL_SKIP)
10571 return eval_skip_value (exp);
10572
10573 val = ada_value_cast (to_type, val);
10574
10575 /* Follow the Ada language semantics that do not allow taking
10576 an address of the result of a cast (view conversion in Ada). */
10577 if (VALUE_LVAL (val) == lval_memory)
10578 {
10579 if (value_lazy (val))
10580 value_fetch_lazy (val);
10581 VALUE_LVAL (val) = not_lval;
10582 }
10583 return val;
10584 }
10585
10586 value *val = evaluate_subexp (to_type, exp, pos, noside);
10587 if (noside == EVAL_SKIP)
10588 return eval_skip_value (exp);
10589 return ada_value_cast (to_type, val);
10590}
10591
284614f0
JB
10592/* Implement the evaluate_exp routine in the exp_descriptor structure
10593 for the Ada language. */
10594
52ce6436 10595static struct value *
ebf56fd3 10596ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10597 int *pos, enum noside noside)
14f9c5c9
AS
10598{
10599 enum exp_opcode op;
b5385fc0 10600 int tem;
14f9c5c9 10601 int pc;
5ec18f2b 10602 int preeval_pos;
14f9c5c9
AS
10603 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10604 struct type *type;
52ce6436 10605 int nargs, oplen;
d2e4a39e 10606 struct value **argvec;
14f9c5c9 10607
d2e4a39e
AS
10608 pc = *pos;
10609 *pos += 1;
14f9c5c9
AS
10610 op = exp->elts[pc].opcode;
10611
d2e4a39e 10612 switch (op)
14f9c5c9
AS
10613 {
10614 default:
10615 *pos -= 1;
6e48bd2c 10616 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10617
10618 if (noside == EVAL_NORMAL)
10619 arg1 = unwrap_value (arg1);
6e48bd2c 10620
edd079d9 10621 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10622 then we need to perform the conversion manually, because
10623 evaluate_subexp_standard doesn't do it. This conversion is
10624 necessary in Ada because the different kinds of float/fixed
10625 types in Ada have different representations.
10626
10627 Similarly, we need to perform the conversion from OP_LONG
10628 ourselves. */
edd079d9 10629 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10630 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10631
10632 return arg1;
4c4b4cd2
PH
10633
10634 case OP_STRING:
10635 {
76a01679 10636 struct value *result;
5b4ee69b 10637
76a01679
JB
10638 *pos -= 1;
10639 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10640 /* The result type will have code OP_STRING, bashed there from
10641 OP_ARRAY. Bash it back. */
df407dfe
AC
10642 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10643 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10644 return result;
4c4b4cd2 10645 }
14f9c5c9
AS
10646
10647 case UNOP_CAST:
10648 (*pos) += 2;
10649 type = exp->elts[pc + 1].type;
ced9779b 10650 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10651
4c4b4cd2
PH
10652 case UNOP_QUAL:
10653 (*pos) += 2;
10654 type = exp->elts[pc + 1].type;
10655 return ada_evaluate_subexp (type, exp, pos, noside);
10656
14f9c5c9
AS
10657 case BINOP_ASSIGN:
10658 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10659 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10660 {
10661 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10662 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10663 return arg1;
10664 return ada_value_assign (arg1, arg1);
10665 }
003f3813
JB
10666 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10667 except if the lhs of our assignment is a convenience variable.
10668 In the case of assigning to a convenience variable, the lhs
10669 should be exactly the result of the evaluation of the rhs. */
10670 type = value_type (arg1);
10671 if (VALUE_LVAL (arg1) == lval_internalvar)
10672 type = NULL;
10673 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10674 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10675 return arg1;
df407dfe
AC
10676 if (ada_is_fixed_point_type (value_type (arg1)))
10677 arg2 = cast_to_fixed (value_type (arg1), arg2);
10678 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10679 error
323e0a4a 10680 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10681 else
df407dfe 10682 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10683 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10684
10685 case BINOP_ADD:
10686 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10687 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10688 if (noside == EVAL_SKIP)
4c4b4cd2 10689 goto nosideret;
2ac8a782
JB
10690 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10691 return (value_from_longest
10692 (value_type (arg1),
10693 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10694 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10695 return (value_from_longest
10696 (value_type (arg2),
10697 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10698 if ((ada_is_fixed_point_type (value_type (arg1))
10699 || ada_is_fixed_point_type (value_type (arg2)))
10700 && value_type (arg1) != value_type (arg2))
323e0a4a 10701 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10702 /* Do the addition, and cast the result to the type of the first
10703 argument. We cannot cast the result to a reference type, so if
10704 ARG1 is a reference type, find its underlying type. */
10705 type = value_type (arg1);
10706 while (TYPE_CODE (type) == TYPE_CODE_REF)
10707 type = TYPE_TARGET_TYPE (type);
f44316fa 10708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10709 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10710
10711 case BINOP_SUB:
10712 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10713 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10714 if (noside == EVAL_SKIP)
4c4b4cd2 10715 goto nosideret;
2ac8a782
JB
10716 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10717 return (value_from_longest
10718 (value_type (arg1),
10719 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10720 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10721 return (value_from_longest
10722 (value_type (arg2),
10723 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10724 if ((ada_is_fixed_point_type (value_type (arg1))
10725 || ada_is_fixed_point_type (value_type (arg2)))
10726 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10727 error (_("Operands of fixed-point subtraction "
10728 "must have the same type"));
b7789565
JB
10729 /* Do the substraction, and cast the result to the type of the first
10730 argument. We cannot cast the result to a reference type, so if
10731 ARG1 is a reference type, find its underlying type. */
10732 type = value_type (arg1);
10733 while (TYPE_CODE (type) == TYPE_CODE_REF)
10734 type = TYPE_TARGET_TYPE (type);
f44316fa 10735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10736 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10737
10738 case BINOP_MUL:
10739 case BINOP_DIV:
e1578042
JB
10740 case BINOP_REM:
10741 case BINOP_MOD:
14f9c5c9
AS
10742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10743 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 if (noside == EVAL_SKIP)
4c4b4cd2 10745 goto nosideret;
e1578042 10746 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10747 {
10748 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10749 return value_zero (value_type (arg1), not_lval);
10750 }
14f9c5c9 10751 else
4c4b4cd2 10752 {
a53b7a21 10753 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10754 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10755 arg1 = cast_from_fixed (type, arg1);
df407dfe 10756 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10757 arg2 = cast_from_fixed (type, arg2);
f44316fa 10758 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10759 return ada_value_binop (arg1, arg2, op);
10760 }
10761
4c4b4cd2
PH
10762 case BINOP_EQUAL:
10763 case BINOP_NOTEQUAL:
14f9c5c9 10764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10765 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10766 if (noside == EVAL_SKIP)
76a01679 10767 goto nosideret;
4c4b4cd2 10768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10769 tem = 0;
4c4b4cd2 10770 else
f44316fa
UW
10771 {
10772 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10773 tem = ada_value_equal (arg1, arg2);
10774 }
4c4b4cd2 10775 if (op == BINOP_NOTEQUAL)
76a01679 10776 tem = !tem;
fbb06eb1
UW
10777 type = language_bool_type (exp->language_defn, exp->gdbarch);
10778 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10779
10780 case UNOP_NEG:
10781 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10782 if (noside == EVAL_SKIP)
10783 goto nosideret;
df407dfe
AC
10784 else if (ada_is_fixed_point_type (value_type (arg1)))
10785 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10786 else
f44316fa
UW
10787 {
10788 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10789 return value_neg (arg1);
10790 }
4c4b4cd2 10791
2330c6c6
JB
10792 case BINOP_LOGICAL_AND:
10793 case BINOP_LOGICAL_OR:
10794 case UNOP_LOGICAL_NOT:
000d5124
JB
10795 {
10796 struct value *val;
10797
10798 *pos -= 1;
10799 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10800 type = language_bool_type (exp->language_defn, exp->gdbarch);
10801 return value_cast (type, val);
000d5124 10802 }
2330c6c6
JB
10803
10804 case BINOP_BITWISE_AND:
10805 case BINOP_BITWISE_IOR:
10806 case BINOP_BITWISE_XOR:
000d5124
JB
10807 {
10808 struct value *val;
10809
10810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10811 *pos = pc;
10812 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10813
10814 return value_cast (value_type (arg1), val);
10815 }
2330c6c6 10816
14f9c5c9
AS
10817 case OP_VAR_VALUE:
10818 *pos -= 1;
6799def4 10819
14f9c5c9 10820 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10821 {
10822 *pos += 4;
10823 goto nosideret;
10824 }
da5c522f
JB
10825
10826 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10827 /* Only encountered when an unresolved symbol occurs in a
10828 context other than a function call, in which case, it is
52ce6436 10829 invalid. */
323e0a4a 10830 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10831 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10832
10833 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10834 {
0c1f74cf 10835 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10836 /* Check to see if this is a tagged type. We also need to handle
10837 the case where the type is a reference to a tagged type, but
10838 we have to be careful to exclude pointers to tagged types.
10839 The latter should be shown as usual (as a pointer), whereas
10840 a reference should mostly be transparent to the user. */
10841 if (ada_is_tagged_type (type, 0)
023db19c 10842 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10843 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10844 {
10845 /* Tagged types are a little special in the fact that the real
10846 type is dynamic and can only be determined by inspecting the
10847 object's tag. This means that we need to get the object's
10848 value first (EVAL_NORMAL) and then extract the actual object
10849 type from its tag.
10850
10851 Note that we cannot skip the final step where we extract
10852 the object type from its tag, because the EVAL_NORMAL phase
10853 results in dynamic components being resolved into fixed ones.
10854 This can cause problems when trying to print the type
10855 description of tagged types whose parent has a dynamic size:
10856 We use the type name of the "_parent" component in order
10857 to print the name of the ancestor type in the type description.
10858 If that component had a dynamic size, the resolution into
10859 a fixed type would result in the loss of that type name,
10860 thus preventing us from printing the name of the ancestor
10861 type in the type description. */
10862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10863
10864 if (TYPE_CODE (type) != TYPE_CODE_REF)
10865 {
10866 struct type *actual_type;
10867
10868 actual_type = type_from_tag (ada_value_tag (arg1));
10869 if (actual_type == NULL)
10870 /* If, for some reason, we were unable to determine
10871 the actual type from the tag, then use the static
10872 approximation that we just computed as a fallback.
10873 This can happen if the debugging information is
10874 incomplete, for instance. */
10875 actual_type = type;
10876 return value_zero (actual_type, not_lval);
10877 }
10878 else
10879 {
10880 /* In the case of a ref, ada_coerce_ref takes care
10881 of determining the actual type. But the evaluation
10882 should return a ref as it should be valid to ask
10883 for its address; so rebuild a ref after coerce. */
10884 arg1 = ada_coerce_ref (arg1);
a65cfae5 10885 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10886 }
10887 }
0c1f74cf 10888
84754697
JB
10889 /* Records and unions for which GNAT encodings have been
10890 generated need to be statically fixed as well.
10891 Otherwise, non-static fixing produces a type where
10892 all dynamic properties are removed, which prevents "ptype"
10893 from being able to completely describe the type.
