Rewrite TRY/CATCH
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4
TT
51#include "observable.h"
52#include "common/vec.h"
692465f1 53#include "stack.h"
4de283e4 54#include "common/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63#include "common/function-view.h"
64#include "common/byte-vector.h"
65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
128 struct type *, int,
129 innermost_block_tracker *);
14f9c5c9 130
e9d9f57e 131static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 132 struct symbol *, const struct block *);
14f9c5c9 133
d2e4a39e 134static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 135
a121b7c1 136static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
137
138static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 139
d2e4a39e 140static int numeric_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int integer_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int scalar_type_p (struct type *);
14f9c5c9 145
d2e4a39e 146static int discrete_type_p (struct type *);
14f9c5c9 147
aeb5907d
JB
148static enum ada_renaming_category parse_old_style_renaming (struct type *,
149 const char **,
150 int *,
151 const char **);
152
153static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 154 const struct block *);
aeb5907d 155
a121b7c1 156static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 157 int, int);
4c4b4cd2 158
d2e4a39e 159static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 160
b4ba55a1
JB
161static struct type *ada_find_parallel_type_with_name (struct type *,
162 const char *);
163
d2e4a39e 164static int is_dynamic_field (struct type *, int);
14f9c5c9 165
10a2c479 166static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 167 const gdb_byte *,
4c4b4cd2
PH
168 CORE_ADDR, struct value *);
169
170static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 171
28c85d6c 172static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 173
d2e4a39e 174static struct type *to_static_fixed_type (struct type *);
f192137b 175static struct type *static_unwrap_type (struct type *type);
14f9c5c9 176
d2e4a39e 177static struct value *unwrap_value (struct value *);
14f9c5c9 178
ad82864c 179static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 180
ad82864c 181static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 182
ad82864c
JB
183static long decode_packed_array_bitsize (struct type *);
184
185static struct value *decode_constrained_packed_array (struct value *);
186
187static int ada_is_packed_array_type (struct type *);
188
189static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 192 struct value **);
14f9c5c9 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
b5ec771e 205static bool wild_match (const char *name, const char *patn);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2 226
d12307c1 227static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 228 struct value **, int, const char *,
2a612529 229 struct type *, int);
4c4b4cd2 230
4c4b4cd2
PH
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab 235
52ce6436
PH
236static struct value *ada_index_struct_field (int, struct value *, int,
237 struct type *);
238
239static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
240 struct expression *,
241 int *, enum noside);
52ce6436
PH
242
243static void aggregate_assign_from_choices (struct value *, struct value *,
244 struct expression *,
245 int *, LONGEST *, int *,
246 int, LONGEST, LONGEST);
247
248static void aggregate_assign_positional (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *, int,
251 LONGEST, LONGEST);
252
253
254static void aggregate_assign_others (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int, LONGEST, LONGEST);
257
258
259static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
260
261
262static struct value *ada_evaluate_subexp (struct type *, struct expression *,
263 int *, enum noside);
264
265static void ada_forward_operator_length (struct expression *, int, int *,
266 int *);
852dff6c
JB
267
268static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
269
270static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
271 (const lookup_name_info &lookup_name);
272
4c4b4cd2
PH
273\f
274
ee01b665
JB
275/* The result of a symbol lookup to be stored in our symbol cache. */
276
277struct cache_entry
278{
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
fe978cb0 282 domain_enum domain;
ee01b665
JB
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291};
292
293/* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302#define HASH_SIZE 1009
303
304struct ada_symbol_cache
305{
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311};
312
313static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 314
4c4b4cd2 315/* Maximum-sized dynamic type. */
14f9c5c9
AS
316static unsigned int varsize_limit;
317
67cb5b2d 318static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
319#ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321#else
14f9c5c9 322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 323#endif
14f9c5c9 324
4c4b4cd2 325/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 326static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 327 = "__gnat_ada_main_program_name";
14f9c5c9 328
4c4b4cd2
PH
329/* Limit on the number of warnings to raise per expression evaluation. */
330static int warning_limit = 2;
331
332/* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334static int warnings_issued = 0;
335
336static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338};
339
340static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342};
343
c6044dd1
JB
344/* Maintenance-related settings for this module. */
345
346static struct cmd_list_element *maint_set_ada_cmdlist;
347static struct cmd_list_element *maint_show_ada_cmdlist;
348
349/* Implement the "maintenance set ada" (prefix) command. */
350
351static void
981a3fb3 352maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 353{
635c7e8a
TT
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
c6044dd1
JB
356}
357
358/* Implement the "maintenance show ada" (prefix) command. */
359
360static void
981a3fb3 361maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
362{
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364}
365
366/* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368static int ada_ignore_descriptive_types_p = 0;
369
e802dbe0
JB
370 /* Inferior-specific data. */
371
372/* Per-inferior data for this module. */
373
374struct ada_inferior_data
375{
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
3eecfa55
JB
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
e802dbe0
JB
386};
387
388/* Our key to this module's inferior data. */
389static const struct inferior_data *ada_inferior_data;
390
391/* A cleanup routine for our inferior data. */
392static void
393ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394{
395 struct ada_inferior_data *data;
396
9a3c8263 397 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
398 if (data != NULL)
399 xfree (data);
400}
401
402/* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410static struct ada_inferior_data *
411get_ada_inferior_data (struct inferior *inf)
412{
413 struct ada_inferior_data *data;
414
9a3c8263 415 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
416 if (data == NULL)
417 {
41bf6aca 418 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423}
424
425/* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428static void
429ada_inferior_exit (struct inferior *inf)
430{
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433}
434
ee01b665
JB
435
436 /* program-space-specific data. */
437
438/* This module's per-program-space data. */
439struct ada_pspace_data
440{
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443};
444
445/* Key to our per-program-space data. */
446static const struct program_space_data *ada_pspace_data_handle;
447
448/* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453static struct ada_pspace_data *
454get_ada_pspace_data (struct program_space *pspace)
455{
456 struct ada_pspace_data *data;
457
9a3c8263
SM
458 data = ((struct ada_pspace_data *)
459 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
460 if (data == NULL)
461 {
462 data = XCNEW (struct ada_pspace_data);
463 set_program_space_data (pspace, ada_pspace_data_handle, data);
464 }
465
466 return data;
467}
468
469/* The cleanup callback for this module's per-program-space data. */
470
471static void
472ada_pspace_data_cleanup (struct program_space *pspace, void *data)
473{
9a3c8263 474 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
475
476 if (pspace_data->sym_cache != NULL)
477 ada_free_symbol_cache (pspace_data->sym_cache);
478 xfree (pspace_data);
479}
480
4c4b4cd2
PH
481 /* Utilities */
482
720d1a40 483/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 484 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
485
486 Normally, we really expect a typedef type to only have 1 typedef layer.
487 In other words, we really expect the target type of a typedef type to be
488 a non-typedef type. This is particularly true for Ada units, because
489 the language does not have a typedef vs not-typedef distinction.
490 In that respect, the Ada compiler has been trying to eliminate as many
491 typedef definitions in the debugging information, since they generally
492 do not bring any extra information (we still use typedef under certain
493 circumstances related mostly to the GNAT encoding).
494
495 Unfortunately, we have seen situations where the debugging information
496 generated by the compiler leads to such multiple typedef layers. For
497 instance, consider the following example with stabs:
498
499 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
500 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501
502 This is an error in the debugging information which causes type
503 pck__float_array___XUP to be defined twice, and the second time,
504 it is defined as a typedef of a typedef.
505
506 This is on the fringe of legality as far as debugging information is
507 concerned, and certainly unexpected. But it is easy to handle these
508 situations correctly, so we can afford to be lenient in this case. */
509
510static struct type *
511ada_typedef_target_type (struct type *type)
512{
513 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
514 type = TYPE_TARGET_TYPE (type);
515 return type;
516}
517
41d27058
JB
518/* Given DECODED_NAME a string holding a symbol name in its
519 decoded form (ie using the Ada dotted notation), returns
520 its unqualified name. */
521
522static const char *
523ada_unqualified_name (const char *decoded_name)
524{
2b0f535a
JB
525 const char *result;
526
527 /* If the decoded name starts with '<', it means that the encoded
528 name does not follow standard naming conventions, and thus that
529 it is not your typical Ada symbol name. Trying to unqualify it
530 is therefore pointless and possibly erroneous. */
531 if (decoded_name[0] == '<')
532 return decoded_name;
533
534 result = strrchr (decoded_name, '.');
41d27058
JB
535 if (result != NULL)
536 result++; /* Skip the dot... */
537 else
538 result = decoded_name;
539
540 return result;
541}
542
39e7af3e 543/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 544
39e7af3e 545static std::string
41d27058
JB
546add_angle_brackets (const char *str)
547{
39e7af3e 548 return string_printf ("<%s>", str);
41d27058 549}
96d887e8 550
67cb5b2d 551static const char *
4c4b4cd2
PH
552ada_get_gdb_completer_word_break_characters (void)
553{
554 return ada_completer_word_break_characters;
555}
556
e79af960
JB
557/* Print an array element index using the Ada syntax. */
558
559static void
560ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 561 const struct value_print_options *options)
e79af960 562{
79a45b7d 563 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
564 fprintf_filtered (stream, " => ");
565}
566
e2b7af72
JB
567/* la_watch_location_expression for Ada. */
568
569gdb::unique_xmalloc_ptr<char>
570ada_watch_location_expression (struct type *type, CORE_ADDR addr)
571{
572 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
573 std::string name = type_to_string (type);
574 return gdb::unique_xmalloc_ptr<char>
575 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
576}
577
f27cf670 578/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 579 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 580 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 581
f27cf670
AS
582void *
583grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 584{
d2e4a39e
AS
585 if (*size < min_size)
586 {
587 *size *= 2;
588 if (*size < min_size)
4c4b4cd2 589 *size = min_size;
f27cf670 590 vect = xrealloc (vect, *size * element_size);
d2e4a39e 591 }
f27cf670 592 return vect;
14f9c5c9
AS
593}
594
595/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 596 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
597
598static int
ebf56fd3 599field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
600{
601 int len = strlen (target);
5b4ee69b 602
d2e4a39e 603 return
4c4b4cd2
PH
604 (strncmp (field_name, target, len) == 0
605 && (field_name[len] == '\0'
61012eef 606 || (startswith (field_name + len, "___")
76a01679
JB
607 && strcmp (field_name + strlen (field_name) - 6,
608 "___XVN") != 0)));
14f9c5c9
AS
609}
610
611
872c8b51
JB
612/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
613 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
614 and return its index. This function also handles fields whose name
615 have ___ suffixes because the compiler sometimes alters their name
616 by adding such a suffix to represent fields with certain constraints.
617 If the field could not be found, return a negative number if
618 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
619
620int
621ada_get_field_index (const struct type *type, const char *field_name,
622 int maybe_missing)
623{
624 int fieldno;
872c8b51
JB
625 struct type *struct_type = check_typedef ((struct type *) type);
626
627 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
628 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
629 return fieldno;
630
631 if (!maybe_missing)
323e0a4a 632 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 633 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
634
635 return -1;
636}
637
638/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
639
640int
d2e4a39e 641ada_name_prefix_len (const char *name)
14f9c5c9
AS
642{
643 if (name == NULL)
644 return 0;
d2e4a39e 645 else
14f9c5c9 646 {
d2e4a39e 647 const char *p = strstr (name, "___");
5b4ee69b 648
14f9c5c9 649 if (p == NULL)
4c4b4cd2 650 return strlen (name);
14f9c5c9 651 else
4c4b4cd2 652 return p - name;
14f9c5c9
AS
653 }
654}
655
4c4b4cd2
PH
656/* Return non-zero if SUFFIX is a suffix of STR.
657 Return zero if STR is null. */
658
14f9c5c9 659static int
d2e4a39e 660is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
661{
662 int len1, len2;
5b4ee69b 663
14f9c5c9
AS
664 if (str == NULL)
665 return 0;
666 len1 = strlen (str);
667 len2 = strlen (suffix);
4c4b4cd2 668 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
669}
670
4c4b4cd2
PH
671/* The contents of value VAL, treated as a value of type TYPE. The
672 result is an lval in memory if VAL is. */
14f9c5c9 673
d2e4a39e 674static struct value *
4c4b4cd2 675coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 676{
61ee279c 677 type = ada_check_typedef (type);
df407dfe 678 if (value_type (val) == type)
4c4b4cd2 679 return val;
d2e4a39e 680 else
14f9c5c9 681 {
4c4b4cd2
PH
682 struct value *result;
683
684 /* Make sure that the object size is not unreasonable before
685 trying to allocate some memory for it. */
c1b5a1a6 686 ada_ensure_varsize_limit (type);
4c4b4cd2 687
41e8491f
JK
688 if (value_lazy (val)
689 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
690 result = allocate_value_lazy (type);
691 else
692 {
693 result = allocate_value (type);
9a0dc9e3 694 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 695 }
74bcbdf3 696 set_value_component_location (result, val);
9bbda503
AC
697 set_value_bitsize (result, value_bitsize (val));
698 set_value_bitpos (result, value_bitpos (val));
42ae5230 699 set_value_address (result, value_address (val));
14f9c5c9
AS
700 return result;
701 }
702}
703
fc1a4b47
AC
704static const gdb_byte *
705cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
706{
707 if (valaddr == NULL)
708 return NULL;
709 else
710 return valaddr + offset;
711}
712
713static CORE_ADDR
ebf56fd3 714cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
715{
716 if (address == 0)
717 return 0;
d2e4a39e 718 else
14f9c5c9
AS
719 return address + offset;
720}
721
4c4b4cd2
PH
722/* Issue a warning (as for the definition of warning in utils.c, but
723 with exactly one argument rather than ...), unless the limit on the
724 number of warnings has passed during the evaluation of the current
725 expression. */
a2249542 726
77109804
AC
727/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
728 provided by "complaint". */
a0b31db1 729static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 730
14f9c5c9 731static void
a2249542 732lim_warning (const char *format, ...)
14f9c5c9 733{
a2249542 734 va_list args;
a2249542 735
5b4ee69b 736 va_start (args, format);
4c4b4cd2
PH
737 warnings_issued += 1;
738 if (warnings_issued <= warning_limit)
a2249542
MK
739 vwarning (format, args);
740
741 va_end (args);
4c4b4cd2
PH
742}
743
714e53ab
PH
744/* Issue an error if the size of an object of type T is unreasonable,
745 i.e. if it would be a bad idea to allocate a value of this type in
746 GDB. */
747
c1b5a1a6
JB
748void
749ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
750{
751 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 752 error (_("object size is larger than varsize-limit"));
714e53ab
PH
753}
754
0963b4bd 755/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 756static LONGEST
c3e5cd34 757max_of_size (int size)
4c4b4cd2 758{
76a01679 759 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 760
76a01679 761 return top_bit | (top_bit - 1);
4c4b4cd2
PH
762}
763
0963b4bd 764/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 765static LONGEST
c3e5cd34 766min_of_size (int size)
4c4b4cd2 767{
c3e5cd34 768 return -max_of_size (size) - 1;
4c4b4cd2
PH
769}
770
0963b4bd 771/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 772static ULONGEST
c3e5cd34 773umax_of_size (int size)
4c4b4cd2 774{
76a01679 775 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 776
76a01679 777 return top_bit | (top_bit - 1);
4c4b4cd2
PH
778}
779
0963b4bd 780/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
781static LONGEST
782max_of_type (struct type *t)
4c4b4cd2 783{
c3e5cd34
PH
784 if (TYPE_UNSIGNED (t))
785 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
786 else
787 return max_of_size (TYPE_LENGTH (t));
788}
789
0963b4bd 790/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
791static LONGEST
792min_of_type (struct type *t)
793{
794 if (TYPE_UNSIGNED (t))
795 return 0;
796 else
797 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
798}
799
800/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
801LONGEST
802ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 803{
c3345124 804 type = resolve_dynamic_type (type, NULL, 0);
76a01679 805 switch (TYPE_CODE (type))
4c4b4cd2
PH
806 {
807 case TYPE_CODE_RANGE:
690cc4eb 808 return TYPE_HIGH_BOUND (type);
4c4b4cd2 809 case TYPE_CODE_ENUM:
14e75d8e 810 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
811 case TYPE_CODE_BOOL:
812 return 1;
813 case TYPE_CODE_CHAR:
76a01679 814 case TYPE_CODE_INT:
690cc4eb 815 return max_of_type (type);
4c4b4cd2 816 default:
43bbcdc2 817 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
818 }
819}
820
14e75d8e 821/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
822LONGEST
823ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 824{
c3345124 825 type = resolve_dynamic_type (type, NULL, 0);
76a01679 826 switch (TYPE_CODE (type))
4c4b4cd2
PH
827 {
828 case TYPE_CODE_RANGE:
690cc4eb 829 return TYPE_LOW_BOUND (type);
4c4b4cd2 830 case TYPE_CODE_ENUM:
14e75d8e 831 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
832 case TYPE_CODE_BOOL:
833 return 0;
834 case TYPE_CODE_CHAR:
76a01679 835 case TYPE_CODE_INT:
690cc4eb 836 return min_of_type (type);
4c4b4cd2 837 default:
43bbcdc2 838 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
839 }
840}
841
842/* The identity on non-range types. For range types, the underlying
76a01679 843 non-range scalar type. */
4c4b4cd2
PH
844
845static struct type *
18af8284 846get_base_type (struct type *type)
4c4b4cd2
PH
847{
848 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
849 {
76a01679
JB
850 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
851 return type;
4c4b4cd2
PH
852 type = TYPE_TARGET_TYPE (type);
853 }
854 return type;
14f9c5c9 855}
41246937
JB
856
857/* Return a decoded version of the given VALUE. This means returning
858 a value whose type is obtained by applying all the GNAT-specific
859 encondings, making the resulting type a static but standard description
860 of the initial type. */
861
862struct value *
863ada_get_decoded_value (struct value *value)
864{
865 struct type *type = ada_check_typedef (value_type (value));
866
867 if (ada_is_array_descriptor_type (type)
868 || (ada_is_constrained_packed_array_type (type)
869 && TYPE_CODE (type) != TYPE_CODE_PTR))
870 {
871 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
872 value = ada_coerce_to_simple_array_ptr (value);
873 else
874 value = ada_coerce_to_simple_array (value);
875 }
876 else
877 value = ada_to_fixed_value (value);
878
879 return value;
880}
881
882/* Same as ada_get_decoded_value, but with the given TYPE.
883 Because there is no associated actual value for this type,
884 the resulting type might be a best-effort approximation in
885 the case of dynamic types. */
886
887struct type *
888ada_get_decoded_type (struct type *type)
889{
890 type = to_static_fixed_type (type);
891 if (ada_is_constrained_packed_array_type (type))
892 type = ada_coerce_to_simple_array_type (type);
893 return type;
894}
895
4c4b4cd2 896\f
76a01679 897
4c4b4cd2 898 /* Language Selection */
14f9c5c9
AS
899
900/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 901 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 902
14f9c5c9 903enum language
ccefe4c4 904ada_update_initial_language (enum language lang)
14f9c5c9 905{
d2e4a39e 906 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 907 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 908 return language_ada;
14f9c5c9
AS
909
910 return lang;
911}
96d887e8
PH
912
913/* If the main procedure is written in Ada, then return its name.
914 The result is good until the next call. Return NULL if the main
915 procedure doesn't appear to be in Ada. */
916
917char *
918ada_main_name (void)
919{
3b7344d5 920 struct bound_minimal_symbol msym;
e83e4e24 921 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 922
96d887e8
PH
923 /* For Ada, the name of the main procedure is stored in a specific
924 string constant, generated by the binder. Look for that symbol,
925 extract its address, and then read that string. If we didn't find
926 that string, then most probably the main procedure is not written
927 in Ada. */
928 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
929
3b7344d5 930 if (msym.minsym != NULL)
96d887e8 931 {
f9bc20b9
JB
932 CORE_ADDR main_program_name_addr;
933 int err_code;
934
77e371c0 935 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 936 if (main_program_name_addr == 0)
323e0a4a 937 error (_("Invalid address for Ada main program name."));
96d887e8 938
f9bc20b9
JB
939 target_read_string (main_program_name_addr, &main_program_name,
940 1024, &err_code);
941
942 if (err_code != 0)
943 return NULL;
e83e4e24 944 return main_program_name.get ();
96d887e8
PH
945 }
946
947 /* The main procedure doesn't seem to be in Ada. */
948 return NULL;
949}
14f9c5c9 950\f
4c4b4cd2 951 /* Symbols */
d2e4a39e 952
4c4b4cd2
PH
953/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
954 of NULLs. */
14f9c5c9 955
d2e4a39e
AS
956const struct ada_opname_map ada_opname_table[] = {
957 {"Oadd", "\"+\"", BINOP_ADD},
958 {"Osubtract", "\"-\"", BINOP_SUB},
959 {"Omultiply", "\"*\"", BINOP_MUL},
960 {"Odivide", "\"/\"", BINOP_DIV},
961 {"Omod", "\"mod\"", BINOP_MOD},
962 {"Orem", "\"rem\"", BINOP_REM},
963 {"Oexpon", "\"**\"", BINOP_EXP},
964 {"Olt", "\"<\"", BINOP_LESS},
965 {"Ole", "\"<=\"", BINOP_LEQ},
966 {"Ogt", "\">\"", BINOP_GTR},
967 {"Oge", "\">=\"", BINOP_GEQ},
968 {"Oeq", "\"=\"", BINOP_EQUAL},
969 {"One", "\"/=\"", BINOP_NOTEQUAL},
970 {"Oand", "\"and\"", BINOP_BITWISE_AND},
971 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
972 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
973 {"Oconcat", "\"&\"", BINOP_CONCAT},
974 {"Oabs", "\"abs\"", UNOP_ABS},
975 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
976 {"Oadd", "\"+\"", UNOP_PLUS},
977 {"Osubtract", "\"-\"", UNOP_NEG},
978 {NULL, NULL}
14f9c5c9
AS
979};
980
b5ec771e
PA
981/* The "encoded" form of DECODED, according to GNAT conventions. The
982 result is valid until the next call to ada_encode. If
983 THROW_ERRORS, throw an error if invalid operator name is found.
984 Otherwise, return NULL in that case. */
4c4b4cd2 985
b5ec771e
PA
986static char *
987ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 988{
4c4b4cd2
PH
989 static char *encoding_buffer = NULL;
990 static size_t encoding_buffer_size = 0;
d2e4a39e 991 const char *p;
14f9c5c9 992 int k;
d2e4a39e 993
4c4b4cd2 994 if (decoded == NULL)
14f9c5c9
AS
995 return NULL;
996
4c4b4cd2
PH
997 GROW_VECT (encoding_buffer, encoding_buffer_size,
998 2 * strlen (decoded) + 10);
14f9c5c9
AS
999
1000 k = 0;
4c4b4cd2 1001 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1002 {
cdc7bb92 1003 if (*p == '.')
4c4b4cd2
PH
1004 {
1005 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1006 k += 2;
1007 }
14f9c5c9 1008 else if (*p == '"')
4c4b4cd2
PH
1009 {
1010 const struct ada_opname_map *mapping;
1011
1012 for (mapping = ada_opname_table;
1265e4aa 1013 mapping->encoded != NULL
61012eef 1014 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1015 ;
1016 if (mapping->encoded == NULL)
b5ec771e
PA
1017 {
1018 if (throw_errors)
1019 error (_("invalid Ada operator name: %s"), p);
1020 else
1021 return NULL;
1022 }
4c4b4cd2
PH
1023 strcpy (encoding_buffer + k, mapping->encoded);
1024 k += strlen (mapping->encoded);
1025 break;
1026 }
d2e4a39e 1027 else
4c4b4cd2
PH
1028 {
1029 encoding_buffer[k] = *p;
1030 k += 1;
1031 }
14f9c5c9
AS
1032 }
1033
4c4b4cd2
PH
1034 encoding_buffer[k] = '\0';
1035 return encoding_buffer;
14f9c5c9
AS
1036}
1037
b5ec771e
PA
1038/* The "encoded" form of DECODED, according to GNAT conventions.
1039 The result is valid until the next call to ada_encode. */
1040
1041char *
1042ada_encode (const char *decoded)
1043{
1044 return ada_encode_1 (decoded, true);
1045}
1046
14f9c5c9 1047/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1048 quotes, unfolded, but with the quotes stripped away. Result good
1049 to next call. */
1050
d2e4a39e
AS
1051char *
1052ada_fold_name (const char *name)
14f9c5c9 1053{
d2e4a39e 1054 static char *fold_buffer = NULL;
14f9c5c9
AS
1055 static size_t fold_buffer_size = 0;
1056
1057 int len = strlen (name);
d2e4a39e 1058 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1059
1060 if (name[0] == '\'')
1061 {
d2e4a39e
AS
1062 strncpy (fold_buffer, name + 1, len - 2);
1063 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1064 }
1065 else
1066 {
1067 int i;
5b4ee69b 1068
14f9c5c9 1069 for (i = 0; i <= len; i += 1)
4c4b4cd2 1070 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1071 }
1072
1073 return fold_buffer;
1074}
1075
529cad9c
PH
1076/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1077
1078static int
1079is_lower_alphanum (const char c)
1080{
1081 return (isdigit (c) || (isalpha (c) && islower (c)));
1082}
1083
c90092fe
JB
1084/* ENCODED is the linkage name of a symbol and LEN contains its length.
1085 This function saves in LEN the length of that same symbol name but
1086 without either of these suffixes:
29480c32
JB
1087 . .{DIGIT}+
1088 . ${DIGIT}+
1089 . ___{DIGIT}+
1090 . __{DIGIT}+.
c90092fe 1091
29480c32
JB
1092 These are suffixes introduced by the compiler for entities such as
1093 nested subprogram for instance, in order to avoid name clashes.
1094 They do not serve any purpose for the debugger. */
1095
1096static void
1097ada_remove_trailing_digits (const char *encoded, int *len)
1098{
1099 if (*len > 1 && isdigit (encoded[*len - 1]))
1100 {
1101 int i = *len - 2;
5b4ee69b 1102
29480c32
JB
1103 while (i > 0 && isdigit (encoded[i]))
1104 i--;
1105 if (i >= 0 && encoded[i] == '.')
1106 *len = i;
1107 else if (i >= 0 && encoded[i] == '$')
1108 *len = i;
61012eef 1109 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1110 *len = i - 2;
61012eef 1111 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1112 *len = i - 1;
1113 }
1114}
1115
1116/* Remove the suffix introduced by the compiler for protected object
1117 subprograms. */
1118
1119static void
1120ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121{
1122 /* Remove trailing N. */
1123
1124 /* Protected entry subprograms are broken into two
1125 separate subprograms: The first one is unprotected, and has
1126 a 'N' suffix; the second is the protected version, and has
0963b4bd 1127 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1128 the protection. Since the P subprograms are internally generated,
1129 we leave these names undecoded, giving the user a clue that this
1130 entity is internal. */
1131
1132 if (*len > 1
1133 && encoded[*len - 1] == 'N'
1134 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1135 *len = *len - 1;
1136}
1137
69fadcdf
JB
1138/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1139
1140static void
1141ada_remove_Xbn_suffix (const char *encoded, int *len)
1142{
1143 int i = *len - 1;
1144
1145 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1146 i--;
1147
1148 if (encoded[i] != 'X')
1149 return;
1150
1151 if (i == 0)
1152 return;
1153
1154 if (isalnum (encoded[i-1]))
1155 *len = i;
1156}
1157
29480c32
JB
1158/* If ENCODED follows the GNAT entity encoding conventions, then return
1159 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1160 replaced by ENCODED.
14f9c5c9 1161
4c4b4cd2 1162 The resulting string is valid until the next call of ada_decode.
29480c32 1163 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1164 is returned. */
1165
1166const char *
1167ada_decode (const char *encoded)
14f9c5c9
AS
1168{
1169 int i, j;
1170 int len0;
d2e4a39e 1171 const char *p;
4c4b4cd2 1172 char *decoded;
14f9c5c9 1173 int at_start_name;
4c4b4cd2
PH
1174 static char *decoding_buffer = NULL;
1175 static size_t decoding_buffer_size = 0;
d2e4a39e 1176
0d81f350
JG
1177 /* With function descriptors on PPC64, the value of a symbol named
1178 ".FN", if it exists, is the entry point of the function "FN". */
1179 if (encoded[0] == '.')
1180 encoded += 1;
1181
29480c32
JB
1182 /* The name of the Ada main procedure starts with "_ada_".
1183 This prefix is not part of the decoded name, so skip this part
1184 if we see this prefix. */
61012eef 1185 if (startswith (encoded, "_ada_"))
4c4b4cd2 1186 encoded += 5;
14f9c5c9 1187
29480c32
JB
1188 /* If the name starts with '_', then it is not a properly encoded
1189 name, so do not attempt to decode it. Similarly, if the name
1190 starts with '<', the name should not be decoded. */
4c4b4cd2 1191 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1192 goto Suppress;
1193
4c4b4cd2 1194 len0 = strlen (encoded);
4c4b4cd2 1195
29480c32
JB
1196 ada_remove_trailing_digits (encoded, &len0);
1197 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1198
4c4b4cd2
PH
1199 /* Remove the ___X.* suffix if present. Do not forget to verify that
1200 the suffix is located before the current "end" of ENCODED. We want
1201 to avoid re-matching parts of ENCODED that have previously been
1202 marked as discarded (by decrementing LEN0). */
1203 p = strstr (encoded, "___");
1204 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1205 {
1206 if (p[3] == 'X')
4c4b4cd2 1207 len0 = p - encoded;
14f9c5c9 1208 else
4c4b4cd2 1209 goto Suppress;
14f9c5c9 1210 }
4c4b4cd2 1211
29480c32
JB
1212 /* Remove any trailing TKB suffix. It tells us that this symbol
1213 is for the body of a task, but that information does not actually
1214 appear in the decoded name. */
1215
61012eef 1216 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1217 len0 -= 3;
76a01679 1218
a10967fa
JB
1219 /* Remove any trailing TB suffix. The TB suffix is slightly different
1220 from the TKB suffix because it is used for non-anonymous task
1221 bodies. */
1222
61012eef 1223 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1224 len0 -= 2;
1225
29480c32
JB
1226 /* Remove trailing "B" suffixes. */
1227 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1228
61012eef 1229 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1230 len0 -= 1;
1231
4c4b4cd2 1232 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1233
4c4b4cd2
PH
1234 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1235 decoded = decoding_buffer;
14f9c5c9 1236
29480c32
JB
1237 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1238
4c4b4cd2 1239 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1240 {
4c4b4cd2
PH
1241 i = len0 - 2;
1242 while ((i >= 0 && isdigit (encoded[i]))
1243 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1244 i -= 1;
1245 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1246 len0 = i - 1;
1247 else if (encoded[i] == '$')
1248 len0 = i;
d2e4a39e 1249 }
14f9c5c9 1250
29480c32
JB
1251 /* The first few characters that are not alphabetic are not part
1252 of any encoding we use, so we can copy them over verbatim. */
1253
4c4b4cd2
PH
1254 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1255 decoded[j] = encoded[i];
14f9c5c9
AS
1256
1257 at_start_name = 1;
1258 while (i < len0)
1259 {
29480c32 1260 /* Is this a symbol function? */
4c4b4cd2
PH
1261 if (at_start_name && encoded[i] == 'O')
1262 {
1263 int k;
5b4ee69b 1264
4c4b4cd2
PH
1265 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1266 {
1267 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1268 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1269 op_len - 1) == 0)
1270 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1271 {
1272 strcpy (decoded + j, ada_opname_table[k].decoded);
1273 at_start_name = 0;
1274 i += op_len;
1275 j += strlen (ada_opname_table[k].decoded);
1276 break;
1277 }
1278 }
1279 if (ada_opname_table[k].encoded != NULL)
1280 continue;
1281 }
14f9c5c9
AS
1282 at_start_name = 0;
1283
529cad9c
PH
1284 /* Replace "TK__" with "__", which will eventually be translated
1285 into "." (just below). */
1286
61012eef 1287 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1288 i += 2;
529cad9c 1289
29480c32
JB
1290 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1291 be translated into "." (just below). These are internal names
1292 generated for anonymous blocks inside which our symbol is nested. */
1293
1294 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1295 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1296 && isdigit (encoded [i+4]))
1297 {
1298 int k = i + 5;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++; /* Skip any extra digit. */
1302
1303 /* Double-check that the "__B_{DIGITS}+" sequence we found
1304 is indeed followed by "__". */
1305 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1306 i = k;
1307 }
1308
529cad9c
PH
1309 /* Remove _E{DIGITS}+[sb] */
1310
1311 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1312 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1313 one implements the actual entry code, and has a suffix following
1314 the convention above; the second one implements the barrier and
1315 uses the same convention as above, except that the 'E' is replaced
1316 by a 'B'.
1317
1318 Just as above, we do not decode the name of barrier functions
1319 to give the user a clue that the code he is debugging has been
1320 internally generated. */
1321
1322 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1323 && isdigit (encoded[i+2]))
1324 {
1325 int k = i + 3;
1326
1327 while (k < len0 && isdigit (encoded[k]))
1328 k++;
1329
1330 if (k < len0
1331 && (encoded[k] == 'b' || encoded[k] == 's'))
1332 {
1333 k++;
1334 /* Just as an extra precaution, make sure that if this
1335 suffix is followed by anything else, it is a '_'.
1336 Otherwise, we matched this sequence by accident. */
1337 if (k == len0
1338 || (k < len0 && encoded[k] == '_'))
1339 i = k;
1340 }
1341 }
1342
1343 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1344 the GNAT front-end in protected object subprograms. */
1345
1346 if (i < len0 + 3
1347 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1348 {
1349 /* Backtrack a bit up until we reach either the begining of
1350 the encoded name, or "__". Make sure that we only find
1351 digits or lowercase characters. */
1352 const char *ptr = encoded + i - 1;
1353
1354 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1355 ptr--;
1356 if (ptr < encoded
1357 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1358 i++;
1359 }
1360
4c4b4cd2
PH
1361 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1362 {
29480c32
JB
1363 /* This is a X[bn]* sequence not separated from the previous
1364 part of the name with a non-alpha-numeric character (in other
1365 words, immediately following an alpha-numeric character), then
1366 verify that it is placed at the end of the encoded name. If
1367 not, then the encoding is not valid and we should abort the
1368 decoding. Otherwise, just skip it, it is used in body-nested
1369 package names. */
4c4b4cd2
PH
1370 do
1371 i += 1;
1372 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1373 if (i < len0)
1374 goto Suppress;
1375 }
cdc7bb92 1376 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1377 {
29480c32 1378 /* Replace '__' by '.'. */
4c4b4cd2
PH
1379 decoded[j] = '.';
1380 at_start_name = 1;
1381 i += 2;
1382 j += 1;
1383 }
14f9c5c9 1384 else
4c4b4cd2 1385 {
29480c32
JB
1386 /* It's a character part of the decoded name, so just copy it
1387 over. */
4c4b4cd2
PH
1388 decoded[j] = encoded[i];
1389 i += 1;
1390 j += 1;
1391 }
14f9c5c9 1392 }
4c4b4cd2 1393 decoded[j] = '\000';
14f9c5c9 1394
29480c32
JB
1395 /* Decoded names should never contain any uppercase character.
1396 Double-check this, and abort the decoding if we find one. */
1397
4c4b4cd2
PH
1398 for (i = 0; decoded[i] != '\0'; i += 1)
1399 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1400 goto Suppress;
1401
4c4b4cd2
PH
1402 if (strcmp (decoded, encoded) == 0)
1403 return encoded;
1404 else
1405 return decoded;
14f9c5c9
AS
1406
1407Suppress:
4c4b4cd2
PH
1408 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1409 decoded = decoding_buffer;
1410 if (encoded[0] == '<')
1411 strcpy (decoded, encoded);
14f9c5c9 1412 else
88c15c34 1413 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1414 return decoded;
1415
1416}
1417
1418/* Table for keeping permanent unique copies of decoded names. Once
1419 allocated, names in this table are never released. While this is a
1420 storage leak, it should not be significant unless there are massive
1421 changes in the set of decoded names in successive versions of a
1422 symbol table loaded during a single session. */
1423static struct htab *decoded_names_store;
1424
1425/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1426 in the language-specific part of GSYMBOL, if it has not been
1427 previously computed. Tries to save the decoded name in the same
1428 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1429 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1430 GSYMBOL).
4c4b4cd2
PH
1431 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1432 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1433 when a decoded name is cached in it. */
4c4b4cd2 1434
45e6c716 1435const char *
f85f34ed 1436ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1437{
f85f34ed
TT
1438 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1439 const char **resultp =
615b3f62 1440 &gsymbol->language_specific.demangled_name;
5b4ee69b 1441
f85f34ed 1442 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1443 {
1444 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1445 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1446
f85f34ed 1447 gsymbol->ada_mangled = 1;
5b4ee69b 1448
f85f34ed 1449 if (obstack != NULL)
224c3ddb
SM
1450 *resultp
1451 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1452 else
76a01679 1453 {
f85f34ed
TT
1454 /* Sometimes, we can't find a corresponding objfile, in
1455 which case, we put the result on the heap. Since we only
1456 decode when needed, we hope this usually does not cause a
1457 significant memory leak (FIXME). */
1458
76a01679
JB
1459 char **slot = (char **) htab_find_slot (decoded_names_store,
1460 decoded, INSERT);
5b4ee69b 1461
76a01679
JB
1462 if (*slot == NULL)
1463 *slot = xstrdup (decoded);
1464 *resultp = *slot;
1465 }
4c4b4cd2 1466 }
14f9c5c9 1467
4c4b4cd2
PH
1468 return *resultp;
1469}
76a01679 1470
2c0b251b 1471static char *
76a01679 1472ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1473{
1474 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1475}
1476
8b302db8
TT
1477/* Implement la_sniff_from_mangled_name for Ada. */
1478
1479static int
1480ada_sniff_from_mangled_name (const char *mangled, char **out)
1481{
1482 const char *demangled = ada_decode (mangled);
1483
1484 *out = NULL;
1485
1486 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1487 {
1488 /* Set the gsymbol language to Ada, but still return 0.
1489 Two reasons for that:
1490
1491 1. For Ada, we prefer computing the symbol's decoded name
1492 on the fly rather than pre-compute it, in order to save
1493 memory (Ada projects are typically very large).
1494
1495 2. There are some areas in the definition of the GNAT
1496 encoding where, with a bit of bad luck, we might be able
1497 to decode a non-Ada symbol, generating an incorrect
1498 demangled name (Eg: names ending with "TB" for instance
1499 are identified as task bodies and so stripped from
1500 the decoded name returned).
1501
1502 Returning 1, here, but not setting *DEMANGLED, helps us get a
1503 little bit of the best of both worlds. Because we're last,
1504 we should not affect any of the other languages that were
1505 able to demangle the symbol before us; we get to correctly
1506 tag Ada symbols as such; and even if we incorrectly tagged a
1507 non-Ada symbol, which should be rare, any routing through the
1508 Ada language should be transparent (Ada tries to behave much
1509 like C/C++ with non-Ada symbols). */
1510 return 1;
1511 }
1512
1513 return 0;
1514}
1515
14f9c5c9 1516\f
d2e4a39e 1517
4c4b4cd2 1518 /* Arrays */
14f9c5c9 1519
28c85d6c
JB
1520/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1521 generated by the GNAT compiler to describe the index type used
1522 for each dimension of an array, check whether it follows the latest
1523 known encoding. If not, fix it up to conform to the latest encoding.
1524 Otherwise, do nothing. This function also does nothing if
1525 INDEX_DESC_TYPE is NULL.
1526
1527 The GNAT encoding used to describle the array index type evolved a bit.
1528 Initially, the information would be provided through the name of each
1529 field of the structure type only, while the type of these fields was
1530 described as unspecified and irrelevant. The debugger was then expected
1531 to perform a global type lookup using the name of that field in order
1532 to get access to the full index type description. Because these global
1533 lookups can be very expensive, the encoding was later enhanced to make
1534 the global lookup unnecessary by defining the field type as being
1535 the full index type description.
1536
1537 The purpose of this routine is to allow us to support older versions
1538 of the compiler by detecting the use of the older encoding, and by
1539 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1540 we essentially replace each field's meaningless type by the associated
1541 index subtype). */
1542
1543void
1544ada_fixup_array_indexes_type (struct type *index_desc_type)
1545{
1546 int i;
1547
1548 if (index_desc_type == NULL)
1549 return;
1550 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1551
1552 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1553 to check one field only, no need to check them all). If not, return
1554 now.
1555
1556 If our INDEX_DESC_TYPE was generated using the older encoding,
1557 the field type should be a meaningless integer type whose name
1558 is not equal to the field name. */
1559 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1560 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1561 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1562 return;
1563
1564 /* Fixup each field of INDEX_DESC_TYPE. */
1565 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1566 {
0d5cff50 1567 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1568 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1569
1570 if (raw_type)
1571 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1572 }
1573}
1574
4c4b4cd2 1575/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1576
a121b7c1 1577static const char *bound_name[] = {
d2e4a39e 1578 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1579 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1580};
1581
1582/* Maximum number of array dimensions we are prepared to handle. */
1583
4c4b4cd2 1584#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1585
14f9c5c9 1586
4c4b4cd2
PH
1587/* The desc_* routines return primitive portions of array descriptors
1588 (fat pointers). */
14f9c5c9
AS
1589
1590/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1591 level of indirection, if needed. */
1592
d2e4a39e
AS
1593static struct type *
1594desc_base_type (struct type *type)
14f9c5c9
AS
1595{
1596 if (type == NULL)
1597 return NULL;
61ee279c 1598 type = ada_check_typedef (type);
720d1a40
JB
1599 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1600 type = ada_typedef_target_type (type);
1601
1265e4aa
JB
1602 if (type != NULL
1603 && (TYPE_CODE (type) == TYPE_CODE_PTR
1604 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1605 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1606 else
1607 return type;
1608}
1609
4c4b4cd2
PH
1610/* True iff TYPE indicates a "thin" array pointer type. */
1611
14f9c5c9 1612static int
d2e4a39e 1613is_thin_pntr (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 return
14f9c5c9
AS
1616 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1617 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1618}
1619
4c4b4cd2
PH
1620/* The descriptor type for thin pointer type TYPE. */
1621
d2e4a39e
AS
1622static struct type *
1623thin_descriptor_type (struct type *type)
14f9c5c9 1624{
d2e4a39e 1625 struct type *base_type = desc_base_type (type);
5b4ee69b 1626
14f9c5c9
AS
1627 if (base_type == NULL)
1628 return NULL;
1629 if (is_suffix (ada_type_name (base_type), "___XVE"))
1630 return base_type;
d2e4a39e 1631 else
14f9c5c9 1632 {
d2e4a39e 1633 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1634
14f9c5c9 1635 if (alt_type == NULL)
4c4b4cd2 1636 return base_type;
14f9c5c9 1637 else
4c4b4cd2 1638 return alt_type;
14f9c5c9
AS
1639 }
1640}
1641
4c4b4cd2
PH
1642/* A pointer to the array data for thin-pointer value VAL. */
1643
d2e4a39e
AS
1644static struct value *
1645thin_data_pntr (struct value *val)
14f9c5c9 1646{
828292f2 1647 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1648 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1649
556bdfd4
UW
1650 data_type = lookup_pointer_type (data_type);
1651
14f9c5c9 1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1653 return value_cast (data_type, value_copy (val));
d2e4a39e 1654 else
42ae5230 1655 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* True iff TYPE indicates a "thick" array pointer type. */
1659
14f9c5c9 1660static int
d2e4a39e 1661is_thick_pntr (struct type *type)
14f9c5c9
AS
1662{
1663 type = desc_base_type (type);
1664 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1665 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1666}
1667
4c4b4cd2
PH
1668/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1669 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1670
d2e4a39e
AS
1671static struct type *
1672desc_bounds_type (struct type *type)
14f9c5c9 1673{
d2e4a39e 1674 struct type *r;
14f9c5c9
AS
1675
1676 type = desc_base_type (type);
1677
1678 if (type == NULL)
1679 return NULL;
1680 else if (is_thin_pntr (type))
1681 {
1682 type = thin_descriptor_type (type);
1683 if (type == NULL)
4c4b4cd2 1684 return NULL;
14f9c5c9
AS
1685 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (r);
14f9c5c9
AS
1688 }
1689 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 {
1691 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1692 if (r != NULL)
61ee279c 1693 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1694 }
1695 return NULL;
1696}
1697
1698/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1699 one, a pointer to its bounds data. Otherwise NULL. */
1700
d2e4a39e
AS
1701static struct value *
1702desc_bounds (struct value *arr)
14f9c5c9 1703{
df407dfe 1704 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1705
d2e4a39e 1706 if (is_thin_pntr (type))
14f9c5c9 1707 {
d2e4a39e 1708 struct type *bounds_type =
4c4b4cd2 1709 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1710 LONGEST addr;
1711
4cdfadb1 1712 if (bounds_type == NULL)
323e0a4a 1713 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1714
1715 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1716 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1717 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1718 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1719 addr = value_as_long (arr);
d2e4a39e 1720 else
42ae5230 1721 addr = value_address (arr);
14f9c5c9 1722
d2e4a39e 1723 return
4c4b4cd2
PH
1724 value_from_longest (lookup_pointer_type (bounds_type),
1725 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1726 }
1727
1728 else if (is_thick_pntr (type))
05e522ef
JB
1729 {
1730 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1731 _("Bad GNAT array descriptor"));
1732 struct type *p_bounds_type = value_type (p_bounds);
1733
1734 if (p_bounds_type
1735 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1736 {
1737 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1738
1739 if (TYPE_STUB (target_type))
1740 p_bounds = value_cast (lookup_pointer_type
1741 (ada_check_typedef (target_type)),
1742 p_bounds);
1743 }
1744 else
1745 error (_("Bad GNAT array descriptor"));
1746
1747 return p_bounds;
1748 }
14f9c5c9
AS
1749 else
1750 return NULL;
1751}
1752
4c4b4cd2
PH
1753/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the bounds data. */
1755
14f9c5c9 1756static int
d2e4a39e 1757fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1758{
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1760}
1761
1762/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1763 size of the field containing the address of the bounds data. */
1764
14f9c5c9 1765static int
d2e4a39e 1766fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1767{
1768 type = desc_base_type (type);
1769
d2e4a39e 1770 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1771 return TYPE_FIELD_BITSIZE (type, 1);
1772 else
61ee279c 1773 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1774}
1775
4c4b4cd2 1776/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1777 pointer to one, the type of its array data (a array-with-no-bounds type);
1778 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1779 data. */
4c4b4cd2 1780
d2e4a39e 1781static struct type *
556bdfd4 1782desc_data_target_type (struct type *type)
14f9c5c9
AS
1783{
1784 type = desc_base_type (type);
1785
4c4b4cd2 1786 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1787 if (is_thin_pntr (type))
556bdfd4 1788 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1789 else if (is_thick_pntr (type))
556bdfd4
UW
1790 {
1791 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1792
1793 if (data_type
1794 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1795 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1796 }
1797
1798 return NULL;
14f9c5c9
AS
1799}
1800
1801/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1802 its array data. */
4c4b4cd2 1803
d2e4a39e
AS
1804static struct value *
1805desc_data (struct value *arr)
14f9c5c9 1806{
df407dfe 1807 struct type *type = value_type (arr);
5b4ee69b 1808
14f9c5c9
AS
1809 if (is_thin_pntr (type))
1810 return thin_data_pntr (arr);
1811 else if (is_thick_pntr (type))
d2e4a39e 1812 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1813 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1814 else
1815 return NULL;
1816}
1817
1818
1819/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1820 position of the field containing the address of the data. */
1821
14f9c5c9 1822static int
d2e4a39e 1823fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1824{
1825 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1826}
1827
1828/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1829 size of the field containing the address of the data. */
1830
14f9c5c9 1831static int
d2e4a39e 1832fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1838 else
14f9c5c9
AS
1839 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1840}
1841
4c4b4cd2 1842/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1843 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1844 bound, if WHICH is 1. The first bound is I=1. */
1845
d2e4a39e
AS
1846static struct value *
1847desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1848{
d2e4a39e 1849 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1850 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit position
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
14f9c5c9 1857static int
d2e4a39e 1858desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1859{
d2e4a39e 1860 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1861}
1862
1863/* If BOUNDS is an array-bounds structure type, return the bit field size
1864 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1865 bound, if WHICH is 1. The first bound is I=1. */
1866
76a01679 1867static int
d2e4a39e 1868desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1869{
1870 type = desc_base_type (type);
1871
d2e4a39e
AS
1872 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1873 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1874 else
1875 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1876}
1877
1878/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1879 Ith bound (numbering from 1). Otherwise, NULL. */
1880
d2e4a39e
AS
1881static struct type *
1882desc_index_type (struct type *type, int i)
14f9c5c9
AS
1883{
1884 type = desc_base_type (type);
1885
1886 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1887 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1888 else
14f9c5c9
AS
1889 return NULL;
1890}
1891
4c4b4cd2
PH
1892/* The number of index positions in the array-bounds type TYPE.
1893 Return 0 if TYPE is NULL. */
1894
14f9c5c9 1895static int
d2e4a39e 1896desc_arity (struct type *type)
14f9c5c9
AS
1897{
1898 type = desc_base_type (type);
1899
1900 if (type != NULL)
1901 return TYPE_NFIELDS (type) / 2;
1902 return 0;
1903}
1904
4c4b4cd2
PH
1905/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1906 an array descriptor type (representing an unconstrained array
1907 type). */
1908
76a01679
JB
1909static int
1910ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1911{
1912 if (type == NULL)
1913 return 0;
61ee279c 1914 type = ada_check_typedef (type);
4c4b4cd2 1915 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1916 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1917}
1918
52ce6436 1919/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1920 * to one. */
52ce6436 1921
2c0b251b 1922static int
52ce6436
PH
1923ada_is_array_type (struct type *type)
1924{
1925 while (type != NULL
1926 && (TYPE_CODE (type) == TYPE_CODE_PTR
1927 || TYPE_CODE (type) == TYPE_CODE_REF))
1928 type = TYPE_TARGET_TYPE (type);
1929 return ada_is_direct_array_type (type);
1930}
1931
4c4b4cd2 1932/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1933
14f9c5c9 1934int
4c4b4cd2 1935ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1936{
1937 if (type == NULL)
1938 return 0;
61ee279c 1939 type = ada_check_typedef (type);
14f9c5c9 1940 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1941 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1942 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1943 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1944}
1945
4c4b4cd2
PH
1946/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1947
14f9c5c9 1948int
4c4b4cd2 1949ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1950{
556bdfd4 1951 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1952
1953 if (type == NULL)
1954 return 0;
61ee279c 1955 type = ada_check_typedef (type);
556bdfd4
UW
1956 return (data_type != NULL
1957 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1958 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1959}
1960
1961/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1962 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1963 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1964 is still needed. */
1965
14f9c5c9 1966int
ebf56fd3 1967ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1968{
d2e4a39e 1969 return
14f9c5c9
AS
1970 type != NULL
1971 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1972 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1973 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1974 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1975}
1976
1977
4c4b4cd2 1978/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1979 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1980 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1981 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1982 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1983 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1984 a descriptor. */
d2e4a39e
AS
1985struct type *
1986ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1987{
ad82864c
JB
1988 if (ada_is_constrained_packed_array_type (value_type (arr)))
1989 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1990
df407dfe
AC
1991 if (!ada_is_array_descriptor_type (value_type (arr)))
1992 return value_type (arr);
d2e4a39e
AS
1993
1994 if (!bounds)
ad82864c
JB
1995 {
1996 struct type *array_type =
1997 ada_check_typedef (desc_data_target_type (value_type (arr)));
1998
1999 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2000 TYPE_FIELD_BITSIZE (array_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002
2003 return array_type;
2004 }
14f9c5c9
AS
2005 else
2006 {
d2e4a39e 2007 struct type *elt_type;
14f9c5c9 2008 int arity;
d2e4a39e 2009 struct value *descriptor;
14f9c5c9 2010
df407dfe
AC
2011 elt_type = ada_array_element_type (value_type (arr), -1);
2012 arity = ada_array_arity (value_type (arr));
14f9c5c9 2013
d2e4a39e 2014 if (elt_type == NULL || arity == 0)
df407dfe 2015 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2016
2017 descriptor = desc_bounds (arr);
d2e4a39e 2018 if (value_as_long (descriptor) == 0)
4c4b4cd2 2019 return NULL;
d2e4a39e 2020 while (arity > 0)
4c4b4cd2 2021 {
e9bb382b
UW
2022 struct type *range_type = alloc_type_copy (value_type (arr));
2023 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2024 struct value *low = desc_one_bound (descriptor, arity, 0);
2025 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2026
5b4ee69b 2027 arity -= 1;
0c9c3474
SA
2028 create_static_range_type (range_type, value_type (low),
2029 longest_to_int (value_as_long (low)),
2030 longest_to_int (value_as_long (high)));
4c4b4cd2 2031 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2032
2033 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2034 {
2035 /* We need to store the element packed bitsize, as well as
2036 recompute the array size, because it was previously
2037 computed based on the unpacked element size. */
2038 LONGEST lo = value_as_long (low);
2039 LONGEST hi = value_as_long (high);
2040
2041 TYPE_FIELD_BITSIZE (elt_type, 0) =
2042 decode_packed_array_bitsize (value_type (arr));
2043 /* If the array has no element, then the size is already
2044 zero, and does not need to be recomputed. */
2045 if (lo < hi)
2046 {
2047 int array_bitsize =
2048 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2049
2050 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2051 }
2052 }
4c4b4cd2 2053 }
14f9c5c9
AS
2054
2055 return lookup_pointer_type (elt_type);
2056 }
2057}
2058
2059/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2060 Otherwise, returns either a standard GDB array with bounds set
2061 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2062 GDB array. Returns NULL if ARR is a null fat pointer. */
2063
d2e4a39e
AS
2064struct value *
2065ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2066{
df407dfe 2067 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2068 {
d2e4a39e 2069 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2070
14f9c5c9 2071 if (arrType == NULL)
4c4b4cd2 2072 return NULL;
14f9c5c9
AS
2073 return value_cast (arrType, value_copy (desc_data (arr)));
2074 }
ad82864c
JB
2075 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2076 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2077 else
2078 return arr;
2079}
2080
2081/* If ARR does not represent an array, returns ARR unchanged.
