http://sourceware.org/ml/gdb-patches/2010-12/msg00299.html
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
76a01679 109 struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
4c4b4cd2 112static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 115 struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
119static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 120
4c4b4cd2 121static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 122 struct type *);
14f9c5c9 123
d2e4a39e 124static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 125 struct symbol *, struct block *);
14f9c5c9 126
d2e4a39e 127static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 128
4c4b4cd2
PH
129static char *ada_op_name (enum exp_opcode);
130
131static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 132
d2e4a39e 133static int numeric_type_p (struct type *);
14f9c5c9 134
d2e4a39e 135static int integer_type_p (struct type *);
14f9c5c9 136
d2e4a39e 137static int scalar_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int discrete_type_p (struct type *);
14f9c5c9 140
aeb5907d
JB
141static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
4c4b4cd2 149static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 150 int, int, int *);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
50810684 187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
73589123
PH
200static int advance_wild_match (const char **, const char *, int);
201
202static int wild_match (const char *, const char *);
14f9c5c9 203
d2e4a39e 204static struct value *ada_coerce_ref (struct value *);
14f9c5c9 205
4c4b4cd2
PH
206static LONGEST pos_atr (struct value *);
207
3cb382c9 208static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 209
d2e4a39e 210static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
14f9c5c9 214
4c4b4cd2
PH
215static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
76a01679 221static int find_struct_field (char *, struct type *, int,
52ce6436 222 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
223
224static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
4c4b4cd2
PH
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
242 struct expression *,
243 int *, enum noside);
52ce6436
PH
244
245static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
4c4b4cd2
PH
269\f
270
76a01679 271
4c4b4cd2 272/* Maximum-sized dynamic type. */
14f9c5c9
AS
273static unsigned int varsize_limit;
274
4c4b4cd2
PH
275/* FIXME: brobecker/2003-09-17: No longer a const because it is
276 returned by a function that does not return a const char *. */
277static char *ada_completer_word_break_characters =
278#ifdef VMS
279 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
280#else
14f9c5c9 281 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 282#endif
14f9c5c9 283
4c4b4cd2 284/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 285static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 286 = "__gnat_ada_main_program_name";
14f9c5c9 287
4c4b4cd2
PH
288/* Limit on the number of warnings to raise per expression evaluation. */
289static int warning_limit = 2;
290
291/* Number of warning messages issued; reset to 0 by cleanups after
292 expression evaluation. */
293static int warnings_issued = 0;
294
295static const char *known_runtime_file_name_patterns[] = {
296 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
297};
298
299static const char *known_auxiliary_function_name_patterns[] = {
300 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
301};
302
303/* Space for allocating results of ada_lookup_symbol_list. */
304static struct obstack symbol_list_obstack;
305
e802dbe0
JB
306 /* Inferior-specific data. */
307
308/* Per-inferior data for this module. */
309
310struct ada_inferior_data
311{
312 /* The ada__tags__type_specific_data type, which is used when decoding
313 tagged types. With older versions of GNAT, this type was directly
314 accessible through a component ("tsd") in the object tag. But this
315 is no longer the case, so we cache it for each inferior. */
316 struct type *tsd_type;
317};
318
319/* Our key to this module's inferior data. */
320static const struct inferior_data *ada_inferior_data;
321
322/* A cleanup routine for our inferior data. */
323static void
324ada_inferior_data_cleanup (struct inferior *inf, void *arg)
325{
326 struct ada_inferior_data *data;
327
328 data = inferior_data (inf, ada_inferior_data);
329 if (data != NULL)
330 xfree (data);
331}
332
333/* Return our inferior data for the given inferior (INF).
334
335 This function always returns a valid pointer to an allocated
336 ada_inferior_data structure. If INF's inferior data has not
337 been previously set, this functions creates a new one with all
338 fields set to zero, sets INF's inferior to it, and then returns
339 a pointer to that newly allocated ada_inferior_data. */
340
341static struct ada_inferior_data *
342get_ada_inferior_data (struct inferior *inf)
343{
344 struct ada_inferior_data *data;
345
346 data = inferior_data (inf, ada_inferior_data);
347 if (data == NULL)
348 {
349 data = XZALLOC (struct ada_inferior_data);
350 set_inferior_data (inf, ada_inferior_data, data);
351 }
352
353 return data;
354}
355
356/* Perform all necessary cleanups regarding our module's inferior data
357 that is required after the inferior INF just exited. */
358
359static void
360ada_inferior_exit (struct inferior *inf)
361{
362 ada_inferior_data_cleanup (inf, NULL);
363 set_inferior_data (inf, ada_inferior_data, NULL);
364}
365
4c4b4cd2
PH
366 /* Utilities */
367
720d1a40 368/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 369 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
370
371 Normally, we really expect a typedef type to only have 1 typedef layer.
372 In other words, we really expect the target type of a typedef type to be
373 a non-typedef type. This is particularly true for Ada units, because
374 the language does not have a typedef vs not-typedef distinction.
375 In that respect, the Ada compiler has been trying to eliminate as many
376 typedef definitions in the debugging information, since they generally
377 do not bring any extra information (we still use typedef under certain
378 circumstances related mostly to the GNAT encoding).
379
380 Unfortunately, we have seen situations where the debugging information
381 generated by the compiler leads to such multiple typedef layers. For
382 instance, consider the following example with stabs:
383
384 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
385 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386
387 This is an error in the debugging information which causes type
388 pck__float_array___XUP to be defined twice, and the second time,
389 it is defined as a typedef of a typedef.
390
391 This is on the fringe of legality as far as debugging information is
392 concerned, and certainly unexpected. But it is easy to handle these
393 situations correctly, so we can afford to be lenient in this case. */
394
395static struct type *
396ada_typedef_target_type (struct type *type)
397{
398 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
399 type = TYPE_TARGET_TYPE (type);
400 return type;
401}
402
41d27058
JB
403/* Given DECODED_NAME a string holding a symbol name in its
404 decoded form (ie using the Ada dotted notation), returns
405 its unqualified name. */
406
407static const char *
408ada_unqualified_name (const char *decoded_name)
409{
410 const char *result = strrchr (decoded_name, '.');
411
412 if (result != NULL)
413 result++; /* Skip the dot... */
414 else
415 result = decoded_name;
416
417 return result;
418}
419
420/* Return a string starting with '<', followed by STR, and '>'.
421 The result is good until the next call. */
422
423static char *
424add_angle_brackets (const char *str)
425{
426 static char *result = NULL;
427
428 xfree (result);
88c15c34 429 result = xstrprintf ("<%s>", str);
41d27058
JB
430 return result;
431}
96d887e8 432
4c4b4cd2
PH
433static char *
434ada_get_gdb_completer_word_break_characters (void)
435{
436 return ada_completer_word_break_characters;
437}
438
e79af960
JB
439/* Print an array element index using the Ada syntax. */
440
441static void
442ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 443 const struct value_print_options *options)
e79af960 444{
79a45b7d 445 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
446 fprintf_filtered (stream, " => ");
447}
448
f27cf670 449/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 450 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 451 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 452
f27cf670
AS
453void *
454grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 455{
d2e4a39e
AS
456 if (*size < min_size)
457 {
458 *size *= 2;
459 if (*size < min_size)
4c4b4cd2 460 *size = min_size;
f27cf670 461 vect = xrealloc (vect, *size * element_size);
d2e4a39e 462 }
f27cf670 463 return vect;
14f9c5c9
AS
464}
465
466/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 467 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
468
469static int
ebf56fd3 470field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
471{
472 int len = strlen (target);
5b4ee69b 473
d2e4a39e 474 return
4c4b4cd2
PH
475 (strncmp (field_name, target, len) == 0
476 && (field_name[len] == '\0'
477 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
478 && strcmp (field_name + strlen (field_name) - 6,
479 "___XVN") != 0)));
14f9c5c9
AS
480}
481
482
872c8b51
JB
483/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
484 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
485 and return its index. This function also handles fields whose name
486 have ___ suffixes because the compiler sometimes alters their name
487 by adding such a suffix to represent fields with certain constraints.
488 If the field could not be found, return a negative number if
489 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
490
491int
492ada_get_field_index (const struct type *type, const char *field_name,
493 int maybe_missing)
494{
495 int fieldno;
872c8b51
JB
496 struct type *struct_type = check_typedef ((struct type *) type);
497
498 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
499 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
500 return fieldno;
501
502 if (!maybe_missing)
323e0a4a 503 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 504 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
505
506 return -1;
507}
508
509/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
510
511int
d2e4a39e 512ada_name_prefix_len (const char *name)
14f9c5c9
AS
513{
514 if (name == NULL)
515 return 0;
d2e4a39e 516 else
14f9c5c9 517 {
d2e4a39e 518 const char *p = strstr (name, "___");
5b4ee69b 519
14f9c5c9 520 if (p == NULL)
4c4b4cd2 521 return strlen (name);
14f9c5c9 522 else
4c4b4cd2 523 return p - name;
14f9c5c9
AS
524 }
525}
526
4c4b4cd2
PH
527/* Return non-zero if SUFFIX is a suffix of STR.
528 Return zero if STR is null. */
529
14f9c5c9 530static int
d2e4a39e 531is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
532{
533 int len1, len2;
5b4ee69b 534
14f9c5c9
AS
535 if (str == NULL)
536 return 0;
537 len1 = strlen (str);
538 len2 = strlen (suffix);
4c4b4cd2 539 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
540}
541
4c4b4cd2
PH
542/* The contents of value VAL, treated as a value of type TYPE. The
543 result is an lval in memory if VAL is. */
14f9c5c9 544
d2e4a39e 545static struct value *
4c4b4cd2 546coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 547{
61ee279c 548 type = ada_check_typedef (type);
df407dfe 549 if (value_type (val) == type)
4c4b4cd2 550 return val;
d2e4a39e 551 else
14f9c5c9 552 {
4c4b4cd2
PH
553 struct value *result;
554
555 /* Make sure that the object size is not unreasonable before
556 trying to allocate some memory for it. */
714e53ab 557 check_size (type);
4c4b4cd2
PH
558
559 result = allocate_value (type);
74bcbdf3 560 set_value_component_location (result, val);
9bbda503
AC
561 set_value_bitsize (result, value_bitsize (val));
562 set_value_bitpos (result, value_bitpos (val));
42ae5230 563 set_value_address (result, value_address (val));
d69fe07e 564 if (value_lazy (val)
df407dfe 565 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 566 set_value_lazy (result, 1);
d2e4a39e 567 else
0fd88904 568 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 569 TYPE_LENGTH (type));
14f9c5c9
AS
570 return result;
571 }
572}
573
fc1a4b47
AC
574static const gdb_byte *
575cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
576{
577 if (valaddr == NULL)
578 return NULL;
579 else
580 return valaddr + offset;
581}
582
583static CORE_ADDR
ebf56fd3 584cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
585{
586 if (address == 0)
587 return 0;
d2e4a39e 588 else
14f9c5c9
AS
589 return address + offset;
590}
591
4c4b4cd2
PH
592/* Issue a warning (as for the definition of warning in utils.c, but
593 with exactly one argument rather than ...), unless the limit on the
594 number of warnings has passed during the evaluation of the current
595 expression. */
a2249542 596
77109804
AC
597/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
598 provided by "complaint". */
a0b31db1 599static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 600
14f9c5c9 601static void
a2249542 602lim_warning (const char *format, ...)
14f9c5c9 603{
a2249542 604 va_list args;
a2249542 605
5b4ee69b 606 va_start (args, format);
4c4b4cd2
PH
607 warnings_issued += 1;
608 if (warnings_issued <= warning_limit)
a2249542
MK
609 vwarning (format, args);
610
611 va_end (args);
4c4b4cd2
PH
612}
613
714e53ab
PH
614/* Issue an error if the size of an object of type T is unreasonable,
615 i.e. if it would be a bad idea to allocate a value of this type in
616 GDB. */
617
618static void
619check_size (const struct type *type)
620{
621 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 622 error (_("object size is larger than varsize-limit"));
714e53ab
PH
623}
624
0963b4bd 625/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 626static LONGEST
c3e5cd34 627max_of_size (int size)
4c4b4cd2 628{
76a01679 629 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 630
76a01679 631 return top_bit | (top_bit - 1);
4c4b4cd2
PH
632}
633
0963b4bd 634/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 635static LONGEST
c3e5cd34 636min_of_size (int size)
4c4b4cd2 637{
c3e5cd34 638 return -max_of_size (size) - 1;
4c4b4cd2
PH
639}
640
0963b4bd 641/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 642static ULONGEST
c3e5cd34 643umax_of_size (int size)
4c4b4cd2 644{
76a01679 645 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 646
76a01679 647 return top_bit | (top_bit - 1);
4c4b4cd2
PH
648}
649
0963b4bd 650/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
651static LONGEST
652max_of_type (struct type *t)
4c4b4cd2 653{
c3e5cd34
PH
654 if (TYPE_UNSIGNED (t))
655 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
656 else
657 return max_of_size (TYPE_LENGTH (t));
658}
659
0963b4bd 660/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
661static LONGEST
662min_of_type (struct type *t)
663{
664 if (TYPE_UNSIGNED (t))
665 return 0;
666 else
667 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
668}
669
670/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
671LONGEST
672ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 673{
76a01679 674 switch (TYPE_CODE (type))
4c4b4cd2
PH
675 {
676 case TYPE_CODE_RANGE:
690cc4eb 677 return TYPE_HIGH_BOUND (type);
4c4b4cd2 678 case TYPE_CODE_ENUM:
690cc4eb
PH
679 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
680 case TYPE_CODE_BOOL:
681 return 1;
682 case TYPE_CODE_CHAR:
76a01679 683 case TYPE_CODE_INT:
690cc4eb 684 return max_of_type (type);
4c4b4cd2 685 default:
43bbcdc2 686 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
687 }
688}
689
690/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
691LONGEST
692ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 693{
76a01679 694 switch (TYPE_CODE (type))
4c4b4cd2
PH
695 {
696 case TYPE_CODE_RANGE:
690cc4eb 697 return TYPE_LOW_BOUND (type);
4c4b4cd2 698 case TYPE_CODE_ENUM:
690cc4eb
PH
699 return TYPE_FIELD_BITPOS (type, 0);
700 case TYPE_CODE_BOOL:
701 return 0;
702 case TYPE_CODE_CHAR:
76a01679 703 case TYPE_CODE_INT:
690cc4eb 704 return min_of_type (type);
4c4b4cd2 705 default:
43bbcdc2 706 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
707 }
708}
709
710/* The identity on non-range types. For range types, the underlying
76a01679 711 non-range scalar type. */
4c4b4cd2
PH
712
713static struct type *
714base_type (struct type *type)
715{
716 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
717 {
76a01679
JB
718 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
719 return type;
4c4b4cd2
PH
720 type = TYPE_TARGET_TYPE (type);
721 }
722 return type;
14f9c5c9 723}
4c4b4cd2 724\f
76a01679 725
4c4b4cd2 726 /* Language Selection */
14f9c5c9
AS
727
728/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 729 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 730
14f9c5c9 731enum language
ccefe4c4 732ada_update_initial_language (enum language lang)
14f9c5c9 733{
d2e4a39e 734 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
735 (struct objfile *) NULL) != NULL)
736 return language_ada;
14f9c5c9
AS
737
738 return lang;
739}
96d887e8
PH
740
741/* If the main procedure is written in Ada, then return its name.
742 The result is good until the next call. Return NULL if the main
743 procedure doesn't appear to be in Ada. */
744
745char *
746ada_main_name (void)
747{
748 struct minimal_symbol *msym;
f9bc20b9 749 static char *main_program_name = NULL;
6c038f32 750
96d887e8
PH
751 /* For Ada, the name of the main procedure is stored in a specific
752 string constant, generated by the binder. Look for that symbol,
753 extract its address, and then read that string. If we didn't find
754 that string, then most probably the main procedure is not written
755 in Ada. */
756 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
757
758 if (msym != NULL)
759 {
f9bc20b9
JB
760 CORE_ADDR main_program_name_addr;
761 int err_code;
762
96d887e8
PH
763 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
764 if (main_program_name_addr == 0)
323e0a4a 765 error (_("Invalid address for Ada main program name."));
96d887e8 766
f9bc20b9
JB
767 xfree (main_program_name);
768 target_read_string (main_program_name_addr, &main_program_name,
769 1024, &err_code);
770
771 if (err_code != 0)
772 return NULL;
96d887e8
PH
773 return main_program_name;
774 }
775
776 /* The main procedure doesn't seem to be in Ada. */
777 return NULL;
778}
14f9c5c9 779\f
4c4b4cd2 780 /* Symbols */
d2e4a39e 781
4c4b4cd2
PH
782/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
783 of NULLs. */
14f9c5c9 784
d2e4a39e
AS
785const struct ada_opname_map ada_opname_table[] = {
786 {"Oadd", "\"+\"", BINOP_ADD},
787 {"Osubtract", "\"-\"", BINOP_SUB},
788 {"Omultiply", "\"*\"", BINOP_MUL},
789 {"Odivide", "\"/\"", BINOP_DIV},
790 {"Omod", "\"mod\"", BINOP_MOD},
791 {"Orem", "\"rem\"", BINOP_REM},
792 {"Oexpon", "\"**\"", BINOP_EXP},
793 {"Olt", "\"<\"", BINOP_LESS},
794 {"Ole", "\"<=\"", BINOP_LEQ},
795 {"Ogt", "\">\"", BINOP_GTR},
796 {"Oge", "\">=\"", BINOP_GEQ},
797 {"Oeq", "\"=\"", BINOP_EQUAL},
798 {"One", "\"/=\"", BINOP_NOTEQUAL},
799 {"Oand", "\"and\"", BINOP_BITWISE_AND},
800 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
801 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
802 {"Oconcat", "\"&\"", BINOP_CONCAT},
803 {"Oabs", "\"abs\"", UNOP_ABS},
804 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
805 {"Oadd", "\"+\"", UNOP_PLUS},
806 {"Osubtract", "\"-\"", UNOP_NEG},
807 {NULL, NULL}
14f9c5c9
AS
808};
809
4c4b4cd2
PH
810/* The "encoded" form of DECODED, according to GNAT conventions.
811 The result is valid until the next call to ada_encode. */
812
14f9c5c9 813char *
4c4b4cd2 814ada_encode (const char *decoded)
14f9c5c9 815{
4c4b4cd2
PH
816 static char *encoding_buffer = NULL;
817 static size_t encoding_buffer_size = 0;
d2e4a39e 818 const char *p;
14f9c5c9 819 int k;
d2e4a39e 820
4c4b4cd2 821 if (decoded == NULL)
14f9c5c9
AS
822 return NULL;
823
4c4b4cd2
PH
824 GROW_VECT (encoding_buffer, encoding_buffer_size,
825 2 * strlen (decoded) + 10);
14f9c5c9
AS
826
827 k = 0;
4c4b4cd2 828 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 829 {
cdc7bb92 830 if (*p == '.')
4c4b4cd2
PH
831 {
832 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
833 k += 2;
834 }
14f9c5c9 835 else if (*p == '"')
4c4b4cd2
PH
836 {
837 const struct ada_opname_map *mapping;
838
839 for (mapping = ada_opname_table;
1265e4aa
JB
840 mapping->encoded != NULL
841 && strncmp (mapping->decoded, p,
842 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
843 ;
844 if (mapping->encoded == NULL)
323e0a4a 845 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
846 strcpy (encoding_buffer + k, mapping->encoded);
847 k += strlen (mapping->encoded);
848 break;
849 }
d2e4a39e 850 else
4c4b4cd2
PH
851 {
852 encoding_buffer[k] = *p;
853 k += 1;
854 }
14f9c5c9
AS
855 }
856
4c4b4cd2
PH
857 encoding_buffer[k] = '\0';
858 return encoding_buffer;
14f9c5c9
AS
859}
860
861/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
862 quotes, unfolded, but with the quotes stripped away. Result good
863 to next call. */
864
d2e4a39e
AS
865char *
866ada_fold_name (const char *name)
14f9c5c9 867{
d2e4a39e 868 static char *fold_buffer = NULL;
14f9c5c9
AS
869 static size_t fold_buffer_size = 0;
870
871 int len = strlen (name);
d2e4a39e 872 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
873
874 if (name[0] == '\'')
875 {
d2e4a39e
AS
876 strncpy (fold_buffer, name + 1, len - 2);
877 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
878 }
879 else
880 {
881 int i;
5b4ee69b 882
14f9c5c9 883 for (i = 0; i <= len; i += 1)
4c4b4cd2 884 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
885 }
886
887 return fold_buffer;
888}
889
529cad9c
PH
890/* Return nonzero if C is either a digit or a lowercase alphabet character. */
891
892static int
893is_lower_alphanum (const char c)
894{
895 return (isdigit (c) || (isalpha (c) && islower (c)));
896}
897
29480c32
JB
898/* Remove either of these suffixes:
899 . .{DIGIT}+
900 . ${DIGIT}+
901 . ___{DIGIT}+
902 . __{DIGIT}+.
903 These are suffixes introduced by the compiler for entities such as
904 nested subprogram for instance, in order to avoid name clashes.
905 They do not serve any purpose for the debugger. */
906
907static void
908ada_remove_trailing_digits (const char *encoded, int *len)
909{
910 if (*len > 1 && isdigit (encoded[*len - 1]))
911 {
912 int i = *len - 2;
5b4ee69b 913
29480c32
JB
914 while (i > 0 && isdigit (encoded[i]))
915 i--;
916 if (i >= 0 && encoded[i] == '.')
917 *len = i;
918 else if (i >= 0 && encoded[i] == '$')
919 *len = i;
920 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
921 *len = i - 2;
922 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
923 *len = i - 1;
924 }
925}
926
927/* Remove the suffix introduced by the compiler for protected object
928 subprograms. */
929
930static void
931ada_remove_po_subprogram_suffix (const char *encoded, int *len)
932{
933 /* Remove trailing N. */
934
935 /* Protected entry subprograms are broken into two
936 separate subprograms: The first one is unprotected, and has
937 a 'N' suffix; the second is the protected version, and has
0963b4bd 938 the 'P' suffix. The second calls the first one after handling
29480c32
JB
939 the protection. Since the P subprograms are internally generated,
940 we leave these names undecoded, giving the user a clue that this
941 entity is internal. */
942
943 if (*len > 1
944 && encoded[*len - 1] == 'N'
945 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
946 *len = *len - 1;
947}
948
69fadcdf
JB
949/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
950
951static void
952ada_remove_Xbn_suffix (const char *encoded, int *len)
953{
954 int i = *len - 1;
955
956 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
957 i--;
958
959 if (encoded[i] != 'X')
960 return;
961
962 if (i == 0)
963 return;
964
965 if (isalnum (encoded[i-1]))
966 *len = i;
967}
968
29480c32
JB
969/* If ENCODED follows the GNAT entity encoding conventions, then return
970 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
971 replaced by ENCODED.
14f9c5c9 972
4c4b4cd2 973 The resulting string is valid until the next call of ada_decode.
29480c32 974 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
975 is returned. */
976
977const char *
978ada_decode (const char *encoded)
14f9c5c9
AS
979{
980 int i, j;
981 int len0;
d2e4a39e 982 const char *p;
4c4b4cd2 983 char *decoded;
14f9c5c9 984 int at_start_name;
4c4b4cd2
PH
985 static char *decoding_buffer = NULL;
986 static size_t decoding_buffer_size = 0;
d2e4a39e 987
29480c32
JB
988 /* The name of the Ada main procedure starts with "_ada_".
989 This prefix is not part of the decoded name, so skip this part
990 if we see this prefix. */
4c4b4cd2
PH
991 if (strncmp (encoded, "_ada_", 5) == 0)
992 encoded += 5;
14f9c5c9 993
29480c32
JB
994 /* If the name starts with '_', then it is not a properly encoded
995 name, so do not attempt to decode it. Similarly, if the name
996 starts with '<', the name should not be decoded. */
4c4b4cd2 997 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
998 goto Suppress;
999
4c4b4cd2 1000 len0 = strlen (encoded);
4c4b4cd2 1001
29480c32
JB
1002 ada_remove_trailing_digits (encoded, &len0);
1003 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1004
4c4b4cd2
PH
1005 /* Remove the ___X.* suffix if present. Do not forget to verify that
1006 the suffix is located before the current "end" of ENCODED. We want
1007 to avoid re-matching parts of ENCODED that have previously been
1008 marked as discarded (by decrementing LEN0). */
1009 p = strstr (encoded, "___");
1010 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1011 {
1012 if (p[3] == 'X')
4c4b4cd2 1013 len0 = p - encoded;
14f9c5c9 1014 else
4c4b4cd2 1015 goto Suppress;
14f9c5c9 1016 }
4c4b4cd2 1017
29480c32
JB
1018 /* Remove any trailing TKB suffix. It tells us that this symbol
1019 is for the body of a task, but that information does not actually
1020 appear in the decoded name. */
1021
4c4b4cd2 1022 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1023 len0 -= 3;
76a01679 1024
a10967fa
JB
1025 /* Remove any trailing TB suffix. The TB suffix is slightly different
1026 from the TKB suffix because it is used for non-anonymous task
1027 bodies. */
1028
1029 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1030 len0 -= 2;
1031
29480c32
JB
1032 /* Remove trailing "B" suffixes. */
1033 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1034
4c4b4cd2 1035 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1036 len0 -= 1;
1037
4c4b4cd2 1038 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1039
4c4b4cd2
PH
1040 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1041 decoded = decoding_buffer;
14f9c5c9 1042
29480c32
JB
1043 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1044
4c4b4cd2 1045 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1046 {
4c4b4cd2
PH
1047 i = len0 - 2;
1048 while ((i >= 0 && isdigit (encoded[i]))
1049 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1050 i -= 1;
1051 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1052 len0 = i - 1;
1053 else if (encoded[i] == '$')
1054 len0 = i;
d2e4a39e 1055 }
14f9c5c9 1056
29480c32
JB
1057 /* The first few characters that are not alphabetic are not part
1058 of any encoding we use, so we can copy them over verbatim. */
1059
4c4b4cd2
PH
1060 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1061 decoded[j] = encoded[i];
14f9c5c9
AS
1062
1063 at_start_name = 1;
1064 while (i < len0)
1065 {
29480c32 1066 /* Is this a symbol function? */
4c4b4cd2
PH
1067 if (at_start_name && encoded[i] == 'O')
1068 {
1069 int k;
5b4ee69b 1070
4c4b4cd2
PH
1071 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1072 {
1073 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1074 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1075 op_len - 1) == 0)
1076 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1077 {
1078 strcpy (decoded + j, ada_opname_table[k].decoded);
1079 at_start_name = 0;
1080 i += op_len;
1081 j += strlen (ada_opname_table[k].decoded);
1082 break;
1083 }
1084 }
1085 if (ada_opname_table[k].encoded != NULL)
1086 continue;
1087 }
14f9c5c9
AS
1088 at_start_name = 0;
1089
529cad9c
PH
1090 /* Replace "TK__" with "__", which will eventually be translated
1091 into "." (just below). */
1092
4c4b4cd2
PH
1093 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1094 i += 2;
529cad9c 1095
29480c32
JB
1096 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1097 be translated into "." (just below). These are internal names
1098 generated for anonymous blocks inside which our symbol is nested. */
1099
1100 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1101 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1102 && isdigit (encoded [i+4]))
1103 {
1104 int k = i + 5;
1105
1106 while (k < len0 && isdigit (encoded[k]))
1107 k++; /* Skip any extra digit. */
1108
1109 /* Double-check that the "__B_{DIGITS}+" sequence we found
1110 is indeed followed by "__". */
1111 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1112 i = k;
1113 }
1114
529cad9c
PH
1115 /* Remove _E{DIGITS}+[sb] */
1116
1117 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1118 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1119 one implements the actual entry code, and has a suffix following
1120 the convention above; the second one implements the barrier and
1121 uses the same convention as above, except that the 'E' is replaced
1122 by a 'B'.
1123
1124 Just as above, we do not decode the name of barrier functions
1125 to give the user a clue that the code he is debugging has been
1126 internally generated. */
1127
1128 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1129 && isdigit (encoded[i+2]))
1130 {
1131 int k = i + 3;
1132
1133 while (k < len0 && isdigit (encoded[k]))
1134 k++;
1135
1136 if (k < len0
1137 && (encoded[k] == 'b' || encoded[k] == 's'))
1138 {
1139 k++;
1140 /* Just as an extra precaution, make sure that if this
1141 suffix is followed by anything else, it is a '_'.
1142 Otherwise, we matched this sequence by accident. */
1143 if (k == len0
1144 || (k < len0 && encoded[k] == '_'))
1145 i = k;
1146 }
1147 }
1148
1149 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1150 the GNAT front-end in protected object subprograms. */
1151
1152 if (i < len0 + 3
1153 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1154 {
1155 /* Backtrack a bit up until we reach either the begining of
1156 the encoded name, or "__". Make sure that we only find
1157 digits or lowercase characters. */
1158 const char *ptr = encoded + i - 1;
1159
1160 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1161 ptr--;
1162 if (ptr < encoded
1163 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1164 i++;
1165 }
1166
4c4b4cd2
PH
1167 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1168 {
29480c32
JB
1169 /* This is a X[bn]* sequence not separated from the previous
1170 part of the name with a non-alpha-numeric character (in other
1171 words, immediately following an alpha-numeric character), then
1172 verify that it is placed at the end of the encoded name. If
1173 not, then the encoding is not valid and we should abort the
1174 decoding. Otherwise, just skip it, it is used in body-nested
1175 package names. */
4c4b4cd2
PH
1176 do
1177 i += 1;
1178 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1179 if (i < len0)
1180 goto Suppress;
1181 }
cdc7bb92 1182 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1183 {
29480c32 1184 /* Replace '__' by '.'. */
4c4b4cd2
PH
1185 decoded[j] = '.';
1186 at_start_name = 1;
1187 i += 2;
1188 j += 1;
1189 }
14f9c5c9 1190 else
4c4b4cd2 1191 {
29480c32
JB
1192 /* It's a character part of the decoded name, so just copy it
1193 over. */
4c4b4cd2
PH
1194 decoded[j] = encoded[i];
1195 i += 1;
1196 j += 1;
1197 }
14f9c5c9 1198 }
4c4b4cd2 1199 decoded[j] = '\000';
14f9c5c9 1200
29480c32
JB
1201 /* Decoded names should never contain any uppercase character.
1202 Double-check this, and abort the decoding if we find one. */
1203
4c4b4cd2
PH
1204 for (i = 0; decoded[i] != '\0'; i += 1)
1205 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1206 goto Suppress;
1207
4c4b4cd2
PH
1208 if (strcmp (decoded, encoded) == 0)
1209 return encoded;
1210 else
1211 return decoded;
14f9c5c9
AS
1212
1213Suppress:
4c4b4cd2
PH
1214 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1215 decoded = decoding_buffer;
1216 if (encoded[0] == '<')
1217 strcpy (decoded, encoded);
14f9c5c9 1218 else
88c15c34 1219 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1220 return decoded;
1221
1222}
1223
1224/* Table for keeping permanent unique copies of decoded names. Once
1225 allocated, names in this table are never released. While this is a
1226 storage leak, it should not be significant unless there are massive
1227 changes in the set of decoded names in successive versions of a
1228 symbol table loaded during a single session. */
1229static struct htab *decoded_names_store;
1230
1231/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1232 in the language-specific part of GSYMBOL, if it has not been
1233 previously computed. Tries to save the decoded name in the same
1234 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1235 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1236 GSYMBOL).
4c4b4cd2
PH
1237 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1238 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1239 when a decoded name is cached in it. */
4c4b4cd2 1240
76a01679
JB
1241char *
1242ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1243{
76a01679 1244 char **resultp =
afa16725 1245 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1246
4c4b4cd2
PH
1247 if (*resultp == NULL)
1248 {
1249 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1250
714835d5 1251 if (gsymbol->obj_section != NULL)
76a01679 1252 {
714835d5 1253 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1254
714835d5
UW
1255 *resultp = obsavestring (decoded, strlen (decoded),
1256 &objf->objfile_obstack);
76a01679 1257 }
4c4b4cd2 1258 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1259 case, we put the result on the heap. Since we only decode
1260 when needed, we hope this usually does not cause a
1261 significant memory leak (FIXME). */
4c4b4cd2 1262 if (*resultp == NULL)
76a01679
JB
1263 {
1264 char **slot = (char **) htab_find_slot (decoded_names_store,
1265 decoded, INSERT);
5b4ee69b 1266
76a01679
JB
1267 if (*slot == NULL)
1268 *slot = xstrdup (decoded);
1269 *resultp = *slot;
1270 }
4c4b4cd2 1271 }
14f9c5c9 1272
4c4b4cd2
PH
1273 return *resultp;
1274}
76a01679 1275
2c0b251b 1276static char *
76a01679 1277ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1278{
1279 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1280}
1281
1282/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1283 suffixes that encode debugging information or leading _ada_ on
1284 SYM_NAME (see is_name_suffix commentary for the debugging
1285 information that is ignored). If WILD, then NAME need only match a
1286 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1287 either argument is NULL. */
14f9c5c9 1288
2c0b251b 1289static int
40658b94 1290match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1291{
1292 if (sym_name == NULL || name == NULL)
1293 return 0;
1294 else if (wild)
73589123 1295 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1296 else
1297 {
1298 int len_name = strlen (name);
5b4ee69b 1299
4c4b4cd2
PH
1300 return (strncmp (sym_name, name, len_name) == 0
1301 && is_name_suffix (sym_name + len_name))
1302 || (strncmp (sym_name, "_ada_", 5) == 0
1303 && strncmp (sym_name + 5, name, len_name) == 0
1304 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1305 }
14f9c5c9 1306}
14f9c5c9 1307\f
d2e4a39e 1308
4c4b4cd2 1309 /* Arrays */
14f9c5c9 1310
28c85d6c
JB
1311/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1312 generated by the GNAT compiler to describe the index type used
1313 for each dimension of an array, check whether it follows the latest
1314 known encoding. If not, fix it up to conform to the latest encoding.
1315 Otherwise, do nothing. This function also does nothing if
1316 INDEX_DESC_TYPE is NULL.
1317
1318 The GNAT encoding used to describle the array index type evolved a bit.
1319 Initially, the information would be provided through the name of each
1320 field of the structure type only, while the type of these fields was
1321 described as unspecified and irrelevant. The debugger was then expected
1322 to perform a global type lookup using the name of that field in order
1323 to get access to the full index type description. Because these global
1324 lookups can be very expensive, the encoding was later enhanced to make
1325 the global lookup unnecessary by defining the field type as being
1326 the full index type description.
1327
1328 The purpose of this routine is to allow us to support older versions
1329 of the compiler by detecting the use of the older encoding, and by
1330 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1331 we essentially replace each field's meaningless type by the associated
1332 index subtype). */
1333
1334void
1335ada_fixup_array_indexes_type (struct type *index_desc_type)
1336{
1337 int i;
1338
1339 if (index_desc_type == NULL)
1340 return;
1341 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1342
1343 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1344 to check one field only, no need to check them all). If not, return
1345 now.
1346
1347 If our INDEX_DESC_TYPE was generated using the older encoding,
1348 the field type should be a meaningless integer type whose name
1349 is not equal to the field name. */
1350 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1351 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1352 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1353 return;
1354
1355 /* Fixup each field of INDEX_DESC_TYPE. */
1356 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1357 {
1358 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1359 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1360
1361 if (raw_type)
1362 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1363 }
1364}
1365
4c4b4cd2 1366/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1367
d2e4a39e
AS
1368static char *bound_name[] = {
1369 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1370 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1371};
1372
1373/* Maximum number of array dimensions we are prepared to handle. */
1374
4c4b4cd2 1375#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1376
14f9c5c9 1377
4c4b4cd2
PH
1378/* The desc_* routines return primitive portions of array descriptors
1379 (fat pointers). */
14f9c5c9
AS
1380
1381/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1382 level of indirection, if needed. */
1383
d2e4a39e
AS
1384static struct type *
1385desc_base_type (struct type *type)
14f9c5c9
AS
1386{
1387 if (type == NULL)
1388 return NULL;
61ee279c 1389 type = ada_check_typedef (type);
720d1a40
JB
1390 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1391 type = ada_typedef_target_type (type);
1392
1265e4aa
JB
1393 if (type != NULL
1394 && (TYPE_CODE (type) == TYPE_CODE_PTR
1395 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1396 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1397 else
1398 return type;
1399}
1400
4c4b4cd2
PH
1401/* True iff TYPE indicates a "thin" array pointer type. */
1402
14f9c5c9 1403static int
d2e4a39e 1404is_thin_pntr (struct type *type)
14f9c5c9 1405{
d2e4a39e 1406 return
14f9c5c9
AS
1407 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1408 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1409}
1410
4c4b4cd2
PH
1411/* The descriptor type for thin pointer type TYPE. */
1412
d2e4a39e
AS
1413static struct type *
1414thin_descriptor_type (struct type *type)
14f9c5c9 1415{
d2e4a39e 1416 struct type *base_type = desc_base_type (type);
5b4ee69b 1417
14f9c5c9
AS
1418 if (base_type == NULL)
1419 return NULL;
1420 if (is_suffix (ada_type_name (base_type), "___XVE"))
1421 return base_type;
d2e4a39e 1422 else
14f9c5c9 1423 {
d2e4a39e 1424 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1425
14f9c5c9 1426 if (alt_type == NULL)
4c4b4cd2 1427 return base_type;
14f9c5c9 1428 else
4c4b4cd2 1429 return alt_type;
14f9c5c9
AS
1430 }
1431}
1432
4c4b4cd2
PH
1433/* A pointer to the array data for thin-pointer value VAL. */
1434
d2e4a39e
AS
1435static struct value *
1436thin_data_pntr (struct value *val)
14f9c5c9 1437{
df407dfe 1438 struct type *type = value_type (val);
556bdfd4 1439 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1440
556bdfd4
UW
1441 data_type = lookup_pointer_type (data_type);
1442
14f9c5c9 1443 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1444 return value_cast (data_type, value_copy (val));
d2e4a39e 1445 else
42ae5230 1446 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1447}
1448
4c4b4cd2
PH
1449/* True iff TYPE indicates a "thick" array pointer type. */
1450
14f9c5c9 1451static int
d2e4a39e 1452is_thick_pntr (struct type *type)
14f9c5c9
AS
1453{
1454 type = desc_base_type (type);
1455 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1456 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1457}
1458
4c4b4cd2
PH
1459/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1460 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1461
d2e4a39e
AS
1462static struct type *
1463desc_bounds_type (struct type *type)
14f9c5c9 1464{
d2e4a39e 1465 struct type *r;
14f9c5c9
AS
1466
1467 type = desc_base_type (type);
1468
1469 if (type == NULL)
1470 return NULL;
1471 else if (is_thin_pntr (type))
1472 {
1473 type = thin_descriptor_type (type);
1474 if (type == NULL)
4c4b4cd2 1475 return NULL;
14f9c5c9
AS
1476 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1477 if (r != NULL)
61ee279c 1478 return ada_check_typedef (r);
14f9c5c9
AS
1479 }
1480 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1481 {
1482 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1483 if (r != NULL)
61ee279c 1484 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1485 }
1486 return NULL;
1487}
1488
1489/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1490 one, a pointer to its bounds data. Otherwise NULL. */
1491
d2e4a39e
AS
1492static struct value *
1493desc_bounds (struct value *arr)
14f9c5c9 1494{
df407dfe 1495 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1496
d2e4a39e 1497 if (is_thin_pntr (type))
14f9c5c9 1498 {
d2e4a39e 1499 struct type *bounds_type =
4c4b4cd2 1500 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1501 LONGEST addr;
1502
4cdfadb1 1503 if (bounds_type == NULL)
323e0a4a 1504 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1505
1506 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1507 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1508 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1509 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1510 addr = value_as_long (arr);
d2e4a39e 1511 else
42ae5230 1512 addr = value_address (arr);
14f9c5c9 1513
d2e4a39e 1514 return
4c4b4cd2
PH
1515 value_from_longest (lookup_pointer_type (bounds_type),
1516 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1517 }
1518
1519 else if (is_thick_pntr (type))
05e522ef
JB
1520 {
1521 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1522 _("Bad GNAT array descriptor"));
1523 struct type *p_bounds_type = value_type (p_bounds);
1524
1525 if (p_bounds_type
1526 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1527 {
1528 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1529
1530 if (TYPE_STUB (target_type))
1531 p_bounds = value_cast (lookup_pointer_type
1532 (ada_check_typedef (target_type)),
1533 p_bounds);
1534 }
1535 else
1536 error (_("Bad GNAT array descriptor"));
1537
1538 return p_bounds;
1539 }
14f9c5c9
AS
1540 else
1541 return NULL;
1542}
1543
4c4b4cd2
PH
1544/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1545 position of the field containing the address of the bounds data. */
1546
14f9c5c9 1547static int
d2e4a39e 1548fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1549{
1550 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1551}
1552
1553/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1554 size of the field containing the address of the bounds data. */
1555
14f9c5c9 1556static int
d2e4a39e 1557fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1558{
1559 type = desc_base_type (type);
1560
d2e4a39e 1561 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1562 return TYPE_FIELD_BITSIZE (type, 1);
1563 else
61ee279c 1564 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1565}
1566
4c4b4cd2 1567/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1568 pointer to one, the type of its array data (a array-with-no-bounds type);
1569 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1570 data. */
4c4b4cd2 1571
d2e4a39e 1572static struct type *
556bdfd4 1573desc_data_target_type (struct type *type)
14f9c5c9
AS
1574{
1575 type = desc_base_type (type);
1576
4c4b4cd2 1577 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1578 if (is_thin_pntr (type))
556bdfd4 1579 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1580 else if (is_thick_pntr (type))
556bdfd4
UW
1581 {
1582 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1583
1584 if (data_type
1585 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1586 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1587 }
1588
1589 return NULL;
14f9c5c9
AS
1590}
1591
1592/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1593 its array data. */
4c4b4cd2 1594
d2e4a39e
AS
1595static struct value *
1596desc_data (struct value *arr)
14f9c5c9 1597{
df407dfe 1598 struct type *type = value_type (arr);
5b4ee69b 1599
14f9c5c9
AS
1600 if (is_thin_pntr (type))
1601 return thin_data_pntr (arr);
1602 else if (is_thick_pntr (type))
d2e4a39e 1603 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1604 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1605 else
1606 return NULL;
1607}
1608
1609
1610/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1611 position of the field containing the address of the data. */
1612
14f9c5c9 1613static int
d2e4a39e 1614fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1615{
1616 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1617}
1618
1619/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1620 size of the field containing the address of the data. */
1621
14f9c5c9 1622static int
d2e4a39e 1623fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1624{
1625 type = desc_base_type (type);
1626
1627 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1628 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1629 else
14f9c5c9
AS
1630 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1631}
1632
4c4b4cd2 1633/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1634 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1635 bound, if WHICH is 1. The first bound is I=1. */
1636
d2e4a39e
AS
1637static struct value *
1638desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1639{
d2e4a39e 1640 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1641 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1642}
1643
1644/* If BOUNDS is an array-bounds structure type, return the bit position
1645 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1646 bound, if WHICH is 1. The first bound is I=1. */
1647
14f9c5c9 1648static int
d2e4a39e 1649desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1650{
d2e4a39e 1651 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1652}
1653
1654/* If BOUNDS is an array-bounds structure type, return the bit field size
1655 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1656 bound, if WHICH is 1. The first bound is I=1. */
1657
76a01679 1658static int
d2e4a39e 1659desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1660{
1661 type = desc_base_type (type);
1662
d2e4a39e
AS
1663 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1664 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1665 else
1666 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1667}
1668
1669/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1670 Ith bound (numbering from 1). Otherwise, NULL. */
1671
d2e4a39e
AS
1672static struct type *
1673desc_index_type (struct type *type, int i)
14f9c5c9
AS
1674{
1675 type = desc_base_type (type);
1676
1677 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1678 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1679 else
14f9c5c9
AS
1680 return NULL;
1681}
1682
4c4b4cd2
PH
1683/* The number of index positions in the array-bounds type TYPE.