10894 For instance, a case statement in a variant record would be
10895 replaced by the relevant components based on the actual
10896 value of the discriminants. */
10897 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10898 && dynamic_template_type (type) != NULL)
10899 || (TYPE_CODE (type) == TYPE_CODE_UNION
10900 && ada_find_parallel_type (type, "___XVU") != NULL))
10901 {
10902 *pos += 4;
10903 return value_zero (to_static_fixed_type (type), not_lval);
10904 }
4c4b4cd2 10905 }
da5c522f
JB
10906
10907 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10908 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10909
10910 case OP_FUNCALL:
10911 (*pos) += 2;
10912
10913 /* Allocate arg vector, including space for the function to be
10914 called in argvec[0] and a terminating NULL. */
10915 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10916 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10917
10918 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10919 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10920 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10921 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10922 else
10923 {
10924 for (tem = 0; tem <= nargs; tem += 1)
10925 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10926 argvec[tem] = 0;
10927
10928 if (noside == EVAL_SKIP)
10929 goto nosideret;
10930 }
10931
ad82864c
JB
10932 if (ada_is_constrained_packed_array_type
10933 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10934 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10935 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10936 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10937 /* This is a packed array that has already been fixed, and
10938 therefore already coerced to a simple array. Nothing further
10939 to do. */
10940 ;
e6c2c623
PMR
10941 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10942 {
10943 /* Make sure we dereference references so that all the code below
10944 feels like it's really handling the referenced value. Wrapping
10945 types (for alignment) may be there, so make sure we strip them as
10946 well. */
10947 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10948 }
10949 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10950 && VALUE_LVAL (argvec[0]) == lval_memory)
10951 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10952
df407dfe 10953 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10954
10955 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10956 them. So, if this is an array typedef (encoding use for array
10957 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10958 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10959 type = ada_typedef_target_type (type);
10960
4c4b4cd2
PH
10961 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10962 {
61ee279c 10963 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10964 {
10965 case TYPE_CODE_FUNC:
61ee279c 10966 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10967 break;
10968 case TYPE_CODE_ARRAY:
10969 break;
10970 case TYPE_CODE_STRUCT:
10971 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10972 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10973 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10974 break;
10975 default:
323e0a4a 10976 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10977 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10978 break;
10979 }
10980 }
10981
10982 switch (TYPE_CODE (type))
10983 {
10984 case TYPE_CODE_FUNC:
10985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10986 {
7022349d
PA
10987 if (TYPE_TARGET_TYPE (type) == NULL)
10988 error_call_unknown_return_type (NULL);
10989 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10990 }
7022349d 10991 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10992 case TYPE_CODE_INTERNAL_FUNCTION:
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10994 /* We don't know anything about what the internal
10995 function might return, but we have to return
10996 something. */
10997 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10998 not_lval);
10999 else
11000 return call_internal_function (exp->gdbarch, exp->language_defn,
11001 argvec[0], nargs, argvec + 1);
11002
4c4b4cd2
PH
11003 case TYPE_CODE_STRUCT:
11004 {
11005 int arity;
11006
4c4b4cd2
PH
11007 arity = ada_array_arity (type);
11008 type = ada_array_element_type (type, nargs);
11009 if (type == NULL)
323e0a4a 11010 error (_("cannot subscript or call a record"));
4c4b4cd2 11011 if (arity != nargs)
323e0a4a 11012 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11013 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11014 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11015 return
11016 unwrap_value (ada_value_subscript
11017 (argvec[0], nargs, argvec + 1));
11018 }
11019 case TYPE_CODE_ARRAY:
11020 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11021 {
11022 type = ada_array_element_type (type, nargs);
11023 if (type == NULL)
323e0a4a 11024 error (_("element type of array unknown"));
4c4b4cd2 11025 else
0a07e705 11026 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11027 }
11028 return
11029 unwrap_value (ada_value_subscript
11030 (ada_coerce_to_simple_array (argvec[0]),
11031 nargs, argvec + 1));
11032 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11034 {
deede10c 11035 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11036 type = ada_array_element_type (type, nargs);
11037 if (type == NULL)
323e0a4a 11038 error (_("element type of array unknown"));
4c4b4cd2 11039 else
0a07e705 11040 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11041 }
11042 return
deede10c
JB
11043 unwrap_value (ada_value_ptr_subscript (argvec[0],
11044 nargs, argvec + 1));
4c4b4cd2
PH
11045
11046 default:
e1d5a0d2
PH
11047 error (_("Attempt to index or call something other than an "
11048 "array or function"));
4c4b4cd2
PH
11049 }
11050
11051 case TERNOP_SLICE:
11052 {
11053 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11054 struct value *low_bound_val =
11055 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11056 struct value *high_bound_val =
11057 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11058 LONGEST low_bound;
11059 LONGEST high_bound;
5b4ee69b 11060
994b9211
AC
11061 low_bound_val = coerce_ref (low_bound_val);
11062 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11063 low_bound = value_as_long (low_bound_val);
11064 high_bound = value_as_long (high_bound_val);
963a6417 11065
4c4b4cd2
PH
11066 if (noside == EVAL_SKIP)
11067 goto nosideret;
11068
4c4b4cd2
PH
11069 /* If this is a reference to an aligner type, then remove all
11070 the aligners. */
df407dfe
AC
11071 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11072 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11073 TYPE_TARGET_TYPE (value_type (array)) =
11074 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11075
ad82864c 11076 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11077 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11078
11079 /* If this is a reference to an array or an array lvalue,
11080 convert to a pointer. */
df407dfe
AC
11081 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11082 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11083 && VALUE_LVAL (array) == lval_memory))
11084 array = value_addr (array);
11085
1265e4aa 11086 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11087 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11088 (value_type (array))))
0b5d8877 11089 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11090
11091 array = ada_coerce_to_simple_array_ptr (array);
11092
714e53ab
PH
11093 /* If we have more than one level of pointer indirection,
11094 dereference the value until we get only one level. */
df407dfe
AC
11095 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11096 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11097 == TYPE_CODE_PTR))
11098 array = value_ind (array);
11099
11100 /* Make sure we really do have an array type before going further,
11101 to avoid a SEGV when trying to get the index type or the target
11102 type later down the road if the debug info generated by
11103 the compiler is incorrect or incomplete. */
df407dfe 11104 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11105 error (_("cannot take slice of non-array"));
714e53ab 11106
828292f2
JB
11107 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11108 == TYPE_CODE_PTR)
4c4b4cd2 11109 {
828292f2
JB
11110 struct type *type0 = ada_check_typedef (value_type (array));
11111
0b5d8877 11112 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11113 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11114 else
11115 {
11116 struct type *arr_type0 =
828292f2 11117 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11118
f5938064
JG
11119 return ada_value_slice_from_ptr (array, arr_type0,
11120 longest_to_int (low_bound),
11121 longest_to_int (high_bound));
4c4b4cd2
PH
11122 }
11123 }
11124 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11125 return array;
11126 else if (high_bound < low_bound)
df407dfe 11127 return empty_array (value_type (array), low_bound);
4c4b4cd2 11128 else
529cad9c
PH
11129 return ada_value_slice (array, longest_to_int (low_bound),
11130 longest_to_int (high_bound));
4c4b4cd2 11131 }
14f9c5c9 11132
4c4b4cd2
PH
11133 case UNOP_IN_RANGE:
11134 (*pos) += 2;
11135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11136 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11137
14f9c5c9 11138 if (noside == EVAL_SKIP)
4c4b4cd2 11139 goto nosideret;
14f9c5c9 11140
4c4b4cd2
PH
11141 switch (TYPE_CODE (type))
11142 {
11143 default:
e1d5a0d2
PH
11144 lim_warning (_("Membership test incompletely implemented; "
11145 "always returns true"));
fbb06eb1
UW
11146 type = language_bool_type (exp->language_defn, exp->gdbarch);
11147 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11148
11149 case TYPE_CODE_RANGE:
030b4912
UW
11150 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11151 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11154 type = language_bool_type (exp->language_defn, exp->gdbarch);
11155 return
11156 value_from_longest (type,
4c4b4cd2
PH
11157 (value_less (arg1, arg3)
11158 || value_equal (arg1, arg3))
11159 && (value_less (arg2, arg1)
11160 || value_equal (arg2, arg1)));
11161 }
11162
11163 case BINOP_IN_BOUNDS:
14f9c5c9 11164 (*pos) += 2;
4c4b4cd2
PH
11165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11166 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11167
4c4b4cd2
PH
11168 if (noside == EVAL_SKIP)
11169 goto nosideret;
14f9c5c9 11170
4c4b4cd2 11171 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11172 {
11173 type = language_bool_type (exp->language_defn, exp->gdbarch);
11174 return value_zero (type, not_lval);
11175 }
14f9c5c9 11176
4c4b4cd2 11177 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11178
1eea4ebd
UW
11179 type = ada_index_type (value_type (arg2), tem, "range");
11180 if (!type)
11181 type = value_type (arg1);
14f9c5c9 11182
1eea4ebd
UW
11183 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11184 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11185
f44316fa
UW
11186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11188 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11189 return
fbb06eb1 11190 value_from_longest (type,
4c4b4cd2
PH
11191 (value_less (arg1, arg3)
11192 || value_equal (arg1, arg3))
11193 && (value_less (arg2, arg1)
11194 || value_equal (arg2, arg1)));
11195
11196 case TERNOP_IN_RANGE:
11197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200
11201 if (noside == EVAL_SKIP)
11202 goto nosideret;
11203
f44316fa
UW
11204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11206 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11207 return
fbb06eb1 11208 value_from_longest (type,
4c4b4cd2
PH
11209 (value_less (arg1, arg3)
11210 || value_equal (arg1, arg3))
11211 && (value_less (arg2, arg1)
11212 || value_equal (arg2, arg1)));
11213
11214 case OP_ATR_FIRST:
11215 case OP_ATR_LAST:
11216 case OP_ATR_LENGTH:
11217 {
76a01679 11218 struct type *type_arg;
5b4ee69b 11219
76a01679
JB
11220 if (exp->elts[*pos].opcode == OP_TYPE)
11221 {
11222 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11223 arg1 = NULL;
5bc23cb3 11224 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11225 }
11226 else
11227 {
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 type_arg = NULL;
11230 }
11231
11232 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11233 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11234 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11235 *pos += 4;
11236
11237 if (noside == EVAL_SKIP)
11238 goto nosideret;
11239
11240 if (type_arg == NULL)
11241 {
11242 arg1 = ada_coerce_ref (arg1);
11243
ad82864c 11244 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11245 arg1 = ada_coerce_to_simple_array (arg1);
11246
aa4fb036 11247 if (op == OP_ATR_LENGTH)
1eea4ebd 11248 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11249 else
11250 {
11251 type = ada_index_type (value_type (arg1), tem,
11252 ada_attribute_name (op));
11253 if (type == NULL)
11254 type = builtin_type (exp->gdbarch)->builtin_int;
11255 }
76a01679
JB
11256
11257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11258 return allocate_value (type);
76a01679
JB
11259
11260 switch (op)
11261 {
11262 default: /* Should never happen. */
323e0a4a 11263 error (_("unexpected attribute encountered"));
76a01679 11264 case OP_ATR_FIRST:
1eea4ebd
UW
11265 return value_from_longest
11266 (type, ada_array_bound (arg1, tem, 0));
76a01679 11267 case OP_ATR_LAST:
1eea4ebd
UW
11268 return value_from_longest
11269 (type, ada_array_bound (arg1, tem, 1));
76a01679 11270 case OP_ATR_LENGTH:
1eea4ebd
UW
11271 return value_from_longest
11272 (type, ada_array_length (arg1, tem));
76a01679
JB
11273 }
11274 }
11275 else if (discrete_type_p (type_arg))
11276 {
11277 struct type *range_type;
0d5cff50 11278 const char *name = ada_type_name (type_arg);
5b4ee69b 11279
76a01679
JB
11280 range_type = NULL;
11281 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11282 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11283 if (range_type == NULL)
11284 range_type = type_arg;
11285 switch (op)
11286 {
11287 default:
323e0a4a 11288 error (_("unexpected attribute encountered"));
76a01679 11289 case OP_ATR_FIRST:
690cc4eb 11290 return value_from_longest
43bbcdc2 11291 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11292 case OP_ATR_LAST:
690cc4eb 11293 return value_from_longest
43bbcdc2 11294 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11295 case OP_ATR_LENGTH:
323e0a4a 11296 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11297 }
11298 }
11299 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11300 error (_("unimplemented type attribute"));
76a01679
JB
11301 else
11302 {
11303 LONGEST low, high;
11304
ad82864c
JB
11305 if (ada_is_constrained_packed_array_type (type_arg))
11306 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11307
aa4fb036 11308 if (op == OP_ATR_LENGTH)
1eea4ebd 11309 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11310 else
11311 {
11312 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11313 if (type == NULL)
11314 type = builtin_type (exp->gdbarch)->builtin_int;
11315 }
1eea4ebd 11316
76a01679
JB
11317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11318 return allocate_value (type);
11319
11320 switch (op)
11321 {
11322 default:
323e0a4a 11323 error (_("unexpected attribute encountered"));
76a01679 11324 case OP_ATR_FIRST:
1eea4ebd 11325 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11326 return value_from_longest (type, low);
11327 case OP_ATR_LAST:
1eea4ebd 11328 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11329 return value_from_longest (type, high);
11330 case OP_ATR_LENGTH:
1eea4ebd
UW
11331 low = ada_array_bound_from_type (type_arg, tem, 0);
11332 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11333 return value_from_longest (type, high - low + 1);
11334 }
11335 }
14f9c5c9
AS
11336 }
11337
4c4b4cd2
PH
11338 case OP_ATR_TAG:
11339 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11340 if (noside == EVAL_SKIP)
76a01679 11341 goto nosideret;
4c4b4cd2
PH
11342
11343 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11344 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11345
11346 return ada_value_tag (arg1);
11347
11348 case OP_ATR_MIN:
11349 case OP_ATR_MAX:
11350 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11352 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11353 if (noside == EVAL_SKIP)
76a01679 11354 goto nosideret;
d2e4a39e 11355 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11356 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11357 else
f44316fa
UW
11358 {
11359 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11360 return value_binop (arg1, arg2,
11361 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11362 }
14f9c5c9 11363
4c4b4cd2
PH
11364 case OP_ATR_MODULUS:
11365 {
31dedfee 11366 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11367
5b4ee69b 11368 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11369 if (noside == EVAL_SKIP)
11370 goto nosideret;
4c4b4cd2 11371
76a01679 11372 if (!ada_is_modular_type (type_arg))
323e0a4a 11373 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11374
76a01679
JB
11375 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11376 ada_modulus (type_arg));
4c4b4cd2
PH
11377 }
11378
11379
11380 case OP_ATR_POS:
11381 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11383 if (noside == EVAL_SKIP)
76a01679 11384 goto nosideret;
3cb382c9
UW
11385 type = builtin_type (exp->gdbarch)->builtin_int;
11386 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11387 return value_zero (type, not_lval);
14f9c5c9 11388 else
3cb382c9 11389 return value_pos_atr (type, arg1);
14f9c5c9 11390
4c4b4cd2
PH
11391 case OP_ATR_SIZE:
11392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11393 type = value_type (arg1);
11394
11395 /* If the argument is a reference, then dereference its type, since
11396 the user is really asking for the size of the actual object,
11397 not the size of the pointer. */
11398 if (TYPE_CODE (type) == TYPE_CODE_REF)
11399 type = TYPE_TARGET_TYPE (type);
11400
4c4b4cd2 11401 if (noside == EVAL_SKIP)
76a01679 11402 goto nosideret;
4c4b4cd2 11403 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11404 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11405 else
22601c15 11406 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11407 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11408
11409 case OP_ATR_VAL:
11410 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11412 type = exp->elts[pc + 2].type;
14f9c5c9 11413 if (noside == EVAL_SKIP)
76a01679 11414 goto nosideret;
4c4b4cd2 11415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11416 return value_zero (type, not_lval);
4c4b4cd2 11417 else
76a01679 11418 return value_val_atr (type, arg1);
4c4b4cd2
PH
11419
11420 case BINOP_EXP:
11421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11422 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11423 if (noside == EVAL_SKIP)
11424 goto nosideret;
11425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11426 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11427 else
f44316fa
UW
11428 {
11429 /* For integer exponentiation operations,
11430 only promote the first argument. */
11431 if (is_integral_type (value_type (arg2)))
11432 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11433 else
11434 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11435
11436 return value_binop (arg1, arg2, op);
11437 }
4c4b4cd2
PH
11438
11439 case UNOP_PLUS:
11440 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11441 if (noside == EVAL_SKIP)
11442 goto nosideret;
11443 else
11444 return arg1;
11445
11446 case UNOP_ABS:
11447 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11448 if (noside == EVAL_SKIP)
11449 goto nosideret;
f44316fa 11450 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11451 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11452 return value_neg (arg1);
14f9c5c9 11453 else
4c4b4cd2 11454 return arg1;
14f9c5c9
AS
11455
11456 case UNOP_IND:
5ec18f2b 11457 preeval_pos = *pos;
6b0d7253 11458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11459 if (noside == EVAL_SKIP)
4c4b4cd2 11460 goto nosideret;
df407dfe 11461 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11462 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11463 {
11464 if (ada_is_array_descriptor_type (type))
11465 /* GDB allows dereferencing GNAT array descriptors. */
11466 {
11467 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11468
4c4b4cd2 11469 if (arrType == NULL)
323e0a4a 11470 error (_("Attempt to dereference null array pointer."));
00a4c844 11471 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11472 }
11473 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11474 || TYPE_CODE (type) == TYPE_CODE_REF
11475 /* In C you can dereference an array to get the 1st elt. */
11476 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11477 {
5ec18f2b
JG
11478 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11479 only be determined by inspecting the object's tag.
11480 This means that we need to evaluate completely the
11481 expression in order to get its type. */
11482
023db19c
JB
11483 if ((TYPE_CODE (type) == TYPE_CODE_REF
11484 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11485 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11486 {
11487 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11488 EVAL_NORMAL);
11489 type = value_type (ada_value_ind (arg1));
11490 }
11491 else
11492 {
11493 type = to_static_fixed_type
11494 (ada_aligned_type
11495 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11496 }
c1b5a1a6 11497 ada_ensure_varsize_limit (type);
714e53ab
PH
11498 return value_zero (type, lval_memory);
11499 }
4c4b4cd2 11500 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11501 {
11502 /* GDB allows dereferencing an int. */
11503 if (expect_type == NULL)
11504 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11505 lval_memory);
11506 else
11507 {
11508 expect_type =
11509 to_static_fixed_type (ada_aligned_type (expect_type));
11510 return value_zero (expect_type, lval_memory);
11511 }
11512 }
4c4b4cd2 11513 else
323e0a4a 11514 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11515 }
0963b4bd 11516 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11517 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11518
96967637
JB
11519 if (TYPE_CODE (type) == TYPE_CODE_INT)
11520 /* GDB allows dereferencing an int. If we were given
11521 the expect_type, then use that as the target type.
