Update gdb.ada/variant_record_packed_array
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
79d43c61 61#include "typeprint.h"
14f9c5c9 62
ccefe4c4 63#include "psymtab.h"
40bc484c 64#include "value.h"
956a9fb9 65#include "mi/mi-common.h"
9ac4176b 66#include "arch-utils.h"
28010a5d 67#include "exceptions.h"
0fcd72ba 68#include "cli/cli-utils.h"
ccefe4c4 69
4c4b4cd2 70/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 71 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
72 Copied from valarith.c. */
73
74#ifndef TRUNCATION_TOWARDS_ZERO
75#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76#endif
77
d2e4a39e 78static struct type *desc_base_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct type *desc_bounds_type (struct type *);
14f9c5c9 81
d2e4a39e 82static struct value *desc_bounds (struct value *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 87
556bdfd4 88static struct type *desc_data_target_type (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_data (struct value *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 93
d2e4a39e 94static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 95
d2e4a39e 96static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 101
d2e4a39e 102static struct type *desc_index_type (struct type *, int);
14f9c5c9 103
d2e4a39e 104static int desc_arity (struct type *);
14f9c5c9 105
d2e4a39e 106static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 107
d2e4a39e 108static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 109
40658b94
PH
110static int full_match (const char *, const char *);
111
40bc484c 112static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 113
4c4b4cd2 114static void ada_add_block_symbols (struct obstack *,
76a01679 115 struct block *, const char *,
2570f2b7 116 domain_enum, struct objfile *, int);
14f9c5c9 117
4c4b4cd2 118static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 121 struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
125static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 131 struct symbol *, struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
4c4b4cd2
PH
135static char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
4c4b4cd2 155static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 156 int, int, int *);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static struct value *get_var_value (char *, char *);
14f9c5c9 199
d2e4a39e 200static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 201
d2e4a39e 202static int equiv_types (struct type *, struct type *);
14f9c5c9 203
d2e4a39e 204static int is_name_suffix (const char *);
14f9c5c9 205
73589123
PH
206static int advance_wild_match (const char **, const char *, int);
207
208static int wild_match (const char *, const char *);
14f9c5c9 209
d2e4a39e 210static struct value *ada_coerce_ref (struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static LONGEST pos_atr (struct value *);
213
3cb382c9 214static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 215
d2e4a39e 216static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 217
4c4b4cd2
PH
218static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
14f9c5c9 220
4c4b4cd2
PH
221static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
0d5cff50 227static int find_struct_field (const char *, struct type *, int,
52ce6436 228 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
229
230static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
4c4b4cd2
PH
233static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
4c4b4cd2
PH
237static int ada_is_direct_array_type (struct type *);
238
72d5681a
PH
239static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
714e53ab
PH
241
242static void check_size (const struct type *);
52ce6436
PH
243
244static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
248 struct expression *,
249 int *, enum noside);
52ce6436
PH
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
852dff6c
JB
275
276static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
277\f
278
76a01679 279
4c4b4cd2 280/* Maximum-sized dynamic type. */
14f9c5c9
AS
281static unsigned int varsize_limit;
282
4c4b4cd2
PH
283/* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285static char *ada_completer_word_break_characters =
286#ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288#else
14f9c5c9 289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 290#endif
14f9c5c9 291
4c4b4cd2 292/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 293static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 294 = "__gnat_ada_main_program_name";
14f9c5c9 295
4c4b4cd2
PH
296/* Limit on the number of warnings to raise per expression evaluation. */
297static int warning_limit = 2;
298
299/* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301static int warnings_issued = 0;
302
303static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305};
306
307static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309};
310
311/* Space for allocating results of ada_lookup_symbol_list. */
312static struct obstack symbol_list_obstack;
313
e802dbe0
JB
314 /* Inferior-specific data. */
315
316/* Per-inferior data for this module. */
317
318struct ada_inferior_data
319{
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
3eecfa55
JB
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
e802dbe0
JB
330};
331