1684 Return 0 if TYPE is NULL. */
1685
14f9c5c9 1686static int
d2e4a39e 1687desc_arity (struct type *type)
14f9c5c9
AS
1688{
1689 type = desc_base_type (type);
1690
1691 if (type != NULL)
1692 return TYPE_NFIELDS (type) / 2;
1693 return 0;
1694}
1695
4c4b4cd2
PH
1696/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1697 an array descriptor type (representing an unconstrained array
1698 type). */
1699
76a01679
JB
1700static int
1701ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1702{
1703 if (type == NULL)
1704 return 0;
61ee279c 1705 type = ada_check_typedef (type);
4c4b4cd2 1706 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1707 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1708}
1709
52ce6436 1710/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1711 * to one. */
52ce6436 1712
2c0b251b 1713static int
52ce6436
PH
1714ada_is_array_type (struct type *type)
1715{
1716 while (type != NULL
1717 && (TYPE_CODE (type) == TYPE_CODE_PTR
1718 || TYPE_CODE (type) == TYPE_CODE_REF))
1719 type = TYPE_TARGET_TYPE (type);
1720 return ada_is_direct_array_type (type);
1721}
1722
4c4b4cd2 1723/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1724
14f9c5c9 1725int
4c4b4cd2 1726ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1727{
1728 if (type == NULL)
1729 return 0;
61ee279c 1730 type = ada_check_typedef (type);
14f9c5c9 1731 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1732 || (TYPE_CODE (type) == TYPE_CODE_PTR
1733 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1734}
1735
4c4b4cd2
PH
1736/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1737
14f9c5c9 1738int
4c4b4cd2 1739ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1740{
556bdfd4 1741 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1742
1743 if (type == NULL)
1744 return 0;
61ee279c 1745 type = ada_check_typedef (type);
556bdfd4
UW
1746 return (data_type != NULL
1747 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1748 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1749}
1750
1751/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1752 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1753 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1754 is still needed. */
1755
14f9c5c9 1756int
ebf56fd3 1757ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1758{
d2e4a39e 1759 return
14f9c5c9
AS
1760 type != NULL
1761 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1762 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1763 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1764 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1765}
1766
1767
4c4b4cd2 1768/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1769 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1770 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1771 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1772 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1773 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1774 a descriptor. */
d2e4a39e
AS
1775struct type *
1776ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1777{
ad82864c
JB
1778 if (ada_is_constrained_packed_array_type (value_type (arr)))
1779 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1780
df407dfe
AC
1781 if (!ada_is_array_descriptor_type (value_type (arr)))
1782 return value_type (arr);
d2e4a39e
AS
1783
1784 if (!bounds)
ad82864c
JB
1785 {
1786 struct type *array_type =
1787 ada_check_typedef (desc_data_target_type (value_type (arr)));
1788
1789 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1790 TYPE_FIELD_BITSIZE (array_type, 0) =
1791 decode_packed_array_bitsize (value_type (arr));
1792
1793 return array_type;
1794 }
14f9c5c9
AS
1795 else
1796 {
d2e4a39e 1797 struct type *elt_type;
14f9c5c9 1798 int arity;
d2e4a39e 1799 struct value *descriptor;
14f9c5c9 1800
df407dfe
AC
1801 elt_type = ada_array_element_type (value_type (arr), -1);
1802 arity = ada_array_arity (value_type (arr));
14f9c5c9 1803
d2e4a39e 1804 if (elt_type == NULL || arity == 0)
df407dfe 1805 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1806
1807 descriptor = desc_bounds (arr);
d2e4a39e 1808 if (value_as_long (descriptor) == 0)
4c4b4cd2 1809 return NULL;
d2e4a39e 1810 while (arity > 0)
4c4b4cd2 1811 {
e9bb382b
UW
1812 struct type *range_type = alloc_type_copy (value_type (arr));
1813 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1814 struct value *low = desc_one_bound (descriptor, arity, 0);
1815 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1816
5b4ee69b 1817 arity -= 1;
df407dfe 1818 create_range_type (range_type, value_type (low),
529cad9c
PH
1819 longest_to_int (value_as_long (low)),
1820 longest_to_int (value_as_long (high)));
4c4b4cd2 1821 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1822
1823 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1824 TYPE_FIELD_BITSIZE (elt_type, 0) =
1825 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1826 }
14f9c5c9
AS
1827
1828 return lookup_pointer_type (elt_type);
1829 }
1830}
1831
1832/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1833 Otherwise, returns either a standard GDB array with bounds set
1834 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1835 GDB array. Returns NULL if ARR is a null fat pointer. */
1836
d2e4a39e
AS
1837struct value *
1838ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1839{
df407dfe 1840 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1841 {
d2e4a39e 1842 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1843
14f9c5c9 1844 if (arrType == NULL)
4c4b4cd2 1845 return NULL;
14f9c5c9
AS
1846 return value_cast (arrType, value_copy (desc_data (arr)));
1847 }
ad82864c
JB
1848 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1849 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1850 else
1851 return arr;
1852}
1853
1854/* If ARR does not represent an array, returns ARR unchanged.
1855 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1856 be ARR itself if it already is in the proper form). */
1857
720d1a40 1858struct value *
d2e4a39e 1859ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1860{
df407dfe 1861 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1862 {
d2e4a39e 1863 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1864
14f9c5c9 1865 if (arrVal == NULL)
323e0a4a 1866 error (_("Bounds unavailable for null array pointer."));
529cad9c 1867 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1868 return value_ind (arrVal);
1869 }
ad82864c
JB
1870 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1871 return decode_constrained_packed_array (arr);
d2e4a39e 1872 else
14f9c5c9
AS
1873 return arr;
1874}
1875
1876/* If TYPE represents a GNAT array type, return it translated to an
1877 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1878 packing). For other types, is the identity. */
1879
d2e4a39e
AS
1880struct type *
1881ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1882{
ad82864c
JB
1883 if (ada_is_constrained_packed_array_type (type))
1884 return decode_constrained_packed_array_type (type);
17280b9f
UW
1885
1886 if (ada_is_array_descriptor_type (type))
556bdfd4 1887 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1888
1889 return type;
14f9c5c9
AS
1890}
1891
4c4b4cd2
PH
1892/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1893
ad82864c
JB
1894static int
1895ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1896{
1897 if (type == NULL)
1898 return 0;
4c4b4cd2 1899 type = desc_base_type (type);
61ee279c 1900 type = ada_check_typedef (type);
d2e4a39e 1901 return
14f9c5c9
AS
1902 ada_type_name (type) != NULL
1903 && strstr (ada_type_name (type), "___XP") != NULL;
1904}
1905
ad82864c
JB
1906/* Non-zero iff TYPE represents a standard GNAT constrained
1907 packed-array type. */
1908
1909int
1910ada_is_constrained_packed_array_type (struct type *type)
1911{
1912 return ada_is_packed_array_type (type)
1913 && !ada_is_array_descriptor_type (type);
1914}
1915
1916/* Non-zero iff TYPE represents an array descriptor for a
1917 unconstrained packed-array type. */
1918
1919static int
1920ada_is_unconstrained_packed_array_type (struct type *type)
1921{
1922 return ada_is_packed_array_type (type)
1923 && ada_is_array_descriptor_type (type);
1924}
1925
1926/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1927 return the size of its elements in bits. */
1928
1929static long
1930decode_packed_array_bitsize (struct type *type)
1931{
720d1a40 1932 char *raw_name;
ad82864c
JB
1933 char *tail;
1934 long bits;
1935
720d1a40
JB
1936 /* Access to arrays implemented as fat pointers are encoded as a typedef
1937 of the fat pointer type. We need the name of the fat pointer type
1938 to do the decoding, so strip the typedef layer. */
1939 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1940 type = ada_typedef_target_type (type);
1941
1942 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1943 if (!raw_name)
1944 raw_name = ada_type_name (desc_base_type (type));
1945
1946 if (!raw_name)
1947 return 0;
1948
1949 tail = strstr (raw_name, "___XP");
720d1a40 1950 gdb_assert (tail != NULL);
ad82864c
JB
1951
1952 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1953 {
1954 lim_warning
1955 (_("could not understand bit size information on packed array"));
1956 return 0;
1957 }
1958
1959 return bits;
1960}
1961
14f9c5c9
AS
1962/* Given that TYPE is a standard GDB array type with all bounds filled
1963 in, and that the element size of its ultimate scalar constituents
1964 (that is, either its elements, or, if it is an array of arrays, its
1965 elements' elements, etc.) is *ELT_BITS, return an identical type,
1966 but with the bit sizes of its elements (and those of any
1967 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1968 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1969 in bits. */
1970
d2e4a39e 1971static struct type *
ad82864c 1972constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1973{
d2e4a39e
AS
1974 struct type *new_elt_type;
1975 struct type *new_type;
14f9c5c9
AS
1976 LONGEST low_bound, high_bound;
1977
61ee279c 1978 type = ada_check_typedef (type);
14f9c5c9
AS
1979 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1980 return type;
1981
e9bb382b 1982 new_type = alloc_type_copy (type);
ad82864c
JB
1983 new_elt_type =
1984 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1985 elt_bits);
262452ec 1986 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1987 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1988 TYPE_NAME (new_type) = ada_type_name (type);
1989
262452ec 1990 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1991 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1992 low_bound = high_bound = 0;
1993 if (high_bound < low_bound)
1994 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1995 else
14f9c5c9
AS
1996 {
1997 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1998 TYPE_LENGTH (new_type) =
4c4b4cd2 1999 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2000 }
2001
876cecd0 2002 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2003 return new_type;
2004}
2005
ad82864c
JB
2006/* The array type encoded by TYPE, where
2007 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2008
d2e4a39e 2009static struct type *
ad82864c 2010decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2011{
727e3d2e
JB
2012 char *raw_name = ada_type_name (ada_check_typedef (type));
2013 char *name;
2014 char *tail;
d2e4a39e 2015 struct type *shadow_type;
14f9c5c9 2016 long bits;
14f9c5c9 2017
727e3d2e
JB
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return NULL;
2023
2024 name = (char *) alloca (strlen (raw_name) + 1);
2025 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2026 type = desc_base_type (type);
2027
14f9c5c9
AS
2028 memcpy (name, raw_name, tail - raw_name);
2029 name[tail - raw_name] = '\000';
2030
b4ba55a1
JB
2031 shadow_type = ada_find_parallel_type_with_name (type, name);
2032
2033 if (shadow_type == NULL)
14f9c5c9 2034 {
323e0a4a 2035 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2036 return NULL;
2037 }
cb249c71 2038 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2039
2040 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2041 {
0963b4bd
MS
2042 lim_warning (_("could not understand bounds "
2043 "information on packed array"));
14f9c5c9
AS
2044 return NULL;
2045 }
d2e4a39e 2046
ad82864c
JB
2047 bits = decode_packed_array_bitsize (type);
2048 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2049}
2050
ad82864c
JB
2051/* Given that ARR is a struct value *indicating a GNAT constrained packed
2052 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2053 standard GDB array type except that the BITSIZEs of the array
2054 target types are set to the number of bits in each element, and the
4c4b4cd2 2055 type length is set appropriately. */
14f9c5c9 2056
d2e4a39e 2057static struct value *
ad82864c 2058decode_constrained_packed_array (struct value *arr)
14f9c5c9 2059{
4c4b4cd2 2060 struct type *type;
14f9c5c9 2061
4c4b4cd2 2062 arr = ada_coerce_ref (arr);
284614f0
JB
2063
2064 /* If our value is a pointer, then dererence it. Make sure that
2065 this operation does not cause the target type to be fixed, as
2066 this would indirectly cause this array to be decoded. The rest
2067 of the routine assumes that the array hasn't been decoded yet,
2068 so we use the basic "value_ind" routine to perform the dereferencing,
2069 as opposed to using "ada_value_ind". */
df407dfe 2070 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 2071 arr = value_ind (arr);
4c4b4cd2 2072
ad82864c 2073 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2074 if (type == NULL)
2075 {
323e0a4a 2076 error (_("can't unpack array"));
14f9c5c9
AS
2077 return NULL;
2078 }
61ee279c 2079
50810684 2080 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2081 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2082 {
2083 /* This is a (right-justified) modular type representing a packed
2084 array with no wrapper. In order to interpret the value through
2085 the (left-justified) packed array type we just built, we must
2086 first left-justify it. */
2087 int bit_size, bit_pos;
2088 ULONGEST mod;
2089
df407dfe 2090 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2091 bit_size = 0;
2092 while (mod > 0)
2093 {
2094 bit_size += 1;
2095 mod >>= 1;
2096 }
df407dfe 2097 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2098 arr = ada_value_primitive_packed_val (arr, NULL,
2099 bit_pos / HOST_CHAR_BIT,
2100 bit_pos % HOST_CHAR_BIT,
2101 bit_size,
2102 type);
2103 }
2104
4c4b4cd2 2105 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2106}
2107
2108
2109/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2110 given in IND. ARR must be a simple array. */
14f9c5c9 2111
d2e4a39e
AS
2112static struct value *
2113value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2114{
2115 int i;
2116 int bits, elt_off, bit_off;
2117 long elt_total_bit_offset;
d2e4a39e
AS
2118 struct type *elt_type;
2119 struct value *v;
14f9c5c9
AS
2120
2121 bits = 0;
2122 elt_total_bit_offset = 0;
df407dfe 2123 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2124 for (i = 0; i < arity; i += 1)
14f9c5c9 2125 {
d2e4a39e 2126 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2127 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2128 error
0963b4bd
MS
2129 (_("attempt to do packed indexing of "
2130 "something other than a packed array"));
14f9c5c9 2131 else
4c4b4cd2
PH
2132 {
2133 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2134 LONGEST lowerbound, upperbound;
2135 LONGEST idx;
2136
2137 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2138 {
323e0a4a 2139 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2140 lowerbound = upperbound = 0;
2141 }
2142
3cb382c9 2143 idx = pos_atr (ind[i]);
4c4b4cd2 2144 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2145 lim_warning (_("packed array index %ld out of bounds"),
2146 (long) idx);
4c4b4cd2
PH
2147 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2148 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2149 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2150 }
14f9c5c9
AS
2151 }
2152 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2153 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2154
2155 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2156 bits, elt_type);
14f9c5c9
AS
2157 return v;
2158}
2159
4c4b4cd2 2160/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2161
2162static int
d2e4a39e 2163has_negatives (struct type *type)
14f9c5c9 2164{
d2e4a39e
AS
2165 switch (TYPE_CODE (type))
2166 {
2167 default:
2168 return 0;
2169 case TYPE_CODE_INT:
2170 return !TYPE_UNSIGNED (type);
2171 case TYPE_CODE_RANGE:
2172 return TYPE_LOW_BOUND (type) < 0;
2173 }
14f9c5c9 2174}
d2e4a39e 2175
14f9c5c9
AS
2176
2177/* Create a new value of type TYPE from the contents of OBJ starting
2178 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2179 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2180 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2181 VALADDR is ignored unless OBJ is NULL, in which case,
2182 VALADDR+OFFSET must address the start of storage containing the
2183 packed value. The value returned in this case is never an lval.
2184 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2185
d2e4a39e 2186struct value *
fc1a4b47 2187ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2188 long offset, int bit_offset, int bit_size,
4c4b4cd2 2189 struct type *type)
14f9c5c9 2190{
d2e4a39e 2191 struct value *v;
4c4b4cd2
PH
2192 int src, /* Index into the source area */
2193 targ, /* Index into the target area */
2194 srcBitsLeft, /* Number of source bits left to move */
2195 nsrc, ntarg, /* Number of source and target bytes */
2196 unusedLS, /* Number of bits in next significant
2197 byte of source that are unused */
2198 accumSize; /* Number of meaningful bits in accum */
2199 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2200 unsigned char *unpacked;
4c4b4cd2 2201 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2202 unsigned char sign;
2203 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2204 /* Transmit bytes from least to most significant; delta is the direction
2205 the indices move. */
50810684 2206 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2207
61ee279c 2208 type = ada_check_typedef (type);
14f9c5c9
AS
2209
2210 if (obj == NULL)
2211 {
2212 v = allocate_value (type);
d2e4a39e 2213 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2214 }
9214ee5f 2215 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2216 {
2217 v = value_at (type,
42ae5230 2218 value_address (obj) + offset);
d2e4a39e 2219 bytes = (unsigned char *) alloca (len);
42ae5230 2220 read_memory (value_address (v), bytes, len);
14f9c5c9 2221 }
d2e4a39e 2222 else
14f9c5c9
AS
2223 {
2224 v = allocate_value (type);
0fd88904 2225 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2226 }
d2e4a39e
AS
2227
2228 if (obj != NULL)
14f9c5c9 2229 {
42ae5230 2230 CORE_ADDR new_addr;
5b4ee69b 2231
74bcbdf3 2232 set_value_component_location (v, obj);
42ae5230 2233 new_addr = value_address (obj) + offset;
9bbda503
AC
2234 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2235 set_value_bitsize (v, bit_size);
df407dfe 2236 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2237 {
42ae5230 2238 ++new_addr;
9bbda503 2239 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2240 }
42ae5230 2241 set_value_address (v, new_addr);
14f9c5c9
AS
2242 }
2243 else
9bbda503 2244 set_value_bitsize (v, bit_size);
0fd88904 2245 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2246
2247 srcBitsLeft = bit_size;
2248 nsrc = len;
2249 ntarg = TYPE_LENGTH (type);
2250 sign = 0;
2251 if (bit_size == 0)
2252 {
2253 memset (unpacked, 0, TYPE_LENGTH (type));
2254 return v;
2255 }
50810684 2256 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2257 {
d2e4a39e 2258 src = len - 1;
1265e4aa
JB
2259 if (has_negatives (type)
2260 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2261 sign = ~0;
d2e4a39e
AS
2262
2263 unusedLS =
4c4b4cd2
PH
2264 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2265 % HOST_CHAR_BIT;
14f9c5c9
AS
2266
2267 switch (TYPE_CODE (type))
4c4b4cd2
PH
2268 {
2269 case TYPE_CODE_ARRAY:
2270 case TYPE_CODE_UNION:
2271 case TYPE_CODE_STRUCT:
2272 /* Non-scalar values must be aligned at a byte boundary... */
2273 accumSize =
2274 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2275 /* ... And are placed at the beginning (most-significant) bytes
2276 of the target. */
529cad9c 2277 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2278 ntarg = targ + 1;
4c4b4cd2
PH
2279 break;
2280 default:
2281 accumSize = 0;
2282 targ = TYPE_LENGTH (type) - 1;
2283 break;
2284 }
14f9c5c9 2285 }
d2e4a39e 2286 else
14f9c5c9
AS
2287 {
2288 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2289
2290 src = targ = 0;
2291 unusedLS = bit_offset;
2292 accumSize = 0;
2293
d2e4a39e 2294 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2295 sign = ~0;
14f9c5c9 2296 }
d2e4a39e 2297
14f9c5c9
AS
2298 accum = 0;
2299 while (nsrc > 0)
2300 {
2301 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2302 part of the value. */
d2e4a39e 2303 unsigned int unusedMSMask =
4c4b4cd2
PH
2304 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2305 1;
2306 /* Sign-extend bits for this byte. */
14f9c5c9 2307 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2308
d2e4a39e 2309 accum |=
4c4b4cd2 2310 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2311 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2312 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2313 {
2314 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2315 accumSize -= HOST_CHAR_BIT;
2316 accum >>= HOST_CHAR_BIT;
2317 ntarg -= 1;
2318 targ += delta;
2319 }
14f9c5c9
AS
2320 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2321 unusedLS = 0;
2322 nsrc -= 1;
2323 src += delta;
2324 }
2325 while (ntarg > 0)
2326 {
2327 accum |= sign << accumSize;
2328 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2329 accumSize -= HOST_CHAR_BIT;
2330 accum >>= HOST_CHAR_BIT;
2331 ntarg -= 1;
2332 targ += delta;
2333 }
2334
2335 return v;
2336}
d2e4a39e 2337
14f9c5c9
AS
2338/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2339 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2340 not overlap. */
14f9c5c9 2341static void
fc1a4b47 2342move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2343 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2344{
2345 unsigned int accum, mask;
2346 int accum_bits, chunk_size;
2347
2348 target += targ_offset / HOST_CHAR_BIT;
2349 targ_offset %= HOST_CHAR_BIT;
2350 source += src_offset / HOST_CHAR_BIT;
2351 src_offset %= HOST_CHAR_BIT;
50810684 2352 if (bits_big_endian_p)
14f9c5c9
AS
2353 {
2354 accum = (unsigned char) *source;
2355 source += 1;
2356 accum_bits = HOST_CHAR_BIT - src_offset;
2357
d2e4a39e 2358 while (n > 0)
4c4b4cd2
PH
2359 {
2360 int unused_right;
5b4ee69b 2361
4c4b4cd2
PH
2362 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2363 accum_bits += HOST_CHAR_BIT;
2364 source += 1;
2365 chunk_size = HOST_CHAR_BIT - targ_offset;
2366 if (chunk_size > n)
2367 chunk_size = n;
2368 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2369 mask = ((1 << chunk_size) - 1) << unused_right;
2370 *target =
2371 (*target & ~mask)
2372 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2373 n -= chunk_size;
2374 accum_bits -= chunk_size;
2375 target += 1;
2376 targ_offset = 0;
2377 }
14f9c5c9
AS
2378 }
2379 else
2380 {
2381 accum = (unsigned char) *source >> src_offset;
2382 source += 1;
2383 accum_bits = HOST_CHAR_BIT - src_offset;
2384
d2e4a39e 2385 while (n > 0)
4c4b4cd2
PH
2386 {
2387 accum = accum + ((unsigned char) *source << accum_bits);
2388 accum_bits += HOST_CHAR_BIT;
2389 source += 1;
2390 chunk_size = HOST_CHAR_BIT - targ_offset;
2391 if (chunk_size > n)
2392 chunk_size = n;
2393 mask = ((1 << chunk_size) - 1) << targ_offset;
2394 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2395 n -= chunk_size;
2396 accum_bits -= chunk_size;
2397 accum >>= chunk_size;
2398 target += 1;
2399 targ_offset = 0;
2400 }
14f9c5c9
AS
2401 }
2402}
2403
14f9c5c9
AS
2404/* Store the contents of FROMVAL into the location of TOVAL.
2405 Return a new value with the location of TOVAL and contents of
2406 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2407 floating-point or non-scalar types. */
14f9c5c9 2408
d2e4a39e
AS
2409static struct value *
2410ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2411{
df407dfe
AC
2412 struct type *type = value_type (toval);
2413 int bits = value_bitsize (toval);
14f9c5c9 2414
52ce6436
PH
2415 toval = ada_coerce_ref (toval);
2416 fromval = ada_coerce_ref (fromval);
2417
2418 if (ada_is_direct_array_type (value_type (toval)))
2419 toval = ada_coerce_to_simple_array (toval);
2420 if (ada_is_direct_array_type (value_type (fromval)))
2421 fromval = ada_coerce_to_simple_array (fromval);
2422
88e3b34b 2423 if (!deprecated_value_modifiable (toval))
323e0a4a 2424 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2425
d2e4a39e 2426 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2427 && bits > 0
d2e4a39e 2428 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2429 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2430 {
df407dfe
AC
2431 int len = (value_bitpos (toval)
2432 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2433 int from_size;
d2e4a39e
AS
2434 char *buffer = (char *) alloca (len);
2435 struct value *val;
42ae5230 2436 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2437
2438 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2439 fromval = value_cast (type, fromval);
14f9c5c9 2440
52ce6436 2441 read_memory (to_addr, buffer, len);
aced2898
PH
2442 from_size = value_bitsize (fromval);
2443 if (from_size == 0)
2444 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2445 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2446 move_bits (buffer, value_bitpos (toval),
50810684 2447 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2448 else
50810684
UW
2449 move_bits (buffer, value_bitpos (toval),
2450 value_contents (fromval), 0, bits, 0);
52ce6436 2451 write_memory (to_addr, buffer, len);
8cebebb9
PP
2452 observer_notify_memory_changed (to_addr, len, buffer);
2453
14f9c5c9 2454 val = value_copy (toval);
0fd88904 2455 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2456 TYPE_LENGTH (type));
04624583 2457 deprecated_set_value_type (val, type);
d2e4a39e 2458
14f9c5c9
AS
2459 return val;
2460 }
2461
2462 return value_assign (toval, fromval);
2463}
2464
2465
52ce6436
PH
2466/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2467 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2468 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2469 * COMPONENT, and not the inferior's memory. The current contents
2470 * of COMPONENT are ignored. */
2471static void
2472value_assign_to_component (struct value *container, struct value *component,
2473 struct value *val)
2474{
2475 LONGEST offset_in_container =
42ae5230 2476 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2477 int bit_offset_in_container =
2478 value_bitpos (component) - value_bitpos (container);
2479 int bits;
2480
2481 val = value_cast (value_type (component), val);
2482
2483 if (value_bitsize (component) == 0)
2484 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2485 else
2486 bits = value_bitsize (component);
2487
50810684 2488 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2489 move_bits (value_contents_writeable (container) + offset_in_container,
2490 value_bitpos (container) + bit_offset_in_container,
2491 value_contents (val),
2492 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2493 bits, 1);
52ce6436
PH
2494 else
2495 move_bits (value_contents_writeable (container) + offset_in_container,
2496 value_bitpos (container) + bit_offset_in_container,
50810684 2497 value_contents (val), 0, bits, 0);
52ce6436
PH
2498}
2499
4c4b4cd2
PH
2500/* The value of the element of array ARR at the ARITY indices given in IND.
2501 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2502 thereto. */
2503
d2e4a39e
AS
2504struct value *
2505ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2506{
2507 int k;
d2e4a39e
AS
2508 struct value *elt;
2509 struct type *elt_type;
14f9c5c9
AS
2510
2511 elt = ada_coerce_to_simple_array (arr);
2512
df407dfe 2513 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2514 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2515 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2516 return value_subscript_packed (elt, arity, ind);
2517
2518 for (k = 0; k < arity; k += 1)
2519 {
2520 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2521 error (_("too many subscripts (%d expected)"), k);
2497b498 2522 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2523 }
2524 return elt;
2525}
2526
2527/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2528 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2529 IND. Does not read the entire array into memory. */
14f9c5c9 2530
2c0b251b 2531static struct value *
d2e4a39e 2532ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2533 struct value **ind)
14f9c5c9
AS
2534{
2535 int k;
2536
2537 for (k = 0; k < arity; k += 1)
2538 {
2539 LONGEST lwb, upb;
14f9c5c9
AS
2540
2541 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2542 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2543 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2544 value_copy (arr));
14f9c5c9 2545 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2546 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2547 type = TYPE_TARGET_TYPE (type);
2548 }
2549
2550 return value_ind (arr);
2551}
2552
0b5d8877 2553/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2554 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2555 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2556 per Ada rules. */
0b5d8877 2557static struct value *
f5938064
JG
2558ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2559 int low, int high)
0b5d8877 2560{
6c038f32 2561 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2562 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2563 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2564 struct type *index_type =
2565 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2566 low, high);
6c038f32 2567 struct type *slice_type =
0b5d8877 2568 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2569
f5938064 2570 return value_at_lazy (slice_type, base);
0b5d8877
PH
2571}
2572
2573
2574static struct value *
2575ada_value_slice (struct value *array, int low, int high)
2576{
df407dfe 2577 struct type *type = value_type (array);
6c038f32 2578 struct type *index_type =
0b5d8877 2579 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2580 struct type *slice_type =
0b5d8877 2581 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2582
6c038f32 2583 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2584}
2585
14f9c5c9
AS
2586/* If type is a record type in the form of a standard GNAT array
2587 descriptor, returns the number of dimensions for type. If arr is a
2588 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2589 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2590
2591int
d2e4a39e 2592ada_array_arity (struct type *type)
14f9c5c9
AS
2593{
2594 int arity;
2595
2596 if (type == NULL)
2597 return 0;
2598
2599 type = desc_base_type (type);
2600
2601 arity = 0;
d2e4a39e 2602 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2603 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2604 else
2605 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2606 {
4c4b4cd2 2607 arity += 1;
61ee279c 2608 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2609 }
d2e4a39e 2610
14f9c5c9
AS
2611 return arity;
2612}
2613
2614/* If TYPE is a record type in the form of a standard GNAT array
2615 descriptor or a simple array type, returns the element type for
2616 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2617 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2618
d2e4a39e
AS
2619struct type *
2620ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2621{
2622 type = desc_base_type (type);
2623
d2e4a39e 2624 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2625 {
2626 int k;
d2e4a39e 2627 struct type *p_array_type;
14f9c5c9 2628
556bdfd4 2629 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2630
2631 k = ada_array_arity (type);
2632 if (k == 0)
4c4b4cd2 2633 return NULL;
d2e4a39e 2634
4c4b4cd2 2635 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2636 if (nindices >= 0 && k > nindices)
4c4b4cd2 2637 k = nindices;
d2e4a39e 2638 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2639 {
61ee279c 2640 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2641 k -= 1;
2642 }
14f9c5c9
AS
2643 return p_array_type;
2644 }
2645 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2646 {
2647 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2648 {
2649 type = TYPE_TARGET_TYPE (type);
2650 nindices -= 1;
2651 }
14f9c5c9
AS
2652 return type;
2653 }
2654
2655 return NULL;
2656}
2657
4c4b4cd2 2658/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2659 Does not examine memory. Throws an error if N is invalid or TYPE
2660 is not an array type. NAME is the name of the Ada attribute being
2661 evaluated ('range, 'first, 'last, or 'length); it is used in building
2662 the error message. */
14f9c5c9 2663
1eea4ebd
UW
2664static struct type *
2665ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2666{
4c4b4cd2
PH
2667 struct type *result_type;
2668
14f9c5c9
AS
2669 type = desc_base_type (type);
2670
1eea4ebd
UW
2671 if (n < 0 || n > ada_array_arity (type))
2672 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2673
4c4b4cd2 2674 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2675 {
2676 int i;
2677
2678 for (i = 1; i < n; i += 1)
4c4b4cd2 2679 type = TYPE_TARGET_TYPE (type);
262452ec 2680 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2681 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2682 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2683 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2684 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2685 result_type = NULL;
14f9c5c9 2686 }
d2e4a39e 2687 else
1eea4ebd
UW
2688 {
2689 result_type = desc_index_type (desc_bounds_type (type), n);
2690 if (result_type == NULL)
2691 error (_("attempt to take bound of something that is not an array"));
2692 }
2693
2694 return result_type;
14f9c5c9
AS
2695}
2696
2697/* Given that arr is an array type, returns the lower bound of the
2698 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2699 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2700 array-descriptor type. It works for other arrays with bounds supplied
2701 by run-time quantities other than discriminants. */
14f9c5c9 2702
abb68b3e 2703static LONGEST
1eea4ebd 2704ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2705{
1ce677a4 2706 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2707 int i;
262452ec
JK
2708
2709 gdb_assert (which == 0 || which == 1);
14f9c5c9 2710
ad82864c
JB
2711 if (ada_is_constrained_packed_array_type (arr_type))
2712 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2713
4c4b4cd2 2714 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2715 return (LONGEST) - which;
14f9c5c9
AS
2716
2717 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2718 type = TYPE_TARGET_TYPE (arr_type);
2719 else
2720 type = arr_type;
2721
1ce677a4
UW
2722 elt_type = type;
2723 for (i = n; i > 1; i--)
2724 elt_type = TYPE_TARGET_TYPE (type);
2725
14f9c5c9 2726 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2727 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2728 if (index_type_desc != NULL)
28c85d6c
JB
2729 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2730 NULL);
262452ec 2731 else
1ce677a4 2732 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2733
43bbcdc2
PH
2734 return
2735 (LONGEST) (which == 0
2736 ? ada_discrete_type_low_bound (index_type)
2737 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2738}
2739
2740/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2741 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2742 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2743 supplied by run-time quantities other than discriminants. */
14f9c5c9 2744
1eea4ebd 2745static LONGEST
4dc81987 2746ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2747{
df407dfe 2748 struct type *arr_type = value_type (arr);
14f9c5c9 2749
ad82864c
JB
2750 if (ada_is_constrained_packed_array_type (arr_type))
2751 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2752 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2753 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2754 else
1eea4ebd 2755 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2756}
2757
2758/* Given that arr is an array value, returns the length of the
2759 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2760 supplied by run-time quantities other than discriminants.
2761 Does not work for arrays indexed by enumeration types with representation
2762 clauses at the moment. */
14f9c5c9 2763
1eea4ebd 2764static LONGEST
d2e4a39e 2765ada_array_length (struct value *arr, int n)
14f9c5c9 2766{
df407dfe 2767 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2768
ad82864c
JB
2769 if (ada_is_constrained_packed_array_type (arr_type))
2770 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2771
4c4b4cd2 2772 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2773 return (ada_array_bound_from_type (arr_type, n, 1)
2774 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2775 else
1eea4ebd
UW
2776 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2777 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2778}
2779
2780/* An empty array whose type is that of ARR_TYPE (an array type),
2781 with bounds LOW to LOW-1. */
2782
2783static struct value *
2784empty_array (struct type *arr_type, int low)
2785{
6c038f32 2786 struct type *index_type =
0b5d8877
PH
2787 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2788 low, low - 1);
2789 struct type *elt_type = ada_array_element_type (arr_type, 1);
5b4ee69b 2790
0b5d8877 2791 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2792}
14f9c5c9 2793\f
d2e4a39e 2794
4c4b4cd2 2795 /* Name resolution */
14f9c5c9 2796
4c4b4cd2
PH
2797/* The "decoded" name for the user-definable Ada operator corresponding
2798 to OP. */
14f9c5c9 2799
d2e4a39e 2800static const char *
4c4b4cd2 2801ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2802{
2803 int i;
2804
4c4b4cd2 2805 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2806 {
2807 if (ada_opname_table[i].op == op)
4c4b4cd2 2808 return ada_opname_table[i].decoded;
14f9c5c9 2809 }
323e0a4a 2810 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2811}
2812
2813
4c4b4cd2
PH
2814/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2815 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2816 undefined namespace) and converts operators that are
2817 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2818 non-null, it provides a preferred result type [at the moment, only
2819 type void has any effect---causing procedures to be preferred over
2820 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2821 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2822
4c4b4cd2
PH
2823static void
2824resolve (struct expression **expp, int void_context_p)
14f9c5c9 2825{
30b15541
UW
2826 struct type *context_type = NULL;
2827 int pc = 0;
2828
2829 if (void_context_p)
2830 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2831
2832 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2833}
2834
4c4b4cd2
PH
2835/* Resolve the operator of the subexpression beginning at
2836 position *POS of *EXPP. "Resolving" consists of replacing
2837 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2838 with their resolutions, replacing built-in operators with
2839 function calls to user-defined operators, where appropriate, and,
2840 when DEPROCEDURE_P is non-zero, converting function-valued variables
2841 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2842 are as in ada_resolve, above. */
14f9c5c9 2843
d2e4a39e 2844static struct value *
4c4b4cd2 2845resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2846 struct type *context_type)
14f9c5c9
AS
2847{
2848 int pc = *pos;
2849 int i;
4c4b4cd2 2850 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2851 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2852 struct value **argvec; /* Vector of operand types (alloca'ed). */
2853 int nargs; /* Number of operands. */
52ce6436 2854 int oplen;
14f9c5c9
AS
2855
2856 argvec = NULL;
2857 nargs = 0;
2858 exp = *expp;
2859
52ce6436
PH
2860 /* Pass one: resolve operands, saving their types and updating *pos,
2861 if needed. */
14f9c5c9
AS
2862 switch (op)
2863 {
4c4b4cd2
PH
2864 case OP_FUNCALL:
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2867 *pos += 7;
4c4b4cd2
PH
2868 else
2869 {
2870 *pos += 3;
2871 resolve_subexp (expp, pos, 0, NULL);
2872 }
2873 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2874 break;
2875
14f9c5c9 2876 case UNOP_ADDR:
4c4b4cd2
PH
2877 *pos += 1;
2878 resolve_subexp (expp, pos, 0, NULL);
2879 break;
2880
52ce6436
PH
2881 case UNOP_QUAL:
2882 *pos += 3;
17466c1a 2883 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2884 break;
2885
52ce6436 2886 case OP_ATR_MODULUS:
4c4b4cd2
PH
2887 case OP_ATR_SIZE:
2888 case OP_ATR_TAG:
4c4b4cd2
PH
2889 case OP_ATR_FIRST:
2890 case OP_ATR_LAST:
2891 case OP_ATR_LENGTH:
2892 case OP_ATR_POS:
2893 case OP_ATR_VAL:
4c4b4cd2
PH
2894 case OP_ATR_MIN:
2895 case OP_ATR_MAX:
52ce6436
PH
2896 case TERNOP_IN_RANGE:
2897 case BINOP_IN_BOUNDS:
2898 case UNOP_IN_RANGE:
2899 case OP_AGGREGATE:
2900 case OP_OTHERS:
2901 case OP_CHOICES:
2902 case OP_POSITIONAL:
2903 case OP_DISCRETE_RANGE:
2904 case OP_NAME:
2905 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2906 *pos += oplen;
14f9c5c9
AS
2907 break;
2908
2909 case BINOP_ASSIGN:
2910 {
4c4b4cd2
PH
2911 struct value *arg1;
2912
2913 *pos += 1;
2914 arg1 = resolve_subexp (expp, pos, 0, NULL);
2915 if (arg1 == NULL)
2916 resolve_subexp (expp, pos, 1, NULL);
2917 else
df407dfe 2918 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2919 break;
14f9c5c9
AS
2920 }
2921
4c4b4cd2 2922 case UNOP_CAST:
4c4b4cd2
PH
2923 *pos += 3;
2924 nargs = 1;
2925 break;
14f9c5c9 2926
4c4b4cd2
PH
2927 case BINOP_ADD:
2928 case BINOP_SUB:
2929 case BINOP_MUL:
2930 case BINOP_DIV:
2931 case BINOP_REM:
2932 case BINOP_MOD:
2933 case BINOP_EXP:
2934 case BINOP_CONCAT:
2935 case BINOP_LOGICAL_AND:
2936 case BINOP_LOGICAL_OR:
2937 case BINOP_BITWISE_AND:
2938 case BINOP_BITWISE_IOR:
2939 case BINOP_BITWISE_XOR:
14f9c5c9 2940
4c4b4cd2
PH
2941 case BINOP_EQUAL:
2942 case BINOP_NOTEQUAL:
2943 case BINOP_LESS:
2944 case BINOP_GTR:
2945 case BINOP_LEQ:
2946 case BINOP_GEQ:
14f9c5c9 2947
4c4b4cd2
PH
2948 case BINOP_REPEAT:
2949 case BINOP_SUBSCRIPT:
2950 case BINOP_COMMA:
40c8aaa9
JB
2951 *pos += 1;
2952 nargs = 2;
2953 break;
14f9c5c9 2954
4c4b4cd2
PH
2955 case UNOP_NEG:
2956 case UNOP_PLUS:
2957 case UNOP_LOGICAL_NOT:
2958 case UNOP_ABS:
2959 case UNOP_IND:
2960 *pos += 1;
2961 nargs = 1;
2962 break;
14f9c5c9 2963
4c4b4cd2
PH
2964 case OP_LONG:
2965 case OP_DOUBLE:
2966 case OP_VAR_VALUE:
2967 *pos += 4;
2968 break;
14f9c5c9 2969
4c4b4cd2
PH
2970 case OP_TYPE:
2971 case OP_BOOL:
2972 case OP_LAST:
4c4b4cd2
PH
2973 case OP_INTERNALVAR:
2974 *pos += 3;
2975 break;
14f9c5c9 2976
4c4b4cd2
PH
2977 case UNOP_MEMVAL:
2978 *pos += 3;
2979 nargs = 1;
2980 break;
2981
67f3407f
DJ
2982 case OP_REGISTER:
2983 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2984 break;
2985
4c4b4cd2
PH
2986 case STRUCTOP_STRUCT:
2987 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2988 nargs = 1;
2989 break;
2990
4c4b4cd2 2991 case TERNOP_SLICE:
4c4b4cd2
PH
2992 *pos += 1;
2993 nargs = 3;
2994 break;
2995
52ce6436 2996 case OP_STRING:
14f9c5c9 2997 break;
4c4b4cd2
PH
2998
2999 default:
323e0a4a 3000 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3001 }
3002
76a01679 3003 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3004 for (i = 0; i < nargs; i += 1)
3005 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3006 argvec[i] = NULL;
3007 exp = *expp;
3008
3009 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3010 switch (op)
3011 {
3012 default:
3013 break;
3014
14f9c5c9 3015 case OP_VAR_VALUE:
4c4b4cd2 3016 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3017 {
3018 struct ada_symbol_info *candidates;
3019 int n_candidates;
3020
3021 n_candidates =
3022 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3023 (exp->elts[pc + 2].symbol),
3024 exp->elts[pc + 1].block, VAR_DOMAIN,
3025 &candidates);
3026
3027 if (n_candidates > 1)
3028 {
3029 /* Types tend to get re-introduced locally, so if there
3030 are any local symbols that are not types, first filter
3031 out all types. */
3032 int j;
3033 for (j = 0; j < n_candidates; j += 1)
3034 switch (SYMBOL_CLASS (candidates[j].sym))
3035 {
3036 case LOC_REGISTER:
3037 case LOC_ARG:
3038 case LOC_REF_ARG:
76a01679
JB
3039 case LOC_REGPARM_ADDR:
3040 case LOC_LOCAL:
76a01679 3041 case LOC_COMPUTED:
76a01679
JB
3042 goto FoundNonType;
3043 default:
3044 break;
3045 }
3046 FoundNonType:
3047 if (j < n_candidates)
3048 {
3049 j = 0;
3050 while (j < n_candidates)
3051 {
3052 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3053 {
3054 candidates[j] = candidates[n_candidates - 1];
3055 n_candidates -= 1;
3056 }
3057 else
3058 j += 1;
3059 }
3060 }
3061 }
3062
3063 if (n_candidates == 0)
323e0a4a 3064 error (_("No definition found for %s"),
76a01679
JB
3065 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3066 else if (n_candidates == 1)
3067 i = 0;
3068 else if (deprocedure_p
3069 && !is_nonfunction (candidates, n_candidates))
3070 {
06d5cf63
JB
3071 i = ada_resolve_function
3072 (candidates, n_candidates, NULL, 0,
3073 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3074 context_type);
76a01679 3075 if (i < 0)
323e0a4a 3076 error (_("Could not find a match for %s"),
76a01679
JB
3077 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3078 }
3079 else
3080 {
323e0a4a 3081 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3082 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3083 user_select_syms (candidates, n_candidates, 1);
3084 i = 0;
3085 }
3086
3087 exp->elts[pc + 1].block = candidates[i].block;
3088 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3089 if (innermost_block == NULL
3090 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3091 innermost_block = candidates[i].block;
3092 }
3093
3094 if (deprocedure_p
3095 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3096 == TYPE_CODE_FUNC))
3097 {
3098 replace_operator_with_call (expp, pc, 0, 0,
3099 exp->elts[pc + 2].symbol,
3100 exp->elts[pc + 1].block);
3101 exp = *expp;
3102 }
14f9c5c9
AS
3103 break;
3104
3105 case OP_FUNCALL:
3106 {
4c4b4cd2 3107 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3108 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3109 {
3110 struct ada_symbol_info *candidates;
3111 int n_candidates;
3112
3113 n_candidates =
76a01679
JB
3114 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3115 (exp->elts[pc + 5].symbol),
3116 exp->elts[pc + 4].block, VAR_DOMAIN,
3117 &candidates);
4c4b4cd2
PH
3118 if (n_candidates == 1)
3119 i = 0;
3120 else
3121 {
06d5cf63
JB
3122 i = ada_resolve_function
3123 (candidates, n_candidates,
3124 argvec, nargs,
3125 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3126 context_type);
4c4b4cd2 3127 if (i < 0)
323e0a4a 3128 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3129 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3130 }
3131
3132 exp->elts[pc + 4].block = candidates[i].block;
3133 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3134 if (innermost_block == NULL
3135 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3136 innermost_block = candidates[i].block;
3137 }
14f9c5c9
AS
3138 }
3139 break;
3140 case BINOP_ADD:
3141 case BINOP_SUB:
3142 case BINOP_MUL:
3143 case BINOP_DIV:
3144 case BINOP_REM:
3145 case BINOP_MOD:
3146 case BINOP_CONCAT:
3147 case BINOP_BITWISE_AND:
3148 case BINOP_BITWISE_IOR:
3149 case BINOP_BITWISE_XOR:
3150 case BINOP_EQUAL:
3151 case BINOP_NOTEQUAL:
3152 case BINOP_LESS:
3153 case BINOP_GTR:
3154 case BINOP_LEQ:
3155 case BINOP_GEQ:
3156 case BINOP_EXP:
3157 case UNOP_NEG:
3158 case UNOP_PLUS:
3159 case UNOP_LOGICAL_NOT:
3160 case UNOP_ABS:
3161 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3162 {
3163 struct ada_symbol_info *candidates;
3164 int n_candidates;
3165
3166 n_candidates =
3167 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3168 (struct block *) NULL, VAR_DOMAIN,
3169 &candidates);
3170 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3171 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3172 if (i < 0)
3173 break;
3174
76a01679
JB
3175 replace_operator_with_call (expp, pc, nargs, 1,
3176 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3177 exp = *expp;
3178 }
14f9c5c9 3179 break;
4c4b4cd2
PH
3180
3181 case OP_TYPE:
b3dbf008 3182 case OP_REGISTER:
4c4b4cd2 3183 return NULL;
14f9c5c9
AS
3184 }
3185
3186 *pos = pc;
3187 return evaluate_subexp_type (exp, pos);
3188}
3189
3190/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3191 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3192 a non-pointer. */
14f9c5c9 3193/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3194 liberal. */
14f9c5c9
AS
3195
3196static int
4dc81987 3197ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3198{
61ee279c
PH
3199 ftype = ada_check_typedef (ftype);
3200 atype = ada_check_typedef (atype);
14f9c5c9
AS
3201
3202 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3203 ftype = TYPE_TARGET_TYPE (ftype);
3204 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3205 atype = TYPE_TARGET_TYPE (atype);
3206
d2e4a39e 3207 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3208 {
3209 default:
5b3d5b7d 3210 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3211 case TYPE_CODE_PTR:
3212 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3213 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3214 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3215 else
1265e4aa
JB
3216 return (may_deref
3217 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3218 case TYPE_CODE_INT:
3219 case TYPE_CODE_ENUM:
3220 case TYPE_CODE_RANGE:
3221 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3222 {
3223 case TYPE_CODE_INT:
3224 case TYPE_CODE_ENUM:
3225 case TYPE_CODE_RANGE:
3226 return 1;
3227 default:
3228 return 0;
3229 }
14f9c5c9
AS
3230
3231 case TYPE_CODE_ARRAY:
d2e4a39e 3232 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3233 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3234
3235 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3236 if (ada_is_array_descriptor_type (ftype))
3237 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3238 || ada_is_array_descriptor_type (atype));
14f9c5c9 3239 else
4c4b4cd2
PH
3240 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3241 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3242
3243 case TYPE_CODE_UNION:
3244 case TYPE_CODE_FLT:
3245 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3246 }
3247}
3248
3249/* Return non-zero if the formals of FUNC "sufficiently match" the
3250 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3251 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3252 argument function. */
14f9c5c9
AS
3253
3254static int
d2e4a39e 3255ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3256{
3257 int i;
d2e4a39e 3258 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3259
1265e4aa
JB
3260 if (SYMBOL_CLASS (func) == LOC_CONST
3261 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3262 return (n_actuals == 0);
3263 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3264 return 0;
3265
3266 if (TYPE_NFIELDS (func_type) != n_actuals)
3267 return 0;
3268
3269 for (i = 0; i < n_actuals; i += 1)
3270 {
4c4b4cd2 3271 if (actuals[i] == NULL)
76a01679
JB
3272 return 0;
3273 else
3274 {
5b4ee69b
MS
3275 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3276 i));
df407dfe 3277 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3278
76a01679
JB
3279 if (!ada_type_match (ftype, atype, 1))
3280 return 0;
3281 }
14f9c5c9
AS
3282 }
3283 return 1;
3284}
3285
3286/* False iff function type FUNC_TYPE definitely does not produce a value
3287 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3288 FUNC_TYPE is not a valid function type with a non-null return type
3289 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3290
3291static int
d2e4a39e 3292return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3293{
d2e4a39e 3294 struct type *return_type;
14f9c5c9
AS
3295
3296 if (func_type == NULL)
3297 return 1;
3298
4c4b4cd2
PH
3299 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3300 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3301 else
3302 return_type = base_type (func_type);
14f9c5c9
AS
3303 if (return_type == NULL)
3304 return 1;
3305
4c4b4cd2 3306 context_type = base_type (context_type);
14f9c5c9
AS
3307
3308 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3309 return context_type == NULL || return_type == context_type;
3310 else if (context_type == NULL)
3311 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3312 else
3313 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3314}
3315
3316
4c4b4cd2 3317/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3318 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3319 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3320 that returns that type, then eliminate matches that don't. If
3321 CONTEXT_TYPE is void and there is at least one match that does not
3322 return void, eliminate all matches that do.