11522 Otherwise, assume that the target type is an int. */
11523 {
11524 if (expect_type != NULL)
11525 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11526 arg1));
11527 else
11528 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11529 (CORE_ADDR) value_as_address (arg1));
11530 }
6b0d7253 11531
4c4b4cd2
PH
11532 if (ada_is_array_descriptor_type (type))
11533 /* GDB allows dereferencing GNAT array descriptors. */
11534 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11535 else
4c4b4cd2 11536 return ada_value_ind (arg1);
14f9c5c9
AS
11537
11538 case STRUCTOP_STRUCT:
11539 tem = longest_to_int (exp->elts[pc + 1].longconst);
11540 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11541 preeval_pos = *pos;
14f9c5c9
AS
11542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11543 if (noside == EVAL_SKIP)
4c4b4cd2 11544 goto nosideret;
14f9c5c9 11545 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11546 {
df407dfe 11547 struct type *type1 = value_type (arg1);
5b4ee69b 11548
76a01679
JB
11549 if (ada_is_tagged_type (type1, 1))
11550 {
11551 type = ada_lookup_struct_elt_type (type1,
11552 &exp->elts[pc + 2].string,
988f6b3d 11553 1, 1);
5ec18f2b
JG
11554
11555 /* If the field is not found, check if it exists in the
11556 extension of this object's type. This means that we
11557 need to evaluate completely the expression. */
11558
76a01679 11559 if (type == NULL)
5ec18f2b
JG
11560 {
11561 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11562 EVAL_NORMAL);
11563 arg1 = ada_value_struct_elt (arg1,
11564 &exp->elts[pc + 2].string,
11565 0);
11566 arg1 = unwrap_value (arg1);
11567 type = value_type (ada_to_fixed_value (arg1));
11568 }
76a01679
JB
11569 }
11570 else
11571 type =
11572 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11573 0);
76a01679
JB
11574
11575 return value_zero (ada_aligned_type (type), lval_memory);
11576 }
14f9c5c9 11577 else
a579cd9a
MW
11578 {
11579 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11580 arg1 = unwrap_value (arg1);
11581 return ada_to_fixed_value (arg1);
11582 }
284614f0 11583
14f9c5c9 11584 case OP_TYPE:
4c4b4cd2
PH
11585 /* The value is not supposed to be used. This is here to make it
11586 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11587 (*pos) += 2;
11588 if (noside == EVAL_SKIP)
4c4b4cd2 11589 goto nosideret;
14f9c5c9 11590 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11591 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11592 else
323e0a4a 11593 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11594
11595 case OP_AGGREGATE:
11596 case OP_CHOICES:
11597 case OP_OTHERS:
11598 case OP_DISCRETE_RANGE:
11599 case OP_POSITIONAL:
11600 case OP_NAME:
11601 if (noside == EVAL_NORMAL)
11602 switch (op)
11603 {
11604 case OP_NAME:
11605 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11606 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11607 case OP_AGGREGATE:
11608 error (_("Aggregates only allowed on the right of an assignment"));
11609 default:
0963b4bd
MS
11610 internal_error (__FILE__, __LINE__,
11611 _("aggregate apparently mangled"));
52ce6436
PH
11612 }
11613
11614 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11615 *pos += oplen - 1;
11616 for (tem = 0; tem < nargs; tem += 1)
11617 ada_evaluate_subexp (NULL, exp, pos, noside);
11618 goto nosideret;
14f9c5c9
AS
11619 }
11620
11621nosideret:
ced9779b 11622 return eval_skip_value (exp);
14f9c5c9 11623}
14f9c5c9 11624\f
d2e4a39e 11625
4c4b4cd2 11626 /* Fixed point */
14f9c5c9
AS
11627
11628/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11629 type name that encodes the 'small and 'delta information.
4c4b4cd2 11630 Otherwise, return NULL. */
14f9c5c9 11631
d2e4a39e 11632static const char *
ebf56fd3 11633fixed_type_info (struct type *type)
14f9c5c9 11634{
d2e4a39e 11635 const char *name = ada_type_name (type);
14f9c5c9
AS
11636 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11637
d2e4a39e
AS
11638 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11639 {
14f9c5c9 11640 const char *tail = strstr (name, "___XF_");
5b4ee69b 11641
14f9c5c9 11642 if (tail == NULL)
4c4b4cd2 11643 return NULL;
d2e4a39e 11644 else
4c4b4cd2 11645 return tail + 5;
14f9c5c9
AS
11646 }
11647 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11648 return fixed_type_info (TYPE_TARGET_TYPE (type));
11649 else
11650 return NULL;
11651}
11652
4c4b4cd2 11653/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11654
11655int
ebf56fd3 11656ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11657{
11658 return fixed_type_info (type) != NULL;
11659}
11660
4c4b4cd2
PH
11661/* Return non-zero iff TYPE represents a System.Address type. */
11662
11663int
11664ada_is_system_address_type (struct type *type)
11665{
11666 return (TYPE_NAME (type)
11667 && strcmp (TYPE_NAME (type), "system__address") == 0);
11668}
11669
14f9c5c9 11670/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11671 type, return the target floating-point type to be used to represent
11672 of this type during internal computation. */
11673
11674static struct type *
11675ada_scaling_type (struct type *type)
11676{
11677 return builtin_type (get_type_arch (type))->builtin_long_double;
11678}
11679
11680/* Assuming that TYPE is the representation of an Ada fixed-point
11681 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11682 delta cannot be determined. */
14f9c5c9 11683
50eff16b 11684struct value *
ebf56fd3 11685ada_delta (struct type *type)
14f9c5c9
AS
11686{
11687 const char *encoding = fixed_type_info (type);
50eff16b
UW
11688 struct type *scale_type = ada_scaling_type (type);
11689
11690 long long num, den;
11691
11692 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11693 return nullptr;
d2e4a39e 11694 else
50eff16b
UW
11695 return value_binop (value_from_longest (scale_type, num),
11696 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11697}
11698
11699/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11700 factor ('SMALL value) associated with the type. */
14f9c5c9 11701
50eff16b
UW
11702struct value *
11703ada_scaling_factor (struct type *type)
14f9c5c9
AS
11704{
11705 const char *encoding = fixed_type_info (type);
50eff16b
UW
11706 struct type *scale_type = ada_scaling_type (type);
11707
11708 long long num0, den0, num1, den1;
14f9c5c9 11709 int n;
d2e4a39e 11710
50eff16b 11711 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11712 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11713
11714 if (n < 2)
50eff16b 11715 return value_from_longest (scale_type, 1);
14f9c5c9 11716 else if (n == 4)
50eff16b
UW
11717 return value_binop (value_from_longest (scale_type, num1),
11718 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11719 else
50eff16b
UW
11720 return value_binop (value_from_longest (scale_type, num0),
11721 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11722}
11723
14f9c5c9 11724\f
d2e4a39e 11725
4c4b4cd2 11726 /* Range types */
14f9c5c9
AS
11727
11728/* Scan STR beginning at position K for a discriminant name, and
11729 return the value of that discriminant field of DVAL in *PX. If
11730 PNEW_K is not null, put the position of the character beyond the
11731 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11732 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11733
11734static int
108d56a4 11735scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11736 int *pnew_k)
14f9c5c9
AS
11737{
11738 static char *bound_buffer = NULL;
11739 static size_t bound_buffer_len = 0;
5da1a4d3 11740 const char *pstart, *pend, *bound;
d2e4a39e 11741 struct value *bound_val;
14f9c5c9
AS
11742
11743 if (dval == NULL || str == NULL || str[k] == '\0')
11744 return 0;
11745
5da1a4d3
SM
11746 pstart = str + k;
11747 pend = strstr (pstart, "__");
14f9c5c9
AS
11748 if (pend == NULL)
11749 {
5da1a4d3 11750 bound = pstart;
14f9c5c9
AS
11751 k += strlen (bound);
11752 }
d2e4a39e 11753 else
14f9c5c9 11754 {
5da1a4d3
SM
11755 int len = pend - pstart;
11756
11757 /* Strip __ and beyond. */
11758 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11759 strncpy (bound_buffer, pstart, len);
11760 bound_buffer[len] = '\0';
11761
14f9c5c9 11762 bound = bound_buffer;
d2e4a39e 11763 k = pend - str;
14f9c5c9 11764 }
d2e4a39e 11765
df407dfe 11766 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11767 if (bound_val == NULL)
11768 return 0;
11769
11770 *px = value_as_long (bound_val);
11771 if (pnew_k != NULL)
11772 *pnew_k = k;
11773 return 1;
11774}
11775
11776/* Value of variable named NAME in the current environment. If
11777 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11778 otherwise causes an error with message ERR_MSG. */
11779
d2e4a39e 11780static struct value *
edb0c9cb 11781get_var_value (const char *name, const char *err_msg)
14f9c5c9 11782{
b5ec771e 11783 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11784
b5ec771e
PA
11785 struct block_symbol *syms;
11786 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11787 get_selected_block (0),
11788 VAR_DOMAIN, &syms, 1);
ec6a20c2 11789 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11790
11791 if (nsyms != 1)
11792 {
ec6a20c2 11793 do_cleanups (old_chain);
14f9c5c9 11794 if (err_msg == NULL)
4c4b4cd2 11795 return 0;
14f9c5c9 11796 else
8a3fe4f8 11797 error (("%s"), err_msg);
14f9c5c9
AS
11798 }
11799
ec6a20c2
JB
11800 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11801 do_cleanups (old_chain);
11802 return result;
14f9c5c9 11803}
d2e4a39e 11804
edb0c9cb
PA
11805/* Value of integer variable named NAME in the current environment.
11806 If no such variable is found, returns false. Otherwise, sets VALUE
11807 to the variable's value and returns true. */
4c4b4cd2 11808
edb0c9cb
PA
11809bool
11810get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11811{
4c4b4cd2 11812 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11813
14f9c5c9 11814 if (var_val == 0)
edb0c9cb
PA
11815 return false;
11816
11817 value = value_as_long (var_val);
11818 return true;
14f9c5c9 11819}
d2e4a39e 11820
14f9c5c9
AS
11821
11822/* Return a range type whose base type is that of the range type named
11823 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11824 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11825 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11826 corresponding range type from debug information; fall back to using it
11827 if symbol lookup fails. If a new type must be created, allocate it
11828 like ORIG_TYPE was. The bounds information, in general, is encoded
11829 in NAME, the base type given in the named range type. */
14f9c5c9 11830
d2e4a39e 11831static struct type *
28c85d6c 11832to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11833{
0d5cff50 11834 const char *name;
14f9c5c9 11835 struct type *base_type;
108d56a4 11836 const char *subtype_info;
14f9c5c9 11837
28c85d6c
JB
11838 gdb_assert (raw_type != NULL);
11839 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11840
1ce677a4 11841 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11842 base_type = TYPE_TARGET_TYPE (raw_type);
11843 else
11844 base_type = raw_type;
11845
28c85d6c 11846 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11847 subtype_info = strstr (name, "___XD");
11848 if (subtype_info == NULL)
690cc4eb 11849 {
43bbcdc2
PH
11850 LONGEST L = ada_discrete_type_low_bound (raw_type);
11851 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11852
690cc4eb
PH
11853 if (L < INT_MIN || U > INT_MAX)
11854 return raw_type;
11855 else
0c9c3474
SA
11856 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11857 L, U);
690cc4eb 11858 }
14f9c5c9
AS
11859 else
11860 {
11861 static char *name_buf = NULL;
11862 static size_t name_len = 0;
11863 int prefix_len = subtype_info - name;
11864 LONGEST L, U;
11865 struct type *type;
108d56a4 11866 const char *bounds_str;
14f9c5c9
AS
11867 int n;
11868
11869 GROW_VECT (name_buf, name_len, prefix_len + 5);
11870 strncpy (name_buf, name, prefix_len);
11871 name_buf[prefix_len] = '\0';
11872
11873 subtype_info += 5;
11874 bounds_str = strchr (subtype_info, '_');
11875 n = 1;
11876
d2e4a39e 11877 if (*subtype_info == 'L')
4c4b4cd2
PH
11878 {
11879 if (!ada_scan_number (bounds_str, n, &L, &n)
11880 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11881 return raw_type;
11882 if (bounds_str[n] == '_')
11883 n += 2;
0963b4bd 11884 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11885 n += 1;
11886 subtype_info += 1;
11887 }
d2e4a39e 11888 else
4c4b4cd2 11889 {
4c4b4cd2 11890 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11891 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11892 {
323e0a4a 11893 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11894 L = 1;
11895 }
11896 }
14f9c5c9 11897
d2e4a39e 11898 if (*subtype_info == 'U')
4c4b4cd2
PH
11899 {
11900 if (!ada_scan_number (bounds_str, n, &U, &n)
11901 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11902 return raw_type;
11903 }
d2e4a39e 11904 else
4c4b4cd2 11905 {
4c4b4cd2 11906 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11907 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11908 {
323e0a4a 11909 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11910 U = L;
11911 }
11912 }
14f9c5c9 11913
0c9c3474
SA
11914 type = create_static_range_type (alloc_type_copy (raw_type),
11915 base_type, L, U);
f5a91472
JB
11916 /* create_static_range_type alters the resulting type's length
11917 to match the size of the base_type, which is not what we want.
11918 Set it back to the original range type's length. */
11919 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11920 TYPE_NAME (type) = name;
14f9c5c9
AS
11921 return type;
11922 }
11923}
11924
4c4b4cd2
PH
11925/* True iff NAME is the name of a range type. */
11926
14f9c5c9 11927int
d2e4a39e 11928ada_is_range_type_name (const char *name)
14f9c5c9
AS
11929{
11930 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11931}
14f9c5c9 11932\f
d2e4a39e 11933
4c4b4cd2
PH
11934 /* Modular types */
11935
11936/* True iff TYPE is an Ada modular type. */
14f9c5c9 11937
14f9c5c9 11938int
d2e4a39e 11939ada_is_modular_type (struct type *type)
14f9c5c9 11940{
18af8284 11941 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11942
11943 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11944 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11945 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11946}
11947
4c4b4cd2
PH
11948/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11949
61ee279c 11950ULONGEST
0056e4d5 11951ada_modulus (struct type *type)
14f9c5c9 11952{
43bbcdc2 11953 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11954}
d2e4a39e 11955\f
f7f9143b
JB
11956
11957/* Ada exception catchpoint support:
11958 ---------------------------------
11959
11960 We support 3 kinds of exception catchpoints:
11961 . catchpoints on Ada exceptions
11962 . catchpoints on unhandled Ada exceptions
11963 . catchpoints on failed assertions
11964
11965 Exceptions raised during failed assertions, or unhandled exceptions
11966 could perfectly be caught with the general catchpoint on Ada exceptions.
11967 However, we can easily differentiate these two special cases, and having
11968 the option to distinguish these two cases from the rest can be useful
11969 to zero-in on certain situations.
11970
11971 Exception catchpoints are a specialized form of breakpoint,
11972 since they rely on inserting breakpoints inside known routines
11973 of the GNAT runtime. The implementation therefore uses a standard
11974 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11975 of breakpoint_ops.
11976
0259addd
JB
11977 Support in the runtime for exception catchpoints have been changed
11978 a few times already, and these changes affect the implementation
11979 of these catchpoints. In order to be able to support several
11980 variants of the runtime, we use a sniffer that will determine
28010a5d 11981 the runtime variant used by the program being debugged. */
f7f9143b 11982
82eacd52
JB
11983/* Ada's standard exceptions.
11984
11985 The Ada 83 standard also defined Numeric_Error. But there so many
11986 situations where it was unclear from the Ada 83 Reference Manual
11987 (RM) whether Constraint_Error or Numeric_Error should be raised,
11988 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11989 Interpretation saying that anytime the RM says that Numeric_Error
11990 should be raised, the implementation may raise Constraint_Error.
11991 Ada 95 went one step further and pretty much removed Numeric_Error
11992 from the list of standard exceptions (it made it a renaming of
11993 Constraint_Error, to help preserve compatibility when compiling
11994 an Ada83 compiler). As such, we do not include Numeric_Error from
11995 this list of standard exceptions. */
3d0b0fa3 11996
a121b7c1 11997static const char *standard_exc[] = {
3d0b0fa3
JB
11998 "constraint_error",
11999 "program_error",
12000 "storage_error",
12001 "tasking_error"
12002};
12003
0259addd
JB
12004typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12005
12006/* A structure that describes how to support exception catchpoints
12007 for a given executable. */
12008
12009struct exception_support_info
12010{
12011 /* The name of the symbol to break on in order to insert
12012 a catchpoint on exceptions. */
12013 const char *catch_exception_sym;
12014
12015 /* The name of the symbol to break on in order to insert
12016 a catchpoint on unhandled exceptions. */
12017 const char *catch_exception_unhandled_sym;
12018
12019 /* The name of the symbol to break on in order to insert
12020 a catchpoint on failed assertions. */
12021 const char *catch_assert_sym;
12022
12023 /* Assuming that the inferior just triggered an unhandled exception
12024 catchpoint, this function is responsible for returning the address
12025 in inferior memory where the name of that exception is stored.