332/* Our key to this module's inferior data. */
333static const struct inferior_data *ada_inferior_data;
334
335/* A cleanup routine for our inferior data. */
336static void
337ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338{
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344}
345
346/* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354static struct ada_inferior_data *
355get_ada_inferior_data (struct inferior *inf)
356{
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367}
368
369/* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372static void
373ada_inferior_exit (struct inferior *inf)
374{
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377}
378
4c4b4cd2
PH
379 /* Utilities */
380
720d1a40 381/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 382 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408static struct type *
409ada_typedef_target_type (struct type *type)
410{
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414}
415
41d27058
JB
416/* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420static const char *
421ada_unqualified_name (const char *decoded_name)
422{
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431}
432
433/* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436static char *
437add_angle_brackets (const char *str)
438{
439 static char *result = NULL;
440
441 xfree (result);
88c15c34 442 result = xstrprintf ("<%s>", str);
41d27058
JB
443 return result;
444}
96d887e8 445
4c4b4cd2
PH
446static char *
447ada_get_gdb_completer_word_break_characters (void)
448{
449 return ada_completer_word_break_characters;
450}
451
e79af960
JB
452/* Print an array element index using the Ada syntax. */
453
454static void
455ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 456 const struct value_print_options *options)
e79af960 457{
79a45b7d 458 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
459 fprintf_filtered (stream, " => ");
460}
461
f27cf670 462/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 464 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 465
f27cf670
AS
466void *
467grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 468{
d2e4a39e
AS
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
4c4b4cd2 473 *size = min_size;
f27cf670 474 vect = xrealloc (vect, *size * element_size);
d2e4a39e 475 }
f27cf670 476 return vect;
14f9c5c9
AS
477}
478
479/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 480 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
481
482static int
ebf56fd3 483field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
484{
485 int len = strlen (target);
5b4ee69b 486
d2e4a39e 487 return
4c4b4cd2
PH
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
14f9c5c9
AS
493}
494
495
872c8b51
JB
496/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
503
504int
505ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507{
508 int fieldno;
872c8b51
JB
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
513 return fieldno;
514
515 if (!maybe_missing)
323e0a4a 516 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 517 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
518
519 return -1;
520}
521
522/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
523
524int
d2e4a39e 525ada_name_prefix_len (const char *name)
14f9c5c9
AS
526{
527 if (name == NULL)
528 return 0;
d2e4a39e 529 else
14f9c5c9 530 {
d2e4a39e 531 const char *p = strstr (name, "___");
5b4ee69b 532
14f9c5c9 533 if (p == NULL)
4c4b4cd2 534 return strlen (name);
14f9c5c9 535 else
4c4b4cd2 536 return p - name;
14f9c5c9
AS
537 }
538}
539
4c4b4cd2
PH
540/* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
14f9c5c9 543static int
d2e4a39e 544is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
545{
546 int len1, len2;
5b4ee69b 547
14f9c5c9
AS
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
4c4b4cd2 552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
553}
554
4c4b4cd2
PH
555/* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
14f9c5c9 557
d2e4a39e 558static struct value *
4c4b4cd2 559coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 560{
61ee279c 561 type = ada_check_typedef (type);
df407dfe 562 if (value_type (val) == type)
4c4b4cd2 563 return val;
d2e4a39e 564 else
14f9c5c9 565 {
4c4b4cd2
PH
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
714e53ab 570 check_size (type);
4c4b4cd2 571
41e8491f
JK
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
74bcbdf3 581 set_value_component_location (result, val);
9bbda503
AC
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
42ae5230 584 set_value_address (result, value_address (val));
2fa15f23 585 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
586 return result;
587 }
588}
589
fc1a4b47
AC
590static const gdb_byte *
591cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
592{
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597}
598
599static CORE_ADDR
ebf56fd3 600cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
601{
602 if (address == 0)
603 return 0;
d2e4a39e 604 else
14f9c5c9
AS
605 return address + offset;
606}
607
4c4b4cd2
PH
608/* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
a2249542 612
77109804
AC
613/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
a0b31db1 615static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 616
14f9c5c9 617static void
a2249542 618lim_warning (const char *format, ...)