3323
14f9c5c9
AS
3324 Asks the user if there is more than one match remaining. Returns -1
3325 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3326 solely for messages. May re-arrange and modify SYMS in
3327 the process; the index returned is for the modified vector. */
14f9c5c9 3328
4c4b4cd2
PH
3329static int
3330ada_resolve_function (struct ada_symbol_info syms[],
3331 int nsyms, struct value **args, int nargs,
3332 const char *name, struct type *context_type)
14f9c5c9 3333{
30b15541 3334 int fallback;
14f9c5c9 3335 int k;
4c4b4cd2 3336 int m; /* Number of hits */
14f9c5c9 3337
d2e4a39e 3338 m = 0;
30b15541
UW
3339 /* In the first pass of the loop, we only accept functions matching
3340 context_type. If none are found, we add a second pass of the loop
3341 where every function is accepted. */
3342 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3343 {
3344 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3345 {
61ee279c 3346 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3347
3348 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3349 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3350 {
3351 syms[m] = syms[k];
3352 m += 1;
3353 }
3354 }
14f9c5c9
AS
3355 }
3356
3357 if (m == 0)
3358 return -1;
3359 else if (m > 1)
3360 {
323e0a4a 3361 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3362 user_select_syms (syms, m, 1);
14f9c5c9
AS
3363 return 0;
3364 }
3365 return 0;
3366}
3367
4c4b4cd2
PH
3368/* Returns true (non-zero) iff decoded name N0 should appear before N1
3369 in a listing of choices during disambiguation (see sort_choices, below).
3370 The idea is that overloadings of a subprogram name from the
3371 same package should sort in their source order. We settle for ordering
3372 such symbols by their trailing number (__N or $N). */
3373
14f9c5c9 3374static int
4c4b4cd2 3375encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3376{
3377 if (N1 == NULL)
3378 return 0;
3379 else if (N0 == NULL)
3380 return 1;
3381 else
3382 {
3383 int k0, k1;
5b4ee69b 3384
d2e4a39e 3385 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3386 ;
d2e4a39e 3387 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3388 ;
d2e4a39e 3389 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3390 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3391 {
3392 int n0, n1;
5b4ee69b 3393
4c4b4cd2
PH
3394 n0 = k0;
3395 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3396 n0 -= 1;
3397 n1 = k1;
3398 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3399 n1 -= 1;
3400 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3401 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3402 }
14f9c5c9
AS
3403 return (strcmp (N0, N1) < 0);
3404 }
3405}
d2e4a39e 3406
4c4b4cd2
PH
3407/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3408 encoded names. */
3409
d2e4a39e 3410static void
4c4b4cd2 3411sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3412{
4c4b4cd2 3413 int i;
5b4ee69b 3414
d2e4a39e 3415 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3416 {
4c4b4cd2 3417 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3418 int j;
3419
d2e4a39e 3420 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3421 {
3422 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3423 SYMBOL_LINKAGE_NAME (sym.sym)))
3424 break;
3425 syms[j + 1] = syms[j];
3426 }
d2e4a39e 3427 syms[j + 1] = sym;
14f9c5c9
AS
3428 }
3429}
3430
4c4b4cd2
PH
3431/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3432 by asking the user (if necessary), returning the number selected,
3433 and setting the first elements of SYMS items. Error if no symbols
3434 selected. */
14f9c5c9
AS
3435
3436/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3437 to be re-integrated one of these days. */
14f9c5c9
AS
3438
3439int
4c4b4cd2 3440user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3441{
3442 int i;
d2e4a39e 3443 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3444 int n_chosen;
3445 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3446 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3447
3448 if (max_results < 1)
323e0a4a 3449 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3450 if (nsyms <= 1)
3451 return nsyms;
3452
717d2f5a
JB
3453 if (select_mode == multiple_symbols_cancel)
3454 error (_("\
3455canceled because the command is ambiguous\n\
3456See set/show multiple-symbol."));
3457
3458 /* If select_mode is "all", then return all possible symbols.
3459 Only do that if more than one symbol can be selected, of course.
3460 Otherwise, display the menu as usual. */
3461 if (select_mode == multiple_symbols_all && max_results > 1)
3462 return nsyms;
3463
323e0a4a 3464 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3465 if (max_results > 1)
323e0a4a 3466 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3467
4c4b4cd2 3468 sort_choices (syms, nsyms);
14f9c5c9
AS
3469
3470 for (i = 0; i < nsyms; i += 1)
3471 {
4c4b4cd2
PH
3472 if (syms[i].sym == NULL)
3473 continue;
3474
3475 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3476 {
76a01679
JB
3477 struct symtab_and_line sal =
3478 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3479
323e0a4a
AC
3480 if (sal.symtab == NULL)
3481 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3482 i + first_choice,
3483 SYMBOL_PRINT_NAME (syms[i].sym),
3484 sal.line);
3485 else
3486 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3487 SYMBOL_PRINT_NAME (syms[i].sym),
3488 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3489 continue;
3490 }
d2e4a39e 3491 else
4c4b4cd2
PH
3492 {
3493 int is_enumeral =
3494 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3495 && SYMBOL_TYPE (syms[i].sym) != NULL
3496 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3497 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3498
3499 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3500 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3501 i + first_choice,
3502 SYMBOL_PRINT_NAME (syms[i].sym),
3503 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3504 else if (is_enumeral
3505 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3506 {
a3f17187 3507 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3508 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3509 gdb_stdout, -1, 0);
323e0a4a 3510 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3511 SYMBOL_PRINT_NAME (syms[i].sym));
3512 }
3513 else if (symtab != NULL)
3514 printf_unfiltered (is_enumeral
323e0a4a
AC
3515 ? _("[%d] %s in %s (enumeral)\n")
3516 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3517 i + first_choice,
3518 SYMBOL_PRINT_NAME (syms[i].sym),
3519 symtab->filename);
3520 else
3521 printf_unfiltered (is_enumeral
323e0a4a
AC
3522 ? _("[%d] %s (enumeral)\n")
3523 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3524 i + first_choice,
3525 SYMBOL_PRINT_NAME (syms[i].sym));
3526 }
14f9c5c9 3527 }
d2e4a39e 3528
14f9c5c9 3529 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3530 "overload-choice");
14f9c5c9
AS
3531
3532 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3533 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3534
3535 return n_chosen;
3536}
3537
3538/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3539 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3540 order in CHOICES[0 .. N-1], and return N.
3541
3542 The user types choices as a sequence of numbers on one line
3543 separated by blanks, encoding them as follows:
3544
4c4b4cd2 3545 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3546 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3547 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3548
4c4b4cd2 3549 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3550
3551 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3552 prompts (for use with the -f switch). */
14f9c5c9
AS
3553
3554int
d2e4a39e 3555get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3556 int is_all_choice, char *annotation_suffix)
14f9c5c9 3557{
d2e4a39e 3558 char *args;
0bcd0149 3559 char *prompt;
14f9c5c9
AS
3560 int n_chosen;
3561 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3562
14f9c5c9
AS
3563 prompt = getenv ("PS2");
3564 if (prompt == NULL)
0bcd0149 3565 prompt = "> ";
14f9c5c9 3566
0bcd0149 3567 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3568
14f9c5c9 3569 if (args == NULL)
323e0a4a 3570 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3571
3572 n_chosen = 0;
76a01679 3573
4c4b4cd2
PH
3574 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3575 order, as given in args. Choices are validated. */
14f9c5c9
AS
3576 while (1)
3577 {
d2e4a39e 3578 char *args2;
14f9c5c9
AS
3579 int choice, j;
3580
3581 while (isspace (*args))
4c4b4cd2 3582 args += 1;
14f9c5c9 3583 if (*args == '\0' && n_chosen == 0)
323e0a4a 3584 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3585 else if (*args == '\0')
4c4b4cd2 3586 break;
14f9c5c9
AS
3587
3588 choice = strtol (args, &args2, 10);
d2e4a39e 3589 if (args == args2 || choice < 0
4c4b4cd2 3590 || choice > n_choices + first_choice - 1)
323e0a4a 3591 error (_("Argument must be choice number"));
14f9c5c9
AS
3592 args = args2;
3593
d2e4a39e 3594 if (choice == 0)
323e0a4a 3595 error (_("cancelled"));
14f9c5c9
AS
3596
3597 if (choice < first_choice)
4c4b4cd2
PH
3598 {
3599 n_chosen = n_choices;
3600 for (j = 0; j < n_choices; j += 1)
3601 choices[j] = j;
3602 break;
3603 }
14f9c5c9
AS
3604 choice -= first_choice;
3605
d2e4a39e 3606 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3607 {
3608 }
14f9c5c9
AS
3609
3610 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3611 {
3612 int k;
5b4ee69b 3613
4c4b4cd2
PH
3614 for (k = n_chosen - 1; k > j; k -= 1)
3615 choices[k + 1] = choices[k];
3616 choices[j + 1] = choice;
3617 n_chosen += 1;
3618 }
14f9c5c9
AS
3619 }
3620
3621 if (n_chosen > max_results)
323e0a4a 3622 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3623
14f9c5c9
AS
3624 return n_chosen;
3625}
3626
4c4b4cd2
PH
3627/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3628 on the function identified by SYM and BLOCK, and taking NARGS
3629 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3630
3631static void
d2e4a39e 3632replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3633 int oplen, struct symbol *sym,
3634 struct block *block)
14f9c5c9
AS
3635{
3636 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3637 symbol, -oplen for operator being replaced). */
d2e4a39e 3638 struct expression *newexp = (struct expression *)
14f9c5c9 3639 xmalloc (sizeof (struct expression)
4c4b4cd2 3640 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3641 struct expression *exp = *expp;
14f9c5c9
AS
3642
3643 newexp->nelts = exp->nelts + 7 - oplen;
3644 newexp->language_defn = exp->language_defn;
3645 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3646 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3647 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3648
3649 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3650 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3651
3652 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3653 newexp->elts[pc + 4].block = block;
3654 newexp->elts[pc + 5].symbol = sym;
3655
3656 *expp = newexp;
aacb1f0a 3657 xfree (exp);
d2e4a39e 3658}
14f9c5c9
AS
3659
3660/* Type-class predicates */
3661
4c4b4cd2
PH
3662/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3663 or FLOAT). */
14f9c5c9
AS
3664
3665static int
d2e4a39e 3666numeric_type_p (struct type *type)
14f9c5c9
AS
3667{
3668 if (type == NULL)
3669 return 0;
d2e4a39e
AS
3670 else
3671 {
3672 switch (TYPE_CODE (type))
4c4b4cd2
PH
3673 {
3674 case TYPE_CODE_INT:
3675 case TYPE_CODE_FLT:
3676 return 1;
3677 case TYPE_CODE_RANGE:
3678 return (type == TYPE_TARGET_TYPE (type)
3679 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3680 default:
3681 return 0;
3682 }
d2e4a39e 3683 }
14f9c5c9
AS
3684}
3685
4c4b4cd2 3686/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3687
3688static int
d2e4a39e 3689integer_type_p (struct type *type)
14f9c5c9
AS
3690{
3691 if (type == NULL)
3692 return 0;
d2e4a39e
AS
3693 else
3694 {
3695 switch (TYPE_CODE (type))
4c4b4cd2
PH
3696 {
3697 case TYPE_CODE_INT:
3698 return 1;
3699 case TYPE_CODE_RANGE:
3700 return (type == TYPE_TARGET_TYPE (type)
3701 || integer_type_p (TYPE_TARGET_TYPE (type)));
3702 default:
3703 return 0;
3704 }
d2e4a39e 3705 }
14f9c5c9
AS
3706}
3707
4c4b4cd2 3708/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3709
3710static int
d2e4a39e 3711scalar_type_p (struct type *type)
14f9c5c9
AS
3712{
3713 if (type == NULL)
3714 return 0;
d2e4a39e
AS
3715 else
3716 {
3717 switch (TYPE_CODE (type))
4c4b4cd2
PH
3718 {
3719 case TYPE_CODE_INT:
3720 case TYPE_CODE_RANGE:
3721 case TYPE_CODE_ENUM:
3722 case TYPE_CODE_FLT:
3723 return 1;
3724 default:
3725 return 0;
3726 }
d2e4a39e 3727 }
14f9c5c9
AS
3728}
3729
4c4b4cd2 3730/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3731
3732static int
d2e4a39e 3733discrete_type_p (struct type *type)
14f9c5c9
AS
3734{
3735 if (type == NULL)
3736 return 0;
d2e4a39e
AS
3737 else
3738 {
3739 switch (TYPE_CODE (type))
4c4b4cd2
PH
3740 {
3741 case TYPE_CODE_INT:
3742 case TYPE_CODE_RANGE:
3743 case TYPE_CODE_ENUM:
872f0337 3744 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3745 return 1;
3746 default:
3747 return 0;
3748 }
d2e4a39e 3749 }
14f9c5c9
AS
3750}
3751
4c4b4cd2
PH
3752/* Returns non-zero if OP with operands in the vector ARGS could be
3753 a user-defined function. Errs on the side of pre-defined operators
3754 (i.e., result 0). */
14f9c5c9
AS
3755
3756static int
d2e4a39e 3757possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3758{
76a01679 3759 struct type *type0 =
df407dfe 3760 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3761 struct type *type1 =
df407dfe 3762 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3763
4c4b4cd2
PH
3764 if (type0 == NULL)
3765 return 0;
3766
14f9c5c9
AS
3767 switch (op)
3768 {
3769 default:
3770 return 0;
3771
3772 case BINOP_ADD:
3773 case BINOP_SUB:
3774 case BINOP_MUL:
3775 case BINOP_DIV:
d2e4a39e 3776 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3777
3778 case BINOP_REM:
3779 case BINOP_MOD:
3780 case BINOP_BITWISE_AND:
3781 case BINOP_BITWISE_IOR:
3782 case BINOP_BITWISE_XOR:
d2e4a39e 3783 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3784
3785 case BINOP_EQUAL:
3786 case BINOP_NOTEQUAL:
3787 case BINOP_LESS:
3788 case BINOP_GTR:
3789 case BINOP_LEQ:
3790 case BINOP_GEQ:
d2e4a39e 3791 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3792
3793 case BINOP_CONCAT:
ee90b9ab 3794 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3795
3796 case BINOP_EXP:
d2e4a39e 3797 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3798
3799 case UNOP_NEG:
3800 case UNOP_PLUS:
3801 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3802 case UNOP_ABS:
3803 return (!numeric_type_p (type0));
14f9c5c9
AS
3804
3805 }
3806}
3807\f
4c4b4cd2 3808 /* Renaming */
14f9c5c9 3809
aeb5907d
JB
3810/* NOTES:
3811
3812 1. In the following, we assume that a renaming type's name may
3813 have an ___XD suffix. It would be nice if this went away at some
3814 point.
3815 2. We handle both the (old) purely type-based representation of
3816 renamings and the (new) variable-based encoding. At some point,
3817 it is devoutly to be hoped that the former goes away
3818 (FIXME: hilfinger-2007-07-09).
3819 3. Subprogram renamings are not implemented, although the XRS
3820 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3821
3822/* If SYM encodes a renaming,
3823
3824 <renaming> renames <renamed entity>,
3825
3826 sets *LEN to the length of the renamed entity's name,
3827 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3828 the string describing the subcomponent selected from the renamed
0963b4bd 3829 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3830 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3831 are undefined). Otherwise, returns a value indicating the category
3832 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3833 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3834 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3835 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3836 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3837 may be NULL, in which case they are not assigned.
3838
3839 [Currently, however, GCC does not generate subprogram renamings.] */
3840
3841enum ada_renaming_category
3842ada_parse_renaming (struct symbol *sym,
3843 const char **renamed_entity, int *len,
3844 const char **renaming_expr)
3845{
3846 enum ada_renaming_category kind;
3847 const char *info;
3848 const char *suffix;
3849
3850 if (sym == NULL)
3851 return ADA_NOT_RENAMING;
3852 switch (SYMBOL_CLASS (sym))
14f9c5c9 3853 {
aeb5907d
JB
3854 default:
3855 return ADA_NOT_RENAMING;
3856 case LOC_TYPEDEF:
3857 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3858 renamed_entity, len, renaming_expr);
3859 case LOC_LOCAL:
3860 case LOC_STATIC:
3861 case LOC_COMPUTED:
3862 case LOC_OPTIMIZED_OUT:
3863 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3864 if (info == NULL)
3865 return ADA_NOT_RENAMING;
3866 switch (info[5])
3867 {
3868 case '_':
3869 kind = ADA_OBJECT_RENAMING;
3870 info += 6;
3871 break;
3872 case 'E':
3873 kind = ADA_EXCEPTION_RENAMING;
3874 info += 7;
3875 break;
3876 case 'P':
3877 kind = ADA_PACKAGE_RENAMING;
3878 info += 7;
3879 break;
3880 case 'S':
3881 kind = ADA_SUBPROGRAM_RENAMING;
3882 info += 7;
3883 break;
3884 default:
3885 return ADA_NOT_RENAMING;
3886 }
14f9c5c9 3887 }
4c4b4cd2 3888
aeb5907d
JB
3889 if (renamed_entity != NULL)
3890 *renamed_entity = info;
3891 suffix = strstr (info, "___XE");
3892 if (suffix == NULL || suffix == info)
3893 return ADA_NOT_RENAMING;
3894 if (len != NULL)
3895 *len = strlen (info) - strlen (suffix);
3896 suffix += 5;
3897 if (renaming_expr != NULL)
3898 *renaming_expr = suffix;
3899 return kind;
3900}
3901
3902/* Assuming TYPE encodes a renaming according to the old encoding in
3903 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3904 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3905 ADA_NOT_RENAMING otherwise. */
3906static enum ada_renaming_category
3907parse_old_style_renaming (struct type *type,
3908 const char **renamed_entity, int *len,
3909 const char **renaming_expr)
3910{
3911 enum ada_renaming_category kind;
3912 const char *name;
3913 const char *info;
3914 const char *suffix;
14f9c5c9 3915
aeb5907d
JB
3916 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3917 || TYPE_NFIELDS (type) != 1)
3918 return ADA_NOT_RENAMING;
14f9c5c9 3919
aeb5907d
JB
3920 name = type_name_no_tag (type);
3921 if (name == NULL)
3922 return ADA_NOT_RENAMING;
3923
3924 name = strstr (name, "___XR");
3925 if (name == NULL)
3926 return ADA_NOT_RENAMING;
3927 switch (name[5])
3928 {
3929 case '\0':
3930 case '_':
3931 kind = ADA_OBJECT_RENAMING;
3932 break;
3933 case 'E':
3934 kind = ADA_EXCEPTION_RENAMING;
3935 break;
3936 case 'P':
3937 kind = ADA_PACKAGE_RENAMING;
3938 break;
3939 case 'S':
3940 kind = ADA_SUBPROGRAM_RENAMING;
3941 break;
3942 default:
3943 return ADA_NOT_RENAMING;
3944 }
14f9c5c9 3945
aeb5907d
JB
3946 info = TYPE_FIELD_NAME (type, 0);
3947 if (info == NULL)
3948 return ADA_NOT_RENAMING;
3949 if (renamed_entity != NULL)
3950 *renamed_entity = info;
3951 suffix = strstr (info, "___XE");
3952 if (renaming_expr != NULL)
3953 *renaming_expr = suffix + 5;
3954 if (suffix == NULL || suffix == info)
3955 return ADA_NOT_RENAMING;
3956 if (len != NULL)
3957 *len = suffix - info;
3958 return kind;
3959}
52ce6436 3960
14f9c5c9 3961\f
d2e4a39e 3962
4c4b4cd2 3963 /* Evaluation: Function Calls */
14f9c5c9 3964
4c4b4cd2 3965/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3966 lvalues, and otherwise has the side-effect of allocating memory
3967 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3968
d2e4a39e 3969static struct value *
40bc484c 3970ensure_lval (struct value *val)
14f9c5c9 3971{
40bc484c
JB
3972 if (VALUE_LVAL (val) == not_lval
3973 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 3974 {
df407dfe 3975 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
3976 const CORE_ADDR addr =
3977 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 3978
40bc484c 3979 set_value_address (val, addr);
a84a8a0d 3980 VALUE_LVAL (val) = lval_memory;
40bc484c 3981 write_memory (addr, value_contents (val), len);
c3e5cd34 3982 }
14f9c5c9
AS
3983
3984 return val;
3985}
3986
3987/* Return the value ACTUAL, converted to be an appropriate value for a
3988 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3989 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3990 values not residing in memory, updating it as needed. */
14f9c5c9 3991
a93c0eb6 3992struct value *
40bc484c 3993ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 3994{
df407dfe 3995 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3996 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3997 struct type *formal_target =
3998 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3999 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4000 struct type *actual_target =
4001 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4002 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4003
4c4b4cd2 4004 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4005 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4006 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4007 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4008 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4009 {
a84a8a0d 4010 struct value *result;
5b4ee69b 4011
14f9c5c9 4012 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4013 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4014 result = desc_data (actual);
14f9c5c9 4015 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4016 {
4017 if (VALUE_LVAL (actual) != lval_memory)
4018 {
4019 struct value *val;
5b4ee69b 4020
df407dfe 4021 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4022 val = allocate_value (actual_type);
990a07ab 4023 memcpy ((char *) value_contents_raw (val),
0fd88904 4024 (char *) value_contents (actual),
4c4b4cd2 4025 TYPE_LENGTH (actual_type));
40bc484c 4026 actual = ensure_lval (val);
4c4b4cd2 4027 }
a84a8a0d 4028 result = value_addr (actual);
4c4b4cd2 4029 }
a84a8a0d
JB
4030 else
4031 return actual;
4032 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4033 }
4034 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4035 return ada_value_ind (actual);
4036
4037 return actual;
4038}
4039
438c98a1
JB
4040/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4041 type TYPE. This is usually an inefficient no-op except on some targets
4042 (such as AVR) where the representation of a pointer and an address
4043 differs. */
4044
4045static CORE_ADDR
4046value_pointer (struct value *value, struct type *type)
4047{
4048 struct gdbarch *gdbarch = get_type_arch (type);
4049 unsigned len = TYPE_LENGTH (type);
4050 gdb_byte *buf = alloca (len);
4051 CORE_ADDR addr;
4052
4053 addr = value_address (value);
4054 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4055 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4056 return addr;
4057}
4058
14f9c5c9 4059
4c4b4cd2
PH
4060/* Push a descriptor of type TYPE for array value ARR on the stack at
4061 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4062 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4063 to-descriptor type rather than a descriptor type), a struct value *
4064 representing a pointer to this descriptor. */
14f9c5c9 4065
d2e4a39e 4066static struct value *
40bc484c 4067make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4068{
d2e4a39e
AS
4069 struct type *bounds_type = desc_bounds_type (type);
4070 struct type *desc_type = desc_base_type (type);
4071 struct value *descriptor = allocate_value (desc_type);
4072 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4073 int i;
d2e4a39e 4074
0963b4bd
MS
4075 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4076 i > 0; i -= 1)
14f9c5c9 4077 {
19f220c3
JK
4078 modify_field (value_type (bounds), value_contents_writeable (bounds),
4079 ada_array_bound (arr, i, 0),
4080 desc_bound_bitpos (bounds_type, i, 0),
4081 desc_bound_bitsize (bounds_type, i, 0));
4082 modify_field (value_type (bounds), value_contents_writeable (bounds),
4083 ada_array_bound (arr, i, 1),
4084 desc_bound_bitpos (bounds_type, i, 1),
4085 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4086 }
d2e4a39e 4087
40bc484c 4088 bounds = ensure_lval (bounds);
d2e4a39e 4089
19f220c3
JK
4090 modify_field (value_type (descriptor),
4091 value_contents_writeable (descriptor),
4092 value_pointer (ensure_lval (arr),
4093 TYPE_FIELD_TYPE (desc_type, 0)),
4094 fat_pntr_data_bitpos (desc_type),
4095 fat_pntr_data_bitsize (desc_type));
4096
4097 modify_field (value_type (descriptor),
4098 value_contents_writeable (descriptor),
4099 value_pointer (bounds,
4100 TYPE_FIELD_TYPE (desc_type, 1)),
4101 fat_pntr_bounds_bitpos (desc_type),
4102 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4103
40bc484c 4104 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4105
4106 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4107 return value_addr (descriptor);
4108 else
4109 return descriptor;
4110}
14f9c5c9 4111\f
963a6417 4112/* Dummy definitions for an experimental caching module that is not
0963b4bd 4113 * used in the public sources. */
96d887e8 4114
96d887e8
PH
4115static int
4116lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4117 struct symbol **sym, struct block **block)
96d887e8
PH
4118{
4119 return 0;
4120}
4121
4122static void
4123cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4124 struct block *block)
96d887e8
PH
4125{
4126}
4c4b4cd2
PH
4127\f
4128 /* Symbol Lookup */
4129
4130/* Return the result of a standard (literal, C-like) lookup of NAME in
4131 given DOMAIN, visible from lexical block BLOCK. */
4132
4133static struct symbol *
4134standard_lookup (const char *name, const struct block *block,
4135 domain_enum domain)
4136{
4137 struct symbol *sym;
4c4b4cd2 4138
2570f2b7 4139 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4140 return sym;
2570f2b7
UW
4141 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4142 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4143 return sym;
4144}
4145
4146
4147/* Non-zero iff there is at least one non-function/non-enumeral symbol
4148 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4149 since they contend in overloading in the same way. */
4150static int
4151is_nonfunction (struct ada_symbol_info syms[], int n)
4152{
4153 int i;
4154
4155 for (i = 0; i < n; i += 1)
4156 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4157 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4158 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4159 return 1;
4160
4161 return 0;
4162}
4163
4164/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4165 struct types. Otherwise, they may not. */
14f9c5c9
AS
4166
4167static int
d2e4a39e 4168equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4169{
d2e4a39e 4170 if (type0 == type1)
14f9c5c9 4171 return 1;
d2e4a39e 4172 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4173 || TYPE_CODE (type0) != TYPE_CODE (type1))
4174 return 0;
d2e4a39e 4175 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4176 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4177 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4178 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4179 return 1;
d2e4a39e 4180
14f9c5c9
AS
4181 return 0;
4182}
4183
4184/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4185 no more defined than that of SYM1. */
14f9c5c9
AS
4186
4187static int
d2e4a39e 4188lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4189{
4190 if (sym0 == sym1)
4191 return 1;
176620f1 4192 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4193 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4194 return 0;
4195
d2e4a39e 4196 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4197 {
4198 case LOC_UNDEF:
4199 return 1;
4200 case LOC_TYPEDEF:
4201 {
4c4b4cd2
PH
4202 struct type *type0 = SYMBOL_TYPE (sym0);
4203 struct type *type1 = SYMBOL_TYPE (sym1);
4204 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4205 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4206 int len0 = strlen (name0);
5b4ee69b 4207
4c4b4cd2
PH
4208 return
4209 TYPE_CODE (type0) == TYPE_CODE (type1)
4210 && (equiv_types (type0, type1)
4211 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4212 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4213 }
4214 case LOC_CONST:
4215 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4216 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4217 default:
4218 return 0;
14f9c5c9
AS
4219 }
4220}
4221
4c4b4cd2
PH
4222/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4223 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4224
4225static void
76a01679
JB
4226add_defn_to_vec (struct obstack *obstackp,
4227 struct symbol *sym,
2570f2b7 4228 struct block *block)
14f9c5c9
AS
4229{
4230 int i;
4c4b4cd2 4231 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4232
529cad9c
PH
4233 /* Do not try to complete stub types, as the debugger is probably
4234 already scanning all symbols matching a certain name at the
4235 time when this function is called. Trying to replace the stub
4236 type by its associated full type will cause us to restart a scan
4237 which may lead to an infinite recursion. Instead, the client
4238 collecting the matching symbols will end up collecting several
4239 matches, with at least one of them complete. It can then filter
4240 out the stub ones if needed. */
4241
4c4b4cd2
PH
4242 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4243 {
4244 if (lesseq_defined_than (sym, prevDefns[i].sym))
4245 return;
4246 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4247 {
4248 prevDefns[i].sym = sym;
4249 prevDefns[i].block = block;
4c4b4cd2 4250 return;
76a01679 4251 }
4c4b4cd2
PH
4252 }
4253
4254 {
4255 struct ada_symbol_info info;
4256
4257 info.sym = sym;
4258 info.block = block;
4c4b4cd2
PH
4259 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4260 }
4261}
4262
4263/* Number of ada_symbol_info structures currently collected in
4264 current vector in *OBSTACKP. */
4265
76a01679
JB
4266static int
4267num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4268{
4269 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4270}
4271
4272/* Vector of ada_symbol_info structures currently collected in current
4273 vector in *OBSTACKP. If FINISH, close off the vector and return
4274 its final address. */
4275
76a01679 4276static struct ada_symbol_info *
4c4b4cd2
PH
4277defns_collected (struct obstack *obstackp, int finish)
4278{
4279 if (finish)
4280 return obstack_finish (obstackp);
4281 else
4282 return (struct ada_symbol_info *) obstack_base (obstackp);
4283}
4284
96d887e8
PH
4285/* Return a minimal symbol matching NAME according to Ada decoding
4286 rules. Returns NULL if there is no such minimal symbol. Names
4287 prefixed with "standard__" are handled specially: "standard__" is
4288 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4289
96d887e8
PH
4290struct minimal_symbol *
4291ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4292{
4c4b4cd2 4293 struct objfile *objfile;
96d887e8
PH
4294 struct minimal_symbol *msymbol;
4295 int wild_match;
4c4b4cd2 4296
96d887e8 4297 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4298 {
96d887e8 4299 name += sizeof ("standard__") - 1;
4c4b4cd2 4300 wild_match = 0;
4c4b4cd2
PH
4301 }
4302 else
96d887e8 4303 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4304
96d887e8
PH
4305 ALL_MSYMBOLS (objfile, msymbol)
4306 {
40658b94 4307 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4308 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4309 return msymbol;
4310 }
4c4b4cd2 4311
96d887e8
PH
4312 return NULL;
4313}
4c4b4cd2 4314
96d887e8
PH
4315/* For all subprograms that statically enclose the subprogram of the
4316 selected frame, add symbols matching identifier NAME in DOMAIN
4317 and their blocks to the list of data in OBSTACKP, as for
4318 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4319 wildcard prefix. */
4c4b4cd2 4320
96d887e8
PH
4321static void
4322add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4323 const char *name, domain_enum namespace,
96d887e8
PH
4324 int wild_match)
4325{
96d887e8 4326}
14f9c5c9 4327
96d887e8
PH
4328/* True if TYPE is definitely an artificial type supplied to a symbol
4329 for which no debugging information was given in the symbol file. */
14f9c5c9 4330
96d887e8
PH
4331static int
4332is_nondebugging_type (struct type *type)
4333{
4334 char *name = ada_type_name (type);
5b4ee69b 4335
96d887e8
PH
4336 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4337}
4c4b4cd2 4338
96d887e8
PH
4339/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4340 duplicate other symbols in the list (The only case I know of where
4341 this happens is when object files containing stabs-in-ecoff are
4342 linked with files containing ordinary ecoff debugging symbols (or no
4343 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4344 Returns the number of items in the modified list. */
4c4b4cd2 4345
96d887e8
PH
4346static int
4347remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4348{
4349 int i, j;
4c4b4cd2 4350
96d887e8
PH
4351 i = 0;
4352 while (i < nsyms)
4353 {
339c13b6
JB
4354 int remove = 0;
4355
4356 /* If two symbols have the same name and one of them is a stub type,
4357 the get rid of the stub. */
4358
4359 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4360 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4361 {
4362 for (j = 0; j < nsyms; j++)
4363 {
4364 if (j != i
4365 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4366 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4367 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4368 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4369 remove = 1;
4370 }
4371 }
4372
4373 /* Two symbols with the same name, same class and same address
4374 should be identical. */
4375
4376 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4377 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4378 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4379 {
4380 for (j = 0; j < nsyms; j += 1)
4381 {
4382 if (i != j
4383 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4384 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4385 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4386 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4387 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4388 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4389 remove = 1;
4c4b4cd2 4390 }
4c4b4cd2 4391 }
339c13b6
JB
4392
4393 if (remove)
4394 {
4395 for (j = i + 1; j < nsyms; j += 1)
4396 syms[j - 1] = syms[j];
4397 nsyms -= 1;
4398 }
4399
96d887e8 4400 i += 1;
14f9c5c9 4401 }
96d887e8 4402 return nsyms;
14f9c5c9
AS
4403}
4404
96d887e8
PH
4405/* Given a type that corresponds to a renaming entity, use the type name
4406 to extract the scope (package name or function name, fully qualified,
4407 and following the GNAT encoding convention) where this renaming has been
4408 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4409
96d887e8
PH
4410static char *
4411xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4412{
96d887e8 4413 /* The renaming types adhere to the following convention:
0963b4bd 4414 <scope>__<rename>___<XR extension>.
96d887e8
PH
4415 So, to extract the scope, we search for the "___XR" extension,
4416 and then backtrack until we find the first "__". */
76a01679 4417
96d887e8
PH
4418 const char *name = type_name_no_tag (renaming_type);
4419 char *suffix = strstr (name, "___XR");
4420 char *last;
4421 int scope_len;
4422 char *scope;
14f9c5c9 4423
96d887e8
PH
4424 /* Now, backtrack a bit until we find the first "__". Start looking
4425 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4426
96d887e8
PH
4427 for (last = suffix - 3; last > name; last--)
4428 if (last[0] == '_' && last[1] == '_')
4429 break;
76a01679 4430
96d887e8 4431 /* Make a copy of scope and return it. */
14f9c5c9 4432
96d887e8
PH
4433 scope_len = last - name;
4434 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4435
96d887e8
PH
4436 strncpy (scope, name, scope_len);
4437 scope[scope_len] = '\0';
4c4b4cd2 4438
96d887e8 4439 return scope;
4c4b4cd2
PH
4440}
4441
96d887e8 4442/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4443
96d887e8
PH
4444static int
4445is_package_name (const char *name)
4c4b4cd2 4446{
96d887e8
PH
4447 /* Here, We take advantage of the fact that no symbols are generated
4448 for packages, while symbols are generated for each function.
4449 So the condition for NAME represent a package becomes equivalent
4450 to NAME not existing in our list of symbols. There is only one
4451 small complication with library-level functions (see below). */
4c4b4cd2 4452
96d887e8 4453 char *fun_name;
76a01679 4454
96d887e8
PH
4455 /* If it is a function that has not been defined at library level,
4456 then we should be able to look it up in the symbols. */
4457 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4458 return 0;
14f9c5c9 4459
96d887e8
PH
4460 /* Library-level function names start with "_ada_". See if function
4461 "_ada_" followed by NAME can be found. */
14f9c5c9 4462
96d887e8 4463 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4464 functions names cannot contain "__" in them. */
96d887e8
PH
4465 if (strstr (name, "__") != NULL)
4466 return 0;
4c4b4cd2 4467
b435e160 4468 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4469
96d887e8
PH
4470 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4471}
14f9c5c9 4472
96d887e8 4473/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4474 not visible from FUNCTION_NAME. */
14f9c5c9 4475
96d887e8 4476static int
aeb5907d 4477old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4478{
aeb5907d
JB
4479 char *scope;
4480
4481 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4482 return 0;
4483
4484 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4485
96d887e8 4486 make_cleanup (xfree, scope);
14f9c5c9 4487
96d887e8
PH
4488 /* If the rename has been defined in a package, then it is visible. */
4489 if (is_package_name (scope))
aeb5907d 4490 return 0;
14f9c5c9 4491
96d887e8
PH
4492 /* Check that the rename is in the current function scope by checking
4493 that its name starts with SCOPE. */
76a01679 4494
96d887e8
PH
4495 /* If the function name starts with "_ada_", it means that it is
4496 a library-level function. Strip this prefix before doing the
4497 comparison, as the encoding for the renaming does not contain
4498 this prefix. */
4499 if (strncmp (function_name, "_ada_", 5) == 0)
4500 function_name += 5;
f26caa11 4501
aeb5907d 4502 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4503}
4504
aeb5907d
JB
4505/* Remove entries from SYMS that corresponds to a renaming entity that
4506 is not visible from the function associated with CURRENT_BLOCK or
4507 that is superfluous due to the presence of more specific renaming
4508 information. Places surviving symbols in the initial entries of
4509 SYMS and returns the number of surviving symbols.
96d887e8
PH
4510
4511 Rationale:
aeb5907d
JB
4512 First, in cases where an object renaming is implemented as a
4513 reference variable, GNAT may produce both the actual reference
4514 variable and the renaming encoding. In this case, we discard the
4515 latter.
4516
4517 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4518 entity. Unfortunately, STABS currently does not support the definition
4519 of types that are local to a given lexical block, so all renamings types
4520 are emitted at library level. As a consequence, if an application
4521 contains two renaming entities using the same name, and a user tries to
4522 print the value of one of these entities, the result of the ada symbol
4523 lookup will also contain the wrong renaming type.
f26caa11 4524
96d887e8
PH
4525 This function partially covers for this limitation by attempting to
4526 remove from the SYMS list renaming symbols that should be visible
4527 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4528 method with the current information available. The implementation
4529 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4530
4531 - When the user tries to print a rename in a function while there
4532 is another rename entity defined in a package: Normally, the
4533 rename in the function has precedence over the rename in the
4534 package, so the latter should be removed from the list. This is
4535 currently not the case.
4536
4537 - This function will incorrectly remove valid renames if
4538 the CURRENT_BLOCK corresponds to a function which symbol name
4539 has been changed by an "Export" pragma. As a consequence,
4540 the user will be unable to print such rename entities. */
4c4b4cd2 4541
14f9c5c9 4542static int
aeb5907d
JB
4543remove_irrelevant_renamings (struct ada_symbol_info *syms,
4544 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4545{
4546 struct symbol *current_function;
4547 char *current_function_name;
4548 int i;
aeb5907d
JB
4549 int is_new_style_renaming;
4550
4551 /* If there is both a renaming foo___XR... encoded as a variable and
4552 a simple variable foo in the same block, discard the latter.
0963b4bd 4553 First, zero out such symbols, then compress. */
aeb5907d
JB
4554 is_new_style_renaming = 0;
4555 for (i = 0; i < nsyms; i += 1)
4556 {
4557 struct symbol *sym = syms[i].sym;
4558 struct block *block = syms[i].block;
4559 const char *name;
4560 const char *suffix;
4561
4562 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4563 continue;
4564 name = SYMBOL_LINKAGE_NAME (sym);
4565 suffix = strstr (name, "___XR");
4566
4567 if (suffix != NULL)
4568 {
4569 int name_len = suffix - name;
4570 int j;
5b4ee69b 4571
aeb5907d
JB
4572 is_new_style_renaming = 1;
4573 for (j = 0; j < nsyms; j += 1)
4574 if (i != j && syms[j].sym != NULL
4575 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4576 name_len) == 0
4577 && block == syms[j].block)
4578 syms[j].sym = NULL;
4579 }
4580 }
4581 if (is_new_style_renaming)
4582 {
4583 int j, k;
4584
4585 for (j = k = 0; j < nsyms; j += 1)
4586 if (syms[j].sym != NULL)
4587 {
4588 syms[k] = syms[j];
4589 k += 1;
4590 }
4591 return k;
4592 }
4c4b4cd2
PH
4593
4594 /* Extract the function name associated to CURRENT_BLOCK.
4595 Abort if unable to do so. */
76a01679 4596
4c4b4cd2
PH
4597 if (current_block == NULL)
4598 return nsyms;
76a01679 4599
7f0df278 4600 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4601 if (current_function == NULL)
4602 return nsyms;
4603
4604 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4605 if (current_function_name == NULL)
4606 return nsyms;
4607
4608 /* Check each of the symbols, and remove it from the list if it is
4609 a type corresponding to a renaming that is out of the scope of
4610 the current block. */
4611
4612 i = 0;
4613 while (i < nsyms)
4614 {
aeb5907d
JB
4615 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4616 == ADA_OBJECT_RENAMING
4617 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4618 {
4619 int j;
5b4ee69b 4620
aeb5907d 4621 for (j = i + 1; j < nsyms; j += 1)
76a01679 4622 syms[j - 1] = syms[j];
4c4b4cd2
PH
4623 nsyms -= 1;
4624 }
4625 else
4626 i += 1;
4627 }
4628
4629 return nsyms;
4630}
4631
339c13b6
JB
4632/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4633 whose name and domain match NAME and DOMAIN respectively.
4634 If no match was found, then extend the search to "enclosing"
4635 routines (in other words, if we're inside a nested function,
4636 search the symbols defined inside the enclosing functions).