12026 Return zero if the address could not be computed. */
12027 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12028};
12029
12030static CORE_ADDR ada_unhandled_exception_name_addr (void);
12031static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12032
12033/* The following exception support info structure describes how to
12034 implement exception catchpoints with the latest version of the
12035 Ada runtime (as of 2007-03-06). */
12036
12037static const struct exception_support_info default_exception_support_info =
12038{
12039 "__gnat_debug_raise_exception", /* catch_exception_sym */
12040 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12041 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12042 ada_unhandled_exception_name_addr
12043};
12044
12045/* The following exception support info structure describes how to
12046 implement exception catchpoints with a slightly older version
12047 of the Ada runtime. */
12048
12049static const struct exception_support_info exception_support_info_fallback =
12050{
12051 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12052 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12053 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12054 ada_unhandled_exception_name_addr_from_raise
12055};
12056
f17011e0
JB
12057/* Return nonzero if we can detect the exception support routines
12058 described in EINFO.
12059
12060 This function errors out if an abnormal situation is detected
12061 (for instance, if we find the exception support routines, but
12062 that support is found to be incomplete). */
12063
12064static int
12065ada_has_this_exception_support (const struct exception_support_info *einfo)
12066{
12067 struct symbol *sym;
12068
12069 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12070 that should be compiled with debugging information. As a result, we
12071 expect to find that symbol in the symtabs. */
12072
12073 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12074 if (sym == NULL)
a6af7abe
JB
12075 {
12076 /* Perhaps we did not find our symbol because the Ada runtime was
12077 compiled without debugging info, or simply stripped of it.
12078 It happens on some GNU/Linux distributions for instance, where
12079 users have to install a separate debug package in order to get
12080 the runtime's debugging info. In that situation, let the user
12081 know why we cannot insert an Ada exception catchpoint.
12082
12083 Note: Just for the purpose of inserting our Ada exception
12084 catchpoint, we could rely purely on the associated minimal symbol.
12085 But we would be operating in degraded mode anyway, since we are
12086 still lacking the debugging info needed later on to extract
12087 the name of the exception being raised (this name is printed in
12088 the catchpoint message, and is also used when trying to catch
12089 a specific exception). We do not handle this case for now. */
3b7344d5 12090 struct bound_minimal_symbol msym
1c8e84b0
JB
12091 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12092
3b7344d5 12093 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12094 error (_("Your Ada runtime appears to be missing some debugging "
12095 "information.\nCannot insert Ada exception catchpoint "
12096 "in this configuration."));
12097
12098 return 0;
12099 }
f17011e0
JB
12100
12101 /* Make sure that the symbol we found corresponds to a function. */
12102
12103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12104 error (_("Symbol \"%s\" is not a function (class = %d)"),
12105 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12106
12107 return 1;
12108}
12109
0259addd
JB
12110/* Inspect the Ada runtime and determine which exception info structure
12111 should be used to provide support for exception catchpoints.
12112
3eecfa55
JB
12113 This function will always set the per-inferior exception_info,
12114 or raise an error. */
0259addd
JB
12115
12116static void
12117ada_exception_support_info_sniffer (void)
12118{
3eecfa55 12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12120
12121 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12122 if (data->exception_info != NULL)
0259addd
JB
12123 return;
12124
12125 /* Check the latest (default) exception support info. */
f17011e0 12126 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12127 {
3eecfa55 12128 data->exception_info = &default_exception_support_info;
0259addd
JB
12129 return;
12130 }
12131
12132 /* Try our fallback exception suport info. */
f17011e0 12133 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12134 {
3eecfa55 12135 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12136 return;
12137 }
12138
12139 /* Sometimes, it is normal for us to not be able to find the routine
12140 we are looking for. This happens when the program is linked with
12141 the shared version of the GNAT runtime, and the program has not been
12142 started yet. Inform the user of these two possible causes if
12143 applicable. */
12144
ccefe4c4 12145 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12147
12148 /* If the symbol does not exist, then check that the program is
12149 already started, to make sure that shared libraries have been
12150 loaded. If it is not started, this may mean that the symbol is
12151 in a shared library. */
12152
12153 if (ptid_get_pid (inferior_ptid) == 0)
12154 error (_("Unable to insert catchpoint. Try to start the program first."));
12155
12156 /* At this point, we know that we are debugging an Ada program and
12157 that the inferior has been started, but we still are not able to
0963b4bd 12158 find the run-time symbols. That can mean that we are in
0259addd
JB
12159 configurable run time mode, or that a-except as been optimized
12160 out by the linker... In any case, at this point it is not worth
12161 supporting this feature. */
12162
7dda8cff 12163 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12164}
12165
f7f9143b
JB
12166/* True iff FRAME is very likely to be that of a function that is
12167 part of the runtime system. This is all very heuristic, but is
12168 intended to be used as advice as to what frames are uninteresting
12169 to most users. */
12170
12171static int
12172is_known_support_routine (struct frame_info *frame)
12173{
692465f1 12174 enum language func_lang;
f7f9143b 12175 int i;
f35a17b5 12176 const char *fullname;
f7f9143b 12177
4ed6b5be
JB
12178 /* If this code does not have any debugging information (no symtab),
12179 This cannot be any user code. */
f7f9143b 12180
51abb421 12181 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12182 if (sal.symtab == NULL)
12183 return 1;
12184
4ed6b5be
JB
12185 /* If there is a symtab, but the associated source file cannot be
12186 located, then assume this is not user code: Selecting a frame
12187 for which we cannot display the code would not be very helpful
12188 for the user. This should also take care of case such as VxWorks
12189 where the kernel has some debugging info provided for a few units. */
f7f9143b 12190
f35a17b5
JK
12191 fullname = symtab_to_fullname (sal.symtab);
12192 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12193 return 1;
12194
4ed6b5be
JB
12195 /* Check the unit filename againt the Ada runtime file naming.
12196 We also check the name of the objfile against the name of some
12197 known system libraries that sometimes come with debugging info
12198 too. */
12199
f7f9143b
JB
12200 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12201 {
12202 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12203 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12204 return 1;
eb822aa6
DE
12205 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12206 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12207 return 1;
f7f9143b
JB
12208 }
12209
4ed6b5be 12210 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12211
c6dc63a1
TT
12212 gdb::unique_xmalloc_ptr<char> func_name
12213 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12214 if (func_name == NULL)
12215 return 1;
12216
12217 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12218 {
12219 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12220 if (re_exec (func_name.get ()))
12221 return 1;
f7f9143b
JB
12222 }
12223
12224 return 0;
12225}
12226
12227/* Find the first frame that contains debugging information and that is not
12228 part of the Ada run-time, starting from FI and moving upward. */
12229
0ef643c8 12230void
f7f9143b
JB
12231ada_find_printable_frame (struct frame_info *fi)
12232{
12233 for (; fi != NULL; fi = get_prev_frame (fi))
12234 {
12235 if (!is_known_support_routine (fi))
12236 {
12237 select_frame (fi);
12238 break;
12239 }
12240 }
12241
12242}
12243
12244/* Assuming that the inferior just triggered an unhandled exception
12245 catchpoint, return the address in inferior memory where the name
12246 of the exception is stored.
12247
12248 Return zero if the address could not be computed. */
12249
12250static CORE_ADDR
12251ada_unhandled_exception_name_addr (void)
0259addd
JB
12252{
12253 return parse_and_eval_address ("e.full_name");
12254}
12255
12256/* Same as ada_unhandled_exception_name_addr, except that this function
12257 should be used when the inferior uses an older version of the runtime,
12258 where the exception name needs to be extracted from a specific frame
12259 several frames up in the callstack. */
12260
12261static CORE_ADDR
12262ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12263{
12264 int frame_level;
12265 struct frame_info *fi;
3eecfa55 12266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12267
12268 /* To determine the name of this exception, we need to select
12269 the frame corresponding to RAISE_SYM_NAME. This frame is
12270 at least 3 levels up, so we simply skip the first 3 frames
12271 without checking the name of their associated function. */
12272 fi = get_current_frame ();
12273 for (frame_level = 0; frame_level < 3; frame_level += 1)
12274 if (fi != NULL)
12275 fi = get_prev_frame (fi);
12276
12277 while (fi != NULL)
12278 {
692465f1
JB
12279 enum language func_lang;
12280
c6dc63a1
TT
12281 gdb::unique_xmalloc_ptr<char> func_name
12282 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12283 if (func_name != NULL)
12284 {
c6dc63a1 12285 if (strcmp (func_name.get (),
55b87a52
KS
12286 data->exception_info->catch_exception_sym) == 0)
12287 break; /* We found the frame we were looking for... */
12288 fi = get_prev_frame (fi);
12289 }
f7f9143b
JB
12290 }
12291
12292 if (fi == NULL)
12293 return 0;
12294
12295 select_frame (fi);
12296 return parse_and_eval_address ("id.full_name");
12297}
12298
12299/* Assuming the inferior just triggered an Ada exception catchpoint
12300 (of any type), return the address in inferior memory where the name
12301 of the exception is stored, if applicable.
12302
45db7c09
PA
12303 Assumes the selected frame is the current frame.
12304
f7f9143b
JB
12305 Return zero if the address could not be computed, or if not relevant. */
12306
12307static CORE_ADDR
761269c8 12308ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12309 struct breakpoint *b)
12310{
3eecfa55
JB
12311 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12312
f7f9143b
JB
12313 switch (ex)
12314 {
761269c8 12315 case ada_catch_exception:
f7f9143b
JB
12316 return (parse_and_eval_address ("e.full_name"));
12317 break;
12318
761269c8 12319 case ada_catch_exception_unhandled:
3eecfa55 12320 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12321 break;
12322
761269c8 12323 case ada_catch_assert:
f7f9143b
JB
12324 return 0; /* Exception name is not relevant in this case. */
12325 break;
12326
12327 default:
12328 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12329 break;
12330 }
12331
12332 return 0; /* Should never be reached. */
12333}
12334
e547c119
JB
12335/* Assuming the inferior is stopped at an exception catchpoint,
12336 return the message which was associated to the exception, if
12337 available. Return NULL if the message could not be retrieved.
12338
12339 The caller must xfree the string after use.
12340
12341 Note: The exception message can be associated to an exception
12342 either through the use of the Raise_Exception function, or
12343 more simply (Ada 2005 and later), via:
12344
12345 raise Exception_Name with "exception message";
12346
12347 */
12348
12349static char *
12350ada_exception_message_1 (void)
12351{
12352 struct value *e_msg_val;
12353 char *e_msg = NULL;
12354 int e_msg_len;
12355 struct cleanup *cleanups;
12356
12357 /* For runtimes that support this feature, the exception message
12358 is passed as an unbounded string argument called "message". */
12359 e_msg_val = parse_and_eval ("message");
12360 if (e_msg_val == NULL)
12361 return NULL; /* Exception message not supported. */
12362
12363 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12364 gdb_assert (e_msg_val != NULL);
12365 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12366
12367 /* If the message string is empty, then treat it as if there was
12368 no exception message. */
12369 if (e_msg_len <= 0)
12370 return NULL;
12371
12372 e_msg = (char *) xmalloc (e_msg_len + 1);
12373 cleanups = make_cleanup (xfree, e_msg);
12374 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12375 e_msg[e_msg_len] = '\0';
12376
12377 discard_cleanups (cleanups);
12378 return e_msg;
12379}
12380
12381/* Same as ada_exception_message_1, except that all exceptions are
12382 contained here (returning NULL instead). */
12383
12384static char *
12385ada_exception_message (void)
12386{
12387 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12388
12389 TRY
12390 {
12391 e_msg = ada_exception_message_1 ();
12392 }
12393 CATCH (e, RETURN_MASK_ERROR)
12394 {
12395 e_msg = NULL;
12396 }
12397 END_CATCH
12398
12399 return e_msg;
12400}
12401
f7f9143b
JB
12402/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12403 any error that ada_exception_name_addr_1 might cause to be thrown.
12404 When an error is intercepted, a warning with the error message is printed,
12405 and zero is returned. */
12406
12407static CORE_ADDR
761269c8 12408ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12409 struct breakpoint *b)
12410{
f7f9143b
JB
12411 CORE_ADDR result = 0;
12412
492d29ea 12413 TRY
f7f9143b
JB
12414 {
12415 result = ada_exception_name_addr_1 (ex, b);
12416 }
12417
492d29ea 12418 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12419 {
12420 warning (_("failed to get exception name: %s"), e.message);
12421 return 0;
12422 }
492d29ea 12423 END_CATCH
f7f9143b
JB
12424
12425 return result;
12426}
12427
28010a5d
PA
12428static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12429
12430/* Ada catchpoints.
12431
12432 In the case of catchpoints on Ada exceptions, the catchpoint will
12433 stop the target on every exception the program throws. When a user
12434 specifies the name of a specific exception, we translate this
12435 request into a condition expression (in text form), and then parse
12436 it into an expression stored in each of the catchpoint's locations.