14f9c5c9 619{
a2249542 620 va_list args;
a2249542 621
5b4ee69b 622 va_start (args, format);
4c4b4cd2
PH
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
a2249542
MK
625 vwarning (format, args);
626
627 va_end (args);
4c4b4cd2
PH
628}
629
714e53ab
PH
630/* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634static void
635check_size (const struct type *type)
636{
637 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 638 error (_("object size is larger than varsize-limit"));
714e53ab
PH
639}
640
0963b4bd 641/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 642static LONGEST
c3e5cd34 643max_of_size (int size)
4c4b4cd2 644{
76a01679 645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 646
76a01679 647 return top_bit | (top_bit - 1);
4c4b4cd2
PH
648}
649
0963b4bd 650/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 651static LONGEST
c3e5cd34 652min_of_size (int size)
4c4b4cd2 653{
c3e5cd34 654 return -max_of_size (size) - 1;
4c4b4cd2
PH
655}
656
0963b4bd 657/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 658static ULONGEST
c3e5cd34 659umax_of_size (int size)
4c4b4cd2 660{
76a01679 661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 662
76a01679 663 return top_bit | (top_bit - 1);
4c4b4cd2
PH
664}
665
0963b4bd 666/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
667static LONGEST
668max_of_type (struct type *t)
4c4b4cd2 669{
c3e5cd34
PH
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674}
675
0963b4bd 676/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
677static LONGEST
678min_of_type (struct type *t)
679{
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
684}
685
686/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
687LONGEST
688ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 689{
76a01679 690 switch (TYPE_CODE (type))
4c4b4cd2
PH
691 {
692 case TYPE_CODE_RANGE:
690cc4eb 693 return TYPE_HIGH_BOUND (type);
4c4b4cd2 694 case TYPE_CODE_ENUM:
14e75d8e 695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
76a01679 699 case TYPE_CODE_INT:
690cc4eb 700 return max_of_type (type);
4c4b4cd2 701 default:
43bbcdc2 702 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
703 }
704}
705
14e75d8e 706/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
707LONGEST
708ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 709{
76a01679 710 switch (TYPE_CODE (type))
4c4b4cd2
PH
711 {
712 case TYPE_CODE_RANGE:
690cc4eb 713 return TYPE_LOW_BOUND (type);
4c4b4cd2 714 case TYPE_CODE_ENUM:
14e75d8e 715 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
76a01679 719 case TYPE_CODE_INT:
690cc4eb 720 return min_of_type (type);
4c4b4cd2 721 default:
43bbcdc2 722 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
723 }
724}
725
726/* The identity on non-range types. For range types, the underlying
76a01679 727 non-range scalar type. */
4c4b4cd2
PH
728
729static struct type *
18af8284 730get_base_type (struct type *type)
4c4b4cd2
PH
731{
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
76a01679
JB
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
4c4b4cd2
PH
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
14f9c5c9 739}
41246937
JB
740
741/* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746struct value *
747ada_get_decoded_value (struct value *value)
748{
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764}
765
766/* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771struct type *
772ada_get_decoded_type (struct type *type)
773{
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778}
779
4c4b4cd2 780\f
76a01679 781
4c4b4cd2 782 /* Language Selection */
14f9c5c9
AS
783
784/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 785 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 786
14f9c5c9 787enum language
ccefe4c4 788ada_update_initial_language (enum language lang)
14f9c5c9 789{
d2e4a39e 790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
14f9c5c9
AS
793
794 return lang;
795}
96d887e8
PH
796
797/* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801char *
802ada_main_name (void)
803{
804 struct minimal_symbol *msym;
f9bc20b9 805 static char *main_program_name = NULL;
6c038f32 806
96d887e8
PH
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
f9bc20b9
JB
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
96d887e8
PH
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
323e0a4a 821 error (_("Invalid address for Ada main program name."));
96d887e8 822
f9bc20b9
JB
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
96d887e8
PH
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834}
14f9c5c9 835\f
4c4b4cd2 836 /* Symbols */
d2e4a39e 837
4c4b4cd2
PH
838/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
14f9c5c9 840
d2e4a39e
AS
841const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
14f9c5c9
AS
864};
865
4c4b4cd2
PH
866/* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
14f9c5c9 869char *
4c4b4cd2 870ada_encode (const char *decoded)
14f9c5c9 871{
4c4b4cd2
PH
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
d2e4a39e 874 const char *p;
14f9c5c9 875 int k;
d2e4a39e 876
4c4b4cd2 877 if (decoded == NULL)
14f9c5c9
AS
878 return NULL;
879
4c4b4cd2
PH
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
14f9c5c9
AS
882
883 k = 0;
4c4b4cd2 884 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 885 {
cdc7bb92 886 if (*p == '.')