4637
4638 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4639
4640static void
4641ada_add_local_symbols (struct obstack *obstackp, const char *name,
4642 struct block *block, domain_enum domain,
4643 int wild_match)
4644{
4645 int block_depth = 0;
4646
4647 while (block != NULL)
4648 {
4649 block_depth += 1;
4650 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4651
4652 /* If we found a non-function match, assume that's the one. */
4653 if (is_nonfunction (defns_collected (obstackp, 0),
4654 num_defns_collected (obstackp)))
4655 return;
4656
4657 block = BLOCK_SUPERBLOCK (block);
4658 }
4659
4660 /* If no luck so far, try to find NAME as a local symbol in some lexically
4661 enclosing subprogram. */
4662 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4663 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4664}
4665
ccefe4c4 4666/* An object of this type is used as the user_data argument when
40658b94 4667 calling the map_matching_symbols method. */
ccefe4c4 4668
40658b94 4669struct match_data
ccefe4c4 4670{
40658b94 4671 struct objfile *objfile;
ccefe4c4 4672 struct obstack *obstackp;
40658b94
PH
4673 struct symbol *arg_sym;
4674 int found_sym;
ccefe4c4
TT
4675};
4676
40658b94
PH
4677/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4678 to a list of symbols. DATA0 is a pointer to a struct match_data *
4679 containing the obstack that collects the symbol list, the file that SYM
4680 must come from, a flag indicating whether a non-argument symbol has
4681 been found in the current block, and the last argument symbol
4682 passed in SYM within the current block (if any). When SYM is null,
4683 marking the end of a block, the argument symbol is added if no
4684 other has been found. */
ccefe4c4 4685
40658b94
PH
4686static int
4687aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4688{
40658b94
PH
4689 struct match_data *data = (struct match_data *) data0;
4690
4691 if (sym == NULL)
4692 {
4693 if (!data->found_sym && data->arg_sym != NULL)
4694 add_defn_to_vec (data->obstackp,
4695 fixup_symbol_section (data->arg_sym, data->objfile),
4696 block);
4697 data->found_sym = 0;
4698 data->arg_sym = NULL;
4699 }
4700 else
4701 {
4702 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4703 return 0;
4704 else if (SYMBOL_IS_ARGUMENT (sym))
4705 data->arg_sym = sym;
4706 else
4707 {
4708 data->found_sym = 1;
4709 add_defn_to_vec (data->obstackp,
4710 fixup_symbol_section (sym, data->objfile),
4711 block);
4712 }
4713 }
4714 return 0;
4715}
4716
4717/* Compare STRING1 to STRING2, with results as for strcmp.
4718 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4719 implies compare_names (STRING1, STRING2) (they may differ as to
4720 what symbols compare equal). */
5b4ee69b 4721
40658b94
PH
4722static int
4723compare_names (const char *string1, const char *string2)
4724{
4725 while (*string1 != '\0' && *string2 != '\0')
4726 {
4727 if (isspace (*string1) || isspace (*string2))
4728 return strcmp_iw_ordered (string1, string2);
4729 if (*string1 != *string2)
4730 break;
4731 string1 += 1;
4732 string2 += 1;
4733 }
4734 switch (*string1)
4735 {
4736 case '(':
4737 return strcmp_iw_ordered (string1, string2);
4738 case '_':
4739 if (*string2 == '\0')
4740 {
4741 if (is_name_suffix (string2))
4742 return 0;
4743 else
4744 return -1;
4745 }
4746 default:
4747 if (*string2 == '(')
4748 return strcmp_iw_ordered (string1, string2);
4749 else
4750 return *string1 - *string2;
4751 }
ccefe4c4
TT
4752}
4753
339c13b6
JB
4754/* Add to OBSTACKP all non-local symbols whose name and domain match
4755 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4756 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4757
4758static void
40658b94
PH
4759add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4760 domain_enum domain, int global,
4761 int is_wild_match)
339c13b6
JB
4762{
4763 struct objfile *objfile;
40658b94 4764 struct match_data data;
339c13b6 4765
ccefe4c4 4766 data.obstackp = obstackp;
40658b94 4767 data.arg_sym = NULL;
339c13b6 4768
ccefe4c4 4769 ALL_OBJFILES (objfile)
40658b94
PH
4770 {
4771 data.objfile = objfile;
4772
4773 if (is_wild_match)
4774 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4775 aux_add_nonlocal_symbols, &data,
4776 wild_match, NULL);
4777 else
4778 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4779 aux_add_nonlocal_symbols, &data,
4780 full_match, compare_names);
4781 }
4782
4783 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4784 {
4785 ALL_OBJFILES (objfile)
4786 {
4787 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4788 strcpy (name1, "_ada_");
4789 strcpy (name1 + sizeof ("_ada_") - 1, name);
4790 data.objfile = objfile;
0963b4bd
MS
4791 objfile->sf->qf->map_matching_symbols (name1, domain,
4792 objfile, global,
4793 aux_add_nonlocal_symbols,
4794 &data,
40658b94
PH
4795 full_match, compare_names);
4796 }
4797 }
339c13b6
JB
4798}
4799
4c4b4cd2
PH
4800/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4801 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4802 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4803 indicating the symbols found and the blocks and symbol tables (if
4804 any) in which they were found. This vector are transient---good only to
4805 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4806 symbol match within the nest of blocks whose innermost member is BLOCK0,
4807 is the one match returned (no other matches in that or
4808 enclosing blocks is returned). If there are any matches in or
4809 surrounding BLOCK0, then these alone are returned. Otherwise, the
4810 search extends to global and file-scope (static) symbol tables.
4811 Names prefixed with "standard__" are handled specially: "standard__"
4812 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4813
4814int
4c4b4cd2 4815ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4816 domain_enum namespace,
4817 struct ada_symbol_info **results)
14f9c5c9
AS
4818{
4819 struct symbol *sym;
14f9c5c9 4820 struct block *block;
4c4b4cd2 4821 const char *name;
4c4b4cd2 4822 int wild_match;
14f9c5c9 4823 int cacheIfUnique;
4c4b4cd2 4824 int ndefns;
14f9c5c9 4825
4c4b4cd2
PH
4826 obstack_free (&symbol_list_obstack, NULL);
4827 obstack_init (&symbol_list_obstack);
14f9c5c9 4828
14f9c5c9
AS
4829 cacheIfUnique = 0;
4830
4831 /* Search specified block and its superiors. */
4832
4c4b4cd2
PH
4833 wild_match = (strstr (name0, "__") == NULL);
4834 name = name0;
76a01679
JB
4835 block = (struct block *) block0; /* FIXME: No cast ought to be
4836 needed, but adding const will
4837 have a cascade effect. */
339c13b6
JB
4838
4839 /* Special case: If the user specifies a symbol name inside package
4840 Standard, do a non-wild matching of the symbol name without
4841 the "standard__" prefix. This was primarily introduced in order
4842 to allow the user to specifically access the standard exceptions
4843 using, for instance, Standard.Constraint_Error when Constraint_Error
4844 is ambiguous (due to the user defining its own Constraint_Error
4845 entity inside its program). */
4c4b4cd2
PH
4846 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4847 {
4848 wild_match = 0;
4849 block = NULL;
4850 name = name0 + sizeof ("standard__") - 1;
4851 }
4852
339c13b6 4853 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4854
339c13b6
JB
4855 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4856 wild_match);
4c4b4cd2 4857 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4858 goto done;
d2e4a39e 4859
339c13b6
JB
4860 /* No non-global symbols found. Check our cache to see if we have
4861 already performed this search before. If we have, then return
4862 the same result. */
4863
14f9c5c9 4864 cacheIfUnique = 1;
2570f2b7 4865 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4866 {
4867 if (sym != NULL)
2570f2b7 4868 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4869 goto done;
4870 }
14f9c5c9 4871
339c13b6
JB
4872 /* Search symbols from all global blocks. */
4873
40658b94
PH
4874 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4875 wild_match);
d2e4a39e 4876
4c4b4cd2 4877 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4878 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4879
4c4b4cd2 4880 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
4881 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4882 wild_match);
14f9c5c9 4883
4c4b4cd2
PH
4884done:
4885 ndefns = num_defns_collected (&symbol_list_obstack);
4886 *results = defns_collected (&symbol_list_obstack, 1);
4887
4888 ndefns = remove_extra_symbols (*results, ndefns);
4889
d2e4a39e 4890 if (ndefns == 0)
2570f2b7 4891 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4892
4c4b4cd2 4893 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4894 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4895
aeb5907d 4896 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4897
14f9c5c9
AS
4898 return ndefns;
4899}
4900
d2e4a39e 4901struct symbol *
aeb5907d 4902ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4903 domain_enum namespace, struct block **block_found)
14f9c5c9 4904{
4c4b4cd2 4905 struct ada_symbol_info *candidates;
14f9c5c9
AS
4906 int n_candidates;
4907
aeb5907d 4908 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4909
4910 if (n_candidates == 0)
4911 return NULL;
4c4b4cd2 4912
aeb5907d
JB
4913 if (block_found != NULL)
4914 *block_found = candidates[0].block;
4c4b4cd2 4915
21b556f4 4916 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4917}
4918
4919/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4920 scope and in global scopes, or NULL if none. NAME is folded and
4921 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 4922 choosing the first symbol if there are multiple choices.
aeb5907d
JB
4923 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4924 table in which the symbol was found (in both cases, these
4925 assignments occur only if the pointers are non-null). */
4926struct symbol *
4927ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4928 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4929{
4930 if (is_a_field_of_this != NULL)
4931 *is_a_field_of_this = 0;
4932
4933 return
4934 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4935 block0, namespace, NULL);
4c4b4cd2 4936}
14f9c5c9 4937
4c4b4cd2
PH
4938static struct symbol *
4939ada_lookup_symbol_nonlocal (const char *name,
76a01679 4940 const struct block *block,
21b556f4 4941 const domain_enum domain)
4c4b4cd2 4942{
94af9270 4943 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4944}
4945
4946
4c4b4cd2
PH
4947/* True iff STR is a possible encoded suffix of a normal Ada name
4948 that is to be ignored for matching purposes. Suffixes of parallel
4949 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4950 are given by any of the regular expressions:
4c4b4cd2 4951
babe1480
JB
4952 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4953 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4954 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4955 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4956
4957 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4958 match is performed. This sequence is used to differentiate homonyms,
4959 is an optional part of a valid name suffix. */
4c4b4cd2 4960
14f9c5c9 4961static int
d2e4a39e 4962is_name_suffix (const char *str)
14f9c5c9
AS
4963{
4964 int k;
4c4b4cd2
PH
4965 const char *matching;
4966 const int len = strlen (str);
4967
babe1480
JB
4968 /* Skip optional leading __[0-9]+. */
4969
4c4b4cd2
PH
4970 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4971 {
babe1480
JB
4972 str += 3;
4973 while (isdigit (str[0]))
4974 str += 1;
4c4b4cd2 4975 }
babe1480
JB
4976
4977 /* [.$][0-9]+ */
4c4b4cd2 4978
babe1480 4979 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4980 {
babe1480 4981 matching = str + 1;
4c4b4cd2
PH
4982 while (isdigit (matching[0]))
4983 matching += 1;
4984 if (matching[0] == '\0')
4985 return 1;
4986 }
4987
4988 /* ___[0-9]+ */
babe1480 4989
4c4b4cd2
PH
4990 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4991 {
4992 matching = str + 3;
4993 while (isdigit (matching[0]))
4994 matching += 1;
4995 if (matching[0] == '\0')
4996 return 1;
4997 }
4998
529cad9c
PH
4999#if 0
5000 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5001 with a N at the end. Unfortunately, the compiler uses the same
5002 convention for other internal types it creates. So treating
529cad9c 5003 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5004 some regressions. For instance, consider the case of an enumerated
5005 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5006 name ends with N.
5007 Having a single character like this as a suffix carrying some
0963b4bd 5008 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5009 to be something like "_N" instead. In the meantime, do not do
5010 the following check. */
5011 /* Protected Object Subprograms */
5012 if (len == 1 && str [0] == 'N')
5013 return 1;
5014#endif
5015
5016 /* _E[0-9]+[bs]$ */
5017 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5018 {
5019 matching = str + 3;
5020 while (isdigit (matching[0]))
5021 matching += 1;
5022 if ((matching[0] == 'b' || matching[0] == 's')
5023 && matching [1] == '\0')
5024 return 1;
5025 }
5026
4c4b4cd2
PH
5027 /* ??? We should not modify STR directly, as we are doing below. This
5028 is fine in this case, but may become problematic later if we find
5029 that this alternative did not work, and want to try matching
5030 another one from the begining of STR. Since we modified it, we
5031 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5032 if (str[0] == 'X')
5033 {
5034 str += 1;
d2e4a39e 5035 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5036 {
5037 if (str[0] != 'n' && str[0] != 'b')
5038 return 0;
5039 str += 1;
5040 }
14f9c5c9 5041 }
babe1480 5042
14f9c5c9
AS
5043 if (str[0] == '\000')
5044 return 1;
babe1480 5045
d2e4a39e 5046 if (str[0] == '_')
14f9c5c9
AS
5047 {
5048 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5049 return 0;
d2e4a39e 5050 if (str[2] == '_')
4c4b4cd2 5051 {
61ee279c
PH
5052 if (strcmp (str + 3, "JM") == 0)
5053 return 1;
5054 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5055 the LJM suffix in favor of the JM one. But we will
5056 still accept LJM as a valid suffix for a reasonable
5057 amount of time, just to allow ourselves to debug programs
5058 compiled using an older version of GNAT. */
4c4b4cd2
PH
5059 if (strcmp (str + 3, "LJM") == 0)
5060 return 1;
5061 if (str[3] != 'X')
5062 return 0;
1265e4aa
JB
5063 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5064 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5065 return 1;
5066 if (str[4] == 'R' && str[5] != 'T')
5067 return 1;
5068 return 0;
5069 }
5070 if (!isdigit (str[2]))
5071 return 0;
5072 for (k = 3; str[k] != '\0'; k += 1)
5073 if (!isdigit (str[k]) && str[k] != '_')
5074 return 0;
14f9c5c9
AS
5075 return 1;
5076 }
4c4b4cd2 5077 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5078 {
4c4b4cd2
PH
5079 for (k = 2; str[k] != '\0'; k += 1)
5080 if (!isdigit (str[k]) && str[k] != '_')
5081 return 0;
14f9c5c9
AS
5082 return 1;
5083 }
5084 return 0;
5085}
d2e4a39e 5086
aeb5907d
JB
5087/* Return non-zero if the string starting at NAME and ending before
5088 NAME_END contains no capital letters. */
529cad9c
PH
5089
5090static int
5091is_valid_name_for_wild_match (const char *name0)
5092{
5093 const char *decoded_name = ada_decode (name0);
5094 int i;
5095
5823c3ef
JB
5096 /* If the decoded name starts with an angle bracket, it means that
5097 NAME0 does not follow the GNAT encoding format. It should then
5098 not be allowed as a possible wild match. */
5099 if (decoded_name[0] == '<')
5100 return 0;
5101
529cad9c
PH
5102 for (i=0; decoded_name[i] != '\0'; i++)
5103 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5104 return 0;
5105
5106 return 1;
5107}
5108
73589123
PH
5109/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5110 that could start a simple name. Assumes that *NAMEP points into
5111 the string beginning at NAME0. */
4c4b4cd2 5112
14f9c5c9 5113static int
73589123 5114advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5115{
73589123 5116 const char *name = *namep;
5b4ee69b 5117
5823c3ef 5118 while (1)
14f9c5c9 5119 {
aa27d0b3 5120 int t0, t1;
73589123
PH
5121
5122 t0 = *name;
5123 if (t0 == '_')
5124 {
5125 t1 = name[1];
5126 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5127 {
5128 name += 1;
5129 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5130 break;
5131 else
5132 name += 1;
5133 }
aa27d0b3
JB
5134 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5135 || name[2] == target0))
73589123
PH
5136 {
5137 name += 2;
5138 break;
5139 }
5140 else
5141 return 0;
5142 }
5143 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5144 name += 1;
5145 else
5823c3ef 5146 return 0;
73589123
PH
5147 }
5148
5149 *namep = name;
5150 return 1;
5151}
5152
5153/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5154 informational suffixes of NAME (i.e., for which is_name_suffix is
5155 true). Assumes that PATN is a lower-cased Ada simple name. */
5156
5157static int
5158wild_match (const char *name, const char *patn)
5159{
5160 const char *p, *n;
5161 const char *name0 = name;
5162
5163 while (1)
5164 {
5165 const char *match = name;
5166
5167 if (*name == *patn)
5168 {
5169 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5170 if (*p != *name)
5171 break;
5172 if (*p == '\0' && is_name_suffix (name))
5173 return match != name0 && !is_valid_name_for_wild_match (name0);
5174
5175 if (name[-1] == '_')
5176 name -= 1;
5177 }
5178 if (!advance_wild_match (&name, name0, *patn))
5179 return 1;
96d887e8 5180 }
96d887e8
PH
5181}
5182
40658b94
PH
5183/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5184 informational suffix. */
5185
c4d840bd
PH
5186static int
5187full_match (const char *sym_name, const char *search_name)
5188{
40658b94 5189 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5190}
5191
5192
96d887e8
PH
5193/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5194 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5195 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5196 OBJFILE is the section containing BLOCK.
5197 SYMTAB is recorded with each symbol added. */
5198
5199static void
5200ada_add_block_symbols (struct obstack *obstackp,
76a01679 5201 struct block *block, const char *name,
96d887e8 5202 domain_enum domain, struct objfile *objfile,
2570f2b7 5203 int wild)
96d887e8
PH
5204{
5205 struct dict_iterator iter;
5206 int name_len = strlen (name);
5207 /* A matching argument symbol, if any. */
5208 struct symbol *arg_sym;
5209 /* Set true when we find a matching non-argument symbol. */
5210 int found_sym;
5211 struct symbol *sym;
5212
5213 arg_sym = NULL;
5214 found_sym = 0;
5215 if (wild)
5216 {
c4d840bd
PH
5217 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5218 wild_match, &iter);
5219 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5220 {
5eeb2539
AR
5221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5222 SYMBOL_DOMAIN (sym), domain)
73589123 5223 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5224 {
2a2d4dc3
AS
5225 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5226 continue;
5227 else if (SYMBOL_IS_ARGUMENT (sym))
5228 arg_sym = sym;
5229 else
5230 {
76a01679
JB
5231 found_sym = 1;
5232 add_defn_to_vec (obstackp,
5233 fixup_symbol_section (sym, objfile),
2570f2b7 5234 block);
76a01679
JB
5235 }
5236 }
5237 }
96d887e8
PH
5238 }
5239 else
5240 {
c4d840bd 5241 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5242 full_match, &iter);
c4d840bd 5243 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5244 {
5eeb2539
AR
5245 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5246 SYMBOL_DOMAIN (sym), domain))
76a01679 5247 {
c4d840bd
PH
5248 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5249 {
5250 if (SYMBOL_IS_ARGUMENT (sym))
5251 arg_sym = sym;
5252 else
2a2d4dc3 5253 {
c4d840bd
PH
5254 found_sym = 1;
5255 add_defn_to_vec (obstackp,
5256 fixup_symbol_section (sym, objfile),
5257 block);
2a2d4dc3 5258 }
c4d840bd 5259 }
76a01679
JB
5260 }
5261 }
96d887e8
PH
5262 }
5263
5264 if (!found_sym && arg_sym != NULL)
5265 {
76a01679
JB
5266 add_defn_to_vec (obstackp,
5267 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5268 block);
96d887e8
PH
5269 }
5270
5271 if (!wild)
5272 {
5273 arg_sym = NULL;
5274 found_sym = 0;
5275
5276 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5277 {
5eeb2539
AR
5278 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5279 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5280 {
5281 int cmp;
5282
5283 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5284 if (cmp == 0)
5285 {
5286 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5287 if (cmp == 0)
5288 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5289 name_len);
5290 }
5291
5292 if (cmp == 0
5293 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5294 {
2a2d4dc3
AS
5295 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5296 {
5297 if (SYMBOL_IS_ARGUMENT (sym))
5298 arg_sym = sym;
5299 else
5300 {
5301 found_sym = 1;
5302 add_defn_to_vec (obstackp,
5303 fixup_symbol_section (sym, objfile),
5304 block);
5305 }
5306 }
76a01679
JB
5307 }
5308 }
76a01679 5309 }
96d887e8
PH
5310
5311 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5312 They aren't parameters, right? */
5313 if (!found_sym && arg_sym != NULL)
5314 {
5315 add_defn_to_vec (obstackp,
76a01679 5316 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5317 block);
96d887e8
PH
5318 }
5319 }
5320}
5321\f
41d27058
JB
5322
5323 /* Symbol Completion */
5324
5325/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5326 name in a form that's appropriate for the completion. The result
5327 does not need to be deallocated, but is only good until the next call.
5328
5329 TEXT_LEN is equal to the length of TEXT.
5330 Perform a wild match if WILD_MATCH is set.
5331 ENCODED should be set if TEXT represents the start of a symbol name
5332 in its encoded form. */
5333
5334static const char *
5335symbol_completion_match (const char *sym_name,
5336 const char *text, int text_len,
5337 int wild_match, int encoded)
5338{
41d27058
JB
5339 const int verbatim_match = (text[0] == '<');
5340 int match = 0;
5341
5342 if (verbatim_match)
5343 {
5344 /* Strip the leading angle bracket. */
5345 text = text + 1;
5346 text_len--;
5347 }
5348
5349 /* First, test against the fully qualified name of the symbol. */
5350
5351 if (strncmp (sym_name, text, text_len) == 0)
5352 match = 1;
5353
5354 if (match && !encoded)
5355 {
5356 /* One needed check before declaring a positive match is to verify
5357 that iff we are doing a verbatim match, the decoded version
5358 of the symbol name starts with '<'. Otherwise, this symbol name
5359 is not a suitable completion. */
5360 const char *sym_name_copy = sym_name;
5361 int has_angle_bracket;
5362
5363 sym_name = ada_decode (sym_name);
5364 has_angle_bracket = (sym_name[0] == '<');
5365 match = (has_angle_bracket == verbatim_match);
5366 sym_name = sym_name_copy;
5367 }
5368
5369 if (match && !verbatim_match)
5370 {
5371 /* When doing non-verbatim match, another check that needs to
5372 be done is to verify that the potentially matching symbol name
5373 does not include capital letters, because the ada-mode would
5374 not be able to understand these symbol names without the
5375 angle bracket notation. */
5376 const char *tmp;
5377
5378 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5379 if (*tmp != '\0')
5380 match = 0;
5381 }
5382
5383 /* Second: Try wild matching... */
5384
5385 if (!match && wild_match)
5386 {
5387 /* Since we are doing wild matching, this means that TEXT
5388 may represent an unqualified symbol name. We therefore must
5389 also compare TEXT against the unqualified name of the symbol. */
5390 sym_name = ada_unqualified_name (ada_decode (sym_name));
5391
5392 if (strncmp (sym_name, text, text_len) == 0)
5393 match = 1;
5394 }
5395
5396 /* Finally: If we found a mach, prepare the result to return. */
5397
5398 if (!match)
5399 return NULL;
5400
5401 if (verbatim_match)
5402 sym_name = add_angle_brackets (sym_name);
5403
5404 if (!encoded)
5405 sym_name = ada_decode (sym_name);
5406
5407 return sym_name;
5408}
5409
2ba95b9b
JB
5410DEF_VEC_P (char_ptr);
5411
41d27058
JB
5412/* A companion function to ada_make_symbol_completion_list().
5413 Check if SYM_NAME represents a symbol which name would be suitable
5414 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5415 it is appended at the end of the given string vector SV.
5416
5417 ORIG_TEXT is the string original string from the user command
5418 that needs to be completed. WORD is the entire command on which
5419 completion should be performed. These two parameters are used to
5420 determine which part of the symbol name should be added to the
5421 completion vector.
5422 if WILD_MATCH is set, then wild matching is performed.
5423 ENCODED should be set if TEXT represents a symbol name in its
5424 encoded formed (in which case the completion should also be
5425 encoded). */
5426
5427static void
d6565258 5428symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5429 const char *sym_name,
5430 const char *text, int text_len,
5431 const char *orig_text, const char *word,
5432 int wild_match, int encoded)
5433{
5434 const char *match = symbol_completion_match (sym_name, text, text_len,
5435 wild_match, encoded);
5436 char *completion;
5437
5438 if (match == NULL)
5439 return;
5440
5441 /* We found a match, so add the appropriate completion to the given
5442 string vector. */
5443
5444 if (word == orig_text)
5445 {
5446 completion = xmalloc (strlen (match) + 5);
5447 strcpy (completion, match);
5448 }
5449 else if (word > orig_text)
5450 {
5451 /* Return some portion of sym_name. */
5452 completion = xmalloc (strlen (match) + 5);
5453 strcpy (completion, match + (word - orig_text));
5454 }
5455 else
5456 {
5457 /* Return some of ORIG_TEXT plus sym_name. */
5458 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5459 strncpy (completion, word, orig_text - word);
5460 completion[orig_text - word] = '\0';
5461 strcat (completion, match);
5462 }
5463
d6565258 5464 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5465}
5466
ccefe4c4
TT
5467/* An object of this type is passed as the user_data argument to the
5468 map_partial_symbol_names method. */
5469struct add_partial_datum
5470{
5471 VEC(char_ptr) **completions;
5472 char *text;
5473 int text_len;
5474 char *text0;
5475 char *word;
5476 int wild_match;
5477 int encoded;
5478};
5479
5480/* A callback for map_partial_symbol_names. */
5481static void
5482ada_add_partial_symbol_completions (const char *name, void *user_data)
5483{
5484 struct add_partial_datum *data = user_data;
5b4ee69b 5485
ccefe4c4
TT
5486 symbol_completion_add (data->completions, name,
5487 data->text, data->text_len, data->text0, data->word,
5488 data->wild_match, data->encoded);
5489}
5490
41d27058
JB
5491/* Return a list of possible symbol names completing TEXT0. The list
5492 is NULL terminated. WORD is the entire command on which completion
5493 is made. */
5494
5495static char **
5496ada_make_symbol_completion_list (char *text0, char *word)
5497{
5498 char *text;
5499 int text_len;
5500 int wild_match;
5501 int encoded;
2ba95b9b 5502 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5503 struct symbol *sym;
5504 struct symtab *s;
41d27058
JB
5505 struct minimal_symbol *msymbol;
5506 struct objfile *objfile;
5507 struct block *b, *surrounding_static_block = 0;
5508 int i;
5509 struct dict_iterator iter;
5510
5511 if (text0[0] == '<')
5512 {
5513 text = xstrdup (text0);
5514 make_cleanup (xfree, text);
5515 text_len = strlen (text);
5516 wild_match = 0;
5517 encoded = 1;
5518 }
5519 else
5520 {
5521 text = xstrdup (ada_encode (text0));
5522 make_cleanup (xfree, text);
5523 text_len = strlen (text);
5524 for (i = 0; i < text_len; i++)
5525 text[i] = tolower (text[i]);
5526
5527 encoded = (strstr (text0, "__") != NULL);
5528 /* If the name contains a ".", then the user is entering a fully
5529 qualified entity name, and the match must not be done in wild
5530 mode. Similarly, if the user wants to complete what looks like
5531 an encoded name, the match must not be done in wild mode. */
5532 wild_match = (strchr (text0, '.') == NULL && !encoded);
5533 }
5534
5535 /* First, look at the partial symtab symbols. */
41d27058 5536 {
ccefe4c4
TT
5537 struct add_partial_datum data;
5538
5539 data.completions = &completions;
5540 data.text = text;
5541 data.text_len = text_len;
5542 data.text0 = text0;
5543 data.word = word;
5544 data.wild_match = wild_match;
5545 data.encoded = encoded;
5546 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
41d27058
JB
5547 }
5548
5549 /* At this point scan through the misc symbol vectors and add each
5550 symbol you find to the list. Eventually we want to ignore
5551 anything that isn't a text symbol (everything else will be
5552 handled by the psymtab code above). */
5553
5554 ALL_MSYMBOLS (objfile, msymbol)
5555 {
5556 QUIT;
d6565258 5557 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5558 text, text_len, text0, word, wild_match, encoded);
5559 }
5560
5561 /* Search upwards from currently selected frame (so that we can
5562 complete on local vars. */
5563
5564 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5565 {
5566 if (!BLOCK_SUPERBLOCK (b))
5567 surrounding_static_block = b; /* For elmin of dups */
5568
5569 ALL_BLOCK_SYMBOLS (b, iter, sym)
5570 {
d6565258 5571 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5572 text, text_len, text0, word,
5573 wild_match, encoded);
5574 }
5575 }
5576
5577 /* Go through the symtabs and check the externs and statics for
5578 symbols which match. */
5579
5580 ALL_SYMTABS (objfile, s)
5581 {
5582 QUIT;
5583 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5584 ALL_BLOCK_SYMBOLS (b, iter, sym)
5585 {
d6565258 5586 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5587 text, text_len, text0, word,
5588 wild_match, encoded);
5589 }
5590 }
5591
5592 ALL_SYMTABS (objfile, s)
5593 {
5594 QUIT;
5595 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5596 /* Don't do this block twice. */
5597 if (b == surrounding_static_block)
5598 continue;
5599 ALL_BLOCK_SYMBOLS (b, iter, sym)
5600 {
d6565258 5601 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5602 text, text_len, text0, word,
5603 wild_match, encoded);
5604 }
5605 }
5606
5607 /* Append the closing NULL entry. */
2ba95b9b 5608 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5609
2ba95b9b
JB
5610 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5611 return the copy. It's unfortunate that we have to make a copy
5612 of an array that we're about to destroy, but there is nothing much
5613 we can do about it. Fortunately, it's typically not a very large
5614 array. */
5615 {
5616 const size_t completions_size =
5617 VEC_length (char_ptr, completions) * sizeof (char *);
5618 char **result = malloc (completions_size);
5619
5620 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5621
5622 VEC_free (char_ptr, completions);
5623 return result;
5624 }
41d27058
JB
5625}
5626
963a6417 5627 /* Field Access */
96d887e8 5628
73fb9985
JB
5629/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5630 for tagged types. */
5631
5632static int
5633ada_is_dispatch_table_ptr_type (struct type *type)
5634{
5635 char *name;
5636
5637 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5638 return 0;
5639
5640 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5641 if (name == NULL)
5642 return 0;
5643
5644 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5645}
5646
963a6417
PH
5647/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5648 to be invisible to users. */
96d887e8 5649
963a6417
PH
5650int
5651ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5652{
963a6417
PH
5653 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5654 return 1;
73fb9985
JB
5655
5656 /* Check the name of that field. */
5657 {
5658 const char *name = TYPE_FIELD_NAME (type, field_num);
5659
5660 /* Anonymous field names should not be printed.
5661 brobecker/2007-02-20: I don't think this can actually happen
5662 but we don't want to print the value of annonymous fields anyway. */
5663 if (name == NULL)
5664 return 1;
5665
5666 /* A field named "_parent" is internally generated by GNAT for
5667 tagged types, and should not be printed either. */
5668 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5669 return 1;
5670 }
5671
5672 /* If this is the dispatch table of a tagged type, then ignore. */
5673 if (ada_is_tagged_type (type, 1)
5674 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5675 return 1;
5676
5677 /* Not a special field, so it should not be ignored. */
5678 return 0;
963a6417 5679}
96d887e8 5680
963a6417 5681/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5682 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5683
963a6417
PH
5684int
5685ada_is_tagged_type (struct type *type, int refok)
5686{
5687 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5688}
96d887e8 5689
963a6417 5690/* True iff TYPE represents the type of X'Tag */
96d887e8 5691
963a6417
PH
5692int
5693ada_is_tag_type (struct type *type)
5694{
5695 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5696 return 0;
5697 else
96d887e8 5698 {
963a6417 5699 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5700
963a6417
PH
5701 return (name != NULL
5702 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5703 }
96d887e8
PH
5704}
5705
963a6417 5706/* The type of the tag on VAL. */
76a01679 5707
963a6417
PH
5708struct type *
5709ada_tag_type (struct value *val)
96d887e8 5710{
df407dfe 5711 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5712}
96d887e8 5713
963a6417 5714/* The value of the tag on VAL. */
96d887e8 5715
963a6417
PH
5716struct value *
5717ada_value_tag (struct value *val)
5718{
03ee6b2e 5719 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5720}
5721
963a6417
PH
5722/* The value of the tag on the object of type TYPE whose contents are
5723 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5724 ADDRESS. */
96d887e8 5725
963a6417 5726static struct value *
10a2c479 5727value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5728 const gdb_byte *valaddr,
963a6417 5729 CORE_ADDR address)
96d887e8 5730{
b5385fc0 5731 int tag_byte_offset;
963a6417 5732 struct type *tag_type;
5b4ee69b 5733
963a6417 5734 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5735 NULL, NULL, NULL))
96d887e8 5736 {
fc1a4b47 5737 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5738 ? NULL
5739 : valaddr + tag_byte_offset);
963a6417 5740 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5741
963a6417 5742 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5743 }
963a6417
PH
5744 return NULL;
5745}
96d887e8 5746
963a6417
PH
5747static struct type *
5748type_from_tag (struct value *tag)
5749{
5750 const char *type_name = ada_tag_name (tag);
5b4ee69b 5751
963a6417
PH
5752 if (type_name != NULL)
5753 return ada_find_any_type (ada_encode (type_name));
5754 return NULL;
5755}
96d887e8 5756
963a6417
PH
5757struct tag_args
5758{
5759 struct value *tag;
5760 char *name;
5761};
4c4b4cd2 5762
529cad9c
PH
5763
5764static int ada_tag_name_1 (void *);
5765static int ada_tag_name_2 (struct tag_args *);
5766
4c4b4cd2 5767/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5768 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5769 The value stored in ARGS->name is valid until the next call to
5770 ada_tag_name_1. */
5771
5772static int
5773ada_tag_name_1 (void *args0)
5774{
5775 struct tag_args *args = (struct tag_args *) args0;
5776 static char name[1024];
76a01679 5777 char *p;
4c4b4cd2 5778 struct value *val;
5b4ee69b 5779
4c4b4cd2 5780 args->name = NULL;
03ee6b2e 5781 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5782 if (val == NULL)
5783 return ada_tag_name_2 (args);
03ee6b2e 5784 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5785 if (val == NULL)
5786 return 0;
5787 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5788 for (p = name; *p != '\0'; p += 1)
5789 if (isalpha (*p))
5790 *p = tolower (*p);
5791 args->name = name;
5792 return 0;
5793}
5794
e802dbe0
JB
5795/* Return the "ada__tags__type_specific_data" type. */
5796
5797static struct type *
5798ada_get_tsd_type (struct inferior *inf)
5799{
5800 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5801
5802 if (data->tsd_type == 0)
5803 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5804 return data->tsd_type;
5805}
5806
529cad9c
PH
5807/* Utility function for ada_tag_name_1 that tries the second
5808 representation for the dispatch table (in which there is no
5809 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 5810 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
5811
5812static int
5813ada_tag_name_2 (struct tag_args *args)
5814{
5815 struct type *info_type;
5816 static char name[1024];
5817 char *p;
5818 struct value *val, *valp;
5819
5820 args->name = NULL;
e802dbe0 5821 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
5822 if (info_type == NULL)
5823 return 0;
5824 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5825 valp = value_cast (info_type, args->tag);
5826 if (valp == NULL)
5827 return 0;
2497b498 5828 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5829 if (val == NULL)
5830 return 0;
03ee6b2e 5831 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5832 if (val == NULL)
5833 return 0;
5834 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5835 for (p = name; *p != '\0'; p += 1)
5836 if (isalpha (*p))
5837 *p = tolower (*p);
5838 args->name = name;
5839 return 0;
5840}
5841
5842/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 5843 a C string. */
4c4b4cd2
PH
5844
5845const char *
5846ada_tag_name (struct value *tag)
5847{
5848 struct tag_args args;
5b4ee69b 5849
df407dfe 5850 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5851 return NULL;
76a01679 5852 args.tag = tag;
4c4b4cd2
PH
5853 args.name = NULL;
5854 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5855 return args.name;
5856}
5857
5858/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5859
d2e4a39e 5860struct type *
ebf56fd3 5861ada_parent_type (struct type *type)
14f9c5c9
AS
5862{
5863 int i;
5864
61ee279c 5865 type = ada_check_typedef (type);
14f9c5c9
AS
5866
5867 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5868 return NULL;
5869
5870 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5871 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5872 {
5873 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5874
5875 /* If the _parent field is a pointer, then dereference it. */
5876 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5877 parent_type = TYPE_TARGET_TYPE (parent_type);
5878 /* If there is a parallel XVS type, get the actual base type. */
5879 parent_type = ada_get_base_type (parent_type);
5880
5881 return ada_check_typedef (parent_type);
5882 }
14f9c5c9
AS
5883
5884 return NULL;
5885}
5886
4c4b4cd2
PH
5887/* True iff field number FIELD_NUM of structure type TYPE contains the
5888 parent-type (inherited) fields of a derived type. Assumes TYPE is
5889 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5890
5891int
ebf56fd3 5892ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5893{
61ee279c 5894 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 5895
4c4b4cd2
PH
5896 return (name != NULL
5897 && (strncmp (name, "PARENT", 6) == 0
5898 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5899}
5900
4c4b4cd2 5901/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5902 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5903 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5904 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5905 structures. */
14f9c5c9
AS
5906
5907int
ebf56fd3 5908ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5909{
d2e4a39e 5910 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5911
d2e4a39e 5912 return (name != NULL
4c4b4cd2
PH
5913 && (strncmp (name, "PARENT", 6) == 0
5914 || strcmp (name, "REP") == 0
5915 || strncmp (name, "_parent", 7) == 0
5916 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5917}
5918
4c4b4cd2
PH
5919/* True iff field number FIELD_NUM of structure or union type TYPE
5920 is a variant wrapper. Assumes TYPE is a structure type with at least
5921 FIELD_NUM+1 fields. */
14f9c5c9
AS
5922
5923int
ebf56fd3 5924ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5925{
d2e4a39e 5926 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 5927
14f9c5c9 5928 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5929 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5930 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5931 == TYPE_CODE_UNION)));
14f9c5c9
AS
5932}
5933
5934/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5935 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5936 returns the type of the controlling discriminant for the variant.
5937 May return NULL if the type could not be found. */
14f9c5c9 5938
d2e4a39e 5939struct type *
ebf56fd3 5940ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5941{
d2e4a39e 5942 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 5943
7c964f07 5944 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5945}
5946
4c4b4cd2 5947/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5948 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5949 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5950
5951int
ebf56fd3 5952ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5953{
d2e4a39e 5954 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5955
14f9c5c9
AS
5956 return (name != NULL && name[0] == 'O');
5957}
5958
5959/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5960 returns the name of the discriminant controlling the variant.
5961 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5962
d2e4a39e 5963char *
ebf56fd3 5964ada_variant_discrim_name (struct type *type0)
14f9c5c9 5965{
d2e4a39e 5966 static char *result = NULL;
14f9c5c9 5967 static size_t result_len = 0;
d2e4a39e
AS
5968 struct type *type;
5969 const char *name;
5970 const char *discrim_end;
5971 const char *discrim_start;
14f9c5c9
AS
5972
5973 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5974 type = TYPE_TARGET_TYPE (type0);
5975 else
5976 type = type0;
5977
5978 name = ada_type_name (type);
5979
5980 if (name == NULL || name[0] == '\000')
5981 return "";
5982
5983 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5984 discrim_end -= 1)
5985 {
4c4b4cd2
PH
5986 if (strncmp (discrim_end, "___XVN", 6) == 0)
5987 break;
14f9c5c9
AS
5988 }
5989 if (discrim_end == name)
5990 return "";
5991
d2e4a39e 5992 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5993 discrim_start -= 1)
5994 {
d2e4a39e 5995 if (discrim_start == name + 1)
4c4b4cd2 5996 return "";
76a01679 5997 if ((discrim_start > name + 3
4c4b4cd2
PH
5998 && strncmp (discrim_start - 3, "___", 3) == 0)
5999 || discrim_start[-1] == '.')
6000 break;
14f9c5c9
AS
6001 }
6002
6003 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6004 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6005 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6006 return result;
6007}
6008
4c4b4cd2
PH
6009/* Scan STR for a subtype-encoded number, beginning at position K.
6010 Put the position of the character just past the number scanned in
6011 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6012 Return 1 if there was a valid number at the given position, and 0
6013 otherwise. A "subtype-encoded" number consists of the absolute value
6014 in decimal, followed by the letter 'm' to indicate a negative number.
6015 Assumes 0m does not occur. */
14f9c5c9
AS
6016
6017int
d2e4a39e 6018ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6019{
6020 ULONGEST RU;
6021
d2e4a39e 6022 if (!isdigit (str[k]))
14f9c5c9
AS
6023 return 0;
6024
4c4b4cd2 6025 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6026 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6027 LONGEST. */
14f9c5c9
AS
6028 RU = 0;
6029 while (isdigit (str[k]))
6030 {
d2e4a39e 6031 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6032 k += 1;
6033 }
6034
d2e4a39e 6035 if (str[k] == 'm')
14f9c5c9
AS
6036 {
6037 if (R != NULL)
4c4b4cd2 6038 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6039 k += 1;
6040 }
6041 else if (R != NULL)
6042 *R = (LONGEST) RU;
6043
4c4b4cd2 6044 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6045 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6046 number representable as a LONGEST (although either would probably work
6047 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6048 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6049
6050 if (new_k != NULL)
6051 *new_k = k;
6052 return 1;
6053}
6054
4c4b4cd2
PH
6055/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6056 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6057 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6058
d2e4a39e 6059int
ebf56fd3 6060ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6061{
d2e4a39e 6062 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6063 int p;
6064
6065 p = 0;
6066 while (1)
6067 {
d2e4a39e 6068 switch (name[p])
4c4b4cd2
PH
6069 {
6070 case '\0':
6071 return 0;
6072 case 'S':
6073 {
6074 LONGEST W;
5b4ee69b 6075
4c4b4cd2
PH
6076 if (!ada_scan_number (name, p + 1, &W, &p))
6077 return 0;
6078 if (val == W)
6079 return 1;
6080 break;
6081 }
6082 case 'R':
6083 {
6084 LONGEST L, U;
5b4ee69b 6085
4c4b4cd2
PH
6086 if (!ada_scan_number (name, p + 1, &L, &p)
6087 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6088 return 0;
6089 if (val >= L && val <= U)
6090 return 1;
6091 break;
6092 }
6093 case 'O':
6094 return 1;
6095 default:
6096 return 0;
6097 }
6098 }
6099}
6100
0963b4bd 6101/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6102
6103/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6104 ARG_TYPE, extract and return the value of one of its (non-static)
6105 fields. FIELDNO says which field. Differs from value_primitive_field
6106 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6107
4c4b4cd2 6108static struct value *
d2e4a39e 6109ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6110 struct type *arg_type)
14f9c5c9 6111{
14f9c5c9
AS
6112 struct type *type;
6113
61ee279c 6114 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6115 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6116
4c4b4cd2 6117 /* Handle packed fields. */
14f9c5c9
AS
6118
6119 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6120 {
6121 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6122 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6123
0fd88904 6124 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6125 offset + bit_pos / 8,
6126 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6127 }
6128 else
6129 return value_primitive_field (arg1, offset, fieldno, arg_type);
6130}
6131
52ce6436
PH
6132/* Find field with name NAME in object of type TYPE. If found,
6133 set the following for each argument that is non-null:
6134 - *FIELD_TYPE_P to the field's type;
6135 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6136 an object of that type;
6137 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6138 - *BIT_SIZE_P to its size in bits if the field is packed, and
6139 0 otherwise;
6140 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6141 fields up to but not including the desired field, or by the total
6142 number of fields if not found. A NULL value of NAME never
6143 matches; the function just counts visible fields in this case.
6144
0963b4bd 6145 Returns 1 if found, 0 otherwise. */
52ce6436 6146
4c4b4cd2 6147static int
76a01679
JB
6148find_struct_field (char *name, struct type *type, int offset,
6149 struct type **field_type_p,
52ce6436
PH
6150 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6151 int *index_p)
4c4b4cd2
PH
6152{
6153 int i;
6154
61ee279c 6155 type = ada_check_typedef (type);
76a01679 6156
52ce6436
PH
6157 if (field_type_p != NULL)
6158 *field_type_p = NULL;
6159 if (byte_offset_p != NULL)
d5d6fca5 6160 *byte_offset_p = 0;
52ce6436
PH
6161 if (bit_offset_p != NULL)
6162 *bit_offset_p = 0;
6163 if (bit_size_p != NULL)
6164 *bit_size_p = 0;
6165
6166 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6167 {
6168 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6169 int fld_offset = offset + bit_pos / 8;
6170 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6171
4c4b4cd2
PH
6172 if (t_field_name == NULL)
6173 continue;
6174
52ce6436 6175 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6176 {
6177 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6178
52ce6436
PH
6179 if (field_type_p != NULL)
6180 *field_type_p = TYPE_FIELD_TYPE (type, i);
6181 if (byte_offset_p != NULL)
6182 *byte_offset_p = fld_offset;
6183 if (bit_offset_p != NULL)
6184 *bit_offset_p = bit_pos % 8;
6185 if (bit_size_p != NULL)
6186 *bit_size_p = bit_size;
76a01679
JB
6187 return 1;
6188 }
4c4b4cd2
PH
6189 else if (ada_is_wrapper_field (type, i))
6190 {
52ce6436
PH
6191 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6192 field_type_p, byte_offset_p, bit_offset_p,
6193 bit_size_p, index_p))
76a01679
JB
6194 return 1;
6195 }
4c4b4cd2
PH
6196 else if (ada_is_variant_part (type, i))
6197 {
52ce6436
PH
6198 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6199 fixed type?? */
4c4b4cd2 6200 int j;
52ce6436
PH
6201 struct type *field_type
6202 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6203
52ce6436 6204 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6205 {
76a01679
JB
6206 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6207 fld_offset
6208 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6209 field_type_p, byte_offset_p,
52ce6436 6210 bit_offset_p, bit_size_p, index_p))
76a01679 6211 return 1;
4c4b4cd2
PH
6212 }
6213 }
52ce6436
PH
6214 else if (index_p != NULL)
6215 *index_p += 1;
4c4b4cd2
PH
6216 }
6217 return 0;
6218}
6219
0963b4bd 6220/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6221
52ce6436
PH
6222static int
6223num_visible_fields (struct type *type)
6224{
6225 int n;
5b4ee69b 6226
52ce6436
PH
6227 n = 0;
6228 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6229 return n;
6230}
14f9c5c9 6231
4c4b4cd2 6232/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6233 and search in it assuming it has (class) type TYPE.