2082 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2083 be ARR itself if it already is in the proper form). */
2084
720d1a40 2085struct value *
d2e4a39e 2086ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2087{
df407dfe 2088 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2089 {
d2e4a39e 2090 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2091
14f9c5c9 2092 if (arrVal == NULL)
323e0a4a 2093 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2094 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2095 return value_ind (arrVal);
2096 }
ad82864c
JB
2097 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2098 return decode_constrained_packed_array (arr);
d2e4a39e 2099 else
14f9c5c9
AS
2100 return arr;
2101}
2102
2103/* If TYPE represents a GNAT array type, return it translated to an
2104 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2105 packing). For other types, is the identity. */
2106
d2e4a39e
AS
2107struct type *
2108ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2109{
ad82864c
JB
2110 if (ada_is_constrained_packed_array_type (type))
2111 return decode_constrained_packed_array_type (type);
17280b9f
UW
2112
2113 if (ada_is_array_descriptor_type (type))
556bdfd4 2114 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2115
2116 return type;
14f9c5c9
AS
2117}
2118
4c4b4cd2
PH
2119/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2120
ad82864c
JB
2121static int
2122ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2123{
2124 if (type == NULL)
2125 return 0;
4c4b4cd2 2126 type = desc_base_type (type);
61ee279c 2127 type = ada_check_typedef (type);
d2e4a39e 2128 return
14f9c5c9
AS
2129 ada_type_name (type) != NULL
2130 && strstr (ada_type_name (type), "___XP") != NULL;
2131}
2132
ad82864c
JB
2133/* Non-zero iff TYPE represents a standard GNAT constrained
2134 packed-array type. */
2135
2136int
2137ada_is_constrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && !ada_is_array_descriptor_type (type);
2141}
2142
2143/* Non-zero iff TYPE represents an array descriptor for a
2144 unconstrained packed-array type. */
2145
2146static int
2147ada_is_unconstrained_packed_array_type (struct type *type)
2148{
2149 return ada_is_packed_array_type (type)
2150 && ada_is_array_descriptor_type (type);
2151}
2152
2153/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2154 return the size of its elements in bits. */
2155
2156static long
2157decode_packed_array_bitsize (struct type *type)
2158{
0d5cff50
DE
2159 const char *raw_name;
2160 const char *tail;
ad82864c
JB
2161 long bits;
2162
720d1a40
JB
2163 /* Access to arrays implemented as fat pointers are encoded as a typedef
2164 of the fat pointer type. We need the name of the fat pointer type
2165 to do the decoding, so strip the typedef layer. */
2166 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2167 type = ada_typedef_target_type (type);
2168
2169 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2170 if (!raw_name)
2171 raw_name = ada_type_name (desc_base_type (type));
2172
2173 if (!raw_name)
2174 return 0;
2175
2176 tail = strstr (raw_name, "___XP");
720d1a40 2177 gdb_assert (tail != NULL);
ad82864c
JB
2178
2179 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2180 {
2181 lim_warning
2182 (_("could not understand bit size information on packed array"));
2183 return 0;
2184 }
2185
2186 return bits;
2187}
2188
14f9c5c9
AS
2189/* Given that TYPE is a standard GDB array type with all bounds filled
2190 in, and that the element size of its ultimate scalar constituents
2191 (that is, either its elements, or, if it is an array of arrays, its
2192 elements' elements, etc.) is *ELT_BITS, return an identical type,
2193 but with the bit sizes of its elements (and those of any
2194 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2195 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2196 in bits.
2197
2198 Note that, for arrays whose index type has an XA encoding where
2199 a bound references a record discriminant, getting that discriminant,
2200 and therefore the actual value of that bound, is not possible
2201 because none of the given parameters gives us access to the record.
2202 This function assumes that it is OK in the context where it is being
2203 used to return an array whose bounds are still dynamic and where
2204 the length is arbitrary. */
4c4b4cd2 2205
d2e4a39e 2206static struct type *
ad82864c 2207constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2208{
d2e4a39e
AS
2209 struct type *new_elt_type;
2210 struct type *new_type;
99b1c762
JB
2211 struct type *index_type_desc;
2212 struct type *index_type;
14f9c5c9
AS
2213 LONGEST low_bound, high_bound;
2214
61ee279c 2215 type = ada_check_typedef (type);
14f9c5c9
AS
2216 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2217 return type;
2218
99b1c762
JB
2219 index_type_desc = ada_find_parallel_type (type, "___XA");
2220 if (index_type_desc)
2221 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2222 NULL);
2223 else
2224 index_type = TYPE_INDEX_TYPE (type);
2225
e9bb382b 2226 new_type = alloc_type_copy (type);
ad82864c
JB
2227 new_elt_type =
2228 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2229 elt_bits);
99b1c762 2230 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2231 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2232 TYPE_NAME (new_type) = ada_type_name (type);
2233
4a46959e
JB
2234 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2235 && is_dynamic_type (check_typedef (index_type)))
2236 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2237 low_bound = high_bound = 0;
2238 if (high_bound < low_bound)
2239 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2240 else
14f9c5c9
AS
2241 {
2242 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2243 TYPE_LENGTH (new_type) =
4c4b4cd2 2244 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2245 }
2246
876cecd0 2247 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2248 return new_type;
2249}
2250
ad82864c
JB
2251/* The array type encoded by TYPE, where
2252 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2253
d2e4a39e 2254static struct type *
ad82864c 2255decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2256{
0d5cff50 2257 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2258 char *name;
0d5cff50 2259 const char *tail;
d2e4a39e 2260 struct type *shadow_type;
14f9c5c9 2261 long bits;
14f9c5c9 2262
727e3d2e
JB
2263 if (!raw_name)
2264 raw_name = ada_type_name (desc_base_type (type));
2265
2266 if (!raw_name)
2267 return NULL;
2268
2269 name = (char *) alloca (strlen (raw_name) + 1);
2270 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2271 type = desc_base_type (type);
2272
14f9c5c9
AS
2273 memcpy (name, raw_name, tail - raw_name);
2274 name[tail - raw_name] = '\000';
2275
b4ba55a1
JB
2276 shadow_type = ada_find_parallel_type_with_name (type, name);
2277
2278 if (shadow_type == NULL)
14f9c5c9 2279 {
323e0a4a 2280 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2281 return NULL;
2282 }
f168693b 2283 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2284
2285 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2286 {
0963b4bd
MS
2287 lim_warning (_("could not understand bounds "
2288 "information on packed array"));
14f9c5c9
AS
2289 return NULL;
2290 }
d2e4a39e 2291
ad82864c
JB
2292 bits = decode_packed_array_bitsize (type);
2293 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2294}
2295
ad82864c
JB
2296/* Given that ARR is a struct value *indicating a GNAT constrained packed
2297 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2298 standard GDB array type except that the BITSIZEs of the array
2299 target types are set to the number of bits in each element, and the
4c4b4cd2 2300 type length is set appropriately. */
14f9c5c9 2301
d2e4a39e 2302static struct value *
ad82864c 2303decode_constrained_packed_array (struct value *arr)
14f9c5c9 2304{
4c4b4cd2 2305 struct type *type;
14f9c5c9 2306
11aa919a
PMR
2307 /* If our value is a pointer, then dereference it. Likewise if
2308 the value is a reference. Make sure that this operation does not
2309 cause the target type to be fixed, as this would indirectly cause
2310 this array to be decoded. The rest of the routine assumes that
2311 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2312 and "value_ind" routines to perform the dereferencing, as opposed
2313 to using "ada_coerce_ref" or "ada_value_ind". */
2314 arr = coerce_ref (arr);
828292f2 2315 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2316 arr = value_ind (arr);
4c4b4cd2 2317
ad82864c 2318 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2319 if (type == NULL)
2320 {
323e0a4a 2321 error (_("can't unpack array"));
14f9c5c9
AS
2322 return NULL;
2323 }
61ee279c 2324
50810684 2325 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2326 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2327 {
2328 /* This is a (right-justified) modular type representing a packed
2329 array with no wrapper. In order to interpret the value through
2330 the (left-justified) packed array type we just built, we must
2331 first left-justify it. */
2332 int bit_size, bit_pos;
2333 ULONGEST mod;
2334
df407dfe 2335 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2336 bit_size = 0;
2337 while (mod > 0)
2338 {
2339 bit_size += 1;
2340 mod >>= 1;
2341 }
df407dfe 2342 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2343 arr = ada_value_primitive_packed_val (arr, NULL,
2344 bit_pos / HOST_CHAR_BIT,
2345 bit_pos % HOST_CHAR_BIT,
2346 bit_size,
2347 type);
2348 }
2349
4c4b4cd2 2350 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2351}
2352
2353
2354/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2355 given in IND. ARR must be a simple array. */
14f9c5c9 2356
d2e4a39e
AS
2357static struct value *
2358value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2359{
2360 int i;
2361 int bits, elt_off, bit_off;
2362 long elt_total_bit_offset;
d2e4a39e
AS
2363 struct type *elt_type;
2364 struct value *v;
14f9c5c9
AS
2365
2366 bits = 0;
2367 elt_total_bit_offset = 0;
df407dfe 2368 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2369 for (i = 0; i < arity; i += 1)
14f9c5c9 2370 {
d2e4a39e 2371 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2372 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2373 error
0963b4bd
MS
2374 (_("attempt to do packed indexing of "
2375 "something other than a packed array"));
14f9c5c9 2376 else
4c4b4cd2
PH
2377 {
2378 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2379 LONGEST lowerbound, upperbound;
2380 LONGEST idx;
2381
2382 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2383 {
323e0a4a 2384 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2385 lowerbound = upperbound = 0;
2386 }
2387
3cb382c9 2388 idx = pos_atr (ind[i]);
4c4b4cd2 2389 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2390 lim_warning (_("packed array index %ld out of bounds"),
2391 (long) idx);
4c4b4cd2
PH
2392 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2393 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2394 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2395 }
14f9c5c9
AS
2396 }
2397 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2398 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2399
2400 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2401 bits, elt_type);
14f9c5c9
AS
2402 return v;
2403}
2404
4c4b4cd2 2405/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2406
2407static int
d2e4a39e 2408has_negatives (struct type *type)
14f9c5c9 2409{
d2e4a39e
AS
2410 switch (TYPE_CODE (type))
2411 {
2412 default:
2413 return 0;
2414 case TYPE_CODE_INT:
2415 return !TYPE_UNSIGNED (type);
2416 case TYPE_CODE_RANGE:
2417 return TYPE_LOW_BOUND (type) < 0;
2418 }
14f9c5c9 2419}
d2e4a39e 2420
f93fca70 2421/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2422 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2423 the unpacked buffer.
14f9c5c9 2424
5b639dea
JB
2425 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2426 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2427
f93fca70
JB
2428 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2429 zero otherwise.
14f9c5c9 2430
f93fca70 2431 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2432
f93fca70
JB
2433 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2434
2435static void
2436ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2437 gdb_byte *unpacked, int unpacked_len,
2438 int is_big_endian, int is_signed_type,
2439 int is_scalar)
2440{
a1c95e6b
JB
2441 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2442 int src_idx; /* Index into the source area */
2443 int src_bytes_left; /* Number of source bytes left to process. */
2444 int srcBitsLeft; /* Number of source bits left to move */
2445 int unusedLS; /* Number of bits in next significant
2446 byte of source that are unused */
2447
a1c95e6b
JB
2448 int unpacked_idx; /* Index into the unpacked buffer */
2449 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2450
4c4b4cd2 2451 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2452 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2453 unsigned char sign;
a1c95e6b 2454
4c4b4cd2
PH
2455 /* Transmit bytes from least to most significant; delta is the direction
2456 the indices move. */
f93fca70 2457 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2458
5b639dea
JB
2459 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2460 bits from SRC. .*/
2461 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2462 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2463 bit_size, unpacked_len);
2464
14f9c5c9 2465 srcBitsLeft = bit_size;
086ca51f 2466 src_bytes_left = src_len;
f93fca70 2467 unpacked_bytes_left = unpacked_len;
14f9c5c9 2468 sign = 0;
f93fca70
JB
2469
2470 if (is_big_endian)
14f9c5c9 2471 {
086ca51f 2472 src_idx = src_len - 1;
f93fca70
JB
2473 if (is_signed_type
2474 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2475 sign = ~0;
d2e4a39e
AS
2476
2477 unusedLS =
4c4b4cd2
PH
2478 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2479 % HOST_CHAR_BIT;
14f9c5c9 2480
f93fca70
JB
2481 if (is_scalar)
2482 {
2483 accumSize = 0;
2484 unpacked_idx = unpacked_len - 1;
2485 }
2486 else
2487 {
4c4b4cd2
PH
2488 /* Non-scalar values must be aligned at a byte boundary... */
2489 accumSize =
2490 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2491 /* ... And are placed at the beginning (most-significant) bytes
2492 of the target. */
086ca51f
JB
2493 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2494 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2495 }
14f9c5c9 2496 }
d2e4a39e 2497 else
14f9c5c9
AS
2498 {
2499 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2500
086ca51f 2501 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2502 unusedLS = bit_offset;
2503 accumSize = 0;
2504
f93fca70 2505 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2506 sign = ~0;
14f9c5c9 2507 }
d2e4a39e 2508
14f9c5c9 2509 accum = 0;
086ca51f 2510 while (src_bytes_left > 0)
14f9c5c9
AS
2511 {
2512 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2513 part of the value. */
d2e4a39e 2514 unsigned int unusedMSMask =
4c4b4cd2
PH
2515 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2516 1;
2517 /* Sign-extend bits for this byte. */
14f9c5c9 2518 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2519
d2e4a39e 2520 accum |=
086ca51f 2521 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2522 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2523 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2524 {
db297a65 2525 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2526 accumSize -= HOST_CHAR_BIT;
2527 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2528 unpacked_bytes_left -= 1;
2529 unpacked_idx += delta;
4c4b4cd2 2530 }
14f9c5c9
AS
2531 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2532 unusedLS = 0;
086ca51f
JB
2533 src_bytes_left -= 1;
2534 src_idx += delta;
14f9c5c9 2535 }
086ca51f 2536 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2537 {
2538 accum |= sign << accumSize;
db297a65 2539 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2540 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2541 if (accumSize < 0)
2542 accumSize = 0;
14f9c5c9 2543 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2544 unpacked_bytes_left -= 1;
2545 unpacked_idx += delta;
14f9c5c9 2546 }
f93fca70
JB
2547}
2548
2549/* Create a new value of type TYPE from the contents of OBJ starting
2550 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2551 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2552 assigning through the result will set the field fetched from.
2553 VALADDR is ignored unless OBJ is NULL, in which case,
2554 VALADDR+OFFSET must address the start of storage containing the
2555 packed value. The value returned in this case is never an lval.
2556 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2557
2558struct value *
2559ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2560 long offset, int bit_offset, int bit_size,
2561 struct type *type)
2562{
2563 struct value *v;
bfb1c796 2564 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2565 gdb_byte *unpacked;
220475ed 2566 const int is_scalar = is_scalar_type (type);
d0a9e810 2567 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2568 gdb::byte_vector staging;
f93fca70
JB
2569
2570 type = ada_check_typedef (type);
2571
d0a9e810 2572 if (obj == NULL)
bfb1c796 2573 src = valaddr + offset;
d0a9e810 2574 else
bfb1c796 2575 src = value_contents (obj) + offset;
d0a9e810
JB
2576
2577 if (is_dynamic_type (type))
2578 {
2579 /* The length of TYPE might by dynamic, so we need to resolve
2580 TYPE in order to know its actual size, which we then use
2581 to create the contents buffer of the value we return.
2582 The difficulty is that the data containing our object is
2583 packed, and therefore maybe not at a byte boundary. So, what
2584 we do, is unpack the data into a byte-aligned buffer, and then
2585 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2586 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2587 staging.resize (staging_len);
d0a9e810
JB
2588
2589 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2590 staging.data (), staging.size (),
d0a9e810
JB
2591 is_big_endian, has_negatives (type),
2592 is_scalar);
d5722aa2 2593 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2594 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2595 {
2596 /* This happens when the length of the object is dynamic,
2597 and is actually smaller than the space reserved for it.
2598 For instance, in an array of variant records, the bit_size
2599 we're given is the array stride, which is constant and
2600 normally equal to the maximum size of its element.
2601 But, in reality, each element only actually spans a portion
2602 of that stride. */
2603 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2604 }
d0a9e810
JB
2605 }
2606
f93fca70
JB
2607 if (obj == NULL)
2608 {
2609 v = allocate_value (type);
bfb1c796 2610 src = valaddr + offset;
f93fca70
JB
2611 }
2612 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2613 {
0cafa88c 2614 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2615 gdb_byte *buf;
0cafa88c 2616
f93fca70 2617 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2618 buf = (gdb_byte *) alloca (src_len);
2619 read_memory (value_address (v), buf, src_len);
2620 src = buf;
f93fca70
JB
2621 }
2622 else
2623 {
2624 v = allocate_value (type);
bfb1c796 2625 src = value_contents (obj) + offset;
f93fca70
JB
2626 }
2627
2628 if (obj != NULL)
2629 {
2630 long new_offset = offset;
2631
2632 set_value_component_location (v, obj);
2633 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2634 set_value_bitsize (v, bit_size);
2635 if (value_bitpos (v) >= HOST_CHAR_BIT)
2636 {
2637 ++new_offset;
2638 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2639 }
2640 set_value_offset (v, new_offset);
2641
2642 /* Also set the parent value. This is needed when trying to
2643 assign a new value (in inferior memory). */
2644 set_value_parent (v, obj);
2645 }
2646 else
2647 set_value_bitsize (v, bit_size);
bfb1c796 2648 unpacked = value_contents_writeable (v);
f93fca70
JB
2649
2650 if (bit_size == 0)
2651 {
2652 memset (unpacked, 0, TYPE_LENGTH (type));
2653 return v;
2654 }
2655
d5722aa2 2656 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2657 {
d0a9e810
JB
2658 /* Small short-cut: If we've unpacked the data into a buffer
2659 of the same size as TYPE's length, then we can reuse that,
2660 instead of doing the unpacking again. */
d5722aa2 2661 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2662 }
d0a9e810
JB
2663 else
2664 ada_unpack_from_contents (src, bit_offset, bit_size,
2665 unpacked, TYPE_LENGTH (type),
2666 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2667
14f9c5c9
AS
2668 return v;
2669}
d2e4a39e 2670
14f9c5c9
AS
2671/* Store the contents of FROMVAL into the location of TOVAL.
2672 Return a new value with the location of TOVAL and contents of
2673 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2674 floating-point or non-scalar types. */
14f9c5c9 2675
d2e4a39e
AS
2676static struct value *
2677ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2678{
df407dfe
AC
2679 struct type *type = value_type (toval);
2680 int bits = value_bitsize (toval);
14f9c5c9 2681
52ce6436
PH
2682 toval = ada_coerce_ref (toval);
2683 fromval = ada_coerce_ref (fromval);
2684
2685 if (ada_is_direct_array_type (value_type (toval)))
2686 toval = ada_coerce_to_simple_array (toval);
2687 if (ada_is_direct_array_type (value_type (fromval)))
2688 fromval = ada_coerce_to_simple_array (fromval);
2689
88e3b34b 2690 if (!deprecated_value_modifiable (toval))
323e0a4a 2691 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2692
d2e4a39e 2693 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2694 && bits > 0
d2e4a39e 2695 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2696 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2697 {
df407dfe
AC
2698 int len = (value_bitpos (toval)
2699 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2700 int from_size;
224c3ddb 2701 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2702 struct value *val;
42ae5230 2703 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2704
2705 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2706 fromval = value_cast (type, fromval);
14f9c5c9 2707
52ce6436 2708 read_memory (to_addr, buffer, len);
aced2898
PH
2709 from_size = value_bitsize (fromval);
2710 if (from_size == 0)
2711 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2712 if (gdbarch_bits_big_endian (get_type_arch (type)))
a99bc3d2
JB
2713 copy_bitwise (buffer, value_bitpos (toval),
2714 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2715 else
a99bc3d2
JB
2716 copy_bitwise (buffer, value_bitpos (toval),
2717 value_contents (fromval), 0, bits, 0);
972daa01 2718 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2719
14f9c5c9 2720 val = value_copy (toval);
0fd88904 2721 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2722 TYPE_LENGTH (type));
04624583 2723 deprecated_set_value_type (val, type);
d2e4a39e 2724
14f9c5c9
AS
2725 return val;
2726 }
2727
2728 return value_assign (toval, fromval);
2729}
2730
2731
7c512744
JB
2732/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2733 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2734 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2735 COMPONENT, and not the inferior's memory. The current contents
2736 of COMPONENT are ignored.
2737
2738 Although not part of the initial design, this function also works
2739 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2740 had a null address, and COMPONENT had an address which is equal to
2741 its offset inside CONTAINER. */
2742
52ce6436
PH
2743static void
2744value_assign_to_component (struct value *container, struct value *component,
2745 struct value *val)
2746{
2747 LONGEST offset_in_container =
42ae5230 2748 (LONGEST) (value_address (component) - value_address (container));
7c512744 2749 int bit_offset_in_container =
52ce6436
PH
2750 value_bitpos (component) - value_bitpos (container);
2751 int bits;
7c512744 2752
52ce6436
PH
2753 val = value_cast (value_type (component), val);
2754
2755 if (value_bitsize (component) == 0)
2756 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2757 else
2758 bits = value_bitsize (component);
2759
50810684 2760 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2761 {
2762 int src_offset;
2763
2764 if (is_scalar_type (check_typedef (value_type (component))))
2765 src_offset
2766 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2767 else
2768 src_offset = 0;
a99bc3d2
JB
2769 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2770 value_bitpos (container) + bit_offset_in_container,
2771 value_contents (val), src_offset, bits, 1);
2a62dfa9 2772 }
52ce6436 2773 else
a99bc3d2
JB
2774 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2775 value_bitpos (container) + bit_offset_in_container,
2776 value_contents (val), 0, bits, 0);
7c512744
JB
2777}
2778
736ade86
XR
2779/* Determine if TYPE is an access to an unconstrained array. */
2780
d91e9ea8 2781bool
736ade86
XR
2782ada_is_access_to_unconstrained_array (struct type *type)
2783{
2784 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2785 && is_thick_pntr (ada_typedef_target_type (type)));
2786}
2787
4c4b4cd2
PH
2788/* The value of the element of array ARR at the ARITY indices given in IND.
2789 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2790 thereto. */
2791
d2e4a39e
AS
2792struct value *
2793ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2794{
2795 int k;
d2e4a39e
AS
2796 struct value *elt;
2797 struct type *elt_type;
14f9c5c9
AS
2798
2799 elt = ada_coerce_to_simple_array (arr);
2800
df407dfe 2801 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2802 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2803 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2804 return value_subscript_packed (elt, arity, ind);
2805
2806 for (k = 0; k < arity; k += 1)
2807 {
b9c50e9a
XR
2808 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2809
14f9c5c9 2810 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2811 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2812
2497b498 2813 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2814
2815 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2816 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2817 {
2818 /* The element is a typedef to an unconstrained array,
2819 except that the value_subscript call stripped the
2820 typedef layer. The typedef layer is GNAT's way to
2821 specify that the element is, at the source level, an
2822 access to the unconstrained array, rather than the
2823 unconstrained array. So, we need to restore that
2824 typedef layer, which we can do by forcing the element's
2825 type back to its original type. Otherwise, the returned
2826 value is going to be printed as the array, rather
2827 than as an access. Another symptom of the same issue
2828 would be that an expression trying to dereference the
2829 element would also be improperly rejected. */
2830 deprecated_set_value_type (elt, saved_elt_type);
2831 }
2832
2833 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2834 }
b9c50e9a 2835
14f9c5c9
AS
2836 return elt;
2837}
2838
deede10c
JB
2839/* Assuming ARR is a pointer to a GDB array, the value of the element
2840 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2841 Does not read the entire array into memory.
2842
2843 Note: Unlike what one would expect, this function is used instead of
2844 ada_value_subscript for basically all non-packed array types. The reason
2845 for this is that a side effect of doing our own pointer arithmetics instead
2846 of relying on value_subscript is that there is no implicit typedef peeling.
2847 This is important for arrays of array accesses, where it allows us to
2848 preserve the fact that the array's element is an array access, where the
2849 access part os encoded in a typedef layer. */
14f9c5c9 2850
2c0b251b 2851static struct value *
deede10c 2852ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2853{
2854 int k;
919e6dbe 2855 struct value *array_ind = ada_value_ind (arr);
deede10c 2856 struct type *type
919e6dbe
PMR
2857 = check_typedef (value_enclosing_type (array_ind));
2858
2859 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2860 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2861 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2862
2863 for (k = 0; k < arity; k += 1)
2864 {
2865 LONGEST lwb, upb;
aa715135 2866 struct value *lwb_value;
14f9c5c9
AS
2867
2868 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2869 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2870 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2871 value_copy (arr));
14f9c5c9 2872 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2873 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2874 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2875 type = TYPE_TARGET_TYPE (type);
2876 }
2877
2878 return value_ind (arr);
2879}
2880
0b5d8877 2881/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2882 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2883 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2884 this array is LOW, as per Ada rules. */
0b5d8877 2885static struct value *
f5938064
JG
2886ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2887 int low, int high)
0b5d8877 2888{
b0dd7688 2889 struct type *type0 = ada_check_typedef (type);
aa715135 2890 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2891 struct type *index_type
aa715135 2892 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2893 struct type *slice_type = create_array_type_with_stride
2894 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2895 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2896 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2897 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2898 LONGEST base_low_pos, low_pos;
2899 CORE_ADDR base;
2900
2901 if (!discrete_position (base_index_type, low, &low_pos)
2902 || !discrete_position (base_index_type, base_low, &base_low_pos))
2903 {
2904 warning (_("unable to get positions in slice, use bounds instead"));
2905 low_pos = low;
2906 base_low_pos = base_low;
2907 }
5b4ee69b 2908
aa715135
JG
2909 base = value_as_address (array_ptr)
2910 + ((low_pos - base_low_pos)
2911 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2912 return value_at_lazy (slice_type, base);
0b5d8877
PH
2913}
2914
2915
2916static struct value *
2917ada_value_slice (struct value *array, int low, int high)
2918{
b0dd7688 2919 struct type *type = ada_check_typedef (value_type (array));
aa715135 2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2921 struct type *index_type
2922 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2923 struct type *slice_type = create_array_type_with_stride
2924 (NULL, TYPE_TARGET_TYPE (type), index_type,
2925 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2926 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2927 LONGEST low_pos, high_pos;
5b4ee69b 2928
aa715135
JG
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, high, &high_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 high_pos = high;
2935 }
2936
2937 return value_cast (slice_type,
2938 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2939}
2940
14f9c5c9
AS
2941/* If type is a record type in the form of a standard GNAT array
2942 descriptor, returns the number of dimensions for type. If arr is a
2943 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2944 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2945
2946int
d2e4a39e 2947ada_array_arity (struct type *type)
14f9c5c9
AS
2948{
2949 int arity;
2950
2951 if (type == NULL)
2952 return 0;
2953
2954 type = desc_base_type (type);
2955
2956 arity = 0;
d2e4a39e 2957 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2958 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2959 else
2960 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2961 {
4c4b4cd2 2962 arity += 1;
61ee279c 2963 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2964 }
d2e4a39e 2965
14f9c5c9
AS
2966 return arity;
2967}
2968
2969/* If TYPE is a record type in the form of a standard GNAT array
2970 descriptor or a simple array type, returns the element type for
2971 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2972 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2973
d2e4a39e
AS
2974struct type *
2975ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2976{
2977 type = desc_base_type (type);
2978
d2e4a39e 2979 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2980 {
2981 int k;
d2e4a39e 2982 struct type *p_array_type;
14f9c5c9 2983
556bdfd4 2984 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2985
2986 k = ada_array_arity (type);
2987 if (k == 0)
4c4b4cd2 2988 return NULL;
d2e4a39e 2989
4c4b4cd2 2990 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2991 if (nindices >= 0 && k > nindices)
4c4b4cd2 2992 k = nindices;
d2e4a39e 2993 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2994 {
61ee279c 2995 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2996 k -= 1;
2997 }
14f9c5c9
AS
2998 return p_array_type;
2999 }
3000 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3001 {
3002 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3003 {
3004 type = TYPE_TARGET_TYPE (type);
3005 nindices -= 1;
3006 }
14f9c5c9
AS
3007 return type;
3008 }
3009
3010 return NULL;
3011}
3012
4c4b4cd2 3013/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3014 Does not examine memory. Throws an error if N is invalid or TYPE
3015 is not an array type. NAME is the name of the Ada attribute being
3016 evaluated ('range, 'first, 'last, or 'length); it is used in building
3017 the error message. */
14f9c5c9 3018
1eea4ebd
UW
3019static struct type *
3020ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3021{
4c4b4cd2
PH
3022 struct type *result_type;
3023
14f9c5c9
AS
3024 type = desc_base_type (type);
3025
1eea4ebd
UW
3026 if (n < 0 || n > ada_array_arity (type))
3027 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3028
4c4b4cd2 3029 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3030 {
3031 int i;
3032
3033 for (i = 1; i < n; i += 1)
4c4b4cd2 3034 type = TYPE_TARGET_TYPE (type);
262452ec 3035 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3036 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3037 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3038 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3039 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3040 result_type = NULL;
14f9c5c9 3041 }
d2e4a39e 3042 else
1eea4ebd
UW
3043 {
3044 result_type = desc_index_type (desc_bounds_type (type), n);
3045 if (result_type == NULL)
3046 error (_("attempt to take bound of something that is not an array"));
3047 }
3048
3049 return result_type;
14f9c5c9
AS
3050}
3051
3052/* Given that arr is an array type, returns the lower bound of the
3053 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3054 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3055 array-descriptor type. It works for other arrays with bounds supplied
3056 by run-time quantities other than discriminants. */
14f9c5c9 3057
abb68b3e 3058static LONGEST
fb5e3d5c 3059ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3060{
8a48ac95 3061 struct type *type, *index_type_desc, *index_type;
1ce677a4 3062 int i;
262452ec
JK
3063
3064 gdb_assert (which == 0 || which == 1);
14f9c5c9 3065
ad82864c
JB
3066 if (ada_is_constrained_packed_array_type (arr_type))
3067 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3068
4c4b4cd2 3069 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3070 return (LONGEST) - which;
14f9c5c9
AS
3071
3072 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3073 type = TYPE_TARGET_TYPE (arr_type);
3074 else
3075 type = arr_type;
3076
bafffb51
JB
3077 if (TYPE_FIXED_INSTANCE (type))
3078 {
3079 /* The array has already been fixed, so we do not need to
3080 check the parallel ___XA type again. That encoding has
3081 already been applied, so ignore it now. */
3082 index_type_desc = NULL;
3083 }
3084 else
3085 {
3086 index_type_desc = ada_find_parallel_type (type, "___XA");
3087 ada_fixup_array_indexes_type (index_type_desc);
3088 }
3089
262452ec 3090 if (index_type_desc != NULL)
28c85d6c
JB
3091 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3092 NULL);
262452ec 3093 else
8a48ac95
JB
3094 {
3095 struct type *elt_type = check_typedef (type);
3096
3097 for (i = 1; i < n; i++)
3098 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3099
3100 index_type = TYPE_INDEX_TYPE (elt_type);
3101 }
262452ec 3102
43bbcdc2
PH
3103 return
3104 (LONGEST) (which == 0
3105 ? ada_discrete_type_low_bound (index_type)
3106 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3107}
3108
3109/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3110 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3111 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3112 supplied by run-time quantities other than discriminants. */
14f9c5c9 3113
1eea4ebd 3114static LONGEST
4dc81987 3115ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3116{
eb479039
JB
3117 struct type *arr_type;
3118
3119 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3120 arr = value_ind (arr);
3121 arr_type = value_enclosing_type (arr);
14f9c5c9 3122
ad82864c
JB
3123 if (ada_is_constrained_packed_array_type (arr_type))
3124 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3125 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3126 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3127 else
1eea4ebd 3128 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3129}
3130
3131/* Given that arr is an array value, returns the length of the
3132 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3133 supplied by run-time quantities other than discriminants.
3134 Does not work for arrays indexed by enumeration types with representation
3135 clauses at the moment. */
14f9c5c9 3136
1eea4ebd 3137static LONGEST
d2e4a39e 3138ada_array_length (struct value *arr, int n)
14f9c5c9 3139{
aa715135
JG
3140 struct type *arr_type, *index_type;
3141 int low, high;
eb479039
JB
3142
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
14f9c5c9 3146
ad82864c
JB
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3149
4c4b4cd2 3150 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3151 {
3152 low = ada_array_bound_from_type (arr_type, n, 0);
3153 high = ada_array_bound_from_type (arr_type, n, 1);
3154 }
14f9c5c9 3155 else
aa715135
JG
3156 {
3157 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3158 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3159 }
3160
f168693b 3161 arr_type = check_typedef (arr_type);
7150d33c 3162 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3163 if (index_type != NULL)
3164 {
3165 struct type *base_type;
3166 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3167 base_type = TYPE_TARGET_TYPE (index_type);
3168 else
3169 base_type = index_type;
3170
3171 low = pos_atr (value_from_longest (base_type, low));
3172 high = pos_atr (value_from_longest (base_type, high));
3173 }
3174 return high - low + 1;
4c4b4cd2
PH
3175}
3176
bff8c71f
TT
3177/* An array whose type is that of ARR_TYPE (an array type), with
3178 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3179 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3180
3181static struct value *
bff8c71f 3182empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3183{
b0dd7688 3184 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3185 struct type *index_type
3186 = create_static_range_type
bff8c71f
TT
3187 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3188 high < low ? low - 1 : high);
b0dd7688 3189 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3190
0b5d8877 3191 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3192}
14f9c5c9 3193\f
d2e4a39e 3194
4c4b4cd2 3195 /* Name resolution */
14f9c5c9 3196
4c4b4cd2
PH
3197/* The "decoded" name for the user-definable Ada operator corresponding
3198 to OP. */
14f9c5c9 3199
d2e4a39e 3200static const char *
4c4b4cd2 3201ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3202{
3203 int i;
3204
4c4b4cd2 3205 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3206 {
3207 if (ada_opname_table[i].op == op)
4c4b4cd2 3208 return ada_opname_table[i].decoded;
14f9c5c9 3209 }
323e0a4a 3210 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3211}
3212
3213
4c4b4cd2
PH
3214/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3215 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3216 undefined namespace) and converts operators that are
3217 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3218 non-null, it provides a preferred result type [at the moment, only
3219 type void has any effect---causing procedures to be preferred over
3220 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3221 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3222
4c4b4cd2 3223static void
699bd4cf
TT
3224resolve (expression_up *expp, int void_context_p, int parse_completion,
3225 innermost_block_tracker *tracker)
14f9c5c9 3226{
30b15541
UW
3227 struct type *context_type = NULL;
3228 int pc = 0;
3229
3230 if (void_context_p)
3231 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3232
699bd4cf 3233 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3234}
3235
4c4b4cd2
PH
3236/* Resolve the operator of the subexpression beginning at
3237 position *POS of *EXPP. "Resolving" consists of replacing
3238 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3239 with their resolutions, replacing built-in operators with
3240 function calls to user-defined operators, where appropriate, and,
3241 when DEPROCEDURE_P is non-zero, converting function-valued variables
3242 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3243 are as in ada_resolve, above. */
14f9c5c9 3244
d2e4a39e 3245static struct value *
e9d9f57e 3246resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3247 struct type *context_type, int parse_completion,
3248 innermost_block_tracker *tracker)
14f9c5c9
AS
3249{
3250 int pc = *pos;
3251 int i;
4c4b4cd2 3252 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3253 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3254 struct value **argvec; /* Vector of operand types (alloca'ed). */
3255 int nargs; /* Number of operands. */
52ce6436 3256 int oplen;
14f9c5c9
AS
3257
3258 argvec = NULL;
3259 nargs = 0;
e9d9f57e 3260 exp = expp->get ();
14f9c5c9 3261
52ce6436
PH
3262 /* Pass one: resolve operands, saving their types and updating *pos,
3263 if needed. */
14f9c5c9
AS
3264 switch (op)
3265 {
4c4b4cd2
PH
3266 case OP_FUNCALL:
3267 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3268 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3269 *pos += 7;
4c4b4cd2
PH
3270 else
3271 {
3272 *pos += 3;
699bd4cf 3273 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3274 }
3275 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3276 break;
3277
14f9c5c9 3278 case UNOP_ADDR:
4c4b4cd2 3279 *pos += 1;
699bd4cf 3280 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3281 break;
3282
52ce6436
PH
3283 case UNOP_QUAL:
3284 *pos += 3;
2a612529 3285 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3286 parse_completion, tracker);
4c4b4cd2
PH
3287 break;
3288
52ce6436 3289 case OP_ATR_MODULUS:
4c4b4cd2
PH
3290 case OP_ATR_SIZE:
3291 case OP_ATR_TAG:
4c4b4cd2
PH
3292 case OP_ATR_FIRST:
3293 case OP_ATR_LAST:
3294 case OP_ATR_LENGTH:
3295 case OP_ATR_POS:
3296 case OP_ATR_VAL:
4c4b4cd2
PH
3297 case OP_ATR_MIN:
3298 case OP_ATR_MAX:
52ce6436
PH
3299 case TERNOP_IN_RANGE:
3300 case BINOP_IN_BOUNDS:
3301 case UNOP_IN_RANGE:
3302 case OP_AGGREGATE:
3303 case OP_OTHERS:
3304 case OP_CHOICES:
3305 case OP_POSITIONAL:
3306 case OP_DISCRETE_RANGE:
3307 case OP_NAME:
3308 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3309 *pos += oplen;
14f9c5c9
AS
3310 break;
3311
3312 case BINOP_ASSIGN:
3313 {
4c4b4cd2
PH
3314 struct value *arg1;
3315
3316 *pos += 1;
699bd4cf 3317 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3318 if (arg1 == NULL)
699bd4cf 3319 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3320 else
699bd4cf
TT
3321 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3322 tracker);
4c4b4cd2 3323 break;
14f9c5c9
AS
3324 }
3325
4c4b4cd2 3326 case UNOP_CAST:
4c4b4cd2
PH
3327 *pos += 3;
3328 nargs = 1;
3329 break;
14f9c5c9 3330
4c4b4cd2
PH
3331 case BINOP_ADD:
3332 case BINOP_SUB:
3333 case BINOP_MUL:
3334 case BINOP_DIV:
3335 case BINOP_REM:
3336 case BINOP_MOD:
3337 case BINOP_EXP:
3338 case BINOP_CONCAT:
3339 case BINOP_LOGICAL_AND:
3340 case BINOP_LOGICAL_OR:
3341 case BINOP_BITWISE_AND:
3342 case BINOP_BITWISE_IOR:
3343 case BINOP_BITWISE_XOR:
14f9c5c9 3344
4c4b4cd2
PH
3345 case BINOP_EQUAL:
3346 case BINOP_NOTEQUAL:
3347 case BINOP_LESS:
3348 case BINOP_GTR:
3349 case BINOP_LEQ:
3350 case BINOP_GEQ:
14f9c5c9 3351
4c4b4cd2
PH
3352 case BINOP_REPEAT:
3353 case BINOP_SUBSCRIPT:
3354 case BINOP_COMMA:
40c8aaa9
JB
3355 *pos += 1;
3356 nargs = 2;
3357 break;
14f9c5c9 3358
4c4b4cd2
PH
3359 case UNOP_NEG:
3360 case UNOP_PLUS:
3361 case UNOP_LOGICAL_NOT:
3362 case UNOP_ABS:
3363 case UNOP_IND:
3364 *pos += 1;
3365 nargs = 1;
3366 break;
14f9c5c9 3367
4c4b4cd2 3368 case OP_LONG:
edd079d9 3369 case OP_FLOAT:
4c4b4cd2 3370 case OP_VAR_VALUE:
74ea4be4 3371 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3372 *pos += 4;
3373 break;
14f9c5c9 3374
4c4b4cd2
PH
3375 case OP_TYPE:
3376 case OP_BOOL:
3377 case OP_LAST:
4c4b4cd2
PH
3378 case OP_INTERNALVAR:
3379 *pos += 3;
3380 break;
14f9c5c9 3381
4c4b4cd2
PH
3382 case UNOP_MEMVAL:
3383 *pos += 3;
3384 nargs = 1;
3385 break;
3386
67f3407f
DJ
3387 case OP_REGISTER:
3388 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3389 break;
3390
4c4b4cd2
PH
3391 case STRUCTOP_STRUCT:
3392 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3393 nargs = 1;
3394 break;
3395
4c4b4cd2 3396 case TERNOP_SLICE:
4c4b4cd2
PH
3397 *pos += 1;
3398 nargs = 3;
3399 break;
3400
52ce6436 3401 case OP_STRING:
14f9c5c9 3402 break;
4c4b4cd2
PH
3403
3404 default:
323e0a4a 3405 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3406 }
3407
8d749320 3408 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3409 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3410 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3411 tracker);
4c4b4cd2 3412 argvec[i] = NULL;
e9d9f57e 3413 exp = expp->get ();
4c4b4cd2
PH
3414
3415 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3416 switch (op)
3417 {
3418 default:
3419 break;
3420
14f9c5c9 3421 case OP_VAR_VALUE:
4c4b4cd2 3422 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3423 {
54d343a2 3424 std::vector<struct block_symbol> candidates;
76a01679
JB
3425 int n_candidates;
3426
3427 n_candidates =
3428 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3429 (exp->elts[pc + 2].symbol),
3430 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3431 &candidates);
76a01679
JB
3432
3433 if (n_candidates > 1)
3434 {
3435 /* Types tend to get re-introduced locally, so if there
3436 are any local symbols that are not types, first filter
3437 out all types. */
3438 int j;
3439 for (j = 0; j < n_candidates; j += 1)
d12307c1 3440 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3441 {
3442 case LOC_REGISTER:
3443 case LOC_ARG:
3444 case LOC_REF_ARG:
76a01679
JB
3445 case LOC_REGPARM_ADDR:
3446 case LOC_LOCAL:
76a01679 3447 case LOC_COMPUTED:
76a01679
JB
3448 goto FoundNonType;
3449 default:
3450 break;
3451 }
3452 FoundNonType:
3453 if (j < n_candidates)
3454 {
3455 j = 0;
3456 while (j < n_candidates)
3457 {
d12307c1 3458 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3459 {
3460 candidates[j] = candidates[n_candidates - 1];
3461 n_candidates -= 1;
3462 }
3463 else
3464 j += 1;
3465 }
3466 }
3467 }
3468
3469 if (n_candidates == 0)
323e0a4a 3470 error (_("No definition found for %s"),
76a01679
JB
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 else if (n_candidates == 1)
3473 i = 0;
3474 else if (deprocedure_p
54d343a2 3475 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3476 {
06d5cf63 3477 i = ada_resolve_function
54d343a2 3478 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3480 context_type, parse_completion);
76a01679 3481 if (i < 0)
323e0a4a 3482 error (_("Could not find a match for %s"),
76a01679
JB
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 }
3485 else
3486 {
323e0a4a 3487 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3489 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3490 i = 0;
3491 }
3492
3493 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3494 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3495 tracker->update (candidates[i]);
76a01679
JB
3496 }
3497
3498 if (deprocedure_p
3499 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3500 == TYPE_CODE_FUNC))
3501 {
424da6cf 3502 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3503 exp->elts[pc + 2].symbol,
3504 exp->elts[pc + 1].block);
e9d9f57e 3505 exp = expp->get ();
76a01679 3506 }
14f9c5c9
AS
3507 break;
3508
3509 case OP_FUNCALL:
3510 {
4c4b4cd2 3511 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3512 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3513 {
54d343a2 3514 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3515 int n_candidates;
3516
3517 n_candidates =
76a01679
JB
3518 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3519 (exp->elts[pc + 5].symbol),
3520 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3521 &candidates);
ec6a20c2 3522
4c4b4cd2
PH
3523 if (n_candidates == 1)
3524 i = 0;
3525 else
3526 {
06d5cf63 3527 i = ada_resolve_function
54d343a2 3528 (candidates.data (), n_candidates,
06d5cf63
JB
3529 argvec, nargs,
3530 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3531 context_type, parse_completion);
4c4b4cd2 3532 if (i < 0)
323e0a4a 3533 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3534 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3535 }
3536
3537 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3538 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3539 tracker->update (candidates[i]);
4c4b4cd2 3540 }
14f9c5c9
AS
3541 }
3542 break;
3543 case BINOP_ADD:
3544 case BINOP_SUB:
3545 case BINOP_MUL:
3546 case BINOP_DIV:
3547 case BINOP_REM:
3548 case BINOP_MOD:
3549 case BINOP_CONCAT:
3550 case BINOP_BITWISE_AND:
3551 case BINOP_BITWISE_IOR:
3552 case BINOP_BITWISE_XOR:
3553 case BINOP_EQUAL:
3554 case BINOP_NOTEQUAL:
3555 case BINOP_LESS:
3556 case BINOP_GTR:
3557 case BINOP_LEQ:
3558 case BINOP_GEQ:
3559 case BINOP_EXP:
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3565 {
54d343a2 3566 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3567 int n_candidates;
3568
3569 n_candidates =
b5ec771e 3570 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3571 NULL, VAR_DOMAIN,
4eeaa230 3572 &candidates);
ec6a20c2 3573
54d343a2 3574 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3575 nargs, ada_decoded_op_name (op), NULL,
3576 parse_completion);
4c4b4cd2
PH
3577 if (i < 0)
3578 break;
3579
d12307c1
PMR
3580 replace_operator_with_call (expp, pc, nargs, 1,
3581 candidates[i].symbol,
3582 candidates[i].block);
e9d9f57e 3583 exp = expp->get ();
4c4b4cd2 3584 }
14f9c5c9 3585 break;
4c4b4cd2
PH
3586
3587 case OP_TYPE:
b3dbf008 3588 case OP_REGISTER:
4c4b4cd2 3589 return NULL;
14f9c5c9
AS
3590 }
3591
3592 *pos = pc;
ced9779b
JB
3593 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3594 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3595 exp->elts[pc + 1].objfile,
3596 exp->elts[pc + 2].msymbol);
3597 else
3598 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3599}
3600
3601/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3602 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3603 a non-pointer. */
14f9c5c9 3604/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3605 liberal. */
14f9c5c9
AS
3606
3607static int
4dc81987 3608ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3609{
61ee279c
PH
3610 ftype = ada_check_typedef (ftype);
3611 atype = ada_check_typedef (atype);
14f9c5c9
AS
3612
3613 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3614 ftype = TYPE_TARGET_TYPE (ftype);
3615 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3616 atype = TYPE_TARGET_TYPE (atype);
3617
d2e4a39e 3618 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3619 {
3620 default:
5b3d5b7d 3621 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3622 case TYPE_CODE_PTR:
3623 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3624 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3625 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3626 else
1265e4aa
JB
3627 return (may_deref
3628 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3629 case TYPE_CODE_INT:
3630 case TYPE_CODE_ENUM:
3631 case TYPE_CODE_RANGE:
3632 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3633 {
3634 case TYPE_CODE_INT:
3635 case TYPE_CODE_ENUM:
3636 case TYPE_CODE_RANGE:
3637 return 1;
3638 default:
3639 return 0;
3640 }
14f9c5c9
AS
3641
3642 case TYPE_CODE_ARRAY:
d2e4a39e 3643 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3644 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3645
3646 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3647 if (ada_is_array_descriptor_type (ftype))
3648 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3649 || ada_is_array_descriptor_type (atype));
14f9c5c9 3650 else
4c4b4cd2
PH
3651 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3652 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3653
3654 case TYPE_CODE_UNION:
3655 case TYPE_CODE_FLT:
3656 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3657 }
3658}
3659
3660/* Return non-zero if the formals of FUNC "sufficiently match" the
3661 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3662 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3663 argument function. */
14f9c5c9
AS
3664
3665static int
d2e4a39e 3666ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3667{
3668 int i;
d2e4a39e 3669 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3670
1265e4aa
JB
3671 if (SYMBOL_CLASS (func) == LOC_CONST
3672 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3673 return (n_actuals == 0);
3674 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3675 return 0;
3676
3677 if (TYPE_NFIELDS (func_type) != n_actuals)
3678 return 0;
3679
3680 for (i = 0; i < n_actuals; i += 1)
3681 {
4c4b4cd2 3682 if (actuals[i] == NULL)
76a01679
JB
3683 return 0;
3684 else
3685 {
5b4ee69b
MS
3686 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3687 i));
df407dfe 3688 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3689
76a01679
JB
3690 if (!ada_type_match (ftype, atype, 1))
3691 return 0;
3692 }
14f9c5c9
AS
3693 }
3694 return 1;
3695}
3696
3697/* False iff function type FUNC_TYPE definitely does not produce a value
3698 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3699 FUNC_TYPE is not a valid function type with a non-null return type
3700 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3701
3702static int
d2e4a39e 3703return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3704{
d2e4a39e 3705 struct type *return_type;
14f9c5c9
AS
3706
3707 if (func_type == NULL)
3708 return 1;
3709
4c4b4cd2 3710 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3711 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3712 else
18af8284 3713 return_type = get_base_type (func_type);
14f9c5c9
AS
3714 if (return_type == NULL)
3715 return 1;
3716
18af8284 3717 context_type = get_base_type (context_type);
14f9c5c9
AS
3718
3719 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3720 return context_type == NULL || return_type == context_type;
3721 else if (context_type == NULL)
3722 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3723 else
3724 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3725}
3726
3727
4c4b4cd2 3728/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3729 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3730 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3731 that returns that type, then eliminate matches that don't. If
3732 CONTEXT_TYPE is void and there is at least one match that does not
3733 return void, eliminate all matches that do.
3734
14f9c5c9
AS
3735 Asks the user if there is more than one match remaining. Returns -1
3736 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3737 solely for messages. May re-arrange and modify SYMS in
3738 the process; the index returned is for the modified vector. */
14f9c5c9 3739
4c4b4cd2 3740static int
d12307c1 3741ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3742 int nsyms, struct value **args, int nargs,
2a612529
TT
3743 const char *name, struct type *context_type,
3744 int parse_completion)
14f9c5c9 3745{
30b15541 3746 int fallback;
14f9c5c9 3747 int k;
4c4b4cd2 3748 int m; /* Number of hits */
14f9c5c9 3749
d2e4a39e 3750 m = 0;
30b15541
UW
3751 /* In the first pass of the loop, we only accept functions matching
3752 context_type. If none are found, we add a second pass of the loop
3753 where every function is accepted. */
3754 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3755 {
3756 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3757 {
d12307c1 3758 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3759
d12307c1 3760 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3761 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3762 {
3763 syms[m] = syms[k];
3764 m += 1;
3765 }
3766 }
14f9c5c9
AS
3767 }
3768
dc5c8746
PMR
3769 /* If we got multiple matches, ask the user which one to use. Don't do this
3770 interactive thing during completion, though, as the purpose of the
3771 completion is providing a list of all possible matches. Prompting the
3772 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3773 if (m == 0)
3774 return -1;
dc5c8746 3775 else if (m > 1 && !parse_completion)
14f9c5c9 3776 {
323e0a4a 3777 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3778 user_select_syms (syms, m, 1);
14f9c5c9
AS
3779 return 0;
3780 }
3781 return 0;
3782}
3783
4c4b4cd2
PH
3784/* Returns true (non-zero) iff decoded name N0 should appear before N1
3785 in a listing of choices during disambiguation (see sort_choices, below).
3786 The idea is that overloadings of a subprogram name from the
3787 same package should sort in their source order. We settle for ordering
3788 such symbols by their trailing number (__N or $N). */
3789
14f9c5c9 3790static int
0d5cff50 3791encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3792{
3793 if (N1 == NULL)
3794 return 0;
3795 else if (N0 == NULL)
3796 return 1;
3797 else
3798 {
3799 int k0, k1;
5b4ee69b 3800
d2e4a39e 3801 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3802 ;
d2e4a39e 3803 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3804 ;
d2e4a39e 3805 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3806 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3807 {
3808 int n0, n1;
5b4ee69b 3809
4c4b4cd2
PH
3810 n0 = k0;
3811 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3812 n0 -= 1;
3813 n1 = k1;
3814 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3815 n1 -= 1;
3816 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3817 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3818 }
14f9c5c9
AS
3819 return (strcmp (N0, N1) < 0);
3820 }
3821}
d2e4a39e 3822
4c4b4cd2
PH
3823/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3824 encoded names. */
3825
d2e4a39e 3826static void
d12307c1 3827sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3828{
4c4b4cd2 3829 int i;
5b4ee69b 3830
d2e4a39e 3831 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3832 {
d12307c1 3833 struct block_symbol sym = syms[i];
14f9c5c9
AS
3834 int j;
3835
d2e4a39e 3836 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3837 {
d12307c1
PMR
3838 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3839 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3840 break;
3841 syms[j + 1] = syms[j];
3842 }
d2e4a39e 3843 syms[j + 1] = sym;
14f9c5c9
AS
3844 }
3845}
3846
d72413e6
PMR
3847/* Whether GDB should display formals and return types for functions in the
3848 overloads selection menu. */
3849static int print_signatures = 1;
3850
3851/* Print the signature for SYM on STREAM according to the FLAGS options. For
3852 all but functions, the signature is just the name of the symbol. For
3853 functions, this is the name of the function, the list of types for formals
3854 and the return type (if any). */
3855
3856static void
3857ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3858 const struct type_print_options *flags)
3859{
3860 struct type *type = SYMBOL_TYPE (sym);
3861
3862 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3863 if (!print_signatures
3864 || type == NULL
3865 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3866 return;
3867
3868 if (TYPE_NFIELDS (type) > 0)
3869 {
3870 int i;
3871
3872 fprintf_filtered (stream, " (");
3873 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3874 {
3875 if (i > 0)
3876 fprintf_filtered (stream, "; ");
3877 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3878 flags);
3879 }
3880 fprintf_filtered (stream, ")");
3881 }
3882 if (TYPE_TARGET_TYPE (type) != NULL
3883 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3884 {
3885 fprintf_filtered (stream, " return ");
3886 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3887 }
3888}
3889
4c4b4cd2
PH
3890/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3891 by asking the user (if necessary), returning the number selected,
3892 and setting the first elements of SYMS items. Error if no symbols
3893 selected. */
14f9c5c9
AS
3894
3895/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3896 to be re-integrated one of these days. */
14f9c5c9
AS
3897
3898int
d12307c1 3899user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3900{
3901 int i;
8d749320 3902 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3903 int n_chosen;
3904 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3905 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3906
3907 if (max_results < 1)
323e0a4a 3908 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3909 if (nsyms <= 1)
3910 return nsyms;
3911
717d2f5a
JB
3912 if (select_mode == multiple_symbols_cancel)
3913 error (_("\
3914canceled because the command is ambiguous\n\
3915See set/show multiple-symbol."));
a0087920 3916
717d2f5a
JB
3917 /* If select_mode is "all", then return all possible symbols.
3918 Only do that if more than one symbol can be selected, of course.
3919 Otherwise, display the menu as usual. */
3920 if (select_mode == multiple_symbols_all && max_results > 1)
3921 return nsyms;
3922
a0087920 3923 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3924 if (max_results > 1)
a0087920 3925 printf_filtered (_("[1] all\n"));
14f9c5c9 3926
4c4b4cd2 3927 sort_choices (syms, nsyms);
14f9c5c9
AS
3928
3929 for (i = 0; i < nsyms; i += 1)
3930 {
d12307c1 3931 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3932 continue;
3933
d12307c1 3934 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3935 {
76a01679 3936 struct symtab_and_line sal =
d12307c1 3937 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3938
a0087920 3939 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3940 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3941 &type_print_raw_options);
323e0a4a 3942 if (sal.symtab == NULL)
a0087920
TT
3943 printf_filtered (_(" at <no source file available>:%d\n"),
3944 sal.line);
323e0a4a 3945 else
a0087920
TT
3946 printf_filtered (_(" at %s:%d\n"),
3947 symtab_to_filename_for_display (sal.symtab),
3948 sal.line);
4c4b4cd2
PH
3949 continue;
3950 }
d2e4a39e 3951 else
4c4b4cd2
PH
3952 {
3953 int is_enumeral =
d12307c1
PMR
3954 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3955 && SYMBOL_TYPE (syms[i].symbol) != NULL
3956 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3957 struct symtab *symtab = NULL;
3958
d12307c1
PMR
3959 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3960 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3961
d12307c1 3962 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3963 {
a0087920 3964 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3965 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3966 &type_print_raw_options);
a0087920
TT
3967 printf_filtered (_(" at %s:%d\n"),
3968 symtab_to_filename_for_display (symtab),
3969 SYMBOL_LINE (syms[i].symbol));
d72413e6 3970 }
76a01679 3971 else if (is_enumeral
d12307c1 3972 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3973 {
a0087920 3974 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3975 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3976 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3977 printf_filtered (_("'(%s) (enumeral)\n"),
3978 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3979 }
d72413e6
PMR
3980 else
3981 {
a0087920 3982 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3983 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3984 &type_print_raw_options);
3985
3986 if (symtab != NULL)
a0087920
TT
3987 printf_filtered (is_enumeral
3988 ? _(" in %s (enumeral)\n")
3989 : _(" at %s:?\n"),
3990 symtab_to_filename_for_display (symtab));
d72413e6 3991 else
a0087920
TT
3992 printf_filtered (is_enumeral
3993 ? _(" (enumeral)\n")
3994 : _(" at ?\n"));
d72413e6 3995 }
4c4b4cd2 3996 }
14f9c5c9 3997 }
d2e4a39e 3998
14f9c5c9 3999 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4000 "overload-choice");
14f9c5c9
AS
4001
4002 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4003 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4004
4005 return n_chosen;
4006}
4007
4008/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4009 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4010 order in CHOICES[0 .. N-1], and return N.