4c4b4cd2
PH
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
14f9c5c9 891 else if (*p == '"')
4c4b4cd2
PH
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
1265e4aa
JB
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
899 ;
900 if (mapping->encoded == NULL)
323e0a4a 901 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
d2e4a39e 906 else
4c4b4cd2
PH
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
14f9c5c9
AS
911 }
912
4c4b4cd2
PH
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
14f9c5c9
AS
915}
916
917/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
d2e4a39e
AS
921char *
922ada_fold_name (const char *name)
14f9c5c9 923{
d2e4a39e 924 static char *fold_buffer = NULL;
14f9c5c9
AS
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
d2e4a39e 928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
929
930 if (name[0] == '\'')
931 {
d2e4a39e
AS
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
934 }
935 else
936 {
937 int i;
5b4ee69b 938
14f9c5c9 939 for (i = 0; i <= len; i += 1)
4c4b4cd2 940 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
941 }
942
943 return fold_buffer;
944}
945
529cad9c
PH
946/* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948static int
949is_lower_alphanum (const char c)
950{
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952}
953
c90092fe
JB
954/* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
29480c32
JB
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
c90092fe 961
29480c32
JB
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966static void
967ada_remove_trailing_digits (const char *encoded, int *len)
968{
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
5b4ee69b 972
29480c32
JB
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984}
985
986/* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989static void
990ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991{
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
0963b4bd 997 the 'P' suffix. The second calls the first one after handling
29480c32
JB
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006}
1007
69fadcdf
JB
1008/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010static void
1011ada_remove_Xbn_suffix (const char *encoded, int *len)
1012{
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026}
1027
29480c32
JB
1028/* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
14f9c5c9 1031
4c4b4cd2 1032 The resulting string is valid until the next call of ada_decode.
29480c32 1033 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1034 is returned. */
1035
1036const char *
1037ada_decode (const char *encoded)
14f9c5c9
AS
1038{
1039 int i, j;
1040 int len0;
d2e4a39e 1041 const char *p;
4c4b4cd2 1042 char *decoded;
14f9c5c9 1043 int at_start_name;
4c4b4cd2
PH
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
d2e4a39e 1046
29480c32
JB
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
4c4b4cd2
PH
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
14f9c5c9 1052
29480c32
JB
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
4c4b4cd2 1056 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1057 goto Suppress;
1058
4c4b4cd2 1059 len0 = strlen (encoded);
4c4b4cd2 1060
29480c32
JB
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1063
4c4b4cd2
PH
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1070 {
1071 if (p[3] == 'X')
4c4b4cd2 1072 len0 = p - encoded;
14f9c5c9 1073 else
4c4b4cd2 1074 goto Suppress;
14f9c5c9 1075 }
4c4b4cd2 1076
29480c32
JB
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
4c4b4cd2 1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1082 len0 -= 3;
76a01679 1083
a10967fa
JB
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
29480c32
JB
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
4c4b4cd2 1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1095 len0 -= 1;
1096
4c4b4cd2 1097 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1098
4c4b4cd2
PH
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
14f9c5c9 1101
29480c32
JB
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
4c4b4cd2 1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1105 {
4c4b4cd2
PH
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
d2e4a39e 1114 }
14f9c5c9 1115
29480c32
JB
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
4c4b4cd2
PH
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
14f9c5c9
AS
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
29480c32 1125 /* Is this a symbol function? */
4c4b4cd2
PH
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
5b4ee69b 1129
4c4b4cd2
PH
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
14f9c5c9
AS
1147 at_start_name = 0;
1148
529cad9c
PH
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
4c4b4cd2
PH
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
529cad9c 1154
29480c32
JB
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
529cad9c
PH
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1177 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
4c4b4cd2
PH
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
29480c32
JB
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
4c4b4cd2
PH
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
cdc7bb92 1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1242 {
29480c32 1243 /* Replace '__' by '.'. */
4c4b4cd2
PH
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
14f9c5c9 1249 else
4c4b4cd2 1250 {
29480c32
JB
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
4c4b4cd2
PH
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
14f9c5c9 1257 }
4c4b4cd2 1258 decoded[j] = '\000';
14f9c5c9 1259
29480c32
JB
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
4c4b4cd2
PH
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1265 goto Suppress;
1266
4c4b4cd2
PH
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
14f9c5c9
AS
1271
1272Suppress:
4c4b4cd2
PH
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
14f9c5c9 1277 else
88c15c34 1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1279 return decoded;
1280
1281}
1282
1283/* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288static struct htab *decoded_names_store;
1289
1290/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1295 GSYMBOL).