12437 We then use this condition to check whether the exception that was
12438 raised is the one the user is interested in. If not, then the
12439 target is resumed again. We store the name of the requested
12440 exception, in order to be able to re-set the condition expression
12441 when symbols change. */
12442
12443/* An instance of this type is used to represent an Ada catchpoint
5625a286 12444 breakpoint location. */
28010a5d 12445
5625a286 12446class ada_catchpoint_location : public bp_location
28010a5d 12447{
5625a286
PA
12448public:
12449 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12450 : bp_location (ops, owner)
12451 {}
28010a5d
PA
12452
12453 /* The condition that checks whether the exception that was raised
12454 is the specific exception the user specified on catchpoint
12455 creation. */
4d01a485 12456 expression_up excep_cond_expr;
28010a5d
PA
12457};
12458
12459/* Implement the DTOR method in the bp_location_ops structure for all
12460 Ada exception catchpoint kinds. */
12461
12462static void
12463ada_catchpoint_location_dtor (struct bp_location *bl)
12464{
12465 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12466
4d01a485 12467 al->excep_cond_expr.reset ();
28010a5d
PA
12468}
12469
12470/* The vtable to be used in Ada catchpoint locations. */
12471
12472static const struct bp_location_ops ada_catchpoint_location_ops =
12473{
12474 ada_catchpoint_location_dtor
12475};
12476
c1fc2657 12477/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12478
c1fc2657 12479struct ada_catchpoint : public breakpoint
28010a5d 12480{
c1fc2657 12481 ~ada_catchpoint () override;
28010a5d
PA
12482
12483 /* The name of the specific exception the user specified. */
12484 char *excep_string;
12485};
12486
12487/* Parse the exception condition string in the context of each of the
12488 catchpoint's locations, and store them for later evaluation. */
12489
12490static void
12491create_excep_cond_exprs (struct ada_catchpoint *c)
12492{
12493 struct cleanup *old_chain;
12494 struct bp_location *bl;
12495 char *cond_string;
12496
12497 /* Nothing to do if there's no specific exception to catch. */
12498 if (c->excep_string == NULL)
12499 return;
12500
12501 /* Same if there are no locations... */
c1fc2657 12502 if (c->loc == NULL)
28010a5d
PA
12503 return;
12504
12505 /* Compute the condition expression in text form, from the specific
12506 expection we want to catch. */
12507 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12508 old_chain = make_cleanup (xfree, cond_string);
12509
12510 /* Iterate over all the catchpoint's locations, and parse an
12511 expression for each. */
c1fc2657 12512 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12513 {
12514 struct ada_catchpoint_location *ada_loc
12515 = (struct ada_catchpoint_location *) bl;
4d01a485 12516 expression_up exp;
28010a5d
PA
12517
12518 if (!bl->shlib_disabled)
12519 {
bbc13ae3 12520 const char *s;
28010a5d
PA
12521
12522 s = cond_string;
492d29ea 12523 TRY
28010a5d 12524 {
036e657b
JB
12525 exp = parse_exp_1 (&s, bl->address,
12526 block_for_pc (bl->address),
12527 0);
28010a5d 12528 }
492d29ea 12529 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12530 {
12531 warning (_("failed to reevaluate internal exception condition "
12532 "for catchpoint %d: %s"),
c1fc2657 12533 c->number, e.message);
849f2b52 12534 }
492d29ea 12535 END_CATCH
28010a5d
PA
12536 }
12537
b22e99fd 12538 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12539 }
12540
12541 do_cleanups (old_chain);
12542}
12543
c1fc2657 12544/* ada_catchpoint destructor. */
28010a5d 12545
c1fc2657 12546ada_catchpoint::~ada_catchpoint ()
28010a5d 12547{
c1fc2657 12548 xfree (this->excep_string);
28010a5d
PA
12549}
12550
12551/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12552 structure for all exception catchpoint kinds. */
12553
12554static struct bp_location *
761269c8 12555allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12556 struct breakpoint *self)
12557{
5625a286 12558 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12559}
12560
12561/* Implement the RE_SET method in the breakpoint_ops structure for all
12562 exception catchpoint kinds. */
12563
12564static void
761269c8 12565re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12566{
12567 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12568
12569 /* Call the base class's method. This updates the catchpoint's
12570 locations. */
2060206e 12571 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12572
12573 /* Reparse the exception conditional expressions. One for each
12574 location. */
12575 create_excep_cond_exprs (c);
12576}
12577
12578/* Returns true if we should stop for this breakpoint hit. If the
12579 user specified a specific exception, we only want to cause a stop
12580 if the program thrown that exception. */
12581
12582static int
12583should_stop_exception (const struct bp_location *bl)
12584{
12585 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12586 const struct ada_catchpoint_location *ada_loc
12587 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12588 int stop;
12589
12590 /* With no specific exception, should always stop. */
12591 if (c->excep_string == NULL)
12592 return 1;
12593
12594 if (ada_loc->excep_cond_expr == NULL)
12595 {
12596 /* We will have a NULL expression if back when we were creating
12597 the expressions, this location's had failed to parse. */
12598 return 1;
12599 }
12600
12601 stop = 1;
492d29ea 12602 TRY
28010a5d
PA
12603 {
12604 struct value *mark;
12605
12606 mark = value_mark ();
4d01a485 12607 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12608 value_free_to_mark (mark);
12609 }
492d29ea
PA
12610 CATCH (ex, RETURN_MASK_ALL)
12611 {
12612 exception_fprintf (gdb_stderr, ex,
12613 _("Error in testing exception condition:\n"));
12614 }
12615 END_CATCH
12616
28010a5d
PA
12617 return stop;
12618}
12619
12620/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12621 for all exception catchpoint kinds. */
12622
12623static void
761269c8 12624check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12625{
12626 bs->stop = should_stop_exception (bs->bp_location_at);
12627}
12628
f7f9143b
JB
12629/* Implement the PRINT_IT method in the breakpoint_ops structure
12630 for all exception catchpoint kinds. */
12631
12632static enum print_stop_action
761269c8 12633print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12634{
79a45e25 12635 struct ui_out *uiout = current_uiout;
348d480f 12636 struct breakpoint *b = bs->breakpoint_at;
e547c119 12637 char *exception_message;
348d480f 12638
956a9fb9 12639 annotate_catchpoint (b->number);
f7f9143b 12640
112e8700 12641 if (uiout->is_mi_like_p ())
f7f9143b 12642 {
112e8700 12643 uiout->field_string ("reason",
956a9fb9 12644 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12645 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12646 }
12647
112e8700
SM
12648 uiout->text (b->disposition == disp_del
12649 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12650 uiout->field_int ("bkptno", b->number);
12651 uiout->text (", ");
f7f9143b 12652
45db7c09
PA
12653 /* ada_exception_name_addr relies on the selected frame being the
12654 current frame. Need to do this here because this function may be
12655 called more than once when printing a stop, and below, we'll
12656 select the first frame past the Ada run-time (see
12657 ada_find_printable_frame). */
12658 select_frame (get_current_frame ());
12659
f7f9143b
JB
12660 switch (ex)
12661 {
761269c8
JB
12662 case ada_catch_exception:
12663 case ada_catch_exception_unhandled:
956a9fb9
JB
12664 {
12665 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12666 char exception_name[256];
12667
12668 if (addr != 0)
12669 {
c714b426
PA
12670 read_memory (addr, (gdb_byte *) exception_name,
12671 sizeof (exception_name) - 1);
956a9fb9
JB
12672 exception_name [sizeof (exception_name) - 1] = '\0';
12673 }
12674 else
12675 {
12676 /* For some reason, we were unable to read the exception
12677 name. This could happen if the Runtime was compiled
12678 without debugging info, for instance. In that case,
12679 just replace the exception name by the generic string
12680 "exception" - it will read as "an exception" in the
12681 notification we are about to print. */
967cff16 12682 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12683 }
12684 /* In the case of unhandled exception breakpoints, we print
12685 the exception name as "unhandled EXCEPTION_NAME", to make
12686 it clearer to the user which kind of catchpoint just got
12687 hit. We used ui_out_text to make sure that this extra
12688 info does not pollute the exception name in the MI case. */
761269c8 12689 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12690 uiout->text ("unhandled ");
12691 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12692 }
12693 break;
761269c8 12694 case ada_catch_assert:
956a9fb9
JB
12695 /* In this case, the name of the exception is not really
12696 important. Just print "failed assertion" to make it clearer
12697 that his program just hit an assertion-failure catchpoint.
12698 We used ui_out_text because this info does not belong in
12699 the MI output. */
112e8700 12700 uiout->text ("failed assertion");
956a9fb9 12701 break;
f7f9143b 12702 }
e547c119
JB
12703
12704 exception_message = ada_exception_message ();
12705 if (exception_message != NULL)
12706 {
12707 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12708
12709 uiout->text (" (");
12710 uiout->field_string ("exception-message", exception_message);
12711 uiout->text (")");
12712
12713 do_cleanups (cleanups);
12714 }
12715
112e8700 12716 uiout->text (" at ");
956a9fb9 12717 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12718
12719 return PRINT_SRC_AND_LOC;
12720}
12721
12722/* Implement the PRINT_ONE method in the breakpoint_ops structure
12723 for all exception catchpoint kinds. */
12724
12725static void
761269c8 12726print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12727 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12728{
79a45e25 12729 struct ui_out *uiout = current_uiout;
28010a5d 12730 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12731 struct value_print_options opts;
12732
12733 get_user_print_options (&opts);
12734 if (opts.addressprint)
f7f9143b
JB
12735 {
12736 annotate_field (4);
112e8700 12737 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12738 }
12739
12740 annotate_field (5);
a6d9a66e 12741 *last_loc = b->loc;
f7f9143b
JB
12742 switch (ex)
12743 {
761269c8 12744 case ada_catch_exception:
28010a5d 12745 if (c->excep_string != NULL)
f7f9143b 12746 {
28010a5d
PA
12747 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12748
112e8700 12749 uiout->field_string ("what", msg);
f7f9143b
JB
12750 xfree (msg);
12751 }
12752 else
112e8700 12753 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12754
12755 break;
12756
761269c8 12757 case ada_catch_exception_unhandled:
112e8700 12758 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12759 break;
12760
761269c8 12761 case ada_catch_assert:
112e8700 12762 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12763 break;
12764
12765 default:
12766 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12767 break;
12768 }
12769}
12770
12771/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12772 for all exception catchpoint kinds. */
12773
12774static void
761269c8 12775print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12776 struct breakpoint *b)
12777{
28010a5d 12778 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12779 struct ui_out *uiout = current_uiout;
28010a5d 12780
112e8700 12781 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12782 : _("Catchpoint "));
112e8700
SM
12783 uiout->field_int ("bkptno", b->number);
12784 uiout->text (": ");
00eb2c4a 12785
f7f9143b
JB
12786 switch (ex)
12787 {
761269c8 12788 case ada_catch_exception:
28010a5d 12789 if (c->excep_string != NULL)
00eb2c4a
JB
12790 {
12791 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12792 struct cleanup *old_chain = make_cleanup (xfree, info);
12793
112e8700 12794 uiout->text (info);
00eb2c4a
JB
12795 do_cleanups (old_chain);
12796 }
f7f9143b 12797 else
112e8700 12798 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12799 break;
12800
761269c8 12801 case ada_catch_exception_unhandled:
112e8700 12802 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12803 break;
12804
761269c8 12805 case ada_catch_assert:
112e8700 12806 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12807 break;
12808
12809 default:
12810 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12811 break;
12812 }
12813}
12814
6149aea9
PA
12815/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12816 for all exception catchpoint kinds. */
12817
12818static void
761269c8 12819print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12820 struct breakpoint *b, struct ui_file *fp)
12821{
28010a5d
PA
12822 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12823
6149aea9
PA
12824 switch (ex)
12825 {
761269c8 12826 case ada_catch_exception:
6149aea9 12827 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12828 if (c->excep_string != NULL)
12829 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12830 break;
12831
761269c8 12832 case ada_catch_exception_unhandled:
78076abc 12833 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12834 break;
12835
761269c8 12836 case ada_catch_assert:
6149aea9
PA
12837 fprintf_filtered (fp, "catch assert");
12838 break;
12839
12840 default:
12841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12842 }
d9b3f62e 12843 print_recreate_thread (b, fp);
6149aea9
PA
12844}
12845
f7f9143b
JB
12846/* Virtual table for "catch exception" breakpoints. */
12847
28010a5d
PA
12848static struct bp_location *
12849allocate_location_catch_exception (struct breakpoint *self)
12850{
761269c8 12851 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12852}
12853
12854static void
12855re_set_catch_exception (struct breakpoint *b)
12856{
761269c8 12857 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12858}
12859
12860static void
12861check_status_catch_exception (bpstat bs)
12862{
761269c8 12863 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12864}
12865
f7f9143b 12866static enum print_stop_action
348d480f 12867print_it_catch_exception (bpstat bs)
f7f9143b 12868{
761269c8 12869 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12870}
12871
12872static void
a6d9a66e 12873print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12874{
761269c8 12875 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12876}
12877
12878static void
12879print_mention_catch_exception (struct breakpoint *b)
12880{
761269c8 12881 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12882}
12883
6149aea9
PA
12884static void
12885print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12886{
761269c8 12887 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12888}
12889
2060206e 12890static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12891
12892/* Virtual table for "catch exception unhandled" breakpoints. */
12893
28010a5d
PA
12894static struct bp_location *
12895allocate_location_catch_exception_unhandled (struct breakpoint *self)
12896{
761269c8 12897 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12898}
12899
12900static void
12901re_set_catch_exception_unhandled (struct breakpoint *b)
12902{
761269c8 12903 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12904}
12905
12906static void
12907check_status_catch_exception_unhandled (bpstat bs)
12908{
761269c8 12909 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12910}
12911
f7f9143b 12912static enum print_stop_action
348d480f 12913print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12914{
761269c8 12915 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12916}
12917
12918static void
a6d9a66e
UW
12919print_one_catch_exception_unhandled (struct breakpoint *b,
12920 struct bp_location **last_loc)
f7f9143b 12921{
761269c8 12922 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12923}
12924
12925static void
12926print_mention_catch_exception_unhandled (struct breakpoint *b)
12927{
761269c8 12928 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12929}
12930
6149aea9
PA
12931static void
12932print_recreate_catch_exception_unhandled (struct breakpoint *b,
12933 struct ui_file *fp)
12934{
761269c8 12935 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12936}
12937
2060206e 12938static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12939
12940/* Virtual table for "catch assert" breakpoints. */
12941
28010a5d
PA
12942static struct bp_location *
12943allocate_location_catch_assert (struct breakpoint *self)
12944{
761269c8 12945 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12946}
12947
12948static void
12949re_set_catch_assert (struct breakpoint *b)
12950{
761269c8 12951 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12952}
12953
12954static void
12955check_status_catch_assert (bpstat bs)
12956{
761269c8 12957 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12958}
12959
f7f9143b 12960static enum print_stop_action
348d480f 12961print_it_catch_assert (bpstat bs)
f7f9143b 12962{
761269c8 12963 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12964}
12965
12966static void
a6d9a66e 12967print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12968{
761269c8 12969 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12970}
12971
12972static void
12973print_mention_catch_assert (struct breakpoint *b)
12974{
761269c8 12975 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12976}
12977
6149aea9
PA
12978static void
12979print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12980{
761269c8 12981 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12982}
12983
2060206e 12984static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12985
f7f9143b
JB
12986/* Return a newly allocated copy of the first space-separated token
12987 in ARGSP, and then adjust ARGSP to point immediately after that
12988 token.
12989
12990 Return NULL if ARGPS does not contain any more tokens. */
12991
12992static char *
a121b7c1 12993ada_get_next_arg (const char **argsp)
f7f9143b 12994{
a121b7c1
PA
12995 const char *args = *argsp;
12996 const char *end;
f7f9143b
JB
12997 char *result;
12998
f1735a53 12999 args = skip_spaces (args);
f7f9143b
JB
13000 if (args[0] == '\0')
13001 return NULL; /* No more arguments. */
13002
13003 /* Find the end of the current argument. */
13004
f1735a53 13005 end = skip_to_space (args);
f7f9143b
JB
13006
13007 /* Adjust ARGSP to point to the start of the next argument. */
13008
13009 *argsp = end;
13010
13011 /* Make a copy of the current argument and return it. */
13012
224c3ddb 13013 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
13014 strncpy (result, args, end - args);
13015 result[end - args] = '\0';
13016
13017 return result;
13018}
13019
13020/* Split the arguments specified in a "catch exception" command.
13021 Set EX to the appropriate catchpoint type.
28010a5d 13022 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
13023 specified by the user.