4011
4012 The user types choices as a sequence of numbers on one line
4013 separated by blanks, encoding them as follows:
4014
4c4b4cd2 4015 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4016 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4017 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4018
4c4b4cd2 4019 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4020
4021 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4022 prompts (for use with the -f switch). */
14f9c5c9
AS
4023
4024int
d2e4a39e 4025get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4026 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4027{
d2e4a39e 4028 char *args;
a121b7c1 4029 const char *prompt;
14f9c5c9
AS
4030 int n_chosen;
4031 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4032
14f9c5c9
AS
4033 prompt = getenv ("PS2");
4034 if (prompt == NULL)
0bcd0149 4035 prompt = "> ";
14f9c5c9 4036
89fbedf3 4037 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4038
14f9c5c9 4039 if (args == NULL)
323e0a4a 4040 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4041
4042 n_chosen = 0;
76a01679 4043
4c4b4cd2
PH
4044 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4045 order, as given in args. Choices are validated. */
14f9c5c9
AS
4046 while (1)
4047 {
d2e4a39e 4048 char *args2;
14f9c5c9
AS
4049 int choice, j;
4050
0fcd72ba 4051 args = skip_spaces (args);
14f9c5c9 4052 if (*args == '\0' && n_chosen == 0)
323e0a4a 4053 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4054 else if (*args == '\0')
4c4b4cd2 4055 break;
14f9c5c9
AS
4056
4057 choice = strtol (args, &args2, 10);
d2e4a39e 4058 if (args == args2 || choice < 0
4c4b4cd2 4059 || choice > n_choices + first_choice - 1)
323e0a4a 4060 error (_("Argument must be choice number"));
14f9c5c9
AS
4061 args = args2;
4062
d2e4a39e 4063 if (choice == 0)
323e0a4a 4064 error (_("cancelled"));
14f9c5c9
AS
4065
4066 if (choice < first_choice)
4c4b4cd2
PH
4067 {
4068 n_chosen = n_choices;
4069 for (j = 0; j < n_choices; j += 1)
4070 choices[j] = j;
4071 break;
4072 }
14f9c5c9
AS
4073 choice -= first_choice;
4074
d2e4a39e 4075 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4076 {
4077 }
14f9c5c9
AS
4078
4079 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4080 {
4081 int k;
5b4ee69b 4082
4c4b4cd2
PH
4083 for (k = n_chosen - 1; k > j; k -= 1)
4084 choices[k + 1] = choices[k];
4085 choices[j + 1] = choice;
4086 n_chosen += 1;
4087 }
14f9c5c9
AS
4088 }
4089
4090 if (n_chosen > max_results)
323e0a4a 4091 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4092
14f9c5c9
AS
4093 return n_chosen;
4094}
4095
4c4b4cd2
PH
4096/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4097 on the function identified by SYM and BLOCK, and taking NARGS
4098 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4099
4100static void
e9d9f57e 4101replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4102 int oplen, struct symbol *sym,
270140bd 4103 const struct block *block)
14f9c5c9
AS
4104{
4105 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4106 symbol, -oplen for operator being replaced). */
d2e4a39e 4107 struct expression *newexp = (struct expression *)
8c1a34e7 4108 xzalloc (sizeof (struct expression)
4c4b4cd2 4109 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4110 struct expression *exp = expp->get ();
14f9c5c9
AS
4111
4112 newexp->nelts = exp->nelts + 7 - oplen;
4113 newexp->language_defn = exp->language_defn;
3489610d 4114 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4115 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4116 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4117 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4118
4119 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4120 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4121
4122 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4123 newexp->elts[pc + 4].block = block;
4124 newexp->elts[pc + 5].symbol = sym;
4125
e9d9f57e 4126 expp->reset (newexp);
d2e4a39e 4127}
14f9c5c9
AS
4128
4129/* Type-class predicates */
4130
4c4b4cd2
PH
4131/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4132 or FLOAT). */
14f9c5c9
AS
4133
4134static int
d2e4a39e 4135numeric_type_p (struct type *type)
14f9c5c9
AS
4136{
4137 if (type == NULL)
4138 return 0;
d2e4a39e
AS
4139 else
4140 {
4141 switch (TYPE_CODE (type))
4c4b4cd2
PH
4142 {
4143 case TYPE_CODE_INT:
4144 case TYPE_CODE_FLT:
4145 return 1;
4146 case TYPE_CODE_RANGE:
4147 return (type == TYPE_TARGET_TYPE (type)
4148 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4149 default:
4150 return 0;
4151 }
d2e4a39e 4152 }
14f9c5c9
AS
4153}
4154
4c4b4cd2 4155/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4156
4157static int
d2e4a39e 4158integer_type_p (struct type *type)
14f9c5c9
AS
4159{
4160 if (type == NULL)
4161 return 0;
d2e4a39e
AS
4162 else
4163 {
4164 switch (TYPE_CODE (type))
4c4b4cd2
PH
4165 {
4166 case TYPE_CODE_INT:
4167 return 1;
4168 case TYPE_CODE_RANGE:
4169 return (type == TYPE_TARGET_TYPE (type)
4170 || integer_type_p (TYPE_TARGET_TYPE (type)));
4171 default:
4172 return 0;
4173 }
d2e4a39e 4174 }
14f9c5c9
AS
4175}
4176
4c4b4cd2 4177/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4178
4179static int
d2e4a39e 4180scalar_type_p (struct type *type)
14f9c5c9
AS
4181{
4182 if (type == NULL)
4183 return 0;
d2e4a39e
AS
4184 else
4185 {
4186 switch (TYPE_CODE (type))
4c4b4cd2
PH
4187 {
4188 case TYPE_CODE_INT:
4189 case TYPE_CODE_RANGE:
4190 case TYPE_CODE_ENUM:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 default:
4194 return 0;
4195 }
d2e4a39e 4196 }
14f9c5c9
AS
4197}
4198
4c4b4cd2 4199/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4200
4201static int
d2e4a39e 4202discrete_type_p (struct type *type)
14f9c5c9
AS
4203{
4204 if (type == NULL)
4205 return 0;
d2e4a39e
AS
4206 else
4207 {
4208 switch (TYPE_CODE (type))
4c4b4cd2
PH
4209 {
4210 case TYPE_CODE_INT:
4211 case TYPE_CODE_RANGE:
4212 case TYPE_CODE_ENUM:
872f0337 4213 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4214 return 1;
4215 default:
4216 return 0;
4217 }
d2e4a39e 4218 }
14f9c5c9
AS
4219}
4220
4c4b4cd2
PH
4221/* Returns non-zero if OP with operands in the vector ARGS could be
4222 a user-defined function. Errs on the side of pre-defined operators
4223 (i.e., result 0). */
14f9c5c9
AS
4224
4225static int
d2e4a39e 4226possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4227{
76a01679 4228 struct type *type0 =
df407dfe 4229 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4230 struct type *type1 =
df407dfe 4231 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4232
4c4b4cd2
PH
4233 if (type0 == NULL)
4234 return 0;
4235
14f9c5c9
AS
4236 switch (op)
4237 {
4238 default:
4239 return 0;
4240
4241 case BINOP_ADD:
4242 case BINOP_SUB:
4243 case BINOP_MUL:
4244 case BINOP_DIV:
d2e4a39e 4245 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4246
4247 case BINOP_REM:
4248 case BINOP_MOD:
4249 case BINOP_BITWISE_AND:
4250 case BINOP_BITWISE_IOR:
4251 case BINOP_BITWISE_XOR:
d2e4a39e 4252 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4253
4254 case BINOP_EQUAL:
4255 case BINOP_NOTEQUAL:
4256 case BINOP_LESS:
4257 case BINOP_GTR:
4258 case BINOP_LEQ:
4259 case BINOP_GEQ:
d2e4a39e 4260 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4261
4262 case BINOP_CONCAT:
ee90b9ab 4263 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4264
4265 case BINOP_EXP:
d2e4a39e 4266 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4267
4268 case UNOP_NEG:
4269 case UNOP_PLUS:
4270 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4271 case UNOP_ABS:
4272 return (!numeric_type_p (type0));
14f9c5c9
AS
4273
4274 }
4275}
4276\f
4c4b4cd2 4277 /* Renaming */
14f9c5c9 4278
aeb5907d
JB
4279/* NOTES:
4280
4281 1. In the following, we assume that a renaming type's name may
4282 have an ___XD suffix. It would be nice if this went away at some
4283 point.
4284 2. We handle both the (old) purely type-based representation of
4285 renamings and the (new) variable-based encoding. At some point,
4286 it is devoutly to be hoped that the former goes away
4287 (FIXME: hilfinger-2007-07-09).
4288 3. Subprogram renamings are not implemented, although the XRS
4289 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4290
4291/* If SYM encodes a renaming,
4292
4293 <renaming> renames <renamed entity>,
4294
4295 sets *LEN to the length of the renamed entity's name,
4296 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4297 the string describing the subcomponent selected from the renamed
0963b4bd 4298 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4299 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4300 are undefined). Otherwise, returns a value indicating the category
4301 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4302 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4303 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4304 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4305 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4306 may be NULL, in which case they are not assigned.
4307
4308 [Currently, however, GCC does not generate subprogram renamings.] */
4309
4310enum ada_renaming_category
4311ada_parse_renaming (struct symbol *sym,
4312 const char **renamed_entity, int *len,
4313 const char **renaming_expr)
4314{
4315 enum ada_renaming_category kind;
4316 const char *info;
4317 const char *suffix;
4318
4319 if (sym == NULL)
4320 return ADA_NOT_RENAMING;
4321 switch (SYMBOL_CLASS (sym))
14f9c5c9 4322 {
aeb5907d
JB
4323 default:
4324 return ADA_NOT_RENAMING;
4325 case LOC_TYPEDEF:
4326 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4327 renamed_entity, len, renaming_expr);
4328 case LOC_LOCAL:
4329 case LOC_STATIC:
4330 case LOC_COMPUTED:
4331 case LOC_OPTIMIZED_OUT:
4332 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4333 if (info == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (info[5])
4336 {
4337 case '_':
4338 kind = ADA_OBJECT_RENAMING;
4339 info += 6;
4340 break;
4341 case 'E':
4342 kind = ADA_EXCEPTION_RENAMING;
4343 info += 7;
4344 break;
4345 case 'P':
4346 kind = ADA_PACKAGE_RENAMING;
4347 info += 7;
4348 break;
4349 case 'S':
4350 kind = ADA_SUBPROGRAM_RENAMING;
4351 info += 7;
4352 break;
4353 default:
4354 return ADA_NOT_RENAMING;
4355 }
14f9c5c9 4356 }
4c4b4cd2 4357
aeb5907d
JB
4358 if (renamed_entity != NULL)
4359 *renamed_entity = info;
4360 suffix = strstr (info, "___XE");
4361 if (suffix == NULL || suffix == info)
4362 return ADA_NOT_RENAMING;
4363 if (len != NULL)
4364 *len = strlen (info) - strlen (suffix);
4365 suffix += 5;
4366 if (renaming_expr != NULL)
4367 *renaming_expr = suffix;
4368 return kind;
4369}
4370
4371/* Assuming TYPE encodes a renaming according to the old encoding in
4372 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4373 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4374 ADA_NOT_RENAMING otherwise. */
4375static enum ada_renaming_category
4376parse_old_style_renaming (struct type *type,
4377 const char **renamed_entity, int *len,
4378 const char **renaming_expr)
4379{
4380 enum ada_renaming_category kind;
4381 const char *name;
4382 const char *info;
4383 const char *suffix;
14f9c5c9 4384
aeb5907d
JB
4385 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4386 || TYPE_NFIELDS (type) != 1)
4387 return ADA_NOT_RENAMING;
14f9c5c9 4388
a737d952 4389 name = TYPE_NAME (type);
aeb5907d
JB
4390 if (name == NULL)
4391 return ADA_NOT_RENAMING;
4392
4393 name = strstr (name, "___XR");
4394 if (name == NULL)
4395 return ADA_NOT_RENAMING;
4396 switch (name[5])
4397 {
4398 case '\0':
4399 case '_':
4400 kind = ADA_OBJECT_RENAMING;
4401 break;
4402 case 'E':
4403 kind = ADA_EXCEPTION_RENAMING;
4404 break;
4405 case 'P':
4406 kind = ADA_PACKAGE_RENAMING;
4407 break;
4408 case 'S':
4409 kind = ADA_SUBPROGRAM_RENAMING;
4410 break;
4411 default:
4412 return ADA_NOT_RENAMING;
4413 }
14f9c5c9 4414
aeb5907d
JB
4415 info = TYPE_FIELD_NAME (type, 0);
4416 if (info == NULL)
4417 return ADA_NOT_RENAMING;
4418 if (renamed_entity != NULL)
4419 *renamed_entity = info;
4420 suffix = strstr (info, "___XE");
4421 if (renaming_expr != NULL)
4422 *renaming_expr = suffix + 5;
4423 if (suffix == NULL || suffix == info)
4424 return ADA_NOT_RENAMING;
4425 if (len != NULL)
4426 *len = suffix - info;
4427 return kind;
a5ee536b
JB
4428}
4429
4430/* Compute the value of the given RENAMING_SYM, which is expected to
4431 be a symbol encoding a renaming expression. BLOCK is the block
4432 used to evaluate the renaming. */
52ce6436 4433
a5ee536b
JB
4434static struct value *
4435ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4436 const struct block *block)
a5ee536b 4437{
bbc13ae3 4438 const char *sym_name;
a5ee536b 4439
bbc13ae3 4440 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4441 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4442 return evaluate_expression (expr.get ());
a5ee536b 4443}
14f9c5c9 4444\f
d2e4a39e 4445
4c4b4cd2 4446 /* Evaluation: Function Calls */
14f9c5c9 4447
4c4b4cd2 4448/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4449 lvalues, and otherwise has the side-effect of allocating memory
4450 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4451
d2e4a39e 4452static struct value *
40bc484c 4453ensure_lval (struct value *val)
14f9c5c9 4454{
40bc484c
JB
4455 if (VALUE_LVAL (val) == not_lval
4456 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4457 {
df407dfe 4458 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4459 const CORE_ADDR addr =
4460 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4461
a84a8a0d 4462 VALUE_LVAL (val) = lval_memory;
1a088441 4463 set_value_address (val, addr);
40bc484c 4464 write_memory (addr, value_contents (val), len);
c3e5cd34 4465 }
14f9c5c9
AS
4466
4467 return val;
4468}
4469
4470/* Return the value ACTUAL, converted to be an appropriate value for a
4471 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4472 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4473 values not residing in memory, updating it as needed. */
14f9c5c9 4474
a93c0eb6 4475struct value *
40bc484c 4476ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4477{
df407dfe 4478 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4479 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4480 struct type *formal_target =
4481 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4482 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4483 struct type *actual_target =
4484 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4485 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4486
4c4b4cd2 4487 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4488 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4489 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4490 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4491 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4492 {
a84a8a0d 4493 struct value *result;
5b4ee69b 4494
14f9c5c9 4495 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4496 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4497 result = desc_data (actual);
cb923fcc 4498 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4499 {
4500 if (VALUE_LVAL (actual) != lval_memory)
4501 {
4502 struct value *val;
5b4ee69b 4503
df407dfe 4504 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4505 val = allocate_value (actual_type);
990a07ab 4506 memcpy ((char *) value_contents_raw (val),
0fd88904 4507 (char *) value_contents (actual),
4c4b4cd2 4508 TYPE_LENGTH (actual_type));
40bc484c 4509 actual = ensure_lval (val);
4c4b4cd2 4510 }
a84a8a0d 4511 result = value_addr (actual);
4c4b4cd2 4512 }
a84a8a0d
JB
4513 else
4514 return actual;
b1af9e97 4515 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4516 }
4517 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4518 return ada_value_ind (actual);
8344af1e
JB
4519 else if (ada_is_aligner_type (formal_type))
4520 {
4521 /* We need to turn this parameter into an aligner type
4522 as well. */
4523 struct value *aligner = allocate_value (formal_type);
4524 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4525
4526 value_assign_to_component (aligner, component, actual);
4527 return aligner;
4528 }
14f9c5c9
AS
4529
4530 return actual;
4531}
4532
438c98a1
JB
4533/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4534 type TYPE. This is usually an inefficient no-op except on some targets
4535 (such as AVR) where the representation of a pointer and an address
4536 differs. */
4537
4538static CORE_ADDR
4539value_pointer (struct value *value, struct type *type)
4540{
4541 struct gdbarch *gdbarch = get_type_arch (type);
4542 unsigned len = TYPE_LENGTH (type);
224c3ddb 4543 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4544 CORE_ADDR addr;
4545
4546 addr = value_address (value);
4547 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4548 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4549 return addr;
4550}
4551
14f9c5c9 4552
4c4b4cd2
PH
4553/* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
14f9c5c9 4558
d2e4a39e 4559static struct value *
40bc484c 4560make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4561{
d2e4a39e
AS
4562 struct type *bounds_type = desc_bounds_type (type);
4563 struct type *desc_type = desc_base_type (type);
4564 struct value *descriptor = allocate_value (desc_type);
4565 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4566 int i;
d2e4a39e 4567
0963b4bd
MS
4568 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4569 i > 0; i -= 1)
14f9c5c9 4570 {
19f220c3
JK
4571 modify_field (value_type (bounds), value_contents_writeable (bounds),
4572 ada_array_bound (arr, i, 0),
4573 desc_bound_bitpos (bounds_type, i, 0),
4574 desc_bound_bitsize (bounds_type, i, 0));
4575 modify_field (value_type (bounds), value_contents_writeable (bounds),
4576 ada_array_bound (arr, i, 1),
4577 desc_bound_bitpos (bounds_type, i, 1),
4578 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4579 }
d2e4a39e 4580
40bc484c 4581 bounds = ensure_lval (bounds);
d2e4a39e 4582
19f220c3
JK
4583 modify_field (value_type (descriptor),
4584 value_contents_writeable (descriptor),
4585 value_pointer (ensure_lval (arr),
4586 TYPE_FIELD_TYPE (desc_type, 0)),
4587 fat_pntr_data_bitpos (desc_type),
4588 fat_pntr_data_bitsize (desc_type));
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (bounds,
4593 TYPE_FIELD_TYPE (desc_type, 1)),
4594 fat_pntr_bounds_bitpos (desc_type),
4595 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4596
40bc484c 4597 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4598
4599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4600 return value_addr (descriptor);
4601 else
4602 return descriptor;
4603}
14f9c5c9 4604\f
3d9434b5
JB
4605 /* Symbol Cache Module */
4606
3d9434b5 4607/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4608 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4609 on the type of entity being printed, the cache can make it as much
4610 as an order of magnitude faster than without it.
4611
4612 The descriptive type DWARF extension has significantly reduced
4613 the need for this cache, at least when DWARF is being used. However,
4614 even in this case, some expensive name-based symbol searches are still
4615 sometimes necessary - to find an XVZ variable, mostly. */
4616
ee01b665 4617/* Initialize the contents of SYM_CACHE. */
3d9434b5 4618
ee01b665
JB
4619static void
4620ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4621{
4622 obstack_init (&sym_cache->cache_space);
4623 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4624}
3d9434b5 4625
ee01b665
JB
4626/* Free the memory used by SYM_CACHE. */
4627
4628static void
4629ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4630{
ee01b665
JB
4631 obstack_free (&sym_cache->cache_space, NULL);
4632 xfree (sym_cache);
4633}
3d9434b5 4634
ee01b665
JB
4635/* Return the symbol cache associated to the given program space PSPACE.
4636 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4637
ee01b665
JB
4638static struct ada_symbol_cache *
4639ada_get_symbol_cache (struct program_space *pspace)
4640{
4641 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4642
66c168ae 4643 if (pspace_data->sym_cache == NULL)
ee01b665 4644 {
66c168ae
JB
4645 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4646 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4647 }
4648
66c168ae 4649 return pspace_data->sym_cache;
ee01b665 4650}
3d9434b5
JB
4651
4652/* Clear all entries from the symbol cache. */
4653
4654static void
4655ada_clear_symbol_cache (void)
4656{
ee01b665
JB
4657 struct ada_symbol_cache *sym_cache
4658 = ada_get_symbol_cache (current_program_space);
4659
4660 obstack_free (&sym_cache->cache_space, NULL);
4661 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4662}
4663
fe978cb0 4664/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4665 Return it if found, or NULL otherwise. */
4666
4667static struct cache_entry **
fe978cb0 4668find_entry (const char *name, domain_enum domain)
3d9434b5 4669{
ee01b665
JB
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4672 int h = msymbol_hash (name) % HASH_SIZE;
4673 struct cache_entry **e;
4674
ee01b665 4675 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4676 {
fe978cb0 4677 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4678 return e;
4679 }
4680 return NULL;
4681}
4682
fe978cb0 4683/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4684 Return 1 if found, 0 otherwise.
4685
4686 If an entry was found and SYM is not NULL, set *SYM to the entry's
4687 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4688
96d887e8 4689static int
fe978cb0 4690lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4691 struct symbol **sym, const struct block **block)
96d887e8 4692{
fe978cb0 4693 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4694
4695 if (e == NULL)
4696 return 0;
4697 if (sym != NULL)
4698 *sym = (*e)->sym;
4699 if (block != NULL)
4700 *block = (*e)->block;
4701 return 1;
96d887e8
PH
4702}
4703
3d9434b5 4704/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4705 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4706
96d887e8 4707static void
fe978cb0 4708cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4709 const struct block *block)
96d887e8 4710{
ee01b665
JB
4711 struct ada_symbol_cache *sym_cache
4712 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4713 int h;
4714 char *copy;
4715 struct cache_entry *e;
4716
1994afbf
DE
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4720 return;
4721
3d9434b5
JB
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4726 if (sym
08be3fe3 4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4728 GLOBAL_BLOCK) != block
08be3fe3 4729 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4730 STATIC_BLOCK) != block)
3d9434b5
JB
4731 return;
4732
4733 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4734 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4735 e->next = sym_cache->root[h];
4736 sym_cache->root[h] = e;
224c3ddb
SM
4737 e->name = copy
4738 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4739 strcpy (copy, name);
4740 e->sym = sym;
fe978cb0 4741 e->domain = domain;
3d9434b5 4742 e->block = block;
96d887e8 4743}
4c4b4cd2
PH
4744\f
4745 /* Symbol Lookup */
4746
b5ec771e
PA
4747/* Return the symbol name match type that should be used used when
4748 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4749
4750 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4751 for Ada lookups. */
c0431670 4752
b5ec771e
PA
4753static symbol_name_match_type
4754name_match_type_from_name (const char *lookup_name)
c0431670 4755{
b5ec771e
PA
4756 return (strstr (lookup_name, "__") == NULL
4757 ? symbol_name_match_type::WILD
4758 : symbol_name_match_type::FULL);
c0431670
JB
4759}
4760
4c4b4cd2
PH
4761/* Return the result of a standard (literal, C-like) lookup of NAME in
4762 given DOMAIN, visible from lexical block BLOCK. */
4763
4764static struct symbol *
4765standard_lookup (const char *name, const struct block *block,
4766 domain_enum domain)
4767{
acbd605d 4768 /* Initialize it just to avoid a GCC false warning. */
6640a367 4769 struct block_symbol sym = {};
4c4b4cd2 4770
d12307c1
PMR
4771 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4772 return sym.symbol;
a2cd4f14 4773 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4774 cache_symbol (name, domain, sym.symbol, sym.block);
4775 return sym.symbol;
4c4b4cd2
PH
4776}
4777
4778
4779/* Non-zero iff there is at least one non-function/non-enumeral symbol
4780 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4781 since they contend in overloading in the same way. */
4782static int
d12307c1 4783is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4784{
4785 int i;
4786
4787 for (i = 0; i < n; i += 1)
d12307c1
PMR
4788 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4789 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4790 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4791 return 1;
4792
4793 return 0;
4794}
4795
4796/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4797 struct types. Otherwise, they may not. */
14f9c5c9
AS
4798
4799static int
d2e4a39e 4800equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4801{
d2e4a39e 4802 if (type0 == type1)
14f9c5c9 4803 return 1;
d2e4a39e 4804 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4805 || TYPE_CODE (type0) != TYPE_CODE (type1))
4806 return 0;
d2e4a39e 4807 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4808 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4809 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4810 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4811 return 1;
d2e4a39e 4812
14f9c5c9
AS
4813 return 0;
4814}
4815
4816/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4817 no more defined than that of SYM1. */
14f9c5c9
AS
4818
4819static int
d2e4a39e 4820lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4821{
4822 if (sym0 == sym1)
4823 return 1;
176620f1 4824 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4825 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4826 return 0;
4827
d2e4a39e 4828 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4829 {
4830 case LOC_UNDEF:
4831 return 1;
4832 case LOC_TYPEDEF:
4833 {
4c4b4cd2
PH
4834 struct type *type0 = SYMBOL_TYPE (sym0);
4835 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4836 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4837 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4838 int len0 = strlen (name0);
5b4ee69b 4839
4c4b4cd2
PH
4840 return
4841 TYPE_CODE (type0) == TYPE_CODE (type1)
4842 && (equiv_types (type0, type1)
4843 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4844 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4845 }
4846 case LOC_CONST:
4847 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4848 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4849 default:
4850 return 0;
14f9c5c9
AS
4851 }
4852}
4853
d12307c1 4854/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4855 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4856
4857static void
76a01679
JB
4858add_defn_to_vec (struct obstack *obstackp,
4859 struct symbol *sym,
f0c5f9b2 4860 const struct block *block)
14f9c5c9
AS
4861{
4862 int i;
d12307c1 4863 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4864
529cad9c
PH
4865 /* Do not try to complete stub types, as the debugger is probably
4866 already scanning all symbols matching a certain name at the
4867 time when this function is called. Trying to replace the stub
4868 type by its associated full type will cause us to restart a scan
4869 which may lead to an infinite recursion. Instead, the client
4870 collecting the matching symbols will end up collecting several
4871 matches, with at least one of them complete. It can then filter
4872 out the stub ones if needed. */
4873
4c4b4cd2
PH
4874 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4875 {
d12307c1 4876 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4877 return;
d12307c1 4878 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4879 {
d12307c1 4880 prevDefns[i].symbol = sym;
4c4b4cd2 4881 prevDefns[i].block = block;
4c4b4cd2 4882 return;
76a01679 4883 }
4c4b4cd2
PH
4884 }
4885
4886 {
d12307c1 4887 struct block_symbol info;
4c4b4cd2 4888
d12307c1 4889 info.symbol = sym;
4c4b4cd2 4890 info.block = block;
d12307c1 4891 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4892 }
4893}
4894
d12307c1
PMR
4895/* Number of block_symbol structures currently collected in current vector in
4896 OBSTACKP. */
4c4b4cd2 4897
76a01679
JB
4898static int
4899num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4900{
d12307c1 4901 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4902}
4903
d12307c1
PMR
4904/* Vector of block_symbol structures currently collected in current vector in
4905 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4906
d12307c1 4907static struct block_symbol *
4c4b4cd2
PH
4908defns_collected (struct obstack *obstackp, int finish)
4909{
4910 if (finish)
224c3ddb 4911 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4912 else
d12307c1 4913 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4914}
4915
7c7b6655
TT
4916/* Return a bound minimal symbol matching NAME according to Ada
4917 decoding rules. Returns an invalid symbol if there is no such
4918 minimal symbol. Names prefixed with "standard__" are handled
4919 specially: "standard__" is first stripped off, and only static and
4920 global symbols are searched. */
4c4b4cd2 4921
7c7b6655 4922struct bound_minimal_symbol
96d887e8 4923ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4924{
7c7b6655 4925 struct bound_minimal_symbol result;
4c4b4cd2 4926
7c7b6655
TT
4927 memset (&result, 0, sizeof (result));
4928
b5ec771e
PA
4929 symbol_name_match_type match_type = name_match_type_from_name (name);
4930 lookup_name_info lookup_name (name, match_type);
4931
4932 symbol_name_matcher_ftype *match_name
4933 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4934
2030c079 4935 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4936 {
7932255d 4937 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4938 {
4939 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4940 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4941 {
4942 result.minsym = msymbol;
4943 result.objfile = objfile;
4944 break;
4945 }
4946 }
4947 }
4c4b4cd2 4948
7c7b6655 4949 return result;
96d887e8 4950}
4c4b4cd2 4951
96d887e8
PH
4952/* For all subprograms that statically enclose the subprogram of the
4953 selected frame, add symbols matching identifier NAME in DOMAIN
4954 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4955 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4956 with a wildcard prefix. */
4c4b4cd2 4957
96d887e8
PH
4958static void
4959add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4960 const lookup_name_info &lookup_name,
4961 domain_enum domain)
96d887e8 4962{
96d887e8 4963}
14f9c5c9 4964
96d887e8
PH
4965/* True if TYPE is definitely an artificial type supplied to a symbol
4966 for which no debugging information was given in the symbol file. */
14f9c5c9 4967
96d887e8
PH
4968static int
4969is_nondebugging_type (struct type *type)
4970{
0d5cff50 4971 const char *name = ada_type_name (type);
5b4ee69b 4972
96d887e8
PH
4973 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4974}
4c4b4cd2 4975
8f17729f
JB
4976/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4977 that are deemed "identical" for practical purposes.
4978
4979 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4980 types and that their number of enumerals is identical (in other
4981 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4982
4983static int
4984ada_identical_enum_types_p (struct type *type1, struct type *type2)
4985{
4986 int i;
4987
4988 /* The heuristic we use here is fairly conservative. We consider
4989 that 2 enumerate types are identical if they have the same
4990 number of enumerals and that all enumerals have the same
4991 underlying value and name. */
4992
4993 /* All enums in the type should have an identical underlying value. */
4994 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4995 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4996 return 0;
4997
4998 /* All enumerals should also have the same name (modulo any numerical
4999 suffix). */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 {
0d5cff50
DE
5002 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5003 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5004 int len_1 = strlen (name_1);
5005 int len_2 = strlen (name_2);
5006
5007 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5008 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5009 if (len_1 != len_2
5010 || strncmp (TYPE_FIELD_NAME (type1, i),
5011 TYPE_FIELD_NAME (type2, i),
5012 len_1) != 0)
5013 return 0;
5014 }
5015
5016 return 1;
5017}
5018
5019/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5020 that are deemed "identical" for practical purposes. Sometimes,
5021 enumerals are not strictly identical, but their types are so similar
5022 that they can be considered identical.
5023
5024 For instance, consider the following code:
5025
5026 type Color is (Black, Red, Green, Blue, White);
5027 type RGB_Color is new Color range Red .. Blue;
5028
5029 Type RGB_Color is a subrange of an implicit type which is a copy
5030 of type Color. If we call that implicit type RGB_ColorB ("B" is
5031 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5032 As a result, when an expression references any of the enumeral
5033 by name (Eg. "print green"), the expression is technically
5034 ambiguous and the user should be asked to disambiguate. But
5035 doing so would only hinder the user, since it wouldn't matter
5036 what choice he makes, the outcome would always be the same.
5037 So, for practical purposes, we consider them as the same. */
5038
5039static int
54d343a2 5040symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5041{
5042 int i;
5043
5044 /* Before performing a thorough comparison check of each type,
5045 we perform a series of inexpensive checks. We expect that these
5046 checks will quickly fail in the vast majority of cases, and thus
5047 help prevent the unnecessary use of a more expensive comparison.
5048 Said comparison also expects us to make some of these checks
5049 (see ada_identical_enum_types_p). */
5050
5051 /* Quick check: All symbols should have an enum type. */
54d343a2 5052 for (i = 0; i < syms.size (); i++)
d12307c1 5053 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5054 return 0;
5055
5056 /* Quick check: They should all have the same value. */
54d343a2 5057 for (i = 1; i < syms.size (); i++)
d12307c1 5058 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5059 return 0;
5060
5061 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5062 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5063 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5064 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5065 return 0;
5066
5067 /* All the sanity checks passed, so we might have a set of
5068 identical enumeration types. Perform a more complete
5069 comparison of the type of each symbol. */
54d343a2 5070 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5071 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5072 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5073 return 0;
5074
5075 return 1;
5076}
5077
54d343a2 5078/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5079 duplicate other symbols in the list (The only case I know of where
5080 this happens is when object files containing stabs-in-ecoff are
5081 linked with files containing ordinary ecoff debugging symbols (or no
5082 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5083 Returns the number of items in the modified list. */
4c4b4cd2 5084
96d887e8 5085static int
54d343a2 5086remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5087{
5088 int i, j;
4c4b4cd2 5089
8f17729f
JB
5090 /* We should never be called with less than 2 symbols, as there
5091 cannot be any extra symbol in that case. But it's easy to
5092 handle, since we have nothing to do in that case. */
54d343a2
TT
5093 if (syms->size () < 2)
5094 return syms->size ();
8f17729f 5095
96d887e8 5096 i = 0;
54d343a2 5097 while (i < syms->size ())
96d887e8 5098 {
a35ddb44 5099 int remove_p = 0;
339c13b6
JB
5100
5101 /* If two symbols have the same name and one of them is a stub type,
5102 the get rid of the stub. */
5103
54d343a2
TT
5104 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5105 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5106 {
54d343a2 5107 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5108 {
5109 if (j != i
54d343a2
TT
5110 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5112 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5113 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5114 remove_p = 1;
339c13b6
JB
5115 }
5116 }
5117
5118 /* Two symbols with the same name, same class and same address
5119 should be identical. */
5120
54d343a2
TT
5121 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5122 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5123 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5124 {
54d343a2 5125 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5126 {
5127 if (i != j
54d343a2
TT
5128 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5130 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5131 && SYMBOL_CLASS ((*syms)[i].symbol)
5132 == SYMBOL_CLASS ((*syms)[j].symbol)
5133 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5134 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5135 remove_p = 1;
4c4b4cd2 5136 }
4c4b4cd2 5137 }
339c13b6 5138
a35ddb44 5139 if (remove_p)
54d343a2 5140 syms->erase (syms->begin () + i);
339c13b6 5141
96d887e8 5142 i += 1;
14f9c5c9 5143 }
8f17729f
JB
5144
5145 /* If all the remaining symbols are identical enumerals, then
5146 just keep the first one and discard the rest.
5147
5148 Unlike what we did previously, we do not discard any entry
5149 unless they are ALL identical. This is because the symbol
5150 comparison is not a strict comparison, but rather a practical
5151 comparison. If all symbols are considered identical, then
5152 we can just go ahead and use the first one and discard the rest.
5153 But if we cannot reduce the list to a single element, we have
5154 to ask the user to disambiguate anyways. And if we have to
5155 present a multiple-choice menu, it's less confusing if the list
5156 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5157 if (symbols_are_identical_enums (*syms))
5158 syms->resize (1);
8f17729f 5159
54d343a2 5160 return syms->size ();
14f9c5c9
AS
5161}
5162
96d887e8
PH
5163/* Given a type that corresponds to a renaming entity, use the type name
5164 to extract the scope (package name or function name, fully qualified,
5165 and following the GNAT encoding convention) where this renaming has been
49d83361 5166 defined. */
4c4b4cd2 5167
49d83361 5168static std::string
96d887e8 5169xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5170{
96d887e8 5171 /* The renaming types adhere to the following convention:
0963b4bd 5172 <scope>__<rename>___<XR extension>.
96d887e8
PH
5173 So, to extract the scope, we search for the "___XR" extension,
5174 and then backtrack until we find the first "__". */
76a01679 5175
a737d952 5176 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5177 const char *suffix = strstr (name, "___XR");
5178 const char *last;
14f9c5c9 5179
96d887e8
PH
5180 /* Now, backtrack a bit until we find the first "__". Start looking
5181 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5182
96d887e8
PH
5183 for (last = suffix - 3; last > name; last--)
5184 if (last[0] == '_' && last[1] == '_')
5185 break;
76a01679 5186
96d887e8 5187 /* Make a copy of scope and return it. */
49d83361 5188 return std::string (name, last);
4c4b4cd2
PH
5189}
5190
96d887e8 5191/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5192
96d887e8
PH
5193static int
5194is_package_name (const char *name)
4c4b4cd2 5195{
96d887e8
PH
5196 /* Here, We take advantage of the fact that no symbols are generated
5197 for packages, while symbols are generated for each function.
5198 So the condition for NAME represent a package becomes equivalent
5199 to NAME not existing in our list of symbols. There is only one
5200 small complication with library-level functions (see below). */
4c4b4cd2 5201
96d887e8
PH
5202 /* If it is a function that has not been defined at library level,
5203 then we should be able to look it up in the symbols. */
5204 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5205 return 0;
14f9c5c9 5206
96d887e8
PH
5207 /* Library-level function names start with "_ada_". See if function
5208 "_ada_" followed by NAME can be found. */
14f9c5c9 5209
96d887e8 5210 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5211 functions names cannot contain "__" in them. */
96d887e8
PH
5212 if (strstr (name, "__") != NULL)
5213 return 0;
4c4b4cd2 5214
528e1572 5215 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5216
528e1572 5217 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5218}
14f9c5c9 5219
96d887e8 5220/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5221 not visible from FUNCTION_NAME. */
14f9c5c9 5222
96d887e8 5223static int
0d5cff50 5224old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5225{
aeb5907d
JB
5226 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5227 return 0;
5228
49d83361 5229 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5230
96d887e8 5231 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5232 if (is_package_name (scope.c_str ()))
5233 return 0;
14f9c5c9 5234
96d887e8
PH
5235 /* Check that the rename is in the current function scope by checking
5236 that its name starts with SCOPE. */
76a01679 5237
96d887e8
PH
5238 /* If the function name starts with "_ada_", it means that it is
5239 a library-level function. Strip this prefix before doing the
5240 comparison, as the encoding for the renaming does not contain
5241 this prefix. */
61012eef 5242 if (startswith (function_name, "_ada_"))
96d887e8 5243 function_name += 5;
f26caa11 5244
49d83361 5245 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5246}
5247
aeb5907d
JB
5248/* Remove entries from SYMS that corresponds to a renaming entity that
5249 is not visible from the function associated with CURRENT_BLOCK or
5250 that is superfluous due to the presence of more specific renaming
5251 information. Places surviving symbols in the initial entries of
5252 SYMS and returns the number of surviving symbols.
96d887e8
PH
5253
5254 Rationale:
aeb5907d
JB
5255 First, in cases where an object renaming is implemented as a
5256 reference variable, GNAT may produce both the actual reference
5257 variable and the renaming encoding. In this case, we discard the
5258 latter.
5259
5260 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5261 entity. Unfortunately, STABS currently does not support the definition
5262 of types that are local to a given lexical block, so all renamings types
5263 are emitted at library level. As a consequence, if an application
5264 contains two renaming entities using the same name, and a user tries to
5265 print the value of one of these entities, the result of the ada symbol
5266 lookup will also contain the wrong renaming type.
f26caa11 5267
96d887e8
PH
5268 This function partially covers for this limitation by attempting to
5269 remove from the SYMS list renaming symbols that should be visible
5270 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5271 method with the current information available. The implementation
5272 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5273
5274 - When the user tries to print a rename in a function while there
5275 is another rename entity defined in a package: Normally, the
5276 rename in the function has precedence over the rename in the
5277 package, so the latter should be removed from the list. This is
5278 currently not the case.
5279
5280 - This function will incorrectly remove valid renames if
5281 the CURRENT_BLOCK corresponds to a function which symbol name
5282 has been changed by an "Export" pragma. As a consequence,
5283 the user will be unable to print such rename entities. */
4c4b4cd2 5284
14f9c5c9 5285static int
54d343a2
TT
5286remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5287 const struct block *current_block)
4c4b4cd2
PH
5288{
5289 struct symbol *current_function;
0d5cff50 5290 const char *current_function_name;
4c4b4cd2 5291 int i;
aeb5907d
JB
5292 int is_new_style_renaming;
5293
5294 /* If there is both a renaming foo___XR... encoded as a variable and
5295 a simple variable foo in the same block, discard the latter.
0963b4bd 5296 First, zero out such symbols, then compress. */
aeb5907d 5297 is_new_style_renaming = 0;
54d343a2 5298 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5299 {
54d343a2
TT
5300 struct symbol *sym = (*syms)[i].symbol;
5301 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5302 const char *name;
5303 const char *suffix;
5304
5305 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5306 continue;
5307 name = SYMBOL_LINKAGE_NAME (sym);
5308 suffix = strstr (name, "___XR");
5309
5310 if (suffix != NULL)
5311 {
5312 int name_len = suffix - name;
5313 int j;
5b4ee69b 5314
aeb5907d 5315 is_new_style_renaming = 1;
54d343a2
TT
5316 for (j = 0; j < syms->size (); j += 1)
5317 if (i != j && (*syms)[j].symbol != NULL
5318 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5319 name_len) == 0
54d343a2
TT
5320 && block == (*syms)[j].block)
5321 (*syms)[j].symbol = NULL;
aeb5907d
JB
5322 }
5323 }
5324 if (is_new_style_renaming)
5325 {
5326 int j, k;
5327
54d343a2
TT
5328 for (j = k = 0; j < syms->size (); j += 1)
5329 if ((*syms)[j].symbol != NULL)
aeb5907d 5330 {
54d343a2 5331 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5332 k += 1;
5333 }
5334 return k;
5335 }
4c4b4cd2
PH
5336
5337 /* Extract the function name associated to CURRENT_BLOCK.
5338 Abort if unable to do so. */
76a01679 5339
4c4b4cd2 5340 if (current_block == NULL)
54d343a2 5341 return syms->size ();
76a01679 5342
7f0df278 5343 current_function = block_linkage_function (current_block);
4c4b4cd2 5344 if (current_function == NULL)
54d343a2 5345 return syms->size ();
4c4b4cd2
PH
5346
5347 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5348 if (current_function_name == NULL)
54d343a2 5349 return syms->size ();
4c4b4cd2
PH
5350
5351 /* Check each of the symbols, and remove it from the list if it is
5352 a type corresponding to a renaming that is out of the scope of
5353 the current block. */
5354
5355 i = 0;
54d343a2 5356 while (i < syms->size ())
4c4b4cd2 5357 {
54d343a2 5358 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5359 == ADA_OBJECT_RENAMING
54d343a2
TT
5360 && old_renaming_is_invisible ((*syms)[i].symbol,
5361 current_function_name))
5362 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5363 else
5364 i += 1;
5365 }
5366
54d343a2 5367 return syms->size ();
4c4b4cd2
PH
5368}
5369
339c13b6
JB
5370/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5371 whose name and domain match NAME and DOMAIN respectively.
5372 If no match was found, then extend the search to "enclosing"
5373 routines (in other words, if we're inside a nested function,
5374 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5375 If WILD_MATCH_P is nonzero, perform the naming matching in
5376 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5377
5378 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5379
5380static void
b5ec771e
PA
5381ada_add_local_symbols (struct obstack *obstackp,
5382 const lookup_name_info &lookup_name,
5383 const struct block *block, domain_enum domain)
339c13b6
JB
5384{
5385 int block_depth = 0;
5386
5387 while (block != NULL)
5388 {
5389 block_depth += 1;
b5ec771e 5390 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5391
5392 /* If we found a non-function match, assume that's the one. */
5393 if (is_nonfunction (defns_collected (obstackp, 0),
5394 num_defns_collected (obstackp)))
5395 return;
5396
5397 block = BLOCK_SUPERBLOCK (block);
5398 }
5399
5400 /* If no luck so far, try to find NAME as a local symbol in some lexically
5401 enclosing subprogram. */
5402 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5403 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5404}
5405
ccefe4c4 5406/* An object of this type is used as the user_data argument when
40658b94 5407 calling the map_matching_symbols method. */
ccefe4c4 5408
40658b94 5409struct match_data
ccefe4c4 5410{
40658b94 5411 struct objfile *objfile;
ccefe4c4 5412 struct obstack *obstackp;
40658b94
PH
5413 struct symbol *arg_sym;
5414 int found_sym;
ccefe4c4
TT
5415};
5416
22cee43f 5417/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5418 to a list of symbols. DATA0 is a pointer to a struct match_data *
5419 containing the obstack that collects the symbol list, the file that SYM
5420 must come from, a flag indicating whether a non-argument symbol has
5421 been found in the current block, and the last argument symbol
5422 passed in SYM within the current block (if any). When SYM is null,
5423 marking the end of a block, the argument symbol is added if no
5424 other has been found. */
ccefe4c4 5425
40658b94 5426static int
582942f4
TT
5427aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5428 void *data0)
ccefe4c4 5429{
40658b94
PH
5430 struct match_data *data = (struct match_data *) data0;
5431
5432 if (sym == NULL)
5433 {
5434 if (!data->found_sym && data->arg_sym != NULL)
5435 add_defn_to_vec (data->obstackp,
5436 fixup_symbol_section (data->arg_sym, data->objfile),
5437 block);
5438 data->found_sym = 0;
5439 data->arg_sym = NULL;
5440 }
5441 else
5442 {
5443 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5444 return 0;
5445 else if (SYMBOL_IS_ARGUMENT (sym))
5446 data->arg_sym = sym;
5447 else
5448 {
5449 data->found_sym = 1;
5450 add_defn_to_vec (data->obstackp,
5451 fixup_symbol_section (sym, data->objfile),
5452 block);
5453 }
5454 }
5455 return 0;
5456}
5457
b5ec771e
PA
5458/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5459 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5460 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5461
5462static int
5463ada_add_block_renamings (struct obstack *obstackp,
5464 const struct block *block,
b5ec771e
PA
5465 const lookup_name_info &lookup_name,
5466 domain_enum domain)
22cee43f
PMR
5467{
5468 struct using_direct *renaming;
5469 int defns_mark = num_defns_collected (obstackp);
5470
b5ec771e
PA
5471 symbol_name_matcher_ftype *name_match
5472 = ada_get_symbol_name_matcher (lookup_name);
5473
22cee43f
PMR
5474 for (renaming = block_using (block);
5475 renaming != NULL;
5476 renaming = renaming->next)
5477 {
5478 const char *r_name;
22cee43f
PMR
5479
5480 /* Avoid infinite recursions: skip this renaming if we are actually
5481 already traversing it.
5482
5483 Currently, symbol lookup in Ada don't use the namespace machinery from
5484 C++/Fortran support: skip namespace imports that use them. */
5485 if (renaming->searched
5486 || (renaming->import_src != NULL
5487 && renaming->import_src[0] != '\0')
5488 || (renaming->import_dest != NULL
5489 && renaming->import_dest[0] != '\0'))
5490 continue;
5491 renaming->searched = 1;
5492
5493 /* TODO: here, we perform another name-based symbol lookup, which can
5494 pull its own multiple overloads. In theory, we should be able to do
5495 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5496 not a simple name. But in order to do this, we would need to enhance
5497 the DWARF reader to associate a symbol to this renaming, instead of a
5498 name. So, for now, we do something simpler: re-use the C++/Fortran
5499 namespace machinery. */
5500 r_name = (renaming->alias != NULL
5501 ? renaming->alias
5502 : renaming->declaration);
b5ec771e
PA
5503 if (name_match (r_name, lookup_name, NULL))
5504 {
5505 lookup_name_info decl_lookup_name (renaming->declaration,
5506 lookup_name.match_type ());
5507 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5508 1, NULL);
5509 }
22cee43f
PMR
5510 renaming->searched = 0;
5511 }
5512 return num_defns_collected (obstackp) != defns_mark;
5513}
5514
db230ce3
JB
5515/* Implements compare_names, but only applying the comparision using
5516 the given CASING. */
5b4ee69b 5517
40658b94 5518static int
db230ce3
JB
5519compare_names_with_case (const char *string1, const char *string2,
5520 enum case_sensitivity casing)
40658b94
PH
5521{
5522 while (*string1 != '\0' && *string2 != '\0')
5523 {
db230ce3
JB
5524 char c1, c2;
5525
40658b94
PH
5526 if (isspace (*string1) || isspace (*string2))
5527 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5528
5529 if (casing == case_sensitive_off)
5530 {
5531 c1 = tolower (*string1);
5532 c2 = tolower (*string2);
5533 }
5534 else
5535 {
5536 c1 = *string1;
5537 c2 = *string2;
5538 }
5539 if (c1 != c2)
40658b94 5540 break;
db230ce3 5541
40658b94
PH
5542 string1 += 1;
5543 string2 += 1;
5544 }
db230ce3 5545
40658b94
PH
5546 switch (*string1)
5547 {
5548 case '(':
5549 return strcmp_iw_ordered (string1, string2);
5550 case '_':
5551 if (*string2 == '\0')
5552 {
052874e8 5553 if (is_name_suffix (string1))
40658b94
PH
5554 return 0;
5555 else
1a1d5513 5556 return 1;
40658b94 5557 }
dbb8534f 5558 /* FALLTHROUGH */
40658b94
PH
5559 default:
5560 if (*string2 == '(')
5561 return strcmp_iw_ordered (string1, string2);
5562 else
db230ce3
JB
5563 {
5564 if (casing == case_sensitive_off)
5565 return tolower (*string1) - tolower (*string2);
5566 else
5567 return *string1 - *string2;
5568 }
40658b94 5569 }
ccefe4c4
TT
5570}
5571
db230ce3
JB
5572/* Compare STRING1 to STRING2, with results as for strcmp.
5573 Compatible with strcmp_iw_ordered in that...
5574
5575 strcmp_iw_ordered (STRING1, STRING2) <= 0
5576
5577 ... implies...
5578
5579 compare_names (STRING1, STRING2) <= 0
5580
5581 (they may differ as to what symbols compare equal). */
5582
5583static int
5584compare_names (const char *string1, const char *string2)
5585{
5586 int result;
5587
5588 /* Similar to what strcmp_iw_ordered does, we need to perform
5589 a case-insensitive comparison first, and only resort to
5590 a second, case-sensitive, comparison if the first one was
5591 not sufficient to differentiate the two strings. */
5592
5593 result = compare_names_with_case (string1, string2, case_sensitive_off);
5594 if (result == 0)
5595 result = compare_names_with_case (string1, string2, case_sensitive_on);
5596
5597 return result;
5598}
5599
b5ec771e
PA
5600/* Convenience function to get at the Ada encoded lookup name for
5601 LOOKUP_NAME, as a C string. */
5602
5603static const char *
5604ada_lookup_name (const lookup_name_info &lookup_name)
5605{
5606 return lookup_name.ada ().lookup_name ().c_str ();
5607}
5608
339c13b6 5609/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5610 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5611 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5612 symbols otherwise. */
339c13b6
JB
5613
5614static void
b5ec771e
PA
5615add_nonlocal_symbols (struct obstack *obstackp,
5616 const lookup_name_info &lookup_name,
5617 domain_enum domain, int global)
339c13b6 5618{
40658b94 5619 struct match_data data;
339c13b6 5620
6475f2fe 5621 memset (&data, 0, sizeof data);
ccefe4c4 5622 data.obstackp = obstackp;
339c13b6 5623
b5ec771e
PA
5624 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5625
2030c079 5626 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5627 {
5628 data.objfile = objfile;
5629
5630 if (is_wild_match)
b5ec771e
PA
5631 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5632 domain, global,
4186eb54 5633 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5634 symbol_name_match_type::WILD,
5635 NULL);
40658b94 5636 else
b5ec771e
PA
5637 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5638 domain, global,
4186eb54 5639 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5640 symbol_name_match_type::FULL,
5641 compare_names);
22cee43f 5642
b669c953 5643 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5644 {
5645 const struct block *global_block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5647
b5ec771e
PA
5648 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5649 domain))
22cee43f
PMR
5650 data.found_sym = 1;
5651 }
40658b94
PH
5652 }
5653
5654 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5655 {
b5ec771e
PA
5656 const char *name = ada_lookup_name (lookup_name);
5657 std::string name1 = std::string ("<_ada_") + name + '>';
5658
2030c079 5659 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5660 {
40658b94 5661 data.objfile = objfile;
b5ec771e
PA
5662 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5663 domain, global,
0963b4bd
MS
5664 aux_add_nonlocal_symbols,
5665 &data,
b5ec771e
PA
5666 symbol_name_match_type::FULL,
5667 compare_names);
40658b94
PH
5668 }
5669 }
339c13b6
JB
5670}
5671
b5ec771e
PA
5672/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5673 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5674 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5675
22cee43f
PMR
5676 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5677 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5678 is the one match returned (no other matches in that or
d9680e73 5679 enclosing blocks is returned). If there are any matches in or
22cee43f 5680 surrounding BLOCK, then these alone are returned.
4eeaa230 5681
b5ec771e
PA
5682 Names prefixed with "standard__" are handled specially:
5683 "standard__" is first stripped off (by the lookup_name
5684 constructor), and only static and global symbols are searched.
14f9c5c9 5685
22cee43f
PMR
5686 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5687 to lookup global symbols. */
5688
5689static void
5690ada_add_all_symbols (struct obstack *obstackp,
5691 const struct block *block,
b5ec771e 5692 const lookup_name_info &lookup_name,
22cee43f
PMR
5693 domain_enum domain,
5694 int full_search,
5695 int *made_global_lookup_p)
14f9c5c9
AS
5696{
5697 struct symbol *sym;
14f9c5c9 5698
22cee43f
PMR
5699 if (made_global_lookup_p)
5700 *made_global_lookup_p = 0;
339c13b6
JB
5701
5702 /* Special case: If the user specifies a symbol name inside package
5703 Standard, do a non-wild matching of the symbol name without
5704 the "standard__" prefix. This was primarily introduced in order
5705 to allow the user to specifically access the standard exceptions
5706 using, for instance, Standard.Constraint_Error when Constraint_Error
5707 is ambiguous (due to the user defining its own Constraint_Error
5708 entity inside its program). */
b5ec771e
PA
5709 if (lookup_name.ada ().standard_p ())
5710 block = NULL;
4c4b4cd2 5711
339c13b6 5712 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5713
4eeaa230
DE
5714 if (block != NULL)
5715 {
5716 if (full_search)
b5ec771e 5717 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5718 else
5719 {
5720 /* In the !full_search case we're are being called by
5721 ada_iterate_over_symbols, and we don't want to search
5722 superblocks. */
b5ec771e 5723 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5724 }
22cee43f
PMR
5725 if (num_defns_collected (obstackp) > 0 || !full_search)
5726 return;
4eeaa230 5727 }
d2e4a39e 5728
339c13b6
JB
5729 /* No non-global symbols found. Check our cache to see if we have
5730 already performed this search before. If we have, then return
5731 the same result. */
5732
b5ec771e
PA
5733 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5734 domain, &sym, &block))
4c4b4cd2
PH
5735 {
5736 if (sym != NULL)
b5ec771e 5737 add_defn_to_vec (obstackp, sym, block);
22cee43f 5738 return;
4c4b4cd2 5739 }
14f9c5c9 5740
22cee43f
PMR
5741 if (made_global_lookup_p)
5742 *made_global_lookup_p = 1;
b1eedac9 5743
339c13b6
JB
5744 /* Search symbols from all global blocks. */
5745
b5ec771e 5746 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5747
4c4b4cd2 5748 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5749 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5750
22cee43f 5751 if (num_defns_collected (obstackp) == 0)
b5ec771e 5752 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5753}
5754
b5ec771e
PA
5755/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5756 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5757 matches.