4c4b4cd2
PH
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1298 when a decoded name is cached in it. */
4c4b4cd2 1299
76a01679
JB
1300char *
1301ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1302{
76a01679 1303 char **resultp =
afa16725 1304 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1305
4c4b4cd2
PH
1306 if (*resultp == NULL)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1309
714835d5 1310 if (gsymbol->obj_section != NULL)
76a01679 1311 {
714835d5 1312 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1313
714835d5
UW
1314 *resultp = obsavestring (decoded, strlen (decoded),
1315 &objf->objfile_obstack);
76a01679 1316 }
4c4b4cd2 1317 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1318 case, we put the result on the heap. Since we only decode
1319 when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
4c4b4cd2 1321 if (*resultp == NULL)
76a01679
JB
1322 {
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
5b4ee69b 1325
76a01679
JB
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
4c4b4cd2 1330 }
14f9c5c9 1331
4c4b4cd2
PH
1332 return *resultp;
1333}
76a01679 1334
2c0b251b 1335static char *
76a01679 1336ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1337{
1338 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1339}
1340
1341/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
14f9c5c9 1347
2c0b251b 1348static int
40658b94 1349match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1350{
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
73589123 1354 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1355 else
1356 {
1357 int len_name = strlen (name);
5b4ee69b 1358
4c4b4cd2
PH
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1364 }
14f9c5c9 1365}
14f9c5c9 1366\f
d2e4a39e 1367
4c4b4cd2 1368 /* Arrays */
14f9c5c9 1369
28c85d6c
JB
1370/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393void
1394ada_fixup_array_indexes_type (struct type *index_desc_type)
1395{
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
0d5cff50 1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423}
1424
4c4b4cd2 1425/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1426
d2e4a39e
AS
1427static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430};
1431
1432/* Maximum number of array dimensions we are prepared to handle. */
1433
4c4b4cd2 1434#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1435
14f9c5c9 1436
4c4b4cd2
PH
1437/* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
14f9c5c9
AS
1439
1440/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1441 level of indirection, if needed. */
1442
d2e4a39e
AS
1443static struct type *
1444desc_base_type (struct type *type)
14f9c5c9
AS
1445{
1446 if (type == NULL)
1447 return NULL;
61ee279c 1448 type = ada_check_typedef (type);
720d1a40
JB
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1265e4aa
JB
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1456 else
1457 return type;
1458}
1459
4c4b4cd2
PH
1460/* True iff TYPE indicates a "thin" array pointer type. */
1461
14f9c5c9 1462static int
d2e4a39e 1463is_thin_pntr (struct type *type)
14f9c5c9 1464{
d2e4a39e 1465 return
14f9c5c9
AS
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468}
1469
4c4b4cd2
PH
1470/* The descriptor type for thin pointer type TYPE. */
1471
d2e4a39e
AS
1472static struct type *
1473thin_descriptor_type (struct type *type)
14f9c5c9 1474{
d2e4a39e 1475 struct type *base_type = desc_base_type (type);
5b4ee69b 1476
14f9c5c9
AS
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
d2e4a39e 1481 else
14f9c5c9 1482 {
d2e4a39e 1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1484
14f9c5c9 1485 if (alt_type == NULL)
4c4b4cd2 1486 return base_type;
14f9c5c9 1487 else
4c4b4cd2 1488 return alt_type;
14f9c5c9
AS
1489 }
1490}
1491
4c4b4cd2
PH
1492/* A pointer to the array data for thin-pointer value VAL. */
1493
d2e4a39e
AS
1494static struct value *
1495thin_data_pntr (struct value *val)
14f9c5c9 1496{
828292f2 1497 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1499
556bdfd4
UW
1500 data_type = lookup_pointer_type (data_type);
1501
14f9c5c9 1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1503 return value_cast (data_type, value_copy (val));
d2e4a39e 1504 else
42ae5230 1505 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1506}
1507
4c4b4cd2
PH
1508/* True iff TYPE indicates a "thick" array pointer type. */
1509
14f9c5c9 1510static int
d2e4a39e 1511is_thick_pntr (struct type *type)
14f9c5c9
AS
1512{
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1516}
1517
4c4b4cd2
PH
1518/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1520
d2e4a39e
AS
1521static struct type *
1522desc_bounds_type (struct type *type)
14f9c5c9 1523{
d2e4a39e 1524 struct type *r;
14f9c5c9
AS
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
4c4b4cd2 1534 return NULL;
14f9c5c9
AS
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
61ee279c 1537 return ada_check_typedef (r);
14f9c5c9
AS
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
61ee279c 1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1544 }
1545 return NULL;
1546}
1547
1548/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
d2e4a39e
AS
1551static struct value *
1552desc_bounds (struct value *arr)
14f9c5c9 1553{
df407dfe 1554 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1555
d2e4a39e 1556 if (is_thin_pntr (type))
14f9c5c9 1557 {