13024 If a condition is found at the end of the arguments, the condition
13025 expression is stored in COND_STRING (memory must be deallocated
13026 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13027
13028static void
a121b7c1 13029catch_ada_exception_command_split (const char *args,
761269c8 13030 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
13031 char **excep_string,
13032 char **cond_string)
f7f9143b
JB
13033{
13034 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13035 char *exception_name;
5845583d 13036 char *cond = NULL;
f7f9143b
JB
13037
13038 exception_name = ada_get_next_arg (&args);
5845583d
JB
13039 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13040 {
13041 /* This is not an exception name; this is the start of a condition
13042 expression for a catchpoint on all exceptions. So, "un-get"
13043 this token, and set exception_name to NULL. */
13044 xfree (exception_name);
13045 exception_name = NULL;
13046 args -= 2;
13047 }
f7f9143b
JB
13048 make_cleanup (xfree, exception_name);
13049
5845583d 13050 /* Check to see if we have a condition. */
f7f9143b 13051
f1735a53 13052 args = skip_spaces (args);
61012eef 13053 if (startswith (args, "if")
5845583d
JB
13054 && (isspace (args[2]) || args[2] == '\0'))
13055 {
13056 args += 2;
f1735a53 13057 args = skip_spaces (args);
5845583d
JB
13058
13059 if (args[0] == '\0')
13060 error (_("Condition missing after `if' keyword"));
13061 cond = xstrdup (args);
13062 make_cleanup (xfree, cond);
13063
13064 args += strlen (args);
13065 }
13066
13067 /* Check that we do not have any more arguments. Anything else
13068 is unexpected. */
f7f9143b
JB
13069
13070 if (args[0] != '\0')
13071 error (_("Junk at end of expression"));
13072
13073 discard_cleanups (old_chain);
13074
13075 if (exception_name == NULL)
13076 {
13077 /* Catch all exceptions. */
761269c8 13078 *ex = ada_catch_exception;
28010a5d 13079 *excep_string = NULL;
f7f9143b
JB
13080 }
13081 else if (strcmp (exception_name, "unhandled") == 0)
13082 {
13083 /* Catch unhandled exceptions. */
761269c8 13084 *ex = ada_catch_exception_unhandled;
28010a5d 13085 *excep_string = NULL;
f7f9143b
JB
13086 }
13087 else
13088 {
13089 /* Catch a specific exception. */
761269c8 13090 *ex = ada_catch_exception;
28010a5d 13091 *excep_string = exception_name;
f7f9143b 13092 }
5845583d 13093 *cond_string = cond;
f7f9143b
JB
13094}
13095
13096/* Return the name of the symbol on which we should break in order to
13097 implement a catchpoint of the EX kind. */
13098
13099static const char *
761269c8 13100ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13101{
3eecfa55
JB
13102 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13103
13104 gdb_assert (data->exception_info != NULL);
0259addd 13105
f7f9143b
JB
13106 switch (ex)
13107 {
761269c8 13108 case ada_catch_exception:
3eecfa55 13109 return (data->exception_info->catch_exception_sym);
f7f9143b 13110 break;
761269c8 13111 case ada_catch_exception_unhandled:
3eecfa55 13112 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13113 break;
761269c8 13114 case ada_catch_assert:
3eecfa55 13115 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
13116 break;
13117 default:
13118 internal_error (__FILE__, __LINE__,
13119 _("unexpected catchpoint kind (%d)"), ex);
13120 }
13121}
13122
13123/* Return the breakpoint ops "virtual table" used for catchpoints
13124 of the EX kind. */
13125
c0a91b2b 13126static const struct breakpoint_ops *
761269c8 13127ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13128{
13129 switch (ex)
13130 {
761269c8 13131 case ada_catch_exception:
f7f9143b
JB
13132 return (&catch_exception_breakpoint_ops);
13133 break;
761269c8 13134 case ada_catch_exception_unhandled:
f7f9143b
JB
13135 return (&catch_exception_unhandled_breakpoint_ops);
13136 break;
761269c8 13137 case ada_catch_assert:
f7f9143b
JB
13138 return (&catch_assert_breakpoint_ops);
13139 break;
13140 default:
13141 internal_error (__FILE__, __LINE__,
13142 _("unexpected catchpoint kind (%d)"), ex);
13143 }
13144}
13145
13146/* Return the condition that will be used to match the current exception
13147 being raised with the exception that the user wants to catch. This
13148 assumes that this condition is used when the inferior just triggered
13149 an exception catchpoint.
13150
13151 The string returned is a newly allocated string that needs to be
13152 deallocated later. */
13153
13154static char *
28010a5d 13155ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 13156{
3d0b0fa3
JB
13157 int i;
13158
0963b4bd 13159 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13160 runtime units that have been compiled without debugging info; if
28010a5d 13161 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13162 exception (e.g. "constraint_error") then, during the evaluation
13163 of the condition expression, the symbol lookup on this name would
0963b4bd 13164 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13165 may then be set only on user-defined exceptions which have the
13166 same not-fully-qualified name (e.g. my_package.constraint_error).
13167
13168 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13169 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13170 exception constraint_error" is rewritten into "catch exception
13171 standard.constraint_error".
13172
13173 If an exception named contraint_error is defined in another package of
13174 the inferior program, then the only way to specify this exception as a
13175 breakpoint condition is to use its fully-qualified named:
13176 e.g. my_package.constraint_error. */
13177
13178 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13179 {
28010a5d 13180 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
13181 {
13182 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13183 excep_string);
3d0b0fa3
JB
13184 }
13185 }
28010a5d 13186 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13187}
13188
13189/* Return the symtab_and_line that should be used to insert an exception
13190 catchpoint of the TYPE kind.
13191
28010a5d
PA
13192 EXCEP_STRING should contain the name of a specific exception that
13193 the catchpoint should catch, or NULL otherwise.
f7f9143b 13194
28010a5d
PA
13195 ADDR_STRING returns the name of the function where the real
13196 breakpoint that implements the catchpoints is set, depending on the
13197 type of catchpoint we need to create. */
f7f9143b
JB
13198
13199static struct symtab_and_line
761269c8 13200ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 13201 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13202{
13203 const char *sym_name;
13204 struct symbol *sym;
f7f9143b 13205
0259addd
JB
13206 /* First, find out which exception support info to use. */
13207 ada_exception_support_info_sniffer ();
13208
13209 /* Then lookup the function on which we will break in order to catch
f7f9143b 13210 the Ada exceptions requested by the user. */
f7f9143b
JB
13211 sym_name = ada_exception_sym_name (ex);
13212 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13213
f17011e0
JB
13214 /* We can assume that SYM is not NULL at this stage. If the symbol
13215 did not exist, ada_exception_support_info_sniffer would have
13216 raised an exception.
f7f9143b 13217
f17011e0
JB
13218 Also, ada_exception_support_info_sniffer should have already
13219 verified that SYM is a function symbol. */
13220 gdb_assert (sym != NULL);
13221 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13222
13223 /* Set ADDR_STRING. */
f7f9143b
JB
13224 *addr_string = xstrdup (sym_name);
13225
f7f9143b 13226 /* Set OPS. */
4b9eee8c 13227 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13228
f17011e0 13229 return find_function_start_sal (sym, 1);
f7f9143b
JB
13230}
13231
b4a5b78b 13232/* Create an Ada exception catchpoint.
f7f9143b 13233
b4a5b78b 13234 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13235
2df4d1d5
JB
13236 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13237 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13238 of the exception to which this catchpoint applies. When not NULL,
13239 the string must be allocated on the heap, and its deallocation
13240 is no longer the responsibility of the caller.
13241
13242 COND_STRING, if not NULL, is the catchpoint condition. This string
13243 must be allocated on the heap, and its deallocation is no longer
13244 the responsibility of the caller.
f7f9143b 13245
b4a5b78b
JB
13246 TEMPFLAG, if nonzero, means that the underlying breakpoint
13247 should be temporary.
28010a5d 13248
b4a5b78b 13249 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13250
349774ef 13251void
28010a5d 13252create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13253 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13254 char *excep_string,
5845583d 13255 char *cond_string,
28010a5d 13256 int tempflag,
349774ef 13257 int disabled,
28010a5d
PA
13258 int from_tty)
13259{
f2fc3015 13260 const char *addr_string = NULL;
b4a5b78b
JB
13261 const struct breakpoint_ops *ops = NULL;
13262 struct symtab_and_line sal
13263 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13264
b270e6f9
TT
13265 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13266 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13267 ops, tempflag, disabled, from_tty);
28010a5d 13268 c->excep_string = excep_string;
b270e6f9 13269 create_excep_cond_exprs (c.get ());
5845583d 13270 if (cond_string != NULL)
b270e6f9
TT
13271 set_breakpoint_condition (c.get (), cond_string, from_tty);
13272 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13273}
13274
9ac4176b
PA
13275/* Implement the "catch exception" command. */
13276
13277static void
eb4c3f4a 13278catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13279 struct cmd_list_element *command)
13280{
a121b7c1 13281 const char *arg = arg_entry;
9ac4176b
PA
13282 struct gdbarch *gdbarch = get_current_arch ();
13283 int tempflag;
761269c8 13284 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13285 char *excep_string = NULL;
5845583d 13286 char *cond_string = NULL;
9ac4176b
PA
13287
13288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13289
13290 if (!arg)
13291 arg = "";
b4a5b78b
JB
13292 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13293 &cond_string);
13294 create_ada_exception_catchpoint (gdbarch, ex_kind,
13295 excep_string, cond_string,
349774ef
JB
13296 tempflag, 1 /* enabled */,
13297 from_tty);
9ac4176b
PA
13298}
13299
b4a5b78b 13300/* Split the arguments specified in a "catch assert" command.
5845583d 13301
b4a5b78b
JB
13302 ARGS contains the command's arguments (or the empty string if
13303 no arguments were passed).
5845583d
JB
13304
13305 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13306 (the memory needs to be deallocated after use). */
5845583d 13307
b4a5b78b 13308static void
a121b7c1 13309catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13310{
f1735a53 13311 args = skip_spaces (args);
f7f9143b 13312
5845583d 13313 /* Check whether a condition was provided. */
61012eef 13314 if (startswith (args, "if")
5845583d 13315 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13316 {
5845583d 13317 args += 2;
f1735a53 13318 args = skip_spaces (args);
5845583d
JB
13319 if (args[0] == '\0')
13320 error (_("condition missing after `if' keyword"));
13321 *cond_string = xstrdup (args);
f7f9143b
JB
13322 }
13323
5845583d
JB
13324 /* Otherwise, there should be no other argument at the end of
13325 the command. */
13326 else if (args[0] != '\0')
13327 error (_("Junk at end of arguments."));
f7f9143b
JB
13328}
13329
9ac4176b
PA
13330/* Implement the "catch assert" command. */
13331
13332static void
eb4c3f4a 13333catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13334 struct cmd_list_element *command)
13335{
a121b7c1 13336 const char *arg = arg_entry;
9ac4176b
PA
13337 struct gdbarch *gdbarch = get_current_arch ();
13338 int tempflag;
5845583d 13339 char *cond_string = NULL;
9ac4176b
PA
13340
13341 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13342
13343 if (!arg)
13344 arg = "";
b4a5b78b 13345 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13346 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13347 NULL, cond_string,
349774ef
JB
13348 tempflag, 1 /* enabled */,
13349 from_tty);
9ac4176b 13350}
778865d3
JB
13351
13352/* Return non-zero if the symbol SYM is an Ada exception object. */
13353
13354static int
13355ada_is_exception_sym (struct symbol *sym)
13356{
13357 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13358
13359 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13360 && SYMBOL_CLASS (sym) != LOC_BLOCK
13361 && SYMBOL_CLASS (sym) != LOC_CONST
13362 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13363 && type_name != NULL && strcmp (type_name, "exception") == 0);
13364}
13365
13366/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13367 Ada exception object. This matches all exceptions except the ones
13368 defined by the Ada language. */
13369
13370static int
13371ada_is_non_standard_exception_sym (struct symbol *sym)
13372{
13373 int i;
13374
13375 if (!ada_is_exception_sym (sym))
13376 return 0;
13377
13378 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13379 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13380 return 0; /* A standard exception. */
13381
13382 /* Numeric_Error is also a standard exception, so exclude it.
13383 See the STANDARD_EXC description for more details as to why
13384 this exception is not listed in that array. */
13385 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13386 return 0;
13387
13388 return 1;
13389}
13390
ab816a27 13391/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13392 objects.
13393
13394 The comparison is determined first by exception name, and then
13395 by exception address. */
13396
ab816a27 13397bool
cc536b21 13398ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13399{
778865d3
JB
13400 int result;
13401
ab816a27
TT
13402 result = strcmp (name, other.name);
13403 if (result < 0)
13404 return true;
13405 if (result == 0 && addr < other.addr)
13406 return true;
13407 return false;
13408}
778865d3 13409
ab816a27 13410bool
cc536b21 13411ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13412{
13413 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13414}
13415
13416/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13417 routine, but keeping the first SKIP elements untouched.
13418
13419 All duplicates are also removed. */
13420
13421static void
ab816a27 13422sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13423 int skip)
13424{
ab816a27
TT
13425 std::sort (exceptions->begin () + skip, exceptions->end ());
13426 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13427 exceptions->end ());
778865d3
JB
13428}
13429
778865d3
JB
13430/* Add all exceptions defined by the Ada standard whose name match
13431 a regular expression.
13432
13433 If PREG is not NULL, then this regexp_t object is used to
13434 perform the symbol name matching. Otherwise, no name-based
13435 filtering is performed.
13436
13437 EXCEPTIONS is a vector of exceptions to which matching exceptions
13438 gets pushed. */
13439
13440static void
2d7cc5c7 13441ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13442 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13443{
13444 int i;
13445
13446 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13447 {
13448 if (preg == NULL
2d7cc5c7 13449 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13450 {
13451 struct bound_minimal_symbol msymbol
13452 = ada_lookup_simple_minsym (standard_exc[i]);
13453
13454 if (msymbol.minsym != NULL)
13455 {
13456 struct ada_exc_info info
77e371c0 13457 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13458
ab816a27 13459 exceptions->push_back (info);
778865d3
JB
13460 }
13461 }
13462 }
13463}
13464
13465/* Add all Ada exceptions defined locally and accessible from the given
13466 FRAME.
13467
13468 If PREG is not NULL, then this regexp_t object is used to
13469 perform the symbol name matching. Otherwise, no name-based
13470 filtering is performed.
13471
13472 EXCEPTIONS is a vector of exceptions to which matching exceptions
13473 gets pushed. */
13474
13475static void
2d7cc5c7
PA
13476ada_add_exceptions_from_frame (compiled_regex *preg,
13477 struct frame_info *frame,
ab816a27 13478 std::vector<ada_exc_info> *exceptions)
778865d3 13479{
3977b71f 13480 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13481
13482 while (block != 0)
13483 {
13484 struct block_iterator iter;
13485 struct symbol *sym;
13486
13487 ALL_BLOCK_SYMBOLS (block, iter, sym)
13488 {
13489 switch (SYMBOL_CLASS (sym))
13490 {
13491 case LOC_TYPEDEF:
13492 case LOC_BLOCK:
13493 case LOC_CONST:
13494 break;
13495 default:
13496 if (ada_is_exception_sym (sym))
13497 {
13498 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13499 SYMBOL_VALUE_ADDRESS (sym)};
13500
ab816a27 13501 exceptions->push_back (info);
778865d3
JB
13502 }
13503 }
13504 }
13505 if (BLOCK_FUNCTION (block) != NULL)
13506 break;
13507 block = BLOCK_SUPERBLOCK (block);
13508 }
13509}
13510
14bc53a8
PA
13511/* Return true if NAME matches PREG or if PREG is NULL. */
13512
13513static bool
2d7cc5c7 13514name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13515{
13516 return (preg == NULL
2d7cc5c7 13517 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13518}
13519
778865d3
JB
13520/* Add all exceptions defined globally whose name name match
13521 a regular expression, excluding standard exceptions.
13522
13523 The reason we exclude standard exceptions is that they need
13524 to be handled separately: Standard exceptions are defined inside
13525 a runtime unit which is normally not compiled with debugging info,
13526 and thus usually do not show up in our symbol search. However,
13527 if the unit was in fact built with debugging info, we need to
13528 exclude them because they would duplicate the entry we found
13529 during the special loop that specifically searches for those
13530 standard exceptions.
13531
13532 If PREG is not NULL, then this regexp_t object is used to
13533 perform the symbol name matching. Otherwise, no name-based
13534 filtering is performed.
13535
13536 EXCEPTIONS is a vector of exceptions to which matching exceptions
13537 gets pushed. */
13538
13539static void
2d7cc5c7 13540ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13541 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13542{
13543 struct objfile *objfile;
43f3e411 13544 struct compunit_symtab *s;
778865d3 13545
14bc53a8
PA
13546 /* In Ada, the symbol "search name" is a linkage name, whereas the
13547 regular expression used to do the matching refers to the natural
13548 name. So match against the decoded name. */
13549 expand_symtabs_matching (NULL,
b5ec771e 13550 lookup_name_info::match_any (),
14bc53a8
PA
13551 [&] (const char *search_name)
13552 {
13553 const char *decoded = ada_decode (search_name);
13554 return name_matches_regex (decoded, preg);
13555 },
13556 NULL,
13557 VARIABLES_DOMAIN);
778865d3 13558
43f3e411 13559 ALL_COMPUNITS (objfile, s)
778865d3 13560 {
43f3e411 13561 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13562 int i;
13563
13564 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13565 {
13566 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13567 struct block_iterator iter;
13568 struct symbol *sym;
13569
13570 ALL_BLOCK_SYMBOLS (b, iter, sym)
13571 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13572 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13573 {
13574 struct ada_exc_info info
13575 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13576
ab816a27 13577 exceptions->push_back (info);
778865d3
JB
13578 }
13579 }
13580 }
13581}
13582
13583/* Implements ada_exceptions_list with the regular expression passed
13584 as a regex_t, rather than a string.