54d343a2
TT
5758 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5759 found and the blocks and symbol tables (if any) in which they were
5760 found.
22cee43f
PMR
5761
5762 When full_search is non-zero, any non-function/non-enumeral
5763 symbol match within the nest of blocks whose innermost member is BLOCK,
5764 is the one match returned (no other matches in that or
5765 enclosing blocks is returned). If there are any matches in or
5766 surrounding BLOCK, then these alone are returned.
5767
5768 Names prefixed with "standard__" are handled specially: "standard__"
5769 is first stripped off, and only static and global symbols are searched. */
5770
5771static int
b5ec771e
PA
5772ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5773 const struct block *block,
22cee43f 5774 domain_enum domain,
54d343a2 5775 std::vector<struct block_symbol> *results,
22cee43f
PMR
5776 int full_search)
5777{
22cee43f
PMR
5778 int syms_from_global_search;
5779 int ndefns;
ec6a20c2 5780 auto_obstack obstack;
22cee43f 5781
ec6a20c2 5782 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5783 domain, full_search, &syms_from_global_search);
14f9c5c9 5784
ec6a20c2
JB
5785 ndefns = num_defns_collected (&obstack);
5786
54d343a2
TT
5787 struct block_symbol *base = defns_collected (&obstack, 1);
5788 for (int i = 0; i < ndefns; ++i)
5789 results->push_back (base[i]);
4c4b4cd2 5790
54d343a2 5791 ndefns = remove_extra_symbols (results);
4c4b4cd2 5792
b1eedac9 5793 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5794 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5795
b1eedac9 5796 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5797 cache_symbol (ada_lookup_name (lookup_name), domain,
5798 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5799
54d343a2 5800 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5801
14f9c5c9
AS
5802 return ndefns;
5803}
5804
b5ec771e 5805/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5806 in global scopes, returning the number of matches, and filling *RESULTS
5807 with (SYM,BLOCK) tuples.
ec6a20c2 5808
4eeaa230
DE
5809 See ada_lookup_symbol_list_worker for further details. */
5810
5811int
b5ec771e 5812ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5813 domain_enum domain,
5814 std::vector<struct block_symbol> *results)
4eeaa230 5815{
b5ec771e
PA
5816 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5817 lookup_name_info lookup_name (name, name_match_type);
5818
5819 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5820}
5821
5822/* Implementation of the la_iterate_over_symbols method. */
5823
5824static void
14bc53a8 5825ada_iterate_over_symbols
b5ec771e
PA
5826 (const struct block *block, const lookup_name_info &name,
5827 domain_enum domain,
14bc53a8 5828 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5829{
5830 int ndefs, i;
54d343a2 5831 std::vector<struct block_symbol> results;
4eeaa230
DE
5832
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5834
4eeaa230
DE
5835 for (i = 0; i < ndefs; ++i)
5836 {
7e41c8db 5837 if (!callback (&results[i]))
4eeaa230
DE
5838 break;
5839 }
5840}
5841
4e5c77fe
JB
5842/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5843 to 1, but choosing the first symbol found if there are multiple
5844 choices.
5845
5e2336be
JB
5846 The result is stored in *INFO, which must be non-NULL.
5847 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5848
5849void
5850ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5851 domain_enum domain,
d12307c1 5852 struct block_symbol *info)
14f9c5c9 5853{
b5ec771e
PA
5854 /* Since we already have an encoded name, wrap it in '<>' to force a
5855 verbatim match. Otherwise, if the name happens to not look like
5856 an encoded name (because it doesn't include a "__"),
5857 ada_lookup_name_info would re-encode/fold it again, and that
5858 would e.g., incorrectly lowercase object renaming names like
5859 "R28b" -> "r28b". */
5860 std::string verbatim = std::string ("<") + name + '>';
5861
5e2336be 5862 gdb_assert (info != NULL);
f98fc17b 5863 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5864}
aeb5907d
JB
5865
5866/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5867 scope and in global scopes, or NULL if none. NAME is folded and
5868 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5869 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5870 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5871
d12307c1 5872struct block_symbol
aeb5907d 5873ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5874 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5875{
5876 if (is_a_field_of_this != NULL)
5877 *is_a_field_of_this = 0;
5878
54d343a2 5879 std::vector<struct block_symbol> candidates;
f98fc17b 5880 int n_candidates;
f98fc17b
PA
5881
5882 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5883
5884 if (n_candidates == 0)
54d343a2 5885 return {};
f98fc17b
PA
5886
5887 block_symbol info = candidates[0];
5888 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5889 return info;
4c4b4cd2 5890}
14f9c5c9 5891
d12307c1 5892static struct block_symbol
f606139a
DE
5893ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5894 const char *name,
76a01679 5895 const struct block *block,
21b556f4 5896 const domain_enum domain)
4c4b4cd2 5897{
d12307c1 5898 struct block_symbol sym;
04dccad0
JB
5899
5900 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5901 if (sym.symbol != NULL)
04dccad0
JB
5902 return sym;
5903
5904 /* If we haven't found a match at this point, try the primitive
5905 types. In other languages, this search is performed before
5906 searching for global symbols in order to short-circuit that
5907 global-symbol search if it happens that the name corresponds
5908 to a primitive type. But we cannot do the same in Ada, because
5909 it is perfectly legitimate for a program to declare a type which
5910 has the same name as a standard type. If looking up a type in
5911 that situation, we have traditionally ignored the primitive type
5912 in favor of user-defined types. This is why, unlike most other
5913 languages, we search the primitive types this late and only after
5914 having searched the global symbols without success. */
5915
5916 if (domain == VAR_DOMAIN)
5917 {
5918 struct gdbarch *gdbarch;
5919
5920 if (block == NULL)
5921 gdbarch = target_gdbarch ();
5922 else
5923 gdbarch = block_gdbarch (block);
d12307c1
PMR
5924 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5925 if (sym.symbol != NULL)
04dccad0
JB
5926 return sym;
5927 }
5928
6640a367 5929 return {};
14f9c5c9
AS
5930}
5931
5932
4c4b4cd2
PH
5933/* True iff STR is a possible encoded suffix of a normal Ada name
5934 that is to be ignored for matching purposes. Suffixes of parallel
5935 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5936 are given by any of the regular expressions:
4c4b4cd2 5937
babe1480
JB
5938 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5939 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5940 TKB [subprogram suffix for task bodies]
babe1480 5941 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5942 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5943
5944 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5945 match is performed. This sequence is used to differentiate homonyms,
5946 is an optional part of a valid name suffix. */
4c4b4cd2 5947
14f9c5c9 5948static int
d2e4a39e 5949is_name_suffix (const char *str)
14f9c5c9
AS
5950{
5951 int k;
4c4b4cd2
PH
5952 const char *matching;
5953 const int len = strlen (str);
5954
babe1480
JB
5955 /* Skip optional leading __[0-9]+. */
5956
4c4b4cd2
PH
5957 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5958 {
babe1480
JB
5959 str += 3;
5960 while (isdigit (str[0]))
5961 str += 1;
4c4b4cd2 5962 }
babe1480
JB
5963
5964 /* [.$][0-9]+ */
4c4b4cd2 5965
babe1480 5966 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5967 {
babe1480 5968 matching = str + 1;
4c4b4cd2
PH
5969 while (isdigit (matching[0]))
5970 matching += 1;
5971 if (matching[0] == '\0')
5972 return 1;
5973 }
5974
5975 /* ___[0-9]+ */
babe1480 5976
4c4b4cd2
PH
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5978 {
5979 matching = str + 3;
5980 while (isdigit (matching[0]))
5981 matching += 1;
5982 if (matching[0] == '\0')
5983 return 1;
5984 }
5985
9ac7f98e
JB
5986 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5987
5988 if (strcmp (str, "TKB") == 0)
5989 return 1;
5990
529cad9c
PH
5991#if 0
5992 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5993 with a N at the end. Unfortunately, the compiler uses the same
5994 convention for other internal types it creates. So treating
529cad9c 5995 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5996 some regressions. For instance, consider the case of an enumerated
5997 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5998 name ends with N.
5999 Having a single character like this as a suffix carrying some
0963b4bd 6000 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6001 to be something like "_N" instead. In the meantime, do not do
6002 the following check. */
6003 /* Protected Object Subprograms */
6004 if (len == 1 && str [0] == 'N')
6005 return 1;
6006#endif
6007
6008 /* _E[0-9]+[bs]$ */
6009 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6010 {
6011 matching = str + 3;
6012 while (isdigit (matching[0]))
6013 matching += 1;
6014 if ((matching[0] == 'b' || matching[0] == 's')
6015 && matching [1] == '\0')
6016 return 1;
6017 }
6018
4c4b4cd2
PH
6019 /* ??? We should not modify STR directly, as we are doing below. This
6020 is fine in this case, but may become problematic later if we find
6021 that this alternative did not work, and want to try matching
6022 another one from the begining of STR. Since we modified it, we
6023 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6024 if (str[0] == 'X')
6025 {
6026 str += 1;
d2e4a39e 6027 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6028 {
6029 if (str[0] != 'n' && str[0] != 'b')
6030 return 0;
6031 str += 1;
6032 }
14f9c5c9 6033 }
babe1480 6034
14f9c5c9
AS
6035 if (str[0] == '\000')
6036 return 1;
babe1480 6037
d2e4a39e 6038 if (str[0] == '_')
14f9c5c9
AS
6039 {
6040 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6041 return 0;
d2e4a39e 6042 if (str[2] == '_')
4c4b4cd2 6043 {
61ee279c
PH
6044 if (strcmp (str + 3, "JM") == 0)
6045 return 1;
6046 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6047 the LJM suffix in favor of the JM one. But we will
6048 still accept LJM as a valid suffix for a reasonable
6049 amount of time, just to allow ourselves to debug programs
6050 compiled using an older version of GNAT. */
4c4b4cd2
PH
6051 if (strcmp (str + 3, "LJM") == 0)
6052 return 1;
6053 if (str[3] != 'X')
6054 return 0;
1265e4aa
JB
6055 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6056 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6057 return 1;
6058 if (str[4] == 'R' && str[5] != 'T')
6059 return 1;
6060 return 0;
6061 }
6062 if (!isdigit (str[2]))
6063 return 0;
6064 for (k = 3; str[k] != '\0'; k += 1)
6065 if (!isdigit (str[k]) && str[k] != '_')
6066 return 0;
14f9c5c9
AS
6067 return 1;
6068 }
4c4b4cd2 6069 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6070 {
4c4b4cd2
PH
6071 for (k = 2; str[k] != '\0'; k += 1)
6072 if (!isdigit (str[k]) && str[k] != '_')
6073 return 0;
14f9c5c9
AS
6074 return 1;
6075 }
6076 return 0;
6077}
d2e4a39e 6078
aeb5907d
JB
6079/* Return non-zero if the string starting at NAME and ending before
6080 NAME_END contains no capital letters. */
529cad9c
PH
6081
6082static int
6083is_valid_name_for_wild_match (const char *name0)
6084{
6085 const char *decoded_name = ada_decode (name0);
6086 int i;
6087
5823c3ef
JB
6088 /* If the decoded name starts with an angle bracket, it means that
6089 NAME0 does not follow the GNAT encoding format. It should then
6090 not be allowed as a possible wild match. */
6091 if (decoded_name[0] == '<')
6092 return 0;
6093
529cad9c
PH
6094 for (i=0; decoded_name[i] != '\0'; i++)
6095 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6096 return 0;
6097
6098 return 1;
6099}
6100
73589123
PH
6101/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6102 that could start a simple name. Assumes that *NAMEP points into
6103 the string beginning at NAME0. */
4c4b4cd2 6104
14f9c5c9 6105static int
73589123 6106advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6107{
73589123 6108 const char *name = *namep;
5b4ee69b 6109
5823c3ef 6110 while (1)
14f9c5c9 6111 {
aa27d0b3 6112 int t0, t1;
73589123
PH
6113
6114 t0 = *name;
6115 if (t0 == '_')
6116 {
6117 t1 = name[1];
6118 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6119 {
6120 name += 1;
61012eef 6121 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6122 break;
6123 else
6124 name += 1;
6125 }
aa27d0b3
JB
6126 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6127 || name[2] == target0))
73589123
PH
6128 {
6129 name += 2;
6130 break;
6131 }
6132 else
6133 return 0;
6134 }
6135 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6136 name += 1;
6137 else
5823c3ef 6138 return 0;
73589123
PH
6139 }
6140
6141 *namep = name;
6142 return 1;
6143}
6144
b5ec771e
PA
6145/* Return true iff NAME encodes a name of the form prefix.PATN.
6146 Ignores any informational suffixes of NAME (i.e., for which
6147 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6148 simple name. */
73589123 6149
b5ec771e 6150static bool
73589123
PH
6151wild_match (const char *name, const char *patn)
6152{
22e048c9 6153 const char *p;
73589123
PH
6154 const char *name0 = name;
6155
6156 while (1)
6157 {
6158 const char *match = name;
6159
6160 if (*name == *patn)
6161 {
6162 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6163 if (*p != *name)
6164 break;
6165 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6166 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6167
6168 if (name[-1] == '_')
6169 name -= 1;
6170 }
6171 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6172 return false;
96d887e8 6173 }
96d887e8
PH
6174}
6175
b5ec771e
PA
6176/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6177 any trailing suffixes that encode debugging information or leading
6178 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6179 information that is ignored). */
40658b94 6180
b5ec771e 6181static bool
c4d840bd
PH
6182full_match (const char *sym_name, const char *search_name)
6183{
b5ec771e
PA
6184 size_t search_name_len = strlen (search_name);
6185
6186 if (strncmp (sym_name, search_name, search_name_len) == 0
6187 && is_name_suffix (sym_name + search_name_len))
6188 return true;
6189
6190 if (startswith (sym_name, "_ada_")
6191 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6192 && is_name_suffix (sym_name + search_name_len + 5))
6193 return true;
c4d840bd 6194
b5ec771e
PA
6195 return false;
6196}
c4d840bd 6197
b5ec771e
PA
6198/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6199 *defn_symbols, updating the list of symbols in OBSTACKP (if
6200 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6201
6202static void
6203ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6204 const struct block *block,
6205 const lookup_name_info &lookup_name,
6206 domain_enum domain, struct objfile *objfile)
96d887e8 6207{
8157b174 6208 struct block_iterator iter;
96d887e8
PH
6209 /* A matching argument symbol, if any. */
6210 struct symbol *arg_sym;
6211 /* Set true when we find a matching non-argument symbol. */
6212 int found_sym;
6213 struct symbol *sym;
6214
6215 arg_sym = NULL;
6216 found_sym = 0;
b5ec771e
PA
6217 for (sym = block_iter_match_first (block, lookup_name, &iter);
6218 sym != NULL;
6219 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6220 {
b5ec771e
PA
6221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6222 SYMBOL_DOMAIN (sym), domain))
6223 {
6224 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6225 {
6226 if (SYMBOL_IS_ARGUMENT (sym))
6227 arg_sym = sym;
6228 else
6229 {
6230 found_sym = 1;
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (sym, objfile),
6233 block);
6234 }
6235 }
6236 }
96d887e8
PH
6237 }
6238
22cee43f
PMR
6239 /* Handle renamings. */
6240
b5ec771e 6241 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6242 found_sym = 1;
6243
96d887e8
PH
6244 if (!found_sym && arg_sym != NULL)
6245 {
76a01679
JB
6246 add_defn_to_vec (obstackp,
6247 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6248 block);
96d887e8
PH
6249 }
6250
b5ec771e 6251 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6252 {
6253 arg_sym = NULL;
6254 found_sym = 0;
b5ec771e
PA
6255 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6256 const char *name = ada_lookup_name.c_str ();
6257 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6258
6259 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6260 {
4186eb54
KS
6261 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6262 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6263 {
6264 int cmp;
6265
6266 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6267 if (cmp == 0)
6268 {
61012eef 6269 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6270 if (cmp == 0)
6271 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6272 name_len);
6273 }
6274
6275 if (cmp == 0
6276 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6277 {
2a2d4dc3
AS
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
76a01679
JB
6290 }
6291 }
76a01679 6292 }
96d887e8
PH
6293
6294 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6295 They aren't parameters, right? */
6296 if (!found_sym && arg_sym != NULL)
6297 {
6298 add_defn_to_vec (obstackp,
76a01679 6299 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6300 block);
96d887e8
PH
6301 }
6302 }
6303}
6304\f
41d27058
JB
6305
6306 /* Symbol Completion */
6307
b5ec771e 6308/* See symtab.h. */
41d27058 6309
b5ec771e
PA
6310bool
6311ada_lookup_name_info::matches
6312 (const char *sym_name,
6313 symbol_name_match_type match_type,
a207cff2 6314 completion_match_result *comp_match_res) const
41d27058 6315{
b5ec771e
PA
6316 bool match = false;
6317 const char *text = m_encoded_name.c_str ();
6318 size_t text_len = m_encoded_name.size ();
41d27058
JB
6319
6320 /* First, test against the fully qualified name of the symbol. */
6321
6322 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6323 match = true;
41d27058 6324
b5ec771e 6325 if (match && !m_encoded_p)
41d27058
JB
6326 {
6327 /* One needed check before declaring a positive match is to verify
6328 that iff we are doing a verbatim match, the decoded version
6329 of the symbol name starts with '<'. Otherwise, this symbol name
6330 is not a suitable completion. */
6331 const char *sym_name_copy = sym_name;
b5ec771e 6332 bool has_angle_bracket;
41d27058
JB
6333
6334 sym_name = ada_decode (sym_name);
6335 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6336 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6337 sym_name = sym_name_copy;
6338 }
6339
b5ec771e 6340 if (match && !m_verbatim_p)
41d27058
JB
6341 {
6342 /* When doing non-verbatim match, another check that needs to
6343 be done is to verify that the potentially matching symbol name
6344 does not include capital letters, because the ada-mode would
6345 not be able to understand these symbol names without the
6346 angle bracket notation. */
6347 const char *tmp;
6348
6349 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6350 if (*tmp != '\0')
b5ec771e 6351 match = false;
41d27058
JB
6352 }
6353
6354 /* Second: Try wild matching... */
6355
b5ec771e 6356 if (!match && m_wild_match_p)
41d27058
JB
6357 {
6358 /* Since we are doing wild matching, this means that TEXT
6359 may represent an unqualified symbol name. We therefore must
6360 also compare TEXT against the unqualified name of the symbol. */
6361 sym_name = ada_unqualified_name (ada_decode (sym_name));
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6364 match = true;
41d27058
JB
6365 }
6366
b5ec771e 6367 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6368
6369 if (!match)
b5ec771e 6370 return false;
41d27058 6371
a207cff2 6372 if (comp_match_res != NULL)
b5ec771e 6373 {
a207cff2 6374 std::string &match_str = comp_match_res->match.storage ();
41d27058 6375
b5ec771e 6376 if (!m_encoded_p)
a207cff2 6377 match_str = ada_decode (sym_name);
b5ec771e
PA
6378 else
6379 {
6380 if (m_verbatim_p)
6381 match_str = add_angle_brackets (sym_name);
6382 else
6383 match_str = sym_name;
41d27058 6384
b5ec771e 6385 }
a207cff2
PA
6386
6387 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6388 }
6389
b5ec771e 6390 return true;
41d27058
JB
6391}
6392
b5ec771e 6393/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6394 WORD is the entire command on which completion is made. */
41d27058 6395
eb3ff9a5
PA
6396static void
6397ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6398 complete_symbol_mode mode,
b5ec771e
PA
6399 symbol_name_match_type name_match_type,
6400 const char *text, const char *word,
eb3ff9a5 6401 enum type_code code)
41d27058 6402{
41d27058 6403 struct symbol *sym;
3977b71f 6404 const struct block *b, *surrounding_static_block = 0;
8157b174 6405 struct block_iterator iter;
41d27058 6406
2f68a895
TT
6407 gdb_assert (code == TYPE_CODE_UNDEF);
6408
1b026119 6409 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6410
6411 /* First, look at the partial symtab symbols. */
14bc53a8 6412 expand_symtabs_matching (NULL,
b5ec771e
PA
6413 lookup_name,
6414 NULL,
14bc53a8
PA
6415 NULL,
6416 ALL_DOMAIN);
41d27058
JB
6417
6418 /* At this point scan through the misc symbol vectors and add each
6419 symbol you find to the list. Eventually we want to ignore
6420 anything that isn't a text symbol (everything else will be
6421 handled by the psymtab code above). */
6422
2030c079 6423 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6424 {
7932255d 6425 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6426 {
6427 QUIT;
6428
6429 if (completion_skip_symbol (mode, msymbol))
6430 continue;
6431
6432 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6433
6434 /* Ada minimal symbols won't have their language set to Ada. If
6435 we let completion_list_add_name compare using the
6436 default/C-like matcher, then when completing e.g., symbols in a
6437 package named "pck", we'd match internal Ada symbols like
6438 "pckS", which are invalid in an Ada expression, unless you wrap
6439 them in '<' '>' to request a verbatim match.
6440
6441 Unfortunately, some Ada encoded names successfully demangle as
6442 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6443 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6444 with the wrong language set. Paper over that issue here. */
6445 if (symbol_language == language_auto
6446 || symbol_language == language_cplus)
6447 symbol_language = language_ada;
6448
6449 completion_list_add_name (tracker,
6450 symbol_language,
6451 MSYMBOL_LINKAGE_NAME (msymbol),
6452 lookup_name, text, word);
6453 }
6454 }
41d27058
JB
6455
6456 /* Search upwards from currently selected frame (so that we can
6457 complete on local vars. */
6458
6459 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6460 {
6461 if (!BLOCK_SUPERBLOCK (b))
6462 surrounding_static_block = b; /* For elmin of dups */
6463
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
f9d67a22
PA
6466 if (completion_skip_symbol (mode, sym))
6467 continue;
6468
b5ec771e
PA
6469 completion_list_add_name (tracker,
6470 SYMBOL_LANGUAGE (sym),
6471 SYMBOL_LINKAGE_NAME (sym),
1b026119 6472 lookup_name, text, word);
41d27058
JB
6473 }
6474 }
6475
6476 /* Go through the symtabs and check the externs and statics for
43f3e411 6477 symbols which match. */
41d27058 6478
2030c079 6479 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6480 {
b669c953 6481 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6482 {
6483 QUIT;
6484 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6485 ALL_BLOCK_SYMBOLS (b, iter, sym)
6486 {
6487 if (completion_skip_symbol (mode, sym))
6488 continue;
f9d67a22 6489
d8aeb77f
TT
6490 completion_list_add_name (tracker,
6491 SYMBOL_LANGUAGE (sym),
6492 SYMBOL_LINKAGE_NAME (sym),
6493 lookup_name, text, word);
6494 }
6495 }
41d27058 6496 }
41d27058 6497
2030c079 6498 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6499 {
b669c953 6500 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6501 {
6502 QUIT;
6503 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6504 /* Don't do this block twice. */
6505 if (b == surrounding_static_block)
6506 continue;
6507 ALL_BLOCK_SYMBOLS (b, iter, sym)
6508 {
6509 if (completion_skip_symbol (mode, sym))
6510 continue;
f9d67a22 6511
d8aeb77f
TT
6512 completion_list_add_name (tracker,
6513 SYMBOL_LANGUAGE (sym),
6514 SYMBOL_LINKAGE_NAME (sym),
6515 lookup_name, text, word);
6516 }
6517 }
41d27058 6518 }
41d27058
JB
6519}
6520
963a6417 6521 /* Field Access */
96d887e8 6522
73fb9985
JB
6523/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6524 for tagged types. */
6525
6526static int
6527ada_is_dispatch_table_ptr_type (struct type *type)
6528{
0d5cff50 6529 const char *name;
73fb9985
JB
6530
6531 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6532 return 0;
6533
6534 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6535 if (name == NULL)
6536 return 0;
6537
6538 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6539}
6540
ac4a2da4
JG
6541/* Return non-zero if TYPE is an interface tag. */
6542
6543static int
6544ada_is_interface_tag (struct type *type)
6545{
6546 const char *name = TYPE_NAME (type);
6547
6548 if (name == NULL)
6549 return 0;
6550
6551 return (strcmp (name, "ada__tags__interface_tag") == 0);
6552}
6553
963a6417
PH
6554/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6555 to be invisible to users. */
96d887e8 6556
963a6417
PH
6557int
6558ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6559{
963a6417
PH
6560 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6561 return 1;
ffde82bf 6562
73fb9985
JB
6563 /* Check the name of that field. */
6564 {
6565 const char *name = TYPE_FIELD_NAME (type, field_num);
6566
6567 /* Anonymous field names should not be printed.
6568 brobecker/2007-02-20: I don't think this can actually happen
6569 but we don't want to print the value of annonymous fields anyway. */
6570 if (name == NULL)
6571 return 1;
6572
ffde82bf
JB
6573 /* Normally, fields whose name start with an underscore ("_")
6574 are fields that have been internally generated by the compiler,
6575 and thus should not be printed. The "_parent" field is special,
6576 however: This is a field internally generated by the compiler
6577 for tagged types, and it contains the components inherited from
6578 the parent type. This field should not be printed as is, but
6579 should not be ignored either. */
61012eef 6580 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6581 return 1;
6582 }
6583
ac4a2da4
JG
6584 /* If this is the dispatch table of a tagged type or an interface tag,
6585 then ignore. */
73fb9985 6586 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6587 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6588 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6589 return 1;
6590
6591 /* Not a special field, so it should not be ignored. */
6592 return 0;
963a6417 6593}
96d887e8 6594
963a6417 6595/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6596 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6597
963a6417
PH
6598int
6599ada_is_tagged_type (struct type *type, int refok)
6600{
988f6b3d 6601 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6602}
96d887e8 6603
963a6417 6604/* True iff TYPE represents the type of X'Tag */
96d887e8 6605
963a6417
PH
6606int
6607ada_is_tag_type (struct type *type)
6608{
460efde1
JB
6609 type = ada_check_typedef (type);
6610
963a6417
PH
6611 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6612 return 0;
6613 else
96d887e8 6614 {
963a6417 6615 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6616
963a6417
PH
6617 return (name != NULL
6618 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6619 }
96d887e8
PH
6620}
6621
963a6417 6622/* The type of the tag on VAL. */
76a01679 6623
963a6417
PH
6624struct type *
6625ada_tag_type (struct value *val)
96d887e8 6626{
988f6b3d 6627 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6628}
96d887e8 6629
b50d69b5
JG
6630/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6631 retired at Ada 05). */
6632
6633static int
6634is_ada95_tag (struct value *tag)
6635{
6636 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6637}
6638
963a6417 6639/* The value of the tag on VAL. */
96d887e8 6640
963a6417
PH
6641struct value *
6642ada_value_tag (struct value *val)
6643{
03ee6b2e 6644 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6645}
6646
963a6417
PH
6647/* The value of the tag on the object of type TYPE whose contents are
6648 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6649 ADDRESS. */
96d887e8 6650
963a6417 6651static struct value *
10a2c479 6652value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6653 const gdb_byte *valaddr,
963a6417 6654 CORE_ADDR address)
96d887e8 6655{
b5385fc0 6656 int tag_byte_offset;
963a6417 6657 struct type *tag_type;
5b4ee69b 6658
963a6417 6659 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6660 NULL, NULL, NULL))
96d887e8 6661 {
fc1a4b47 6662 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6663 ? NULL
6664 : valaddr + tag_byte_offset);
963a6417 6665 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6666
963a6417 6667 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6668 }
963a6417
PH
6669 return NULL;
6670}
96d887e8 6671
963a6417
PH
6672static struct type *
6673type_from_tag (struct value *tag)
6674{
6675 const char *type_name = ada_tag_name (tag);
5b4ee69b 6676
963a6417
PH
6677 if (type_name != NULL)
6678 return ada_find_any_type (ada_encode (type_name));
6679 return NULL;
6680}
96d887e8 6681
b50d69b5
JG
6682/* Given a value OBJ of a tagged type, return a value of this
6683 type at the base address of the object. The base address, as
6684 defined in Ada.Tags, it is the address of the primary tag of
6685 the object, and therefore where the field values of its full
6686 view can be fetched. */
6687
6688struct value *
6689ada_tag_value_at_base_address (struct value *obj)
6690{
b50d69b5
JG
6691 struct value *val;
6692 LONGEST offset_to_top = 0;
6693 struct type *ptr_type, *obj_type;
6694 struct value *tag;
6695 CORE_ADDR base_address;
6696
6697 obj_type = value_type (obj);
6698
6699 /* It is the responsability of the caller to deref pointers. */
6700
6701 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6702 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6703 return obj;
6704
6705 tag = ada_value_tag (obj);
6706 if (!tag)
6707 return obj;
6708
6709 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6710
6711 if (is_ada95_tag (tag))
6712 return obj;
6713
08f49010
XR
6714 ptr_type = language_lookup_primitive_type
6715 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6716 ptr_type = lookup_pointer_type (ptr_type);
6717 val = value_cast (ptr_type, tag);
6718 if (!val)
6719 return obj;
6720
6721 /* It is perfectly possible that an exception be raised while
6722 trying to determine the base address, just like for the tag;
6723 see ada_tag_name for more details. We do not print the error
6724 message for the same reason. */
6725
a70b8144 6726 try
b50d69b5
JG
6727 {
6728 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6729 }
6730
a70b8144 6731 catch (const gdb_exception_RETURN_MASK_ERROR &e)
492d29ea
PA
6732 {
6733 return obj;
6734 }
b50d69b5
JG
6735
6736 /* If offset is null, nothing to do. */
6737
6738 if (offset_to_top == 0)
6739 return obj;
6740
6741 /* -1 is a special case in Ada.Tags; however, what should be done
6742 is not quite clear from the documentation. So do nothing for
6743 now. */
6744
6745 if (offset_to_top == -1)
6746 return obj;
6747
08f49010
XR
6748 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6749 from the base address. This was however incompatible with
6750 C++ dispatch table: C++ uses a *negative* value to *add*
6751 to the base address. Ada's convention has therefore been
6752 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6753 use the same convention. Here, we support both cases by
6754 checking the sign of OFFSET_TO_TOP. */
6755
6756 if (offset_to_top > 0)
6757 offset_to_top = -offset_to_top;
6758
6759 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6760 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6761
6762 /* Make sure that we have a proper tag at the new address.
6763 Otherwise, offset_to_top is bogus (which can happen when
6764 the object is not initialized yet). */
6765
6766 if (!tag)
6767 return obj;
6768
6769 obj_type = type_from_tag (tag);
6770
6771 if (!obj_type)
6772 return obj;
6773
6774 return value_from_contents_and_address (obj_type, NULL, base_address);
6775}
6776
1b611343
JB
6777/* Return the "ada__tags__type_specific_data" type. */
6778
6779static struct type *
6780ada_get_tsd_type (struct inferior *inf)
963a6417 6781{
1b611343 6782 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6783
1b611343
JB
6784 if (data->tsd_type == 0)
6785 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6786 return data->tsd_type;
6787}
529cad9c 6788
1b611343
JB
6789/* Return the TSD (type-specific data) associated to the given TAG.
6790 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6791
1b611343 6792 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6793
1b611343
JB
6794static struct value *
6795ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6796{
4c4b4cd2 6797 struct value *val;
1b611343 6798 struct type *type;
5b4ee69b 6799
1b611343
JB
6800 /* First option: The TSD is simply stored as a field of our TAG.
6801 Only older versions of GNAT would use this format, but we have
6802 to test it first, because there are no visible markers for
6803 the current approach except the absence of that field. */
529cad9c 6804
1b611343
JB
6805 val = ada_value_struct_elt (tag, "tsd", 1);
6806 if (val)
6807 return val;
e802dbe0 6808
1b611343
JB
6809 /* Try the second representation for the dispatch table (in which
6810 there is no explicit 'tsd' field in the referent of the tag pointer,
6811 and instead the tsd pointer is stored just before the dispatch
6812 table. */
e802dbe0 6813
1b611343
JB
6814 type = ada_get_tsd_type (current_inferior());
6815 if (type == NULL)
6816 return NULL;
6817 type = lookup_pointer_type (lookup_pointer_type (type));
6818 val = value_cast (type, tag);
6819 if (val == NULL)
6820 return NULL;
6821 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6822}
6823
1b611343
JB
6824/* Given the TSD of a tag (type-specific data), return a string
6825 containing the name of the associated type.
6826
6827 The returned value is good until the next call. May return NULL
6828 if we are unable to determine the tag name. */
6829
6830static char *
6831ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6832{
529cad9c
PH
6833 static char name[1024];
6834 char *p;
1b611343 6835 struct value *val;
529cad9c 6836
1b611343 6837 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6838 if (val == NULL)
1b611343 6839 return NULL;
4c4b4cd2
PH
6840 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6841 for (p = name; *p != '\0'; p += 1)
6842 if (isalpha (*p))
6843 *p = tolower (*p);
1b611343 6844 return name;
4c4b4cd2
PH
6845}
6846
6847/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6848 a C string.
6849
6850 Return NULL if the TAG is not an Ada tag, or if we were unable to
6851 determine the name of that tag. The result is good until the next
6852 call. */
4c4b4cd2
PH
6853
6854const char *
6855ada_tag_name (struct value *tag)
6856{
1b611343 6857 char *name = NULL;
5b4ee69b 6858
df407dfe 6859 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6860 return NULL;
1b611343
JB
6861
6862 /* It is perfectly possible that an exception be raised while trying
6863 to determine the TAG's name, even under normal circumstances:
6864 The associated variable may be uninitialized or corrupted, for
6865 instance. We do not let any exception propagate past this point.
6866 instead we return NULL.
6867
6868 We also do not print the error message either (which often is very
6869 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6870 the caller print a more meaningful message if necessary. */
a70b8144 6871 try
1b611343
JB
6872 {
6873 struct value *tsd = ada_get_tsd_from_tag (tag);
6874
6875 if (tsd != NULL)
6876 name = ada_tag_name_from_tsd (tsd);
6877 }
a70b8144 6878 catch (const gdb_exception_RETURN_MASK_ERROR &e)
492d29ea
PA
6879 {
6880 }
1b611343
JB
6881
6882 return name;
4c4b4cd2
PH
6883}
6884
6885/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6886
d2e4a39e 6887struct type *
ebf56fd3 6888ada_parent_type (struct type *type)
14f9c5c9
AS
6889{
6890 int i;
6891
61ee279c 6892 type = ada_check_typedef (type);
14f9c5c9
AS
6893
6894 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6895 return NULL;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6898 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6899 {
6900 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6901
6902 /* If the _parent field is a pointer, then dereference it. */
6903 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6904 parent_type = TYPE_TARGET_TYPE (parent_type);
6905 /* If there is a parallel XVS type, get the actual base type. */
6906 parent_type = ada_get_base_type (parent_type);
6907
6908 return ada_check_typedef (parent_type);
6909 }
14f9c5c9
AS
6910
6911 return NULL;
6912}
6913
4c4b4cd2
PH
6914/* True iff field number FIELD_NUM of structure type TYPE contains the
6915 parent-type (inherited) fields of a derived type. Assumes TYPE is
6916 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6917
6918int
ebf56fd3 6919ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6920{
61ee279c 6921 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6922
4c4b4cd2 6923 return (name != NULL
61012eef
GB
6924 && (startswith (name, "PARENT")
6925 || startswith (name, "_parent")));
14f9c5c9
AS
6926}
6927
4c4b4cd2 6928/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6929 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6930 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6931 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6932 structures. */
14f9c5c9
AS
6933
6934int
ebf56fd3 6935ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6936{
d2e4a39e 6937 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6938
dddc0e16
JB
6939 if (name != NULL && strcmp (name, "RETVAL") == 0)
6940 {
6941 /* This happens in functions with "out" or "in out" parameters
6942 which are passed by copy. For such functions, GNAT describes
6943 the function's return type as being a struct where the return
6944 value is in a field called RETVAL, and where the other "out"
6945 or "in out" parameters are fields of that struct. This is not
6946 a wrapper. */
6947 return 0;
6948 }
6949
d2e4a39e 6950 return (name != NULL
61012eef 6951 && (startswith (name, "PARENT")
4c4b4cd2 6952 || strcmp (name, "REP") == 0
61012eef 6953 || startswith (name, "_parent")
4c4b4cd2 6954 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6955}
6956
4c4b4cd2
PH
6957/* True iff field number FIELD_NUM of structure or union type TYPE
6958 is a variant wrapper. Assumes TYPE is a structure type with at least
6959 FIELD_NUM+1 fields. */
14f9c5c9
AS
6960
6961int
ebf56fd3 6962ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6963{
d2e4a39e 6964 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6965
14f9c5c9 6966 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6967 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6968 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6969 == TYPE_CODE_UNION)));
14f9c5c9
AS
6970}
6971
6972/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6973 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6974 returns the type of the controlling discriminant for the variant.
6975 May return NULL if the type could not be found. */
14f9c5c9 6976
d2e4a39e 6977struct type *
ebf56fd3 6978ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6979{
a121b7c1 6980 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6981
988f6b3d 6982 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6983}
6984
4c4b4cd2 6985/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6986 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6987 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6988
6989int
ebf56fd3 6990ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6991{
d2e4a39e 6992 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6993
14f9c5c9
AS
6994 return (name != NULL && name[0] == 'O');
6995}
6996
6997/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6998 returns the name of the discriminant controlling the variant.
6999 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7000
a121b7c1 7001const char *
ebf56fd3 7002ada_variant_discrim_name (struct type *type0)
14f9c5c9 7003{
d2e4a39e 7004 static char *result = NULL;
14f9c5c9 7005 static size_t result_len = 0;
d2e4a39e
AS
7006 struct type *type;
7007 const char *name;
7008 const char *discrim_end;
7009 const char *discrim_start;
14f9c5c9
AS
7010
7011 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7012 type = TYPE_TARGET_TYPE (type0);
7013 else
7014 type = type0;
7015
7016 name = ada_type_name (type);
7017
7018 if (name == NULL || name[0] == '\000')
7019 return "";
7020
7021 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7022 discrim_end -= 1)
7023 {
61012eef 7024 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7025 break;
14f9c5c9
AS
7026 }
7027 if (discrim_end == name)
7028 return "";
7029
d2e4a39e 7030 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7031 discrim_start -= 1)
7032 {
d2e4a39e 7033 if (discrim_start == name + 1)
4c4b4cd2 7034 return "";
76a01679 7035 if ((discrim_start > name + 3
61012eef 7036 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7037 || discrim_start[-1] == '.')
7038 break;
14f9c5c9
AS
7039 }
7040
7041 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7042 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7043 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7044 return result;
7045}
7046
4c4b4cd2
PH
7047/* Scan STR for a subtype-encoded number, beginning at position K.
7048 Put the position of the character just past the number scanned in
7049 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7050 Return 1 if there was a valid number at the given position, and 0
7051 otherwise. A "subtype-encoded" number consists of the absolute value
7052 in decimal, followed by the letter 'm' to indicate a negative number.
7053 Assumes 0m does not occur. */
14f9c5c9
AS
7054
7055int
d2e4a39e 7056ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7057{
7058 ULONGEST RU;
7059
d2e4a39e 7060 if (!isdigit (str[k]))
14f9c5c9
AS
7061 return 0;
7062
4c4b4cd2 7063 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7064 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7065 LONGEST. */
14f9c5c9
AS
7066 RU = 0;
7067 while (isdigit (str[k]))
7068 {
d2e4a39e 7069 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7070 k += 1;
7071 }
7072
d2e4a39e 7073 if (str[k] == 'm')
14f9c5c9
AS
7074 {
7075 if (R != NULL)
4c4b4cd2 7076 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7077 k += 1;
7078 }
7079 else if (R != NULL)
7080 *R = (LONGEST) RU;
7081
4c4b4cd2 7082 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7083 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7084 number representable as a LONGEST (although either would probably work
7085 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7086 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7087
7088 if (new_k != NULL)
7089 *new_k = k;
7090 return 1;
7091}
7092
4c4b4cd2
PH
7093/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7094 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7095 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7096
d2e4a39e 7097int
ebf56fd3 7098ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7099{
d2e4a39e 7100 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7101 int p;
7102
7103 p = 0;
7104 while (1)
7105 {
d2e4a39e 7106 switch (name[p])
4c4b4cd2
PH
7107 {
7108 case '\0':
7109 return 0;
7110 case 'S':
7111 {
7112 LONGEST W;
5b4ee69b 7113
4c4b4cd2
PH
7114 if (!ada_scan_number (name, p + 1, &W, &p))
7115 return 0;
7116 if (val == W)
7117 return 1;
7118 break;
7119 }
7120 case 'R':
7121 {
7122 LONGEST L, U;
5b4ee69b 7123
4c4b4cd2
PH
7124 if (!ada_scan_number (name, p + 1, &L, &p)
7125 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7126 return 0;
7127 if (val >= L && val <= U)
7128 return 1;
7129 break;
7130 }
7131 case 'O':
7132 return 1;
7133 default:
7134 return 0;
7135 }
7136 }
7137}
7138
0963b4bd 7139/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7140
7141/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7142 ARG_TYPE, extract and return the value of one of its (non-static)
7143 fields. FIELDNO says which field. Differs from value_primitive_field
7144 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7145
4c4b4cd2 7146static struct value *
d2e4a39e 7147ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7148 struct type *arg_type)
14f9c5c9 7149{
14f9c5c9
AS
7150 struct type *type;
7151
61ee279c 7152 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7153 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7154
4c4b4cd2 7155 /* Handle packed fields. */
14f9c5c9
AS
7156
7157 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7158 {
7159 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7160 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7161
0fd88904 7162 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7163 offset + bit_pos / 8,
7164 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7165 }
7166 else
7167 return value_primitive_field (arg1, offset, fieldno, arg_type);
7168}
7169
52ce6436
PH
7170/* Find field with name NAME in object of type TYPE. If found,
7171 set the following for each argument that is non-null:
7172 - *FIELD_TYPE_P to the field's type;
7173 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7174 an object of that type;
7175 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7176 - *BIT_SIZE_P to its size in bits if the field is packed, and
7177 0 otherwise;
7178 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7179 fields up to but not including the desired field, or by the total
7180 number of fields if not found. A NULL value of NAME never
7181 matches; the function just counts visible fields in this case.
7182
828d5846
XR
7183 Notice that we need to handle when a tagged record hierarchy
7184 has some components with the same name, like in this scenario:
7185
7186 type Top_T is tagged record
7187 N : Integer := 1;
7188 U : Integer := 974;
7189 A : Integer := 48;
7190 end record;
7191
7192 type Middle_T is new Top.Top_T with record
7193 N : Character := 'a';
7194 C : Integer := 3;
7195 end record;
7196
7197 type Bottom_T is new Middle.Middle_T with record
7198 N : Float := 4.0;
7199 C : Character := '5';
7200 X : Integer := 6;
7201 A : Character := 'J';
7202 end record;
7203
7204 Let's say we now have a variable declared and initialized as follow:
7205
7206 TC : Top_A := new Bottom_T;
7207
7208 And then we use this variable to call this function
7209
7210 procedure Assign (Obj: in out Top_T; TV : Integer);
7211
7212 as follow:
7213
7214 Assign (Top_T (B), 12);
7215
7216 Now, we're in the debugger, and we're inside that procedure
7217 then and we want to print the value of obj.c:
7218
7219 Usually, the tagged record or one of the parent type owns the
7220 component to print and there's no issue but in this particular
7221 case, what does it mean to ask for Obj.C? Since the actual
7222 type for object is type Bottom_T, it could mean two things: type
7223 component C from the Middle_T view, but also component C from
7224 Bottom_T. So in that "undefined" case, when the component is
7225 not found in the non-resolved type (which includes all the
7226 components of the parent type), then resolve it and see if we
7227 get better luck once expanded.
7228
7229 In the case of homonyms in the derived tagged type, we don't
7230 guaranty anything, and pick the one that's easiest for us
7231 to program.
7232
0963b4bd 7233 Returns 1 if found, 0 otherwise. */
52ce6436 7234
4c4b4cd2 7235static int
0d5cff50 7236find_struct_field (const char *name, struct type *type, int offset,
76a01679 7237 struct type **field_type_p,
52ce6436
PH
7238 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7239 int *index_p)
4c4b4cd2
PH
7240{
7241 int i;
828d5846 7242 int parent_offset = -1;
4c4b4cd2 7243
61ee279c 7244 type = ada_check_typedef (type);
76a01679 7245
52ce6436
PH
7246 if (field_type_p != NULL)
7247 *field_type_p = NULL;
7248 if (byte_offset_p != NULL)
d5d6fca5 7249 *byte_offset_p = 0;
52ce6436
PH
7250 if (bit_offset_p != NULL)
7251 *bit_offset_p = 0;
7252 if (bit_size_p != NULL)
7253 *bit_size_p = 0;
7254
7255 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7256 {
7257 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7258 int fld_offset = offset + bit_pos / 8;
0d5cff50 7259 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7260
4c4b4cd2
PH
7261 if (t_field_name == NULL)
7262 continue;
7263
828d5846
XR
7264 else if (ada_is_parent_field (type, i))
7265 {
7266 /* This is a field pointing us to the parent type of a tagged
7267 type. As hinted in this function's documentation, we give
7268 preference to fields in the current record first, so what
7269 we do here is just record the index of this field before
7270 we skip it. If it turns out we couldn't find our field
7271 in the current record, then we'll get back to it and search
7272 inside it whether the field might exist in the parent. */
7273
7274 parent_offset = i;
7275 continue;
7276 }
7277
52ce6436 7278 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7279 {
7280 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7281
52ce6436
PH
7282 if (field_type_p != NULL)
7283 *field_type_p = TYPE_FIELD_TYPE (type, i);
7284 if (byte_offset_p != NULL)
7285 *byte_offset_p = fld_offset;
7286 if (bit_offset_p != NULL)
7287 *bit_offset_p = bit_pos % 8;
7288 if (bit_size_p != NULL)
7289 *bit_size_p = bit_size;
76a01679
JB
7290 return 1;
7291 }
4c4b4cd2
PH
7292 else if (ada_is_wrapper_field (type, i))
7293 {
52ce6436
PH
7294 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7295 field_type_p, byte_offset_p, bit_offset_p,
7296 bit_size_p, index_p))
76a01679
JB
7297 return 1;
7298 }
4c4b4cd2
PH
7299 else if (ada_is_variant_part (type, i))
7300 {
52ce6436
PH
7301 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7302 fixed type?? */
4c4b4cd2 7303 int j;
52ce6436
PH
7304 struct type *field_type
7305 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7306
52ce6436 7307 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7308 {
76a01679
JB
7309 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7310 fld_offset
7311 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7312 field_type_p, byte_offset_p,
52ce6436 7313 bit_offset_p, bit_size_p, index_p))
76a01679 7314 return 1;
4c4b4cd2
PH
7315 }
7316 }
52ce6436
PH
7317 else if (index_p != NULL)
7318 *index_p += 1;
4c4b4cd2 7319 }
828d5846
XR
7320
7321 /* Field not found so far. If this is a tagged type which
7322 has a parent, try finding that field in the parent now. */
7323
7324 if (parent_offset != -1)
7325 {
7326 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7327 int fld_offset = offset + bit_pos / 8;
7328
7329 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7330 fld_offset, field_type_p, byte_offset_p,
7331 bit_offset_p, bit_size_p, index_p))
7332 return 1;
7333 }
7334
4c4b4cd2
PH
7335 return 0;
7336}
7337
0963b4bd 7338/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7339
52ce6436
PH
7340static int
7341num_visible_fields (struct type *type)
7342{
7343 int n;
5b4ee69b 7344
52ce6436
PH
7345 n = 0;
7346 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7347 return n;
7348}
14f9c5c9 7349
4c4b4cd2 7350/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7351 and search in it assuming it has (class) type TYPE.
7352 If found, return value, else return NULL.
7353
828d5846
XR
7354 Searches recursively through wrapper fields (e.g., '_parent').
7355
7356 In the case of homonyms in the tagged types, please refer to the
7357 long explanation in find_struct_field's function documentation. */
14f9c5c9 7358
4c4b4cd2 7359static struct value *
108d56a4 7360ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7361 struct type *type)
14f9c5c9
AS
7362{
7363 int i;
828d5846 7364 int parent_offset = -1;
14f9c5c9 7365
5b4ee69b 7366 type = ada_check_typedef (type);
52ce6436 7367 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7368 {
0d5cff50 7369 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7370
7371 if (t_field_name == NULL)
4c4b4cd2 7372 continue;
14f9c5c9 7373
828d5846
XR
7374 else if (ada_is_parent_field (type, i))
7375 {
7376 /* This is a field pointing us to the parent type of a tagged
7377 type. As hinted in this function's documentation, we give
7378 preference to fields in the current record first, so what
7379 we do here is just record the index of this field before
7380 we skip it. If it turns out we couldn't find our field
7381 in the current record, then we'll get back to it and search
7382 inside it whether the field might exist in the parent. */
7383
7384 parent_offset = i;
7385 continue;
7386 }
7387
14f9c5c9 7388 else if (field_name_match (t_field_name, name))
4c4b4cd2 7389 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7390
7391 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7392 {
0963b4bd 7393 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7394 ada_search_struct_field (name, arg,
7395 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7396 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7397
4c4b4cd2
PH
7398 if (v != NULL)
7399 return v;
7400 }
14f9c5c9
AS
7401
7402 else if (ada_is_variant_part (type, i))
4c4b4cd2 7403 {
0963b4bd 7404 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7405 int j;
5b4ee69b
MS
7406 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7407 i));
4c4b4cd2
PH
7408 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7409
52ce6436 7410 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7411 {
0963b4bd
MS
7412 struct value *v = ada_search_struct_field /* Force line
7413 break. */
06d5cf63
JB
7414 (name, arg,
7415 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7416 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7417
4c4b4cd2
PH
7418 if (v != NULL)
7419 return v;
7420 }
7421 }
14f9c5c9 7422 }
828d5846
XR
7423
7424 /* Field not found so far. If this is a tagged type which
7425 has a parent, try finding that field in the parent now. */
7426
7427 if (parent_offset != -1)
7428 {
7429 struct value *v = ada_search_struct_field (
7430 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7431 TYPE_FIELD_TYPE (type, parent_offset));
7432
7433 if (v != NULL)
7434 return v;
7435 }
7436
14f9c5c9
AS
7437 return NULL;
7438}
d2e4a39e 7439
52ce6436
PH
7440static struct value *ada_index_struct_field_1 (int *, struct value *,
7441 int, struct type *);
7442
7443
7444/* Return field #INDEX in ARG, where the index is that returned by
7445 * find_struct_field through its INDEX_P argument. Adjust the address
7446 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7447 * If found, return value, else return NULL. */
52ce6436
PH
7448
7449static struct value *
7450ada_index_struct_field (int index, struct value *arg, int offset,
7451 struct type *type)
7452{
7453 return ada_index_struct_field_1 (&index, arg, offset, type);
7454}
7455
7456
7457/* Auxiliary function for ada_index_struct_field. Like
7458 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7459 * *INDEX_P. */
52ce6436
PH
7460
7461static struct value *
7462ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7463 struct type *type)
7464{
7465 int i;
7466 type = ada_check_typedef (type);
7467
7468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7469 {
7470 if (TYPE_FIELD_NAME (type, i) == NULL)
7471 continue;
7472 else if (ada_is_wrapper_field (type, i))
7473 {
0963b4bd 7474 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7475 ada_index_struct_field_1 (index_p, arg,
7476 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7477 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7478
52ce6436
PH
7479 if (v != NULL)
7480 return v;
7481 }
7482
7483 else if (ada_is_variant_part (type, i))
7484 {
7485 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7486 find_struct_field. */
52ce6436
PH
7487 error (_("Cannot assign this kind of variant record"));
7488 }
7489 else if (*index_p == 0)
7490 return ada_value_primitive_field (arg, offset, i, type);
7491 else
7492 *index_p -= 1;
7493 }
7494 return NULL;
7495}
7496
4c4b4cd2
PH
7497/* Given ARG, a value of type (pointer or reference to a)*
7498 structure/union, extract the component named NAME from the ultimate
7499 target structure/union and return it as a value with its
f5938064 7500 appropriate type.
14f9c5c9 7501
4c4b4cd2
PH
7502 The routine searches for NAME among all members of the structure itself
7503 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7504 (e.g., '_parent').
7505
03ee6b2e
PH
7506 If NO_ERR, then simply return NULL in case of error, rather than
7507 calling error. */
14f9c5c9 7508
d2e4a39e 7509struct value *
a121b7c1 7510ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7511{
4c4b4cd2 7512 struct type *t, *t1;
d2e4a39e 7513 struct value *v;
1f5d1570 7514 int check_tag;
14f9c5c9 7515
4c4b4cd2 7516 v = NULL;
df407dfe 7517 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7518 if (TYPE_CODE (t) == TYPE_CODE_REF)
7519 {
7520 t1 = TYPE_TARGET_TYPE (t);
7521 if (t1 == NULL)
03ee6b2e 7522 goto BadValue;
61ee279c 7523 t1 = ada_check_typedef (t1);
4c4b4cd2 7524 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7525 {
994b9211 7526 arg = coerce_ref (arg);
76a01679
JB
7527 t = t1;
7528 }
4c4b4cd2 7529 }
14f9c5c9 7530
4c4b4cd2
PH
7531 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7532 {
7533 t1 = TYPE_TARGET_TYPE (t);
7534 if (t1 == NULL)
03ee6b2e 7535 goto BadValue;
61ee279c 7536 t1 = ada_check_typedef (t1);
4c4b4cd2 7537 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7538 {
7539 arg = value_ind (arg);
7540 t = t1;
7541 }
4c4b4cd2 7542 else
76a01679 7543 break;
4c4b4cd2 7544 }
14f9c5c9 7545
4c4b4cd2 7546 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7547 goto BadValue;
14f9c5c9 7548
4c4b4cd2
PH
7549 if (t1 == t)
7550 v = ada_search_struct_field (name, arg, 0, t);
7551 else
7552 {
7553 int bit_offset, bit_size, byte_offset;
7554 struct type *field_type;
7555 CORE_ADDR address;
7556
76a01679 7557 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7558 address = value_address (ada_value_ind (arg));
4c4b4cd2 7559 else
b50d69b5 7560 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7561
828d5846
XR
7562 /* Check to see if this is a tagged type. We also need to handle
7563 the case where the type is a reference to a tagged type, but
7564 we have to be careful to exclude pointers to tagged types.
7565 The latter should be shown as usual (as a pointer), whereas
7566 a reference should mostly be transparent to the user. */
7567
7568 if (ada_is_tagged_type (t1, 0)
7569 || (TYPE_CODE (t1) == TYPE_CODE_REF
7570 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7571 {
7572 /* We first try to find the searched field in the current type.