d2e4a39e 1558 struct type *bounds_type =
4c4b4cd2 1559 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1560 LONGEST addr;
1561
4cdfadb1 1562 if (bounds_type == NULL)
323e0a4a 1563 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1564
1565 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1566 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1567 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1569 addr = value_as_long (arr);
d2e4a39e 1570 else
42ae5230 1571 addr = value_address (arr);
14f9c5c9 1572
d2e4a39e 1573 return
4c4b4cd2
PH
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1576 }
1577
1578 else if (is_thick_pntr (type))
05e522ef
JB
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
14f9c5c9
AS
1599 else
1600 return NULL;
1601}
1602
4c4b4cd2
PH
1603/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
14f9c5c9 1606static int
d2e4a39e 1607fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1608{
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610}
1611
1612/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1613 size of the field containing the address of the bounds data. */
1614
14f9c5c9 1615static int
d2e4a39e 1616fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1617{
1618 type = desc_base_type (type);
1619
d2e4a39e 1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
61ee279c 1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1624}
1625
4c4b4cd2 1626/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
4c4b4cd2 1630
d2e4a39e 1631static struct type *
556bdfd4 1632desc_data_target_type (struct type *type)
14f9c5c9
AS
1633{
1634 type = desc_base_type (type);
1635
4c4b4cd2 1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1637 if (is_thin_pntr (type))
556bdfd4 1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1639 else if (is_thick_pntr (type))
556bdfd4
UW
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1646 }
1647
1648 return NULL;
14f9c5c9
AS
1649}
1650
1651/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
4c4b4cd2 1653
d2e4a39e
AS
1654static struct value *
1655desc_data (struct value *arr)
14f9c5c9 1656{
df407dfe 1657 struct type *type = value_type (arr);
5b4ee69b 1658
14f9c5c9
AS
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
d2e4a39e 1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1663 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1664 else
1665 return NULL;
1666}
1667
1668
1669/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1670 position of the field containing the address of the data. */
1671
14f9c5c9 1672static int
d2e4a39e 1673fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1674{
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676}
1677
1678/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1679 size of the field containing the address of the data. */
1680
14f9c5c9 1681static int
d2e4a39e 1682fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1683{
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1688 else
14f9c5c9
AS
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690}
1691
4c4b4cd2 1692/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
d2e4a39e
AS
1696static struct value *
1697desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1698{
d2e4a39e 1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1700 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1701}
1702
1703/* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
14f9c5c9 1707static int
d2e4a39e 1708desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1709{
d2e4a39e 1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1711}
1712
1713/* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
76a01679 1717static int
d2e4a39e 1718desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1719{
1720 type = desc_base_type (type);
1721
d2e4a39e
AS
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1726}
1727
1728/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
d2e4a39e
AS
1731static struct type *
1732desc_index_type (struct type *type, int i)
14f9c5c9
AS
1733{
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
14f9c5c9
AS
1739 return NULL;
1740}
1741
4c4b4cd2
PH
1742/* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
14f9c5c9 1745static int
d2e4a39e 1746desc_arity (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753}
1754
4c4b4cd2
PH
1755/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
76a01679
JB
1759static int
1760ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1761{
1762 if (type == NULL)
1763 return 0;
61ee279c 1764 type = ada_check_typedef (type);
4c4b4cd2 1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1766 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1767}
1768
52ce6436 1769/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1770 * to one. */
52ce6436 1771
2c0b251b 1772static int
52ce6436
PH
1773ada_is_array_type (struct type *type)
1774{
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780}
1781
4c4b4cd2 1782/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1783
14f9c5c9 1784int
4c4b4cd2 1785ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1786{
1787 if (type == NULL)
1788 return 0;
61ee279c 1789 type = ada_check_typedef (type);
14f9c5c9 1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1794}
1795
4c4b4cd2
PH
1796/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
14f9c5c9 1798int