13585
13586 If not NULL, PREG is used to filter out exceptions whose names
13587 do not match. Otherwise, all exceptions are listed. */
13588
ab816a27 13589static std::vector<ada_exc_info>
2d7cc5c7 13590ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13591{
ab816a27 13592 std::vector<ada_exc_info> result;
778865d3
JB
13593 int prev_len;
13594
13595 /* First, list the known standard exceptions. These exceptions
13596 need to be handled separately, as they are usually defined in
13597 runtime units that have been compiled without debugging info. */
13598
13599 ada_add_standard_exceptions (preg, &result);
13600
13601 /* Next, find all exceptions whose scope is local and accessible
13602 from the currently selected frame. */
13603
13604 if (has_stack_frames ())
13605 {
ab816a27 13606 prev_len = result.size ();
778865d3
JB
13607 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13608 &result);
ab816a27 13609 if (result.size () > prev_len)
778865d3
JB
13610 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13611 }
13612
13613 /* Add all exceptions whose scope is global. */
13614
ab816a27 13615 prev_len = result.size ();
778865d3 13616 ada_add_global_exceptions (preg, &result);
ab816a27 13617 if (result.size () > prev_len)
778865d3
JB
13618 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13619
778865d3
JB
13620 return result;
13621}
13622
13623/* Return a vector of ada_exc_info.
13624
13625 If REGEXP is NULL, all exceptions are included in the result.
13626 Otherwise, it should contain a valid regular expression,
13627 and only the exceptions whose names match that regular expression
13628 are included in the result.
13629
13630 The exceptions are sorted in the following order:
13631 - Standard exceptions (defined by the Ada language), in
13632 alphabetical order;
13633 - Exceptions only visible from the current frame, in
13634 alphabetical order;
13635 - Exceptions whose scope is global, in alphabetical order. */
13636
ab816a27 13637std::vector<ada_exc_info>
778865d3
JB
13638ada_exceptions_list (const char *regexp)
13639{
2d7cc5c7
PA
13640 if (regexp == NULL)
13641 return ada_exceptions_list_1 (NULL);
778865d3 13642
2d7cc5c7
PA
13643 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13644 return ada_exceptions_list_1 (&reg);
778865d3
JB
13645}
13646
13647/* Implement the "info exceptions" command. */
13648
13649static void
1d12d88f 13650info_exceptions_command (const char *regexp, int from_tty)
778865d3 13651{
778865d3 13652 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13653
ab816a27 13654 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13655
13656 if (regexp != NULL)
13657 printf_filtered
13658 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13659 else
13660 printf_filtered (_("All defined Ada exceptions:\n"));
13661
ab816a27
TT
13662 for (const ada_exc_info &info : exceptions)
13663 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13664}
13665
4c4b4cd2
PH
13666 /* Operators */
13667/* Information about operators given special treatment in functions
13668 below. */
13669/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13670
13671#define ADA_OPERATORS \
13672 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13673 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13674 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13675 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13682 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13685 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13686 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13687 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13688 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13689 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13690 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13691
13692static void
554794dc
SDJ
13693ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13694 int *argsp)
4c4b4cd2
PH
13695{
13696 switch (exp->elts[pc - 1].opcode)
13697 {
76a01679 13698 default:
4c4b4cd2
PH
13699 operator_length_standard (exp, pc, oplenp, argsp);
13700 break;
13701
13702#define OP_DEFN(op, len, args, binop) \
13703 case op: *oplenp = len; *argsp = args; break;
13704 ADA_OPERATORS;
13705#undef OP_DEFN
52ce6436
PH
13706
13707 case OP_AGGREGATE:
13708 *oplenp = 3;
13709 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13710 break;
13711
13712 case OP_CHOICES:
13713 *oplenp = 3;
13714 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13715 break;
4c4b4cd2
PH
13716 }
13717}
13718
c0201579
JK
13719/* Implementation of the exp_descriptor method operator_check. */
13720
13721static int
13722ada_operator_check (struct expression *exp, int pos,
13723 int (*objfile_func) (struct objfile *objfile, void *data),
13724 void *data)
13725{
13726 const union exp_element *const elts = exp->elts;
13727 struct type *type = NULL;
13728
13729 switch (elts[pos].opcode)
13730 {
13731 case UNOP_IN_RANGE:
13732 case UNOP_QUAL:
13733 type = elts[pos + 1].type;
13734 break;
13735
13736 default:
13737 return operator_check_standard (exp, pos, objfile_func, data);
13738 }
13739
13740 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13741
13742 if (type && TYPE_OBJFILE (type)
13743 && (*objfile_func) (TYPE_OBJFILE (type), data))
13744 return 1;
13745
13746 return 0;
13747}
13748
a121b7c1 13749static const char *
4c4b4cd2
PH
13750ada_op_name (enum exp_opcode opcode)
13751{
13752 switch (opcode)
13753 {
76a01679 13754 default:
4c4b4cd2 13755 return op_name_standard (opcode);
52ce6436 13756
4c4b4cd2
PH
13757#define OP_DEFN(op, len, args, binop) case op: return #op;
13758 ADA_OPERATORS;
13759#undef OP_DEFN
52ce6436
PH
13760
13761 case OP_AGGREGATE:
13762 return "OP_AGGREGATE";
13763 case OP_CHOICES:
13764 return "OP_CHOICES";
13765 case OP_NAME:
13766 return "OP_NAME";
4c4b4cd2
PH
13767 }
13768}
13769
13770/* As for operator_length, but assumes PC is pointing at the first
13771 element of the operator, and gives meaningful results only for the
52ce6436 13772 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13773
13774static void
76a01679
JB
13775ada_forward_operator_length (struct expression *exp, int pc,
13776 int *oplenp, int *argsp)
4c4b4cd2 13777{
76a01679 13778 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13779 {
13780 default:
13781 *oplenp = *argsp = 0;
13782 break;
52ce6436 13783
4c4b4cd2
PH
13784#define OP_DEFN(op, len, args, binop) \
13785 case op: *oplenp = len; *argsp = args; break;
13786 ADA_OPERATORS;
13787#undef OP_DEFN
52ce6436
PH
13788
13789 case OP_AGGREGATE:
13790 *oplenp = 3;
13791 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13792 break;
13793
13794 case OP_CHOICES:
13795 *oplenp = 3;
13796 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13797 break;
13798
13799 case OP_STRING:
13800 case OP_NAME:
13801 {
13802 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13803
52ce6436
PH
13804 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13805 *argsp = 0;
13806 break;
13807 }
4c4b4cd2
PH
13808 }
13809}
13810
13811static int
13812ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13813{
13814 enum exp_opcode op = exp->elts[elt].opcode;
13815 int oplen, nargs;
13816 int pc = elt;
13817 int i;
76a01679 13818
4c4b4cd2
PH
13819 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13820
76a01679 13821 switch (op)
4c4b4cd2 13822 {
76a01679 13823 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13824 case OP_ATR_FIRST:
13825 case OP_ATR_LAST:
13826 case OP_ATR_LENGTH:
13827 case OP_ATR_IMAGE:
13828 case OP_ATR_MAX:
13829 case OP_ATR_MIN:
13830 case OP_ATR_MODULUS:
13831 case OP_ATR_POS:
13832 case OP_ATR_SIZE:
13833 case OP_ATR_TAG:
13834 case OP_ATR_VAL:
13835 break;
13836
13837 case UNOP_IN_RANGE:
13838 case UNOP_QUAL:
323e0a4a
AC
13839 /* XXX: gdb_sprint_host_address, type_sprint */
13840 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13841 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13842 fprintf_filtered (stream, " (");
13843 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13844 fprintf_filtered (stream, ")");
13845 break;
13846 case BINOP_IN_BOUNDS:
52ce6436
PH
13847 fprintf_filtered (stream, " (%d)",
13848 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13849 break;
13850 case TERNOP_IN_RANGE:
13851 break;
13852
52ce6436
PH
13853 case OP_AGGREGATE:
13854 case OP_OTHERS:
13855 case OP_DISCRETE_RANGE:
13856 case OP_POSITIONAL:
13857 case OP_CHOICES:
13858 break;
13859
13860 case OP_NAME:
13861 case OP_STRING:
13862 {
13863 char *name = &exp->elts[elt + 2].string;
13864 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13865
52ce6436
PH
13866 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13867 break;
13868 }
13869
4c4b4cd2
PH
13870 default:
13871 return dump_subexp_body_standard (exp, stream, elt);
13872 }
13873
13874 elt += oplen;
13875 for (i = 0; i < nargs; i += 1)
13876 elt = dump_subexp (exp, stream, elt);
13877
13878 return elt;
13879}
13880
13881/* The Ada extension of print_subexp (q.v.). */
13882
76a01679
JB
13883static void
13884ada_print_subexp (struct expression *exp, int *pos,
13885 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13886{
52ce6436 13887 int oplen, nargs, i;
4c4b4cd2
PH
13888 int pc = *pos;
13889 enum exp_opcode op = exp->elts[pc].opcode;
13890
13891 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13892
52ce6436 13893 *pos += oplen;
4c4b4cd2
PH
13894 switch (op)
13895 {
13896 default:
52ce6436 13897 *pos -= oplen;
4c4b4cd2
PH
13898 print_subexp_standard (exp, pos, stream, prec);
13899 return;
13900
13901 case OP_VAR_VALUE:
4c4b4cd2
PH
13902 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13903 return;
13904
13905 case BINOP_IN_BOUNDS:
323e0a4a 13906 /* XXX: sprint_subexp */
4c4b4cd2 13907 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13908 fputs_filtered (" in ", stream);
4c4b4cd2 13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13910 fputs_filtered ("'range", stream);
4c4b4cd2 13911 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13912 fprintf_filtered (stream, "(%ld)",
13913 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13914 return;
13915
13916 case TERNOP_IN_RANGE:
4c4b4cd2 13917 if (prec >= PREC_EQUAL)
76a01679 13918 fputs_filtered ("(", stream);
323e0a4a 13919 /* XXX: sprint_subexp */
4c4b4cd2 13920 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13921 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13922 print_subexp (exp, pos, stream, PREC_EQUAL);
13923 fputs_filtered (" .. ", stream);
13924 print_subexp (exp, pos, stream, PREC_EQUAL);
13925 if (prec >= PREC_EQUAL)
76a01679
JB
13926 fputs_filtered (")", stream);
13927 return;
4c4b4cd2
PH
13928
13929 case OP_ATR_FIRST:
13930 case OP_ATR_LAST:
13931 case OP_ATR_LENGTH:
13932 case OP_ATR_IMAGE:
13933 case OP_ATR_MAX:
13934 case OP_ATR_MIN:
13935 case OP_ATR_MODULUS:
13936 case OP_ATR_POS:
13937 case OP_ATR_SIZE:
13938 case OP_ATR_TAG:
13939 case OP_ATR_VAL:
4c4b4cd2 13940 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13941 {
13942 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13943 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13944 &type_print_raw_options);
76a01679
JB
13945 *pos += 3;
13946 }
4c4b4cd2 13947 else
76a01679 13948 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13949 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13950 if (nargs > 1)
76a01679
JB
13951 {
13952 int tem;
5b4ee69b 13953
76a01679
JB
13954 for (tem = 1; tem < nargs; tem += 1)
13955 {
13956 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13957 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13958 }
13959 fputs_filtered (")", stream);
13960 }
4c4b4cd2 13961 return;
14f9c5c9 13962
4c4b4cd2 13963 case UNOP_QUAL:
4c4b4cd2
PH
13964 type_print (exp->elts[pc + 1].type, "", stream, 0);
13965 fputs_filtered ("'(", stream);
13966 print_subexp (exp, pos, stream, PREC_PREFIX);
13967 fputs_filtered (")", stream);
13968 return;
14f9c5c9 13969
4c4b4cd2 13970 case UNOP_IN_RANGE:
323e0a4a 13971 /* XXX: sprint_subexp */
4c4b4cd2 13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13973 fputs_filtered (" in ", stream);
79d43c61
TT
13974 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13975 &type_print_raw_options);
4c4b4cd2 13976 return;
52ce6436
PH
13977
13978 case OP_DISCRETE_RANGE:
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 fputs_filtered ("..", stream);
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_OTHERS:
13985 fputs_filtered ("others => ", stream);
13986 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 return;
13988
13989 case OP_CHOICES:
13990 for (i = 0; i < nargs-1; i += 1)
13991 {
13992 if (i > 0)
13993 fputs_filtered ("|", stream);
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 }
13996 fputs_filtered (" => ", stream);
13997 print_subexp (exp, pos, stream, PREC_SUFFIX);
13998 return;
13999
14000 case OP_POSITIONAL:
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 return;
14003
14004 case OP_AGGREGATE:
14005 fputs_filtered ("(", stream);
14006 for (i = 0; i < nargs; i += 1)
14007 {
14008 if (i > 0)
14009 fputs_filtered (", ", stream);
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 }
14012 fputs_filtered (")", stream);
14013 return;
4c4b4cd2
PH
14014 }
14015}
14f9c5c9
AS
14016
14017/* Table mapping opcodes into strings for printing operators
14018 and precedences of the operators. */
14019
d2e4a39e
AS
14020static const struct op_print ada_op_print_tab[] = {
14021 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14022 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14023 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14024 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14025 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14026 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14027 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14028 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14029 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14030 {">=", BINOP_GEQ, PREC_ORDER, 0},
14031 {">", BINOP_GTR, PREC_ORDER, 0},
14032 {"<", BINOP_LESS, PREC_ORDER, 0},
14033 {">>", BINOP_RSH, PREC_SHIFT, 0},
14034 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14035 {"+", BINOP_ADD, PREC_ADD, 0},
14036 {"-", BINOP_SUB, PREC_ADD, 0},
14037 {"&", BINOP_CONCAT, PREC_ADD, 0},
14038 {"*", BINOP_MUL, PREC_MUL, 0},
14039 {"/", BINOP_DIV, PREC_MUL, 0},
14040 {"rem", BINOP_REM, PREC_MUL, 0},
14041 {"mod", BINOP_MOD, PREC_MUL, 0},
14042 {"**", BINOP_EXP, PREC_REPEAT, 0},
14043 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14044 {"-", UNOP_NEG, PREC_PREFIX, 0},
14045 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14046 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14047 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14048 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14049 {".all", UNOP_IND, PREC_SUFFIX, 1},
14050 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14051 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14052 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14053};
14054\f
72d5681a
PH
14055enum ada_primitive_types {
14056 ada_primitive_type_int,
14057 ada_primitive_type_long,
14058 ada_primitive_type_short,
14059 ada_primitive_type_char,
14060 ada_primitive_type_float,
14061 ada_primitive_type_double,
14062 ada_primitive_type_void,
14063 ada_primitive_type_long_long,
14064 ada_primitive_type_long_double,
14065 ada_primitive_type_natural,
14066 ada_primitive_type_positive,
14067 ada_primitive_type_system_address,
08f49010 14068 ada_primitive_type_storage_offset,
72d5681a
PH
14069 nr_ada_primitive_types
14070};
6c038f32
PH
14071
14072static void
d4a9a881 14073ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14074 struct language_arch_info *lai)
14075{
d4a9a881 14076 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14077
72d5681a 14078 lai->primitive_type_vector
d4a9a881 14079 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14080 struct type *);
e9bb382b
UW
14081
14082 lai->primitive_type_vector [ada_primitive_type_int]
14083 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14084 0, "integer");
14085 lai->primitive_type_vector [ada_primitive_type_long]
14086 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14087 0, "long_integer");
14088 lai->primitive_type_vector [ada_primitive_type_short]