7573 If not found then let's look in the fixed type. */
7574
7575 if (!find_struct_field (name, t1, 0,
7576 &field_type, &byte_offset, &bit_offset,
7577 &bit_size, NULL))
1f5d1570
JG
7578 check_tag = 1;
7579 else
7580 check_tag = 0;
828d5846
XR
7581 }
7582 else
1f5d1570
JG
7583 check_tag = 0;
7584
7585 /* Convert to fixed type in all cases, so that we have proper
7586 offsets to each field in unconstrained record types. */
7587 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7588 address, NULL, check_tag);
828d5846 7589
76a01679
JB
7590 if (find_struct_field (name, t1, 0,
7591 &field_type, &byte_offset, &bit_offset,
52ce6436 7592 &bit_size, NULL))
76a01679
JB
7593 {
7594 if (bit_size != 0)
7595 {
714e53ab
PH
7596 if (TYPE_CODE (t) == TYPE_CODE_REF)
7597 arg = ada_coerce_ref (arg);
7598 else
7599 arg = ada_value_ind (arg);
76a01679
JB
7600 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7601 bit_offset, bit_size,
7602 field_type);
7603 }
7604 else
f5938064 7605 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7606 }
7607 }
7608
03ee6b2e
PH
7609 if (v != NULL || no_err)
7610 return v;
7611 else
323e0a4a 7612 error (_("There is no member named %s."), name);
14f9c5c9 7613
03ee6b2e
PH
7614 BadValue:
7615 if (no_err)
7616 return NULL;
7617 else
0963b4bd
MS
7618 error (_("Attempt to extract a component of "
7619 "a value that is not a record."));
14f9c5c9
AS
7620}
7621
3b4de39c 7622/* Return a string representation of type TYPE. */
99bbb428 7623
3b4de39c 7624static std::string
99bbb428
PA
7625type_as_string (struct type *type)
7626{
d7e74731 7627 string_file tmp_stream;
99bbb428 7628
d7e74731 7629 type_print (type, "", &tmp_stream, -1);
99bbb428 7630
d7e74731 7631 return std::move (tmp_stream.string ());
99bbb428
PA
7632}
7633
14f9c5c9 7634/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7635 If DISPP is non-null, add its byte displacement from the beginning of a
7636 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7637 work for packed fields).
7638
7639 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7640 followed by "___".
14f9c5c9 7641
0963b4bd 7642 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7643 be a (pointer or reference)+ to a struct or union, and the
7644 ultimate target type will be searched.
14f9c5c9
AS
7645
7646 Looks recursively into variant clauses and parent types.
7647
828d5846
XR
7648 In the case of homonyms in the tagged types, please refer to the
7649 long explanation in find_struct_field's function documentation.
7650
4c4b4cd2
PH
7651 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7652 TYPE is not a type of the right kind. */
14f9c5c9 7653
4c4b4cd2 7654static struct type *
a121b7c1 7655ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7656 int noerr)
14f9c5c9
AS
7657{
7658 int i;
828d5846 7659 int parent_offset = -1;
14f9c5c9
AS
7660
7661 if (name == NULL)
7662 goto BadName;
7663
76a01679 7664 if (refok && type != NULL)
4c4b4cd2
PH
7665 while (1)
7666 {
61ee279c 7667 type = ada_check_typedef (type);
76a01679
JB
7668 if (TYPE_CODE (type) != TYPE_CODE_PTR
7669 && TYPE_CODE (type) != TYPE_CODE_REF)
7670 break;
7671 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7672 }
14f9c5c9 7673
76a01679 7674 if (type == NULL
1265e4aa
JB
7675 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7676 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7677 {
4c4b4cd2 7678 if (noerr)
76a01679 7679 return NULL;
99bbb428 7680
3b4de39c
PA
7681 error (_("Type %s is not a structure or union type"),
7682 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7683 }
7684
7685 type = to_static_fixed_type (type);
7686
7687 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7688 {
0d5cff50 7689 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7690 struct type *t;
d2e4a39e 7691
14f9c5c9 7692 if (t_field_name == NULL)
4c4b4cd2 7693 continue;
14f9c5c9 7694
828d5846
XR
7695 else if (ada_is_parent_field (type, i))
7696 {
7697 /* This is a field pointing us to the parent type of a tagged
7698 type. As hinted in this function's documentation, we give
7699 preference to fields in the current record first, so what
7700 we do here is just record the index of this field before
7701 we skip it. If it turns out we couldn't find our field
7702 in the current record, then we'll get back to it and search
7703 inside it whether the field might exist in the parent. */
7704
7705 parent_offset = i;
7706 continue;
7707 }
7708
14f9c5c9 7709 else if (field_name_match (t_field_name, name))
988f6b3d 7710 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7711
7712 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7713 {
4c4b4cd2 7714 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7715 0, 1);
4c4b4cd2 7716 if (t != NULL)
988f6b3d 7717 return t;
4c4b4cd2 7718 }
14f9c5c9
AS
7719
7720 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7721 {
7722 int j;
5b4ee69b
MS
7723 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7724 i));
4c4b4cd2
PH
7725
7726 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7727 {
b1f33ddd
JB
7728 /* FIXME pnh 2008/01/26: We check for a field that is
7729 NOT wrapped in a struct, since the compiler sometimes
7730 generates these for unchecked variant types. Revisit
0963b4bd 7731 if the compiler changes this practice. */
0d5cff50 7732 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7733
b1f33ddd
JB
7734 if (v_field_name != NULL
7735 && field_name_match (v_field_name, name))
460efde1 7736 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7737 else
0963b4bd
MS
7738 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7739 j),
988f6b3d 7740 name, 0, 1);
b1f33ddd 7741
4c4b4cd2 7742 if (t != NULL)
988f6b3d 7743 return t;
4c4b4cd2
PH
7744 }
7745 }
14f9c5c9
AS
7746
7747 }
7748
828d5846
XR
7749 /* Field not found so far. If this is a tagged type which
7750 has a parent, try finding that field in the parent now. */
7751
7752 if (parent_offset != -1)
7753 {
7754 struct type *t;
7755
7756 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7757 name, 0, 1);
7758 if (t != NULL)
7759 return t;
7760 }
7761
14f9c5c9 7762BadName:
d2e4a39e 7763 if (!noerr)
14f9c5c9 7764 {
2b2798cc 7765 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7766
7767 error (_("Type %s has no component named %s"),
3b4de39c 7768 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7769 }
7770
7771 return NULL;
7772}
7773
b1f33ddd
JB
7774/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7776 represents an unchecked union (that is, the variant part of a
0963b4bd 7777 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7778
7779static int
7780is_unchecked_variant (struct type *var_type, struct type *outer_type)
7781{
a121b7c1 7782 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7783
988f6b3d 7784 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7785}
7786
7787
14f9c5c9
AS
7788/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7789 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7790 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7791 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7792
d2e4a39e 7793int
ebf56fd3 7794ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7795 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7796{
7797 int others_clause;
7798 int i;
a121b7c1 7799 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7800 struct value *outer;
7801 struct value *discrim;
14f9c5c9
AS
7802 LONGEST discrim_val;
7803
012370f6
TT
7804 /* Using plain value_from_contents_and_address here causes problems
7805 because we will end up trying to resolve a type that is currently
7806 being constructed. */
7807 outer = value_from_contents_and_address_unresolved (outer_type,
7808 outer_valaddr, 0);
0c281816
JB
7809 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7810 if (discrim == NULL)
14f9c5c9 7811 return -1;
0c281816 7812 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7813
7814 others_clause = -1;
7815 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7816 {
7817 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7818 others_clause = i;
14f9c5c9 7819 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7820 return i;
14f9c5c9
AS
7821 }
7822
7823 return others_clause;
7824}
d2e4a39e 7825\f
14f9c5c9
AS
7826
7827
4c4b4cd2 7828 /* Dynamic-Sized Records */
14f9c5c9
AS
7829
7830/* Strategy: The type ostensibly attached to a value with dynamic size
7831 (i.e., a size that is not statically recorded in the debugging
7832 data) does not accurately reflect the size or layout of the value.
7833 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7834 conventional types that are constructed on the fly. */
14f9c5c9
AS
7835
7836/* There is a subtle and tricky problem here. In general, we cannot
7837 determine the size of dynamic records without its data. However,
7838 the 'struct value' data structure, which GDB uses to represent
7839 quantities in the inferior process (the target), requires the size
7840 of the type at the time of its allocation in order to reserve space
7841 for GDB's internal copy of the data. That's why the
7842 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7843 rather than struct value*s.
14f9c5c9
AS
7844
7845 However, GDB's internal history variables ($1, $2, etc.) are
7846 struct value*s containing internal copies of the data that are not, in
7847 general, the same as the data at their corresponding addresses in
7848 the target. Fortunately, the types we give to these values are all
7849 conventional, fixed-size types (as per the strategy described
7850 above), so that we don't usually have to perform the
7851 'to_fixed_xxx_type' conversions to look at their values.
7852 Unfortunately, there is one exception: if one of the internal
7853 history variables is an array whose elements are unconstrained
7854 records, then we will need to create distinct fixed types for each
7855 element selected. */
7856
7857/* The upshot of all of this is that many routines take a (type, host
7858 address, target address) triple as arguments to represent a value.
7859 The host address, if non-null, is supposed to contain an internal
7860 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7861 target at the target address. */
14f9c5c9
AS
7862
7863/* Assuming that VAL0 represents a pointer value, the result of
7864 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7865 dynamic-sized types. */
14f9c5c9 7866
d2e4a39e
AS
7867struct value *
7868ada_value_ind (struct value *val0)
14f9c5c9 7869{
c48db5ca 7870 struct value *val = value_ind (val0);
5b4ee69b 7871
b50d69b5
JG
7872 if (ada_is_tagged_type (value_type (val), 0))
7873 val = ada_tag_value_at_base_address (val);
7874
4c4b4cd2 7875 return ada_to_fixed_value (val);
14f9c5c9
AS
7876}
7877
7878/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7879 qualifiers on VAL0. */
7880
d2e4a39e
AS
7881static struct value *
7882ada_coerce_ref (struct value *val0)
7883{
df407dfe 7884 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7885 {
7886 struct value *val = val0;
5b4ee69b 7887
994b9211 7888 val = coerce_ref (val);
b50d69b5
JG
7889
7890 if (ada_is_tagged_type (value_type (val), 0))
7891 val = ada_tag_value_at_base_address (val);
7892
4c4b4cd2 7893 return ada_to_fixed_value (val);
d2e4a39e
AS
7894 }
7895 else
14f9c5c9
AS
7896 return val0;
7897}
7898
7899/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7900 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7901
7902static unsigned int
ebf56fd3 7903align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7904{
7905 return (off + alignment - 1) & ~(alignment - 1);
7906}
7907
4c4b4cd2 7908/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7909
7910static unsigned int
ebf56fd3 7911field_alignment (struct type *type, int f)
14f9c5c9 7912{
d2e4a39e 7913 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7914 int len;
14f9c5c9
AS
7915 int align_offset;
7916
64a1bf19
JB
7917 /* The field name should never be null, unless the debugging information
7918 is somehow malformed. In this case, we assume the field does not
7919 require any alignment. */
7920 if (name == NULL)
7921 return 1;
7922
7923 len = strlen (name);
7924
4c4b4cd2
PH
7925 if (!isdigit (name[len - 1]))
7926 return 1;
14f9c5c9 7927
d2e4a39e 7928 if (isdigit (name[len - 2]))
14f9c5c9
AS
7929 align_offset = len - 2;
7930 else
7931 align_offset = len - 1;
7932
61012eef 7933 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7934 return TARGET_CHAR_BIT;
7935
4c4b4cd2
PH
7936 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7937}
7938
852dff6c 7939/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7940
852dff6c
JB
7941static struct symbol *
7942ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7943{
7944 struct symbol *sym;
7945
7946 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7947 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7948 return sym;
7949
4186eb54
KS
7950 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7951 return sym;
14f9c5c9
AS
7952}
7953
dddfab26
UW
7954/* Find a type named NAME. Ignores ambiguity. This routine will look
7955 solely for types defined by debug info, it will not search the GDB
7956 primitive types. */
4c4b4cd2 7957
852dff6c 7958static struct type *
ebf56fd3 7959ada_find_any_type (const char *name)
14f9c5c9 7960{
852dff6c 7961 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7962
14f9c5c9 7963 if (sym != NULL)
dddfab26 7964 return SYMBOL_TYPE (sym);
14f9c5c9 7965
dddfab26 7966 return NULL;
14f9c5c9
AS
7967}
7968
739593e0
JB
7969/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7970 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7971 symbol, in which case it is returned. Otherwise, this looks for
7972 symbols whose name is that of NAME_SYM suffixed with "___XR".
7973 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7974
7975struct symbol *
270140bd 7976ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7977{
739593e0 7978 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7979 struct symbol *sym;
7980
739593e0
JB
7981 if (strstr (name, "___XR") != NULL)
7982 return name_sym;
7983
aeb5907d
JB
7984 sym = find_old_style_renaming_symbol (name, block);
7985
7986 if (sym != NULL)
7987 return sym;
7988
0963b4bd 7989 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7990 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7991 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7992 return sym;
7993 else
7994 return NULL;
7995}
7996
7997static struct symbol *
270140bd 7998find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7999{
7f0df278 8000 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8001 char *rename;
8002
8003 if (function_sym != NULL)
8004 {
8005 /* If the symbol is defined inside a function, NAME is not fully
8006 qualified. This means we need to prepend the function name
8007 as well as adding the ``___XR'' suffix to build the name of
8008 the associated renaming symbol. */
0d5cff50 8009 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8010 /* Function names sometimes contain suffixes used
8011 for instance to qualify nested subprograms. When building
8012 the XR type name, we need to make sure that this suffix is
8013 not included. So do not include any suffix in the function
8014 name length below. */
69fadcdf 8015 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8016 const int rename_len = function_name_len + 2 /* "__" */
8017 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8018
529cad9c 8019 /* Strip the suffix if necessary. */
69fadcdf
JB
8020 ada_remove_trailing_digits (function_name, &function_name_len);
8021 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8022 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8023
4c4b4cd2
PH
8024 /* Library-level functions are a special case, as GNAT adds
8025 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8026 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8027 have this prefix, so we need to skip this prefix if present. */
8028 if (function_name_len > 5 /* "_ada_" */
8029 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8030 {
8031 function_name += 5;
8032 function_name_len -= 5;
8033 }
4c4b4cd2
PH
8034
8035 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8036 strncpy (rename, function_name, function_name_len);
8037 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8038 "__%s___XR", name);
4c4b4cd2
PH
8039 }
8040 else
8041 {
8042 const int rename_len = strlen (name) + 6;
5b4ee69b 8043
4c4b4cd2 8044 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8045 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8046 }
8047
852dff6c 8048 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8049}
8050
14f9c5c9 8051/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8052 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8053 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8054 otherwise return 0. */
8055
14f9c5c9 8056int
d2e4a39e 8057ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8058{
8059 if (type1 == NULL)
8060 return 1;
8061 else if (type0 == NULL)
8062 return 0;
8063 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8064 return 1;
8065 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8066 return 0;
4c4b4cd2
PH
8067 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8068 return 1;
ad82864c 8069 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8070 return 1;
4c4b4cd2
PH
8071 else if (ada_is_array_descriptor_type (type0)
8072 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8073 return 1;
aeb5907d
JB
8074 else
8075 {
a737d952
TT
8076 const char *type0_name = TYPE_NAME (type0);
8077 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8078
8079 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8080 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8081 return 1;
8082 }
14f9c5c9
AS
8083 return 0;
8084}
8085
e86ca25f
TT
8086/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8087 null. */
4c4b4cd2 8088
0d5cff50 8089const char *
d2e4a39e 8090ada_type_name (struct type *type)
14f9c5c9 8091{
d2e4a39e 8092 if (type == NULL)
14f9c5c9 8093 return NULL;
e86ca25f 8094 return TYPE_NAME (type);
14f9c5c9
AS
8095}
8096
b4ba55a1
JB
8097/* Search the list of "descriptive" types associated to TYPE for a type
8098 whose name is NAME. */
8099
8100static struct type *
8101find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8102{
931e5bc3 8103 struct type *result, *tmp;
b4ba55a1 8104
c6044dd1
JB
8105 if (ada_ignore_descriptive_types_p)
8106 return NULL;
8107
b4ba55a1
JB
8108 /* If there no descriptive-type info, then there is no parallel type
8109 to be found. */
8110 if (!HAVE_GNAT_AUX_INFO (type))
8111 return NULL;
8112
8113 result = TYPE_DESCRIPTIVE_TYPE (type);
8114 while (result != NULL)
8115 {
0d5cff50 8116 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8117
8118 if (result_name == NULL)
8119 {
8120 warning (_("unexpected null name on descriptive type"));
8121 return NULL;
8122 }
8123
8124 /* If the names match, stop. */
8125 if (strcmp (result_name, name) == 0)
8126 break;
8127
8128 /* Otherwise, look at the next item on the list, if any. */
8129 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8130 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8131 else
8132 tmp = NULL;
8133
8134 /* If not found either, try after having resolved the typedef. */
8135 if (tmp != NULL)
8136 result = tmp;
b4ba55a1 8137 else
931e5bc3 8138 {
f168693b 8139 result = check_typedef (result);
931e5bc3
JG
8140 if (HAVE_GNAT_AUX_INFO (result))
8141 result = TYPE_DESCRIPTIVE_TYPE (result);
8142 else
8143 result = NULL;
8144 }
b4ba55a1
JB
8145 }
8146
8147 /* If we didn't find a match, see whether this is a packed array. With
8148 older compilers, the descriptive type information is either absent or
8149 irrelevant when it comes to packed arrays so the above lookup fails.
8150 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8151 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8152 return ada_find_any_type (name);
8153
8154 return result;
8155}
8156
8157/* Find a parallel type to TYPE with the specified NAME, using the
8158 descriptive type taken from the debugging information, if available,
8159 and otherwise using the (slower) name-based method. */
8160
8161static struct type *
8162ada_find_parallel_type_with_name (struct type *type, const char *name)
8163{
8164 struct type *result = NULL;
8165
8166 if (HAVE_GNAT_AUX_INFO (type))
8167 result = find_parallel_type_by_descriptive_type (type, name);
8168 else
8169 result = ada_find_any_type (name);
8170
8171 return result;
8172}
8173
8174/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8175 SUFFIX to the name of TYPE. */
14f9c5c9 8176
d2e4a39e 8177struct type *
ebf56fd3 8178ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8179{
0d5cff50 8180 char *name;
fe978cb0 8181 const char *type_name = ada_type_name (type);
14f9c5c9 8182 int len;
d2e4a39e 8183
fe978cb0 8184 if (type_name == NULL)
14f9c5c9
AS
8185 return NULL;
8186
fe978cb0 8187 len = strlen (type_name);
14f9c5c9 8188
b4ba55a1 8189 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8190
fe978cb0 8191 strcpy (name, type_name);
14f9c5c9
AS
8192 strcpy (name + len, suffix);
8193
b4ba55a1 8194 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8195}
8196
14f9c5c9 8197/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8198 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8199
d2e4a39e
AS
8200static struct type *
8201dynamic_template_type (struct type *type)
14f9c5c9 8202{
61ee279c 8203 type = ada_check_typedef (type);
14f9c5c9
AS
8204
8205 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8206 || ada_type_name (type) == NULL)
14f9c5c9 8207 return NULL;
d2e4a39e 8208 else
14f9c5c9
AS
8209 {
8210 int len = strlen (ada_type_name (type));
5b4ee69b 8211
4c4b4cd2
PH
8212 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8213 return type;
14f9c5c9 8214 else
4c4b4cd2 8215 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8216 }
8217}
8218
8219/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8220 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8221
d2e4a39e
AS
8222static int
8223is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8224{
8225 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8226
d2e4a39e 8227 return name != NULL
14f9c5c9
AS
8228 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8229 && strstr (name, "___XVL") != NULL;
8230}
8231
4c4b4cd2
PH
8232/* The index of the variant field of TYPE, or -1 if TYPE does not
8233 represent a variant record type. */
14f9c5c9 8234
d2e4a39e 8235static int
4c4b4cd2 8236variant_field_index (struct type *type)
14f9c5c9
AS
8237{
8238 int f;
8239
4c4b4cd2
PH
8240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8241 return -1;
8242
8243 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8244 {
8245 if (ada_is_variant_part (type, f))
8246 return f;
8247 }
8248 return -1;
14f9c5c9
AS
8249}
8250
4c4b4cd2
PH
8251/* A record type with no fields. */
8252
d2e4a39e 8253static struct type *
fe978cb0 8254empty_record (struct type *templ)
14f9c5c9 8255{
fe978cb0 8256 struct type *type = alloc_type_copy (templ);
5b4ee69b 8257
14f9c5c9
AS
8258 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8259 TYPE_NFIELDS (type) = 0;
8260 TYPE_FIELDS (type) = NULL;
b1f33ddd 8261 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8262 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8263 TYPE_LENGTH (type) = 0;
8264 return type;
8265}
8266
8267/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8268 the value of type TYPE at VALADDR or ADDRESS (see comments at
8269 the beginning of this section) VAL according to GNAT conventions.
8270 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8271 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8272 an outer-level type (i.e., as opposed to a branch of a variant.) A
8273 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8274 of the variant.
14f9c5c9 8275
4c4b4cd2
PH
8276 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8277 length are not statically known are discarded. As a consequence,
8278 VALADDR, ADDRESS and DVAL0 are ignored.
8279
8280 NOTE: Limitations: For now, we assume that dynamic fields and
8281 variants occupy whole numbers of bytes. However, they need not be
8282 byte-aligned. */
8283
8284struct type *
10a2c479 8285ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8286 const gdb_byte *valaddr,
4c4b4cd2
PH
8287 CORE_ADDR address, struct value *dval0,
8288 int keep_dynamic_fields)
14f9c5c9 8289{
d2e4a39e
AS
8290 struct value *mark = value_mark ();
8291 struct value *dval;
8292 struct type *rtype;
14f9c5c9 8293 int nfields, bit_len;
4c4b4cd2 8294 int variant_field;
14f9c5c9 8295 long off;
d94e4f4f 8296 int fld_bit_len;
14f9c5c9
AS
8297 int f;
8298
4c4b4cd2
PH
8299 /* Compute the number of fields in this record type that are going
8300 to be processed: unless keep_dynamic_fields, this includes only
8301 fields whose position and length are static will be processed. */
8302 if (keep_dynamic_fields)
8303 nfields = TYPE_NFIELDS (type);
8304 else
8305 {
8306 nfields = 0;
76a01679 8307 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8308 && !ada_is_variant_part (type, nfields)
8309 && !is_dynamic_field (type, nfields))
8310 nfields++;
8311 }
8312
e9bb382b 8313 rtype = alloc_type_copy (type);
14f9c5c9
AS
8314 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8315 INIT_CPLUS_SPECIFIC (rtype);
8316 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8317 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8318 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8319 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8320 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8321 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8322
d2e4a39e
AS
8323 off = 0;
8324 bit_len = 0;
4c4b4cd2
PH
8325 variant_field = -1;
8326
14f9c5c9
AS
8327 for (f = 0; f < nfields; f += 1)
8328 {
6c038f32
PH
8329 off = align_value (off, field_alignment (type, f))
8330 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8331 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8332 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8333
d2e4a39e 8334 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8335 {
8336 variant_field = f;
d94e4f4f 8337 fld_bit_len = 0;
4c4b4cd2 8338 }
14f9c5c9 8339 else if (is_dynamic_field (type, f))
4c4b4cd2 8340 {
284614f0
JB
8341 const gdb_byte *field_valaddr = valaddr;
8342 CORE_ADDR field_address = address;
8343 struct type *field_type =
8344 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8345
4c4b4cd2 8346 if (dval0 == NULL)
b5304971
JG
8347 {
8348 /* rtype's length is computed based on the run-time
8349 value of discriminants. If the discriminants are not
8350 initialized, the type size may be completely bogus and
0963b4bd 8351 GDB may fail to allocate a value for it. So check the
b5304971 8352 size first before creating the value. */
c1b5a1a6 8353 ada_ensure_varsize_limit (rtype);
012370f6
TT
8354 /* Using plain value_from_contents_and_address here
8355 causes problems because we will end up trying to
8356 resolve a type that is currently being
8357 constructed. */
8358 dval = value_from_contents_and_address_unresolved (rtype,
8359 valaddr,
8360 address);
9f1f738a 8361 rtype = value_type (dval);
b5304971 8362 }
4c4b4cd2
PH
8363 else
8364 dval = dval0;
8365
284614f0
JB
8366 /* If the type referenced by this field is an aligner type, we need
8367 to unwrap that aligner type, because its size might not be set.
8368 Keeping the aligner type would cause us to compute the wrong
8369 size for this field, impacting the offset of the all the fields
8370 that follow this one. */
8371 if (ada_is_aligner_type (field_type))
8372 {
8373 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8374
8375 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8376 field_address = cond_offset_target (field_address, field_offset);
8377 field_type = ada_aligned_type (field_type);
8378 }
8379
8380 field_valaddr = cond_offset_host (field_valaddr,
8381 off / TARGET_CHAR_BIT);
8382 field_address = cond_offset_target (field_address,
8383 off / TARGET_CHAR_BIT);
8384
8385 /* Get the fixed type of the field. Note that, in this case,
8386 we do not want to get the real type out of the tag: if
8387 the current field is the parent part of a tagged record,
8388 we will get the tag of the object. Clearly wrong: the real
8389 type of the parent is not the real type of the child. We
8390 would end up in an infinite loop. */
8391 field_type = ada_get_base_type (field_type);
8392 field_type = ada_to_fixed_type (field_type, field_valaddr,
8393 field_address, dval, 0);
27f2a97b
JB
8394 /* If the field size is already larger than the maximum
8395 object size, then the record itself will necessarily
8396 be larger than the maximum object size. We need to make
8397 this check now, because the size might be so ridiculously
8398 large (due to an uninitialized variable in the inferior)
8399 that it would cause an overflow when adding it to the
8400 record size. */
c1b5a1a6 8401 ada_ensure_varsize_limit (field_type);
284614f0
JB
8402
8403 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8404 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8405 /* The multiplication can potentially overflow. But because
8406 the field length has been size-checked just above, and
8407 assuming that the maximum size is a reasonable value,
8408 an overflow should not happen in practice. So rather than
8409 adding overflow recovery code to this already complex code,
8410 we just assume that it's not going to happen. */
d94e4f4f 8411 fld_bit_len =
4c4b4cd2
PH
8412 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8413 }
14f9c5c9 8414 else
4c4b4cd2 8415 {
5ded5331
JB
8416 /* Note: If this field's type is a typedef, it is important
8417 to preserve the typedef layer.
8418
8419 Otherwise, we might be transforming a typedef to a fat
8420 pointer (encoding a pointer to an unconstrained array),
8421 into a basic fat pointer (encoding an unconstrained
8422 array). As both types are implemented using the same
8423 structure, the typedef is the only clue which allows us
8424 to distinguish between the two options. Stripping it
8425 would prevent us from printing this field appropriately. */
8426 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8427 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8428 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8429 fld_bit_len =
4c4b4cd2
PH
8430 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8431 else
5ded5331
JB
8432 {
8433 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8434
8435 /* We need to be careful of typedefs when computing
8436 the length of our field. If this is a typedef,
8437 get the length of the target type, not the length
8438 of the typedef. */
8439 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8440 field_type = ada_typedef_target_type (field_type);
8441
8442 fld_bit_len =
8443 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8444 }
4c4b4cd2 8445 }
14f9c5c9 8446 if (off + fld_bit_len > bit_len)
4c4b4cd2 8447 bit_len = off + fld_bit_len;
d94e4f4f 8448 off += fld_bit_len;
4c4b4cd2
PH
8449 TYPE_LENGTH (rtype) =
8450 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8451 }
4c4b4cd2
PH
8452
8453 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8454 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8455 the record. This can happen in the presence of representation
8456 clauses. */
8457 if (variant_field >= 0)
8458 {
8459 struct type *branch_type;
8460
8461 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8462
8463 if (dval0 == NULL)
9f1f738a 8464 {
012370f6
TT
8465 /* Using plain value_from_contents_and_address here causes
8466 problems because we will end up trying to resolve a type
8467 that is currently being constructed. */
8468 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8469 address);
9f1f738a
SA
8470 rtype = value_type (dval);
8471 }
4c4b4cd2
PH
8472 else
8473 dval = dval0;
8474
8475 branch_type =
8476 to_fixed_variant_branch_type
8477 (TYPE_FIELD_TYPE (type, variant_field),
8478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8480 if (branch_type == NULL)
8481 {
8482 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8483 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8484 TYPE_NFIELDS (rtype) -= 1;
8485 }
8486 else
8487 {
8488 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8489 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8490 fld_bit_len =
8491 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8492 TARGET_CHAR_BIT;
8493 if (off + fld_bit_len > bit_len)
8494 bit_len = off + fld_bit_len;
8495 TYPE_LENGTH (rtype) =
8496 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8497 }
8498 }
8499
714e53ab
PH
8500 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8501 should contain the alignment of that record, which should be a strictly
8502 positive value. If null or negative, then something is wrong, most
8503 probably in the debug info. In that case, we don't round up the size
0963b4bd 8504 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8505 the current RTYPE length might be good enough for our purposes. */
8506 if (TYPE_LENGTH (type) <= 0)
8507 {
323e0a4a 8508 if (TYPE_NAME (rtype))
cc1defb1
KS
8509 warning (_("Invalid type size for `%s' detected: %s."),
8510 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8511 else
cc1defb1
KS
8512 warning (_("Invalid type size for <unnamed> detected: %s."),
8513 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8514 }
8515 else
8516 {
8517 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8518 TYPE_LENGTH (type));
8519 }
14f9c5c9
AS
8520
8521 value_free_to_mark (mark);
d2e4a39e 8522 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8523 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8524 return rtype;
8525}
8526
4c4b4cd2
PH
8527/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8528 of 1. */
14f9c5c9 8529
d2e4a39e 8530static struct type *
fc1a4b47 8531template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8532 CORE_ADDR address, struct value *dval0)
8533{
8534 return ada_template_to_fixed_record_type_1 (type, valaddr,
8535 address, dval0, 1);
8536}
8537
8538/* An ordinary record type in which ___XVL-convention fields and
8539 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8540 static approximations, containing all possible fields. Uses
8541 no runtime values. Useless for use in values, but that's OK,
8542 since the results are used only for type determinations. Works on both
8543 structs and unions. Representation note: to save space, we memorize
8544 the result of this function in the TYPE_TARGET_TYPE of the
8545 template type. */
8546
8547static struct type *
8548template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8549{
8550 struct type *type;
8551 int nfields;
8552 int f;
8553
9e195661
PMR
8554 /* No need no do anything if the input type is already fixed. */
8555 if (TYPE_FIXED_INSTANCE (type0))
8556 return type0;
8557
8558 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8559 if (TYPE_TARGET_TYPE (type0) != NULL)
8560 return TYPE_TARGET_TYPE (type0);
8561
9e195661 8562 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8563 type = type0;
9e195661
PMR
8564 nfields = TYPE_NFIELDS (type0);
8565
8566 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8567 recompute all over next time. */
8568 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8569
8570 for (f = 0; f < nfields; f += 1)
8571 {
460efde1 8572 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8573 struct type *new_type;
14f9c5c9 8574
4c4b4cd2 8575 if (is_dynamic_field (type0, f))
460efde1
JB
8576 {
8577 field_type = ada_check_typedef (field_type);
8578 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8579 }
14f9c5c9 8580 else
f192137b 8581 new_type = static_unwrap_type (field_type);
9e195661
PMR
8582
8583 if (new_type != field_type)
8584 {
8585 /* Clone TYPE0 only the first time we get a new field type. */
8586 if (type == type0)
8587 {
8588 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8589 TYPE_CODE (type) = TYPE_CODE (type0);
8590 INIT_CPLUS_SPECIFIC (type);
8591 TYPE_NFIELDS (type) = nfields;
8592 TYPE_FIELDS (type) = (struct field *)
8593 TYPE_ALLOC (type, nfields * sizeof (struct field));
8594 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8595 sizeof (struct field) * nfields);
8596 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8597 TYPE_FIXED_INSTANCE (type) = 1;
8598 TYPE_LENGTH (type) = 0;
8599 }
8600 TYPE_FIELD_TYPE (type, f) = new_type;
8601 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8602 }
14f9c5c9 8603 }
9e195661 8604
14f9c5c9
AS
8605 return type;
8606}
8607
4c4b4cd2 8608/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8609 whose address in memory is ADDRESS, returns a revision of TYPE,
8610 which should be a non-dynamic-sized record, in which the variant
8611 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8612 for discriminant values in DVAL0, which can be NULL if the record
8613 contains the necessary discriminant values. */
8614
d2e4a39e 8615static struct type *
fc1a4b47 8616to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8617 CORE_ADDR address, struct value *dval0)
14f9c5c9 8618{
d2e4a39e 8619 struct value *mark = value_mark ();
4c4b4cd2 8620 struct value *dval;
d2e4a39e 8621 struct type *rtype;
14f9c5c9
AS
8622 struct type *branch_type;
8623 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8624 int variant_field = variant_field_index (type);
14f9c5c9 8625
4c4b4cd2 8626 if (variant_field == -1)
14f9c5c9
AS
8627 return type;
8628
4c4b4cd2 8629 if (dval0 == NULL)
9f1f738a
SA
8630 {
8631 dval = value_from_contents_and_address (type, valaddr, address);
8632 type = value_type (dval);
8633 }
4c4b4cd2
PH
8634 else
8635 dval = dval0;
8636
e9bb382b 8637 rtype = alloc_type_copy (type);
14f9c5c9 8638 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8639 INIT_CPLUS_SPECIFIC (rtype);
8640 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8641 TYPE_FIELDS (rtype) =
8642 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8643 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8644 sizeof (struct field) * nfields);
14f9c5c9 8645 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8646 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8647 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8648
4c4b4cd2
PH
8649 branch_type = to_fixed_variant_branch_type
8650 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8651 cond_offset_host (valaddr,
4c4b4cd2
PH
8652 TYPE_FIELD_BITPOS (type, variant_field)
8653 / TARGET_CHAR_BIT),
d2e4a39e 8654 cond_offset_target (address,
4c4b4cd2
PH
8655 TYPE_FIELD_BITPOS (type, variant_field)
8656 / TARGET_CHAR_BIT), dval);
d2e4a39e 8657 if (branch_type == NULL)
14f9c5c9 8658 {
4c4b4cd2 8659 int f;
5b4ee69b 8660
4c4b4cd2
PH
8661 for (f = variant_field + 1; f < nfields; f += 1)
8662 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8663 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8664 }
8665 else
8666 {
4c4b4cd2
PH
8667 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8668 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8669 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8670 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8671 }
4c4b4cd2 8672 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8673
4c4b4cd2 8674 value_free_to_mark (mark);
14f9c5c9
AS
8675 return rtype;
8676}
8677
8678/* An ordinary record type (with fixed-length fields) that describes
8679 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8680 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8681 should be in DVAL, a record value; it may be NULL if the object
8682 at ADDR itself contains any necessary discriminant values.
8683 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8684 values from the record are needed. Except in the case that DVAL,
8685 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8686 unchecked) is replaced by a particular branch of the variant.
8687
8688 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8689 is questionable and may be removed. It can arise during the
8690 processing of an unconstrained-array-of-record type where all the
8691 variant branches have exactly the same size. This is because in
8692 such cases, the compiler does not bother to use the XVS convention
8693 when encoding the record. I am currently dubious of this
8694 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8695
d2e4a39e 8696static struct type *
fc1a4b47 8697to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8698 CORE_ADDR address, struct value *dval)
14f9c5c9 8699{
d2e4a39e 8700 struct type *templ_type;
14f9c5c9 8701
876cecd0 8702 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8703 return type0;
8704
d2e4a39e 8705 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8706
8707 if (templ_type != NULL)
8708 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8709 else if (variant_field_index (type0) >= 0)
8710 {
8711 if (dval == NULL && valaddr == NULL && address == 0)
8712 return type0;
8713 return to_record_with_fixed_variant_part (type0, valaddr, address,
8714 dval);
8715 }
14f9c5c9
AS
8716 else
8717 {
876cecd0 8718 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8719 return type0;
8720 }
8721
8722}
8723
8724/* An ordinary record type (with fixed-length fields) that describes
8725 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8726 union type. Any necessary discriminants' values should be in DVAL,
8727 a record value. That is, this routine selects the appropriate
8728 branch of the union at ADDR according to the discriminant value
b1f33ddd 8729 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8730 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8731
d2e4a39e 8732static struct type *
fc1a4b47 8733to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8734 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8735{
8736 int which;
d2e4a39e
AS
8737 struct type *templ_type;
8738 struct type *var_type;
14f9c5c9
AS
8739
8740 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8741 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8742 else
14f9c5c9
AS
8743 var_type = var_type0;
8744
8745 templ_type = ada_find_parallel_type (var_type, "___XVU");
8746
8747 if (templ_type != NULL)
8748 var_type = templ_type;
8749
b1f33ddd
JB
8750 if (is_unchecked_variant (var_type, value_type (dval)))
8751 return var_type0;
d2e4a39e
AS
8752 which =
8753 ada_which_variant_applies (var_type,
0fd88904 8754 value_type (dval), value_contents (dval));
14f9c5c9
AS
8755
8756 if (which < 0)
e9bb382b 8757 return empty_record (var_type);
14f9c5c9 8758 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8759 return to_fixed_record_type
d2e4a39e
AS
8760 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8761 valaddr, address, dval);
4c4b4cd2 8762 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8763 return
8764 to_fixed_record_type
8765 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8766 else
8767 return TYPE_FIELD_TYPE (var_type, which);
8768}
8769
8908fca5
JB
8770/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8771 ENCODING_TYPE, a type following the GNAT conventions for discrete
8772 type encodings, only carries redundant information. */
8773
8774static int
8775ada_is_redundant_range_encoding (struct type *range_type,
8776 struct type *encoding_type)
8777{
108d56a4 8778 const char *bounds_str;
8908fca5
JB
8779 int n;
8780 LONGEST lo, hi;
8781
8782 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8783
005e2509
JB
8784 if (TYPE_CODE (get_base_type (range_type))
8785 != TYPE_CODE (get_base_type (encoding_type)))
8786 {
8787 /* The compiler probably used a simple base type to describe
8788 the range type instead of the range's actual base type,
8789 expecting us to get the real base type from the encoding
8790 anyway. In this situation, the encoding cannot be ignored
8791 as redundant. */
8792 return 0;
8793 }
8794
8908fca5
JB
8795 if (is_dynamic_type (range_type))
8796 return 0;
8797
8798 if (TYPE_NAME (encoding_type) == NULL)
8799 return 0;
8800
8801 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8802 if (bounds_str == NULL)
8803 return 0;
8804
8805 n = 8; /* Skip "___XDLU_". */
8806 if (!ada_scan_number (bounds_str, n, &lo, &n))
8807 return 0;
8808 if (TYPE_LOW_BOUND (range_type) != lo)
8809 return 0;
8810
8811 n += 2; /* Skip the "__" separator between the two bounds. */
8812 if (!ada_scan_number (bounds_str, n, &hi, &n))
8813 return 0;
8814 if (TYPE_HIGH_BOUND (range_type) != hi)
8815 return 0;
8816
8817 return 1;
8818}
8819
8820/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8821 a type following the GNAT encoding for describing array type
8822 indices, only carries redundant information. */
8823
8824static int
8825ada_is_redundant_index_type_desc (struct type *array_type,
8826 struct type *desc_type)
8827{
8828 struct type *this_layer = check_typedef (array_type);
8829 int i;
8830
8831 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8832 {
8833 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8834 TYPE_FIELD_TYPE (desc_type, i)))
8835 return 0;
8836 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8837 }
8838
8839 return 1;
8840}
8841
14f9c5c9
AS
8842/* Assuming that TYPE0 is an array type describing the type of a value
8843 at ADDR, and that DVAL describes a record containing any
8844 discriminants used in TYPE0, returns a type for the value that
8845 contains no dynamic components (that is, no components whose sizes
8846 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8847 true, gives an error message if the resulting type's size is over
4c4b4cd2 8848 varsize_limit. */
14f9c5c9 8849
d2e4a39e
AS
8850static struct type *
8851to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8852 int ignore_too_big)
14f9c5c9 8853{
d2e4a39e
AS
8854 struct type *index_type_desc;
8855 struct type *result;
ad82864c 8856 int constrained_packed_array_p;
931e5bc3 8857 static const char *xa_suffix = "___XA";
14f9c5c9 8858
b0dd7688 8859 type0 = ada_check_typedef (type0);
284614f0 8860 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8861 return type0;
14f9c5c9 8862
ad82864c
JB
8863 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8864 if (constrained_packed_array_p)
8865 type0 = decode_constrained_packed_array_type (type0);
284614f0 8866
931e5bc3
JG
8867 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8868
8869 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8870 encoding suffixed with 'P' may still be generated. If so,
8871 it should be used to find the XA type. */
8872
8873 if (index_type_desc == NULL)
8874 {
1da0522e 8875 const char *type_name = ada_type_name (type0);
931e5bc3 8876
1da0522e 8877 if (type_name != NULL)
931e5bc3 8878 {
1da0522e 8879 const int len = strlen (type_name);
931e5bc3
JG
8880 char *name = (char *) alloca (len + strlen (xa_suffix));
8881
1da0522e 8882 if (type_name[len - 1] == 'P')
931e5bc3 8883 {
1da0522e 8884 strcpy (name, type_name);
931e5bc3
JG
8885 strcpy (name + len - 1, xa_suffix);
8886 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8887 }
8888 }
8889 }
8890
28c85d6c 8891 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8892 if (index_type_desc != NULL
8893 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8894 {
8895 /* Ignore this ___XA parallel type, as it does not bring any
8896 useful information. This allows us to avoid creating fixed
8897 versions of the array's index types, which would be identical
8898 to the original ones. This, in turn, can also help avoid
8899 the creation of fixed versions of the array itself. */
8900 index_type_desc = NULL;
8901 }
8902
14f9c5c9
AS
8903 if (index_type_desc == NULL)
8904 {
61ee279c 8905 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8906
14f9c5c9 8907 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8908 depend on the contents of the array in properly constructed
8909 debugging data. */
529cad9c
PH
8910 /* Create a fixed version of the array element type.
8911 We're not providing the address of an element here,
e1d5a0d2 8912 and thus the actual object value cannot be inspected to do
529cad9c
PH
8913 the conversion. This should not be a problem, since arrays of
8914 unconstrained objects are not allowed. In particular, all
8915 the elements of an array of a tagged type should all be of
8916 the same type specified in the debugging info. No need to
8917 consult the object tag. */
1ed6ede0 8918 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8919
284614f0
JB
8920 /* Make sure we always create a new array type when dealing with
8921 packed array types, since we're going to fix-up the array
8922 type length and element bitsize a little further down. */
ad82864c 8923 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8924 result = type0;
14f9c5c9 8925 else
e9bb382b 8926 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8927 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8928 }
8929 else
8930 {
8931 int i;
8932 struct type *elt_type0;
8933
8934 elt_type0 = type0;
8935 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8936 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8937
8938 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8939 depend on the contents of the array in properly constructed
8940 debugging data. */
529cad9c
PH
8941 /* Create a fixed version of the array element type.
8942 We're not providing the address of an element here,
e1d5a0d2 8943 and thus the actual object value cannot be inspected to do
529cad9c
PH
8944 the conversion. This should not be a problem, since arrays of
8945 unconstrained objects are not allowed. In particular, all
8946 the elements of an array of a tagged type should all be of
8947 the same type specified in the debugging info. No need to
8948 consult the object tag. */
1ed6ede0
JB
8949 result =
8950 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8951
8952 elt_type0 = type0;
14f9c5c9 8953 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8954 {
8955 struct type *range_type =
28c85d6c 8956 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8957
e9bb382b 8958 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8959 result, range_type);
1ce677a4 8960 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8961 }
d2e4a39e 8962 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8963 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8964 }
8965
2e6fda7d
JB
8966 /* We want to preserve the type name. This can be useful when
8967 trying to get the type name of a value that has already been
8968 printed (for instance, if the user did "print VAR; whatis $". */
8969 TYPE_NAME (result) = TYPE_NAME (type0);
8970
ad82864c 8971 if (constrained_packed_array_p)
284614f0
JB
8972 {
8973 /* So far, the resulting type has been created as if the original
8974 type was a regular (non-packed) array type. As a result, the
8975 bitsize of the array elements needs to be set again, and the array
8976 length needs to be recomputed based on that bitsize. */
8977 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8978 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8979
8980 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8981 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8982 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8983 TYPE_LENGTH (result)++;
8984 }
8985
876cecd0 8986 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8987 return result;
d2e4a39e 8988}
14f9c5c9
AS
8989
8990
8991/* A standard type (containing no dynamically sized components)
8992 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8993 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8994 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8995 ADDRESS or in VALADDR contains these discriminants.
8996
1ed6ede0
JB
8997 If CHECK_TAG is not null, in the case of tagged types, this function
8998 attempts to locate the object's tag and use it to compute the actual
8999 type. However, when ADDRESS is null, we cannot use it to determine the
9000 location of the tag, and therefore compute the tagged type's actual type.
9001 So we return the tagged type without consulting the tag. */
529cad9c 9002
f192137b
JB
9003static struct type *
9004ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9005 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9006{
61ee279c 9007 type = ada_check_typedef (type);
d2e4a39e
AS
9008 switch (TYPE_CODE (type))
9009 {
9010 default:
14f9c5c9 9011 return type;
d2e4a39e 9012 case TYPE_CODE_STRUCT:
4c4b4cd2 9013 {
76a01679 9014 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9015 struct type *fixed_record_type =
9016 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9017
529cad9c
PH
9018 /* If STATIC_TYPE is a tagged type and we know the object's address,
9019 then we can determine its tag, and compute the object's actual
0963b4bd 9020 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9021 type (the parent part of the record may have dynamic fields
9022 and the way the location of _tag is expressed may depend on
9023 them). */
529cad9c 9024
1ed6ede0 9025 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9026 {
b50d69b5
JG
9027 struct value *tag =
9028 value_tag_from_contents_and_address
9029 (fixed_record_type,
9030 valaddr,
9031 address);
9032 struct type *real_type = type_from_tag (tag);
9033 struct value *obj =
9034 value_from_contents_and_address (fixed_record_type,
9035 valaddr,
9036 address);
9f1f738a 9037 fixed_record_type = value_type (obj);
76a01679 9038 if (real_type != NULL)
b50d69b5
JG
9039 return to_fixed_record_type
9040 (real_type, NULL,
9041 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9042 }
4af88198
JB
9043
9044 /* Check to see if there is a parallel ___XVZ variable.
9045 If there is, then it provides the actual size of our type. */
9046 else if (ada_type_name (fixed_record_type) != NULL)
9047 {
0d5cff50 9048 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9049 char *xvz_name
9050 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9051 bool xvz_found = false;
4af88198
JB
9052 LONGEST size;
9053
88c15c34 9054 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 9055 try
eccab96d
JB
9056 {
9057 xvz_found = get_int_var_value (xvz_name, size);
9058 }
a70b8144 9059 catch (const gdb_exception_RETURN_MASK_ERROR &except)
eccab96d
JB
9060 {
9061 /* We found the variable, but somehow failed to read
9062 its value. Rethrow the same error, but with a little
9063 bit more information, to help the user understand
9064 what went wrong (Eg: the variable might have been
9065 optimized out). */
9066 throw_error (except.error,
9067 _("unable to read value of %s (%s)"),
3d6e9d23 9068 xvz_name, except.what ());
eccab96d 9069 }
eccab96d
JB
9070
9071 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9072 {
9073 fixed_record_type = copy_type (fixed_record_type);
9074 TYPE_LENGTH (fixed_record_type) = size;
9075
9076 /* The FIXED_RECORD_TYPE may have be a stub. We have
9077 observed this when the debugging info is STABS, and
9078 apparently it is something that is hard to fix.
9079
9080 In practice, we don't need the actual type definition
9081 at all, because the presence of the XVZ variable allows us
9082 to assume that there must be a XVS type as well, which we
9083 should be able to use later, when we need the actual type
9084 definition.
9085
9086 In the meantime, pretend that the "fixed" type we are
9087 returning is NOT a stub, because this can cause trouble
9088 when using this type to create new types targeting it.
9089 Indeed, the associated creation routines often check
9090 whether the target type is a stub and will try to replace
0963b4bd 9091 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9092 might cause the new type to have the wrong size too.
9093 Consider the case of an array, for instance, where the size
9094 of the array is computed from the number of elements in
9095 our array multiplied by the size of its element. */
9096 TYPE_STUB (fixed_record_type) = 0;
9097 }
9098 }
1ed6ede0 9099 return fixed_record_type;
4c4b4cd2 9100 }
d2e4a39e 9101 case TYPE_CODE_ARRAY:
4c4b4cd2 9102 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9103 case TYPE_CODE_UNION:
9104 if (dval == NULL)
4c4b4cd2 9105 return type;
d2e4a39e 9106 else
4c4b4cd2 9107 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9108 }
14f9c5c9
AS
9109}
9110
f192137b
JB
9111/* The same as ada_to_fixed_type_1, except that it preserves the type
9112 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9113
9114 The typedef layer needs be preserved in order to differentiate between
9115 arrays and array pointers when both types are implemented using the same
9116 fat pointer. In the array pointer case, the pointer is encoded as
9117 a typedef of the pointer type. For instance, considering:
9118
9119 type String_Access is access String;
9120 S1 : String_Access := null;
9121
9122 To the debugger, S1 is defined as a typedef of type String. But
9123 to the user, it is a pointer. So if the user tries to print S1,
9124 we should not dereference the array, but print the array address
9125 instead.
9126
9127 If we didn't preserve the typedef layer, we would lose the fact that
9128 the type is to be presented as a pointer (needs de-reference before
9129 being printed). And we would also use the source-level type name. */
f192137b
JB
9130
9131struct type *
9132ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9133 CORE_ADDR address, struct value *dval, int check_tag)
9134
9135{
9136 struct type *fixed_type =
9137 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9138
96dbd2c1
JB
9139 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9140 then preserve the typedef layer.
9141
9142 Implementation note: We can only check the main-type portion of
9143 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9144 from TYPE now returns a type that has the same instance flags
9145 as TYPE. For instance, if TYPE is a "typedef const", and its
9146 target type is a "struct", then the typedef elimination will return
9147 a "const" version of the target type. See check_typedef for more
9148 details about how the typedef layer elimination is done.
9149
9150 brobecker/2010-11-19: It seems to me that the only case where it is
9151 useful to preserve the typedef layer is when dealing with fat pointers.
9152 Perhaps, we could add a check for that and preserve the typedef layer
9153 only in that situation. But this seems unecessary so far, probably
9154 because we call check_typedef/ada_check_typedef pretty much everywhere.
9155 */
f192137b 9156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9157 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9158 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9159 return type;
9160
9161 return fixed_type;
9162}
9163
14f9c5c9 9164/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9165 TYPE0, but based on no runtime data. */
14f9c5c9 9166
d2e4a39e
AS
9167static struct type *
9168to_static_fixed_type (struct type *type0)
14f9c5c9 9169{
d2e4a39e 9170 struct type *type;
14f9c5c9
AS
9171
9172 if (type0 == NULL)
9173 return NULL;
9174
876cecd0 9175 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9176 return type0;
9177
61ee279c 9178 type0 = ada_check_typedef (type0);
d2e4a39e 9179
14f9c5c9
AS
9180 switch (TYPE_CODE (type0))
9181 {
9182 default:
9183 return type0;
9184 case TYPE_CODE_STRUCT:
9185 type = dynamic_template_type (type0);
d2e4a39e 9186 if (type != NULL)
4c4b4cd2
PH
9187 return template_to_static_fixed_type (type);
9188 else
9189 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9190 case TYPE_CODE_UNION:
9191 type = ada_find_parallel_type (type0, "___XVU");
9192 if (type != NULL)
4c4b4cd2
PH
9193 return template_to_static_fixed_type (type);
9194 else
9195 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9196 }
9197}
9198
4c4b4cd2
PH
9199/* A static approximation of TYPE with all type wrappers removed. */
9200
d2e4a39e
AS
9201static struct type *
9202static_unwrap_type (struct type *type)
14f9c5c9
AS
9203{
9204 if (ada_is_aligner_type (type))
9205 {
61ee279c 9206 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9207 if (ada_type_name (type1) == NULL)
4c4b4cd2 9208 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9209
9210 return static_unwrap_type (type1);
9211 }
d2e4a39e 9212 else
14f9c5c9 9213 {
d2e4a39e 9214 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9215
d2e4a39e 9216 if (raw_real_type == type)
4c4b4cd2 9217 return type;
14f9c5c9 9218 else
4c4b4cd2 9219 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9220 }
9221}
9222
9223/* In some cases, incomplete and private types require
4c4b4cd2 9224 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9225 type Foo;
9226 type FooP is access Foo;
9227 V: FooP;
9228 type Foo is array ...;
4c4b4cd2 9229 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9230 cross-references to such types, we instead substitute for FooP a
9231 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9232 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9233
9234/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9235 exists, otherwise TYPE. */
9236
d2e4a39e 9237struct type *
61ee279c 9238ada_check_typedef (struct type *type)
14f9c5c9 9239{
727e3d2e
JB
9240 if (type == NULL)
9241 return NULL;
9242
736ade86
XR
9243 /* If our type is an access to an unconstrained array, which is encoded
9244 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9245 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9246 what allows us to distinguish between fat pointers that represent
9247 array types, and fat pointers that represent array access types
9248 (in both cases, the compiler implements them as fat pointers). */
736ade86 9249 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9250 return type;
9251
f168693b 9252 type = check_typedef (type);
14f9c5c9 9253 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9254 || !TYPE_STUB (type)
e86ca25f 9255 || TYPE_NAME (type) == NULL)
14f9c5c9 9256 return type;
d2e4a39e 9257 else
14f9c5c9 9258 {
e86ca25f 9259 const char *name = TYPE_NAME (type);
d2e4a39e 9260 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9261
05e522ef
JB
9262 if (type1 == NULL)
9263 return type;
9264
9265 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9266 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9267 types, only for the typedef-to-array types). If that's the case,
9268 strip the typedef layer. */
9269 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9270 type1 = ada_check_typedef (type1);
9271
9272 return type1;
14f9c5c9
AS
9273 }
9274}
9275
9276/* A value representing the data at VALADDR/ADDRESS as described by
9277 type TYPE0, but with a standard (static-sized) type that correctly
9278 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9279 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9280 creation of struct values]. */
14f9c5c9 9281
4c4b4cd2
PH
9282static struct value *
9283ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9284 struct value *val0)
14f9c5c9 9285{
1ed6ede0 9286 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9287
14f9c5c9
AS
9288 if (type == type0 && val0 != NULL)
9289 return val0;
cc0e770c
JB
9290
9291 if (VALUE_LVAL (val0) != lval_memory)
9292 {
9293 /* Our value does not live in memory; it could be a convenience
9294 variable, for instance. Create a not_lval value using val0's
9295 contents. */
9296 return value_from_contents (type, value_contents (val0));
9297 }
9298
9299 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9300}
9301
9302/* A value representing VAL, but with a standard (static-sized) type
9303 that correctly describes it. Does not necessarily create a new
9304 value. */
9305
0c3acc09 9306struct value *
4c4b4cd2
PH
9307ada_to_fixed_value (struct value *val)
9308{
c48db5ca 9309 val = unwrap_value (val);
d8ce9127 9310 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9311 return val;
14f9c5c9 9312}
d2e4a39e 9313\f
14f9c5c9 9314
14f9c5c9
AS
9315/* Attributes */
9316
4c4b4cd2
PH
9317/* Table mapping attribute numbers to names.