4c4b4cd2 1799ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1800{
556bdfd4 1801 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1802
1803 if (type == NULL)
1804 return 0;
61ee279c 1805 type = ada_check_typedef (type);
556bdfd4
UW
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1809}
1810
1811/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1812 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1813 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1814 is still needed. */
1815
14f9c5c9 1816int
ebf56fd3 1817ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1818{
d2e4a39e 1819 return
14f9c5c9
AS
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1825}
1826
1827
4c4b4cd2 1828/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1829 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1831 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1834 a descriptor. */
d2e4a39e
AS
1835struct type *
1836ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1837{
ad82864c
JB
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1840
df407dfe
AC
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
d2e4a39e
AS
1843
1844 if (!bounds)
ad82864c
JB
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
14f9c5c9
AS
1855 else
1856 {
d2e4a39e 1857 struct type *elt_type;
14f9c5c9 1858 int arity;
d2e4a39e 1859 struct value *descriptor;
14f9c5c9 1860
df407dfe
AC
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
14f9c5c9 1863
d2e4a39e 1864 if (elt_type == NULL || arity == 0)
df407dfe 1865 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1866
1867 descriptor = desc_bounds (arr);
d2e4a39e 1868 if (value_as_long (descriptor) == 0)
4c4b4cd2 1869 return NULL;
d2e4a39e 1870 while (arity > 0)
4c4b4cd2 1871 {
e9bb382b
UW
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1876
5b4ee69b 1877 arity -= 1;
df407dfe 1878 create_range_type (range_type, value_type (low),
529cad9c
PH
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
4c4b4cd2 1881 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
4c4b4cd2 1903 }
14f9c5c9
AS
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907}
1908
1909/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
d2e4a39e
AS
1914struct value *
1915ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1916{
df407dfe 1917 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1918 {
d2e4a39e 1919 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1920
14f9c5c9 1921 if (arrType == NULL)
4c4b4cd2 1922 return NULL;
14f9c5c9
AS
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
ad82864c
JB
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1927 else
1928 return arr;
1929}
1930
1931/* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1933 be ARR itself if it already is in the proper form). */
1934
720d1a40 1935struct value *
d2e4a39e 1936ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1937{
df407dfe 1938 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1939 {
d2e4a39e 1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1941
14f9c5c9 1942 if (arrVal == NULL)
323e0a4a 1943 error (_("Bounds unavailable for null array pointer."));
529cad9c 1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1945 return value_ind (arrVal);
1946 }
ad82864c
JB
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
d2e4a39e 1949 else
14f9c5c9
AS
1950 return arr;
1951}
1952
1953/* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1955 packing). For other types, is the identity. */
1956
d2e4a39e
AS
1957struct type *
1958ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1959{
ad82864c
JB
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
17280b9f
UW
1962
1963 if (ada_is_array_descriptor_type (type))
556bdfd4 1964 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1965
1966 return type;
14f9c5c9
AS
1967}
1968
4c4b4cd2
PH
1969/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
ad82864c
JB
1971static int
1972ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1973{
1974 if (type == NULL)
1975 return 0;
4c4b4cd2 1976 type = desc_base_type (type);
61ee279c 1977 type = ada_check_typedef (type);
d2e4a39e 1978 return
14f9c5c9
AS
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981}
1982
ad82864c
JB
1983/* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986int
1987ada_is_constrained_packed_array_type (struct type *type)
1988{
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991}
1992
1993/* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996static int
1997ada_is_unconstrained_packed_array_type (struct type *type)
1998{
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001}
2002
2003/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006static long
2007decode_packed_array_bitsize (struct type *type)
2008{
0d5cff50
DE
2009 const char *raw_name;
2010 const char *tail;
ad82864c
JB
2011 long bits;
2012
720d1a40
JB
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
720d1a40 2027 gdb_assert (tail != NULL);
ad82864c
JB
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037}
2038
14f9c5c9
AS
2039/* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
d2e4a39e 2048static struct type *
ad82864c 2049constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2050{
d2e4a39e
AS
2051 struct type *new_elt_type;
2052 struct type *new_type;
99b1c762
JB
2053 struct type *index_type_desc;
2054 struct type *index_type;
14f9c5c9
AS
2055 LONGEST low_bound, high_bound;
2056