14089 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14090 0, "short_integer");
14091 lai->string_char_type
14092 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14093 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14094 lai->primitive_type_vector [ada_primitive_type_float]
14095 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14096 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14097 lai->primitive_type_vector [ada_primitive_type_double]
14098 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14099 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14100 lai->primitive_type_vector [ada_primitive_type_long_long]
14101 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14102 0, "long_long_integer");
14103 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14104 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14105 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14106 lai->primitive_type_vector [ada_primitive_type_natural]
14107 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14108 0, "natural");
14109 lai->primitive_type_vector [ada_primitive_type_positive]
14110 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14111 0, "positive");
14112 lai->primitive_type_vector [ada_primitive_type_void]
14113 = builtin->builtin_void;
14114
14115 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14116 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14117 "void"));
72d5681a
PH
14118 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14119 = "system__address";
fbb06eb1 14120
08f49010
XR
14121 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14122 type. This is a signed integral type whose size is the same as
14123 the size of addresses. */
14124 {
14125 unsigned int addr_length = TYPE_LENGTH
14126 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14127
14128 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14129 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14130 "storage_offset");
14131 }
14132
47e729a8 14133 lai->bool_type_symbol = NULL;
fbb06eb1 14134 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14135}
6c038f32
PH
14136\f
14137 /* Language vector */
14138
14139/* Not really used, but needed in the ada_language_defn. */
14140
14141static void
6c7a06a3 14142emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14143{
6c7a06a3 14144 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14145}
14146
14147static int
410a0ff2 14148parse (struct parser_state *ps)
6c038f32
PH
14149{
14150 warnings_issued = 0;
410a0ff2 14151 return ada_parse (ps);
6c038f32
PH
14152}
14153
14154static const struct exp_descriptor ada_exp_descriptor = {
14155 ada_print_subexp,
14156 ada_operator_length,
c0201579 14157 ada_operator_check,
6c038f32
PH
14158 ada_op_name,
14159 ada_dump_subexp_body,
14160 ada_evaluate_subexp
14161};
14162
b5ec771e
PA
14163/* symbol_name_matcher_ftype adapter for wild_match. */
14164
14165static bool
14166do_wild_match (const char *symbol_search_name,
14167 const lookup_name_info &lookup_name,
a207cff2 14168 completion_match_result *comp_match_res)
b5ec771e
PA
14169{
14170 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14171}
14172
14173/* symbol_name_matcher_ftype adapter for full_match. */
14174
14175static bool
14176do_full_match (const char *symbol_search_name,
14177 const lookup_name_info &lookup_name,
a207cff2 14178 completion_match_result *comp_match_res)
b5ec771e
PA
14179{
14180 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14181}
14182
14183/* Build the Ada lookup name for LOOKUP_NAME. */
14184
14185ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14186{
14187 const std::string &user_name = lookup_name.name ();
14188
14189 if (user_name[0] == '<')
14190 {
14191 if (user_name.back () == '>')
14192 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14193 else
14194 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14195 m_encoded_p = true;
14196 m_verbatim_p = true;
14197 m_wild_match_p = false;
14198 m_standard_p = false;
14199 }
14200 else
14201 {
14202 m_verbatim_p = false;
14203
14204 m_encoded_p = user_name.find ("__") != std::string::npos;
14205
14206 if (!m_encoded_p)
14207 {
14208 const char *folded = ada_fold_name (user_name.c_str ());
14209 const char *encoded = ada_encode_1 (folded, false);
14210 if (encoded != NULL)
14211 m_encoded_name = encoded;
14212 else
14213 m_encoded_name = user_name;
14214 }
14215 else
14216 m_encoded_name = user_name;
14217
14218 /* Handle the 'package Standard' special case. See description
14219 of m_standard_p. */
14220 if (startswith (m_encoded_name.c_str (), "standard__"))
14221 {
14222 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14223 m_standard_p = true;
14224 }
14225 else
14226 m_standard_p = false;
74ccd7f5 14227
b5ec771e
PA
14228 /* If the name contains a ".", then the user is entering a fully
14229 qualified entity name, and the match must not be done in wild
14230 mode. Similarly, if the user wants to complete what looks
14231 like an encoded name, the match must not be done in wild
14232 mode. Also, in the standard__ special case always do
14233 non-wild matching. */
14234 m_wild_match_p
14235 = (lookup_name.match_type () != symbol_name_match_type::FULL
14236 && !m_encoded_p
14237 && !m_standard_p
14238 && user_name.find ('.') == std::string::npos);
14239 }
14240}
14241
14242/* symbol_name_matcher_ftype method for Ada. This only handles
14243 completion mode. */
14244
14245static bool
14246ada_symbol_name_matches (const char *symbol_search_name,
14247 const lookup_name_info &lookup_name,
a207cff2 14248 completion_match_result *comp_match_res)
74ccd7f5 14249{
b5ec771e
PA
14250 return lookup_name.ada ().matches (symbol_search_name,
14251 lookup_name.match_type (),
a207cff2 14252 comp_match_res);
b5ec771e
PA
14253}
14254
14255/* Implement the "la_get_symbol_name_matcher" language_defn method for
14256 Ada. */
14257
14258static symbol_name_matcher_ftype *
14259ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14260{
14261 if (lookup_name.completion_mode ())
14262 return ada_symbol_name_matches;
74ccd7f5 14263 else
b5ec771e
PA
14264 {
14265 if (lookup_name.ada ().wild_match_p ())
14266 return do_wild_match;
14267 else
14268 return do_full_match;
14269 }
74ccd7f5
JB
14270}
14271
a5ee536b
JB
14272/* Implement the "la_read_var_value" language_defn method for Ada. */
14273
14274static struct value *
63e43d3a
PMR
14275ada_read_var_value (struct symbol *var, const struct block *var_block,
14276 struct frame_info *frame)
a5ee536b 14277{
3977b71f 14278 const struct block *frame_block = NULL;
a5ee536b
JB
14279 struct symbol *renaming_sym = NULL;
14280
14281 /* The only case where default_read_var_value is not sufficient
14282 is when VAR is a renaming... */
14283 if (frame)
14284 frame_block = get_frame_block (frame, NULL);
14285 if (frame_block)
14286 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14287 if (renaming_sym != NULL)
14288 return ada_read_renaming_var_value (renaming_sym, frame_block);
14289
14290 /* This is a typical case where we expect the default_read_var_value
14291 function to work. */
63e43d3a 14292 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14293}
14294
56618e20
TT
14295static const char *ada_extensions[] =
14296{
14297 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14298};
14299
47e77640 14300extern const struct language_defn ada_language_defn = {
6c038f32 14301 "ada", /* Language name */
6abde28f 14302 "Ada",
6c038f32 14303 language_ada,
6c038f32 14304 range_check_off,
6c038f32
PH
14305 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14306 that's not quite what this means. */
6c038f32 14307 array_row_major,
9a044a89 14308 macro_expansion_no,
56618e20 14309 ada_extensions,
6c038f32
PH
14310 &ada_exp_descriptor,
14311 parse,
b3f11165 14312 ada_yyerror,
6c038f32
PH
14313 resolve,
14314 ada_printchar, /* Print a character constant */
14315 ada_printstr, /* Function to print string constant */
14316 emit_char, /* Function to print single char (not used) */
6c038f32 14317 ada_print_type, /* Print a type using appropriate syntax */
be942545 14318 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14319 ada_val_print, /* Print a value using appropriate syntax */
14320 ada_value_print, /* Print a top-level value */
a5ee536b 14321 ada_read_var_value, /* la_read_var_value */
6c038f32 14322 NULL, /* Language specific skip_trampoline */
2b2d9e11 14323 NULL, /* name_of_this */
6c038f32
PH
14324 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14325 basic_lookup_transparent_type, /* lookup_transparent_type */
14326 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14327 ada_sniff_from_mangled_name,
0963b4bd
MS
14328 NULL, /* Language specific
14329 class_name_from_physname */
6c038f32
PH
14330 ada_op_print_tab, /* expression operators for printing */
14331 0, /* c-style arrays */
14332 1, /* String lower bound */
6c038f32 14333 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14334 ada_collect_symbol_completion_matches,
72d5681a 14335 ada_language_arch_info,
e79af960 14336 ada_print_array_index,
41f1b697 14337 default_pass_by_reference,
ae6a3a4c 14338 c_get_string,
43cc5389 14339 c_watch_location_expression,
b5ec771e 14340 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14341 ada_iterate_over_symbols,
5ffa0793 14342 default_search_name_hash,
a53b64ea 14343 &ada_varobj_ops,
bb2ec1b3
TT
14344 NULL,
14345 NULL,
6c038f32
PH
14346 LANG_MAGIC
14347};
14348
5bf03f13
JB
14349/* Command-list for the "set/show ada" prefix command. */
14350static struct cmd_list_element *set_ada_list;
14351static struct cmd_list_element *show_ada_list;
14352
14353/* Implement the "set ada" prefix command. */
14354
14355static void
981a3fb3 14356set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14357{
14358 printf_unfiltered (_(\
14359"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14360 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14361}
14362
14363/* Implement the "show ada" prefix command. */
14364
14365static void
981a3fb3 14366show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14367{
14368 cmd_show_list (show_ada_list, from_tty, "");
14369}
14370
2060206e
PA
14371static void
14372initialize_ada_catchpoint_ops (void)
14373{
14374 struct breakpoint_ops *ops;
14375
14376 initialize_breakpoint_ops ();
14377
14378 ops = &catch_exception_breakpoint_ops;
14379 *ops = bkpt_breakpoint_ops;
2060206e
PA
14380 ops->allocate_location = allocate_location_catch_exception;
14381 ops->re_set = re_set_catch_exception;
14382 ops->check_status = check_status_catch_exception;
14383 ops->print_it = print_it_catch_exception;
14384 ops->print_one = print_one_catch_exception;
14385 ops->print_mention = print_mention_catch_exception;
14386 ops->print_recreate = print_recreate_catch_exception;
14387
14388 ops = &catch_exception_unhandled_breakpoint_ops;
14389 *ops = bkpt_breakpoint_ops;
2060206e
PA
14390 ops->allocate_location = allocate_location_catch_exception_unhandled;
14391 ops->re_set = re_set_catch_exception_unhandled;
14392 ops->check_status = check_status_catch_exception_unhandled;
14393 ops->print_it = print_it_catch_exception_unhandled;
14394 ops->print_one = print_one_catch_exception_unhandled;
14395 ops->print_mention = print_mention_catch_exception_unhandled;
14396 ops->print_recreate = print_recreate_catch_exception_unhandled;
14397
14398 ops = &catch_assert_breakpoint_ops;
14399 *ops = bkpt_breakpoint_ops;
2060206e
PA
14400 ops->allocate_location = allocate_location_catch_assert;
14401 ops->re_set = re_set_catch_assert;
14402 ops->check_status = check_status_catch_assert;
14403 ops->print_it = print_it_catch_assert;
14404 ops->print_one = print_one_catch_assert;
14405 ops->print_mention = print_mention_catch_assert;
14406 ops->print_recreate = print_recreate_catch_assert;
14407}
14408
3d9434b5
JB
14409/* This module's 'new_objfile' observer. */
14410
14411static void
14412ada_new_objfile_observer (struct objfile *objfile)
14413{
14414 ada_clear_symbol_cache ();
14415}
14416
14417/* This module's 'free_objfile' observer. */
14418
14419static void
14420ada_free_objfile_observer (struct objfile *objfile)
14421{
14422 ada_clear_symbol_cache ();
14423}
14424
d2e4a39e 14425void
6c038f32 14426_initialize_ada_language (void)
14f9c5c9 14427{
2060206e
PA
14428 initialize_ada_catchpoint_ops ();
14429
5bf03f13
JB
14430 add_prefix_cmd ("ada", no_class, set_ada_command,
14431 _("Prefix command for changing Ada-specfic settings"),
14432 &set_ada_list, "set ada ", 0, &setlist);
14433
14434 add_prefix_cmd ("ada", no_class, show_ada_command,
14435 _("Generic command for showing Ada-specific settings."),
14436 &show_ada_list, "show ada ", 0, &showlist);
14437
14438 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14439 &trust_pad_over_xvs, _("\
14440Enable or disable an optimization trusting PAD types over XVS types"), _("\
14441Show whether an optimization trusting PAD types over XVS types is activated"),
14442 _("\
14443This is related to the encoding used by the GNAT compiler. The debugger\n\
14444should normally trust the contents of PAD types, but certain older versions\n\
14445of GNAT have a bug that sometimes causes the information in the PAD type\n\
14446to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14447work around this bug. It is always safe to turn this option \"off\", but\n\
14448this incurs a slight performance penalty, so it is recommended to NOT change\n\
14449this option to \"off\" unless necessary."),
14450 NULL, NULL, &set_ada_list, &show_ada_list);
14451
d72413e6
PMR
14452 add_setshow_boolean_cmd ("print-signatures", class_vars,
14453 &print_signatures, _("\
14454Enable or disable the output of formal and return types for functions in the \
14455overloads selection menu"), _("\
14456Show whether the output of formal and return types for functions in the \
14457overloads selection menu is activated"),
14458 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14459
9ac4176b
PA
14460 add_catch_command ("exception", _("\
14461Catch Ada exceptions, when raised.\n\
14462With an argument, catch only exceptions with the given name."),
14463 catch_ada_exception_command,
14464 NULL,
14465 CATCH_PERMANENT,
14466 CATCH_TEMPORARY);
14467 add_catch_command ("assert", _("\
14468Catch failed Ada assertions, when raised.\n\
14469With an argument, catch only exceptions with the given name."),
14470 catch_assert_command,
14471 NULL,
14472 CATCH_PERMANENT,
14473 CATCH_TEMPORARY);
14474
6c038f32 14475 varsize_limit = 65536;
6c038f32 14476
778865d3
JB
14477 add_info ("exceptions", info_exceptions_command,
14478 _("\
14479List all Ada exception names.\n\
14480If a regular expression is passed as an argument, only those matching\n\
14481the regular expression are listed."));
14482
c6044dd1
JB
14483 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14484 _("Set Ada maintenance-related variables."),
14485 &maint_set_ada_cmdlist, "maintenance set ada ",
14486 0/*allow-unknown*/, &maintenance_set_cmdlist);
14487
14488 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14489 _("Show Ada maintenance-related variables"),
14490 &maint_show_ada_cmdlist, "maintenance show ada ",
14491 0/*allow-unknown*/, &maintenance_show_cmdlist);
14492
14493 add_setshow_boolean_cmd
14494 ("ignore-descriptive-types", class_maintenance,
14495 &ada_ignore_descriptive_types_p,
14496 _("Set whether descriptive types generated by GNAT should be ignored."),
14497 _("Show whether descriptive types generated by GNAT should be ignored."),
14498 _("\
14499When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14500DWARF attribute."),
14501 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14502
6c038f32
PH
14503 decoded_names_store = htab_create_alloc
14504 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14505 NULL, xcalloc, xfree);
6b69afc4 14506
3d9434b5
JB
14507 /* The ada-lang observers. */
14508 observer_attach_new_objfile (ada_new_objfile_observer);
14509 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14510 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14511
14512 /* Setup various context-specific data. */
e802dbe0 14513 ada_inferior_data
8e260fc0 14514 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14515 ada_pspace_data_handle
14516 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14517}
This page took 3.337826 seconds and 4 git commands to generate.