9318 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9319
d2e4a39e 9320static const char *attribute_names[] = {
14f9c5c9
AS
9321 "<?>",
9322
d2e4a39e 9323 "first",
14f9c5c9
AS
9324 "last",
9325 "length",
9326 "image",
14f9c5c9
AS
9327 "max",
9328 "min",
4c4b4cd2
PH
9329 "modulus",
9330 "pos",
9331 "size",
9332 "tag",
14f9c5c9 9333 "val",
14f9c5c9
AS
9334 0
9335};
9336
d2e4a39e 9337const char *
4c4b4cd2 9338ada_attribute_name (enum exp_opcode n)
14f9c5c9 9339{
4c4b4cd2
PH
9340 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9341 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9342 else
9343 return attribute_names[0];
9344}
9345
4c4b4cd2 9346/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9347
4c4b4cd2
PH
9348static LONGEST
9349pos_atr (struct value *arg)
14f9c5c9 9350{
24209737
PH
9351 struct value *val = coerce_ref (arg);
9352 struct type *type = value_type (val);
aa715135 9353 LONGEST result;
14f9c5c9 9354
d2e4a39e 9355 if (!discrete_type_p (type))
323e0a4a 9356 error (_("'POS only defined on discrete types"));
14f9c5c9 9357
aa715135
JG
9358 if (!discrete_position (type, value_as_long (val), &result))
9359 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9360
aa715135 9361 return result;
4c4b4cd2
PH
9362}
9363
9364static struct value *
3cb382c9 9365value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9366{
3cb382c9 9367 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9368}
9369
4c4b4cd2 9370/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9371
d2e4a39e
AS
9372static struct value *
9373value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9374{
d2e4a39e 9375 if (!discrete_type_p (type))
323e0a4a 9376 error (_("'VAL only defined on discrete types"));
df407dfe 9377 if (!integer_type_p (value_type (arg)))
323e0a4a 9378 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9379
9380 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9381 {
9382 long pos = value_as_long (arg);
5b4ee69b 9383
14f9c5c9 9384 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9385 error (_("argument to 'VAL out of range"));
14e75d8e 9386 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9387 }
9388 else
9389 return value_from_longest (type, value_as_long (arg));
9390}
14f9c5c9 9391\f
d2e4a39e 9392
4c4b4cd2 9393 /* Evaluation */
14f9c5c9 9394
4c4b4cd2
PH
9395/* True if TYPE appears to be an Ada character type.
9396 [At the moment, this is true only for Character and Wide_Character;
9397 It is a heuristic test that could stand improvement]. */
14f9c5c9 9398
d2e4a39e
AS
9399int
9400ada_is_character_type (struct type *type)
14f9c5c9 9401{
7b9f71f2
JB
9402 const char *name;
9403
9404 /* If the type code says it's a character, then assume it really is,
9405 and don't check any further. */
9406 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9407 return 1;
9408
9409 /* Otherwise, assume it's a character type iff it is a discrete type
9410 with a known character type name. */
9411 name = ada_type_name (type);
9412 return (name != NULL
9413 && (TYPE_CODE (type) == TYPE_CODE_INT
9414 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9415 && (strcmp (name, "character") == 0
9416 || strcmp (name, "wide_character") == 0
5a517ebd 9417 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9418 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9419}
9420
4c4b4cd2 9421/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9422
9423int
ebf56fd3 9424ada_is_string_type (struct type *type)
14f9c5c9 9425{
61ee279c 9426 type = ada_check_typedef (type);
d2e4a39e 9427 if (type != NULL
14f9c5c9 9428 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9429 && (ada_is_simple_array_type (type)
9430 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9431 && ada_array_arity (type) == 1)
9432 {
9433 struct type *elttype = ada_array_element_type (type, 1);
9434
9435 return ada_is_character_type (elttype);
9436 }
d2e4a39e 9437 else
14f9c5c9
AS
9438 return 0;
9439}
9440
5bf03f13
JB
9441/* The compiler sometimes provides a parallel XVS type for a given
9442 PAD type. Normally, it is safe to follow the PAD type directly,
9443 but older versions of the compiler have a bug that causes the offset
9444 of its "F" field to be wrong. Following that field in that case
9445 would lead to incorrect results, but this can be worked around
9446 by ignoring the PAD type and using the associated XVS type instead.
9447
9448 Set to True if the debugger should trust the contents of PAD types.
9449 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9450static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9451
9452/* True if TYPE is a struct type introduced by the compiler to force the
9453 alignment of a value. Such types have a single field with a
4c4b4cd2 9454 distinctive name. */
14f9c5c9
AS
9455
9456int
ebf56fd3 9457ada_is_aligner_type (struct type *type)
14f9c5c9 9458{
61ee279c 9459 type = ada_check_typedef (type);
714e53ab 9460
5bf03f13 9461 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9462 return 0;
9463
14f9c5c9 9464 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9465 && TYPE_NFIELDS (type) == 1
9466 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9467}
9468
9469/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9470 the parallel type. */
14f9c5c9 9471
d2e4a39e
AS
9472struct type *
9473ada_get_base_type (struct type *raw_type)
14f9c5c9 9474{
d2e4a39e
AS
9475 struct type *real_type_namer;
9476 struct type *raw_real_type;
14f9c5c9
AS
9477
9478 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9479 return raw_type;
9480
284614f0
JB
9481 if (ada_is_aligner_type (raw_type))
9482 /* The encoding specifies that we should always use the aligner type.
9483 So, even if this aligner type has an associated XVS type, we should
9484 simply ignore it.
9485
9486 According to the compiler gurus, an XVS type parallel to an aligner
9487 type may exist because of a stabs limitation. In stabs, aligner
9488 types are empty because the field has a variable-sized type, and
9489 thus cannot actually be used as an aligner type. As a result,
9490 we need the associated parallel XVS type to decode the type.
9491 Since the policy in the compiler is to not change the internal
9492 representation based on the debugging info format, we sometimes
9493 end up having a redundant XVS type parallel to the aligner type. */
9494 return raw_type;
9495
14f9c5c9 9496 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9497 if (real_type_namer == NULL
14f9c5c9
AS
9498 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9499 || TYPE_NFIELDS (real_type_namer) != 1)
9500 return raw_type;
9501
f80d3ff2
JB
9502 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9503 {
9504 /* This is an older encoding form where the base type needs to be
9505 looked up by name. We prefer the newer enconding because it is
9506 more efficient. */
9507 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9508 if (raw_real_type == NULL)
9509 return raw_type;
9510 else
9511 return raw_real_type;
9512 }
9513
9514 /* The field in our XVS type is a reference to the base type. */
9515 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9516}
14f9c5c9 9517
4c4b4cd2 9518/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9519
d2e4a39e
AS
9520struct type *
9521ada_aligned_type (struct type *type)
14f9c5c9
AS
9522{
9523 if (ada_is_aligner_type (type))
9524 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9525 else
9526 return ada_get_base_type (type);
9527}
9528
9529
9530/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9531 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9532
fc1a4b47
AC
9533const gdb_byte *
9534ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9535{
d2e4a39e 9536 if (ada_is_aligner_type (type))
14f9c5c9 9537 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9538 valaddr +
9539 TYPE_FIELD_BITPOS (type,
9540 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9541 else
9542 return valaddr;
9543}
9544
4c4b4cd2
PH
9545
9546
14f9c5c9 9547/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9548 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9549const char *
9550ada_enum_name (const char *name)
14f9c5c9 9551{
4c4b4cd2
PH
9552 static char *result;
9553 static size_t result_len = 0;
e6a959d6 9554 const char *tmp;
14f9c5c9 9555
4c4b4cd2
PH
9556 /* First, unqualify the enumeration name:
9557 1. Search for the last '.' character. If we find one, then skip
177b42fe 9558 all the preceding characters, the unqualified name starts
76a01679 9559 right after that dot.
4c4b4cd2 9560 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9561 translates dots into "__". Search forward for double underscores,
9562 but stop searching when we hit an overloading suffix, which is
9563 of the form "__" followed by digits. */
4c4b4cd2 9564
c3e5cd34
PH
9565 tmp = strrchr (name, '.');
9566 if (tmp != NULL)
4c4b4cd2
PH
9567 name = tmp + 1;
9568 else
14f9c5c9 9569 {
4c4b4cd2
PH
9570 while ((tmp = strstr (name, "__")) != NULL)
9571 {
9572 if (isdigit (tmp[2]))
9573 break;
9574 else
9575 name = tmp + 2;
9576 }
14f9c5c9
AS
9577 }
9578
9579 if (name[0] == 'Q')
9580 {
14f9c5c9 9581 int v;
5b4ee69b 9582
14f9c5c9 9583 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9584 {
9585 if (sscanf (name + 2, "%x", &v) != 1)
9586 return name;
9587 }
14f9c5c9 9588 else
4c4b4cd2 9589 return name;
14f9c5c9 9590
4c4b4cd2 9591 GROW_VECT (result, result_len, 16);
14f9c5c9 9592 if (isascii (v) && isprint (v))
88c15c34 9593 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9594 else if (name[1] == 'U')
88c15c34 9595 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9596 else
88c15c34 9597 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9598
9599 return result;
9600 }
d2e4a39e 9601 else
4c4b4cd2 9602 {
c3e5cd34
PH
9603 tmp = strstr (name, "__");
9604 if (tmp == NULL)
9605 tmp = strstr (name, "$");
9606 if (tmp != NULL)
4c4b4cd2
PH
9607 {
9608 GROW_VECT (result, result_len, tmp - name + 1);
9609 strncpy (result, name, tmp - name);
9610 result[tmp - name] = '\0';
9611 return result;
9612 }
9613
9614 return name;
9615 }
14f9c5c9
AS
9616}
9617
14f9c5c9
AS
9618/* Evaluate the subexpression of EXP starting at *POS as for
9619 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9620 expression. */
14f9c5c9 9621
d2e4a39e
AS
9622static struct value *
9623evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9624{
4b27a620 9625 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9626}
9627
9628/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9629 value it wraps. */
14f9c5c9 9630
d2e4a39e
AS
9631static struct value *
9632unwrap_value (struct value *val)
14f9c5c9 9633{
df407dfe 9634 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9635
14f9c5c9
AS
9636 if (ada_is_aligner_type (type))
9637 {
de4d072f 9638 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9639 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9640
14f9c5c9 9641 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9642 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9643
9644 return unwrap_value (v);
9645 }
d2e4a39e 9646 else
14f9c5c9 9647 {
d2e4a39e 9648 struct type *raw_real_type =
61ee279c 9649 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9650
5bf03f13
JB
9651 /* If there is no parallel XVS or XVE type, then the value is
9652 already unwrapped. Return it without further modification. */
9653 if ((type == raw_real_type)
9654 && ada_find_parallel_type (type, "___XVE") == NULL)
9655 return val;
14f9c5c9 9656
d2e4a39e 9657 return
4c4b4cd2
PH
9658 coerce_unspec_val_to_type
9659 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9660 value_address (val),
1ed6ede0 9661 NULL, 1));
14f9c5c9
AS
9662 }
9663}
d2e4a39e
AS
9664
9665static struct value *
50eff16b 9666cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9667{
50eff16b
UW
9668 struct value *scale = ada_scaling_factor (value_type (arg));
9669 arg = value_cast (value_type (scale), arg);
14f9c5c9 9670
50eff16b
UW
9671 arg = value_binop (arg, scale, BINOP_MUL);
9672 return value_cast (type, arg);
14f9c5c9
AS
9673}
9674
d2e4a39e 9675static struct value *
50eff16b 9676cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9677{
50eff16b
UW
9678 if (type == value_type (arg))
9679 return arg;
5b4ee69b 9680
50eff16b
UW
9681 struct value *scale = ada_scaling_factor (type);
9682 if (ada_is_fixed_point_type (value_type (arg)))
9683 arg = cast_from_fixed (value_type (scale), arg);
9684 else
9685 arg = value_cast (value_type (scale), arg);
9686
9687 arg = value_binop (arg, scale, BINOP_DIV);
9688 return value_cast (type, arg);
14f9c5c9
AS
9689}
9690
d99dcf51
JB
9691/* Given two array types T1 and T2, return nonzero iff both arrays
9692 contain the same number of elements. */
9693
9694static int
9695ada_same_array_size_p (struct type *t1, struct type *t2)
9696{
9697 LONGEST lo1, hi1, lo2, hi2;
9698
9699 /* Get the array bounds in order to verify that the size of
9700 the two arrays match. */
9701 if (!get_array_bounds (t1, &lo1, &hi1)
9702 || !get_array_bounds (t2, &lo2, &hi2))
9703 error (_("unable to determine array bounds"));
9704
9705 /* To make things easier for size comparison, normalize a bit
9706 the case of empty arrays by making sure that the difference
9707 between upper bound and lower bound is always -1. */
9708 if (lo1 > hi1)
9709 hi1 = lo1 - 1;
9710 if (lo2 > hi2)
9711 hi2 = lo2 - 1;
9712
9713 return (hi1 - lo1 == hi2 - lo2);
9714}
9715
9716/* Assuming that VAL is an array of integrals, and TYPE represents
9717 an array with the same number of elements, but with wider integral
9718 elements, return an array "casted" to TYPE. In practice, this
9719 means that the returned array is built by casting each element
9720 of the original array into TYPE's (wider) element type. */
9721
9722static struct value *
9723ada_promote_array_of_integrals (struct type *type, struct value *val)
9724{
9725 struct type *elt_type = TYPE_TARGET_TYPE (type);
9726 LONGEST lo, hi;
9727 struct value *res;
9728 LONGEST i;
9729
9730 /* Verify that both val and type are arrays of scalars, and
9731 that the size of val's elements is smaller than the size
9732 of type's element. */
9733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9734 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9735 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9736 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9737 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9738 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9739
9740 if (!get_array_bounds (type, &lo, &hi))
9741 error (_("unable to determine array bounds"));
9742
9743 res = allocate_value (type);
9744
9745 /* Promote each array element. */
9746 for (i = 0; i < hi - lo + 1; i++)
9747 {
9748 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9749
9750 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9751 value_contents_all (elt), TYPE_LENGTH (elt_type));
9752 }
9753
9754 return res;
9755}
9756
4c4b4cd2
PH
9757/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9758 return the converted value. */
9759
d2e4a39e
AS
9760static struct value *
9761coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9762{
df407dfe 9763 struct type *type2 = value_type (val);
5b4ee69b 9764
14f9c5c9
AS
9765 if (type == type2)
9766 return val;
9767
61ee279c
PH
9768 type2 = ada_check_typedef (type2);
9769 type = ada_check_typedef (type);
14f9c5c9 9770
d2e4a39e
AS
9771 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9772 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9773 {
9774 val = ada_value_ind (val);
df407dfe 9775 type2 = value_type (val);
14f9c5c9
AS
9776 }
9777
d2e4a39e 9778 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9779 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9780 {
d99dcf51
JB
9781 if (!ada_same_array_size_p (type, type2))
9782 error (_("cannot assign arrays of different length"));
9783
9784 if (is_integral_type (TYPE_TARGET_TYPE (type))
9785 && is_integral_type (TYPE_TARGET_TYPE (type2))
9786 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9787 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9788 {
9789 /* Allow implicit promotion of the array elements to
9790 a wider type. */
9791 return ada_promote_array_of_integrals (type, val);
9792 }
9793
9794 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9795 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9796 error (_("Incompatible types in assignment"));
04624583 9797 deprecated_set_value_type (val, type);
14f9c5c9 9798 }
d2e4a39e 9799 return val;
14f9c5c9
AS
9800}
9801
4c4b4cd2
PH
9802static struct value *
9803ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9804{
9805 struct value *val;
9806 struct type *type1, *type2;
9807 LONGEST v, v1, v2;
9808
994b9211
AC
9809 arg1 = coerce_ref (arg1);
9810 arg2 = coerce_ref (arg2);
18af8284
JB
9811 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9812 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9813
76a01679
JB
9814 if (TYPE_CODE (type1) != TYPE_CODE_INT
9815 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9816 return value_binop (arg1, arg2, op);
9817
76a01679 9818 switch (op)
4c4b4cd2
PH
9819 {
9820 case BINOP_MOD:
9821 case BINOP_DIV:
9822 case BINOP_REM:
9823 break;
9824 default:
9825 return value_binop (arg1, arg2, op);
9826 }
9827
9828 v2 = value_as_long (arg2);
9829 if (v2 == 0)
323e0a4a 9830 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9831
9832 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9833 return value_binop (arg1, arg2, op);
9834
9835 v1 = value_as_long (arg1);
9836 switch (op)
9837 {
9838 case BINOP_DIV:
9839 v = v1 / v2;
76a01679
JB
9840 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9841 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9842 break;
9843 case BINOP_REM:
9844 v = v1 % v2;
76a01679
JB
9845 if (v * v1 < 0)
9846 v -= v2;
4c4b4cd2
PH
9847 break;
9848 default:
9849 /* Should not reach this point. */
9850 v = 0;
9851 }
9852
9853 val = allocate_value (type1);
990a07ab 9854 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9855 TYPE_LENGTH (value_type (val)),
9856 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9857 return val;
9858}
9859
9860static int
9861ada_value_equal (struct value *arg1, struct value *arg2)
9862{
df407dfe
AC
9863 if (ada_is_direct_array_type (value_type (arg1))
9864 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9865 {
79e8fcaa
JB
9866 struct type *arg1_type, *arg2_type;
9867
f58b38bf
JB
9868 /* Automatically dereference any array reference before
9869 we attempt to perform the comparison. */
9870 arg1 = ada_coerce_ref (arg1);
9871 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9872
4c4b4cd2
PH
9873 arg1 = ada_coerce_to_simple_array (arg1);
9874 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9875
9876 arg1_type = ada_check_typedef (value_type (arg1));
9877 arg2_type = ada_check_typedef (value_type (arg2));
9878
9879 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9880 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9881 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9882 /* FIXME: The following works only for types whose
76a01679
JB
9883 representations use all bits (no padding or undefined bits)
9884 and do not have user-defined equality. */
79e8fcaa
JB
9885 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9886 && memcmp (value_contents (arg1), value_contents (arg2),
9887 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9888 }
9889 return value_equal (arg1, arg2);
9890}
9891
52ce6436
PH
9892/* Total number of component associations in the aggregate starting at
9893 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9894 OP_AGGREGATE. */
52ce6436
PH
9895
9896static int
9897num_component_specs (struct expression *exp, int pc)
9898{
9899 int n, m, i;
5b4ee69b 9900
52ce6436
PH
9901 m = exp->elts[pc + 1].longconst;
9902 pc += 3;
9903 n = 0;
9904 for (i = 0; i < m; i += 1)
9905 {
9906 switch (exp->elts[pc].opcode)
9907 {
9908 default:
9909 n += 1;
9910 break;
9911 case OP_CHOICES:
9912 n += exp->elts[pc + 1].longconst;
9913 break;
9914 }
9915 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9916 }
9917 return n;
9918}
9919
9920/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9921 component of LHS (a simple array or a record), updating *POS past
9922 the expression, assuming that LHS is contained in CONTAINER. Does
9923 not modify the inferior's memory, nor does it modify LHS (unless
9924 LHS == CONTAINER). */
9925
9926static void
9927assign_component (struct value *container, struct value *lhs, LONGEST index,
9928 struct expression *exp, int *pos)
9929{
9930 struct value *mark = value_mark ();
9931 struct value *elt;
0e2da9f0 9932 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9933
0e2da9f0 9934 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9935 {
22601c15
UW
9936 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9937 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9938
52ce6436
PH
9939 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9940 }
9941 else
9942 {
9943 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9944 elt = ada_to_fixed_value (elt);
52ce6436
PH
9945 }
9946
9947 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9948 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9949 else
9950 value_assign_to_component (container, elt,
9951 ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953
9954 value_free_to_mark (mark);
9955}
9956
9957/* Assuming that LHS represents an lvalue having a record or array
9958 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9959 of that aggregate's value to LHS, advancing *POS past the
9960 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9961 lvalue containing LHS (possibly LHS itself). Does not modify
9962 the inferior's memory, nor does it modify the contents of
0963b4bd 9963 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9964
9965static struct value *
9966assign_aggregate (struct value *container,
9967 struct value *lhs, struct expression *exp,
9968 int *pos, enum noside noside)
9969{
9970 struct type *lhs_type;
9971 int n = exp->elts[*pos+1].longconst;
9972 LONGEST low_index, high_index;
9973 int num_specs;
9974 LONGEST *indices;
9975 int max_indices, num_indices;
52ce6436 9976 int i;
52ce6436
PH
9977
9978 *pos += 3;
9979 if (noside != EVAL_NORMAL)
9980 {
52ce6436
PH
9981 for (i = 0; i < n; i += 1)
9982 ada_evaluate_subexp (NULL, exp, pos, noside);
9983 return container;
9984 }
9985
9986 container = ada_coerce_ref (container);
9987 if (ada_is_direct_array_type (value_type (container)))
9988 container = ada_coerce_to_simple_array (container);
9989 lhs = ada_coerce_ref (lhs);
9990 if (!deprecated_value_modifiable (lhs))
9991 error (_("Left operand of assignment is not a modifiable lvalue."));
9992
0e2da9f0 9993 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9994 if (ada_is_direct_array_type (lhs_type))
9995 {
9996 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9997 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9998 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9999 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10000 }
10001 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10002 {
10003 low_index = 0;
10004 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10005 }
10006 else
10007 error (_("Left-hand side must be array or record."));
10008
10009 num_specs = num_component_specs (exp, *pos - 3);
10010 max_indices = 4 * num_specs + 4;
8d749320 10011 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10012 indices[0] = indices[1] = low_index - 1;
10013 indices[2] = indices[3] = high_index + 1;
10014 num_indices = 4;
10015
10016 for (i = 0; i < n; i += 1)
10017 {
10018 switch (exp->elts[*pos].opcode)
10019 {
1fbf5ada
JB
10020 case OP_CHOICES:
10021 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10022 &num_indices, max_indices,
10023 low_index, high_index);
10024 break;
10025 case OP_POSITIONAL:
10026 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10027 &num_indices, max_indices,
10028 low_index, high_index);
1fbf5ada
JB
10029 break;
10030 case OP_OTHERS:
10031 if (i != n-1)
10032 error (_("Misplaced 'others' clause"));
10033 aggregate_assign_others (container, lhs, exp, pos, indices,
10034 num_indices, low_index, high_index);
10035 break;
10036 default:
10037 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10038 }
10039 }
10040
10041 return container;
10042}
10043
10044/* Assign into the component of LHS indexed by the OP_POSITIONAL
10045 construct at *POS, updating *POS past the construct, given that
10046 the positions are relative to lower bound LOW, where HIGH is the
10047 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10048 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10049 assign_aggregate. */
52ce6436
PH
10050static void
10051aggregate_assign_positional (struct value *container,
10052 struct value *lhs, struct expression *exp,
10053 int *pos, LONGEST *indices, int *num_indices,
10054 int max_indices, LONGEST low, LONGEST high)
10055{
10056 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10057
10058 if (ind - 1 == high)
e1d5a0d2 10059 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10060 if (ind <= high)
10061 {
10062 add_component_interval (ind, ind, indices, num_indices, max_indices);
10063 *pos += 3;
10064 assign_component (container, lhs, ind, exp, pos);
10065 }
10066 else
10067 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10068}
10069
10070/* Assign into the components of LHS indexed by the OP_CHOICES
10071 construct at *POS, updating *POS past the construct, given that
10072 the allowable indices are LOW..HIGH. Record the indices assigned
10073 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10074 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10075static void
10076aggregate_assign_from_choices (struct value *container,
10077 struct value *lhs, struct expression *exp,
10078 int *pos, LONGEST *indices, int *num_indices,
10079 int max_indices, LONGEST low, LONGEST high)
10080{
10081 int j;
10082 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10083 int choice_pos, expr_pc;
10084 int is_array = ada_is_direct_array_type (value_type (lhs));
10085
10086 choice_pos = *pos += 3;
10087
10088 for (j = 0; j < n_choices; j += 1)
10089 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10090 expr_pc = *pos;
10091 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10092
10093 for (j = 0; j < n_choices; j += 1)
10094 {
10095 LONGEST lower, upper;
10096 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10097
52ce6436
PH
10098 if (op == OP_DISCRETE_RANGE)
10099 {
10100 choice_pos += 1;
10101 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10102 EVAL_NORMAL));
10103 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10104 EVAL_NORMAL));
10105 }
10106 else if (is_array)
10107 {
10108 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10109 EVAL_NORMAL));
10110 upper = lower;
10111 }
10112 else
10113 {
10114 int ind;
0d5cff50 10115 const char *name;
5b4ee69b 10116
52ce6436
PH
10117 switch (op)
10118 {
10119 case OP_NAME:
10120 name = &exp->elts[choice_pos + 2].string;
10121 break;
10122 case OP_VAR_VALUE:
10123 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10124 break;
10125 default:
10126 error (_("Invalid record component association."));
10127 }
10128 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10129 ind = 0;
10130 if (! find_struct_field (name, value_type (lhs), 0,
10131 NULL, NULL, NULL, NULL, &ind))
10132 error (_("Unknown component name: %s."), name);
10133 lower = upper = ind;
10134 }
10135
10136 if (lower <= upper && (lower < low || upper > high))
10137 error (_("Index in component association out of bounds."));
10138
10139 add_component_interval (lower, upper, indices, num_indices,
10140 max_indices);
10141 while (lower <= upper)
10142 {
10143 int pos1;
5b4ee69b 10144
52ce6436
PH
10145 pos1 = expr_pc;
10146 assign_component (container, lhs, lower, exp, &pos1);
10147 lower += 1;
10148 }
10149 }
10150}
10151
10152/* Assign the value of the expression in the OP_OTHERS construct in
10153 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10154 have not been previously assigned. The index intervals already assigned
10155 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10156 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10157static void
10158aggregate_assign_others (struct value *container,
10159 struct value *lhs, struct expression *exp,
10160 int *pos, LONGEST *indices, int num_indices,
10161 LONGEST low, LONGEST high)
10162{
10163 int i;
5ce64950 10164 int expr_pc = *pos + 1;
52ce6436
PH
10165
10166 for (i = 0; i < num_indices - 2; i += 2)
10167 {
10168 LONGEST ind;
5b4ee69b 10169
52ce6436
PH
10170 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10171 {
5ce64950 10172 int localpos;
5b4ee69b 10173
5ce64950
MS
10174 localpos = expr_pc;
10175 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10176 }
10177 }
10178 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10179}
10180
10181/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10182 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10183 modifying *SIZE as needed. It is an error if *SIZE exceeds
10184 MAX_SIZE. The resulting intervals do not overlap. */
10185static void
10186add_component_interval (LONGEST low, LONGEST high,
10187 LONGEST* indices, int *size, int max_size)
10188{
10189 int i, j;
5b4ee69b 10190
52ce6436
PH
10191 for (i = 0; i < *size; i += 2) {
10192 if (high >= indices[i] && low <= indices[i + 1])
10193 {
10194 int kh;
5b4ee69b 10195
52ce6436
PH
10196 for (kh = i + 2; kh < *size; kh += 2)
10197 if (high < indices[kh])
10198 break;
10199 if (low < indices[i])
10200 indices[i] = low;
10201 indices[i + 1] = indices[kh - 1];
10202 if (high > indices[i + 1])
10203 indices[i + 1] = high;
10204 memcpy (indices + i + 2, indices + kh, *size - kh);
10205 *size -= kh - i - 2;
10206 return;
10207 }
10208 else if (high < indices[i])
10209 break;
10210 }
10211
10212 if (*size == max_size)
10213 error (_("Internal error: miscounted aggregate components."));
10214 *size += 2;
10215 for (j = *size-1; j >= i+2; j -= 1)
10216 indices[j] = indices[j - 2];
10217 indices[i] = low;
10218 indices[i + 1] = high;
10219}
10220
6e48bd2c
JB
10221/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10222 is different. */
10223
10224static struct value *
b7e22850 10225ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10226{
10227 if (type == ada_check_typedef (value_type (arg2)))
10228 return arg2;
10229
10230 if (ada_is_fixed_point_type (type))
95f39a5b 10231 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10232
10233 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10234 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10235
10236 return value_cast (type, arg2);
10237}
10238
284614f0
JB
10239/* Evaluating Ada expressions, and printing their result.
10240 ------------------------------------------------------
10241
21649b50
JB
10242 1. Introduction:
10243 ----------------
10244
284614f0
JB
10245 We usually evaluate an Ada expression in order to print its value.
10246 We also evaluate an expression in order to print its type, which
10247 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10248 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10249 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10250 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10251 similar.
10252
10253 Evaluating expressions is a little more complicated for Ada entities
10254 than it is for entities in languages such as C. The main reason for
10255 this is that Ada provides types whose definition might be dynamic.
10256 One example of such types is variant records. Or another example
10257 would be an array whose bounds can only be known at run time.
10258
10259 The following description is a general guide as to what should be
10260 done (and what should NOT be done) in order to evaluate an expression
10261 involving such types, and when. This does not cover how the semantic
10262 information is encoded by GNAT as this is covered separatly. For the
10263 document used as the reference for the GNAT encoding, see exp_dbug.ads
10264 in the GNAT sources.
10265
10266 Ideally, we should embed each part of this description next to its
10267 associated code. Unfortunately, the amount of code is so vast right
10268 now that it's hard to see whether the code handling a particular
10269 situation might be duplicated or not. One day, when the code is
10270 cleaned up, this guide might become redundant with the comments
10271 inserted in the code, and we might want to remove it.
10272
21649b50
JB
10273 2. ``Fixing'' an Entity, the Simple Case:
10274 -----------------------------------------
10275
284614f0
JB
10276 When evaluating Ada expressions, the tricky issue is that they may
10277 reference entities whose type contents and size are not statically
10278 known. Consider for instance a variant record:
10279
10280 type Rec (Empty : Boolean := True) is record
10281 case Empty is
10282 when True => null;
10283 when False => Value : Integer;
10284 end case;
10285 end record;
10286 Yes : Rec := (Empty => False, Value => 1);
10287 No : Rec := (empty => True);
10288
10289 The size and contents of that record depends on the value of the
10290 descriminant (Rec.Empty). At this point, neither the debugging
10291 information nor the associated type structure in GDB are able to
10292 express such dynamic types. So what the debugger does is to create
10293 "fixed" versions of the type that applies to the specific object.
10294 We also informally refer to this opperation as "fixing" an object,
10295 which means creating its associated fixed type.
10296
10297 Example: when printing the value of variable "Yes" above, its fixed
10298 type would look like this:
10299
10300 type Rec is record
10301 Empty : Boolean;
10302 Value : Integer;
10303 end record;
10304
10305 On the other hand, if we printed the value of "No", its fixed type
10306 would become:
10307
10308 type Rec is record
10309 Empty : Boolean;
10310 end record;
10311
10312 Things become a little more complicated when trying to fix an entity
10313 with a dynamic type that directly contains another dynamic type,
10314 such as an array of variant records, for instance. There are
10315 two possible cases: Arrays, and records.
10316
21649b50
JB
10317 3. ``Fixing'' Arrays:
10318 ---------------------
10319
10320 The type structure in GDB describes an array in terms of its bounds,
10321 and the type of its elements. By design, all elements in the array
10322 have the same type and we cannot represent an array of variant elements
10323 using the current type structure in GDB. When fixing an array,
10324 we cannot fix the array element, as we would potentially need one
10325 fixed type per element of the array. As a result, the best we can do
10326 when fixing an array is to produce an array whose bounds and size
10327 are correct (allowing us to read it from memory), but without having
10328 touched its element type. Fixing each element will be done later,
10329 when (if) necessary.
10330
10331 Arrays are a little simpler to handle than records, because the same
10332 amount of memory is allocated for each element of the array, even if
1b536f04 10333 the amount of space actually used by each element differs from element
21649b50 10334 to element. Consider for instance the following array of type Rec:
284614f0
JB
10335
10336 type Rec_Array is array (1 .. 2) of Rec;
10337
1b536f04
JB
10338 The actual amount of memory occupied by each element might be different
10339 from element to element, depending on the value of their discriminant.
21649b50 10340 But the amount of space reserved for each element in the array remains
1b536f04 10341 fixed regardless. So we simply need to compute that size using
21649b50
JB
10342 the debugging information available, from which we can then determine
10343 the array size (we multiply the number of elements of the array by
10344 the size of each element).
10345
10346 The simplest case is when we have an array of a constrained element
10347 type. For instance, consider the following type declarations:
10348
10349 type Bounded_String (Max_Size : Integer) is
10350 Length : Integer;
10351 Buffer : String (1 .. Max_Size);
10352 end record;
10353 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10354
10355 In this case, the compiler describes the array as an array of
10356 variable-size elements (identified by its XVS suffix) for which
10357 the size can be read in the parallel XVZ variable.
10358
10359 In the case of an array of an unconstrained element type, the compiler
10360 wraps the array element inside a private PAD type. This type should not
10361 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10362 that we also use the adjective "aligner" in our code to designate
10363 these wrapper types.
10364
1b536f04 10365 In some cases, the size allocated for each element is statically
21649b50
JB
10366 known. In that case, the PAD type already has the correct size,
10367 and the array element should remain unfixed.
10368
10369 But there are cases when this size is not statically known.
10370 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10371
10372 type Dynamic is array (1 .. Five) of Integer;
10373 type Wrapper (Has_Length : Boolean := False) is record
10374 Data : Dynamic;
10375 case Has_Length is
10376 when True => Length : Integer;
10377 when False => null;
10378 end case;
10379 end record;
10380 type Wrapper_Array is array (1 .. 2) of Wrapper;
10381
10382 Hello : Wrapper_Array := (others => (Has_Length => True,
10383 Data => (others => 17),
10384 Length => 1));
10385
10386
10387 The debugging info would describe variable Hello as being an
10388 array of a PAD type. The size of that PAD type is not statically
10389 known, but can be determined using a parallel XVZ variable.
10390 In that case, a copy of the PAD type with the correct size should
10391 be used for the fixed array.
10392
21649b50
JB
10393 3. ``Fixing'' record type objects:
10394 ----------------------------------
10395
10396 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10397 record types. In this case, in order to compute the associated
10398 fixed type, we need to determine the size and offset of each of
10399 its components. This, in turn, requires us to compute the fixed
10400 type of each of these components.
10401
10402 Consider for instance the example:
10403
10404 type Bounded_String (Max_Size : Natural) is record
10405 Str : String (1 .. Max_Size);
10406 Length : Natural;
10407 end record;
10408 My_String : Bounded_String (Max_Size => 10);
10409
10410 In that case, the position of field "Length" depends on the size
10411 of field Str, which itself depends on the value of the Max_Size
21649b50 10412 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10413 we need to fix the type of field Str. Therefore, fixing a variant
10414 record requires us to fix each of its components.
10415
10416 However, if a component does not have a dynamic size, the component
10417 should not be fixed. In particular, fields that use a PAD type
10418 should not fixed. Here is an example where this might happen
10419 (assuming type Rec above):
10420
10421 type Container (Big : Boolean) is record
10422 First : Rec;
10423 After : Integer;
10424 case Big is
10425 when True => Another : Integer;
10426 when False => null;
10427 end case;
10428 end record;
10429 My_Container : Container := (Big => False,
10430 First => (Empty => True),
10431 After => 42);
10432
10433 In that example, the compiler creates a PAD type for component First,
10434 whose size is constant, and then positions the component After just
10435 right after it. The offset of component After is therefore constant
10436 in this case.
10437
10438 The debugger computes the position of each field based on an algorithm
10439 that uses, among other things, the actual position and size of the field
21649b50
JB
10440 preceding it. Let's now imagine that the user is trying to print
10441 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10442 end up computing the offset of field After based on the size of the
10443 fixed version of field First. And since in our example First has
10444 only one actual field, the size of the fixed type is actually smaller
10445 than the amount of space allocated to that field, and thus we would
10446 compute the wrong offset of field After.
10447
21649b50
JB
10448 To make things more complicated, we need to watch out for dynamic
10449 components of variant records (identified by the ___XVL suffix in
10450 the component name). Even if the target type is a PAD type, the size
10451 of that type might not be statically known. So the PAD type needs
10452 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10453 we might end up with the wrong size for our component. This can be
10454 observed with the following type declarations:
284614f0
JB
10455
10456 type Octal is new Integer range 0 .. 7;
10457 type Octal_Array is array (Positive range <>) of Octal;
10458 pragma Pack (Octal_Array);
10459
10460 type Octal_Buffer (Size : Positive) is record
10461 Buffer : Octal_Array (1 .. Size);
10462 Length : Integer;
10463 end record;
10464
10465 In that case, Buffer is a PAD type whose size is unset and needs
10466 to be computed by fixing the unwrapped type.
10467
21649b50
JB
10468 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10469 ----------------------------------------------------------
10470
10471 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10472 thus far, be actually fixed?
10473
10474 The answer is: Only when referencing that element. For instance
10475 when selecting one component of a record, this specific component
10476 should be fixed at that point in time. Or when printing the value
10477 of a record, each component should be fixed before its value gets
10478 printed. Similarly for arrays, the element of the array should be
10479 fixed when printing each element of the array, or when extracting
10480 one element out of that array. On the other hand, fixing should
10481 not be performed on the elements when taking a slice of an array!
10482
31432a67 10483 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10484 size of each field is that we end up also miscomputing the size
10485 of the containing type. This can have adverse results when computing
10486 the value of an entity. GDB fetches the value of an entity based
10487 on the size of its type, and thus a wrong size causes GDB to fetch
10488 the wrong amount of memory. In the case where the computed size is
10489 too small, GDB fetches too little data to print the value of our
31432a67 10490 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10491 past the buffer containing the data =:-o. */
10492
ced9779b
JB
10493/* Evaluate a subexpression of EXP, at index *POS, and return a value
10494 for that subexpression cast to TO_TYPE. Advance *POS over the
10495 subexpression. */
10496
10497static value *
10498ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10499 enum noside noside, struct type *to_type)
10500{
10501 int pc = *pos;
10502
10503 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10504 || exp->elts[pc].opcode == OP_VAR_VALUE)
10505 {
10506 (*pos) += 4;
10507
10508 value *val;
10509 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10510 {
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 return value_zero (to_type, not_lval);
10513
10514 val = evaluate_var_msym_value (noside,
10515 exp->elts[pc + 1].objfile,
10516 exp->elts[pc + 2].msymbol);
10517 }
10518 else
10519 val = evaluate_var_value (noside,
10520 exp->elts[pc + 1].block,
10521 exp->elts[pc + 2].symbol);
10522
10523 if (noside == EVAL_SKIP)
10524 return eval_skip_value (exp);
10525
10526 val = ada_value_cast (to_type, val);
10527
10528 /* Follow the Ada language semantics that do not allow taking
10529 an address of the result of a cast (view conversion in Ada). */
10530 if (VALUE_LVAL (val) == lval_memory)
10531 {
10532 if (value_lazy (val))
10533 value_fetch_lazy (val);
10534 VALUE_LVAL (val) = not_lval;
10535 }
10536 return val;
10537 }
10538
10539 value *val = evaluate_subexp (to_type, exp, pos, noside);
10540 if (noside == EVAL_SKIP)
10541 return eval_skip_value (exp);
10542 return ada_value_cast (to_type, val);
10543}
10544
284614f0
JB
10545/* Implement the evaluate_exp routine in the exp_descriptor structure
10546 for the Ada language. */
10547
52ce6436 10548static struct value *
ebf56fd3 10549ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10550 int *pos, enum noside noside)
14f9c5c9
AS
10551{
10552 enum exp_opcode op;
b5385fc0 10553 int tem;
14f9c5c9 10554 int pc;
5ec18f2b 10555 int preeval_pos;
14f9c5c9
AS
10556 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10557 struct type *type;
52ce6436 10558 int nargs, oplen;
d2e4a39e 10559 struct value **argvec;
14f9c5c9 10560
d2e4a39e
AS
10561 pc = *pos;
10562 *pos += 1;
14f9c5c9
AS
10563 op = exp->elts[pc].opcode;
10564
d2e4a39e 10565 switch (op)
14f9c5c9
AS
10566 {
10567 default:
10568 *pos -= 1;
6e48bd2c 10569 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10570
10571 if (noside == EVAL_NORMAL)
10572 arg1 = unwrap_value (arg1);
6e48bd2c 10573
edd079d9 10574 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10575 then we need to perform the conversion manually, because
10576 evaluate_subexp_standard doesn't do it. This conversion is
10577 necessary in Ada because the different kinds of float/fixed
10578 types in Ada have different representations.
10579
10580 Similarly, we need to perform the conversion from OP_LONG
10581 ourselves. */
edd079d9 10582 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10583 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10584
10585 return arg1;
4c4b4cd2
PH
10586
10587 case OP_STRING:
10588 {
76a01679 10589 struct value *result;
5b4ee69b 10590
76a01679
JB
10591 *pos -= 1;
10592 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593 /* The result type will have code OP_STRING, bashed there from
10594 OP_ARRAY. Bash it back. */
df407dfe
AC
10595 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10596 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10597 return result;
4c4b4cd2 10598 }
14f9c5c9
AS
10599
10600 case UNOP_CAST:
10601 (*pos) += 2;
10602 type = exp->elts[pc + 1].type;
ced9779b 10603 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10604
4c4b4cd2
PH
10605 case UNOP_QUAL:
10606 (*pos) += 2;
10607 type = exp->elts[pc + 1].type;
10608 return ada_evaluate_subexp (type, exp, pos, noside);
10609
14f9c5c9
AS
10610 case BINOP_ASSIGN:
10611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10612 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10613 {
10614 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10615 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10616 return arg1;
10617 return ada_value_assign (arg1, arg1);
10618 }
003f3813
JB
10619 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10620 except if the lhs of our assignment is a convenience variable.
10621 In the case of assigning to a convenience variable, the lhs
10622 should be exactly the result of the evaluation of the rhs. */
10623 type = value_type (arg1);
10624 if (VALUE_LVAL (arg1) == lval_internalvar)
10625 type = NULL;
10626 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10627 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10628 return arg1;
df407dfe
AC
10629 if (ada_is_fixed_point_type (value_type (arg1)))
10630 arg2 = cast_to_fixed (value_type (arg1), arg2);
10631 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10632 error
323e0a4a 10633 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10634 else
df407dfe 10635 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10636 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10637
10638 case BINOP_ADD:
10639 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10640 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10641 if (noside == EVAL_SKIP)
4c4b4cd2 10642 goto nosideret;
2ac8a782
JB
10643 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10644 return (value_from_longest
10645 (value_type (arg1),
10646 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10647 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10648 return (value_from_longest
10649 (value_type (arg2),
10650 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10651 if ((ada_is_fixed_point_type (value_type (arg1))
10652 || ada_is_fixed_point_type (value_type (arg2)))
10653 && value_type (arg1) != value_type (arg2))
323e0a4a 10654 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10655 /* Do the addition, and cast the result to the type of the first
10656 argument. We cannot cast the result to a reference type, so if
10657 ARG1 is a reference type, find its underlying type. */
10658 type = value_type (arg1);
10659 while (TYPE_CODE (type) == TYPE_CODE_REF)
10660 type = TYPE_TARGET_TYPE (type);
f44316fa 10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10662 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10663
10664 case BINOP_SUB:
10665 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10666 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10667 if (noside == EVAL_SKIP)
4c4b4cd2 10668 goto nosideret;
2ac8a782
JB
10669 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10670 return (value_from_longest
10671 (value_type (arg1),
10672 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10673 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10674 return (value_from_longest
10675 (value_type (arg2),
10676 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10677 if ((ada_is_fixed_point_type (value_type (arg1))
10678 || ada_is_fixed_point_type (value_type (arg2)))
10679 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10680 error (_("Operands of fixed-point subtraction "
10681 "must have the same type"));
b7789565
JB
10682 /* Do the substraction, and cast the result to the type of the first
10683 argument. We cannot cast the result to a reference type, so if
10684 ARG1 is a reference type, find its underlying type. */
10685 type = value_type (arg1);
10686 while (TYPE_CODE (type) == TYPE_CODE_REF)
10687 type = TYPE_TARGET_TYPE (type);
f44316fa 10688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10689 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10690
10691 case BINOP_MUL:
10692 case BINOP_DIV:
e1578042
JB
10693 case BINOP_REM:
10694 case BINOP_MOD:
14f9c5c9
AS
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10697 if (noside == EVAL_SKIP)
4c4b4cd2 10698 goto nosideret;
e1578042 10699 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10700 {
10701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10702 return value_zero (value_type (arg1), not_lval);
10703 }
14f9c5c9 10704 else
4c4b4cd2 10705 {
a53b7a21 10706 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10707 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10708 arg1 = cast_from_fixed (type, arg1);
df407dfe 10709 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10710 arg2 = cast_from_fixed (type, arg2);
f44316fa 10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10712 return ada_value_binop (arg1, arg2, op);
10713 }
10714
4c4b4cd2
PH
10715 case BINOP_EQUAL:
10716 case BINOP_NOTEQUAL:
14f9c5c9 10717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10718 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10719 if (noside == EVAL_SKIP)
76a01679 10720 goto nosideret;
4c4b4cd2 10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10722 tem = 0;
4c4b4cd2 10723 else
f44316fa
UW
10724 {
10725 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10726 tem = ada_value_equal (arg1, arg2);
10727 }
4c4b4cd2 10728 if (op == BINOP_NOTEQUAL)
76a01679 10729 tem = !tem;
fbb06eb1
UW
10730 type = language_bool_type (exp->language_defn, exp->gdbarch);
10731 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10732
10733 case UNOP_NEG:
10734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10736 goto nosideret;
df407dfe
AC
10737 else if (ada_is_fixed_point_type (value_type (arg1)))
10738 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10739 else
f44316fa
UW
10740 {
10741 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10742 return value_neg (arg1);
10743 }
4c4b4cd2 10744
2330c6c6
JB
10745 case BINOP_LOGICAL_AND:
10746 case BINOP_LOGICAL_OR:
10747 case UNOP_LOGICAL_NOT:
000d5124
JB
10748 {
10749 struct value *val;
10750
10751 *pos -= 1;
10752 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10753 type = language_bool_type (exp->language_defn, exp->gdbarch);
10754 return value_cast (type, val);
000d5124 10755 }
2330c6c6
JB
10756
10757 case BINOP_BITWISE_AND:
10758 case BINOP_BITWISE_IOR:
10759 case BINOP_BITWISE_XOR:
000d5124
JB
10760 {
10761 struct value *val;
10762
10763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10764 *pos = pc;
10765 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10766
10767 return value_cast (value_type (arg1), val);
10768 }
2330c6c6 10769
14f9c5c9
AS
10770 case OP_VAR_VALUE:
10771 *pos -= 1;
6799def4 10772
14f9c5c9 10773 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10774 {
10775 *pos += 4;
10776 goto nosideret;
10777 }
da5c522f
JB
10778
10779 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10780 /* Only encountered when an unresolved symbol occurs in a
10781 context other than a function call, in which case, it is
52ce6436 10782 invalid. */
323e0a4a 10783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10784 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10785
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10787 {
0c1f74cf 10788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10789 /* Check to see if this is a tagged type. We also need to handle
10790 the case where the type is a reference to a tagged type, but
10791 we have to be careful to exclude pointers to tagged types.
10792 The latter should be shown as usual (as a pointer), whereas
10793 a reference should mostly be transparent to the user. */
10794 if (ada_is_tagged_type (type, 0)
023db19c 10795 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10797 {
10798 /* Tagged types are a little special in the fact that the real
10799 type is dynamic and can only be determined by inspecting the
10800 object's tag. This means that we need to get the object's
10801 value first (EVAL_NORMAL) and then extract the actual object
10802 type from its tag.
10803
10804 Note that we cannot skip the final step where we extract
10805 the object type from its tag, because the EVAL_NORMAL phase
10806 results in dynamic components being resolved into fixed ones.
10807 This can cause problems when trying to print the type
10808 description of tagged types whose parent has a dynamic size:
10809 We use the type name of the "_parent" component in order
10810 to print the name of the ancestor type in the type description.
10811 If that component had a dynamic size, the resolution into
10812 a fixed type would result in the loss of that type name,
10813 thus preventing us from printing the name of the ancestor
10814 type in the type description. */
10815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10816
10817 if (TYPE_CODE (type) != TYPE_CODE_REF)
10818 {
10819 struct type *actual_type;
10820
10821 actual_type = type_from_tag (ada_value_tag (arg1));
10822 if (actual_type == NULL)
10823 /* If, for some reason, we were unable to determine
10824 the actual type from the tag, then use the static
10825 approximation that we just computed as a fallback.
10826 This can happen if the debugging information is
10827 incomplete, for instance. */
10828 actual_type = type;
10829 return value_zero (actual_type, not_lval);
10830 }
10831 else
10832 {
10833 /* In the case of a ref, ada_coerce_ref takes care
10834 of determining the actual type. But the evaluation
10835 should return a ref as it should be valid to ask
10836 for its address; so rebuild a ref after coerce. */
10837 arg1 = ada_coerce_ref (arg1);
a65cfae5 10838 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10839 }
10840 }
0c1f74cf 10841
84754697
JB
10842 /* Records and unions for which GNAT encodings have been
10843 generated need to be statically fixed as well.
10844 Otherwise, non-static fixing produces a type where
10845 all dynamic properties are removed, which prevents "ptype"
10846 from being able to completely describe the type.