6234 If found, return value, else return NULL.
6235
4c4b4cd2 6236 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6237
4c4b4cd2 6238static struct value *
d2e4a39e 6239ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6240 struct type *type)
14f9c5c9
AS
6241{
6242 int i;
14f9c5c9 6243
5b4ee69b 6244 type = ada_check_typedef (type);
52ce6436 6245 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6246 {
6247 char *t_field_name = TYPE_FIELD_NAME (type, i);
6248
6249 if (t_field_name == NULL)
4c4b4cd2 6250 continue;
14f9c5c9
AS
6251
6252 else if (field_name_match (t_field_name, name))
4c4b4cd2 6253 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6254
6255 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6256 {
0963b4bd 6257 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6258 ada_search_struct_field (name, arg,
6259 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6260 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6261
4c4b4cd2
PH
6262 if (v != NULL)
6263 return v;
6264 }
14f9c5c9
AS
6265
6266 else if (ada_is_variant_part (type, i))
4c4b4cd2 6267 {
0963b4bd 6268 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6269 int j;
5b4ee69b
MS
6270 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6271 i));
4c4b4cd2
PH
6272 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6273
52ce6436 6274 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6275 {
0963b4bd
MS
6276 struct value *v = ada_search_struct_field /* Force line
6277 break. */
06d5cf63
JB
6278 (name, arg,
6279 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6280 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6281
4c4b4cd2
PH
6282 if (v != NULL)
6283 return v;
6284 }
6285 }
14f9c5c9
AS
6286 }
6287 return NULL;
6288}
d2e4a39e 6289
52ce6436
PH
6290static struct value *ada_index_struct_field_1 (int *, struct value *,
6291 int, struct type *);
6292
6293
6294/* Return field #INDEX in ARG, where the index is that returned by
6295 * find_struct_field through its INDEX_P argument. Adjust the address
6296 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6297 * If found, return value, else return NULL. */
52ce6436
PH
6298
6299static struct value *
6300ada_index_struct_field (int index, struct value *arg, int offset,
6301 struct type *type)
6302{
6303 return ada_index_struct_field_1 (&index, arg, offset, type);
6304}
6305
6306
6307/* Auxiliary function for ada_index_struct_field. Like
6308 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6309 * *INDEX_P. */
52ce6436
PH
6310
6311static struct value *
6312ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6313 struct type *type)
6314{
6315 int i;
6316 type = ada_check_typedef (type);
6317
6318 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6319 {
6320 if (TYPE_FIELD_NAME (type, i) == NULL)
6321 continue;
6322 else if (ada_is_wrapper_field (type, i))
6323 {
0963b4bd 6324 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6325 ada_index_struct_field_1 (index_p, arg,
6326 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6327 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6328
52ce6436
PH
6329 if (v != NULL)
6330 return v;
6331 }
6332
6333 else if (ada_is_variant_part (type, i))
6334 {
6335 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6336 find_struct_field. */
52ce6436
PH
6337 error (_("Cannot assign this kind of variant record"));
6338 }
6339 else if (*index_p == 0)
6340 return ada_value_primitive_field (arg, offset, i, type);
6341 else
6342 *index_p -= 1;
6343 }
6344 return NULL;
6345}
6346
4c4b4cd2
PH
6347/* Given ARG, a value of type (pointer or reference to a)*
6348 structure/union, extract the component named NAME from the ultimate
6349 target structure/union and return it as a value with its
f5938064 6350 appropriate type.
14f9c5c9 6351
4c4b4cd2
PH
6352 The routine searches for NAME among all members of the structure itself
6353 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6354 (e.g., '_parent').
6355
03ee6b2e
PH
6356 If NO_ERR, then simply return NULL in case of error, rather than
6357 calling error. */
14f9c5c9 6358
d2e4a39e 6359struct value *
03ee6b2e 6360ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6361{
4c4b4cd2 6362 struct type *t, *t1;
d2e4a39e 6363 struct value *v;
14f9c5c9 6364
4c4b4cd2 6365 v = NULL;
df407dfe 6366 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6367 if (TYPE_CODE (t) == TYPE_CODE_REF)
6368 {
6369 t1 = TYPE_TARGET_TYPE (t);
6370 if (t1 == NULL)
03ee6b2e 6371 goto BadValue;
61ee279c 6372 t1 = ada_check_typedef (t1);
4c4b4cd2 6373 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6374 {
994b9211 6375 arg = coerce_ref (arg);
76a01679
JB
6376 t = t1;
6377 }
4c4b4cd2 6378 }
14f9c5c9 6379
4c4b4cd2
PH
6380 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6381 {
6382 t1 = TYPE_TARGET_TYPE (t);
6383 if (t1 == NULL)
03ee6b2e 6384 goto BadValue;
61ee279c 6385 t1 = ada_check_typedef (t1);
4c4b4cd2 6386 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6387 {
6388 arg = value_ind (arg);
6389 t = t1;
6390 }
4c4b4cd2 6391 else
76a01679 6392 break;
4c4b4cd2 6393 }
14f9c5c9 6394
4c4b4cd2 6395 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6396 goto BadValue;
14f9c5c9 6397
4c4b4cd2
PH
6398 if (t1 == t)
6399 v = ada_search_struct_field (name, arg, 0, t);
6400 else
6401 {
6402 int bit_offset, bit_size, byte_offset;
6403 struct type *field_type;
6404 CORE_ADDR address;
6405
76a01679
JB
6406 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6407 address = value_as_address (arg);
4c4b4cd2 6408 else
0fd88904 6409 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6410
1ed6ede0 6411 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6412 if (find_struct_field (name, t1, 0,
6413 &field_type, &byte_offset, &bit_offset,
52ce6436 6414 &bit_size, NULL))
76a01679
JB
6415 {
6416 if (bit_size != 0)
6417 {
714e53ab
PH
6418 if (TYPE_CODE (t) == TYPE_CODE_REF)
6419 arg = ada_coerce_ref (arg);
6420 else
6421 arg = ada_value_ind (arg);
76a01679
JB
6422 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6423 bit_offset, bit_size,
6424 field_type);
6425 }
6426 else
f5938064 6427 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6428 }
6429 }
6430
03ee6b2e
PH
6431 if (v != NULL || no_err)
6432 return v;
6433 else
323e0a4a 6434 error (_("There is no member named %s."), name);
14f9c5c9 6435
03ee6b2e
PH
6436 BadValue:
6437 if (no_err)
6438 return NULL;
6439 else
0963b4bd
MS
6440 error (_("Attempt to extract a component of "
6441 "a value that is not a record."));
14f9c5c9
AS
6442}
6443
6444/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6445 If DISPP is non-null, add its byte displacement from the beginning of a
6446 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6447 work for packed fields).
6448
6449 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6450 followed by "___".
14f9c5c9 6451
0963b4bd 6452 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6453 be a (pointer or reference)+ to a struct or union, and the
6454 ultimate target type will be searched.
14f9c5c9
AS
6455
6456 Looks recursively into variant clauses and parent types.
6457
4c4b4cd2
PH
6458 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6459 TYPE is not a type of the right kind. */
14f9c5c9 6460
4c4b4cd2 6461static struct type *
76a01679
JB
6462ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6463 int noerr, int *dispp)
14f9c5c9
AS
6464{
6465 int i;
6466
6467 if (name == NULL)
6468 goto BadName;
6469
76a01679 6470 if (refok && type != NULL)
4c4b4cd2
PH
6471 while (1)
6472 {
61ee279c 6473 type = ada_check_typedef (type);
76a01679
JB
6474 if (TYPE_CODE (type) != TYPE_CODE_PTR
6475 && TYPE_CODE (type) != TYPE_CODE_REF)
6476 break;
6477 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6478 }
14f9c5c9 6479
76a01679 6480 if (type == NULL
1265e4aa
JB
6481 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6482 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6483 {
4c4b4cd2 6484 if (noerr)
76a01679 6485 return NULL;
4c4b4cd2 6486 else
76a01679
JB
6487 {
6488 target_terminal_ours ();
6489 gdb_flush (gdb_stdout);
323e0a4a
AC
6490 if (type == NULL)
6491 error (_("Type (null) is not a structure or union type"));
6492 else
6493 {
6494 /* XXX: type_sprint */
6495 fprintf_unfiltered (gdb_stderr, _("Type "));
6496 type_print (type, "", gdb_stderr, -1);
6497 error (_(" is not a structure or union type"));
6498 }
76a01679 6499 }
14f9c5c9
AS
6500 }
6501
6502 type = to_static_fixed_type (type);
6503
6504 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6505 {
6506 char *t_field_name = TYPE_FIELD_NAME (type, i);
6507 struct type *t;
6508 int disp;
d2e4a39e 6509
14f9c5c9 6510 if (t_field_name == NULL)
4c4b4cd2 6511 continue;
14f9c5c9
AS
6512
6513 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6514 {
6515 if (dispp != NULL)
6516 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6517 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6518 }
14f9c5c9
AS
6519
6520 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6521 {
6522 disp = 0;
6523 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6524 0, 1, &disp);
6525 if (t != NULL)
6526 {
6527 if (dispp != NULL)
6528 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6529 return t;
6530 }
6531 }
14f9c5c9
AS
6532
6533 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6534 {
6535 int j;
5b4ee69b
MS
6536 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6537 i));
4c4b4cd2
PH
6538
6539 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6540 {
b1f33ddd
JB
6541 /* FIXME pnh 2008/01/26: We check for a field that is
6542 NOT wrapped in a struct, since the compiler sometimes
6543 generates these for unchecked variant types. Revisit
0963b4bd 6544 if the compiler changes this practice. */
b1f33ddd 6545 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6546 disp = 0;
b1f33ddd
JB
6547 if (v_field_name != NULL
6548 && field_name_match (v_field_name, name))
6549 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6550 else
0963b4bd
MS
6551 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6552 j),
b1f33ddd
JB
6553 name, 0, 1, &disp);
6554
4c4b4cd2
PH
6555 if (t != NULL)
6556 {
6557 if (dispp != NULL)
6558 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6559 return t;
6560 }
6561 }
6562 }
14f9c5c9
AS
6563
6564 }
6565
6566BadName:
d2e4a39e 6567 if (!noerr)
14f9c5c9
AS
6568 {
6569 target_terminal_ours ();
6570 gdb_flush (gdb_stdout);
323e0a4a
AC
6571 if (name == NULL)
6572 {
6573 /* XXX: type_sprint */
6574 fprintf_unfiltered (gdb_stderr, _("Type "));
6575 type_print (type, "", gdb_stderr, -1);
6576 error (_(" has no component named <null>"));
6577 }
6578 else
6579 {
6580 /* XXX: type_sprint */
6581 fprintf_unfiltered (gdb_stderr, _("Type "));
6582 type_print (type, "", gdb_stderr, -1);
6583 error (_(" has no component named %s"), name);
6584 }
14f9c5c9
AS
6585 }
6586
6587 return NULL;
6588}
6589
b1f33ddd
JB
6590/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6591 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6592 represents an unchecked union (that is, the variant part of a
0963b4bd 6593 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6594
6595static int
6596is_unchecked_variant (struct type *var_type, struct type *outer_type)
6597{
6598 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6599
b1f33ddd
JB
6600 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6601 == NULL);
6602}
6603
6604
14f9c5c9
AS
6605/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6606 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6607 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6608 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6609
d2e4a39e 6610int
ebf56fd3 6611ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6612 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6613{
6614 int others_clause;
6615 int i;
d2e4a39e 6616 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6617 struct value *outer;
6618 struct value *discrim;
14f9c5c9
AS
6619 LONGEST discrim_val;
6620
0c281816
JB
6621 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6622 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6623 if (discrim == NULL)
14f9c5c9 6624 return -1;
0c281816 6625 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6626
6627 others_clause = -1;
6628 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6629 {
6630 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6631 others_clause = i;
14f9c5c9 6632 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6633 return i;
14f9c5c9
AS
6634 }
6635
6636 return others_clause;
6637}
d2e4a39e 6638\f
14f9c5c9
AS
6639
6640
4c4b4cd2 6641 /* Dynamic-Sized Records */
14f9c5c9
AS
6642
6643/* Strategy: The type ostensibly attached to a value with dynamic size
6644 (i.e., a size that is not statically recorded in the debugging
6645 data) does not accurately reflect the size or layout of the value.
6646 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6647 conventional types that are constructed on the fly. */
14f9c5c9
AS
6648
6649/* There is a subtle and tricky problem here. In general, we cannot
6650 determine the size of dynamic records without its data. However,
6651 the 'struct value' data structure, which GDB uses to represent
6652 quantities in the inferior process (the target), requires the size
6653 of the type at the time of its allocation in order to reserve space
6654 for GDB's internal copy of the data. That's why the
6655 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6656 rather than struct value*s.
14f9c5c9
AS
6657
6658 However, GDB's internal history variables ($1, $2, etc.) are
6659 struct value*s containing internal copies of the data that are not, in
6660 general, the same as the data at their corresponding addresses in
6661 the target. Fortunately, the types we give to these values are all
6662 conventional, fixed-size types (as per the strategy described
6663 above), so that we don't usually have to perform the
6664 'to_fixed_xxx_type' conversions to look at their values.
6665 Unfortunately, there is one exception: if one of the internal
6666 history variables is an array whose elements are unconstrained
6667 records, then we will need to create distinct fixed types for each
6668 element selected. */
6669
6670/* The upshot of all of this is that many routines take a (type, host
6671 address, target address) triple as arguments to represent a value.
6672 The host address, if non-null, is supposed to contain an internal
6673 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6674 target at the target address. */
14f9c5c9
AS
6675
6676/* Assuming that VAL0 represents a pointer value, the result of
6677 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6678 dynamic-sized types. */
14f9c5c9 6679
d2e4a39e
AS
6680struct value *
6681ada_value_ind (struct value *val0)
14f9c5c9 6682{
d2e4a39e 6683 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6684
4c4b4cd2 6685 return ada_to_fixed_value (val);
14f9c5c9
AS
6686}
6687
6688/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6689 qualifiers on VAL0. */
6690
d2e4a39e
AS
6691static struct value *
6692ada_coerce_ref (struct value *val0)
6693{
df407dfe 6694 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6695 {
6696 struct value *val = val0;
5b4ee69b 6697
994b9211 6698 val = coerce_ref (val);
d2e4a39e 6699 val = unwrap_value (val);
4c4b4cd2 6700 return ada_to_fixed_value (val);
d2e4a39e
AS
6701 }
6702 else
14f9c5c9
AS
6703 return val0;
6704}
6705
6706/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6707 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6708
6709static unsigned int
ebf56fd3 6710align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6711{
6712 return (off + alignment - 1) & ~(alignment - 1);
6713}
6714
4c4b4cd2 6715/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6716
6717static unsigned int
ebf56fd3 6718field_alignment (struct type *type, int f)
14f9c5c9 6719{
d2e4a39e 6720 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6721 int len;
14f9c5c9
AS
6722 int align_offset;
6723
64a1bf19
JB
6724 /* The field name should never be null, unless the debugging information
6725 is somehow malformed. In this case, we assume the field does not
6726 require any alignment. */
6727 if (name == NULL)
6728 return 1;
6729
6730 len = strlen (name);
6731
4c4b4cd2
PH
6732 if (!isdigit (name[len - 1]))
6733 return 1;
14f9c5c9 6734
d2e4a39e 6735 if (isdigit (name[len - 2]))
14f9c5c9
AS
6736 align_offset = len - 2;
6737 else
6738 align_offset = len - 1;
6739
4c4b4cd2 6740 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6741 return TARGET_CHAR_BIT;
6742
4c4b4cd2
PH
6743 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6744}
6745
6746/* Find a symbol named NAME. Ignores ambiguity. */
6747
6748struct symbol *
6749ada_find_any_symbol (const char *name)
6750{
6751 struct symbol *sym;
6752
6753 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6754 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6755 return sym;
6756
6757 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6758 return sym;
14f9c5c9
AS
6759}
6760
dddfab26
UW
6761/* Find a type named NAME. Ignores ambiguity. This routine will look
6762 solely for types defined by debug info, it will not search the GDB
6763 primitive types. */
4c4b4cd2 6764
d2e4a39e 6765struct type *
ebf56fd3 6766ada_find_any_type (const char *name)
14f9c5c9 6767{
4c4b4cd2 6768 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6769
14f9c5c9 6770 if (sym != NULL)
dddfab26 6771 return SYMBOL_TYPE (sym);
14f9c5c9 6772
dddfab26 6773 return NULL;
14f9c5c9
AS
6774}
6775
aeb5907d
JB
6776/* Given NAME and an associated BLOCK, search all symbols for
6777 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6778 associated to NAME. Return this symbol if found, return
6779 NULL otherwise. */
6780
6781struct symbol *
6782ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6783{
6784 struct symbol *sym;
6785
6786 sym = find_old_style_renaming_symbol (name, block);
6787
6788 if (sym != NULL)
6789 return sym;
6790
0963b4bd 6791 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
6792 sym = ada_find_any_symbol (name);
6793 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6794 return sym;
6795 else
6796 return NULL;
6797}
6798
6799static struct symbol *
6800find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6801{
7f0df278 6802 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6803 char *rename;
6804
6805 if (function_sym != NULL)
6806 {
6807 /* If the symbol is defined inside a function, NAME is not fully
6808 qualified. This means we need to prepend the function name
6809 as well as adding the ``___XR'' suffix to build the name of
6810 the associated renaming symbol. */
6811 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6812 /* Function names sometimes contain suffixes used
6813 for instance to qualify nested subprograms. When building
6814 the XR type name, we need to make sure that this suffix is
6815 not included. So do not include any suffix in the function
6816 name length below. */
69fadcdf 6817 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6818 const int rename_len = function_name_len + 2 /* "__" */
6819 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6820
529cad9c 6821 /* Strip the suffix if necessary. */
69fadcdf
JB
6822 ada_remove_trailing_digits (function_name, &function_name_len);
6823 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6824 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6825
4c4b4cd2
PH
6826 /* Library-level functions are a special case, as GNAT adds
6827 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6828 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6829 have this prefix, so we need to skip this prefix if present. */
6830 if (function_name_len > 5 /* "_ada_" */
6831 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6832 {
6833 function_name += 5;
6834 function_name_len -= 5;
6835 }
4c4b4cd2
PH
6836
6837 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6838 strncpy (rename, function_name, function_name_len);
6839 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6840 "__%s___XR", name);
4c4b4cd2
PH
6841 }
6842 else
6843 {
6844 const int rename_len = strlen (name) + 6;
5b4ee69b 6845
4c4b4cd2 6846 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6847 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6848 }
6849
6850 return ada_find_any_symbol (rename);
6851}
6852
14f9c5c9 6853/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6854 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6855 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6856 otherwise return 0. */
6857
14f9c5c9 6858int
d2e4a39e 6859ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6860{
6861 if (type1 == NULL)
6862 return 1;
6863 else if (type0 == NULL)
6864 return 0;
6865 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6866 return 1;
6867 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6868 return 0;
4c4b4cd2
PH
6869 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6870 return 1;
ad82864c 6871 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6872 return 1;
4c4b4cd2
PH
6873 else if (ada_is_array_descriptor_type (type0)
6874 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6875 return 1;
aeb5907d
JB
6876 else
6877 {
6878 const char *type0_name = type_name_no_tag (type0);
6879 const char *type1_name = type_name_no_tag (type1);
6880
6881 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6882 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6883 return 1;
6884 }
14f9c5c9
AS
6885 return 0;
6886}
6887
6888/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6889 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6890
d2e4a39e
AS
6891char *
6892ada_type_name (struct type *type)
14f9c5c9 6893{
d2e4a39e 6894 if (type == NULL)
14f9c5c9
AS
6895 return NULL;
6896 else if (TYPE_NAME (type) != NULL)
6897 return TYPE_NAME (type);
6898 else
6899 return TYPE_TAG_NAME (type);
6900}
6901
b4ba55a1
JB
6902/* Search the list of "descriptive" types associated to TYPE for a type
6903 whose name is NAME. */
6904
6905static struct type *
6906find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6907{
6908 struct type *result;
6909
6910 /* If there no descriptive-type info, then there is no parallel type
6911 to be found. */
6912 if (!HAVE_GNAT_AUX_INFO (type))
6913 return NULL;
6914
6915 result = TYPE_DESCRIPTIVE_TYPE (type);
6916 while (result != NULL)
6917 {
6918 char *result_name = ada_type_name (result);
6919
6920 if (result_name == NULL)
6921 {
6922 warning (_("unexpected null name on descriptive type"));
6923 return NULL;
6924 }
6925
6926 /* If the names match, stop. */
6927 if (strcmp (result_name, name) == 0)
6928 break;
6929
6930 /* Otherwise, look at the next item on the list, if any. */
6931 if (HAVE_GNAT_AUX_INFO (result))
6932 result = TYPE_DESCRIPTIVE_TYPE (result);
6933 else
6934 result = NULL;
6935 }
6936
6937 /* If we didn't find a match, see whether this is a packed array. With
6938 older compilers, the descriptive type information is either absent or
6939 irrelevant when it comes to packed arrays so the above lookup fails.
6940 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6941 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6942 return ada_find_any_type (name);
6943
6944 return result;
6945}
6946
6947/* Find a parallel type to TYPE with the specified NAME, using the
6948 descriptive type taken from the debugging information, if available,
6949 and otherwise using the (slower) name-based method. */
6950
6951static struct type *
6952ada_find_parallel_type_with_name (struct type *type, const char *name)
6953{
6954 struct type *result = NULL;
6955
6956 if (HAVE_GNAT_AUX_INFO (type))
6957 result = find_parallel_type_by_descriptive_type (type, name);
6958 else
6959 result = ada_find_any_type (name);
6960
6961 return result;
6962}
6963
6964/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6965 SUFFIX to the name of TYPE. */
14f9c5c9 6966
d2e4a39e 6967struct type *
ebf56fd3 6968ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6969{
b4ba55a1 6970 char *name, *typename = ada_type_name (type);
14f9c5c9 6971 int len;
d2e4a39e 6972
14f9c5c9
AS
6973 if (typename == NULL)
6974 return NULL;
6975
6976 len = strlen (typename);
6977
b4ba55a1 6978 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6979
6980 strcpy (name, typename);
6981 strcpy (name + len, suffix);
6982
b4ba55a1 6983 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
6984}
6985
14f9c5c9 6986/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6987 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6988
d2e4a39e
AS
6989static struct type *
6990dynamic_template_type (struct type *type)
14f9c5c9 6991{
61ee279c 6992 type = ada_check_typedef (type);
14f9c5c9
AS
6993
6994 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6995 || ada_type_name (type) == NULL)
14f9c5c9 6996 return NULL;
d2e4a39e 6997 else
14f9c5c9
AS
6998 {
6999 int len = strlen (ada_type_name (type));
5b4ee69b 7000
4c4b4cd2
PH
7001 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7002 return type;
14f9c5c9 7003 else
4c4b4cd2 7004 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7005 }
7006}
7007
7008/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7009 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7010
d2e4a39e
AS
7011static int
7012is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7013{
7014 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7015
d2e4a39e 7016 return name != NULL
14f9c5c9
AS
7017 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7018 && strstr (name, "___XVL") != NULL;
7019}
7020
4c4b4cd2
PH
7021/* The index of the variant field of TYPE, or -1 if TYPE does not
7022 represent a variant record type. */
14f9c5c9 7023
d2e4a39e 7024static int
4c4b4cd2 7025variant_field_index (struct type *type)
14f9c5c9
AS
7026{
7027 int f;
7028
4c4b4cd2
PH
7029 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7030 return -1;
7031
7032 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7033 {
7034 if (ada_is_variant_part (type, f))
7035 return f;
7036 }
7037 return -1;
14f9c5c9
AS
7038}
7039
4c4b4cd2
PH
7040/* A record type with no fields. */
7041
d2e4a39e 7042static struct type *
e9bb382b 7043empty_record (struct type *template)
14f9c5c9 7044{
e9bb382b 7045 struct type *type = alloc_type_copy (template);
5b4ee69b 7046
14f9c5c9
AS
7047 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7048 TYPE_NFIELDS (type) = 0;
7049 TYPE_FIELDS (type) = NULL;
b1f33ddd 7050 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7051 TYPE_NAME (type) = "<empty>";
7052 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7053 TYPE_LENGTH (type) = 0;
7054 return type;
7055}
7056
7057/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7058 the value of type TYPE at VALADDR or ADDRESS (see comments at
7059 the beginning of this section) VAL according to GNAT conventions.
7060 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7061 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7062 an outer-level type (i.e., as opposed to a branch of a variant.) A
7063 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7064 of the variant.
14f9c5c9 7065
4c4b4cd2
PH
7066 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7067 length are not statically known are discarded. As a consequence,
7068 VALADDR, ADDRESS and DVAL0 are ignored.
7069
7070 NOTE: Limitations: For now, we assume that dynamic fields and
7071 variants occupy whole numbers of bytes. However, they need not be
7072 byte-aligned. */
7073
7074struct type *
10a2c479 7075ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7076 const gdb_byte *valaddr,
4c4b4cd2
PH
7077 CORE_ADDR address, struct value *dval0,
7078 int keep_dynamic_fields)
14f9c5c9 7079{
d2e4a39e
AS
7080 struct value *mark = value_mark ();
7081 struct value *dval;
7082 struct type *rtype;
14f9c5c9 7083 int nfields, bit_len;
4c4b4cd2 7084 int variant_field;
14f9c5c9 7085 long off;
d94e4f4f 7086 int fld_bit_len;
14f9c5c9
AS
7087 int f;
7088
4c4b4cd2
PH
7089 /* Compute the number of fields in this record type that are going
7090 to be processed: unless keep_dynamic_fields, this includes only
7091 fields whose position and length are static will be processed. */
7092 if (keep_dynamic_fields)
7093 nfields = TYPE_NFIELDS (type);
7094 else
7095 {
7096 nfields = 0;
76a01679 7097 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7098 && !ada_is_variant_part (type, nfields)
7099 && !is_dynamic_field (type, nfields))
7100 nfields++;
7101 }
7102
e9bb382b 7103 rtype = alloc_type_copy (type);
14f9c5c9
AS
7104 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7105 INIT_CPLUS_SPECIFIC (rtype);
7106 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7107 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7108 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7109 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7110 TYPE_NAME (rtype) = ada_type_name (type);
7111 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7112 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7113
d2e4a39e
AS
7114 off = 0;
7115 bit_len = 0;
4c4b4cd2
PH
7116 variant_field = -1;
7117
14f9c5c9
AS
7118 for (f = 0; f < nfields; f += 1)
7119 {
6c038f32
PH
7120 off = align_value (off, field_alignment (type, f))
7121 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7122 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7123 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7124
d2e4a39e 7125 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7126 {
7127 variant_field = f;
d94e4f4f 7128 fld_bit_len = 0;
4c4b4cd2 7129 }
14f9c5c9 7130 else if (is_dynamic_field (type, f))
4c4b4cd2 7131 {
284614f0
JB
7132 const gdb_byte *field_valaddr = valaddr;
7133 CORE_ADDR field_address = address;
7134 struct type *field_type =
7135 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7136
4c4b4cd2 7137 if (dval0 == NULL)
b5304971
JG
7138 {
7139 /* rtype's length is computed based on the run-time
7140 value of discriminants. If the discriminants are not
7141 initialized, the type size may be completely bogus and
0963b4bd 7142 GDB may fail to allocate a value for it. So check the
b5304971
JG
7143 size first before creating the value. */
7144 check_size (rtype);
7145 dval = value_from_contents_and_address (rtype, valaddr, address);
7146 }
4c4b4cd2
PH
7147 else
7148 dval = dval0;
7149
284614f0
JB
7150 /* If the type referenced by this field is an aligner type, we need
7151 to unwrap that aligner type, because its size might not be set.
7152 Keeping the aligner type would cause us to compute the wrong
7153 size for this field, impacting the offset of the all the fields
7154 that follow this one. */
7155 if (ada_is_aligner_type (field_type))
7156 {
7157 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7158
7159 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7160 field_address = cond_offset_target (field_address, field_offset);
7161 field_type = ada_aligned_type (field_type);
7162 }
7163
7164 field_valaddr = cond_offset_host (field_valaddr,
7165 off / TARGET_CHAR_BIT);
7166 field_address = cond_offset_target (field_address,
7167 off / TARGET_CHAR_BIT);
7168
7169 /* Get the fixed type of the field. Note that, in this case,
7170 we do not want to get the real type out of the tag: if
7171 the current field is the parent part of a tagged record,
7172 we will get the tag of the object. Clearly wrong: the real
7173 type of the parent is not the real type of the child. We
7174 would end up in an infinite loop. */
7175 field_type = ada_get_base_type (field_type);
7176 field_type = ada_to_fixed_type (field_type, field_valaddr,
7177 field_address, dval, 0);
27f2a97b
JB
7178 /* If the field size is already larger than the maximum
7179 object size, then the record itself will necessarily
7180 be larger than the maximum object size. We need to make
7181 this check now, because the size might be so ridiculously
7182 large (due to an uninitialized variable in the inferior)
7183 that it would cause an overflow when adding it to the
7184 record size. */
7185 check_size (field_type);
284614f0
JB
7186
7187 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7188 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7189 /* The multiplication can potentially overflow. But because
7190 the field length has been size-checked just above, and
7191 assuming that the maximum size is a reasonable value,
7192 an overflow should not happen in practice. So rather than
7193 adding overflow recovery code to this already complex code,
7194 we just assume that it's not going to happen. */
d94e4f4f 7195 fld_bit_len =
4c4b4cd2
PH
7196 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7197 }
14f9c5c9 7198 else
4c4b4cd2 7199 {
9f0dec2d
JB
7200 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7201
720d1a40
JB
7202 /* If our field is a typedef type (most likely a typedef of
7203 a fat pointer, encoding an array access), then we need to
7204 look at its target type to determine its characteristics.
7205 In particular, we would miscompute the field size if we took
7206 the size of the typedef (zero), instead of the size of
7207 the target type. */
7208 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7209 field_type = ada_typedef_target_type (field_type);
7210
9f0dec2d 7211 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7212 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7213 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7214 fld_bit_len =
4c4b4cd2
PH
7215 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7216 else
d94e4f4f 7217 fld_bit_len =
9f0dec2d 7218 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7219 }
14f9c5c9 7220 if (off + fld_bit_len > bit_len)
4c4b4cd2 7221 bit_len = off + fld_bit_len;
d94e4f4f 7222 off += fld_bit_len;
4c4b4cd2
PH
7223 TYPE_LENGTH (rtype) =
7224 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7225 }
4c4b4cd2
PH
7226
7227 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7228 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7229 the record. This can happen in the presence of representation
7230 clauses. */
7231 if (variant_field >= 0)
7232 {
7233 struct type *branch_type;
7234
7235 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7236
7237 if (dval0 == NULL)
7238 dval = value_from_contents_and_address (rtype, valaddr, address);
7239 else
7240 dval = dval0;
7241
7242 branch_type =
7243 to_fixed_variant_branch_type
7244 (TYPE_FIELD_TYPE (type, variant_field),
7245 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7246 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7247 if (branch_type == NULL)
7248 {
7249 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7250 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7251 TYPE_NFIELDS (rtype) -= 1;
7252 }
7253 else
7254 {
7255 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7256 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7257 fld_bit_len =
7258 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7259 TARGET_CHAR_BIT;
7260 if (off + fld_bit_len > bit_len)
7261 bit_len = off + fld_bit_len;
7262 TYPE_LENGTH (rtype) =
7263 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7264 }
7265 }
7266
714e53ab
PH
7267 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7268 should contain the alignment of that record, which should be a strictly
7269 positive value. If null or negative, then something is wrong, most
7270 probably in the debug info. In that case, we don't round up the size
0963b4bd 7271 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7272 the current RTYPE length might be good enough for our purposes. */
7273 if (TYPE_LENGTH (type) <= 0)
7274 {
323e0a4a
AC
7275 if (TYPE_NAME (rtype))
7276 warning (_("Invalid type size for `%s' detected: %d."),
7277 TYPE_NAME (rtype), TYPE_LENGTH (type));
7278 else
7279 warning (_("Invalid type size for <unnamed> detected: %d."),
7280 TYPE_LENGTH (type));
714e53ab
PH
7281 }
7282 else
7283 {
7284 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7285 TYPE_LENGTH (type));
7286 }
14f9c5c9
AS
7287
7288 value_free_to_mark (mark);
d2e4a39e 7289 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7290 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7291 return rtype;
7292}
7293
4c4b4cd2
PH
7294/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7295 of 1. */
14f9c5c9 7296
d2e4a39e 7297static struct type *
fc1a4b47 7298template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7299 CORE_ADDR address, struct value *dval0)
7300{
7301 return ada_template_to_fixed_record_type_1 (type, valaddr,
7302 address, dval0, 1);
7303}
7304
7305/* An ordinary record type in which ___XVL-convention fields and
7306 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7307 static approximations, containing all possible fields. Uses
7308 no runtime values. Useless for use in values, but that's OK,
7309 since the results are used only for type determinations. Works on both
7310 structs and unions. Representation note: to save space, we memorize
7311 the result of this function in the TYPE_TARGET_TYPE of the
7312 template type. */
7313
7314static struct type *
7315template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7316{
7317 struct type *type;
7318 int nfields;
7319 int f;
7320
4c4b4cd2
PH
7321 if (TYPE_TARGET_TYPE (type0) != NULL)
7322 return TYPE_TARGET_TYPE (type0);
7323
7324 nfields = TYPE_NFIELDS (type0);
7325 type = type0;
14f9c5c9
AS
7326
7327 for (f = 0; f < nfields; f += 1)
7328 {
61ee279c 7329 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7330 struct type *new_type;
14f9c5c9 7331
4c4b4cd2
PH
7332 if (is_dynamic_field (type0, f))
7333 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7334 else
f192137b 7335 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7336 if (type == type0 && new_type != field_type)
7337 {
e9bb382b 7338 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7339 TYPE_CODE (type) = TYPE_CODE (type0);
7340 INIT_CPLUS_SPECIFIC (type);
7341 TYPE_NFIELDS (type) = nfields;
7342 TYPE_FIELDS (type) = (struct field *)
7343 TYPE_ALLOC (type, nfields * sizeof (struct field));
7344 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7345 sizeof (struct field) * nfields);
7346 TYPE_NAME (type) = ada_type_name (type0);
7347 TYPE_TAG_NAME (type) = NULL;
876cecd0 7348 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7349 TYPE_LENGTH (type) = 0;
7350 }
7351 TYPE_FIELD_TYPE (type, f) = new_type;
7352 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7353 }
14f9c5c9
AS
7354 return type;
7355}
7356
4c4b4cd2 7357/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7358 whose address in memory is ADDRESS, returns a revision of TYPE,
7359 which should be a non-dynamic-sized record, in which the variant
7360 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7361 for discriminant values in DVAL0, which can be NULL if the record
7362 contains the necessary discriminant values. */
7363
d2e4a39e 7364static struct type *
fc1a4b47 7365to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7366 CORE_ADDR address, struct value *dval0)
14f9c5c9 7367{
d2e4a39e 7368 struct value *mark = value_mark ();
4c4b4cd2 7369 struct value *dval;
d2e4a39e 7370 struct type *rtype;
14f9c5c9
AS
7371 struct type *branch_type;
7372 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7373 int variant_field = variant_field_index (type);
14f9c5c9 7374
4c4b4cd2 7375 if (variant_field == -1)
14f9c5c9
AS
7376 return type;
7377
4c4b4cd2
PH
7378 if (dval0 == NULL)
7379 dval = value_from_contents_and_address (type, valaddr, address);
7380 else
7381 dval = dval0;
7382
e9bb382b 7383 rtype = alloc_type_copy (type);
14f9c5c9 7384 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7385 INIT_CPLUS_SPECIFIC (rtype);
7386 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7387 TYPE_FIELDS (rtype) =
7388 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7389 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7390 sizeof (struct field) * nfields);
14f9c5c9
AS
7391 TYPE_NAME (rtype) = ada_type_name (type);
7392 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7393 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7394 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7395
4c4b4cd2
PH
7396 branch_type = to_fixed_variant_branch_type
7397 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7398 cond_offset_host (valaddr,
4c4b4cd2
PH
7399 TYPE_FIELD_BITPOS (type, variant_field)
7400 / TARGET_CHAR_BIT),
d2e4a39e 7401 cond_offset_target (address,
4c4b4cd2
PH
7402 TYPE_FIELD_BITPOS (type, variant_field)
7403 / TARGET_CHAR_BIT), dval);
d2e4a39e 7404 if (branch_type == NULL)
14f9c5c9 7405 {
4c4b4cd2 7406 int f;
5b4ee69b 7407
4c4b4cd2
PH
7408 for (f = variant_field + 1; f < nfields; f += 1)
7409 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7410 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7411 }
7412 else
7413 {
4c4b4cd2
PH
7414 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7415 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7416 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7417 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7418 }
4c4b4cd2 7419 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7420
4c4b4cd2 7421 value_free_to_mark (mark);
14f9c5c9
AS
7422 return rtype;
7423}
7424
7425/* An ordinary record type (with fixed-length fields) that describes
7426 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7427 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7428 should be in DVAL, a record value; it may be NULL if the object
7429 at ADDR itself contains any necessary discriminant values.
7430 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7431 values from the record are needed. Except in the case that DVAL,
7432 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7433 unchecked) is replaced by a particular branch of the variant.
7434
7435 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7436 is questionable and may be removed. It can arise during the
7437 processing of an unconstrained-array-of-record type where all the
7438 variant branches have exactly the same size. This is because in
7439 such cases, the compiler does not bother to use the XVS convention
7440 when encoding the record. I am currently dubious of this
7441 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7442
d2e4a39e 7443static struct type *
fc1a4b47 7444to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7445 CORE_ADDR address, struct value *dval)
14f9c5c9 7446{
d2e4a39e 7447 struct type *templ_type;
14f9c5c9 7448
876cecd0 7449 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7450 return type0;
7451
d2e4a39e 7452 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7453
7454 if (templ_type != NULL)
7455 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7456 else if (variant_field_index (type0) >= 0)
7457 {
7458 if (dval == NULL && valaddr == NULL && address == 0)
7459 return type0;
7460 return to_record_with_fixed_variant_part (type0, valaddr, address,
7461 dval);
7462 }
14f9c5c9
AS
7463 else
7464 {
876cecd0 7465 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7466 return type0;
7467 }
7468
7469}
7470
7471/* An ordinary record type (with fixed-length fields) that describes
7472 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7473 union type. Any necessary discriminants' values should be in DVAL,
7474 a record value. That is, this routine selects the appropriate
7475 branch of the union at ADDR according to the discriminant value
b1f33ddd 7476 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7477 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7478
d2e4a39e 7479static struct type *
fc1a4b47 7480to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7481 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7482{
7483 int which;
d2e4a39e
AS
7484 struct type *templ_type;
7485 struct type *var_type;
14f9c5c9
AS
7486
7487 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7488 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7489 else
14f9c5c9
AS
7490 var_type = var_type0;
7491
7492 templ_type = ada_find_parallel_type (var_type, "___XVU");
7493
7494 if (templ_type != NULL)
7495 var_type = templ_type;
7496
b1f33ddd
JB
7497 if (is_unchecked_variant (var_type, value_type (dval)))
7498 return var_type0;
d2e4a39e
AS
7499 which =
7500 ada_which_variant_applies (var_type,
0fd88904 7501 value_type (dval), value_contents (dval));
14f9c5c9
AS
7502
7503 if (which < 0)
e9bb382b 7504 return empty_record (var_type);
14f9c5c9 7505 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7506 return to_fixed_record_type
d2e4a39e
AS
7507 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7508 valaddr, address, dval);
4c4b4cd2 7509 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7510 return
7511 to_fixed_record_type
7512 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7513 else
7514 return TYPE_FIELD_TYPE (var_type, which);
7515}
7516
7517/* Assuming that TYPE0 is an array type describing the type of a value
7518 at ADDR, and that DVAL describes a record containing any
7519 discriminants used in TYPE0, returns a type for the value that
7520 contains no dynamic components (that is, no components whose sizes
7521 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7522 true, gives an error message if the resulting type's size is over
4c4b4cd2 7523 varsize_limit. */
14f9c5c9 7524
d2e4a39e
AS
7525static struct type *
7526to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7527 int ignore_too_big)
14f9c5c9 7528{
d2e4a39e
AS
7529 struct type *index_type_desc;
7530 struct type *result;
ad82864c 7531 int constrained_packed_array_p;
14f9c5c9 7532
284614f0 7533 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7534 return type0;
14f9c5c9 7535
ad82864c
JB
7536 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7537 if (constrained_packed_array_p)
7538 type0 = decode_constrained_packed_array_type (type0);
284614f0 7539
14f9c5c9 7540 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7541 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7542 if (index_type_desc == NULL)
7543 {
61ee279c 7544 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7545
14f9c5c9 7546 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7547 depend on the contents of the array in properly constructed
7548 debugging data. */
529cad9c
PH
7549 /* Create a fixed version of the array element type.
7550 We're not providing the address of an element here,
e1d5a0d2 7551 and thus the actual object value cannot be inspected to do
529cad9c
PH
7552 the conversion. This should not be a problem, since arrays of
7553 unconstrained objects are not allowed. In particular, all
7554 the elements of an array of a tagged type should all be of
7555 the same type specified in the debugging info. No need to
7556 consult the object tag. */
1ed6ede0 7557 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7558
284614f0
JB
7559 /* Make sure we always create a new array type when dealing with
7560 packed array types, since we're going to fix-up the array
7561 type length and element bitsize a little further down. */
ad82864c 7562 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7563 result = type0;
14f9c5c9 7564 else
e9bb382b 7565 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7566 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7567 }
7568 else
7569 {
7570 int i;
7571 struct type *elt_type0;
7572
7573 elt_type0 = type0;
7574 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7575 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7576
7577 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7578 depend on the contents of the array in properly constructed
7579 debugging data. */
529cad9c
PH
7580 /* Create a fixed version of the array element type.
7581 We're not providing the address of an element here,
e1d5a0d2 7582 and thus the actual object value cannot be inspected to do
529cad9c
PH
7583 the conversion. This should not be a problem, since arrays of
7584 unconstrained objects are not allowed. In particular, all
7585 the elements of an array of a tagged type should all be of
7586 the same type specified in the debugging info. No need to
7587 consult the object tag. */
1ed6ede0
JB
7588 result =
7589 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7590
7591 elt_type0 = type0;
14f9c5c9 7592 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7593 {
7594 struct type *range_type =
28c85d6c 7595 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7596
e9bb382b 7597 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7598 result, range_type);
1ce677a4 7599 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7600 }
d2e4a39e 7601 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7602 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7603 }
7604
ad82864c 7605 if (constrained_packed_array_p)
284614f0
JB
7606 {
7607 /* So far, the resulting type has been created as if the original
7608 type was a regular (non-packed) array type. As a result, the
7609 bitsize of the array elements needs to be set again, and the array
7610 length needs to be recomputed based on that bitsize. */
7611 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7612 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7613
7614 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7615 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7616 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7617 TYPE_LENGTH (result)++;
7618 }
7619
876cecd0 7620 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7621 return result;
d2e4a39e 7622}
14f9c5c9
AS
7623
7624
7625/* A standard type (containing no dynamically sized components)
7626 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7627 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7628 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7629 ADDRESS or in VALADDR contains these discriminants.
7630
1ed6ede0
JB
7631 If CHECK_TAG is not null, in the case of tagged types, this function
7632 attempts to locate the object's tag and use it to compute the actual
7633 type. However, when ADDRESS is null, we cannot use it to determine the
7634 location of the tag, and therefore compute the tagged type's actual type.