10847 For instance, a case statement in a variant record would be
10848 replaced by the relevant components based on the actual
10849 value of the discriminants. */
10850 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10851 && dynamic_template_type (type) != NULL)
10852 || (TYPE_CODE (type) == TYPE_CODE_UNION
10853 && ada_find_parallel_type (type, "___XVU") != NULL))
10854 {
10855 *pos += 4;
10856 return value_zero (to_static_fixed_type (type), not_lval);
10857 }
4c4b4cd2 10858 }
da5c522f
JB
10859
10860 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10861 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10862
10863 case OP_FUNCALL:
10864 (*pos) += 2;
10865
10866 /* Allocate arg vector, including space for the function to be
10867 called in argvec[0] and a terminating NULL. */
10868 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10869 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10870
10871 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10872 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10875 else
10876 {
10877 for (tem = 0; tem <= nargs; tem += 1)
10878 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 argvec[tem] = 0;
10880
10881 if (noside == EVAL_SKIP)
10882 goto nosideret;
10883 }
10884
ad82864c
JB
10885 if (ada_is_constrained_packed_array_type
10886 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10887 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10889 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10890 /* This is a packed array that has already been fixed, and
10891 therefore already coerced to a simple array. Nothing further
10892 to do. */
10893 ;
e6c2c623
PMR
10894 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10895 {
10896 /* Make sure we dereference references so that all the code below
10897 feels like it's really handling the referenced value. Wrapping
10898 types (for alignment) may be there, so make sure we strip them as
10899 well. */
10900 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10901 }
10902 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10903 && VALUE_LVAL (argvec[0]) == lval_memory)
10904 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10905
df407dfe 10906 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10907
10908 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10909 them. So, if this is an array typedef (encoding use for array
10910 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10911 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10912 type = ada_typedef_target_type (type);
10913
4c4b4cd2
PH
10914 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10915 {
61ee279c 10916 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10917 {
10918 case TYPE_CODE_FUNC:
61ee279c 10919 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10920 break;
10921 case TYPE_CODE_ARRAY:
10922 break;
10923 case TYPE_CODE_STRUCT:
10924 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10925 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10926 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10927 break;
10928 default:
323e0a4a 10929 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10930 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10931 break;
10932 }
10933 }
10934
10935 switch (TYPE_CODE (type))
10936 {
10937 case TYPE_CODE_FUNC:
10938 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10939 {
7022349d
PA
10940 if (TYPE_TARGET_TYPE (type) == NULL)
10941 error_call_unknown_return_type (NULL);
10942 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10943 }
e71585ff
PA
10944 return call_function_by_hand (argvec[0], NULL,
10945 gdb::make_array_view (argvec + 1,
10946 nargs));
c8ea1972
PH
10947 case TYPE_CODE_INTERNAL_FUNCTION:
10948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10949 /* We don't know anything about what the internal
10950 function might return, but we have to return
10951 something. */
10952 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10953 not_lval);
10954 else
10955 return call_internal_function (exp->gdbarch, exp->language_defn,
10956 argvec[0], nargs, argvec + 1);
10957
4c4b4cd2
PH
10958 case TYPE_CODE_STRUCT:
10959 {
10960 int arity;
10961
4c4b4cd2
PH
10962 arity = ada_array_arity (type);
10963 type = ada_array_element_type (type, nargs);
10964 if (type == NULL)
323e0a4a 10965 error (_("cannot subscript or call a record"));
4c4b4cd2 10966 if (arity != nargs)
323e0a4a 10967 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10969 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10970 return
10971 unwrap_value (ada_value_subscript
10972 (argvec[0], nargs, argvec + 1));
10973 }
10974 case TYPE_CODE_ARRAY:
10975 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10976 {
10977 type = ada_array_element_type (type, nargs);
10978 if (type == NULL)
323e0a4a 10979 error (_("element type of array unknown"));
4c4b4cd2 10980 else
0a07e705 10981 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10982 }
10983 return
10984 unwrap_value (ada_value_subscript
10985 (ada_coerce_to_simple_array (argvec[0]),
10986 nargs, argvec + 1));
10987 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10989 {
deede10c 10990 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10991 type = ada_array_element_type (type, nargs);
10992 if (type == NULL)
323e0a4a 10993 error (_("element type of array unknown"));
4c4b4cd2 10994 else
0a07e705 10995 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10996 }
10997 return
deede10c
JB
10998 unwrap_value (ada_value_ptr_subscript (argvec[0],
10999 nargs, argvec + 1));
4c4b4cd2
PH
11000
11001 default:
e1d5a0d2
PH
11002 error (_("Attempt to index or call something other than an "
11003 "array or function"));
4c4b4cd2
PH
11004 }
11005
11006 case TERNOP_SLICE:
11007 {
11008 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11009 struct value *low_bound_val =
11010 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11011 struct value *high_bound_val =
11012 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11013 LONGEST low_bound;
11014 LONGEST high_bound;
5b4ee69b 11015
994b9211
AC
11016 low_bound_val = coerce_ref (low_bound_val);
11017 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11018 low_bound = value_as_long (low_bound_val);
11019 high_bound = value_as_long (high_bound_val);
963a6417 11020
4c4b4cd2
PH
11021 if (noside == EVAL_SKIP)
11022 goto nosideret;
11023
4c4b4cd2
PH
11024 /* If this is a reference to an aligner type, then remove all
11025 the aligners. */
df407dfe
AC
11026 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11027 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11028 TYPE_TARGET_TYPE (value_type (array)) =
11029 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11030
ad82864c 11031 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11032 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11033
11034 /* If this is a reference to an array or an array lvalue,
11035 convert to a pointer. */
df407dfe
AC
11036 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11037 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11038 && VALUE_LVAL (array) == lval_memory))
11039 array = value_addr (array);
11040
1265e4aa 11041 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11042 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11043 (value_type (array))))
bff8c71f
TT
11044 return empty_array (ada_type_of_array (array, 0), low_bound,
11045 high_bound);
4c4b4cd2
PH
11046
11047 array = ada_coerce_to_simple_array_ptr (array);
11048
714e53ab
PH
11049 /* If we have more than one level of pointer indirection,
11050 dereference the value until we get only one level. */
df407dfe
AC
11051 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11052 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11053 == TYPE_CODE_PTR))
11054 array = value_ind (array);
11055
11056 /* Make sure we really do have an array type before going further,
11057 to avoid a SEGV when trying to get the index type or the target
11058 type later down the road if the debug info generated by
11059 the compiler is incorrect or incomplete. */
df407dfe 11060 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11061 error (_("cannot take slice of non-array"));
714e53ab 11062
828292f2
JB
11063 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11064 == TYPE_CODE_PTR)
4c4b4cd2 11065 {
828292f2
JB
11066 struct type *type0 = ada_check_typedef (value_type (array));
11067
0b5d8877 11068 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 11069 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
11070 else
11071 {
11072 struct type *arr_type0 =
828292f2 11073 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11074
f5938064
JG
11075 return ada_value_slice_from_ptr (array, arr_type0,
11076 longest_to_int (low_bound),
11077 longest_to_int (high_bound));
4c4b4cd2
PH
11078 }
11079 }
11080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11081 return array;
11082 else if (high_bound < low_bound)
bff8c71f 11083 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 11084 else
529cad9c
PH
11085 return ada_value_slice (array, longest_to_int (low_bound),
11086 longest_to_int (high_bound));
4c4b4cd2 11087 }
14f9c5c9 11088
4c4b4cd2
PH
11089 case UNOP_IN_RANGE:
11090 (*pos) += 2;
11091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11092 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11093
14f9c5c9 11094 if (noside == EVAL_SKIP)
4c4b4cd2 11095 goto nosideret;
14f9c5c9 11096
4c4b4cd2
PH
11097 switch (TYPE_CODE (type))
11098 {
11099 default:
e1d5a0d2
PH
11100 lim_warning (_("Membership test incompletely implemented; "
11101 "always returns true"));
fbb06eb1
UW
11102 type = language_bool_type (exp->language_defn, exp->gdbarch);
11103 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11104
11105 case TYPE_CODE_RANGE:
030b4912
UW
11106 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11107 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11110 type = language_bool_type (exp->language_defn, exp->gdbarch);
11111 return
11112 value_from_longest (type,
4c4b4cd2
PH
11113 (value_less (arg1, arg3)
11114 || value_equal (arg1, arg3))
11115 && (value_less (arg2, arg1)
11116 || value_equal (arg2, arg1)));
11117 }
11118
11119 case BINOP_IN_BOUNDS:
14f9c5c9 11120 (*pos) += 2;
4c4b4cd2
PH
11121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11123
4c4b4cd2
PH
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
14f9c5c9 11126
4c4b4cd2 11127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11128 {
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return value_zero (type, not_lval);
11131 }
14f9c5c9 11132
4c4b4cd2 11133 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11134
1eea4ebd
UW
11135 type = ada_index_type (value_type (arg2), tem, "range");
11136 if (!type)
11137 type = value_type (arg1);
14f9c5c9 11138
1eea4ebd
UW
11139 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11140 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11141
f44316fa
UW
11142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11144 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11145 return
fbb06eb1 11146 value_from_longest (type,
4c4b4cd2
PH
11147 (value_less (arg1, arg3)
11148 || value_equal (arg1, arg3))
11149 && (value_less (arg2, arg1)
11150 || value_equal (arg2, arg1)));
11151
11152 case TERNOP_IN_RANGE:
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156
11157 if (noside == EVAL_SKIP)
11158 goto nosideret;
11159
f44316fa
UW
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11163 return
fbb06eb1 11164 value_from_longest (type,
4c4b4cd2
PH
11165 (value_less (arg1, arg3)
11166 || value_equal (arg1, arg3))
11167 && (value_less (arg2, arg1)
11168 || value_equal (arg2, arg1)));
11169
11170 case OP_ATR_FIRST:
11171 case OP_ATR_LAST:
11172 case OP_ATR_LENGTH:
11173 {
76a01679 11174 struct type *type_arg;
5b4ee69b 11175
76a01679
JB
11176 if (exp->elts[*pos].opcode == OP_TYPE)
11177 {
11178 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11179 arg1 = NULL;
5bc23cb3 11180 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11181 }
11182 else
11183 {
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11185 type_arg = NULL;
11186 }
11187
11188 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11189 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11190 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11191 *pos += 4;
11192
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195
11196 if (type_arg == NULL)
11197 {
11198 arg1 = ada_coerce_ref (arg1);
11199
ad82864c 11200 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11201 arg1 = ada_coerce_to_simple_array (arg1);
11202
aa4fb036 11203 if (op == OP_ATR_LENGTH)
1eea4ebd 11204 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11205 else
11206 {
11207 type = ada_index_type (value_type (arg1), tem,
11208 ada_attribute_name (op));
11209 if (type == NULL)
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 }
76a01679
JB
11212
11213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11214 return allocate_value (type);
76a01679
JB
11215
11216 switch (op)
11217 {
11218 default: /* Should never happen. */
323e0a4a 11219 error (_("unexpected attribute encountered"));
76a01679 11220 case OP_ATR_FIRST:
1eea4ebd
UW
11221 return value_from_longest
11222 (type, ada_array_bound (arg1, tem, 0));
76a01679 11223 case OP_ATR_LAST:
1eea4ebd
UW
11224 return value_from_longest
11225 (type, ada_array_bound (arg1, tem, 1));
76a01679 11226 case OP_ATR_LENGTH:
1eea4ebd
UW
11227 return value_from_longest
11228 (type, ada_array_length (arg1, tem));
76a01679
JB
11229 }
11230 }
11231 else if (discrete_type_p (type_arg))
11232 {
11233 struct type *range_type;
0d5cff50 11234 const char *name = ada_type_name (type_arg);
5b4ee69b 11235
76a01679
JB
11236 range_type = NULL;
11237 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11238 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11239 if (range_type == NULL)
11240 range_type = type_arg;
11241 switch (op)
11242 {
11243 default:
323e0a4a 11244 error (_("unexpected attribute encountered"));
76a01679 11245 case OP_ATR_FIRST:
690cc4eb 11246 return value_from_longest
43bbcdc2 11247 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11248 case OP_ATR_LAST:
690cc4eb 11249 return value_from_longest
43bbcdc2 11250 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11251 case OP_ATR_LENGTH:
323e0a4a 11252 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11253 }
11254 }
11255 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11256 error (_("unimplemented type attribute"));
76a01679
JB
11257 else
11258 {
11259 LONGEST low, high;
11260
ad82864c
JB
11261 if (ada_is_constrained_packed_array_type (type_arg))
11262 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11263
aa4fb036 11264 if (op == OP_ATR_LENGTH)
1eea4ebd 11265 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11266 else
11267 {
11268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11269 if (type == NULL)
11270 type = builtin_type (exp->gdbarch)->builtin_int;
11271 }
1eea4ebd 11272
76a01679
JB
11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 return allocate_value (type);
11275
11276 switch (op)
11277 {
11278 default:
323e0a4a 11279 error (_("unexpected attribute encountered"));
76a01679 11280 case OP_ATR_FIRST:
1eea4ebd 11281 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11282 return value_from_longest (type, low);
11283 case OP_ATR_LAST:
1eea4ebd 11284 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11285 return value_from_longest (type, high);
11286 case OP_ATR_LENGTH:
1eea4ebd
UW
11287 low = ada_array_bound_from_type (type_arg, tem, 0);
11288 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11289 return value_from_longest (type, high - low + 1);
11290 }
11291 }
14f9c5c9
AS
11292 }
11293
4c4b4cd2
PH
11294 case OP_ATR_TAG:
11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11296 if (noside == EVAL_SKIP)
76a01679 11297 goto nosideret;
4c4b4cd2
PH
11298
11299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11300 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11301
11302 return ada_value_tag (arg1);
11303
11304 case OP_ATR_MIN:
11305 case OP_ATR_MAX:
11306 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11309 if (noside == EVAL_SKIP)
76a01679 11310 goto nosideret;
d2e4a39e 11311 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11312 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11313 else
f44316fa
UW
11314 {
11315 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11316 return value_binop (arg1, arg2,
11317 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11318 }
14f9c5c9 11319
4c4b4cd2
PH
11320 case OP_ATR_MODULUS:
11321 {
31dedfee 11322 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11323
5b4ee69b 11324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11325 if (noside == EVAL_SKIP)
11326 goto nosideret;
4c4b4cd2 11327
76a01679 11328 if (!ada_is_modular_type (type_arg))
323e0a4a 11329 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11330
76a01679
JB
11331 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11332 ada_modulus (type_arg));
4c4b4cd2
PH
11333 }
11334
11335
11336 case OP_ATR_POS:
11337 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11339 if (noside == EVAL_SKIP)
76a01679 11340 goto nosideret;
3cb382c9
UW
11341 type = builtin_type (exp->gdbarch)->builtin_int;
11342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11343 return value_zero (type, not_lval);
14f9c5c9 11344 else
3cb382c9 11345 return value_pos_atr (type, arg1);
14f9c5c9 11346
4c4b4cd2
PH
11347 case OP_ATR_SIZE:
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11349 type = value_type (arg1);
11350
11351 /* If the argument is a reference, then dereference its type, since
11352 the user is really asking for the size of the actual object,
11353 not the size of the pointer. */
11354 if (TYPE_CODE (type) == TYPE_CODE_REF)
11355 type = TYPE_TARGET_TYPE (type);
11356
4c4b4cd2 11357 if (noside == EVAL_SKIP)
76a01679 11358 goto nosideret;
4c4b4cd2 11359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11360 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11361 else
22601c15 11362 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11363 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11364
11365 case OP_ATR_VAL:
11366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11368 type = exp->elts[pc + 2].type;
14f9c5c9 11369 if (noside == EVAL_SKIP)
76a01679 11370 goto nosideret;
4c4b4cd2 11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11372 return value_zero (type, not_lval);
4c4b4cd2 11373 else
76a01679 11374 return value_val_atr (type, arg1);
4c4b4cd2
PH
11375
11376 case BINOP_EXP:
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11379 if (noside == EVAL_SKIP)
11380 goto nosideret;
11381 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11382 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11383 else
f44316fa
UW
11384 {
11385 /* For integer exponentiation operations,
11386 only promote the first argument. */
11387 if (is_integral_type (value_type (arg2)))
11388 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11389 else
11390 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11391
11392 return value_binop (arg1, arg2, op);
11393 }
4c4b4cd2
PH
11394
11395 case UNOP_PLUS:
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 else
11400 return arg1;
11401
11402 case UNOP_ABS:
11403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11404 if (noside == EVAL_SKIP)
11405 goto nosideret;
f44316fa 11406 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11407 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11408 return value_neg (arg1);
14f9c5c9 11409 else
4c4b4cd2 11410 return arg1;
14f9c5c9
AS
11411
11412 case UNOP_IND:
5ec18f2b 11413 preeval_pos = *pos;
6b0d7253 11414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11415 if (noside == EVAL_SKIP)
4c4b4cd2 11416 goto nosideret;
df407dfe 11417 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11419 {
11420 if (ada_is_array_descriptor_type (type))
11421 /* GDB allows dereferencing GNAT array descriptors. */
11422 {
11423 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11424
4c4b4cd2 11425 if (arrType == NULL)
323e0a4a 11426 error (_("Attempt to dereference null array pointer."));
00a4c844 11427 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11428 }
11429 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11430 || TYPE_CODE (type) == TYPE_CODE_REF
11431 /* In C you can dereference an array to get the 1st elt. */
11432 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11433 {
5ec18f2b
JG
11434 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11435 only be determined by inspecting the object's tag.
11436 This means that we need to evaluate completely the
11437 expression in order to get its type. */
11438
023db19c
JB
11439 if ((TYPE_CODE (type) == TYPE_CODE_REF
11440 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11441 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11442 {
11443 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11444 EVAL_NORMAL);
11445 type = value_type (ada_value_ind (arg1));
11446 }
11447 else
11448 {
11449 type = to_static_fixed_type
11450 (ada_aligned_type
11451 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11452 }
c1b5a1a6 11453 ada_ensure_varsize_limit (type);
714e53ab
PH
11454 return value_zero (type, lval_memory);
11455 }
4c4b4cd2 11456 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11457 {
11458 /* GDB allows dereferencing an int. */
11459 if (expect_type == NULL)
11460 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11461 lval_memory);
11462 else
11463 {
11464 expect_type =
11465 to_static_fixed_type (ada_aligned_type (expect_type));
11466 return value_zero (expect_type, lval_memory);
11467 }
11468 }
4c4b4cd2 11469 else
323e0a4a 11470 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11471 }
0963b4bd 11472 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11473 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11474
96967637
JB
11475 if (TYPE_CODE (type) == TYPE_CODE_INT)
11476 /* GDB allows dereferencing an int. If we were given
11477 the expect_type, then use that as the target type.
11478 Otherwise, assume that the target type is an int. */
11479 {
11480 if (expect_type != NULL)
11481 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11482 arg1));
11483 else
11484 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11485 (CORE_ADDR) value_as_address (arg1));
11486 }
6b0d7253 11487
4c4b4cd2
PH
11488 if (ada_is_array_descriptor_type (type))
11489 /* GDB allows dereferencing GNAT array descriptors. */
11490 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11491 else
4c4b4cd2 11492 return ada_value_ind (arg1);
14f9c5c9
AS
11493
11494 case STRUCTOP_STRUCT:
11495 tem = longest_to_int (exp->elts[pc + 1].longconst);
11496 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11497 preeval_pos = *pos;
14f9c5c9
AS
11498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11499 if (noside == EVAL_SKIP)
4c4b4cd2 11500 goto nosideret;
14f9c5c9 11501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11502 {
df407dfe 11503 struct type *type1 = value_type (arg1);
5b4ee69b 11504
76a01679
JB
11505 if (ada_is_tagged_type (type1, 1))
11506 {
11507 type = ada_lookup_struct_elt_type (type1,
11508 &exp->elts[pc + 2].string,
988f6b3d 11509 1, 1);
5ec18f2b
JG
11510
11511 /* If the field is not found, check if it exists in the
11512 extension of this object's type. This means that we
11513 need to evaluate completely the expression. */
11514
76a01679 11515 if (type == NULL)
5ec18f2b
JG
11516 {
11517 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11518 EVAL_NORMAL);
11519 arg1 = ada_value_struct_elt (arg1,
11520 &exp->elts[pc + 2].string,
11521 0);
11522 arg1 = unwrap_value (arg1);
11523 type = value_type (ada_to_fixed_value (arg1));
11524 }
76a01679
JB
11525 }
11526 else
11527 type =
11528 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11529 0);
76a01679
JB
11530
11531 return value_zero (ada_aligned_type (type), lval_memory);
11532 }
14f9c5c9 11533 else
a579cd9a
MW
11534 {
11535 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11536 arg1 = unwrap_value (arg1);
11537 return ada_to_fixed_value (arg1);
11538 }
284614f0 11539
14f9c5c9 11540 case OP_TYPE:
4c4b4cd2
PH
11541 /* The value is not supposed to be used. This is here to make it
11542 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11543 (*pos) += 2;
11544 if (noside == EVAL_SKIP)
4c4b4cd2 11545 goto nosideret;
14f9c5c9 11546 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11547 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11548 else
323e0a4a 11549 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11550
11551 case OP_AGGREGATE:
11552 case OP_CHOICES:
11553 case OP_OTHERS:
11554 case OP_DISCRETE_RANGE:
11555 case OP_POSITIONAL:
11556 case OP_NAME:
11557 if (noside == EVAL_NORMAL)
11558 switch (op)
11559 {
11560 case OP_NAME:
11561 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11562 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11563 case OP_AGGREGATE:
11564 error (_("Aggregates only allowed on the right of an assignment"));
11565 default:
0963b4bd
MS
11566 internal_error (__FILE__, __LINE__,
11567 _("aggregate apparently mangled"));
52ce6436
PH
11568 }
11569
11570 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11571 *pos += oplen - 1;
11572 for (tem = 0; tem < nargs; tem += 1)
11573 ada_evaluate_subexp (NULL, exp, pos, noside);
11574 goto nosideret;
14f9c5c9
AS
11575 }
11576
11577nosideret:
ced9779b 11578 return eval_skip_value (exp);
14f9c5c9 11579}
14f9c5c9 11580\f
d2e4a39e 11581
4c4b4cd2 11582 /* Fixed point */
14f9c5c9
AS
11583
11584/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11585 type name that encodes the 'small and 'delta information.
4c4b4cd2 11586 Otherwise, return NULL. */
14f9c5c9 11587
d2e4a39e 11588static const char *
ebf56fd3 11589fixed_type_info (struct type *type)
14f9c5c9 11590{
d2e4a39e 11591 const char *name = ada_type_name (type);
14f9c5c9
AS
11592 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11593
d2e4a39e
AS
11594 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11595 {
14f9c5c9 11596 const char *tail = strstr (name, "___XF_");
5b4ee69b 11597
14f9c5c9 11598 if (tail == NULL)
4c4b4cd2 11599 return NULL;
d2e4a39e 11600 else
4c4b4cd2 11601 return tail + 5;
14f9c5c9
AS
11602 }
11603 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11604 return fixed_type_info (TYPE_TARGET_TYPE (type));
11605 else
11606 return NULL;
11607}
11608
4c4b4cd2 11609/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11610
11611int
ebf56fd3 11612ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11613{
11614 return fixed_type_info (type) != NULL;
11615}
11616
4c4b4cd2
PH
11617/* Return non-zero iff TYPE represents a System.Address type. */
11618
11619int
11620ada_is_system_address_type (struct type *type)
11621{
11622 return (TYPE_NAME (type)
11623 && strcmp (TYPE_NAME (type), "system__address") == 0);
11624}
11625
14f9c5c9 11626/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11627 type, return the target floating-point type to be used to represent
11628 of this type during internal computation. */
11629
11630static struct type *
11631ada_scaling_type (struct type *type)
11632{
11633 return builtin_type (get_type_arch (type))->builtin_long_double;
11634}
11635
11636/* Assuming that TYPE is the representation of an Ada fixed-point
11637 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11638 delta cannot be determined. */
14f9c5c9 11639
50eff16b 11640struct value *
ebf56fd3 11641ada_delta (struct type *type)
14f9c5c9
AS
11642{
11643 const char *encoding = fixed_type_info (type);
50eff16b
UW
11644 struct type *scale_type = ada_scaling_type (type);
11645
11646 long long num, den;
11647
11648 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11649 return nullptr;
d2e4a39e 11650 else
50eff16b
UW
11651 return value_binop (value_from_longest (scale_type, num),
11652 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11653}
11654
11655/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11656 factor ('SMALL value) associated with the type. */
14f9c5c9 11657
50eff16b
UW
11658struct value *
11659ada_scaling_factor (struct type *type)
14f9c5c9
AS
11660{
11661 const char *encoding = fixed_type_info (type);
50eff16b
UW
11662 struct type *scale_type = ada_scaling_type (type);
11663
11664 long long num0, den0, num1, den1;
14f9c5c9 11665 int n;
d2e4a39e 11666
50eff16b 11667 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11668 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11669
11670 if (n < 2)
50eff16b 11671 return value_from_longest (scale_type, 1);
14f9c5c9 11672 else if (n == 4)
50eff16b
UW
11673 return value_binop (value_from_longest (scale_type, num1),
11674 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11675 else
50eff16b
UW
11676 return value_binop (value_from_longest (scale_type, num0),
11677 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11678}
11679
14f9c5c9 11680\f
d2e4a39e 11681
4c4b4cd2 11682 /* Range types */
14f9c5c9
AS
11683
11684/* Scan STR beginning at position K for a discriminant name, and
11685 return the value of that discriminant field of DVAL in *PX. If
11686 PNEW_K is not null, put the position of the character beyond the
11687 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11688 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11689
11690static int
108d56a4 11691scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11692 int *pnew_k)
14f9c5c9
AS
11693{
11694 static char *bound_buffer = NULL;
11695 static size_t bound_buffer_len = 0;
5da1a4d3 11696 const char *pstart, *pend, *bound;
d2e4a39e 11697 struct value *bound_val;
14f9c5c9
AS
11698
11699 if (dval == NULL || str == NULL || str[k] == '\0')
11700 return 0;
11701
5da1a4d3
SM
11702 pstart = str + k;
11703 pend = strstr (pstart, "__");
14f9c5c9
AS
11704 if (pend == NULL)
11705 {
5da1a4d3 11706 bound = pstart;
14f9c5c9
AS
11707 k += strlen (bound);
11708 }
d2e4a39e 11709 else
14f9c5c9 11710 {
5da1a4d3
SM
11711 int len = pend - pstart;
11712
11713 /* Strip __ and beyond. */
11714 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11715 strncpy (bound_buffer, pstart, len);
11716 bound_buffer[len] = '\0';
11717
14f9c5c9 11718 bound = bound_buffer;
d2e4a39e 11719 k = pend - str;
14f9c5c9 11720 }
d2e4a39e 11721
df407dfe 11722 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11723 if (bound_val == NULL)
11724 return 0;
11725
11726 *px = value_as_long (bound_val);
11727 if (pnew_k != NULL)
11728 *pnew_k = k;
11729 return 1;
11730}
11731
11732/* Value of variable named NAME in the current environment. If
11733 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11734 otherwise causes an error with message ERR_MSG. */
11735
d2e4a39e 11736static struct value *
edb0c9cb 11737get_var_value (const char *name, const char *err_msg)
14f9c5c9 11738{
b5ec771e 11739 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11740
54d343a2 11741 std::vector<struct block_symbol> syms;
b5ec771e
PA
11742 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11743 get_selected_block (0),
11744 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11745
11746 if (nsyms != 1)
11747 {
11748 if (err_msg == NULL)
4c4b4cd2 11749 return 0;
14f9c5c9 11750 else
8a3fe4f8 11751 error (("%s"), err_msg);
14f9c5c9
AS
11752 }
11753
54d343a2 11754 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11755}
d2e4a39e 11756
edb0c9cb
PA
11757/* Value of integer variable named NAME in the current environment.
11758 If no such variable is found, returns false. Otherwise, sets VALUE
11759 to the variable's value and returns true. */
4c4b4cd2 11760
edb0c9cb
PA
11761bool
11762get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11763{
4c4b4cd2 11764 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11765
14f9c5c9 11766 if (var_val == 0)
edb0c9cb
PA
11767 return false;
11768
11769 value = value_as_long (var_val);
11770 return true;
14f9c5c9 11771}
d2e4a39e 11772
14f9c5c9
AS
11773
11774/* Return a range type whose base type is that of the range type named
11775 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11776 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11778 corresponding range type from debug information; fall back to using it
11779 if symbol lookup fails. If a new type must be created, allocate it
11780 like ORIG_TYPE was. The bounds information, in general, is encoded
11781 in NAME, the base type given in the named range type. */
14f9c5c9 11782
d2e4a39e 11783static struct type *
28c85d6c 11784to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11785{
0d5cff50 11786 const char *name;
14f9c5c9 11787 struct type *base_type;
108d56a4 11788 const char *subtype_info;
14f9c5c9 11789
28c85d6c
JB
11790 gdb_assert (raw_type != NULL);
11791 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11792
1ce677a4 11793 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11794 base_type = TYPE_TARGET_TYPE (raw_type);
11795 else
11796 base_type = raw_type;
11797
28c85d6c 11798 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11799 subtype_info = strstr (name, "___XD");
11800 if (subtype_info == NULL)
690cc4eb 11801 {
43bbcdc2
PH
11802 LONGEST L = ada_discrete_type_low_bound (raw_type);
11803 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11804
690cc4eb
PH
11805 if (L < INT_MIN || U > INT_MAX)
11806 return raw_type;
11807 else
0c9c3474
SA
11808 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11809 L, U);
690cc4eb 11810 }
14f9c5c9
AS
11811 else
11812 {
11813 static char *name_buf = NULL;
11814 static size_t name_len = 0;
11815 int prefix_len = subtype_info - name;
11816 LONGEST L, U;
11817 struct type *type;
108d56a4 11818 const char *bounds_str;
14f9c5c9
AS
11819 int n;
11820
11821 GROW_VECT (name_buf, name_len, prefix_len + 5);
11822 strncpy (name_buf, name, prefix_len);
11823 name_buf[prefix_len] = '\0';
11824
11825 subtype_info += 5;
11826 bounds_str = strchr (subtype_info, '_');
11827 n = 1;
11828
d2e4a39e 11829 if (*subtype_info == 'L')
4c4b4cd2
PH
11830 {
11831 if (!ada_scan_number (bounds_str, n, &L, &n)
11832 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11833 return raw_type;
11834 if (bounds_str[n] == '_')
11835 n += 2;
0963b4bd 11836 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11837 n += 1;
11838 subtype_info += 1;
11839 }
d2e4a39e 11840 else
4c4b4cd2 11841 {
4c4b4cd2 11842 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11843 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11844 {
323e0a4a 11845 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11846 L = 1;
11847 }
11848 }
14f9c5c9 11849
d2e4a39e 11850 if (*subtype_info == 'U')
4c4b4cd2
PH
11851 {
11852 if (!ada_scan_number (bounds_str, n, &U, &n)
11853 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11854 return raw_type;
11855 }
d2e4a39e 11856 else
4c4b4cd2 11857 {
4c4b4cd2 11858 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11859 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11860 {
323e0a4a 11861 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11862 U = L;
11863 }
11864 }
14f9c5c9 11865
0c9c3474
SA
11866 type = create_static_range_type (alloc_type_copy (raw_type),
11867 base_type, L, U);
f5a91472
JB
11868 /* create_static_range_type alters the resulting type's length
11869 to match the size of the base_type, which is not what we want.
11870 Set it back to the original range type's length. */
11871 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11872 TYPE_NAME (type) = name;
14f9c5c9
AS
11873 return type;
11874 }
11875}
11876
4c4b4cd2
PH
11877/* True iff NAME is the name of a range type. */
11878
14f9c5c9 11879int
d2e4a39e 11880ada_is_range_type_name (const char *name)
14f9c5c9
AS
11881{
11882 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11883}
14f9c5c9 11884\f
d2e4a39e 11885
4c4b4cd2
PH
11886 /* Modular types */
11887
11888/* True iff TYPE is an Ada modular type. */
14f9c5c9 11889
14f9c5c9 11890int
d2e4a39e 11891ada_is_modular_type (struct type *type)
14f9c5c9 11892{
18af8284 11893 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11894
11895 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11896 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11897 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11898}
11899
4c4b4cd2
PH
11900/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11901
61ee279c 11902ULONGEST
0056e4d5 11903ada_modulus (struct type *type)
14f9c5c9 11904{
43bbcdc2 11905 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11906}
d2e4a39e 11907\f
f7f9143b
JB
11908
11909/* Ada exception catchpoint support:
11910 ---------------------------------
11911
11912 We support 3 kinds of exception catchpoints:
11913 . catchpoints on Ada exceptions
11914 . catchpoints on unhandled Ada exceptions
11915 . catchpoints on failed assertions
11916
11917 Exceptions raised during failed assertions, or unhandled exceptions
11918 could perfectly be caught with the general catchpoint on Ada exceptions.
11919 However, we can easily differentiate these two special cases, and having
11920 the option to distinguish these two cases from the rest can be useful
11921 to zero-in on certain situations.
11922
11923 Exception catchpoints are a specialized form of breakpoint,
11924 since they rely on inserting breakpoints inside known routines
11925 of the GNAT runtime. The implementation therefore uses a standard
11926 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11927 of breakpoint_ops.
11928
0259addd
JB
11929 Support in the runtime for exception catchpoints have been changed
11930 a few times already, and these changes affect the implementation
11931 of these catchpoints. In order to be able to support several
11932 variants of the runtime, we use a sniffer that will determine
28010a5d 11933 the runtime variant used by the program being debugged. */
f7f9143b 11934
82eacd52
JB
11935/* Ada's standard exceptions.
11936
11937 The Ada 83 standard also defined Numeric_Error. But there so many
11938 situations where it was unclear from the Ada 83 Reference Manual
11939 (RM) whether Constraint_Error or Numeric_Error should be raised,
11940 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11941 Interpretation saying that anytime the RM says that Numeric_Error
11942 should be raised, the implementation may raise Constraint_Error.
11943 Ada 95 went one step further and pretty much removed Numeric_Error
11944 from the list of standard exceptions (it made it a renaming of
11945 Constraint_Error, to help preserve compatibility when compiling
11946 an Ada83 compiler). As such, we do not include Numeric_Error from
11947 this list of standard exceptions. */
3d0b0fa3 11948
a121b7c1 11949static const char *standard_exc[] = {
3d0b0fa3
JB
11950 "constraint_error",
11951 "program_error",
11952 "storage_error",
11953 "tasking_error"
11954};
11955
0259addd
JB
11956typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11957
11958/* A structure that describes how to support exception catchpoints
11959 for a given executable. */
11960
11961struct exception_support_info
11962{
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on exceptions. */
11965 const char *catch_exception_sym;
11966
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on unhandled exceptions. */
11969 const char *catch_exception_unhandled_sym;
11970
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on failed assertions. */
11973 const char *catch_assert_sym;
11974
9f757bf7
XR
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on exception handling. */
11977 const char *catch_handlers_sym;
11978
0259addd
JB
11979 /* Assuming that the inferior just triggered an unhandled exception
11980 catchpoint, this function is responsible for returning the address
11981 in inferior memory where the name of that exception is stored.
11982 Return zero if the address could not be computed. */
11983 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11984};
11985
11986static CORE_ADDR ada_unhandled_exception_name_addr (void);
11987static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11988
11989/* The following exception support info structure describes how to
11990 implement exception catchpoints with the latest version of the
11991 Ada runtime (as of 2007-03-06). */
11992
11993static const struct exception_support_info default_exception_support_info =
11994{
11995 "__gnat_debug_raise_exception", /* catch_exception_sym */
11996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11997 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11998 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11999 ada_unhandled_exception_name_addr
12000};
12001
12002/* The following exception support info structure describes how to
12003 implement exception catchpoints with a slightly older version
12004 of the Ada runtime. */
12005
12006static const struct exception_support_info exception_support_info_fallback =
12007{
12008 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12009 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12010 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12011 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12012 ada_unhandled_exception_name_addr_from_raise
12013};
12014
f17011e0
JB
12015/* Return nonzero if we can detect the exception support routines
12016 described in EINFO.
12017
12018 This function errors out if an abnormal situation is detected
12019 (for instance, if we find the exception support routines, but
12020 that support is found to be incomplete). */
12021
12022static int
12023ada_has_this_exception_support (const struct exception_support_info *einfo)
12024{
12025 struct symbol *sym;
12026
12027 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12028 that should be compiled with debugging information. As a result, we
12029 expect to find that symbol in the symtabs. */
12030
12031 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12032 if (sym == NULL)
a6af7abe
JB
12033 {
12034 /* Perhaps we did not find our symbol because the Ada runtime was
12035 compiled without debugging info, or simply stripped of it.
12036 It happens on some GNU/Linux distributions for instance, where
12037 users have to install a separate debug package in order to get
12038 the runtime's debugging info. In that situation, let the user
12039 know why we cannot insert an Ada exception catchpoint.
12040
12041 Note: Just for the purpose of inserting our Ada exception
12042 catchpoint, we could rely purely on the associated minimal symbol.
12043 But we would be operating in degraded mode anyway, since we are
12044 still lacking the debugging info needed later on to extract
12045 the name of the exception being raised (this name is printed in
12046 the catchpoint message, and is also used when trying to catch
12047 a specific exception). We do not handle this case for now. */
3b7344d5 12048 struct bound_minimal_symbol msym
1c8e84b0
JB
12049 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12050
3b7344d5 12051 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12052 error (_("Your Ada runtime appears to be missing some debugging "
12053 "information.\nCannot insert Ada exception catchpoint "
12054 "in this configuration."));
12055
12056 return 0;
12057 }
f17011e0
JB
12058
12059 /* Make sure that the symbol we found corresponds to a function. */
12060
12061 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12062 error (_("Symbol \"%s\" is not a function (class = %d)"),
12063 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12064
12065 return 1;
12066}
12067
0259addd
JB
12068/* Inspect the Ada runtime and determine which exception info structure
12069 should be used to provide support for exception catchpoints.
12070
3eecfa55
JB
12071 This function will always set the per-inferior exception_info,
12072 or raise an error. */
0259addd
JB
12073
12074static void
12075ada_exception_support_info_sniffer (void)
12076{
3eecfa55 12077 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12078
12079 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12080 if (data->exception_info != NULL)
0259addd
JB
12081 return;
12082
12083 /* Check the latest (default) exception support info. */
f17011e0 12084 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12085 {
3eecfa55 12086 data->exception_info = &default_exception_support_info;
0259addd
JB
12087 return;
12088 }
12089
12090 /* Try our fallback exception suport info. */
f17011e0 12091 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12092 {
3eecfa55 12093 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12094 return;
12095 }
12096
12097 /* Sometimes, it is normal for us to not be able to find the routine
12098 we are looking for. This happens when the program is linked with
12099 the shared version of the GNAT runtime, and the program has not been
12100 started yet. Inform the user of these two possible causes if
12101 applicable. */
12102
ccefe4c4 12103 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12104 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12105
12106 /* If the symbol does not exist, then check that the program is
12107 already started, to make sure that shared libraries have been
12108 loaded. If it is not started, this may mean that the symbol is
12109 in a shared library. */
12110
e99b03dc 12111 if (inferior_ptid.pid () == 0)
0259addd
JB
12112 error (_("Unable to insert catchpoint. Try to start the program first."));
12113
12114 /* At this point, we know that we are debugging an Ada program and
12115 that the inferior has been started, but we still are not able to
0963b4bd 12116 find the run-time symbols. That can mean that we are in
0259addd
JB
12117 configurable run time mode, or that a-except as been optimized
12118 out by the linker... In any case, at this point it is not worth
12119 supporting this feature. */
12120
7dda8cff 12121 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12122}
12123
f7f9143b
JB
12124/* True iff FRAME is very likely to be that of a function that is
12125 part of the runtime system. This is all very heuristic, but is
12126 intended to be used as advice as to what frames are uninteresting
12127 to most users. */
12128
12129static int
12130is_known_support_routine (struct frame_info *frame)
12131{
692465f1 12132 enum language func_lang;
f7f9143b 12133 int i;
f35a17b5 12134 const char *fullname;
f7f9143b 12135
4ed6b5be
JB
12136 /* If this code does not have any debugging information (no symtab),
12137 This cannot be any user code. */
f7f9143b 12138
51abb421 12139 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12140 if (sal.symtab == NULL)
12141 return 1;
12142
4ed6b5be
JB
12143 /* If there is a symtab, but the associated source file cannot be
12144 located, then assume this is not user code: Selecting a frame
12145 for which we cannot display the code would not be very helpful
12146 for the user. This should also take care of case such as VxWorks
12147 where the kernel has some debugging info provided for a few units. */
f7f9143b 12148
f35a17b5
JK
12149 fullname = symtab_to_fullname (sal.symtab);
12150 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12151 return 1;
12152
4ed6b5be
JB
12153 /* Check the unit filename againt the Ada runtime file naming.
12154 We also check the name of the objfile against the name of some
12155 known system libraries that sometimes come with debugging info
12156 too. */
12157
f7f9143b
JB
12158 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12159 {
12160 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12161 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12162 return 1;
eb822aa6
DE
12163 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12164 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12165 return 1;
f7f9143b
JB
12166 }
12167
4ed6b5be 12168 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12169
c6dc63a1
TT
12170 gdb::unique_xmalloc_ptr<char> func_name
12171 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12172 if (func_name == NULL)
12173 return 1;
12174
12175 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12176 {
12177 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12178 if (re_exec (func_name.get ()))
12179 return 1;
f7f9143b
JB
12180 }
12181
12182 return 0;
12183}
12184
12185/* Find the first frame that contains debugging information and that is not
12186 part of the Ada run-time, starting from FI and moving upward. */
12187
0ef643c8 12188void
f7f9143b
JB
12189ada_find_printable_frame (struct frame_info *fi)
12190{
12191 for (; fi != NULL; fi = get_prev_frame (fi))
12192 {
12193 if (!is_known_support_routine (fi))
12194 {
12195 select_frame (fi);
12196 break;
12197 }
12198 }
12199
12200}
12201
12202/* Assuming that the inferior just triggered an unhandled exception
12203 catchpoint, return the address in inferior memory where the name
12204 of the exception is stored.
12205
12206 Return zero if the address could not be computed. */
12207
12208static CORE_ADDR
12209ada_unhandled_exception_name_addr (void)
0259addd
JB
12210{
12211 return parse_and_eval_address ("e.full_name");
12212}
12213
12214/* Same as ada_unhandled_exception_name_addr, except that this function
12215 should be used when the inferior uses an older version of the runtime,
12216 where the exception name needs to be extracted from a specific frame
12217 several frames up in the callstack. */
12218
12219static CORE_ADDR
12220ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12221{
12222 int frame_level;
12223 struct frame_info *fi;
3eecfa55 12224 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12225
12226 /* To determine the name of this exception, we need to select
12227 the frame corresponding to RAISE_SYM_NAME. This frame is
12228 at least 3 levels up, so we simply skip the first 3 frames
12229 without checking the name of their associated function. */
12230 fi = get_current_frame ();
12231 for (frame_level = 0; frame_level < 3; frame_level += 1)
12232 if (fi != NULL)
12233 fi = get_prev_frame (fi);
12234
12235 while (fi != NULL)
12236 {
692465f1
JB
12237 enum language func_lang;
12238
c6dc63a1
TT
12239 gdb::unique_xmalloc_ptr<char> func_name
12240 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12241 if (func_name != NULL)
12242 {
c6dc63a1 12243 if (strcmp (func_name.get (),
55b87a52
KS
12244 data->exception_info->catch_exception_sym) == 0)
12245 break; /* We found the frame we were looking for... */
55b87a52 12246 }
fb44b1a7 12247 fi = get_prev_frame (fi);
f7f9143b
JB
12248 }
12249
12250 if (fi == NULL)
12251 return 0;
12252
12253 select_frame (fi);
12254 return parse_and_eval_address ("id.full_name");
12255}
12256
12257/* Assuming the inferior just triggered an Ada exception catchpoint
12258 (of any type), return the address in inferior memory where the name
12259 of the exception is stored, if applicable.
12260
45db7c09
PA
12261 Assumes the selected frame is the current frame.
12262
f7f9143b
JB
12263 Return zero if the address could not be computed, or if not relevant. */
12264
12265static CORE_ADDR
761269c8 12266ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12267 struct breakpoint *b)
12268{
3eecfa55
JB
12269 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12270
f7f9143b
JB
12271 switch (ex)
12272 {
761269c8 12273 case ada_catch_exception:
f7f9143b
JB
12274 return (parse_and_eval_address ("e.full_name"));
12275 break;
12276
761269c8 12277 case ada_catch_exception_unhandled:
3eecfa55 12278 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12279 break;
9f757bf7
XR
12280
12281 case ada_catch_handlers:
12282 return 0; /* The runtimes does not provide access to the exception
12283 name. */
12284 break;
12285
761269c8 12286 case ada_catch_assert:
f7f9143b
JB
12287 return 0; /* Exception name is not relevant in this case. */
12288 break;
12289
12290 default:
12291 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12292 break;
12293 }
12294
12295 return 0; /* Should never be reached. */
12296}
12297
e547c119
JB
12298/* Assuming the inferior is stopped at an exception catchpoint,
12299 return the message which was associated to the exception, if
12300 available. Return NULL if the message could not be retrieved.
12301
e547c119
JB
12302 Note: The exception message can be associated to an exception
12303 either through the use of the Raise_Exception function, or
12304 more simply (Ada 2005 and later), via:
12305
12306 raise Exception_Name with "exception message";
12307
12308 */
12309
6f46ac85 12310static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12311ada_exception_message_1 (void)
12312{
12313 struct value *e_msg_val;
e547c119 12314 int e_msg_len;
e547c119
JB
12315
12316 /* For runtimes that support this feature, the exception message
12317 is passed as an unbounded string argument called "message". */
12318 e_msg_val = parse_and_eval ("message");
12319 if (e_msg_val == NULL)
12320 return NULL; /* Exception message not supported. */
12321
12322 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12323 gdb_assert (e_msg_val != NULL);
12324 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12325
12326 /* If the message string is empty, then treat it as if there was
12327 no exception message. */
12328 if (e_msg_len <= 0)
12329 return NULL;
12330
6f46ac85
TT
12331 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12332 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12333 e_msg.get ()[e_msg_len] = '\0';
e547c119 12334
e547c119
JB
12335 return e_msg;
12336}
12337
12338/* Same as ada_exception_message_1, except that all exceptions are
12339 contained here (returning NULL instead). */
12340
6f46ac85 12341static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12342ada_exception_message (void)
12343{
6f46ac85 12344 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12345
a70b8144 12346 try
e547c119
JB
12347 {
12348 e_msg = ada_exception_message_1 ();
12349 }
a70b8144 12350 catch (const gdb_exception_RETURN_MASK_ERROR &e)
e547c119 12351 {
6f46ac85 12352 e_msg.reset (nullptr);
e547c119 12353 }
e547c119
JB
12354
12355 return e_msg;
12356}
12357
f7f9143b
JB
12358/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12359 any error that ada_exception_name_addr_1 might cause to be thrown.
12360 When an error is intercepted, a warning with the error message is printed,
12361 and zero is returned. */
12362
12363static CORE_ADDR
761269c8 12364ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12365 struct breakpoint *b)
12366{
f7f9143b
JB
12367 CORE_ADDR result = 0;
12368
a70b8144 12369 try
f7f9143b
JB
12370 {
12371 result = ada_exception_name_addr_1 (ex, b);
12372 }
12373
a70b8144 12374 catch (const gdb_exception_RETURN_MASK_ERROR &e)
f7f9143b 12375 {
3d6e9d23 12376 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12377 return 0;
12378 }
12379
12380 return result;
12381}
12382
cb7de75e 12383static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12384 (const char *excep_string,
12385 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12386
12387/* Ada catchpoints.
12388
12389 In the case of catchpoints on Ada exceptions, the catchpoint will
12390 stop the target on every exception the program throws. When a user
12391 specifies the name of a specific exception, we translate this
12392 request into a condition expression (in text form), and then parse
12393 it into an expression stored in each of the catchpoint's locations.
12394 We then use this condition to check whether the exception that was
12395 raised is the one the user is interested in. If not, then the
12396 target is resumed again. We store the name of the requested
12397 exception, in order to be able to re-set the condition expression
12398 when symbols change. */
12399
12400/* An instance of this type is used to represent an Ada catchpoint
5625a286 12401 breakpoint location. */
28010a5d 12402
5625a286 12403class ada_catchpoint_location : public bp_location
28010a5d 12404{
5625a286 12405public:
5f486660
TT
12406 ada_catchpoint_location (breakpoint *owner)
12407 : bp_location (owner)
5625a286 12408 {}
28010a5d
PA
12409
12410 /* The condition that checks whether the exception that was raised
12411 is the specific exception the user specified on catchpoint
12412 creation. */
4d01a485 12413 expression_up excep_cond_expr;
28010a5d
PA
12414};
12415
c1fc2657 12416/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12417
c1fc2657 12418struct ada_catchpoint : public breakpoint
28010a5d 12419{
28010a5d 12420 /* The name of the specific exception the user specified. */
bc18fbb5 12421 std::string excep_string;
28010a5d
PA
12422};
12423
12424/* Parse the exception condition string in the context of each of the
12425 catchpoint's locations, and store them for later evaluation. */
12426
12427static void
9f757bf7
XR
12428create_excep_cond_exprs (struct ada_catchpoint *c,
12429 enum ada_exception_catchpoint_kind ex)
28010a5d 12430{
28010a5d 12431 struct bp_location *bl;
28010a5d
PA
12432
12433 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12434 if (c->excep_string.empty ())
28010a5d
PA
12435 return;
12436
12437 /* Same if there are no locations... */
c1fc2657 12438 if (c->loc == NULL)
28010a5d
PA
12439 return;
12440
12441 /* Compute the condition expression in text form, from the specific
12442 expection we want to catch. */
cb7de75e 12443 std::string cond_string
bc18fbb5 12444 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12445
12446 /* Iterate over all the catchpoint's locations, and parse an
12447 expression for each. */
c1fc2657 12448 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12449 {
12450 struct ada_catchpoint_location *ada_loc
12451 = (struct ada_catchpoint_location *) bl;
4d01a485 12452 expression_up exp;
28010a5d
PA
12453
12454 if (!bl->shlib_disabled)
12455 {
bbc13ae3 12456 const char *s;
28010a5d 12457
cb7de75e 12458 s = cond_string.c_str ();
a70b8144 12459 try
28010a5d 12460 {
036e657b
JB
12461 exp = parse_exp_1 (&s, bl->address,
12462 block_for_pc (bl->address),
12463 0);
28010a5d 12464 }
a70b8144 12465 catch (const gdb_exception_RETURN_MASK_ERROR &e)
849f2b52
JB
12466 {
12467 warning (_("failed to reevaluate internal exception condition "
12468 "for catchpoint %d: %s"),
3d6e9d23 12469 c->number, e.what ());
849f2b52 12470 }
28010a5d
PA
12471 }
12472
b22e99fd 12473 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12474 }
28010a5d
PA
12475}
12476
28010a5d
PA
12477/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12478 structure for all exception catchpoint kinds. */
12479
12480static struct bp_location *
761269c8 12481allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12482 struct breakpoint *self)
12483{
5f486660 12484 return new ada_catchpoint_location (self);
28010a5d
PA
12485}
12486
12487/* Implement the RE_SET method in the breakpoint_ops structure for all
12488 exception catchpoint kinds. */
12489
12490static void
761269c8 12491re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12492{
12493 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12494
12495 /* Call the base class's method. This updates the catchpoint's
12496 locations. */
2060206e 12497 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12498
12499 /* Reparse the exception conditional expressions. One for each
12500 location. */
9f757bf7 12501 create_excep_cond_exprs (c, ex);
28010a5d
PA
12502}
12503
12504/* Returns true if we should stop for this breakpoint hit. If the
12505 user specified a specific exception, we only want to cause a stop
12506 if the program thrown that exception. */
12507
12508static int
12509should_stop_exception (const struct bp_location *bl)
12510{
12511 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12512 const struct ada_catchpoint_location *ada_loc
12513 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12514 int stop;
12515
12516 /* With no specific exception, should always stop. */
bc18fbb5 12517 if (c->excep_string.empty ())
28010a5d
PA
12518 return 1;
12519
12520 if (ada_loc->excep_cond_expr == NULL)
12521 {
12522 /* We will have a NULL expression if back when we were creating
12523 the expressions, this location's had failed to parse. */
12524 return 1;
12525 }
12526
12527 stop = 1;
a70b8144 12528 try
28010a5d
PA
12529 {
12530 struct value *mark;
12531
12532 mark = value_mark ();
4d01a485 12533 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12534 value_free_to_mark (mark);
12535 }
a70b8144 12536 catch (const gdb_exception_RETURN_MASK_ALL &ex)
492d29ea
PA
12537 {
12538 exception_fprintf (gdb_stderr, ex,
12539 _("Error in testing exception condition:\n"));
12540 }
492d29ea 12541
28010a5d
PA
12542 return stop;
12543}
12544
12545/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12546 for all exception catchpoint kinds. */
12547
12548static void
761269c8 12549check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12550{
12551 bs->stop = should_stop_exception (bs->bp_location_at);
12552}
12553
f7f9143b
JB
12554/* Implement the PRINT_IT method in the breakpoint_ops structure
12555 for all exception catchpoint kinds. */
12556
12557static enum print_stop_action
761269c8 12558print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12559{
79a45e25 12560 struct ui_out *uiout = current_uiout;
348d480f
PA
12561 struct breakpoint *b = bs->breakpoint_at;
12562
956a9fb9 12563 annotate_catchpoint (b->number);
f7f9143b 12564
112e8700 12565 if (uiout->is_mi_like_p ())
f7f9143b 12566 {
112e8700 12567 uiout->field_string ("reason",
956a9fb9 12568 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12569 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12570 }
12571
112e8700
SM
12572 uiout->text (b->disposition == disp_del
12573 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12574 uiout->field_int ("bkptno", b->number);
12575 uiout->text (", ");
f7f9143b 12576
45db7c09
PA
12577 /* ada_exception_name_addr relies on the selected frame being the
12578 current frame. Need to do this here because this function may be
12579 called more than once when printing a stop, and below, we'll
12580 select the first frame past the Ada run-time (see
12581 ada_find_printable_frame). */
12582 select_frame (get_current_frame ());
12583
f7f9143b
JB
12584 switch (ex)
12585 {
761269c8
JB
12586 case ada_catch_exception:
12587 case ada_catch_exception_unhandled:
9f757bf7 12588 case ada_catch_handlers:
956a9fb9
JB
12589 {
12590 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12591 char exception_name[256];
12592
12593 if (addr != 0)
12594 {
c714b426
PA
12595 read_memory (addr, (gdb_byte *) exception_name,
12596 sizeof (exception_name) - 1);
956a9fb9
JB
12597 exception_name [sizeof (exception_name) - 1] = '\0';
12598 }
12599 else
12600 {
12601 /* For some reason, we were unable to read the exception
12602 name. This could happen if the Runtime was compiled
12603 without debugging info, for instance. In that case,
12604 just replace the exception name by the generic string
12605 "exception" - it will read as "an exception" in the
12606 notification we are about to print. */
967cff16 12607 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12608 }
12609 /* In the case of unhandled exception breakpoints, we print
12610 the exception name as "unhandled EXCEPTION_NAME", to make
12611 it clearer to the user which kind of catchpoint just got
12612 hit. We used ui_out_text to make sure that this extra
12613 info does not pollute the exception name in the MI case. */
761269c8 12614 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12615 uiout->text ("unhandled ");
12616 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12617 }
12618 break;
761269c8 12619 case ada_catch_assert:
956a9fb9
JB
12620 /* In this case, the name of the exception is not really
12621 important. Just print "failed assertion" to make it clearer
12622 that his program just hit an assertion-failure catchpoint.
12623 We used ui_out_text because this info does not belong in
12624 the MI output. */
112e8700 12625 uiout->text ("failed assertion");
956a9fb9 12626 break;
f7f9143b 12627 }
e547c119 12628
6f46ac85 12629 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12630 if (exception_message != NULL)
12631 {
e547c119 12632 uiout->text (" (");
6f46ac85 12633 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12634 uiout->text (")");
e547c119
JB
12635 }
12636
112e8700 12637 uiout->text (" at ");
956a9fb9 12638 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12639
12640 return PRINT_SRC_AND_LOC;
12641}
12642
12643/* Implement the PRINT_ONE method in the breakpoint_ops structure
12644 for all exception catchpoint kinds. */
12645
12646static void
761269c8 12647print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12648 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12649{
79a45e25 12650 struct ui_out *uiout = current_uiout;
28010a5d 12651 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12652 struct value_print_options opts;
12653
12654 get_user_print_options (&opts);
12655 if (opts.addressprint)
f7f9143b
JB
12656 {
12657 annotate_field (4);
112e8700 12658 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12659 }
12660
12661 annotate_field (5);
a6d9a66e 12662 *last_loc = b->loc;
f7f9143b
JB
12663 switch (ex)
12664 {
761269c8 12665 case ada_catch_exception:
bc18fbb5 12666 if (!c->excep_string.empty ())
f7f9143b 12667 {
bc18fbb5
TT
12668 std::string msg = string_printf (_("`%s' Ada exception"),
12669 c->excep_string.c_str ());
28010a5d 12670
112e8700 12671 uiout->field_string ("what", msg);
f7f9143b
JB
12672 }
12673 else
112e8700 12674 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12675
12676 break;
12677
761269c8 12678 case ada_catch_exception_unhandled:
112e8700 12679 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12680 break;
12681
9f757bf7 12682 case ada_catch_handlers:
bc18fbb5 12683 if (!c->excep_string.empty ())
9f757bf7
XR
12684 {
12685 uiout->field_fmt ("what",
12686 _("`%s' Ada exception handlers"),
bc18fbb5 12687 c->excep_string.c_str ());
9f757bf7
XR
12688 }
12689 else
12690 uiout->field_string ("what", "all Ada exceptions handlers");
12691 break;
12692
761269c8 12693 case ada_catch_assert:
112e8700 12694 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12695 break;
12696
12697 default:
12698 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12699 break;
12700 }
12701}
12702
12703/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12704 for all exception catchpoint kinds. */
12705
12706static void
761269c8 12707print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12708 struct breakpoint *b)
12709{
28010a5d 12710 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12711 struct ui_out *uiout = current_uiout;
28010a5d 12712
112e8700 12713 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12714 : _("Catchpoint "));
112e8700
SM
12715 uiout->field_int ("bkptno", b->number);
12716 uiout->text (": ");
00eb2c4a 12717
f7f9143b
JB
12718 switch (ex)
12719 {
761269c8 12720 case ada_catch_exception:
bc18fbb5 12721 if (!c->excep_string.empty ())
00eb2c4a 12722 {
862d101a 12723 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12724 c->excep_string.c_str ());
862d101a 12725 uiout->text (info.c_str ());
00eb2c4a 12726 }
f7f9143b 12727 else
112e8700 12728 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12729 break;
12730
761269c8 12731 case ada_catch_exception_unhandled:
112e8700 12732 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12733 break;
9f757bf7
XR
12734
12735 case ada_catch_handlers:
bc18fbb5 12736 if (!c->excep_string.empty ())
9f757bf7
XR
12737 {
12738 std::string info
12739 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12740 c->excep_string.c_str ());
9f757bf7
XR
12741 uiout->text (info.c_str ());
12742 }
12743 else
12744 uiout->text (_("all Ada exceptions handlers"));
12745 break;
12746
761269c8 12747 case ada_catch_assert:
112e8700 12748 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12749 break;
12750
12751 default:
12752 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12753 break;
12754 }
12755}
12756
6149aea9
PA
12757/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12759
12760static void
761269c8 12761print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12762 struct breakpoint *b, struct ui_file *fp)
12763{
28010a5d
PA
12764 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12765
6149aea9
PA
12766 switch (ex)
12767 {
761269c8 12768 case ada_catch_exception:
6149aea9 12769 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12770 if (!c->excep_string.empty ())
12771 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12772 break;
12773
761269c8 12774 case ada_catch_exception_unhandled:
78076abc 12775 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12776 break;
12777
9f757bf7
XR
12778 case ada_catch_handlers:
12779 fprintf_filtered (fp, "catch handlers");
12780 break;
12781
761269c8 12782 case ada_catch_assert:
6149aea9
PA
12783 fprintf_filtered (fp, "catch assert");
12784 break;
12785
12786 default:
12787 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12788 }
d9b3f62e 12789 print_recreate_thread (b, fp);
6149aea9
PA
12790}
12791
f7f9143b
JB
12792/* Virtual table for "catch exception" breakpoints. */
12793
28010a5d
PA
12794static struct bp_location *
12795allocate_location_catch_exception (struct breakpoint *self)
12796{
761269c8 12797 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12798}
12799
12800static void
12801re_set_catch_exception (struct breakpoint *b)
12802{
761269c8 12803 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12804}
12805
12806static void
12807check_status_catch_exception (bpstat bs)
12808{
761269c8 12809 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12810}
12811
f7f9143b 12812static enum print_stop_action
348d480f 12813print_it_catch_exception (bpstat bs)
f7f9143b 12814{
761269c8 12815 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12816}
12817
12818static void
a6d9a66e 12819print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12820{
761269c8 12821 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12822}
12823
12824static void
12825print_mention_catch_exception (struct breakpoint *b)
12826{
761269c8 12827 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12828}
12829
6149aea9
PA
12830static void
12831print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12832{
761269c8 12833 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12834}
12835
2060206e 12836static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12837
12838/* Virtual table for "catch exception unhandled" breakpoints. */
12839
28010a5d
PA
12840static struct bp_location *
12841allocate_location_catch_exception_unhandled (struct breakpoint *self)
12842{
761269c8 12843 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12844}
12845
12846static void
12847re_set_catch_exception_unhandled (struct breakpoint *b)
12848{
761269c8 12849 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12850}
12851
12852static void
12853check_status_catch_exception_unhandled (bpstat bs)
12854{
761269c8 12855 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12856}
12857
f7f9143b 12858static enum print_stop_action
348d480f 12859print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12860{
761269c8 12861 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12862}
12863
12864static void
a6d9a66e
UW
12865print_one_catch_exception_unhandled (struct breakpoint *b,
12866 struct bp_location **last_loc)
f7f9143b 12867{
761269c8 12868 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12869}
12870
12871static void
12872print_mention_catch_exception_unhandled (struct breakpoint *b)
12873{
761269c8 12874 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12875}
12876
6149aea9
PA
12877static void
12878print_recreate_catch_exception_unhandled (struct breakpoint *b,
12879 struct ui_file *fp)
12880{
761269c8 12881 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12882}
12883
2060206e 12884static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12885
12886/* Virtual table for "catch assert" breakpoints. */
12887
28010a5d
PA
12888static struct bp_location *
12889allocate_location_catch_assert (struct breakpoint *self)
12890{
761269c8 12891 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12892}
12893
12894static void
12895re_set_catch_assert (struct breakpoint *b)
12896{
761269c8 12897 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12898}
12899
12900static void
12901check_status_catch_assert (bpstat bs)
12902{
761269c8 12903 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12904}
12905
f7f9143b 12906static enum print_stop_action
348d480f 12907print_it_catch_assert (bpstat bs)
f7f9143b 12908{
761269c8 12909 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12910}
12911
12912static void
a6d9a66e 12913print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12914{
761269c8 12915 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12916}
12917
12918static void
12919print_mention_catch_assert (struct breakpoint *b)
12920{
761269c8 12921 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12922}
12923
6149aea9
PA
12924static void
12925print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12926{
761269c8 12927 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12928}
12929
2060206e 12930static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12931
9f757bf7
XR
12932/* Virtual table for "catch handlers" breakpoints. */
12933
12934static struct bp_location *
12935allocate_location_catch_handlers (struct breakpoint *self)
12936{
12937 return allocate_location_exception (ada_catch_handlers, self);
12938}
12939
12940static void
12941re_set_catch_handlers (struct breakpoint *b)
12942{
12943 re_set_exception (ada_catch_handlers, b);
12944}
12945
12946static void
12947check_status_catch_handlers (bpstat bs)
12948{
12949 check_status_exception (ada_catch_handlers, bs);
12950}
12951
12952static enum print_stop_action
12953print_it_catch_handlers (bpstat bs)
12954{
12955 return print_it_exception (ada_catch_handlers, bs);
12956}
12957
12958static void
12959print_one_catch_handlers (struct breakpoint *b,
12960 struct bp_location **last_loc)
12961{
12962 print_one_exception (ada_catch_handlers, b, last_loc);
12963}
12964
12965static void
12966print_mention_catch_handlers (struct breakpoint *b)
12967{
12968 print_mention_exception (ada_catch_handlers, b);
12969}
12970
12971static void
12972print_recreate_catch_handlers (struct breakpoint *b,
12973 struct ui_file *fp)
12974{
12975 print_recreate_exception (ada_catch_handlers, b, fp);
12976}
12977
12978static struct breakpoint_ops catch_handlers_breakpoint_ops;
12979
f7f9143b
JB
12980/* Split the arguments specified in a "catch exception" command.
12981 Set EX to the appropriate catchpoint type.
28010a5d 12982 Set EXCEP_STRING to the name of the specific exception if
5845583d 12983 specified by the user.
9f757bf7
XR
12984 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12985 "catch handlers" command. False otherwise.
5845583d
JB
12986 If a condition is found at the end of the arguments, the condition
12987 expression is stored in COND_STRING (memory must be deallocated
12988 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12989
12990static void
a121b7c1 12991catch_ada_exception_command_split (const char *args,
9f757bf7 12992 bool is_catch_handlers_cmd,
761269c8 12993 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12994 std::string *excep_string,
12995 std::string *cond_string)
f7f9143b 12996{
bc18fbb5 12997 std::string exception_name;
f7f9143b 12998
bc18fbb5
TT
12999 exception_name = extract_arg (&args);
13000 if (exception_name == "if")
5845583d
JB
13001 {
13002 /* This is not an exception name; this is the start of a condition
13003 expression for a catchpoint on all exceptions. So, "un-get"
13004 this token, and set exception_name to NULL. */
bc18fbb5 13005 exception_name.clear ();
5845583d
JB
13006 args -= 2;
13007 }
f7f9143b 13008
5845583d 13009 /* Check to see if we have a condition. */
f7f9143b 13010
f1735a53 13011 args = skip_spaces (args);
61012eef 13012 if (startswith (args, "if")
5845583d
JB
13013 && (isspace (args[2]) || args[2] == '\0'))
13014 {
13015 args += 2;
f1735a53 13016 args = skip_spaces (args);
5845583d
JB
13017
13018 if (args[0] == '\0')
13019 error (_("Condition missing after `if' keyword"));
bc18fbb5 13020 *cond_string = args;
5845583d
JB
13021
13022 args += strlen (args);
13023 }
13024
13025 /* Check that we do not have any more arguments. Anything else
13026 is unexpected. */
f7f9143b
JB
13027
13028 if (args[0] != '\0')
13029 error (_("Junk at end of expression"));
13030
9f757bf7
XR
13031 if (is_catch_handlers_cmd)
13032 {
13033 /* Catch handling of exceptions. */
13034 *ex = ada_catch_handlers;
13035 *excep_string = exception_name;
13036 }
bc18fbb5 13037 else if (exception_name.empty ())
f7f9143b
JB
13038 {
13039 /* Catch all exceptions. */
761269c8 13040 *ex = ada_catch_exception;
bc18fbb5 13041 excep_string->clear ();
f7f9143b 13042 }
bc18fbb5 13043 else if (exception_name == "unhandled")
f7f9143b
JB
13044 {
13045 /* Catch unhandled exceptions. */
761269c8 13046 *ex = ada_catch_exception_unhandled;
bc18fbb5 13047 excep_string->clear ();
f7f9143b
JB
13048 }
13049 else
13050 {
13051 /* Catch a specific exception. */
761269c8 13052 *ex = ada_catch_exception;
28010a5d 13053 *excep_string = exception_name;
f7f9143b
JB
13054 }
13055}
13056
13057/* Return the name of the symbol on which we should break in order to
13058 implement a catchpoint of the EX kind. */
13059
13060static const char *
761269c8 13061ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13062{
3eecfa55
JB
13063 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13064
13065 gdb_assert (data->exception_info != NULL);
0259addd 13066
f7f9143b
JB
13067 switch (ex)
13068 {
761269c8 13069 case ada_catch_exception:
3eecfa55 13070 return (data->exception_info->catch_exception_sym);
f7f9143b 13071 break;
761269c8 13072 case ada_catch_exception_unhandled:
3eecfa55 13073 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13074 break;
761269c8 13075 case ada_catch_assert:
3eecfa55 13076 return (data->exception_info->catch_assert_sym);
f7f9143b 13077 break;
9f757bf7
XR
13078 case ada_catch_handlers:
13079 return (data->exception_info->catch_handlers_sym);
13080 break;
f7f9143b
JB
13081 default:
13082 internal_error (__FILE__, __LINE__,
13083 _("unexpected catchpoint kind (%d)"), ex);
13084 }
13085}
13086
13087/* Return the breakpoint ops "virtual table" used for catchpoints
13088 of the EX kind. */
13089
c0a91b2b 13090static const struct breakpoint_ops *
761269c8 13091ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13092{
13093 switch (ex)
13094 {
761269c8 13095 case ada_catch_exception:
f7f9143b
JB
13096 return (&catch_exception_breakpoint_ops);
13097 break;
761269c8 13098 case ada_catch_exception_unhandled:
f7f9143b
JB
13099 return (&catch_exception_unhandled_breakpoint_ops);
13100 break;
761269c8 13101 case ada_catch_assert:
f7f9143b
JB
13102 return (&catch_assert_breakpoint_ops);
13103 break;
9f757bf7
XR
13104 case ada_catch_handlers:
13105 return (&catch_handlers_breakpoint_ops);
13106 break;
f7f9143b
JB
13107 default:
13108 internal_error (__FILE__, __LINE__,
13109 _("unexpected catchpoint kind (%d)"), ex);
13110 }
13111}
13112
13113/* Return the condition that will be used to match the current exception
13114 being raised with the exception that the user wants to catch. This
13115 assumes that this condition is used when the inferior just triggered
13116 an exception catchpoint.
cb7de75e 13117 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13118
cb7de75e 13119static std::string
9f757bf7
XR
13120ada_exception_catchpoint_cond_string (const char *excep_string,
13121 enum ada_exception_catchpoint_kind ex)
f7f9143b 13122{
3d0b0fa3 13123 int i;
9f757bf7 13124 bool is_standard_exc = false;
cb7de75e 13125 std::string result;
9f757bf7
XR
13126
13127 if (ex == ada_catch_handlers)
13128 {
13129 /* For exception handlers catchpoints, the condition string does
13130 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13131 result = ("long_integer (GNAT_GCC_exception_Access"
13132 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13133 }
13134 else
cb7de75e 13135 result = "long_integer (e)";
3d0b0fa3 13136
0963b4bd 13137 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13138 runtime units that have been compiled without debugging info; if
28010a5d 13139 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13140 exception (e.g. "constraint_error") then, during the evaluation
13141 of the condition expression, the symbol lookup on this name would
0963b4bd 13142 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13143 may then be set only on user-defined exceptions which have the
13144 same not-fully-qualified name (e.g. my_package.constraint_error).
13145
13146 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13147 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13148 exception constraint_error" is rewritten into "catch exception
13149 standard.constraint_error".
13150
13151 If an exception named contraint_error is defined in another package of
13152 the inferior program, then the only way to specify this exception as a
13153 breakpoint condition is to use its fully-qualified named:
13154 e.g. my_package.constraint_error. */
13155
13156 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13157 {
28010a5d 13158 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13159 {
9f757bf7
XR
13160 is_standard_exc = true;
13161 break;
3d0b0fa3
JB
13162 }
13163 }
9f757bf7 13164
cb7de75e
TT
13165 result += " = ";
13166
9f757bf7 13167 if (is_standard_exc)
cb7de75e 13168 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13169 else
cb7de75e 13170 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13171
9f757bf7 13172 return result;
f7f9143b
JB
13173}
13174
13175/* Return the symtab_and_line that should be used to insert an exception
13176 catchpoint of the TYPE kind.
13177
28010a5d
PA
13178 ADDR_STRING returns the name of the function where the real
13179 breakpoint that implements the catchpoints is set, depending on the
13180 type of catchpoint we need to create. */
f7f9143b
JB
13181
13182static struct symtab_and_line
bc18fbb5 13183ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13184 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13185{
13186 const char *sym_name;
13187 struct symbol *sym;
f7f9143b 13188
0259addd
JB
13189 /* First, find out which exception support info to use. */
13190 ada_exception_support_info_sniffer ();
13191
13192 /* Then lookup the function on which we will break in order to catch
f7f9143b 13193 the Ada exceptions requested by the user. */
f7f9143b
JB
13194 sym_name = ada_exception_sym_name (ex);
13195 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13196
57aff202
JB
13197 if (sym == NULL)
13198 error (_("Catchpoint symbol not found: %s"), sym_name);
13199
13200 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13201 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13202
13203 /* Set ADDR_STRING. */
cc12f4a8 13204 *addr_string = sym_name;
f7f9143b 13205
f7f9143b 13206 /* Set OPS. */
4b9eee8c 13207 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13208
f17011e0 13209 return find_function_start_sal (sym, 1);
f7f9143b
JB
13210}
13211
b4a5b78b 13212/* Create an Ada exception catchpoint.
f7f9143b 13213
b4a5b78b 13214 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13215
bc18fbb5 13216 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13217 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13218 of the exception to which this catchpoint applies.
2df4d1d5 13219
bc18fbb5 13220 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13221
b4a5b78b
JB
13222 TEMPFLAG, if nonzero, means that the underlying breakpoint
13223 should be temporary.
28010a5d 13224
b4a5b78b 13225 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13226
349774ef 13227void
28010a5d 13228create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13229 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13230 const std::string &excep_string,
56ecd069 13231 const std::string &cond_string,
28010a5d 13232 int tempflag,
349774ef 13233 int disabled,
28010a5d
PA
13234 int from_tty)
13235{
cc12f4a8 13236 std::string addr_string;
b4a5b78b 13237 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13238 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13239
b270e6f9 13240 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13241 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13242 ops, tempflag, disabled, from_tty);
28010a5d 13243 c->excep_string = excep_string;
9f757bf7 13244 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13245 if (!cond_string.empty ())
13246 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13247 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13248}
13249
9ac4176b
PA
13250/* Implement the "catch exception" command. */
13251
13252static void
eb4c3f4a 13253catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13254 struct cmd_list_element *command)
13255{
a121b7c1 13256 const char *arg = arg_entry;
9ac4176b
PA
13257 struct gdbarch *gdbarch = get_current_arch ();
13258 int tempflag;
761269c8 13259 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13260 std::string excep_string;
56ecd069 13261 std::string cond_string;
9ac4176b
PA
13262
13263 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13264
13265 if (!arg)
13266 arg = "";
9f757bf7 13267 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13268 &cond_string);
9f757bf7
XR
13269 create_ada_exception_catchpoint (gdbarch, ex_kind,
13270 excep_string, cond_string,
13271 tempflag, 1 /* enabled */,
13272 from_tty);
13273}
13274
13275/* Implement the "catch handlers" command. */
13276
13277static void
13278catch_ada_handlers_command (const char *arg_entry, int from_tty,
13279 struct cmd_list_element *command)
13280{
13281 const char *arg = arg_entry;
13282 struct gdbarch *gdbarch = get_current_arch ();
13283 int tempflag;
13284 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13285 std::string excep_string;
56ecd069 13286 std::string cond_string;
9f757bf7
XR
13287
13288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13289
13290 if (!arg)
13291 arg = "";
13292 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13293 &cond_string);
b4a5b78b
JB
13294 create_ada_exception_catchpoint (gdbarch, ex_kind,
13295 excep_string, cond_string,
349774ef
JB
13296 tempflag, 1 /* enabled */,
13297 from_tty);
9ac4176b
PA
13298}
13299
b4a5b78b 13300/* Split the arguments specified in a "catch assert" command.
5845583d 13301
b4a5b78b
JB
13302 ARGS contains the command's arguments (or the empty string if
13303 no arguments were passed).
5845583d
JB
13304
13305 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13306 (the memory needs to be deallocated after use). */
5845583d 13307
b4a5b78b 13308static void
56ecd069 13309catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13310{
f1735a53 13311 args = skip_spaces (args);
f7f9143b 13312
5845583d 13313 /* Check whether a condition was provided. */
61012eef 13314 if (startswith (args, "if")
5845583d 13315 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13316 {
5845583d 13317 args += 2;
f1735a53 13318 args = skip_spaces (args);
5845583d
JB
13319 if (args[0] == '\0')
13320 error (_("condition missing after `if' keyword"));
56ecd069 13321 cond_string.assign (args);
f7f9143b
JB
13322 }
13323
5845583d
JB
13324 /* Otherwise, there should be no other argument at the end of
13325 the command. */
13326 else if (args[0] != '\0')
13327 error (_("Junk at end of arguments."));
f7f9143b
JB
13328}
13329
9ac4176b
PA
13330/* Implement the "catch assert" command. */
13331
13332static void
eb4c3f4a 13333catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13334 struct cmd_list_element *command)
13335{
a121b7c1 13336 const char *arg = arg_entry;
9ac4176b
PA
13337 struct gdbarch *gdbarch = get_current_arch ();
13338 int tempflag;
56ecd069 13339 std::string cond_string;
9ac4176b
PA
13340
13341 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13342
13343 if (!arg)
13344 arg = "";
56ecd069 13345 catch_ada_assert_command_split (arg, cond_string);
761269c8 13346 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13347 "", cond_string,
349774ef
JB
13348 tempflag, 1 /* enabled */,
13349 from_tty);
9ac4176b 13350}
778865d3
JB
13351
13352/* Return non-zero if the symbol SYM is an Ada exception object. */
13353
13354static int
13355ada_is_exception_sym (struct symbol *sym)
13356{
a737d952 13357 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13358
13359 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13360 && SYMBOL_CLASS (sym) != LOC_BLOCK
13361 && SYMBOL_CLASS (sym) != LOC_CONST
13362 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13363 && type_name != NULL && strcmp (type_name, "exception") == 0);
13364}
13365
13366/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13367 Ada exception object. This matches all exceptions except the ones
13368 defined by the Ada language. */
13369
13370static int
13371ada_is_non_standard_exception_sym (struct symbol *sym)
13372{
13373 int i;
13374
13375 if (!ada_is_exception_sym (sym))
13376 return 0;
13377
13378 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13379 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13380 return 0; /* A standard exception. */
13381
13382 /* Numeric_Error is also a standard exception, so exclude it.
13383 See the STANDARD_EXC description for more details as to why
13384 this exception is not listed in that array. */
13385 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13386 return 0;
13387
13388 return 1;
13389}
13390
ab816a27 13391/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13392 objects.
13393
13394 The comparison is determined first by exception name, and then
13395 by exception address. */
13396
ab816a27 13397bool
cc536b21 13398ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13399{
778865d3
JB
13400 int result;
13401
ab816a27
TT
13402 result = strcmp (name, other.name);
13403 if (result < 0)
13404 return true;
13405 if (result == 0 && addr < other.addr)
13406 return true;
13407 return false;
13408}
778865d3 13409
ab816a27 13410bool
cc536b21 13411ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13412{
13413 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13414}
13415
13416/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13417 routine, but keeping the first SKIP elements untouched.
13418
13419 All duplicates are also removed. */
13420
13421static void
ab816a27 13422sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13423 int skip)
13424{
ab816a27
TT
13425 std::sort (exceptions->begin () + skip, exceptions->end ());
13426 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13427 exceptions->end ());
778865d3
JB
13428}
13429
778865d3
JB
13430/* Add all exceptions defined by the Ada standard whose name match
13431 a regular expression.
13432
13433 If PREG is not NULL, then this regexp_t object is used to
13434 perform the symbol name matching. Otherwise, no name-based
13435 filtering is performed.
13436
13437 EXCEPTIONS is a vector of exceptions to which matching exceptions
13438 gets pushed. */
13439
13440static void
2d7cc5c7 13441ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13442 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13443{
13444 int i;
13445
13446 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13447 {
13448 if (preg == NULL
2d7cc5c7 13449 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13450 {
13451 struct bound_minimal_symbol msymbol
13452 = ada_lookup_simple_minsym (standard_exc[i]);
13453
13454 if (msymbol.minsym != NULL)
13455 {
13456 struct ada_exc_info info
77e371c0 13457 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13458
ab816a27 13459 exceptions->push_back (info);
778865d3
JB
13460 }
13461 }
13462 }
13463}
13464
13465/* Add all Ada exceptions defined locally and accessible from the given
13466 FRAME.
13467
13468 If PREG is not NULL, then this regexp_t object is used to
13469 perform the symbol name matching. Otherwise, no name-based
13470 filtering is performed.
13471
13472 EXCEPTIONS is a vector of exceptions to which matching exceptions
13473 gets pushed. */
13474
13475static void
2d7cc5c7
PA
13476ada_add_exceptions_from_frame (compiled_regex *preg,
13477 struct frame_info *frame,
ab816a27 13478 std::vector<ada_exc_info> *exceptions)
778865d3 13479{
3977b71f 13480 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13481
13482 while (block != 0)
13483 {
13484 struct block_iterator iter;
13485 struct symbol *sym;
13486
13487 ALL_BLOCK_SYMBOLS (block, iter, sym)
13488 {
13489 switch (SYMBOL_CLASS (sym))
13490 {
13491 case LOC_TYPEDEF:
13492 case LOC_BLOCK:
13493 case LOC_CONST:
13494 break;
13495 default:
13496 if (ada_is_exception_sym (sym))
13497 {
13498 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13499 SYMBOL_VALUE_ADDRESS (sym)};
13500
ab816a27 13501 exceptions->push_back (info);
778865d3
JB
13502 }
13503 }
13504 }
13505 if (BLOCK_FUNCTION (block) != NULL)
13506 break;
13507 block = BLOCK_SUPERBLOCK (block);
13508 }
13509}
13510
14bc53a8
PA
13511/* Return true if NAME matches PREG or if PREG is NULL. */
13512
13513static bool
2d7cc5c7 13514name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13515{
13516 return (preg == NULL
2d7cc5c7 13517 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13518}
13519
778865d3
JB
13520/* Add all exceptions defined globally whose name name match
13521 a regular expression, excluding standard exceptions.
13522
13523 The reason we exclude standard exceptions is that they need
13524 to be handled separately: Standard exceptions are defined inside
13525 a runtime unit which is normally not compiled with debugging info,
13526 and thus usually do not show up in our symbol search. However,
13527 if the unit was in fact built with debugging info, we need to
13528 exclude them because they would duplicate the entry we found
13529 during the special loop that specifically searches for those
13530 standard exceptions.
13531
13532 If PREG is not NULL, then this regexp_t object is used to
13533 perform the symbol name matching. Otherwise, no name-based
13534 filtering is performed.
13535
13536 EXCEPTIONS is a vector of exceptions to which matching exceptions
13537 gets pushed. */
13538
13539static void
2d7cc5c7 13540ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13541 std::vector<ada_exc_info> *exceptions)
778865d3 13542{
14bc53a8
PA
13543 /* In Ada, the symbol "search name" is a linkage name, whereas the
13544 regular expression used to do the matching refers to the natural
13545 name. So match against the decoded name. */
13546 expand_symtabs_matching (NULL,
b5ec771e 13547 lookup_name_info::match_any (),
14bc53a8
PA
13548 [&] (const char *search_name)
13549 {
13550 const char *decoded = ada_decode (search_name);
13551 return name_matches_regex (decoded, preg);
13552 },
13553 NULL,
13554 VARIABLES_DOMAIN);
778865d3 13555
2030c079 13556 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13557 {
b669c953 13558 for (compunit_symtab *s : objfile->compunits ())
778865d3 13559 {
d8aeb77f
TT
13560 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13561 int i;
778865d3 13562
d8aeb77f
TT
13563 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13564 {
582942f4 13565 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13566 struct block_iterator iter;
13567 struct symbol *sym;
778865d3 13568
d8aeb77f
TT
13569 ALL_BLOCK_SYMBOLS (b, iter, sym)
13570 if (ada_is_non_standard_exception_sym (sym)
13571 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13572 {
13573 struct ada_exc_info info
13574 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13575
13576 exceptions->push_back (info);
13577 }
13578 }
778865d3
JB
13579 }
13580 }
13581}
13582
13583/* Implements ada_exceptions_list with the regular expression passed
13584 as a regex_t, rather than a string.
13585
13586 If not NULL, PREG is used to filter out exceptions whose names
13587 do not match. Otherwise, all exceptions are listed. */
13588
ab816a27 13589static std::vector<ada_exc_info>
2d7cc5c7 13590ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13591{
ab816a27 13592 std::vector<ada_exc_info> result;
778865d3
JB
13593 int prev_len;
13594
13595 /* First, list the known standard exceptions. These exceptions
13596 need to be handled separately, as they are usually defined in
13597 runtime units that have been compiled without debugging info. */
13598
13599 ada_add_standard_exceptions (preg, &result);
13600
13601 /* Next, find all exceptions whose scope is local and accessible
13602 from the currently selected frame. */
13603
13604 if (has_stack_frames ())
13605 {
ab816a27 13606 prev_len = result.size ();
778865d3
JB
13607 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13608 &result);
ab816a27 13609 if (result.size () > prev_len)
778865d3
JB
13610 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13611 }
13612
13613 /* Add all exceptions whose scope is global. */
13614
ab816a27 13615 prev_len = result.size ();
778865d3 13616 ada_add_global_exceptions (preg, &result);
ab816a27 13617 if (result.size () > prev_len)
778865d3
JB
13618 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13619
778865d3
JB
13620 return result;
13621}
13622
13623/* Return a vector of ada_exc_info.
13624
13625 If REGEXP is NULL, all exceptions are included in the result.
13626 Otherwise, it should contain a valid regular expression,
13627 and only the exceptions whose names match that regular expression
13628 are included in the result.
13629
13630 The exceptions are sorted in the following order:
13631 - Standard exceptions (defined by the Ada language), in
13632 alphabetical order;
13633 - Exceptions only visible from the current frame, in
13634 alphabetical order;
13635 - Exceptions whose scope is global, in alphabetical order. */
13636
ab816a27 13637std::vector<ada_exc_info>
778865d3
JB
13638ada_exceptions_list (const char *regexp)
13639{
2d7cc5c7
PA
13640 if (regexp == NULL)
13641 return ada_exceptions_list_1 (NULL);
778865d3 13642
2d7cc5c7
PA
13643 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13644 return ada_exceptions_list_1 (&reg);
778865d3
JB
13645}
13646
13647/* Implement the "info exceptions" command. */
13648
13649static void
1d12d88f 13650info_exceptions_command (const char *regexp, int from_tty)
778865d3 13651{
778865d3 13652 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13653
ab816a27 13654 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13655
13656 if (regexp != NULL)
13657 printf_filtered
13658 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13659 else
13660 printf_filtered (_("All defined Ada exceptions:\n"));
13661
ab816a27
TT
13662 for (const ada_exc_info &info : exceptions)
13663 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13664}
13665
4c4b4cd2
PH
13666 /* Operators */
13667/* Information about operators given special treatment in functions
13668 below. */
13669/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13670
13671#define ADA_OPERATORS \
13672 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13673 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13674 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13675 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13682 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13685 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13686 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13687 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13688 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13689 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13690 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13691
13692static void
554794dc
SDJ
13693ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13694 int *argsp)
4c4b4cd2
PH
13695{
13696 switch (exp->elts[pc - 1].opcode)
13697 {
76a01679 13698 default:
4c4b4cd2
PH
13699 operator_length_standard (exp, pc, oplenp, argsp);
13700 break;
13701
13702#define OP_DEFN(op, len, args, binop) \
13703 case op: *oplenp = len; *argsp = args; break;
13704 ADA_OPERATORS;
13705#undef OP_DEFN
52ce6436
PH
13706
13707 case OP_AGGREGATE:
13708 *oplenp = 3;
13709 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13710 break;
13711
13712 case OP_CHOICES:
13713 *oplenp = 3;
13714 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13715 break;
4c4b4cd2
PH
13716 }
13717}
13718
c0201579
JK
13719/* Implementation of the exp_descriptor method operator_check. */
13720
13721static int
13722ada_operator_check (struct expression *exp, int pos,
13723 int (*objfile_func) (struct objfile *objfile, void *data),
13724 void *data)
13725{
13726 const union exp_element *const elts = exp->elts;
13727 struct type *type = NULL;
13728
13729 switch (elts[pos].opcode)
13730 {
13731 case UNOP_IN_RANGE:
13732 case UNOP_QUAL:
13733 type = elts[pos + 1].type;
13734 break;
13735
13736 default:
13737 return operator_check_standard (exp, pos, objfile_func, data);
13738 }
13739
13740 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13741
13742 if (type && TYPE_OBJFILE (type)
13743 && (*objfile_func) (TYPE_OBJFILE (type), data))
13744 return 1;
13745
13746 return 0;
13747}
13748
a121b7c1 13749static const char *
4c4b4cd2
PH
13750ada_op_name (enum exp_opcode opcode)
13751{
13752 switch (opcode)
13753 {
76a01679 13754 default:
4c4b4cd2 13755 return op_name_standard (opcode);
52ce6436 13756
4c4b4cd2
PH
13757#define OP_DEFN(op, len, args, binop) case op: return #op;
13758 ADA_OPERATORS;
13759#undef OP_DEFN
52ce6436
PH
13760
13761 case OP_AGGREGATE:
13762 return "OP_AGGREGATE";
13763 case OP_CHOICES:
13764 return "OP_CHOICES";
13765 case OP_NAME:
13766 return "OP_NAME";
4c4b4cd2
PH
13767 }
13768}
13769
13770/* As for operator_length, but assumes PC is pointing at the first
13771 element of the operator, and gives meaningful results only for the
52ce6436 13772 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13773
13774static void
76a01679
JB
13775ada_forward_operator_length (struct expression *exp, int pc,
13776 int *oplenp, int *argsp)
4c4b4cd2 13777{
76a01679 13778 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13779 {
13780 default:
13781 *oplenp = *argsp = 0;
13782 break;
52ce6436 13783
4c4b4cd2
PH
13784#define OP_DEFN(op, len, args, binop) \
13785 case op: *oplenp = len; *argsp = args; break;
13786 ADA_OPERATORS;
13787#undef OP_DEFN
52ce6436
PH
13788
13789 case OP_AGGREGATE:
13790 *oplenp = 3;
13791 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13792 break;
13793
13794 case OP_CHOICES:
13795 *oplenp = 3;
13796 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13797 break;
13798
13799 case OP_STRING:
13800 case OP_NAME:
13801 {
13802 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13803
52ce6436
PH
13804 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13805 *argsp = 0;
13806 break;
13807 }
4c4b4cd2
PH
13808 }
13809}
13810
13811static int
13812ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13813{
13814 enum exp_opcode op = exp->elts[elt].opcode;
13815 int oplen, nargs;
13816 int pc = elt;
13817 int i;
76a01679 13818
4c4b4cd2
PH
13819 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13820
76a01679 13821 switch (op)
4c4b4cd2 13822 {
76a01679 13823 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13824 case OP_ATR_FIRST:
13825 case OP_ATR_LAST:
13826 case OP_ATR_LENGTH:
13827 case OP_ATR_IMAGE:
13828 case OP_ATR_MAX:
13829 case OP_ATR_MIN:
13830 case OP_ATR_MODULUS:
13831 case OP_ATR_POS:
13832 case OP_ATR_SIZE:
13833 case OP_ATR_TAG:
13834 case OP_ATR_VAL:
13835 break;
13836
13837 case UNOP_IN_RANGE:
13838 case UNOP_QUAL:
323e0a4a
AC
13839 /* XXX: gdb_sprint_host_address, type_sprint */
13840 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13841 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13842 fprintf_filtered (stream, " (");
13843 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13844 fprintf_filtered (stream, ")");
13845 break;
13846 case BINOP_IN_BOUNDS:
52ce6436
PH
13847 fprintf_filtered (stream, " (%d)",
13848 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13849 break;
13850 case TERNOP_IN_RANGE:
13851 break;
13852
52ce6436
PH
13853 case OP_AGGREGATE:
13854 case OP_OTHERS:
13855 case OP_DISCRETE_RANGE:
13856 case OP_POSITIONAL:
13857 case OP_CHOICES:
13858 break;
13859
13860 case OP_NAME:
13861 case OP_STRING:
13862 {
13863 char *name = &exp->elts[elt + 2].string;
13864 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13865
52ce6436
PH
13866 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13867 break;
13868 }
13869
4c4b4cd2
PH
13870 default:
13871 return dump_subexp_body_standard (exp, stream, elt);
13872 }
13873
13874 elt += oplen;
13875 for (i = 0; i < nargs; i += 1)
13876 elt = dump_subexp (exp, stream, elt);
13877
13878 return elt;
13879}
13880
13881/* The Ada extension of print_subexp (q.v.). */
13882
76a01679
JB
13883static void
13884ada_print_subexp (struct expression *exp, int *pos,
13885 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13886{
52ce6436 13887 int oplen, nargs, i;
4c4b4cd2
PH
13888 int pc = *pos;
13889 enum exp_opcode op = exp->elts[pc].opcode;
13890
13891 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13892
52ce6436 13893 *pos += oplen;
4c4b4cd2
PH
13894 switch (op)
13895 {
13896 default:
52ce6436 13897 *pos -= oplen;
4c4b4cd2
PH
13898 print_subexp_standard (exp, pos, stream, prec);
13899 return;
13900
13901 case OP_VAR_VALUE:
4c4b4cd2
PH
13902 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13903 return;
13904
13905 case BINOP_IN_BOUNDS:
323e0a4a 13906 /* XXX: sprint_subexp */
4c4b4cd2 13907 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13908 fputs_filtered (" in ", stream);
4c4b4cd2 13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13910 fputs_filtered ("'range", stream);
4c4b4cd2 13911 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13912 fprintf_filtered (stream, "(%ld)",
13913 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13914 return;
13915
13916 case TERNOP_IN_RANGE:
4c4b4cd2 13917 if (prec >= PREC_EQUAL)
76a01679 13918 fputs_filtered ("(", stream);
323e0a4a 13919 /* XXX: sprint_subexp */
4c4b4cd2 13920 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13921 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13922 print_subexp (exp, pos, stream, PREC_EQUAL);
13923 fputs_filtered (" .. ", stream);
13924 print_subexp (exp, pos, stream, PREC_EQUAL);
13925 if (prec >= PREC_EQUAL)
76a01679
JB
13926 fputs_filtered (")", stream);
13927 return;
4c4b4cd2
PH
13928
13929 case OP_ATR_FIRST:
13930 case OP_ATR_LAST:
13931 case OP_ATR_LENGTH:
13932 case OP_ATR_IMAGE:
13933 case OP_ATR_MAX:
13934 case OP_ATR_MIN:
13935 case OP_ATR_MODULUS:
13936 case OP_ATR_POS:
13937 case OP_ATR_SIZE:
13938 case OP_ATR_TAG:
13939 case OP_ATR_VAL:
4c4b4cd2 13940 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13941 {
13942 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13943 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13944 &type_print_raw_options);
76a01679
JB
13945 *pos += 3;
13946 }
4c4b4cd2 13947 else
76a01679 13948 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13949 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13950 if (nargs > 1)
76a01679
JB
13951 {
13952 int tem;
5b4ee69b 13953
76a01679
JB
13954 for (tem = 1; tem < nargs; tem += 1)
13955 {
13956 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13957 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13958 }
13959 fputs_filtered (")", stream);
13960 }
4c4b4cd2 13961 return;
14f9c5c9 13962
4c4b4cd2 13963 case UNOP_QUAL:
4c4b4cd2
PH
13964 type_print (exp->elts[pc + 1].type, "", stream, 0);
13965 fputs_filtered ("'(", stream);
13966 print_subexp (exp, pos, stream, PREC_PREFIX);
13967 fputs_filtered (")", stream);
13968 return;
14f9c5c9 13969
4c4b4cd2 13970 case UNOP_IN_RANGE:
323e0a4a 13971 /* XXX: sprint_subexp */
4c4b4cd2 13972 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13973 fputs_filtered (" in ", stream);
79d43c61
TT
13974 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13975 &type_print_raw_options);
4c4b4cd2 13976 return;
52ce6436
PH
13977
13978 case OP_DISCRETE_RANGE:
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 fputs_filtered ("..", stream);
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_OTHERS:
13985 fputs_filtered ("others => ", stream);
13986 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 return;
13988
13989 case OP_CHOICES:
13990 for (i = 0; i < nargs-1; i += 1)
13991 {
13992 if (i > 0)
13993 fputs_filtered ("|", stream);
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 }
13996 fputs_filtered (" => ", stream);
13997 print_subexp (exp, pos, stream, PREC_SUFFIX);
13998 return;
13999
14000 case OP_POSITIONAL:
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 return;
14003
14004 case OP_AGGREGATE:
14005 fputs_filtered ("(", stream);
14006 for (i = 0; i < nargs; i += 1)
14007 {
14008 if (i > 0)
14009 fputs_filtered (", ", stream);
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 }
14012 fputs_filtered (")", stream);
14013 return;
4c4b4cd2
PH
14014 }
14015}
14f9c5c9
AS
14016
14017/* Table mapping opcodes into strings for printing operators
14018 and precedences of the operators. */
14019
d2e4a39e
AS
14020static const struct op_print ada_op_print_tab[] = {
14021 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14022 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14023 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14024 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14025 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14026 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14027 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14028 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14029 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14030 {">=", BINOP_GEQ, PREC_ORDER, 0},
14031 {">", BINOP_GTR, PREC_ORDER, 0},
14032 {"<", BINOP_LESS, PREC_ORDER, 0},
14033 {">>", BINOP_RSH, PREC_SHIFT, 0},
14034 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14035 {"+", BINOP_ADD, PREC_ADD, 0},
14036 {"-", BINOP_SUB, PREC_ADD, 0},
14037 {"&", BINOP_CONCAT, PREC_ADD, 0},
14038 {"*", BINOP_MUL, PREC_MUL, 0},
14039 {"/", BINOP_DIV, PREC_MUL, 0},
14040 {"rem", BINOP_REM, PREC_MUL, 0},
14041 {"mod", BINOP_MOD, PREC_MUL, 0},
14042 {"**", BINOP_EXP, PREC_REPEAT, 0},
14043 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14044 {"-", UNOP_NEG, PREC_PREFIX, 0},
14045 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14046 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14047 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14048 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14049 {".all", UNOP_IND, PREC_SUFFIX, 1},
14050 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14051 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14052 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14053};
14054\f
72d5681a
PH
14055enum ada_primitive_types {
14056 ada_primitive_type_int,
14057 ada_primitive_type_long,
14058 ada_primitive_type_short,
14059 ada_primitive_type_char,
14060 ada_primitive_type_float,
14061 ada_primitive_type_double,
14062 ada_primitive_type_void,
14063 ada_primitive_type_long_long,
14064 ada_primitive_type_long_double,
14065 ada_primitive_type_natural,
14066 ada_primitive_type_positive,
14067 ada_primitive_type_system_address,
08f49010 14068 ada_primitive_type_storage_offset,
72d5681a
PH
14069 nr_ada_primitive_types
14070};
6c038f32
PH
14071
14072static void
d4a9a881 14073ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14074 struct language_arch_info *lai)
14075{
d4a9a881 14076 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14077
72d5681a 14078 lai->primitive_type_vector
d4a9a881 14079 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14080 struct type *);
e9bb382b
UW
14081
14082 lai->primitive_type_vector [ada_primitive_type_int]
14083 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14084 0, "integer");
14085 lai->primitive_type_vector [ada_primitive_type_long]
14086 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14087 0, "long_integer");
14088 lai->primitive_type_vector [ada_primitive_type_short]
14089 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14090 0, "short_integer");
14091 lai->string_char_type
14092 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14093 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14094 lai->primitive_type_vector [ada_primitive_type_float]
14095 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14096 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14097 lai->primitive_type_vector [ada_primitive_type_double]
14098 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14099 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14100 lai->primitive_type_vector [ada_primitive_type_long_long]
14101 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14102 0, "long_long_integer");
14103 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14104 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14105 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14106 lai->primitive_type_vector [ada_primitive_type_natural]
14107 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14108 0, "natural");
14109 lai->primitive_type_vector [ada_primitive_type_positive]
14110 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14111 0, "positive");
14112 lai->primitive_type_vector [ada_primitive_type_void]
14113 = builtin->builtin_void;
14114
14115 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14116 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14117 "void"));
72d5681a
PH
14118 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14119 = "system__address";
fbb06eb1 14120
08f49010
XR
14121 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14122 type. This is a signed integral type whose size is the same as
14123 the size of addresses. */
14124 {
14125 unsigned int addr_length = TYPE_LENGTH
14126 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14127
14128 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14129 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14130 "storage_offset");
14131 }
14132
47e729a8 14133 lai->bool_type_symbol = NULL;
fbb06eb1 14134 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14135}
6c038f32
PH
14136\f
14137 /* Language vector */
14138
14139/* Not really used, but needed in the ada_language_defn. */
14140
14141static void
6c7a06a3 14142emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14143{
6c7a06a3 14144 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14145}
14146
14147static int
410a0ff2 14148parse (struct parser_state *ps)
6c038f32
PH
14149{
14150 warnings_issued = 0;
410a0ff2 14151 return ada_parse (ps);
6c038f32
PH
14152}
14153
14154static const struct exp_descriptor ada_exp_descriptor = {
14155 ada_print_subexp,
14156 ada_operator_length,
c0201579 14157 ada_operator_check,
6c038f32
PH
14158 ada_op_name,
14159 ada_dump_subexp_body,
14160 ada_evaluate_subexp
14161};
14162
b5ec771e
PA
14163/* symbol_name_matcher_ftype adapter for wild_match. */
14164
14165static bool
14166do_wild_match (const char *symbol_search_name,
14167 const lookup_name_info &lookup_name,
a207cff2 14168 completion_match_result *comp_match_res)
b5ec771e
PA
14169{
14170 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14171}
14172
14173/* symbol_name_matcher_ftype adapter for full_match. */
14174
14175static bool
14176do_full_match (const char *symbol_search_name,
14177 const lookup_name_info &lookup_name,
a207cff2 14178 completion_match_result *comp_match_res)
b5ec771e
PA
14179{
14180 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14181}
14182
a2cd4f14
JB
14183/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14184
14185static bool
14186do_exact_match (const char *symbol_search_name,
14187 const lookup_name_info &lookup_name,
14188 completion_match_result *comp_match_res)
14189{
14190 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14191}
14192
b5ec771e
PA
14193/* Build the Ada lookup name for LOOKUP_NAME. */
14194
14195ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14196{
14197 const std::string &user_name = lookup_name.name ();
14198
14199 if (user_name[0] == '<')
14200 {
14201 if (user_name.back () == '>')
14202 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14203 else
14204 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14205 m_encoded_p = true;
14206 m_verbatim_p = true;
14207 m_wild_match_p = false;
14208 m_standard_p = false;
14209 }
14210 else
14211 {
14212 m_verbatim_p = false;
14213
14214 m_encoded_p = user_name.find ("__") != std::string::npos;
14215
14216 if (!m_encoded_p)
14217 {
14218 const char *folded = ada_fold_name (user_name.c_str ());
14219 const char *encoded = ada_encode_1 (folded, false);
14220 if (encoded != NULL)
14221 m_encoded_name = encoded;
14222 else
14223 m_encoded_name = user_name;
14224 }
14225 else
14226 m_encoded_name = user_name;
14227
14228 /* Handle the 'package Standard' special case. See description
14229 of m_standard_p. */
14230 if (startswith (m_encoded_name.c_str (), "standard__"))
14231 {
14232 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14233 m_standard_p = true;
14234 }
14235 else
14236 m_standard_p = false;
74ccd7f5 14237
b5ec771e
PA
14238 /* If the name contains a ".", then the user is entering a fully
14239 qualified entity name, and the match must not be done in wild
14240 mode. Similarly, if the user wants to complete what looks
14241 like an encoded name, the match must not be done in wild
14242 mode. Also, in the standard__ special case always do
14243 non-wild matching. */
14244 m_wild_match_p
14245 = (lookup_name.match_type () != symbol_name_match_type::FULL
14246 && !m_encoded_p
14247 && !m_standard_p
14248 && user_name.find ('.') == std::string::npos);
14249 }
14250}
14251
14252/* symbol_name_matcher_ftype method for Ada. This only handles
14253 completion mode. */
14254
14255static bool
14256ada_symbol_name_matches (const char *symbol_search_name,
14257 const lookup_name_info &lookup_name,
a207cff2 14258 completion_match_result *comp_match_res)
74ccd7f5 14259{
b5ec771e
PA
14260 return lookup_name.ada ().matches (symbol_search_name,
14261 lookup_name.match_type (),
a207cff2 14262 comp_match_res);
b5ec771e
PA
14263}
14264
de63c46b
PA
14265/* A name matcher that matches the symbol name exactly, with
14266 strcmp. */
14267
14268static bool
14269literal_symbol_name_matcher (const char *symbol_search_name,
14270 const lookup_name_info &lookup_name,
14271 completion_match_result *comp_match_res)
14272{
14273 const std::string &name = lookup_name.name ();
14274
14275 int cmp = (lookup_name.completion_mode ()
14276 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14277 : strcmp (symbol_search_name, name.c_str ()));
14278 if (cmp == 0)
14279 {
14280 if (comp_match_res != NULL)
14281 comp_match_res->set_match (symbol_search_name);
14282 return true;
14283 }
14284 else
14285 return false;
14286}
14287
b5ec771e
PA
14288/* Implement the "la_get_symbol_name_matcher" language_defn method for
14289 Ada. */
14290
14291static symbol_name_matcher_ftype *
14292ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14293{
de63c46b
PA
14294 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14295 return literal_symbol_name_matcher;
14296
b5ec771e
PA
14297 if (lookup_name.completion_mode ())
14298 return ada_symbol_name_matches;
74ccd7f5 14299 else
b5ec771e
PA
14300 {
14301 if (lookup_name.ada ().wild_match_p ())
14302 return do_wild_match;
a2cd4f14
JB
14303 else if (lookup_name.ada ().verbatim_p ())
14304 return do_exact_match;
b5ec771e
PA
14305 else
14306 return do_full_match;
14307 }
74ccd7f5
JB
14308}
14309
a5ee536b
JB
14310/* Implement the "la_read_var_value" language_defn method for Ada. */
14311
14312static struct value *
63e43d3a
PMR
14313ada_read_var_value (struct symbol *var, const struct block *var_block,
14314 struct frame_info *frame)
a5ee536b 14315{
3977b71f 14316 const struct block *frame_block = NULL;
a5ee536b
JB
14317 struct symbol *renaming_sym = NULL;
14318
14319 /* The only case where default_read_var_value is not sufficient
14320 is when VAR is a renaming... */
14321 if (frame)
14322 frame_block = get_frame_block (frame, NULL);
14323 if (frame_block)
14324 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14325 if (renaming_sym != NULL)
14326 return ada_read_renaming_var_value (renaming_sym, frame_block);
14327
14328 /* This is a typical case where we expect the default_read_var_value
14329 function to work. */
63e43d3a 14330 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14331}
14332
56618e20
TT
14333static const char *ada_extensions[] =
14334{
14335 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14336};
14337
47e77640 14338extern const struct language_defn ada_language_defn = {
6c038f32 14339 "ada", /* Language name */
6abde28f 14340 "Ada",
6c038f32 14341 language_ada,
6c038f32 14342 range_check_off,
6c038f32
PH
14343 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14344 that's not quite what this means. */
6c038f32 14345 array_row_major,
9a044a89 14346 macro_expansion_no,
56618e20 14347 ada_extensions,
6c038f32
PH
14348 &ada_exp_descriptor,
14349 parse,
6c038f32
PH
14350 resolve,
14351 ada_printchar, /* Print a character constant */
14352 ada_printstr, /* Function to print string constant */
14353 emit_char, /* Function to print single char (not used) */
6c038f32 14354 ada_print_type, /* Print a type using appropriate syntax */
be942545 14355 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14356 ada_val_print, /* Print a value using appropriate syntax */
14357 ada_value_print, /* Print a top-level value */
a5ee536b 14358 ada_read_var_value, /* la_read_var_value */
6c038f32 14359 NULL, /* Language specific skip_trampoline */
2b2d9e11 14360 NULL, /* name_of_this */
59cc4834 14361 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14362 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14363 basic_lookup_transparent_type, /* lookup_transparent_type */
14364 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14365 ada_sniff_from_mangled_name,
0963b4bd
MS
14366 NULL, /* Language specific
14367 class_name_from_physname */
6c038f32
PH
14368 ada_op_print_tab, /* expression operators for printing */
14369 0, /* c-style arrays */
14370 1, /* String lower bound */
6c038f32 14371 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14372 ada_collect_symbol_completion_matches,
72d5681a 14373 ada_language_arch_info,
e79af960 14374 ada_print_array_index,
41f1b697 14375 default_pass_by_reference,
ae6a3a4c 14376 c_get_string,
e2b7af72 14377 ada_watch_location_expression,
b5ec771e 14378 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14379 ada_iterate_over_symbols,
5ffa0793 14380 default_search_name_hash,
a53b64ea 14381 &ada_varobj_ops,
bb2ec1b3
TT
14382 NULL,
14383 NULL,
6c038f32
PH
14384 LANG_MAGIC
14385};
14386
5bf03f13
JB
14387/* Command-list for the "set/show ada" prefix command. */
14388static struct cmd_list_element *set_ada_list;
14389static struct cmd_list_element *show_ada_list;
14390
14391/* Implement the "set ada" prefix command. */
14392
14393static void
981a3fb3 14394set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14395{
14396 printf_unfiltered (_(\
14397"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14398 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14399}
14400
14401/* Implement the "show ada" prefix command. */
14402
14403static void
981a3fb3 14404show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14405{
14406 cmd_show_list (show_ada_list, from_tty, "");
14407}
14408
2060206e
PA
14409static void
14410initialize_ada_catchpoint_ops (void)
14411{
14412 struct breakpoint_ops *ops;
14413
14414 initialize_breakpoint_ops ();
14415
14416 ops = &catch_exception_breakpoint_ops;
14417 *ops = bkpt_breakpoint_ops;
2060206e
PA
14418 ops->allocate_location = allocate_location_catch_exception;
14419 ops->re_set = re_set_catch_exception;
14420 ops->check_status = check_status_catch_exception;
14421 ops->print_it = print_it_catch_exception;
14422 ops->print_one = print_one_catch_exception;
14423 ops->print_mention = print_mention_catch_exception;
14424 ops->print_recreate = print_recreate_catch_exception;
14425
14426 ops = &catch_exception_unhandled_breakpoint_ops;
14427 *ops = bkpt_breakpoint_ops;
2060206e
PA
14428 ops->allocate_location = allocate_location_catch_exception_unhandled;
14429 ops->re_set = re_set_catch_exception_unhandled;
14430 ops->check_status = check_status_catch_exception_unhandled;
14431 ops->print_it = print_it_catch_exception_unhandled;
14432 ops->print_one = print_one_catch_exception_unhandled;
14433 ops->print_mention = print_mention_catch_exception_unhandled;
14434 ops->print_recreate = print_recreate_catch_exception_unhandled;
14435
14436 ops = &catch_assert_breakpoint_ops;
14437 *ops = bkpt_breakpoint_ops;
2060206e
PA
14438 ops->allocate_location = allocate_location_catch_assert;
14439 ops->re_set = re_set_catch_assert;
14440 ops->check_status = check_status_catch_assert;
14441 ops->print_it = print_it_catch_assert;
14442 ops->print_one = print_one_catch_assert;
14443 ops->print_mention = print_mention_catch_assert;
14444 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14445
14446 ops = &catch_handlers_breakpoint_ops;
14447 *ops = bkpt_breakpoint_ops;
14448 ops->allocate_location = allocate_location_catch_handlers;
14449 ops->re_set = re_set_catch_handlers;
14450 ops->check_status = check_status_catch_handlers;
14451 ops->print_it = print_it_catch_handlers;
14452 ops->print_one = print_one_catch_handlers;
14453 ops->print_mention = print_mention_catch_handlers;
14454 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14455}
14456
3d9434b5
JB
14457/* This module's 'new_objfile' observer. */
14458
14459static void
14460ada_new_objfile_observer (struct objfile *objfile)
14461{
14462 ada_clear_symbol_cache ();
14463}
14464
14465/* This module's 'free_objfile' observer. */
14466
14467static void
14468ada_free_objfile_observer (struct objfile *objfile)
14469{
14470 ada_clear_symbol_cache ();
14471}
14472
d2e4a39e 14473void
6c038f32 14474_initialize_ada_language (void)
14f9c5c9 14475{
2060206e
PA
14476 initialize_ada_catchpoint_ops ();
14477
5bf03f13 14478 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14479 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14480 &set_ada_list, "set ada ", 0, &setlist);
14481
14482 add_prefix_cmd ("ada", no_class, show_ada_command,
14483 _("Generic command for showing Ada-specific settings."),
14484 &show_ada_list, "show ada ", 0, &showlist);
14485
14486 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14487 &trust_pad_over_xvs, _("\
14488Enable or disable an optimization trusting PAD types over XVS types"), _("\
14489Show whether an optimization trusting PAD types over XVS types is activated"),
14490 _("\
14491This is related to the encoding used by the GNAT compiler. The debugger\n\
14492should normally trust the contents of PAD types, but certain older versions\n\
14493of GNAT have a bug that sometimes causes the information in the PAD type\n\
14494to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14495work around this bug. It is always safe to turn this option \"off\", but\n\
14496this incurs a slight performance penalty, so it is recommended to NOT change\n\
14497this option to \"off\" unless necessary."),
14498 NULL, NULL, &set_ada_list, &show_ada_list);
14499
d72413e6
PMR
14500 add_setshow_boolean_cmd ("print-signatures", class_vars,
14501 &print_signatures, _("\
14502Enable or disable the output of formal and return types for functions in the \
14503overloads selection menu"), _("\
14504Show whether the output of formal and return types for functions in the \
14505overloads selection menu is activated"),
14506 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14507
9ac4176b
PA
14508 add_catch_command ("exception", _("\
14509Catch Ada exceptions, when raised.\n\
60a90376
JB
14510Usage: catch exception [ ARG ]\n\
14511\n\
14512Without any argument, stop when any Ada exception is raised.\n\
14513If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14514being raised does not have a handler (and will therefore lead to the task's\n\
14515termination).\n\
14516Otherwise, the catchpoint only stops when the name of the exception being\n\
14517raised is the same as ARG."),
9ac4176b
PA
14518 catch_ada_exception_command,
14519 NULL,
14520 CATCH_PERMANENT,
14521 CATCH_TEMPORARY);
9f757bf7
XR
14522
14523 add_catch_command ("handlers", _("\
14524Catch Ada exceptions, when handled.\n\
14525With an argument, catch only exceptions with the given name."),
14526 catch_ada_handlers_command,
14527 NULL,
14528 CATCH_PERMANENT,
14529 CATCH_TEMPORARY);
9ac4176b
PA
14530 add_catch_command ("assert", _("\
14531Catch failed Ada assertions, when raised.\n\
14532With an argument, catch only exceptions with the given name."),
14533 catch_assert_command,
14534 NULL,
14535 CATCH_PERMANENT,
14536 CATCH_TEMPORARY);
14537
6c038f32 14538 varsize_limit = 65536;
3fcded8f
JB
14539 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14540 &varsize_limit, _("\
14541Set the maximum number of bytes allowed in a variable-size object."), _("\
14542Show the maximum number of bytes allowed in a variable-size object."), _("\
14543Attempts to access an object whose size is not a compile-time constant\n\
14544and exceeds this limit will cause an error."),
14545 NULL, NULL, &setlist, &showlist);
6c038f32 14546
778865d3
JB
14547 add_info ("exceptions", info_exceptions_command,
14548 _("\
14549List all Ada exception names.\n\
14550If a regular expression is passed as an argument, only those matching\n\
14551the regular expression are listed."));
14552
c6044dd1
JB
14553 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14554 _("Set Ada maintenance-related variables."),
14555 &maint_set_ada_cmdlist, "maintenance set ada ",
14556 0/*allow-unknown*/, &maintenance_set_cmdlist);
14557
14558 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14559 _("Show Ada maintenance-related variables"),
14560 &maint_show_ada_cmdlist, "maintenance show ada ",
14561 0/*allow-unknown*/, &maintenance_show_cmdlist);
14562
14563 add_setshow_boolean_cmd
14564 ("ignore-descriptive-types", class_maintenance,
14565 &ada_ignore_descriptive_types_p,
14566 _("Set whether descriptive types generated by GNAT should be ignored."),
14567 _("Show whether descriptive types generated by GNAT should be ignored."),
14568 _("\
14569When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14570DWARF attribute."),
14571 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14572
459a2e4c
TT
14573 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14574 NULL, xcalloc, xfree);
6b69afc4 14575
3d9434b5 14576 /* The ada-lang observers. */
76727919
TT
14577 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14578 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14579 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14580
14581 /* Setup various context-specific data. */
e802dbe0 14582 ada_inferior_data
8e260fc0 14583 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14584 ada_pspace_data_handle
14585 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14586}
This page took 2.521656 seconds and 4 git commands to generate.