7635 So we return the tagged type without consulting the tag. */
529cad9c 7636
f192137b
JB
7637static struct type *
7638ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7639 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7640{
61ee279c 7641 type = ada_check_typedef (type);
d2e4a39e
AS
7642 switch (TYPE_CODE (type))
7643 {
7644 default:
14f9c5c9 7645 return type;
d2e4a39e 7646 case TYPE_CODE_STRUCT:
4c4b4cd2 7647 {
76a01679 7648 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7649 struct type *fixed_record_type =
7650 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7651
529cad9c
PH
7652 /* If STATIC_TYPE is a tagged type and we know the object's address,
7653 then we can determine its tag, and compute the object's actual
0963b4bd 7654 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7655 type (the parent part of the record may have dynamic fields
7656 and the way the location of _tag is expressed may depend on
7657 them). */
529cad9c 7658
1ed6ede0 7659 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7660 {
7661 struct type *real_type =
1ed6ede0
JB
7662 type_from_tag (value_tag_from_contents_and_address
7663 (fixed_record_type,
7664 valaddr,
7665 address));
5b4ee69b 7666
76a01679 7667 if (real_type != NULL)
1ed6ede0 7668 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7669 }
4af88198
JB
7670
7671 /* Check to see if there is a parallel ___XVZ variable.
7672 If there is, then it provides the actual size of our type. */
7673 else if (ada_type_name (fixed_record_type) != NULL)
7674 {
7675 char *name = ada_type_name (fixed_record_type);
7676 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7677 int xvz_found = 0;
7678 LONGEST size;
7679
88c15c34 7680 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7681 size = get_int_var_value (xvz_name, &xvz_found);
7682 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7683 {
7684 fixed_record_type = copy_type (fixed_record_type);
7685 TYPE_LENGTH (fixed_record_type) = size;
7686
7687 /* The FIXED_RECORD_TYPE may have be a stub. We have
7688 observed this when the debugging info is STABS, and
7689 apparently it is something that is hard to fix.
7690
7691 In practice, we don't need the actual type definition
7692 at all, because the presence of the XVZ variable allows us
7693 to assume that there must be a XVS type as well, which we
7694 should be able to use later, when we need the actual type
7695 definition.
7696
7697 In the meantime, pretend that the "fixed" type we are
7698 returning is NOT a stub, because this can cause trouble
7699 when using this type to create new types targeting it.
7700 Indeed, the associated creation routines often check
7701 whether the target type is a stub and will try to replace
0963b4bd 7702 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7703 might cause the new type to have the wrong size too.
7704 Consider the case of an array, for instance, where the size
7705 of the array is computed from the number of elements in
7706 our array multiplied by the size of its element. */
7707 TYPE_STUB (fixed_record_type) = 0;
7708 }
7709 }
1ed6ede0 7710 return fixed_record_type;
4c4b4cd2 7711 }
d2e4a39e 7712 case TYPE_CODE_ARRAY:
4c4b4cd2 7713 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7714 case TYPE_CODE_UNION:
7715 if (dval == NULL)
4c4b4cd2 7716 return type;
d2e4a39e 7717 else
4c4b4cd2 7718 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7719 }
14f9c5c9
AS
7720}
7721
f192137b
JB
7722/* The same as ada_to_fixed_type_1, except that it preserves the type
7723 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7724
7725 The typedef layer needs be preserved in order to differentiate between
7726 arrays and array pointers when both types are implemented using the same
7727 fat pointer. In the array pointer case, the pointer is encoded as
7728 a typedef of the pointer type. For instance, considering:
7729
7730 type String_Access is access String;
7731 S1 : String_Access := null;
7732
7733 To the debugger, S1 is defined as a typedef of type String. But
7734 to the user, it is a pointer. So if the user tries to print S1,
7735 we should not dereference the array, but print the array address
7736 instead.
7737
7738 If we didn't preserve the typedef layer, we would lose the fact that
7739 the type is to be presented as a pointer (needs de-reference before
7740 being printed). And we would also use the source-level type name. */
f192137b
JB
7741
7742struct type *
7743ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7744 CORE_ADDR address, struct value *dval, int check_tag)
7745
7746{
7747 struct type *fixed_type =
7748 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7749
96dbd2c1
JB
7750 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7751 then preserve the typedef layer.
7752
7753 Implementation note: We can only check the main-type portion of
7754 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7755 from TYPE now returns a type that has the same instance flags
7756 as TYPE. For instance, if TYPE is a "typedef const", and its
7757 target type is a "struct", then the typedef elimination will return
7758 a "const" version of the target type. See check_typedef for more
7759 details about how the typedef layer elimination is done.
7760
7761 brobecker/2010-11-19: It seems to me that the only case where it is
7762 useful to preserve the typedef layer is when dealing with fat pointers.
7763 Perhaps, we could add a check for that and preserve the typedef layer
7764 only in that situation. But this seems unecessary so far, probably
7765 because we call check_typedef/ada_check_typedef pretty much everywhere.
7766 */
f192137b 7767 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7768 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7769 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7770 return type;
7771
7772 return fixed_type;
7773}
7774
14f9c5c9 7775/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7776 TYPE0, but based on no runtime data. */
14f9c5c9 7777
d2e4a39e
AS
7778static struct type *
7779to_static_fixed_type (struct type *type0)
14f9c5c9 7780{
d2e4a39e 7781 struct type *type;
14f9c5c9
AS
7782
7783 if (type0 == NULL)
7784 return NULL;
7785
876cecd0 7786 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7787 return type0;
7788
61ee279c 7789 type0 = ada_check_typedef (type0);
d2e4a39e 7790
14f9c5c9
AS
7791 switch (TYPE_CODE (type0))
7792 {
7793 default:
7794 return type0;
7795 case TYPE_CODE_STRUCT:
7796 type = dynamic_template_type (type0);
d2e4a39e 7797 if (type != NULL)
4c4b4cd2
PH
7798 return template_to_static_fixed_type (type);
7799 else
7800 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7801 case TYPE_CODE_UNION:
7802 type = ada_find_parallel_type (type0, "___XVU");
7803 if (type != NULL)
4c4b4cd2
PH
7804 return template_to_static_fixed_type (type);
7805 else
7806 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7807 }
7808}
7809
4c4b4cd2
PH
7810/* A static approximation of TYPE with all type wrappers removed. */
7811
d2e4a39e
AS
7812static struct type *
7813static_unwrap_type (struct type *type)
14f9c5c9
AS
7814{
7815 if (ada_is_aligner_type (type))
7816 {
61ee279c 7817 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7818 if (ada_type_name (type1) == NULL)
4c4b4cd2 7819 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7820
7821 return static_unwrap_type (type1);
7822 }
d2e4a39e 7823 else
14f9c5c9 7824 {
d2e4a39e 7825 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 7826
d2e4a39e 7827 if (raw_real_type == type)
4c4b4cd2 7828 return type;
14f9c5c9 7829 else
4c4b4cd2 7830 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7831 }
7832}
7833
7834/* In some cases, incomplete and private types require
4c4b4cd2 7835 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7836 type Foo;
7837 type FooP is access Foo;
7838 V: FooP;
7839 type Foo is array ...;
4c4b4cd2 7840 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7841 cross-references to such types, we instead substitute for FooP a
7842 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7843 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7844
7845/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7846 exists, otherwise TYPE. */
7847
d2e4a39e 7848struct type *
61ee279c 7849ada_check_typedef (struct type *type)
14f9c5c9 7850{
727e3d2e
JB
7851 if (type == NULL)
7852 return NULL;
7853
720d1a40
JB
7854 /* If our type is a typedef type of a fat pointer, then we're done.
7855 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7856 what allows us to distinguish between fat pointers that represent
7857 array types, and fat pointers that represent array access types
7858 (in both cases, the compiler implements them as fat pointers). */
7859 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7860 && is_thick_pntr (ada_typedef_target_type (type)))
7861 return type;
7862
14f9c5c9
AS
7863 CHECK_TYPEDEF (type);
7864 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7865 || !TYPE_STUB (type)
14f9c5c9
AS
7866 || TYPE_TAG_NAME (type) == NULL)
7867 return type;
d2e4a39e 7868 else
14f9c5c9 7869 {
d2e4a39e
AS
7870 char *name = TYPE_TAG_NAME (type);
7871 struct type *type1 = ada_find_any_type (name);
5b4ee69b 7872
05e522ef
JB
7873 if (type1 == NULL)
7874 return type;
7875
7876 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7877 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
7878 types, only for the typedef-to-array types). If that's the case,
7879 strip the typedef layer. */
7880 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7881 type1 = ada_check_typedef (type1);
7882
7883 return type1;
14f9c5c9
AS
7884 }
7885}
7886
7887/* A value representing the data at VALADDR/ADDRESS as described by
7888 type TYPE0, but with a standard (static-sized) type that correctly
7889 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7890 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7891 creation of struct values]. */
14f9c5c9 7892
4c4b4cd2
PH
7893static struct value *
7894ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7895 struct value *val0)
14f9c5c9 7896{
1ed6ede0 7897 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 7898
14f9c5c9
AS
7899 if (type == type0 && val0 != NULL)
7900 return val0;
d2e4a39e 7901 else
4c4b4cd2
PH
7902 return value_from_contents_and_address (type, 0, address);
7903}
7904
7905/* A value representing VAL, but with a standard (static-sized) type
7906 that correctly describes it. Does not necessarily create a new
7907 value. */
7908
0c3acc09 7909struct value *
4c4b4cd2
PH
7910ada_to_fixed_value (struct value *val)
7911{
df407dfe 7912 return ada_to_fixed_value_create (value_type (val),
42ae5230 7913 value_address (val),
4c4b4cd2 7914 val);
14f9c5c9 7915}
d2e4a39e 7916\f
14f9c5c9 7917
14f9c5c9
AS
7918/* Attributes */
7919
4c4b4cd2
PH
7920/* Table mapping attribute numbers to names.
7921 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7922
d2e4a39e 7923static const char *attribute_names[] = {
14f9c5c9
AS
7924 "<?>",
7925
d2e4a39e 7926 "first",
14f9c5c9
AS
7927 "last",
7928 "length",
7929 "image",
14f9c5c9
AS
7930 "max",
7931 "min",
4c4b4cd2
PH
7932 "modulus",
7933 "pos",
7934 "size",
7935 "tag",
14f9c5c9 7936 "val",
14f9c5c9
AS
7937 0
7938};
7939
d2e4a39e 7940const char *
4c4b4cd2 7941ada_attribute_name (enum exp_opcode n)
14f9c5c9 7942{
4c4b4cd2
PH
7943 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7944 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7945 else
7946 return attribute_names[0];
7947}
7948
4c4b4cd2 7949/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7950
4c4b4cd2
PH
7951static LONGEST
7952pos_atr (struct value *arg)
14f9c5c9 7953{
24209737
PH
7954 struct value *val = coerce_ref (arg);
7955 struct type *type = value_type (val);
14f9c5c9 7956
d2e4a39e 7957 if (!discrete_type_p (type))
323e0a4a 7958 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7959
7960 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7961 {
7962 int i;
24209737 7963 LONGEST v = value_as_long (val);
14f9c5c9 7964
d2e4a39e 7965 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7966 {
7967 if (v == TYPE_FIELD_BITPOS (type, i))
7968 return i;
7969 }
323e0a4a 7970 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7971 }
7972 else
24209737 7973 return value_as_long (val);
4c4b4cd2
PH
7974}
7975
7976static struct value *
3cb382c9 7977value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7978{
3cb382c9 7979 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7980}
7981
4c4b4cd2 7982/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7983
d2e4a39e
AS
7984static struct value *
7985value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7986{
d2e4a39e 7987 if (!discrete_type_p (type))
323e0a4a 7988 error (_("'VAL only defined on discrete types"));
df407dfe 7989 if (!integer_type_p (value_type (arg)))
323e0a4a 7990 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7991
7992 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7993 {
7994 long pos = value_as_long (arg);
5b4ee69b 7995
14f9c5c9 7996 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7997 error (_("argument to 'VAL out of range"));
d2e4a39e 7998 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7999 }
8000 else
8001 return value_from_longest (type, value_as_long (arg));
8002}
14f9c5c9 8003\f
d2e4a39e 8004
4c4b4cd2 8005 /* Evaluation */
14f9c5c9 8006
4c4b4cd2
PH
8007/* True if TYPE appears to be an Ada character type.
8008 [At the moment, this is true only for Character and Wide_Character;
8009 It is a heuristic test that could stand improvement]. */
14f9c5c9 8010
d2e4a39e
AS
8011int
8012ada_is_character_type (struct type *type)
14f9c5c9 8013{
7b9f71f2
JB
8014 const char *name;
8015
8016 /* If the type code says it's a character, then assume it really is,
8017 and don't check any further. */
8018 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8019 return 1;
8020
8021 /* Otherwise, assume it's a character type iff it is a discrete type
8022 with a known character type name. */
8023 name = ada_type_name (type);
8024 return (name != NULL
8025 && (TYPE_CODE (type) == TYPE_CODE_INT
8026 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8027 && (strcmp (name, "character") == 0
8028 || strcmp (name, "wide_character") == 0
5a517ebd 8029 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8030 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8031}
8032
4c4b4cd2 8033/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8034
8035int
ebf56fd3 8036ada_is_string_type (struct type *type)
14f9c5c9 8037{
61ee279c 8038 type = ada_check_typedef (type);
d2e4a39e 8039 if (type != NULL
14f9c5c9 8040 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8041 && (ada_is_simple_array_type (type)
8042 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8043 && ada_array_arity (type) == 1)
8044 {
8045 struct type *elttype = ada_array_element_type (type, 1);
8046
8047 return ada_is_character_type (elttype);
8048 }
d2e4a39e 8049 else
14f9c5c9
AS
8050 return 0;
8051}
8052
5bf03f13
JB
8053/* The compiler sometimes provides a parallel XVS type for a given
8054 PAD type. Normally, it is safe to follow the PAD type directly,
8055 but older versions of the compiler have a bug that causes the offset
8056 of its "F" field to be wrong. Following that field in that case
8057 would lead to incorrect results, but this can be worked around
8058 by ignoring the PAD type and using the associated XVS type instead.
8059
8060 Set to True if the debugger should trust the contents of PAD types.
8061 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8062static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8063
8064/* True if TYPE is a struct type introduced by the compiler to force the
8065 alignment of a value. Such types have a single field with a
4c4b4cd2 8066 distinctive name. */
14f9c5c9
AS
8067
8068int
ebf56fd3 8069ada_is_aligner_type (struct type *type)
14f9c5c9 8070{
61ee279c 8071 type = ada_check_typedef (type);
714e53ab 8072
5bf03f13 8073 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8074 return 0;
8075
14f9c5c9 8076 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8077 && TYPE_NFIELDS (type) == 1
8078 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8079}
8080
8081/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8082 the parallel type. */
14f9c5c9 8083
d2e4a39e
AS
8084struct type *
8085ada_get_base_type (struct type *raw_type)
14f9c5c9 8086{
d2e4a39e
AS
8087 struct type *real_type_namer;
8088 struct type *raw_real_type;
14f9c5c9
AS
8089
8090 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8091 return raw_type;
8092
284614f0
JB
8093 if (ada_is_aligner_type (raw_type))
8094 /* The encoding specifies that we should always use the aligner type.
8095 So, even if this aligner type has an associated XVS type, we should
8096 simply ignore it.
8097
8098 According to the compiler gurus, an XVS type parallel to an aligner
8099 type may exist because of a stabs limitation. In stabs, aligner
8100 types are empty because the field has a variable-sized type, and
8101 thus cannot actually be used as an aligner type. As a result,
8102 we need the associated parallel XVS type to decode the type.
8103 Since the policy in the compiler is to not change the internal
8104 representation based on the debugging info format, we sometimes
8105 end up having a redundant XVS type parallel to the aligner type. */
8106 return raw_type;
8107
14f9c5c9 8108 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8109 if (real_type_namer == NULL
14f9c5c9
AS
8110 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8111 || TYPE_NFIELDS (real_type_namer) != 1)
8112 return raw_type;
8113
f80d3ff2
JB
8114 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8115 {
8116 /* This is an older encoding form where the base type needs to be
8117 looked up by name. We prefer the newer enconding because it is
8118 more efficient. */
8119 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8120 if (raw_real_type == NULL)
8121 return raw_type;
8122 else
8123 return raw_real_type;
8124 }
8125
8126 /* The field in our XVS type is a reference to the base type. */
8127 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8128}
14f9c5c9 8129
4c4b4cd2 8130/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8131
d2e4a39e
AS
8132struct type *
8133ada_aligned_type (struct type *type)
14f9c5c9
AS
8134{
8135 if (ada_is_aligner_type (type))
8136 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8137 else
8138 return ada_get_base_type (type);
8139}
8140
8141
8142/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8143 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8144
fc1a4b47
AC
8145const gdb_byte *
8146ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8147{
d2e4a39e 8148 if (ada_is_aligner_type (type))
14f9c5c9 8149 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8150 valaddr +
8151 TYPE_FIELD_BITPOS (type,
8152 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8153 else
8154 return valaddr;
8155}
8156
4c4b4cd2
PH
8157
8158
14f9c5c9 8159/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8160 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8161const char *
8162ada_enum_name (const char *name)
14f9c5c9 8163{
4c4b4cd2
PH
8164 static char *result;
8165 static size_t result_len = 0;
d2e4a39e 8166 char *tmp;
14f9c5c9 8167
4c4b4cd2
PH
8168 /* First, unqualify the enumeration name:
8169 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
8170 all the preceeding characters, the unqualified name starts
8171 right after that dot.
4c4b4cd2 8172 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8173 translates dots into "__". Search forward for double underscores,
8174 but stop searching when we hit an overloading suffix, which is
8175 of the form "__" followed by digits. */
4c4b4cd2 8176
c3e5cd34
PH
8177 tmp = strrchr (name, '.');
8178 if (tmp != NULL)
4c4b4cd2
PH
8179 name = tmp + 1;
8180 else
14f9c5c9 8181 {
4c4b4cd2
PH
8182 while ((tmp = strstr (name, "__")) != NULL)
8183 {
8184 if (isdigit (tmp[2]))
8185 break;
8186 else
8187 name = tmp + 2;
8188 }
14f9c5c9
AS
8189 }
8190
8191 if (name[0] == 'Q')
8192 {
14f9c5c9 8193 int v;
5b4ee69b 8194
14f9c5c9 8195 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8196 {
8197 if (sscanf (name + 2, "%x", &v) != 1)
8198 return name;
8199 }
14f9c5c9 8200 else
4c4b4cd2 8201 return name;
14f9c5c9 8202
4c4b4cd2 8203 GROW_VECT (result, result_len, 16);
14f9c5c9 8204 if (isascii (v) && isprint (v))
88c15c34 8205 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8206 else if (name[1] == 'U')
88c15c34 8207 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8208 else
88c15c34 8209 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8210
8211 return result;
8212 }
d2e4a39e 8213 else
4c4b4cd2 8214 {
c3e5cd34
PH
8215 tmp = strstr (name, "__");
8216 if (tmp == NULL)
8217 tmp = strstr (name, "$");
8218 if (tmp != NULL)
4c4b4cd2
PH
8219 {
8220 GROW_VECT (result, result_len, tmp - name + 1);
8221 strncpy (result, name, tmp - name);
8222 result[tmp - name] = '\0';
8223 return result;
8224 }
8225
8226 return name;
8227 }
14f9c5c9
AS
8228}
8229
14f9c5c9
AS
8230/* Evaluate the subexpression of EXP starting at *POS as for
8231 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8232 expression. */
14f9c5c9 8233
d2e4a39e
AS
8234static struct value *
8235evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8236{
4b27a620 8237 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8238}
8239
8240/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8241 value it wraps. */
14f9c5c9 8242
d2e4a39e
AS
8243static struct value *
8244unwrap_value (struct value *val)
14f9c5c9 8245{
df407dfe 8246 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8247
14f9c5c9
AS
8248 if (ada_is_aligner_type (type))
8249 {
de4d072f 8250 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8251 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8252
14f9c5c9 8253 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8254 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8255
8256 return unwrap_value (v);
8257 }
d2e4a39e 8258 else
14f9c5c9 8259 {
d2e4a39e 8260 struct type *raw_real_type =
61ee279c 8261 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8262
5bf03f13
JB
8263 /* If there is no parallel XVS or XVE type, then the value is
8264 already unwrapped. Return it without further modification. */
8265 if ((type == raw_real_type)
8266 && ada_find_parallel_type (type, "___XVE") == NULL)
8267 return val;
14f9c5c9 8268
d2e4a39e 8269 return
4c4b4cd2
PH
8270 coerce_unspec_val_to_type
8271 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8272 value_address (val),
1ed6ede0 8273 NULL, 1));
14f9c5c9
AS
8274 }
8275}
d2e4a39e
AS
8276
8277static struct value *
8278cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8279{
8280 LONGEST val;
8281
df407dfe 8282 if (type == value_type (arg))
14f9c5c9 8283 return arg;
df407dfe 8284 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8285 val = ada_float_to_fixed (type,
df407dfe 8286 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8287 value_as_long (arg)));
d2e4a39e 8288 else
14f9c5c9 8289 {
a53b7a21 8290 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8291
14f9c5c9
AS
8292 val = ada_float_to_fixed (type, argd);
8293 }
8294
8295 return value_from_longest (type, val);
8296}
8297
d2e4a39e 8298static struct value *
a53b7a21 8299cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8300{
df407dfe 8301 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8302 value_as_long (arg));
5b4ee69b 8303
a53b7a21 8304 return value_from_double (type, val);
14f9c5c9
AS
8305}
8306
4c4b4cd2
PH
8307/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8308 return the converted value. */
8309
d2e4a39e
AS
8310static struct value *
8311coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8312{
df407dfe 8313 struct type *type2 = value_type (val);
5b4ee69b 8314
14f9c5c9
AS
8315 if (type == type2)
8316 return val;
8317
61ee279c
PH
8318 type2 = ada_check_typedef (type2);
8319 type = ada_check_typedef (type);
14f9c5c9 8320
d2e4a39e
AS
8321 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8322 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8323 {
8324 val = ada_value_ind (val);
df407dfe 8325 type2 = value_type (val);
14f9c5c9
AS
8326 }
8327
d2e4a39e 8328 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8329 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8330 {
8331 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8332 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8333 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8334 error (_("Incompatible types in assignment"));
04624583 8335 deprecated_set_value_type (val, type);
14f9c5c9 8336 }
d2e4a39e 8337 return val;
14f9c5c9
AS
8338}
8339
4c4b4cd2
PH
8340static struct value *
8341ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8342{
8343 struct value *val;
8344 struct type *type1, *type2;
8345 LONGEST v, v1, v2;
8346
994b9211
AC
8347 arg1 = coerce_ref (arg1);
8348 arg2 = coerce_ref (arg2);
df407dfe
AC
8349 type1 = base_type (ada_check_typedef (value_type (arg1)));
8350 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8351
76a01679
JB
8352 if (TYPE_CODE (type1) != TYPE_CODE_INT
8353 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8354 return value_binop (arg1, arg2, op);
8355
76a01679 8356 switch (op)
4c4b4cd2
PH
8357 {
8358 case BINOP_MOD:
8359 case BINOP_DIV:
8360 case BINOP_REM:
8361 break;
8362 default:
8363 return value_binop (arg1, arg2, op);
8364 }
8365
8366 v2 = value_as_long (arg2);
8367 if (v2 == 0)
323e0a4a 8368 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8369
8370 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8371 return value_binop (arg1, arg2, op);
8372
8373 v1 = value_as_long (arg1);
8374 switch (op)
8375 {
8376 case BINOP_DIV:
8377 v = v1 / v2;
76a01679
JB
8378 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8379 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8380 break;
8381 case BINOP_REM:
8382 v = v1 % v2;
76a01679
JB
8383 if (v * v1 < 0)
8384 v -= v2;
4c4b4cd2
PH
8385 break;
8386 default:
8387 /* Should not reach this point. */
8388 v = 0;
8389 }
8390
8391 val = allocate_value (type1);
990a07ab 8392 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8393 TYPE_LENGTH (value_type (val)),
8394 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8395 return val;
8396}
8397
8398static int
8399ada_value_equal (struct value *arg1, struct value *arg2)
8400{
df407dfe
AC
8401 if (ada_is_direct_array_type (value_type (arg1))
8402 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8403 {
f58b38bf
JB
8404 /* Automatically dereference any array reference before
8405 we attempt to perform the comparison. */
8406 arg1 = ada_coerce_ref (arg1);
8407 arg2 = ada_coerce_ref (arg2);
8408
4c4b4cd2
PH
8409 arg1 = ada_coerce_to_simple_array (arg1);
8410 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8411 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8412 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8413 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8414 /* FIXME: The following works only for types whose
76a01679
JB
8415 representations use all bits (no padding or undefined bits)
8416 and do not have user-defined equality. */
8417 return
df407dfe 8418 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8419 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8420 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8421 }
8422 return value_equal (arg1, arg2);
8423}
8424
52ce6436
PH
8425/* Total number of component associations in the aggregate starting at
8426 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8427 OP_AGGREGATE. */
52ce6436
PH
8428
8429static int
8430num_component_specs (struct expression *exp, int pc)
8431{
8432 int n, m, i;
5b4ee69b 8433
52ce6436
PH
8434 m = exp->elts[pc + 1].longconst;
8435 pc += 3;
8436 n = 0;
8437 for (i = 0; i < m; i += 1)
8438 {
8439 switch (exp->elts[pc].opcode)
8440 {
8441 default:
8442 n += 1;
8443 break;
8444 case OP_CHOICES:
8445 n += exp->elts[pc + 1].longconst;
8446 break;
8447 }
8448 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8449 }
8450 return n;
8451}
8452
8453/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8454 component of LHS (a simple array or a record), updating *POS past
8455 the expression, assuming that LHS is contained in CONTAINER. Does
8456 not modify the inferior's memory, nor does it modify LHS (unless
8457 LHS == CONTAINER). */
8458
8459static void
8460assign_component (struct value *container, struct value *lhs, LONGEST index,
8461 struct expression *exp, int *pos)
8462{
8463 struct value *mark = value_mark ();
8464 struct value *elt;
5b4ee69b 8465
52ce6436
PH
8466 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8467 {
22601c15
UW
8468 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8469 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8470
52ce6436
PH
8471 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8472 }
8473 else
8474 {
8475 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8476 elt = ada_to_fixed_value (unwrap_value (elt));
8477 }
8478
8479 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8480 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8481 else
8482 value_assign_to_component (container, elt,
8483 ada_evaluate_subexp (NULL, exp, pos,
8484 EVAL_NORMAL));
8485
8486 value_free_to_mark (mark);
8487}
8488
8489/* Assuming that LHS represents an lvalue having a record or array
8490 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8491 of that aggregate's value to LHS, advancing *POS past the
8492 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8493 lvalue containing LHS (possibly LHS itself). Does not modify
8494 the inferior's memory, nor does it modify the contents of
0963b4bd 8495 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8496
8497static struct value *
8498assign_aggregate (struct value *container,
8499 struct value *lhs, struct expression *exp,
8500 int *pos, enum noside noside)
8501{
8502 struct type *lhs_type;
8503 int n = exp->elts[*pos+1].longconst;
8504 LONGEST low_index, high_index;
8505 int num_specs;
8506 LONGEST *indices;
8507 int max_indices, num_indices;
8508 int is_array_aggregate;
8509 int i;
52ce6436
PH
8510
8511 *pos += 3;
8512 if (noside != EVAL_NORMAL)
8513 {
8514 int i;
5b4ee69b 8515
52ce6436
PH
8516 for (i = 0; i < n; i += 1)
8517 ada_evaluate_subexp (NULL, exp, pos, noside);
8518 return container;
8519 }
8520
8521 container = ada_coerce_ref (container);
8522 if (ada_is_direct_array_type (value_type (container)))
8523 container = ada_coerce_to_simple_array (container);
8524 lhs = ada_coerce_ref (lhs);
8525 if (!deprecated_value_modifiable (lhs))
8526 error (_("Left operand of assignment is not a modifiable lvalue."));
8527
8528 lhs_type = value_type (lhs);
8529 if (ada_is_direct_array_type (lhs_type))
8530 {
8531 lhs = ada_coerce_to_simple_array (lhs);
8532 lhs_type = value_type (lhs);
8533 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8534 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8535 is_array_aggregate = 1;
8536 }
8537 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8538 {
8539 low_index = 0;
8540 high_index = num_visible_fields (lhs_type) - 1;
8541 is_array_aggregate = 0;
8542 }
8543 else
8544 error (_("Left-hand side must be array or record."));
8545
8546 num_specs = num_component_specs (exp, *pos - 3);
8547 max_indices = 4 * num_specs + 4;
8548 indices = alloca (max_indices * sizeof (indices[0]));
8549 indices[0] = indices[1] = low_index - 1;
8550 indices[2] = indices[3] = high_index + 1;
8551 num_indices = 4;
8552
8553 for (i = 0; i < n; i += 1)
8554 {
8555 switch (exp->elts[*pos].opcode)
8556 {
8557 case OP_CHOICES:
8558 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8559 &num_indices, max_indices,
8560 low_index, high_index);
8561 break;
8562 case OP_POSITIONAL:
8563 aggregate_assign_positional (container, lhs, exp, pos, indices,
8564 &num_indices, max_indices,
8565 low_index, high_index);
8566 break;
8567 case OP_OTHERS:
8568 if (i != n-1)
8569 error (_("Misplaced 'others' clause"));
8570 aggregate_assign_others (container, lhs, exp, pos, indices,
8571 num_indices, low_index, high_index);
8572 break;
8573 default:
8574 error (_("Internal error: bad aggregate clause"));
8575 }
8576 }
8577
8578 return container;
8579}
8580
8581/* Assign into the component of LHS indexed by the OP_POSITIONAL
8582 construct at *POS, updating *POS past the construct, given that
8583 the positions are relative to lower bound LOW, where HIGH is the
8584 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8585 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8586 assign_aggregate. */
52ce6436
PH
8587static void
8588aggregate_assign_positional (struct value *container,
8589 struct value *lhs, struct expression *exp,
8590 int *pos, LONGEST *indices, int *num_indices,
8591 int max_indices, LONGEST low, LONGEST high)
8592{
8593 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8594
8595 if (ind - 1 == high)
e1d5a0d2 8596 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8597 if (ind <= high)
8598 {
8599 add_component_interval (ind, ind, indices, num_indices, max_indices);
8600 *pos += 3;
8601 assign_component (container, lhs, ind, exp, pos);
8602 }
8603 else
8604 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8605}
8606
8607/* Assign into the components of LHS indexed by the OP_CHOICES
8608 construct at *POS, updating *POS past the construct, given that
8609 the allowable indices are LOW..HIGH. Record the indices assigned
8610 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8611 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8612static void
8613aggregate_assign_from_choices (struct value *container,
8614 struct value *lhs, struct expression *exp,
8615 int *pos, LONGEST *indices, int *num_indices,
8616 int max_indices, LONGEST low, LONGEST high)
8617{
8618 int j;
8619 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8620 int choice_pos, expr_pc;
8621 int is_array = ada_is_direct_array_type (value_type (lhs));
8622
8623 choice_pos = *pos += 3;
8624
8625 for (j = 0; j < n_choices; j += 1)
8626 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8627 expr_pc = *pos;
8628 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8629
8630 for (j = 0; j < n_choices; j += 1)
8631 {
8632 LONGEST lower, upper;
8633 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8634
52ce6436
PH
8635 if (op == OP_DISCRETE_RANGE)
8636 {
8637 choice_pos += 1;
8638 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8639 EVAL_NORMAL));
8640 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8641 EVAL_NORMAL));
8642 }
8643 else if (is_array)
8644 {
8645 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8646 EVAL_NORMAL));
8647 upper = lower;
8648 }
8649 else
8650 {
8651 int ind;
8652 char *name;
5b4ee69b 8653
52ce6436
PH
8654 switch (op)
8655 {
8656 case OP_NAME:
8657 name = &exp->elts[choice_pos + 2].string;
8658 break;
8659 case OP_VAR_VALUE:
8660 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8661 break;
8662 default:
8663 error (_("Invalid record component association."));
8664 }
8665 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8666 ind = 0;
8667 if (! find_struct_field (name, value_type (lhs), 0,
8668 NULL, NULL, NULL, NULL, &ind))
8669 error (_("Unknown component name: %s."), name);
8670 lower = upper = ind;
8671 }
8672
8673 if (lower <= upper && (lower < low || upper > high))
8674 error (_("Index in component association out of bounds."));
8675
8676 add_component_interval (lower, upper, indices, num_indices,
8677 max_indices);
8678 while (lower <= upper)
8679 {
8680 int pos1;
5b4ee69b 8681
52ce6436
PH
8682 pos1 = expr_pc;
8683 assign_component (container, lhs, lower, exp, &pos1);
8684 lower += 1;
8685 }
8686 }
8687}
8688
8689/* Assign the value of the expression in the OP_OTHERS construct in
8690 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8691 have not been previously assigned. The index intervals already assigned
8692 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8693 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8694static void
8695aggregate_assign_others (struct value *container,
8696 struct value *lhs, struct expression *exp,
8697 int *pos, LONGEST *indices, int num_indices,
8698 LONGEST low, LONGEST high)
8699{
8700 int i;
8701 int expr_pc = *pos+1;
8702
8703 for (i = 0; i < num_indices - 2; i += 2)
8704 {
8705 LONGEST ind;
5b4ee69b 8706
52ce6436
PH
8707 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8708 {
8709 int pos;
5b4ee69b 8710
52ce6436
PH
8711 pos = expr_pc;
8712 assign_component (container, lhs, ind, exp, &pos);
8713 }
8714 }
8715 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8716}
8717
8718/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8719 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8720 modifying *SIZE as needed. It is an error if *SIZE exceeds
8721 MAX_SIZE. The resulting intervals do not overlap. */
8722static void
8723add_component_interval (LONGEST low, LONGEST high,
8724 LONGEST* indices, int *size, int max_size)
8725{
8726 int i, j;
5b4ee69b 8727
52ce6436
PH
8728 for (i = 0; i < *size; i += 2) {
8729 if (high >= indices[i] && low <= indices[i + 1])
8730 {
8731 int kh;
5b4ee69b 8732
52ce6436
PH
8733 for (kh = i + 2; kh < *size; kh += 2)
8734 if (high < indices[kh])
8735 break;
8736 if (low < indices[i])
8737 indices[i] = low;
8738 indices[i + 1] = indices[kh - 1];
8739 if (high > indices[i + 1])
8740 indices[i + 1] = high;
8741 memcpy (indices + i + 2, indices + kh, *size - kh);
8742 *size -= kh - i - 2;
8743 return;
8744 }
8745 else if (high < indices[i])
8746 break;
8747 }
8748
8749 if (*size == max_size)
8750 error (_("Internal error: miscounted aggregate components."));
8751 *size += 2;
8752 for (j = *size-1; j >= i+2; j -= 1)
8753 indices[j] = indices[j - 2];
8754 indices[i] = low;
8755 indices[i + 1] = high;
8756}
8757
6e48bd2c
JB
8758/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8759 is different. */
8760
8761static struct value *
8762ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8763{
8764 if (type == ada_check_typedef (value_type (arg2)))
8765 return arg2;
8766
8767 if (ada_is_fixed_point_type (type))
8768 return (cast_to_fixed (type, arg2));
8769
8770 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8771 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8772
8773 return value_cast (type, arg2);
8774}
8775
284614f0
JB
8776/* Evaluating Ada expressions, and printing their result.
8777 ------------------------------------------------------
8778
21649b50
JB
8779 1. Introduction:
8780 ----------------
8781
284614f0
JB
8782 We usually evaluate an Ada expression in order to print its value.
8783 We also evaluate an expression in order to print its type, which
8784 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8785 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8786 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8787 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8788 similar.
8789
8790 Evaluating expressions is a little more complicated for Ada entities
8791 than it is for entities in languages such as C. The main reason for
8792 this is that Ada provides types whose definition might be dynamic.
8793 One example of such types is variant records. Or another example
8794 would be an array whose bounds can only be known at run time.
8795
8796 The following description is a general guide as to what should be
8797 done (and what should NOT be done) in order to evaluate an expression
8798 involving such types, and when. This does not cover how the semantic
8799 information is encoded by GNAT as this is covered separatly. For the
8800 document used as the reference for the GNAT encoding, see exp_dbug.ads
8801 in the GNAT sources.
8802
8803 Ideally, we should embed each part of this description next to its
8804 associated code. Unfortunately, the amount of code is so vast right
8805 now that it's hard to see whether the code handling a particular
8806 situation might be duplicated or not. One day, when the code is
8807 cleaned up, this guide might become redundant with the comments
8808 inserted in the code, and we might want to remove it.
8809
21649b50
JB
8810 2. ``Fixing'' an Entity, the Simple Case:
8811 -----------------------------------------
8812
284614f0
JB
8813 When evaluating Ada expressions, the tricky issue is that they may
8814 reference entities whose type contents and size are not statically
8815 known. Consider for instance a variant record:
8816
8817 type Rec (Empty : Boolean := True) is record
8818 case Empty is
8819 when True => null;
8820 when False => Value : Integer;
8821 end case;
8822 end record;
8823 Yes : Rec := (Empty => False, Value => 1);
8824 No : Rec := (empty => True);
8825
8826 The size and contents of that record depends on the value of the
8827 descriminant (Rec.Empty). At this point, neither the debugging
8828 information nor the associated type structure in GDB are able to
8829 express such dynamic types. So what the debugger does is to create
8830 "fixed" versions of the type that applies to the specific object.
8831 We also informally refer to this opperation as "fixing" an object,
8832 which means creating its associated fixed type.
8833
8834 Example: when printing the value of variable "Yes" above, its fixed
8835 type would look like this:
8836
8837 type Rec is record
8838 Empty : Boolean;
8839 Value : Integer;
8840 end record;
8841
8842 On the other hand, if we printed the value of "No", its fixed type
8843 would become:
8844
8845 type Rec is record
8846 Empty : Boolean;
8847 end record;
8848
8849 Things become a little more complicated when trying to fix an entity
8850 with a dynamic type that directly contains another dynamic type,
8851 such as an array of variant records, for instance. There are
8852 two possible cases: Arrays, and records.
8853
21649b50
JB
8854 3. ``Fixing'' Arrays:
8855 ---------------------
8856
8857 The type structure in GDB describes an array in terms of its bounds,
8858 and the type of its elements. By design, all elements in the array
8859 have the same type and we cannot represent an array of variant elements
8860 using the current type structure in GDB. When fixing an array,
8861 we cannot fix the array element, as we would potentially need one
8862 fixed type per element of the array. As a result, the best we can do
8863 when fixing an array is to produce an array whose bounds and size
8864 are correct (allowing us to read it from memory), but without having
8865 touched its element type. Fixing each element will be done later,
8866 when (if) necessary.
8867
8868 Arrays are a little simpler to handle than records, because the same
8869 amount of memory is allocated for each element of the array, even if
1b536f04 8870 the amount of space actually used by each element differs from element
21649b50 8871 to element. Consider for instance the following array of type Rec:
284614f0
JB
8872
8873 type Rec_Array is array (1 .. 2) of Rec;
8874
1b536f04
JB
8875 The actual amount of memory occupied by each element might be different
8876 from element to element, depending on the value of their discriminant.
21649b50 8877 But the amount of space reserved for each element in the array remains
1b536f04 8878 fixed regardless. So we simply need to compute that size using
21649b50
JB
8879 the debugging information available, from which we can then determine
8880 the array size (we multiply the number of elements of the array by
8881 the size of each element).
8882
8883 The simplest case is when we have an array of a constrained element
8884 type. For instance, consider the following type declarations:
8885
8886 type Bounded_String (Max_Size : Integer) is
8887 Length : Integer;
8888 Buffer : String (1 .. Max_Size);
8889 end record;
8890 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8891
8892 In this case, the compiler describes the array as an array of
8893 variable-size elements (identified by its XVS suffix) for which
8894 the size can be read in the parallel XVZ variable.
8895
8896 In the case of an array of an unconstrained element type, the compiler
8897 wraps the array element inside a private PAD type. This type should not
8898 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8899 that we also use the adjective "aligner" in our code to designate
8900 these wrapper types.
8901
1b536f04 8902 In some cases, the size allocated for each element is statically
21649b50
JB
8903 known. In that case, the PAD type already has the correct size,
8904 and the array element should remain unfixed.
8905
8906 But there are cases when this size is not statically known.
8907 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8908
8909 type Dynamic is array (1 .. Five) of Integer;
8910 type Wrapper (Has_Length : Boolean := False) is record
8911 Data : Dynamic;
8912 case Has_Length is
8913 when True => Length : Integer;
8914 when False => null;
8915 end case;
8916 end record;
8917 type Wrapper_Array is array (1 .. 2) of Wrapper;
8918
8919 Hello : Wrapper_Array := (others => (Has_Length => True,
8920 Data => (others => 17),
8921 Length => 1));
8922
8923
8924 The debugging info would describe variable Hello as being an
8925 array of a PAD type. The size of that PAD type is not statically
8926 known, but can be determined using a parallel XVZ variable.
8927 In that case, a copy of the PAD type with the correct size should
8928 be used for the fixed array.
8929
21649b50
JB
8930 3. ``Fixing'' record type objects:
8931 ----------------------------------
8932
8933 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8934 record types. In this case, in order to compute the associated
8935 fixed type, we need to determine the size and offset of each of
8936 its components. This, in turn, requires us to compute the fixed
8937 type of each of these components.
8938
8939 Consider for instance the example:
8940
8941 type Bounded_String (Max_Size : Natural) is record
8942 Str : String (1 .. Max_Size);
8943 Length : Natural;
8944 end record;
8945 My_String : Bounded_String (Max_Size => 10);
8946
8947 In that case, the position of field "Length" depends on the size
8948 of field Str, which itself depends on the value of the Max_Size
21649b50 8949 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8950 we need to fix the type of field Str. Therefore, fixing a variant
8951 record requires us to fix each of its components.
8952
8953 However, if a component does not have a dynamic size, the component
8954 should not be fixed. In particular, fields that use a PAD type
8955 should not fixed. Here is an example where this might happen
8956 (assuming type Rec above):
8957
8958 type Container (Big : Boolean) is record
8959 First : Rec;
8960 After : Integer;
8961 case Big is
8962 when True => Another : Integer;
8963 when False => null;
8964 end case;
8965 end record;
8966 My_Container : Container := (Big => False,
8967 First => (Empty => True),
8968 After => 42);
8969
8970 In that example, the compiler creates a PAD type for component First,
8971 whose size is constant, and then positions the component After just
8972 right after it. The offset of component After is therefore constant
8973 in this case.
8974
8975 The debugger computes the position of each field based on an algorithm
8976 that uses, among other things, the actual position and size of the field
21649b50
JB
8977 preceding it. Let's now imagine that the user is trying to print
8978 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8979 end up computing the offset of field After based on the size of the
8980 fixed version of field First. And since in our example First has
8981 only one actual field, the size of the fixed type is actually smaller
8982 than the amount of space allocated to that field, and thus we would
8983 compute the wrong offset of field After.
8984
21649b50
JB
8985 To make things more complicated, we need to watch out for dynamic
8986 components of variant records (identified by the ___XVL suffix in
8987 the component name). Even if the target type is a PAD type, the size
8988 of that type might not be statically known. So the PAD type needs
8989 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8990 we might end up with the wrong size for our component. This can be
8991 observed with the following type declarations:
284614f0
JB
8992
8993 type Octal is new Integer range 0 .. 7;
8994 type Octal_Array is array (Positive range <>) of Octal;
8995 pragma Pack (Octal_Array);
8996
8997 type Octal_Buffer (Size : Positive) is record
8998 Buffer : Octal_Array (1 .. Size);
8999 Length : Integer;
9000 end record;
9001
9002 In that case, Buffer is a PAD type whose size is unset and needs
9003 to be computed by fixing the unwrapped type.
9004
21649b50
JB
9005 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9006 ----------------------------------------------------------
9007
9008 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9009 thus far, be actually fixed?
9010
9011 The answer is: Only when referencing that element. For instance
9012 when selecting one component of a record, this specific component
9013 should be fixed at that point in time. Or when printing the value
9014 of a record, each component should be fixed before its value gets
9015 printed. Similarly for arrays, the element of the array should be
9016 fixed when printing each element of the array, or when extracting
9017 one element out of that array. On the other hand, fixing should
9018 not be performed on the elements when taking a slice of an array!
9019
9020 Note that one of the side-effects of miscomputing the offset and
9021 size of each field is that we end up also miscomputing the size
9022 of the containing type. This can have adverse results when computing
9023 the value of an entity. GDB fetches the value of an entity based
9024 on the size of its type, and thus a wrong size causes GDB to fetch
9025 the wrong amount of memory. In the case where the computed size is
9026 too small, GDB fetches too little data to print the value of our
9027 entiry. Results in this case as unpredicatble, as we usually read
9028 past the buffer containing the data =:-o. */
9029
9030/* Implement the evaluate_exp routine in the exp_descriptor structure
9031 for the Ada language. */
9032
52ce6436 9033static struct value *
ebf56fd3 9034ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9035 int *pos, enum noside noside)
14f9c5c9
AS
9036{
9037 enum exp_opcode op;
b5385fc0 9038 int tem;
14f9c5c9
AS
9039 int pc;
9040 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9041 struct type *type;
52ce6436 9042 int nargs, oplen;
d2e4a39e 9043 struct value **argvec;
14f9c5c9 9044
d2e4a39e
AS
9045 pc = *pos;
9046 *pos += 1;
14f9c5c9
AS
9047 op = exp->elts[pc].opcode;
9048
d2e4a39e 9049 switch (op)
14f9c5c9
AS
9050 {
9051 default:
9052 *pos -= 1;
6e48bd2c
JB
9053 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9054 arg1 = unwrap_value (arg1);
9055
9056 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9057 then we need to perform the conversion manually, because
9058 evaluate_subexp_standard doesn't do it. This conversion is
9059 necessary in Ada because the different kinds of float/fixed
9060 types in Ada have different representations.
9061
9062 Similarly, we need to perform the conversion from OP_LONG
9063 ourselves. */
9064 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9065 arg1 = ada_value_cast (expect_type, arg1, noside);
9066
9067 return arg1;
4c4b4cd2
PH
9068
9069 case OP_STRING:
9070 {
76a01679 9071 struct value *result;
5b4ee69b 9072
76a01679
JB
9073 *pos -= 1;
9074 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9075 /* The result type will have code OP_STRING, bashed there from
9076 OP_ARRAY. Bash it back. */
df407dfe
AC
9077 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9078 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9079 return result;
4c4b4cd2 9080 }
14f9c5c9
AS
9081
9082 case UNOP_CAST:
9083 (*pos) += 2;
9084 type = exp->elts[pc + 1].type;
9085 arg1 = evaluate_subexp (type, exp, pos, noside);
9086 if (noside == EVAL_SKIP)
4c4b4cd2 9087 goto nosideret;
6e48bd2c 9088 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9089 return arg1;
9090
4c4b4cd2
PH
9091 case UNOP_QUAL:
9092 (*pos) += 2;
9093 type = exp->elts[pc + 1].type;
9094 return ada_evaluate_subexp (type, exp, pos, noside);
9095
14f9c5c9
AS
9096 case BINOP_ASSIGN:
9097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9098 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9099 {
9100 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9101 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9102 return arg1;
9103 return ada_value_assign (arg1, arg1);
9104 }
003f3813
JB
9105 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9106 except if the lhs of our assignment is a convenience variable.
9107 In the case of assigning to a convenience variable, the lhs
9108 should be exactly the result of the evaluation of the rhs. */
9109 type = value_type (arg1);
9110 if (VALUE_LVAL (arg1) == lval_internalvar)
9111 type = NULL;
9112 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9113 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9114 return arg1;
df407dfe
AC
9115 if (ada_is_fixed_point_type (value_type (arg1)))
9116 arg2 = cast_to_fixed (value_type (arg1), arg2);
9117 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9118 error
323e0a4a 9119 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9120 else
df407dfe 9121 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9122 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9123
9124 case BINOP_ADD:
9125 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9126 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9127 if (noside == EVAL_SKIP)
4c4b4cd2 9128 goto nosideret;
2ac8a782
JB
9129 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9130 return (value_from_longest
9131 (value_type (arg1),
9132 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9133 if ((ada_is_fixed_point_type (value_type (arg1))
9134 || ada_is_fixed_point_type (value_type (arg2)))
9135 && value_type (arg1) != value_type (arg2))
323e0a4a 9136 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9137 /* Do the addition, and cast the result to the type of the first
9138 argument. We cannot cast the result to a reference type, so if
9139 ARG1 is a reference type, find its underlying type. */
9140 type = value_type (arg1);
9141 while (TYPE_CODE (type) == TYPE_CODE_REF)
9142 type = TYPE_TARGET_TYPE (type);
f44316fa 9143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9144 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9145
9146 case BINOP_SUB:
9147 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9148 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9149 if (noside == EVAL_SKIP)
4c4b4cd2 9150 goto nosideret;
2ac8a782
JB
9151 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9152 return (value_from_longest
9153 (value_type (arg1),
9154 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9155 if ((ada_is_fixed_point_type (value_type (arg1))
9156 || ada_is_fixed_point_type (value_type (arg2)))
9157 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9158 error (_("Operands of fixed-point subtraction "
9159 "must have the same type"));
b7789565
JB
9160 /* Do the substraction, and cast the result to the type of the first
9161 argument. We cannot cast the result to a reference type, so if
9162 ARG1 is a reference type, find its underlying type. */
9163 type = value_type (arg1);
9164 while (TYPE_CODE (type) == TYPE_CODE_REF)
9165 type = TYPE_TARGET_TYPE (type);
f44316fa 9166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9167 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9168
9169 case BINOP_MUL:
9170 case BINOP_DIV:
e1578042
JB
9171 case BINOP_REM:
9172 case BINOP_MOD:
14f9c5c9
AS
9173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9174 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9175 if (noside == EVAL_SKIP)
4c4b4cd2 9176 goto nosideret;
e1578042 9177 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9178 {
9179 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9180 return value_zero (value_type (arg1), not_lval);
9181 }
14f9c5c9 9182 else
4c4b4cd2 9183 {
a53b7a21 9184 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9185 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9186 arg1 = cast_from_fixed (type, arg1);
df407dfe 9187 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9188 arg2 = cast_from_fixed (type, arg2);
f44316fa 9189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9190 return ada_value_binop (arg1, arg2, op);
9191 }
9192
4c4b4cd2
PH
9193 case BINOP_EQUAL:
9194 case BINOP_NOTEQUAL:
14f9c5c9 9195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9196 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9197 if (noside == EVAL_SKIP)
76a01679 9198 goto nosideret;
4c4b4cd2 9199 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9200 tem = 0;
4c4b4cd2 9201 else
f44316fa
UW
9202 {
9203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9204 tem = ada_value_equal (arg1, arg2);
9205 }
4c4b4cd2 9206 if (op == BINOP_NOTEQUAL)
76a01679 9207 tem = !tem;
fbb06eb1
UW
9208 type = language_bool_type (exp->language_defn, exp->gdbarch);
9209 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9210
9211 case UNOP_NEG:
9212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9213 if (noside == EVAL_SKIP)
9214 goto nosideret;
df407dfe
AC
9215 else if (ada_is_fixed_point_type (value_type (arg1)))
9216 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9217 else
f44316fa
UW
9218 {
9219 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9220 return value_neg (arg1);
9221 }
4c4b4cd2 9222
2330c6c6
JB
9223 case BINOP_LOGICAL_AND:
9224 case BINOP_LOGICAL_OR:
9225 case UNOP_LOGICAL_NOT:
000d5124
JB
9226 {
9227 struct value *val;
9228
9229 *pos -= 1;
9230 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9231 type = language_bool_type (exp->language_defn, exp->gdbarch);
9232 return value_cast (type, val);
000d5124 9233 }
2330c6c6
JB
9234
9235 case BINOP_BITWISE_AND:
9236 case BINOP_BITWISE_IOR:
9237 case BINOP_BITWISE_XOR:
000d5124
JB
9238 {
9239 struct value *val;
9240
9241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9242 *pos = pc;
9243 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9244
9245 return value_cast (value_type (arg1), val);
9246 }
2330c6c6 9247
14f9c5c9
AS
9248 case OP_VAR_VALUE:
9249 *pos -= 1;
6799def4 9250
14f9c5c9 9251 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9252 {
9253 *pos += 4;
9254 goto nosideret;
9255 }
9256 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9257 /* Only encountered when an unresolved symbol occurs in a
9258 context other than a function call, in which case, it is
52ce6436 9259 invalid. */
323e0a4a 9260 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9261 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9262 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9263 {
0c1f74cf 9264 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9265 /* Check to see if this is a tagged type. We also need to handle
9266 the case where the type is a reference to a tagged type, but
9267 we have to be careful to exclude pointers to tagged types.
9268 The latter should be shown as usual (as a pointer), whereas
9269 a reference should mostly be transparent to the user. */
9270 if (ada_is_tagged_type (type, 0)
9271 || (TYPE_CODE(type) == TYPE_CODE_REF
9272 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9273 {
9274 /* Tagged types are a little special in the fact that the real
9275 type is dynamic and can only be determined by inspecting the
9276 object's tag. This means that we need to get the object's
9277 value first (EVAL_NORMAL) and then extract the actual object
9278 type from its tag.
9279
9280 Note that we cannot skip the final step where we extract
9281 the object type from its tag, because the EVAL_NORMAL phase
9282 results in dynamic components being resolved into fixed ones.
9283 This can cause problems when trying to print the type
9284 description of tagged types whose parent has a dynamic size:
9285 We use the type name of the "_parent" component in order
9286 to print the name of the ancestor type in the type description.
9287 If that component had a dynamic size, the resolution into
9288 a fixed type would result in the loss of that type name,
9289 thus preventing us from printing the name of the ancestor
9290 type in the type description. */
b79819ba
JB
9291 struct type *actual_type;
9292
0c1f74cf 9293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9294 actual_type = type_from_tag (ada_value_tag (arg1));
9295 if (actual_type == NULL)
9296 /* If, for some reason, we were unable to determine
9297 the actual type from the tag, then use the static
9298 approximation that we just computed as a fallback.
9299 This can happen if the debugging information is
9300 incomplete, for instance. */
9301 actual_type = type;
9302
9303 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9304 }
9305
4c4b4cd2
PH
9306 *pos += 4;
9307 return value_zero
9308 (to_static_fixed_type
9309 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9310 not_lval);
9311 }
d2e4a39e 9312 else
4c4b4cd2 9313 {
284614f0
JB
9314 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9315 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9316 return ada_to_fixed_value (arg1);
9317 }
9318
9319 case OP_FUNCALL:
9320 (*pos) += 2;
9321
9322 /* Allocate arg vector, including space for the function to be
9323 called in argvec[0] and a terminating NULL. */
9324 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9325 argvec =
9326 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9327
9328 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9329 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9330 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9331 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9332 else
9333 {
9334 for (tem = 0; tem <= nargs; tem += 1)
9335 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9336 argvec[tem] = 0;
9337
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
9340 }
9341
ad82864c
JB
9342 if (ada_is_constrained_packed_array_type
9343 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9344 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9345 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9346 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9347 /* This is a packed array that has already been fixed, and
9348 therefore already coerced to a simple array. Nothing further
9349 to do. */
9350 ;
df407dfe
AC
9351 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9352 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9353 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9354 argvec[0] = value_addr (argvec[0]);
9355
df407dfe 9356 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9357
9358 /* Ada allows us to implicitly dereference arrays when subscripting
9359 them. So, if this is an typedef (encoding use for array access
9360 types encoded as fat pointers), strip it now. */
9361 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9362 type = ada_typedef_target_type (type);
9363
4c4b4cd2
PH
9364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9365 {
61ee279c 9366 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9367 {
9368 case TYPE_CODE_FUNC:
61ee279c 9369 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9370 break;
9371 case TYPE_CODE_ARRAY:
9372 break;
9373 case TYPE_CODE_STRUCT:
9374 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9375 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9376 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9377 break;
9378 default:
323e0a4a 9379 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9380 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9381 break;
9382 }
9383 }
9384
9385 switch (TYPE_CODE (type))
9386 {
9387 case TYPE_CODE_FUNC:
9388 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9389 return allocate_value (TYPE_TARGET_TYPE (type));
9390 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9391 case TYPE_CODE_STRUCT:
9392 {
9393 int arity;
9394
4c4b4cd2
PH
9395 arity = ada_array_arity (type);
9396 type = ada_array_element_type (type, nargs);
9397 if (type == NULL)
323e0a4a 9398 error (_("cannot subscript or call a record"));
4c4b4cd2 9399 if (arity != nargs)
323e0a4a 9400 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9401 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9402 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9403 return
9404 unwrap_value (ada_value_subscript
9405 (argvec[0], nargs, argvec + 1));
9406 }
9407 case TYPE_CODE_ARRAY:
9408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9409 {
9410 type = ada_array_element_type (type, nargs);
9411 if (type == NULL)
323e0a4a 9412 error (_("element type of array unknown"));
4c4b4cd2 9413 else
0a07e705 9414 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9415 }
9416 return
9417 unwrap_value (ada_value_subscript
9418 (ada_coerce_to_simple_array (argvec[0]),
9419 nargs, argvec + 1));
9420 case TYPE_CODE_PTR: /* Pointer to array */
9421 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9422 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9423 {
9424 type = ada_array_element_type (type, nargs);
9425 if (type == NULL)
323e0a4a 9426 error (_("element type of array unknown"));
4c4b4cd2 9427 else
0a07e705 9428 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9429 }
9430 return
9431 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9432 nargs, argvec + 1));
9433
9434 default:
e1d5a0d2
PH
9435 error (_("Attempt to index or call something other than an "
9436 "array or function"));
4c4b4cd2
PH
9437 }
9438
9439 case TERNOP_SLICE:
9440 {
9441 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9442 struct value *low_bound_val =
9443 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9444 struct value *high_bound_val =
9445 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9446 LONGEST low_bound;
9447 LONGEST high_bound;
5b4ee69b 9448
994b9211
AC
9449 low_bound_val = coerce_ref (low_bound_val);
9450 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9451 low_bound = pos_atr (low_bound_val);
9452 high_bound = pos_atr (high_bound_val);
963a6417 9453
4c4b4cd2
PH
9454 if (noside == EVAL_SKIP)
9455 goto nosideret;
9456
4c4b4cd2
PH
9457 /* If this is a reference to an aligner type, then remove all
9458 the aligners. */
df407dfe
AC
9459 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9460 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9461 TYPE_TARGET_TYPE (value_type (array)) =
9462 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9463
ad82864c 9464 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9465 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9466
9467 /* If this is a reference to an array or an array lvalue,
9468 convert to a pointer. */
df407dfe
AC
9469 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9470 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9471 && VALUE_LVAL (array) == lval_memory))
9472 array = value_addr (array);
9473
1265e4aa 9474 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9475 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9476 (value_type (array))))
0b5d8877 9477 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9478
9479 array = ada_coerce_to_simple_array_ptr (array);
9480
714e53ab
PH
9481 /* If we have more than one level of pointer indirection,
9482 dereference the value until we get only one level. */
df407dfe
AC
9483 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9484 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9485 == TYPE_CODE_PTR))
9486 array = value_ind (array);
9487
9488 /* Make sure we really do have an array type before going further,
9489 to avoid a SEGV when trying to get the index type or the target
9490 type later down the road if the debug info generated by
9491 the compiler is incorrect or incomplete. */
df407dfe 9492 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9493 error (_("cannot take slice of non-array"));
714e53ab 9494
df407dfe 9495 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9496 {
0b5d8877 9497 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9498 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9499 low_bound);
9500 else
9501 {
9502 struct type *arr_type0 =
df407dfe 9503 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9504 NULL, 1);
5b4ee69b 9505
f5938064
JG
9506 return ada_value_slice_from_ptr (array, arr_type0,
9507 longest_to_int (low_bound),
9508 longest_to_int (high_bound));
4c4b4cd2
PH
9509 }
9510 }
9511 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9512 return array;
9513 else if (high_bound < low_bound)
df407dfe 9514 return empty_array (value_type (array), low_bound);
4c4b4cd2 9515 else
529cad9c
PH
9516 return ada_value_slice (array, longest_to_int (low_bound),
9517 longest_to_int (high_bound));
4c4b4cd2 9518 }
14f9c5c9 9519
4c4b4cd2
PH
9520 case UNOP_IN_RANGE:
9521 (*pos) += 2;
9522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9523 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9524
14f9c5c9 9525 if (noside == EVAL_SKIP)
4c4b4cd2 9526 goto nosideret;
14f9c5c9 9527
4c4b4cd2
PH
9528 switch (TYPE_CODE (type))
9529 {
9530 default:
e1d5a0d2
PH
9531 lim_warning (_("Membership test incompletely implemented; "
9532 "always returns true"));
fbb06eb1
UW
9533 type = language_bool_type (exp->language_defn, exp->gdbarch);
9534 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9535
9536 case TYPE_CODE_RANGE:
030b4912
UW
9537 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9538 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9539 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9541 type = language_bool_type (exp->language_defn, exp->gdbarch);
9542 return
9543 value_from_longest (type,
4c4b4cd2
PH
9544 (value_less (arg1, arg3)
9545 || value_equal (arg1, arg3))
9546 && (value_less (arg2, arg1)
9547 || value_equal (arg2, arg1)));
9548 }
9549
9550 case BINOP_IN_BOUNDS:
14f9c5c9 9551 (*pos) += 2;
4c4b4cd2
PH
9552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9553 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9554
4c4b4cd2
PH
9555 if (noside == EVAL_SKIP)
9556 goto nosideret;
14f9c5c9 9557
4c4b4cd2 9558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9559 {
9560 type = language_bool_type (exp->language_defn, exp->gdbarch);
9561 return value_zero (type, not_lval);
9562 }
14f9c5c9 9563
4c4b4cd2 9564 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9565
1eea4ebd
UW
9566 type = ada_index_type (value_type (arg2), tem, "range");
9567 if (!type)
9568 type = value_type (arg1);
14f9c5c9 9569
1eea4ebd
UW
9570 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9571 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9572
f44316fa
UW
9573 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9574 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9575 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9576 return
fbb06eb1 9577 value_from_longest (type,
4c4b4cd2
PH
9578 (value_less (arg1, arg3)
9579 || value_equal (arg1, arg3))
9580 && (value_less (arg2, arg1)
9581 || value_equal (arg2, arg1)));
9582
9583 case TERNOP_IN_RANGE:
9584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9585 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9586 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9587
9588 if (noside == EVAL_SKIP)
9589 goto nosideret;
9590
f44316fa
UW
9591 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9592 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9593 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9594 return
fbb06eb1 9595 value_from_longest (type,
4c4b4cd2
PH
9596 (value_less (arg1, arg3)
9597 || value_equal (arg1, arg3))
9598 && (value_less (arg2, arg1)
9599 || value_equal (arg2, arg1)));
9600
9601 case OP_ATR_FIRST:
9602 case OP_ATR_LAST:
9603 case OP_ATR_LENGTH:
9604 {
76a01679 9605 struct type *type_arg;
5b4ee69b 9606
76a01679
JB
9607 if (exp->elts[*pos].opcode == OP_TYPE)
9608 {
9609 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9610 arg1 = NULL;
5bc23cb3 9611 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9612 }
9613 else
9614 {
9615 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9616 type_arg = NULL;
9617 }
9618
9619 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9620 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9621 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9622 *pos += 4;
9623
9624 if (noside == EVAL_SKIP)
9625 goto nosideret;
9626
9627 if (type_arg == NULL)
9628 {
9629 arg1 = ada_coerce_ref (arg1);
9630
ad82864c 9631 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9632 arg1 = ada_coerce_to_simple_array (arg1);
9633
1eea4ebd
UW
9634 type = ada_index_type (value_type (arg1), tem,
9635 ada_attribute_name (op));
9636 if (type == NULL)
9637 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9638
9639 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9640 return allocate_value (type);
76a01679
JB
9641
9642 switch (op)
9643 {
9644 default: /* Should never happen. */
323e0a4a 9645 error (_("unexpected attribute encountered"));
76a01679 9646 case OP_ATR_FIRST:
1eea4ebd
UW
9647 return value_from_longest
9648 (type, ada_array_bound (arg1, tem, 0));
76a01679 9649 case OP_ATR_LAST:
1eea4ebd
UW
9650 return value_from_longest
9651 (type, ada_array_bound (arg1, tem, 1));
76a01679 9652 case OP_ATR_LENGTH:
1eea4ebd
UW
9653 return value_from_longest
9654 (type, ada_array_length (arg1, tem));
76a01679
JB
9655 }
9656 }
9657 else if (discrete_type_p (type_arg))
9658 {
9659 struct type *range_type;
9660 char *name = ada_type_name (type_arg);
5b4ee69b 9661
76a01679
JB
9662 range_type = NULL;
9663 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9664 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9665 if (range_type == NULL)
9666 range_type = type_arg;
9667 switch (op)
9668 {
9669 default:
323e0a4a 9670 error (_("unexpected attribute encountered"));
76a01679 9671 case OP_ATR_FIRST:
690cc4eb 9672 return value_from_longest
43bbcdc2 9673 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9674 case OP_ATR_LAST:
690cc4eb 9675 return value_from_longest
43bbcdc2 9676 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9677 case OP_ATR_LENGTH:
323e0a4a 9678 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9679 }
9680 }
9681 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9682 error (_("unimplemented type attribute"));
76a01679
JB
9683 else
9684 {
9685 LONGEST low, high;
9686
ad82864c
JB
9687 if (ada_is_constrained_packed_array_type (type_arg))
9688 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9689
1eea4ebd 9690 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9691 if (type == NULL)
1eea4ebd
UW
9692 type = builtin_type (exp->gdbarch)->builtin_int;
9693
76a01679
JB
9694 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9695 return allocate_value (type);
9696
9697 switch (op)
9698 {
9699 default:
323e0a4a 9700 error (_("unexpected attribute encountered"));
76a01679 9701 case OP_ATR_FIRST:
1eea4ebd 9702 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9703 return value_from_longest (type, low);
9704 case OP_ATR_LAST:
1eea4ebd 9705 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9706 return value_from_longest (type, high);
9707 case OP_ATR_LENGTH:
1eea4ebd
UW
9708 low = ada_array_bound_from_type (type_arg, tem, 0);
9709 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9710 return value_from_longest (type, high - low + 1);
9711 }
9712 }
14f9c5c9
AS
9713 }
9714
4c4b4cd2
PH
9715 case OP_ATR_TAG:
9716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9717 if (noside == EVAL_SKIP)
76a01679 9718 goto nosideret;
4c4b4cd2
PH
9719
9720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9721 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9722
9723 return ada_value_tag (arg1);
9724
9725 case OP_ATR_MIN:
9726 case OP_ATR_MAX:
9727 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9729 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9730 if (noside == EVAL_SKIP)
76a01679 9731 goto nosideret;
d2e4a39e 9732 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9733 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9734 else
f44316fa
UW
9735 {
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9737 return value_binop (arg1, arg2,
9738 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9739 }
14f9c5c9 9740
4c4b4cd2
PH
9741 case OP_ATR_MODULUS:
9742 {
31dedfee 9743 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9744
5b4ee69b 9745 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9746 if (noside == EVAL_SKIP)
9747 goto nosideret;
4c4b4cd2 9748
76a01679 9749 if (!ada_is_modular_type (type_arg))
323e0a4a 9750 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9751
76a01679
JB
9752 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9753 ada_modulus (type_arg));
4c4b4cd2
PH
9754 }
9755
9756
9757 case OP_ATR_POS:
9758 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 if (noside == EVAL_SKIP)
76a01679 9761 goto nosideret;
3cb382c9
UW
9762 type = builtin_type (exp->gdbarch)->builtin_int;
9763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9764 return value_zero (type, not_lval);
14f9c5c9 9765 else
3cb382c9 9766 return value_pos_atr (type, arg1);
14f9c5c9 9767
4c4b4cd2
PH
9768 case OP_ATR_SIZE:
9769 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9770 type = value_type (arg1);
9771
9772 /* If the argument is a reference, then dereference its type, since
9773 the user is really asking for the size of the actual object,
9774 not the size of the pointer. */
9775 if (TYPE_CODE (type) == TYPE_CODE_REF)
9776 type = TYPE_TARGET_TYPE (type);
9777
4c4b4cd2 9778 if (noside == EVAL_SKIP)
76a01679 9779 goto nosideret;
4c4b4cd2 9780 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9781 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9782 else
22601c15 9783 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9784 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9785
9786 case OP_ATR_VAL:
9787 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9789 type = exp->elts[pc + 2].type;
14f9c5c9 9790 if (noside == EVAL_SKIP)
76a01679 9791 goto nosideret;
4c4b4cd2 9792 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9793 return value_zero (type, not_lval);
4c4b4cd2 9794 else
76a01679 9795 return value_val_atr (type, arg1);
4c4b4cd2
PH
9796
9797 case BINOP_EXP:
9798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9799 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9800 if (noside == EVAL_SKIP)
9801 goto nosideret;
9802 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9803 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9804 else
f44316fa
UW
9805 {
9806 /* For integer exponentiation operations,
9807 only promote the first argument. */
9808 if (is_integral_type (value_type (arg2)))
9809 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9810 else
9811 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9812
9813 return value_binop (arg1, arg2, op);
9814 }
4c4b4cd2
PH
9815
9816 case UNOP_PLUS:
9817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9818 if (noside == EVAL_SKIP)
9819 goto nosideret;
9820 else
9821 return arg1;
9822
9823 case UNOP_ABS:
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 if (noside == EVAL_SKIP)
9826 goto nosideret;
f44316fa 9827 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9828 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9829 return value_neg (arg1);
14f9c5c9 9830 else
4c4b4cd2 9831 return arg1;
14f9c5c9
AS
9832
9833 case UNOP_IND:
6b0d7253 9834 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9835 if (noside == EVAL_SKIP)
4c4b4cd2 9836 goto nosideret;
df407dfe 9837 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9839 {
9840 if (ada_is_array_descriptor_type (type))
9841 /* GDB allows dereferencing GNAT array descriptors. */
9842 {
9843 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 9844
4c4b4cd2 9845 if (arrType == NULL)
323e0a4a 9846 error (_("Attempt to dereference null array pointer."));
00a4c844 9847 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9848 }
9849 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9850 || TYPE_CODE (type) == TYPE_CODE_REF
9851 /* In C you can dereference an array to get the 1st elt. */
9852 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9853 {
9854 type = to_static_fixed_type
9855 (ada_aligned_type
9856 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9857 check_size (type);
9858 return value_zero (type, lval_memory);
9859 }
4c4b4cd2 9860 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9861 {
9862 /* GDB allows dereferencing an int. */
9863 if (expect_type == NULL)
9864 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9865 lval_memory);
9866 else
9867 {
9868 expect_type =
9869 to_static_fixed_type (ada_aligned_type (expect_type));
9870 return value_zero (expect_type, lval_memory);
9871 }
9872 }
4c4b4cd2 9873 else
323e0a4a 9874 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9875 }
0963b4bd 9876 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9877 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9878
96967637
JB
9879 if (TYPE_CODE (type) == TYPE_CODE_INT)
9880 /* GDB allows dereferencing an int. If we were given
9881 the expect_type, then use that as the target type.
9882 Otherwise, assume that the target type is an int. */
9883 {
9884 if (expect_type != NULL)
9885 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9886 arg1));
9887 else
9888 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9889 (CORE_ADDR) value_as_address (arg1));
9890 }
6b0d7253 9891
4c4b4cd2
PH
9892 if (ada_is_array_descriptor_type (type))
9893 /* GDB allows dereferencing GNAT array descriptors. */
9894 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9895 else
4c4b4cd2 9896 return ada_value_ind (arg1);
14f9c5c9
AS
9897
9898 case STRUCTOP_STRUCT:
9899 tem = longest_to_int (exp->elts[pc + 1].longconst);
9900 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9902 if (noside == EVAL_SKIP)
4c4b4cd2 9903 goto nosideret;
14f9c5c9 9904 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9905 {
df407dfe 9906 struct type *type1 = value_type (arg1);
5b4ee69b 9907
76a01679
JB
9908 if (ada_is_tagged_type (type1, 1))
9909 {
9910 type = ada_lookup_struct_elt_type (type1,
9911 &exp->elts[pc + 2].string,
9912 1, 1, NULL);
9913 if (type == NULL)
9914 /* In this case, we assume that the field COULD exist
9915 in some extension of the type. Return an object of
9916 "type" void, which will match any formal
0963b4bd 9917 (see ada_type_match). */
30b15541
UW
9918 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9919 lval_memory);
76a01679
JB
9920 }
9921 else
9922 type =
9923 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9924 0, NULL);
9925
9926 return value_zero (ada_aligned_type (type), lval_memory);
9927 }
14f9c5c9 9928 else
284614f0
JB
9929 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9930 arg1 = unwrap_value (arg1);
9931 return ada_to_fixed_value (arg1);
9932
14f9c5c9 9933 case OP_TYPE:
4c4b4cd2
PH
9934 /* The value is not supposed to be used. This is here to make it
9935 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9936 (*pos) += 2;
9937 if (noside == EVAL_SKIP)
4c4b4cd2 9938 goto nosideret;
14f9c5c9 9939 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9940 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9941 else
323e0a4a 9942 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9943
9944 case OP_AGGREGATE:
9945 case OP_CHOICES:
9946 case OP_OTHERS:
9947 case OP_DISCRETE_RANGE:
9948 case OP_POSITIONAL:
9949 case OP_NAME:
9950 if (noside == EVAL_NORMAL)
9951 switch (op)
9952 {
9953 case OP_NAME:
9954 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9955 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9956 case OP_AGGREGATE:
9957 error (_("Aggregates only allowed on the right of an assignment"));
9958 default:
0963b4bd
MS
9959 internal_error (__FILE__, __LINE__,
9960 _("aggregate apparently mangled"));
52ce6436
PH
9961 }
9962
9963 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9964 *pos += oplen - 1;
9965 for (tem = 0; tem < nargs; tem += 1)
9966 ada_evaluate_subexp (NULL, exp, pos, noside);
9967 goto nosideret;
14f9c5c9
AS
9968 }
9969
9970nosideret:
22601c15 9971 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9972}
14f9c5c9 9973\f
d2e4a39e 9974
4c4b4cd2 9975 /* Fixed point */
14f9c5c9
AS
9976
9977/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9978 type name that encodes the 'small and 'delta information.
4c4b4cd2 9979 Otherwise, return NULL. */
14f9c5c9 9980
d2e4a39e 9981static const char *
ebf56fd3 9982fixed_type_info (struct type *type)
14f9c5c9 9983{
d2e4a39e 9984 const char *name = ada_type_name (type);
14f9c5c9
AS
9985 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9986
d2e4a39e
AS
9987 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9988 {
14f9c5c9 9989 const char *tail = strstr (name, "___XF_");
5b4ee69b 9990
14f9c5c9 9991 if (tail == NULL)
4c4b4cd2 9992 return NULL;
d2e4a39e 9993 else
4c4b4cd2 9994 return tail + 5;
14f9c5c9
AS
9995 }
9996 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9997 return fixed_type_info (TYPE_TARGET_TYPE (type));
9998 else
9999 return NULL;
10000}
10001
4c4b4cd2 10002/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10003
10004int
ebf56fd3 10005ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10006{
10007 return fixed_type_info (type) != NULL;
10008}
10009
4c4b4cd2
PH
10010/* Return non-zero iff TYPE represents a System.Address type. */
10011
10012int
10013ada_is_system_address_type (struct type *type)
10014{
10015 return (TYPE_NAME (type)
10016 && strcmp (TYPE_NAME (type), "system__address") == 0);
10017}
10018
14f9c5c9
AS
10019/* Assuming that TYPE is the representation of an Ada fixed-point
10020 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10021 delta cannot be determined. */
14f9c5c9
AS
10022
10023DOUBLEST
ebf56fd3 10024ada_delta (struct type *type)
14f9c5c9
AS
10025{
10026 const char *encoding = fixed_type_info (type);
facc390f 10027 DOUBLEST num, den;
14f9c5c9 10028
facc390f
JB
10029 /* Strictly speaking, num and den are encoded as integer. However,
10030 they may not fit into a long, and they will have to be converted
10031 to DOUBLEST anyway. So scan them as DOUBLEST. */
10032 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10033 &num, &den) < 2)
14f9c5c9 10034 return -1.0;
d2e4a39e 10035 else
facc390f 10036 return num / den;
14f9c5c9
AS
10037}
10038
10039/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10040 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10041
10042static DOUBLEST
ebf56fd3 10043scaling_factor (struct type *type)
14f9c5c9
AS
10044{
10045 const char *encoding = fixed_type_info (type);
facc390f 10046 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10047 int n;
d2e4a39e 10048
facc390f
JB
10049 /* Strictly speaking, num's and den's are encoded as integer. However,
10050 they may not fit into a long, and they will have to be converted
10051 to DOUBLEST anyway. So scan them as DOUBLEST. */
10052 n = sscanf (encoding,
10053 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10054 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10055 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10056
10057 if (n < 2)
10058 return 1.0;
10059 else if (n == 4)
facc390f 10060 return num1 / den1;
d2e4a39e 10061 else
facc390f 10062 return num0 / den0;
14f9c5c9
AS
10063}
10064
10065
10066/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10067 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10068
10069DOUBLEST
ebf56fd3 10070ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10071{
d2e4a39e 10072 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10073}
10074
4c4b4cd2
PH
10075/* The representation of a fixed-point value of type TYPE
10076 corresponding to the value X. */
14f9c5c9
AS
10077
10078LONGEST
ebf56fd3 10079ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10080{
10081 return (LONGEST) (x / scaling_factor (type) + 0.5);
10082}
10083
14f9c5c9 10084\f
d2e4a39e 10085
4c4b4cd2 10086 /* Range types */
14f9c5c9
AS
10087
10088/* Scan STR beginning at position K for a discriminant name, and
10089 return the value of that discriminant field of DVAL in *PX. If
10090 PNEW_K is not null, put the position of the character beyond the
10091 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10092 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10093
10094static int
07d8f827 10095scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10096 int *pnew_k)
14f9c5c9
AS
10097{
10098 static char *bound_buffer = NULL;
10099 static size_t bound_buffer_len = 0;
10100 char *bound;
10101 char *pend;
d2e4a39e 10102 struct value *bound_val;
14f9c5c9
AS
10103
10104 if (dval == NULL || str == NULL || str[k] == '\0')
10105 return 0;
10106
d2e4a39e 10107 pend = strstr (str + k, "__");
14f9c5c9
AS
10108 if (pend == NULL)
10109 {
d2e4a39e 10110 bound = str + k;
14f9c5c9
AS
10111 k += strlen (bound);
10112 }
d2e4a39e 10113 else
14f9c5c9 10114 {
d2e4a39e 10115 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10116 bound = bound_buffer;
d2e4a39e
AS
10117 strncpy (bound_buffer, str + k, pend - (str + k));
10118 bound[pend - (str + k)] = '\0';
10119 k = pend - str;
14f9c5c9 10120 }
d2e4a39e 10121
df407dfe 10122 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10123 if (bound_val == NULL)
10124 return 0;
10125
10126 *px = value_as_long (bound_val);
10127 if (pnew_k != NULL)
10128 *pnew_k = k;
10129 return 1;
10130}
10131
10132/* Value of variable named NAME in the current environment. If
10133 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10134 otherwise causes an error with message ERR_MSG. */
10135
d2e4a39e
AS
10136static struct value *
10137get_var_value (char *name, char *err_msg)
14f9c5c9 10138{
4c4b4cd2 10139 struct ada_symbol_info *syms;
14f9c5c9
AS
10140 int nsyms;
10141
4c4b4cd2
PH
10142 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10143 &syms);
14f9c5c9
AS
10144
10145 if (nsyms != 1)
10146 {
10147 if (err_msg == NULL)
4c4b4cd2 10148 return 0;
14f9c5c9 10149 else
8a3fe4f8 10150 error (("%s"), err_msg);
14f9c5c9
AS
10151 }
10152
4c4b4cd2 10153 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10154}
d2e4a39e 10155
14f9c5c9 10156/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10157 no such variable found, returns 0, and sets *FLAG to 0. If
10158 successful, sets *FLAG to 1. */
10159
14f9c5c9 10160LONGEST
4c4b4cd2 10161get_int_var_value (char *name, int *flag)
14f9c5c9 10162{
4c4b4cd2 10163 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10164
14f9c5c9
AS
10165 if (var_val == 0)
10166 {
10167 if (flag != NULL)
4c4b4cd2 10168 *flag = 0;
14f9c5c9
AS
10169 return 0;
10170 }
10171 else
10172 {
10173 if (flag != NULL)
4c4b4cd2 10174 *flag = 1;
14f9c5c9
AS
10175 return value_as_long (var_val);
10176 }
10177}
d2e4a39e 10178
14f9c5c9
AS
10179
10180/* Return a range type whose base type is that of the range type named
10181 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10182 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10183 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10184 corresponding range type from debug information; fall back to using it
10185 if symbol lookup fails. If a new type must be created, allocate it
10186 like ORIG_TYPE was. The bounds information, in general, is encoded
10187 in NAME, the base type given in the named range type. */
14f9c5c9 10188
d2e4a39e 10189static struct type *
28c85d6c 10190to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10191{
28c85d6c 10192 char *name;
14f9c5c9 10193 struct type *base_type;
d2e4a39e 10194 char *subtype_info;
14f9c5c9 10195
28c85d6c
JB
10196 gdb_assert (raw_type != NULL);
10197 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10198
1ce677a4 10199 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10200 base_type = TYPE_TARGET_TYPE (raw_type);
10201 else
10202 base_type = raw_type;
10203
28c85d6c 10204 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10205 subtype_info = strstr (name, "___XD");
10206 if (subtype_info == NULL)
690cc4eb 10207 {
43bbcdc2
PH
10208 LONGEST L = ada_discrete_type_low_bound (raw_type);
10209 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10210
690cc4eb
PH
10211 if (L < INT_MIN || U > INT_MAX)
10212 return raw_type;
10213 else
28c85d6c 10214 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10215 ada_discrete_type_low_bound (raw_type),
10216 ada_discrete_type_high_bound (raw_type));
690cc4eb 10217 }
14f9c5c9
AS
10218 else
10219 {
10220 static char *name_buf = NULL;
10221 static size_t name_len = 0;
10222 int prefix_len = subtype_info - name;
10223 LONGEST L, U;
10224 struct type *type;
10225 char *bounds_str;
10226 int n;
10227
10228 GROW_VECT (name_buf, name_len, prefix_len + 5);
10229 strncpy (name_buf, name, prefix_len);
10230 name_buf[prefix_len] = '\0';
10231
10232 subtype_info += 5;
10233 bounds_str = strchr (subtype_info, '_');
10234 n = 1;
10235
d2e4a39e 10236 if (*subtype_info == 'L')
4c4b4cd2
PH
10237 {
10238 if (!ada_scan_number (bounds_str, n, &L, &n)
10239 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10240 return raw_type;
10241 if (bounds_str[n] == '_')
10242 n += 2;
0963b4bd 10243 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10244 n += 1;
10245 subtype_info += 1;
10246 }
d2e4a39e 10247 else
4c4b4cd2
PH
10248 {
10249 int ok;
5b4ee69b 10250
4c4b4cd2
PH
10251 strcpy (name_buf + prefix_len, "___L");
10252 L = get_int_var_value (name_buf, &ok);
10253 if (!ok)
10254 {
323e0a4a 10255 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10256 L = 1;
10257 }
10258 }
14f9c5c9 10259
d2e4a39e 10260 if (*subtype_info == 'U')
4c4b4cd2
PH
10261 {
10262 if (!ada_scan_number (bounds_str, n, &U, &n)
10263 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10264 return raw_type;
10265 }
d2e4a39e 10266 else
4c4b4cd2
PH
10267 {
10268 int ok;
5b4ee69b 10269
4c4b4cd2
PH
10270 strcpy (name_buf + prefix_len, "___U");
10271 U = get_int_var_value (name_buf, &ok);
10272 if (!ok)
10273 {
323e0a4a 10274 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10275 U = L;
10276 }
10277 }
14f9c5c9 10278
28c85d6c 10279 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10280 TYPE_NAME (type) = name;
14f9c5c9
AS
10281 return type;
10282 }
10283}
10284
4c4b4cd2
PH
10285/* True iff NAME is the name of a range type. */
10286
14f9c5c9 10287int
d2e4a39e 10288ada_is_range_type_name (const char *name)
14f9c5c9
AS
10289{
10290 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10291}
14f9c5c9 10292\f
d2e4a39e 10293
4c4b4cd2
PH
10294 /* Modular types */
10295
10296/* True iff TYPE is an Ada modular type. */
14f9c5c9 10297
14f9c5c9 10298int
d2e4a39e 10299ada_is_modular_type (struct type *type)
14f9c5c9 10300{
4c4b4cd2 10301 struct type *subranged_type = base_type (type);
14f9c5c9
AS
10302
10303 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10304 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10305 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10306}
10307
0056e4d5
JB
10308/* Try to determine the lower and upper bounds of the given modular type
10309 using the type name only. Return non-zero and set L and U as the lower
10310 and upper bounds (respectively) if successful. */
10311
10312int
10313ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10314{
10315 char *name = ada_type_name (type);
10316 char *suffix;
10317 int k;
10318 LONGEST U;
10319
10320 if (name == NULL)
10321 return 0;
10322
10323 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10324 we are looking for static bounds, which means an __XDLU suffix.
10325 Moreover, we know that the lower bound of modular types is always
10326 zero, so the actual suffix should start with "__XDLU_0__", and
10327 then be followed by the upper bound value. */
10328 suffix = strstr (name, "__XDLU_0__");
10329 if (suffix == NULL)
10330 return 0;
10331 k = 10;
10332 if (!ada_scan_number (suffix, k, &U, NULL))
10333 return 0;
10334
10335 *modulus = (ULONGEST) U + 1;
10336 return 1;
10337}
10338
4c4b4cd2
PH
10339/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10340
61ee279c 10341ULONGEST
0056e4d5 10342ada_modulus (struct type *type)
14f9c5c9 10343{
43bbcdc2 10344 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10345}
d2e4a39e 10346\f
f7f9143b
JB
10347
10348/* Ada exception catchpoint support:
10349 ---------------------------------
10350
10351 We support 3 kinds of exception catchpoints:
10352 . catchpoints on Ada exceptions
10353 . catchpoints on unhandled Ada exceptions
10354 . catchpoints on failed assertions
10355
10356 Exceptions raised during failed assertions, or unhandled exceptions
10357 could perfectly be caught with the general catchpoint on Ada exceptions.
10358 However, we can easily differentiate these two special cases, and having
10359 the option to distinguish these two cases from the rest can be useful
10360 to zero-in on certain situations.
10361
10362 Exception catchpoints are a specialized form of breakpoint,
10363 since they rely on inserting breakpoints inside known routines
10364 of the GNAT runtime. The implementation therefore uses a standard
10365 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10366 of breakpoint_ops.
10367
0259addd
JB
10368 Support in the runtime for exception catchpoints have been changed
10369 a few times already, and these changes affect the implementation
10370 of these catchpoints. In order to be able to support several
10371 variants of the runtime, we use a sniffer that will determine
10372 the runtime variant used by the program being debugged.
10373
f7f9143b
JB
10374 At this time, we do not support the use of conditions on Ada exception
10375 catchpoints. The COND and COND_STRING fields are therefore set
10376 to NULL (most of the time, see below).
10377
10378 Conditions where EXP_STRING, COND, and COND_STRING are used:
10379
10380 When a user specifies the name of a specific exception in the case
10381 of catchpoints on Ada exceptions, we store the name of that exception
10382 in the EXP_STRING. We then translate this request into an actual
10383 condition stored in COND_STRING, and then parse it into an expression
10384 stored in COND. */
10385
10386/* The different types of catchpoints that we introduced for catching
10387 Ada exceptions. */
10388
10389enum exception_catchpoint_kind
10390{
10391 ex_catch_exception,
10392 ex_catch_exception_unhandled,
10393 ex_catch_assert
10394};
10395
3d0b0fa3
JB
10396/* Ada's standard exceptions. */
10397
10398static char *standard_exc[] = {
10399 "constraint_error",
10400 "program_error",
10401 "storage_error",
10402 "tasking_error"
10403};
10404
0259addd
JB
10405typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10406
10407/* A structure that describes how to support exception catchpoints
10408 for a given executable. */
10409
10410struct exception_support_info
10411{
10412 /* The name of the symbol to break on in order to insert
10413 a catchpoint on exceptions. */
10414 const char *catch_exception_sym;
10415
10416 /* The name of the symbol to break on in order to insert
10417 a catchpoint on unhandled exceptions. */
10418 const char *catch_exception_unhandled_sym;
10419
10420 /* The name of the symbol to break on in order to insert
10421 a catchpoint on failed assertions. */
10422 const char *catch_assert_sym;
10423
10424 /* Assuming that the inferior just triggered an unhandled exception
10425 catchpoint, this function is responsible for returning the address
10426 in inferior memory where the name of that exception is stored.
10427 Return zero if the address could not be computed. */
10428 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10429};
10430
10431static CORE_ADDR ada_unhandled_exception_name_addr (void);
10432static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10433
10434/* The following exception support info structure describes how to
10435 implement exception catchpoints with the latest version of the
10436 Ada runtime (as of 2007-03-06). */
10437
10438static const struct exception_support_info default_exception_support_info =
10439{
10440 "__gnat_debug_raise_exception", /* catch_exception_sym */
10441 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10442 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10443 ada_unhandled_exception_name_addr
10444};
10445
10446/* The following exception support info structure describes how to
10447 implement exception catchpoints with a slightly older version
10448 of the Ada runtime. */
10449
10450static const struct exception_support_info exception_support_info_fallback =
10451{
10452 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10453 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10454 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10455 ada_unhandled_exception_name_addr_from_raise
10456};
10457
10458/* For each executable, we sniff which exception info structure to use
10459 and cache it in the following global variable. */
10460
10461static const struct exception_support_info *exception_info = NULL;
10462
10463/* Inspect the Ada runtime and determine which exception info structure
10464 should be used to provide support for exception catchpoints.
10465
10466 This function will always set exception_info, or raise an error. */
10467
10468static void
10469ada_exception_support_info_sniffer (void)
10470{
10471 struct symbol *sym;
10472
10473 /* If the exception info is already known, then no need to recompute it. */
10474 if (exception_info != NULL)
10475 return;
10476
10477 /* Check the latest (default) exception support info. */
10478 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10479 NULL, VAR_DOMAIN);
10480 if (sym != NULL)
10481 {
10482 exception_info = &default_exception_support_info;
10483 return;
10484 }
10485
10486 /* Try our fallback exception suport info. */
10487 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10488 NULL, VAR_DOMAIN);
10489 if (sym != NULL)
10490 {
10491 exception_info = &exception_support_info_fallback;
10492 return;
10493 }
10494
10495 /* Sometimes, it is normal for us to not be able to find the routine
10496 we are looking for. This happens when the program is linked with
10497 the shared version of the GNAT runtime, and the program has not been
10498 started yet. Inform the user of these two possible causes if
10499 applicable. */
10500
ccefe4c4 10501 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10502 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10503
10504 /* If the symbol does not exist, then check that the program is
10505 already started, to make sure that shared libraries have been
10506 loaded. If it is not started, this may mean that the symbol is
10507 in a shared library. */
10508
10509 if (ptid_get_pid (inferior_ptid) == 0)
10510 error (_("Unable to insert catchpoint. Try to start the program first."));
10511
10512 /* At this point, we know that we are debugging an Ada program and
10513 that the inferior has been started, but we still are not able to
0963b4bd 10514 find the run-time symbols. That can mean that we are in
0259addd
JB
10515 configurable run time mode, or that a-except as been optimized
10516 out by the linker... In any case, at this point it is not worth
10517 supporting this feature. */
10518
10519 error (_("Cannot insert catchpoints in this configuration."));
10520}
10521
10522/* An observer of "executable_changed" events.
10523 Its role is to clear certain cached values that need to be recomputed
10524 each time a new executable is loaded by GDB. */
10525
10526static void
781b42b0 10527ada_executable_changed_observer (void)
0259addd
JB
10528{
10529 /* If the executable changed, then it is possible that the Ada runtime
10530 is different. So we need to invalidate the exception support info
10531 cache. */
10532 exception_info = NULL;
10533}
10534
f7f9143b
JB
10535/* True iff FRAME is very likely to be that of a function that is
10536 part of the runtime system. This is all very heuristic, but is
10537 intended to be used as advice as to what frames are uninteresting
10538 to most users. */
10539
10540static int
10541is_known_support_routine (struct frame_info *frame)
10542{
4ed6b5be 10543 struct symtab_and_line sal;
f7f9143b 10544 char *func_name;
692465f1 10545 enum language func_lang;
f7f9143b 10546 int i;
f7f9143b 10547
4ed6b5be
JB
10548 /* If this code does not have any debugging information (no symtab),
10549 This cannot be any user code. */
f7f9143b 10550
4ed6b5be 10551 find_frame_sal (frame, &sal);
f7f9143b
JB
10552 if (sal.symtab == NULL)
10553 return 1;
10554
4ed6b5be
JB
10555 /* If there is a symtab, but the associated source file cannot be
10556 located, then assume this is not user code: Selecting a frame
10557 for which we cannot display the code would not be very helpful
10558 for the user. This should also take care of case such as VxWorks
10559 where the kernel has some debugging info provided for a few units. */
f7f9143b 10560
9bbc9174 10561 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10562 return 1;
10563
4ed6b5be
JB
10564 /* Check the unit filename againt the Ada runtime file naming.
10565 We also check the name of the objfile against the name of some
10566 known system libraries that sometimes come with debugging info
10567 too. */
10568
f7f9143b
JB
10569 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10570 {
10571 re_comp (known_runtime_file_name_patterns[i]);
10572 if (re_exec (sal.symtab->filename))
10573 return 1;
4ed6b5be
JB
10574 if (sal.symtab->objfile != NULL
10575 && re_exec (sal.symtab->objfile->name))
10576 return 1;
f7f9143b
JB
10577 }
10578
4ed6b5be 10579 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10580
e9e07ba6 10581 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10582 if (func_name == NULL)
10583 return 1;
10584
10585 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10586 {
10587 re_comp (known_auxiliary_function_name_patterns[i]);
10588 if (re_exec (func_name))
10589 return 1;
10590 }
10591
10592 return 0;
10593}
10594
10595/* Find the first frame that contains debugging information and that is not
10596 part of the Ada run-time, starting from FI and moving upward. */
10597
0ef643c8 10598void
f7f9143b
JB
10599ada_find_printable_frame (struct frame_info *fi)
10600{
10601 for (; fi != NULL; fi = get_prev_frame (fi))
10602 {
10603 if (!is_known_support_routine (fi))
10604 {
10605 select_frame (fi);
10606 break;
10607 }
10608 }
10609
10610}
10611
10612/* Assuming that the inferior just triggered an unhandled exception
10613 catchpoint, return the address in inferior memory where the name
10614 of the exception is stored.
10615
10616 Return zero if the address could not be computed. */
10617
10618static CORE_ADDR
10619ada_unhandled_exception_name_addr (void)
0259addd
JB
10620{
10621 return parse_and_eval_address ("e.full_name");
10622}
10623
10624/* Same as ada_unhandled_exception_name_addr, except that this function
10625 should be used when the inferior uses an older version of the runtime,
10626 where the exception name needs to be extracted from a specific frame
10627 several frames up in the callstack. */
10628
10629static CORE_ADDR
10630ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10631{
10632 int frame_level;
10633 struct frame_info *fi;
10634
10635 /* To determine the name of this exception, we need to select
10636 the frame corresponding to RAISE_SYM_NAME. This frame is
10637 at least 3 levels up, so we simply skip the first 3 frames
10638 without checking the name of their associated function. */
10639 fi = get_current_frame ();
10640 for (frame_level = 0; frame_level < 3; frame_level += 1)
10641 if (fi != NULL)
10642 fi = get_prev_frame (fi);
10643
10644 while (fi != NULL)
10645 {
692465f1
JB
10646 char *func_name;
10647 enum language func_lang;
10648
e9e07ba6 10649 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10650 if (func_name != NULL
0259addd 10651 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10652 break; /* We found the frame we were looking for... */
10653 fi = get_prev_frame (fi);
10654 }
10655
10656 if (fi == NULL)
10657 return 0;
10658
10659 select_frame (fi);
10660 return parse_and_eval_address ("id.full_name");
10661}
10662
10663/* Assuming the inferior just triggered an Ada exception catchpoint
10664 (of any type), return the address in inferior memory where the name
10665 of the exception is stored, if applicable.
10666
10667 Return zero if the address could not be computed, or if not relevant. */
10668
10669static CORE_ADDR
10670ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10671 struct breakpoint *b)
10672{
10673 switch (ex)
10674 {
10675 case ex_catch_exception:
10676 return (parse_and_eval_address ("e.full_name"));
10677 break;
10678
10679 case ex_catch_exception_unhandled:
0259addd 10680 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10681 break;
10682
10683 case ex_catch_assert:
10684 return 0; /* Exception name is not relevant in this case. */
10685 break;
10686
10687 default:
10688 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10689 break;
10690 }
10691
10692 return 0; /* Should never be reached. */
10693}
10694
10695/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10696 any error that ada_exception_name_addr_1 might cause to be thrown.
10697 When an error is intercepted, a warning with the error message is printed,
10698 and zero is returned. */
10699
10700static CORE_ADDR
10701ada_exception_name_addr (enum exception_catchpoint_kind ex,
10702 struct breakpoint *b)
10703{
10704 struct gdb_exception e;
10705 CORE_ADDR result = 0;
10706
10707 TRY_CATCH (e, RETURN_MASK_ERROR)
10708 {
10709 result = ada_exception_name_addr_1 (ex, b);
10710 }
10711
10712 if (e.reason < 0)
10713 {
10714 warning (_("failed to get exception name: %s"), e.message);
10715 return 0;
10716 }
10717
10718 return result;
10719}
10720
10721/* Implement the PRINT_IT method in the breakpoint_ops structure
10722 for all exception catchpoint kinds. */
10723
10724static enum print_stop_action
10725print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10726{
10727 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10728 char exception_name[256];
10729
10730 if (addr != 0)
10731 {
10732 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10733 exception_name [sizeof (exception_name) - 1] = '\0';
10734 }
10735
10736 ada_find_printable_frame (get_current_frame ());
10737
10738 annotate_catchpoint (b->number);
10739 switch (ex)
10740 {
10741 case ex_catch_exception:
10742 if (addr != 0)
10743 printf_filtered (_("\nCatchpoint %d, %s at "),
10744 b->number, exception_name);
10745 else
10746 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10747 break;
10748 case ex_catch_exception_unhandled:
10749 if (addr != 0)
10750 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10751 b->number, exception_name);
10752 else
10753 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10754 b->number);
10755 break;
10756 case ex_catch_assert:
10757 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10758 b->number);
10759 break;
10760 }
10761
10762 return PRINT_SRC_AND_LOC;
10763}
10764
10765/* Implement the PRINT_ONE method in the breakpoint_ops structure
10766 for all exception catchpoint kinds. */
10767
10768static void
10769print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10770 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10771{
79a45b7d
TT
10772 struct value_print_options opts;
10773
10774 get_user_print_options (&opts);
10775 if (opts.addressprint)
f7f9143b
JB
10776 {
10777 annotate_field (4);
5af949e3 10778 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10779 }
10780
10781 annotate_field (5);
a6d9a66e 10782 *last_loc = b->loc;
f7f9143b
JB
10783 switch (ex)
10784 {
10785 case ex_catch_exception:
10786 if (b->exp_string != NULL)
10787 {
10788 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10789
10790 ui_out_field_string (uiout, "what", msg);
10791 xfree (msg);
10792 }
10793 else
10794 ui_out_field_string (uiout, "what", "all Ada exceptions");
10795
10796 break;
10797
10798 case ex_catch_exception_unhandled:
10799 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10800 break;
10801
10802 case ex_catch_assert:
10803 ui_out_field_string (uiout, "what", "failed Ada assertions");
10804 break;
10805
10806 default:
10807 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10808 break;
10809 }
10810}
10811
10812/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10813 for all exception catchpoint kinds. */
10814
10815static void
10816print_mention_exception (enum exception_catchpoint_kind ex,
10817 struct breakpoint *b)
10818{
10819 switch (ex)
10820 {
10821 case ex_catch_exception:
10822 if (b->exp_string != NULL)
10823 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10824 b->number, b->exp_string);
10825 else
10826 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10827
10828 break;
10829
10830 case ex_catch_exception_unhandled:
10831 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10832 b->number);
10833 break;
10834
10835 case ex_catch_assert:
10836 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10837 break;
10838
10839 default:
10840 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10841 break;
10842 }
10843}
10844
6149aea9
PA
10845/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10846 for all exception catchpoint kinds. */
10847
10848static void
10849print_recreate_exception (enum exception_catchpoint_kind ex,
10850 struct breakpoint *b, struct ui_file *fp)
10851{
10852 switch (ex)
10853 {
10854 case ex_catch_exception:
10855 fprintf_filtered (fp, "catch exception");
10856 if (b->exp_string != NULL)
10857 fprintf_filtered (fp, " %s", b->exp_string);
10858 break;
10859
10860 case ex_catch_exception_unhandled:
78076abc 10861 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
10862 break;
10863
10864 case ex_catch_assert:
10865 fprintf_filtered (fp, "catch assert");
10866 break;
10867
10868 default:
10869 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10870 }
10871}
10872
f7f9143b
JB
10873/* Virtual table for "catch exception" breakpoints. */
10874
10875static enum print_stop_action
10876print_it_catch_exception (struct breakpoint *b)
10877{
10878 return print_it_exception (ex_catch_exception, b);
10879}
10880
10881static void
a6d9a66e 10882print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10883{
a6d9a66e 10884 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10885}
10886
10887static void
10888print_mention_catch_exception (struct breakpoint *b)
10889{
10890 print_mention_exception (ex_catch_exception, b);
10891}
10892
6149aea9
PA
10893static void
10894print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10895{
10896 print_recreate_exception (ex_catch_exception, b, fp);
10897}
10898
f7f9143b
JB
10899static struct breakpoint_ops catch_exception_breakpoint_ops =
10900{
ce78b96d
JB
10901 NULL, /* insert */
10902 NULL, /* remove */
10903 NULL, /* breakpoint_hit */
e09342b5 10904 NULL, /* resources_needed */
f7f9143b
JB
10905 print_it_catch_exception,
10906 print_one_catch_exception,
6149aea9
PA
10907 print_mention_catch_exception,
10908 print_recreate_catch_exception
f7f9143b
JB
10909};
10910
10911/* Virtual table for "catch exception unhandled" breakpoints. */
10912
10913static enum print_stop_action
10914print_it_catch_exception_unhandled (struct breakpoint *b)
10915{
10916 return print_it_exception (ex_catch_exception_unhandled, b);
10917}
10918
10919static void
a6d9a66e
UW
10920print_one_catch_exception_unhandled (struct breakpoint *b,
10921 struct bp_location **last_loc)
f7f9143b 10922{
a6d9a66e 10923 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10924}
10925
10926static void
10927print_mention_catch_exception_unhandled (struct breakpoint *b)
10928{
10929 print_mention_exception (ex_catch_exception_unhandled, b);
10930}
10931
6149aea9
PA
10932static void
10933print_recreate_catch_exception_unhandled (struct breakpoint *b,
10934 struct ui_file *fp)
10935{
10936 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10937}
10938
f7f9143b 10939static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10940 NULL, /* insert */
10941 NULL, /* remove */
10942 NULL, /* breakpoint_hit */
e09342b5 10943 NULL, /* resources_needed */
f7f9143b
JB
10944 print_it_catch_exception_unhandled,
10945 print_one_catch_exception_unhandled,
6149aea9
PA
10946 print_mention_catch_exception_unhandled,
10947 print_recreate_catch_exception_unhandled
f7f9143b
JB
10948};
10949
10950/* Virtual table for "catch assert" breakpoints. */
10951
10952static enum print_stop_action
10953print_it_catch_assert (struct breakpoint *b)
10954{
10955 return print_it_exception (ex_catch_assert, b);
10956}
10957
10958static void
a6d9a66e 10959print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10960{
a6d9a66e 10961 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10962}
10963
10964static void
10965print_mention_catch_assert (struct breakpoint *b)
10966{
10967 print_mention_exception (ex_catch_assert, b);
10968}
10969
6149aea9
PA
10970static void
10971print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10972{
10973 print_recreate_exception (ex_catch_assert, b, fp);
10974}
10975
f7f9143b 10976static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10977 NULL, /* insert */
10978 NULL, /* remove */
10979 NULL, /* breakpoint_hit */
e09342b5 10980 NULL, /* resources_needed */
f7f9143b
JB
10981 print_it_catch_assert,
10982 print_one_catch_assert,
6149aea9
PA
10983 print_mention_catch_assert,
10984 print_recreate_catch_assert
f7f9143b
JB
10985};
10986
10987/* Return non-zero if B is an Ada exception catchpoint. */
10988
10989int
10990ada_exception_catchpoint_p (struct breakpoint *b)
10991{
10992 return (b->ops == &catch_exception_breakpoint_ops
10993 || b->ops == &catch_exception_unhandled_breakpoint_ops
10994 || b->ops == &catch_assert_breakpoint_ops);
10995}
10996
f7f9143b
JB
10997/* Return a newly allocated copy of the first space-separated token
10998 in ARGSP, and then adjust ARGSP to point immediately after that
10999 token.
11000
11001 Return NULL if ARGPS does not contain any more tokens. */
11002
11003static char *
11004ada_get_next_arg (char **argsp)
11005{
11006 char *args = *argsp;
11007 char *end;
11008 char *result;
11009
11010 /* Skip any leading white space. */
11011
11012 while (isspace (*args))
11013 args++;
11014
11015 if (args[0] == '\0')
11016 return NULL; /* No more arguments. */
11017
11018 /* Find the end of the current argument. */
11019
11020 end = args;
11021 while (*end != '\0' && !isspace (*end))
11022 end++;
11023
11024 /* Adjust ARGSP to point to the start of the next argument. */
11025
11026 *argsp = end;
11027
11028 /* Make a copy of the current argument and return it. */
11029
11030 result = xmalloc (end - args + 1);
11031 strncpy (result, args, end - args);
11032 result[end - args] = '\0';
11033
11034 return result;
11035}
11036
11037/* Split the arguments specified in a "catch exception" command.
11038 Set EX to the appropriate catchpoint type.
11039 Set EXP_STRING to the name of the specific exception if
11040 specified by the user. */
11041
11042static void
11043catch_ada_exception_command_split (char *args,
11044 enum exception_catchpoint_kind *ex,
11045 char **exp_string)
11046{
11047 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11048 char *exception_name;
11049
11050 exception_name = ada_get_next_arg (&args);
11051 make_cleanup (xfree, exception_name);
11052
11053 /* Check that we do not have any more arguments. Anything else
11054 is unexpected. */
11055
11056 while (isspace (*args))
11057 args++;
11058
11059 if (args[0] != '\0')
11060 error (_("Junk at end of expression"));
11061
11062 discard_cleanups (old_chain);
11063
11064 if (exception_name == NULL)
11065 {
11066 /* Catch all exceptions. */
11067 *ex = ex_catch_exception;
11068 *exp_string = NULL;
11069 }
11070 else if (strcmp (exception_name, "unhandled") == 0)
11071 {
11072 /* Catch unhandled exceptions. */
11073 *ex = ex_catch_exception_unhandled;
11074 *exp_string = NULL;
11075 }
11076 else
11077 {
11078 /* Catch a specific exception. */
11079 *ex = ex_catch_exception;
11080 *exp_string = exception_name;
11081 }
11082}
11083
11084/* Return the name of the symbol on which we should break in order to
11085 implement a catchpoint of the EX kind. */
11086
11087static const char *
11088ada_exception_sym_name (enum exception_catchpoint_kind ex)
11089{
0259addd
JB
11090 gdb_assert (exception_info != NULL);
11091
f7f9143b
JB
11092 switch (ex)
11093 {
11094 case ex_catch_exception:
0259addd 11095 return (exception_info->catch_exception_sym);
f7f9143b
JB
11096 break;
11097 case ex_catch_exception_unhandled:
0259addd 11098 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11099 break;
11100 case ex_catch_assert:
0259addd 11101 return (exception_info->catch_assert_sym);
f7f9143b
JB
11102 break;
11103 default:
11104 internal_error (__FILE__, __LINE__,
11105 _("unexpected catchpoint kind (%d)"), ex);
11106 }
11107}
11108
11109/* Return the breakpoint ops "virtual table" used for catchpoints
11110 of the EX kind. */
11111
11112static struct breakpoint_ops *
4b9eee8c 11113ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11114{
11115 switch (ex)
11116 {
11117 case ex_catch_exception:
11118 return (&catch_exception_breakpoint_ops);
11119 break;
11120 case ex_catch_exception_unhandled:
11121 return (&catch_exception_unhandled_breakpoint_ops);
11122 break;
11123 case ex_catch_assert:
11124 return (&catch_assert_breakpoint_ops);
11125 break;
11126 default:
11127 internal_error (__FILE__, __LINE__,
11128 _("unexpected catchpoint kind (%d)"), ex);
11129 }
11130}
11131
11132/* Return the condition that will be used to match the current exception
11133 being raised with the exception that the user wants to catch. This
11134 assumes that this condition is used when the inferior just triggered
11135 an exception catchpoint.
11136
11137 The string returned is a newly allocated string that needs to be
11138 deallocated later. */
11139
11140static char *
11141ada_exception_catchpoint_cond_string (const char *exp_string)
11142{
3d0b0fa3
JB
11143 int i;
11144
0963b4bd 11145 /* The standard exceptions are a special case. They are defined in
3d0b0fa3
JB
11146 runtime units that have been compiled without debugging info; if
11147 EXP_STRING is the not-fully-qualified name of a standard
11148 exception (e.g. "constraint_error") then, during the evaluation
11149 of the condition expression, the symbol lookup on this name would
0963b4bd 11150 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11151 may then be set only on user-defined exceptions which have the
11152 same not-fully-qualified name (e.g. my_package.constraint_error).
11153
11154 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11155 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11156 exception constraint_error" is rewritten into "catch exception
11157 standard.constraint_error".
11158
11159 If an exception named contraint_error is defined in another package of
11160 the inferior program, then the only way to specify this exception as a
11161 breakpoint condition is to use its fully-qualified named:
11162 e.g. my_package.constraint_error. */
11163
11164 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11165 {
11166 if (strcmp (standard_exc [i], exp_string) == 0)
11167 {
11168 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11169 exp_string);
11170 }
11171 }
f7f9143b
JB
11172 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11173}
11174
11175/* Return the expression corresponding to COND_STRING evaluated at SAL. */
11176
11177static struct expression *
11178ada_parse_catchpoint_condition (char *cond_string,
11179 struct symtab_and_line sal)
11180{
11181 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11182}
11183
11184/* Return the symtab_and_line that should be used to insert an exception
11185 catchpoint of the TYPE kind.
11186
11187 EX_STRING should contain the name of a specific exception
11188 that the catchpoint should catch, or NULL otherwise.
11189
11190 The idea behind all the remaining parameters is that their names match
11191 the name of certain fields in the breakpoint structure that are used to
11192 handle exception catchpoints. This function returns the value to which
11193 these fields should be set, depending on the type of catchpoint we need
11194 to create.
11195
11196 If COND and COND_STRING are both non-NULL, any value they might
11197 hold will be free'ed, and then replaced by newly allocated ones.
11198 These parameters are left untouched otherwise. */
11199
11200static struct symtab_and_line
11201ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11202 char **addr_string, char **cond_string,
11203 struct expression **cond, struct breakpoint_ops **ops)
11204{
11205 const char *sym_name;
11206 struct symbol *sym;
11207 struct symtab_and_line sal;
11208
0259addd
JB
11209 /* First, find out which exception support info to use. */
11210 ada_exception_support_info_sniffer ();
11211
11212 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
11213 the Ada exceptions requested by the user. */
11214
11215 sym_name = ada_exception_sym_name (ex);
11216 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11217
11218 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11219 that should be compiled with debugging information. As a result, we
11220 expect to find that symbol in the symtabs. If we don't find it, then
11221 the target most likely does not support Ada exceptions, or we cannot
11222 insert exception breakpoints yet, because the GNAT runtime hasn't been
11223 loaded yet. */
11224
11225 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11226 in such a way that no debugging information is produced for the symbol
11227 we are looking for. In this case, we could search the minimal symbols
11228 as a fall-back mechanism. This would still be operating in degraded
11229 mode, however, as we would still be missing the debugging information
11230 that is needed in order to extract the name of the exception being
11231 raised (this name is printed in the catchpoint message, and is also
11232 used when trying to catch a specific exception). We do not handle
11233 this case for now. */
11234
11235 if (sym == NULL)
0259addd 11236 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
11237
11238 /* Make sure that the symbol we found corresponds to a function. */
11239 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11240 error (_("Symbol \"%s\" is not a function (class = %d)"),
11241 sym_name, SYMBOL_CLASS (sym));
11242
11243 sal = find_function_start_sal (sym, 1);
11244
11245 /* Set ADDR_STRING. */
11246
11247 *addr_string = xstrdup (sym_name);
11248
11249 /* Set the COND and COND_STRING (if not NULL). */
11250
11251 if (cond_string != NULL && cond != NULL)
11252 {
11253 if (*cond_string != NULL)
11254 {
11255 xfree (*cond_string);
11256 *cond_string = NULL;
11257 }
11258 if (*cond != NULL)
11259 {
11260 xfree (*cond);
11261 *cond = NULL;
11262 }
11263 if (exp_string != NULL)
11264 {
11265 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11266 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11267 }
11268 }
11269
11270 /* Set OPS. */
4b9eee8c 11271 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
11272
11273 return sal;
11274}
11275
11276/* Parse the arguments (ARGS) of the "catch exception" command.
11277
11278 Set TYPE to the appropriate exception catchpoint type.
11279 If the user asked the catchpoint to catch only a specific
11280 exception, then save the exception name in ADDR_STRING.
11281
11282 See ada_exception_sal for a description of all the remaining
11283 function arguments of this function. */
11284
11285struct symtab_and_line
11286ada_decode_exception_location (char *args, char **addr_string,
11287 char **exp_string, char **cond_string,
11288 struct expression **cond,
11289 struct breakpoint_ops **ops)
11290{
11291 enum exception_catchpoint_kind ex;
11292
11293 catch_ada_exception_command_split (args, &ex, exp_string);
11294 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11295 cond, ops);
11296}
11297
11298struct symtab_and_line
11299ada_decode_assert_location (char *args, char **addr_string,
11300 struct breakpoint_ops **ops)
11301{
11302 /* Check that no argument where provided at the end of the command. */
11303
11304 if (args != NULL)
11305 {
11306 while (isspace (*args))
11307 args++;
11308 if (*args != '\0')
11309 error (_("Junk at end of arguments."));
11310 }
11311
11312 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11313 ops);
11314}
11315
4c4b4cd2
PH
11316 /* Operators */
11317/* Information about operators given special treatment in functions
11318 below. */
11319/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11320
11321#define ADA_OPERATORS \
11322 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11323 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11324 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11325 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11326 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11327 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11328 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11329 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11330 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11331 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11332 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11333 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11334 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11335 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11336 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11337 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11338 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11339 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11340 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11341
11342static void
554794dc
SDJ
11343ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11344 int *argsp)
4c4b4cd2
PH
11345{
11346 switch (exp->elts[pc - 1].opcode)
11347 {
76a01679 11348 default:
4c4b4cd2
PH
11349 operator_length_standard (exp, pc, oplenp, argsp);
11350 break;
11351
11352#define OP_DEFN(op, len, args, binop) \
11353 case op: *oplenp = len; *argsp = args; break;
11354 ADA_OPERATORS;
11355#undef OP_DEFN
52ce6436
PH
11356
11357 case OP_AGGREGATE:
11358 *oplenp = 3;
11359 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11360 break;
11361
11362 case OP_CHOICES:
11363 *oplenp = 3;
11364 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11365 break;
4c4b4cd2
PH
11366 }
11367}
11368
c0201579
JK
11369/* Implementation of the exp_descriptor method operator_check. */
11370
11371static int
11372ada_operator_check (struct expression *exp, int pos,
11373 int (*objfile_func) (struct objfile *objfile, void *data),
11374 void *data)
11375{
11376 const union exp_element *const elts = exp->elts;
11377 struct type *type = NULL;
11378
11379 switch (elts[pos].opcode)
11380 {
11381 case UNOP_IN_RANGE:
11382 case UNOP_QUAL:
11383 type = elts[pos + 1].type;
11384 break;
11385
11386 default:
11387 return operator_check_standard (exp, pos, objfile_func, data);
11388 }
11389
11390 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11391
11392 if (type && TYPE_OBJFILE (type)
11393 && (*objfile_func) (TYPE_OBJFILE (type), data))
11394 return 1;
11395
11396 return 0;
11397}
11398
4c4b4cd2
PH
11399static char *
11400ada_op_name (enum exp_opcode opcode)
11401{
11402 switch (opcode)
11403 {
76a01679 11404 default:
4c4b4cd2 11405 return op_name_standard (opcode);
52ce6436 11406
4c4b4cd2
PH
11407#define OP_DEFN(op, len, args, binop) case op: return #op;
11408 ADA_OPERATORS;
11409#undef OP_DEFN
52ce6436
PH
11410
11411 case OP_AGGREGATE:
11412 return "OP_AGGREGATE";
11413 case OP_CHOICES:
11414 return "OP_CHOICES";
11415 case OP_NAME:
11416 return "OP_NAME";
4c4b4cd2
PH
11417 }
11418}
11419
11420/* As for operator_length, but assumes PC is pointing at the first
11421 element of the operator, and gives meaningful results only for the
52ce6436 11422 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11423
11424static void
76a01679
JB
11425ada_forward_operator_length (struct expression *exp, int pc,
11426 int *oplenp, int *argsp)
4c4b4cd2 11427{
76a01679 11428 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11429 {
11430 default:
11431 *oplenp = *argsp = 0;
11432 break;
52ce6436 11433
4c4b4cd2
PH
11434#define OP_DEFN(op, len, args, binop) \
11435 case op: *oplenp = len; *argsp = args; break;
11436 ADA_OPERATORS;
11437#undef OP_DEFN
52ce6436
PH
11438
11439 case OP_AGGREGATE:
11440 *oplenp = 3;
11441 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11442 break;
11443
11444 case OP_CHOICES:
11445 *oplenp = 3;
11446 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11447 break;
11448
11449 case OP_STRING:
11450 case OP_NAME:
11451 {
11452 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11453
52ce6436
PH
11454 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11455 *argsp = 0;
11456 break;
11457 }
4c4b4cd2
PH
11458 }
11459}
11460
11461static int
11462ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11463{
11464 enum exp_opcode op = exp->elts[elt].opcode;
11465 int oplen, nargs;
11466 int pc = elt;
11467 int i;
76a01679 11468
4c4b4cd2
PH
11469 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11470
76a01679 11471 switch (op)
4c4b4cd2 11472 {
76a01679 11473 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11474 case OP_ATR_FIRST:
11475 case OP_ATR_LAST:
11476 case OP_ATR_LENGTH:
11477 case OP_ATR_IMAGE:
11478 case OP_ATR_MAX:
11479 case OP_ATR_MIN:
11480 case OP_ATR_MODULUS:
11481 case OP_ATR_POS:
11482 case OP_ATR_SIZE:
11483 case OP_ATR_TAG:
11484 case OP_ATR_VAL:
11485 break;
11486
11487 case UNOP_IN_RANGE:
11488 case UNOP_QUAL:
323e0a4a
AC
11489 /* XXX: gdb_sprint_host_address, type_sprint */
11490 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11491 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11492 fprintf_filtered (stream, " (");
11493 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11494 fprintf_filtered (stream, ")");
11495 break;
11496 case BINOP_IN_BOUNDS:
52ce6436
PH
11497 fprintf_filtered (stream, " (%d)",
11498 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11499 break;
11500 case TERNOP_IN_RANGE:
11501 break;
11502
52ce6436
PH
11503 case OP_AGGREGATE:
11504 case OP_OTHERS:
11505 case OP_DISCRETE_RANGE:
11506 case OP_POSITIONAL:
11507 case OP_CHOICES:
11508 break;
11509
11510 case OP_NAME:
11511 case OP_STRING:
11512 {
11513 char *name = &exp->elts[elt + 2].string;
11514 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 11515
52ce6436
PH
11516 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11517 break;
11518 }
11519
4c4b4cd2
PH
11520 default:
11521 return dump_subexp_body_standard (exp, stream, elt);
11522 }
11523
11524 elt += oplen;
11525 for (i = 0; i < nargs; i += 1)
11526 elt = dump_subexp (exp, stream, elt);
11527
11528 return elt;
11529}
11530
11531/* The Ada extension of print_subexp (q.v.). */
11532
76a01679
JB
11533static void
11534ada_print_subexp (struct expression *exp, int *pos,
11535 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11536{
52ce6436 11537 int oplen, nargs, i;
4c4b4cd2
PH
11538 int pc = *pos;
11539 enum exp_opcode op = exp->elts[pc].opcode;
11540
11541 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11542
52ce6436 11543 *pos += oplen;
4c4b4cd2
PH
11544 switch (op)
11545 {
11546 default:
52ce6436 11547 *pos -= oplen;
4c4b4cd2
PH
11548 print_subexp_standard (exp, pos, stream, prec);
11549 return;
11550
11551 case OP_VAR_VALUE:
4c4b4cd2
PH
11552 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11553 return;
11554
11555 case BINOP_IN_BOUNDS:
323e0a4a 11556 /* XXX: sprint_subexp */
4c4b4cd2 11557 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11558 fputs_filtered (" in ", stream);
4c4b4cd2 11559 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11560 fputs_filtered ("'range", stream);
4c4b4cd2 11561 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11562 fprintf_filtered (stream, "(%ld)",
11563 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11564 return;
11565
11566 case TERNOP_IN_RANGE:
4c4b4cd2 11567 if (prec >= PREC_EQUAL)
76a01679 11568 fputs_filtered ("(", stream);
323e0a4a 11569 /* XXX: sprint_subexp */
4c4b4cd2 11570 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11571 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11572 print_subexp (exp, pos, stream, PREC_EQUAL);
11573 fputs_filtered (" .. ", stream);
11574 print_subexp (exp, pos, stream, PREC_EQUAL);
11575 if (prec >= PREC_EQUAL)
76a01679
JB
11576 fputs_filtered (")", stream);
11577 return;
4c4b4cd2
PH
11578
11579 case OP_ATR_FIRST:
11580 case OP_ATR_LAST:
11581 case OP_ATR_LENGTH:
11582 case OP_ATR_IMAGE:
11583 case OP_ATR_MAX:
11584 case OP_ATR_MIN:
11585 case OP_ATR_MODULUS:
11586 case OP_ATR_POS:
11587 case OP_ATR_SIZE:
11588 case OP_ATR_TAG:
11589 case OP_ATR_VAL:
4c4b4cd2 11590 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11591 {
11592 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11593 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11594 *pos += 3;
11595 }
4c4b4cd2 11596 else
76a01679 11597 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11598 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11599 if (nargs > 1)
76a01679
JB
11600 {
11601 int tem;
5b4ee69b 11602
76a01679
JB
11603 for (tem = 1; tem < nargs; tem += 1)
11604 {
11605 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11606 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11607 }
11608 fputs_filtered (")", stream);
11609 }
4c4b4cd2 11610 return;
14f9c5c9 11611
4c4b4cd2 11612 case UNOP_QUAL:
4c4b4cd2
PH
11613 type_print (exp->elts[pc + 1].type, "", stream, 0);
11614 fputs_filtered ("'(", stream);
11615 print_subexp (exp, pos, stream, PREC_PREFIX);
11616 fputs_filtered (")", stream);
11617 return;
14f9c5c9 11618
4c4b4cd2 11619 case UNOP_IN_RANGE:
323e0a4a 11620 /* XXX: sprint_subexp */
4c4b4cd2 11621 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11622 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11623 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11624 return;
52ce6436
PH
11625
11626 case OP_DISCRETE_RANGE:
11627 print_subexp (exp, pos, stream, PREC_SUFFIX);
11628 fputs_filtered ("..", stream);
11629 print_subexp (exp, pos, stream, PREC_SUFFIX);
11630 return;
11631
11632 case OP_OTHERS:
11633 fputs_filtered ("others => ", stream);
11634 print_subexp (exp, pos, stream, PREC_SUFFIX);
11635 return;
11636
11637 case OP_CHOICES:
11638 for (i = 0; i < nargs-1; i += 1)
11639 {
11640 if (i > 0)
11641 fputs_filtered ("|", stream);
11642 print_subexp (exp, pos, stream, PREC_SUFFIX);
11643 }
11644 fputs_filtered (" => ", stream);
11645 print_subexp (exp, pos, stream, PREC_SUFFIX);
11646 return;
11647
11648 case OP_POSITIONAL:
11649 print_subexp (exp, pos, stream, PREC_SUFFIX);
11650 return;
11651
11652 case OP_AGGREGATE:
11653 fputs_filtered ("(", stream);
11654 for (i = 0; i < nargs; i += 1)
11655 {
11656 if (i > 0)
11657 fputs_filtered (", ", stream);
11658 print_subexp (exp, pos, stream, PREC_SUFFIX);
11659 }
11660 fputs_filtered (")", stream);
11661 return;
4c4b4cd2
PH
11662 }
11663}
14f9c5c9
AS
11664
11665/* Table mapping opcodes into strings for printing operators
11666 and precedences of the operators. */
11667
d2e4a39e
AS
11668static const struct op_print ada_op_print_tab[] = {
11669 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11670 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11671 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11672 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11673 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11674 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11675 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11676 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11677 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11678 {">=", BINOP_GEQ, PREC_ORDER, 0},
11679 {">", BINOP_GTR, PREC_ORDER, 0},
11680 {"<", BINOP_LESS, PREC_ORDER, 0},
11681 {">>", BINOP_RSH, PREC_SHIFT, 0},
11682 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11683 {"+", BINOP_ADD, PREC_ADD, 0},
11684 {"-", BINOP_SUB, PREC_ADD, 0},
11685 {"&", BINOP_CONCAT, PREC_ADD, 0},
11686 {"*", BINOP_MUL, PREC_MUL, 0},
11687 {"/", BINOP_DIV, PREC_MUL, 0},
11688 {"rem", BINOP_REM, PREC_MUL, 0},
11689 {"mod", BINOP_MOD, PREC_MUL, 0},
11690 {"**", BINOP_EXP, PREC_REPEAT, 0},
11691 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11692 {"-", UNOP_NEG, PREC_PREFIX, 0},
11693 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11694 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11695 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11696 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11697 {".all", UNOP_IND, PREC_SUFFIX, 1},
11698 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11699 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11700 {NULL, 0, 0, 0}
14f9c5c9
AS
11701};
11702\f
72d5681a
PH
11703enum ada_primitive_types {
11704 ada_primitive_type_int,
11705 ada_primitive_type_long,
11706 ada_primitive_type_short,
11707 ada_primitive_type_char,
11708 ada_primitive_type_float,
11709 ada_primitive_type_double,
11710 ada_primitive_type_void,
11711 ada_primitive_type_long_long,
11712 ada_primitive_type_long_double,
11713 ada_primitive_type_natural,
11714 ada_primitive_type_positive,
11715 ada_primitive_type_system_address,
11716 nr_ada_primitive_types
11717};
6c038f32
PH
11718
11719static void
d4a9a881 11720ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11721 struct language_arch_info *lai)
11722{
d4a9a881 11723 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 11724
72d5681a 11725 lai->primitive_type_vector
d4a9a881 11726 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11727 struct type *);
e9bb382b
UW
11728
11729 lai->primitive_type_vector [ada_primitive_type_int]
11730 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11731 0, "integer");
11732 lai->primitive_type_vector [ada_primitive_type_long]
11733 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11734 0, "long_integer");
11735 lai->primitive_type_vector [ada_primitive_type_short]
11736 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11737 0, "short_integer");
11738 lai->string_char_type
11739 = lai->primitive_type_vector [ada_primitive_type_char]
11740 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11741 lai->primitive_type_vector [ada_primitive_type_float]
11742 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11743 "float", NULL);
11744 lai->primitive_type_vector [ada_primitive_type_double]
11745 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11746 "long_float", NULL);
11747 lai->primitive_type_vector [ada_primitive_type_long_long]
11748 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11749 0, "long_long_integer");
11750 lai->primitive_type_vector [ada_primitive_type_long_double]
11751 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11752 "long_long_float", NULL);
11753 lai->primitive_type_vector [ada_primitive_type_natural]
11754 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11755 0, "natural");
11756 lai->primitive_type_vector [ada_primitive_type_positive]
11757 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11758 0, "positive");
11759 lai->primitive_type_vector [ada_primitive_type_void]
11760 = builtin->builtin_void;
11761
11762 lai->primitive_type_vector [ada_primitive_type_system_address]
11763 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11764 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11765 = "system__address";
fbb06eb1 11766
47e729a8 11767 lai->bool_type_symbol = NULL;
fbb06eb1 11768 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11769}
6c038f32
PH
11770\f
11771 /* Language vector */
11772
11773/* Not really used, but needed in the ada_language_defn. */
11774
11775static void
6c7a06a3 11776emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11777{
6c7a06a3 11778 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11779}
11780
11781static int
11782parse (void)
11783{
11784 warnings_issued = 0;
11785 return ada_parse ();
11786}
11787
11788static const struct exp_descriptor ada_exp_descriptor = {
11789 ada_print_subexp,
11790 ada_operator_length,
c0201579 11791 ada_operator_check,
6c038f32
PH
11792 ada_op_name,
11793 ada_dump_subexp_body,
11794 ada_evaluate_subexp
11795};
11796
11797const struct language_defn ada_language_defn = {
11798 "ada", /* Language name */
11799 language_ada,
6c038f32
PH
11800 range_check_off,
11801 type_check_off,
11802 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11803 that's not quite what this means. */
6c038f32 11804 array_row_major,
9a044a89 11805 macro_expansion_no,
6c038f32
PH
11806 &ada_exp_descriptor,
11807 parse,
11808 ada_error,
11809 resolve,
11810 ada_printchar, /* Print a character constant */
11811 ada_printstr, /* Function to print string constant */
11812 emit_char, /* Function to print single char (not used) */
6c038f32 11813 ada_print_type, /* Print a type using appropriate syntax */
be942545 11814 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11815 ada_val_print, /* Print a value using appropriate syntax */
11816 ada_value_print, /* Print a top-level value */
11817 NULL, /* Language specific skip_trampoline */
2b2d9e11 11818 NULL, /* name_of_this */
6c038f32
PH
11819 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11820 basic_lookup_transparent_type, /* lookup_transparent_type */
11821 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
11822 NULL, /* Language specific
11823 class_name_from_physname */
6c038f32
PH
11824 ada_op_print_tab, /* expression operators for printing */
11825 0, /* c-style arrays */
11826 1, /* String lower bound */
6c038f32 11827 ada_get_gdb_completer_word_break_characters,
41d27058 11828 ada_make_symbol_completion_list,
72d5681a 11829 ada_language_arch_info,
e79af960 11830 ada_print_array_index,
41f1b697 11831 default_pass_by_reference,
ae6a3a4c 11832 c_get_string,
6c038f32
PH
11833 LANG_MAGIC
11834};
11835
2c0b251b
PA
11836/* Provide a prototype to silence -Wmissing-prototypes. */
11837extern initialize_file_ftype _initialize_ada_language;
11838
5bf03f13
JB
11839/* Command-list for the "set/show ada" prefix command. */
11840static struct cmd_list_element *set_ada_list;
11841static struct cmd_list_element *show_ada_list;
11842
11843/* Implement the "set ada" prefix command. */
11844
11845static void
11846set_ada_command (char *arg, int from_tty)
11847{
11848 printf_unfiltered (_(\
11849"\"set ada\" must be followed by the name of a setting.\n"));
11850 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11851}
11852
11853/* Implement the "show ada" prefix command. */
11854
11855static void
11856show_ada_command (char *args, int from_tty)
11857{
11858 cmd_show_list (show_ada_list, from_tty, "");
11859}
11860
d2e4a39e 11861void
6c038f32 11862_initialize_ada_language (void)
14f9c5c9 11863{
6c038f32
PH
11864 add_language (&ada_language_defn);
11865
5bf03f13
JB
11866 add_prefix_cmd ("ada", no_class, set_ada_command,
11867 _("Prefix command for changing Ada-specfic settings"),
11868 &set_ada_list, "set ada ", 0, &setlist);
11869
11870 add_prefix_cmd ("ada", no_class, show_ada_command,
11871 _("Generic command for showing Ada-specific settings."),
11872 &show_ada_list, "show ada ", 0, &showlist);
11873
11874 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11875 &trust_pad_over_xvs, _("\
11876Enable or disable an optimization trusting PAD types over XVS types"), _("\
11877Show whether an optimization trusting PAD types over XVS types is activated"),
11878 _("\
11879This is related to the encoding used by the GNAT compiler. The debugger\n\
11880should normally trust the contents of PAD types, but certain older versions\n\
11881of GNAT have a bug that sometimes causes the information in the PAD type\n\
11882to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11883work around this bug. It is always safe to turn this option \"off\", but\n\
11884this incurs a slight performance penalty, so it is recommended to NOT change\n\
11885this option to \"off\" unless necessary."),
11886 NULL, NULL, &set_ada_list, &show_ada_list);
11887
6c038f32 11888 varsize_limit = 65536;
6c038f32
PH
11889
11890 obstack_init (&symbol_list_obstack);
11891
11892 decoded_names_store = htab_create_alloc
11893 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11894 NULL, xcalloc, xfree);
6b69afc4
JB
11895
11896 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
11897
11898 /* Setup per-inferior data. */
11899 observer_attach_inferior_exit (ada_inferior_exit);
11900 ada_inferior_data
11901 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 11902}
This page took 1.879828 seconds and 4 git commands to generate.