61ee279c 2057 type = ada_check_typedef (type);
14f9c5c9
AS
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
99b1c762
JB
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
e9bb382b 2068 new_type = alloc_type_copy (type);
ad82864c
JB
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
99b1c762 2072 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
99b1c762 2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2080 else
14f9c5c9
AS
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2083 TYPE_LENGTH (new_type) =
4c4b4cd2 2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2085 }
2086
876cecd0 2087 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2088 return new_type;
2089}
2090
ad82864c
JB
2091/* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2093
d2e4a39e 2094static struct type *
ad82864c 2095decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2096{
0d5cff50 2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2098 char *name;
0d5cff50 2099 const char *tail;
d2e4a39e 2100 struct type *shadow_type;
14f9c5c9 2101 long bits;
14f9c5c9 2102
727e3d2e
JB
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2111 type = desc_base_type (type);
2112
14f9c5c9
AS
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
b4ba55a1
JB
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
14f9c5c9 2119 {
323e0a4a 2120 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2121 return NULL;
2122 }
cb249c71 2123 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
0963b4bd
MS
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
14f9c5c9
AS
2129 return NULL;
2130 }
d2e4a39e 2131
ad82864c
JB
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2134}
2135
ad82864c
JB
2136/* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
4c4b4cd2 2140 type length is set appropriately. */
14f9c5c9 2141
d2e4a39e 2142static struct value *
ad82864c 2143decode_constrained_packed_array (struct value *arr)
14f9c5c9 2144{
4c4b4cd2 2145 struct type *type;
14f9c5c9 2146
4c4b4cd2 2147 arr = ada_coerce_ref (arr);
284614f0
JB
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
828292f2 2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2156 arr = value_ind (arr);
4c4b4cd2 2157
ad82864c 2158 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2159 if (type == NULL)
2160 {
323e0a4a 2161 error (_("can't unpack array"));
14f9c5c9
AS
2162 return NULL;
2163 }
61ee279c 2164
50810684 2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2166 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
df407dfe 2175 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
df407dfe 2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
4c4b4cd2 2190 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2191}
2192
2193
2194/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2195 given in IND. ARR must be a simple array. */
14f9c5c9 2196
d2e4a39e
AS
2197static struct value *
2198value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2199{
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
d2e4a39e
AS
2203 struct type *elt_type;
2204 struct value *v;
14f9c5c9
AS
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
df407dfe 2208 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2209 for (i = 0; i < arity; i += 1)
14f9c5c9 2210 {
d2e4a39e 2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
0963b4bd
MS
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
14f9c5c9 2216 else
4c4b4cd2
PH
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
323e0a4a 2224 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2225 lowerbound = upperbound = 0;
2226 }
2227
3cb382c9 2228 idx = pos_atr (ind[i]);
4c4b4cd2 2229 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
4c4b4cd2
PH
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2235 }
14f9c5c9
AS
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2241 bits, elt_type);
14f9c5c9
AS
2242 return v;
2243}
2244
4c4b4cd2 2245/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2246
2247static int
d2e4a39e 2248has_negatives (struct type *type)
14f9c5c9 2249{
d2e4a39e
AS
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
14f9c5c9 2259}
d2e4a39e 2260
14f9c5c9
AS
2261
2262/* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2265 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2270
d2e4a39e 2271struct value *
fc1a4b47 2272ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2273 long offset, int bit_offset, int bit_size,
4c4b4cd2 2274 struct type *type)
14f9c5c9 2275{
d2e4a39e 2276 struct value *v;
4c4b4cd2
PH
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2285 unsigned char *unpacked;
4c4b4cd2 2286 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
50810684 2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2292
61ee279c 2293 type = ada_check_typedef (type);
14f9c5c9
AS
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
d2e4a39e 2298 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2299 }
9214ee5f 2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2301 {
53ba8333 2302 v = value_at (type, value_address (obj));
d2e4a39e 2303 bytes = (unsigned char *) alloca (len);
53ba8333 2304 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2305 }
d2e4a39e 2306 else
14f9c5c9
AS
2307 {
2308 v = allocate_value (type);
0fd88904 2309 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2310 }
d2e4a39e
AS
2311
2312 if (obj != NULL)
14f9c5c9 2313 {
53ba8333 2314 long new_offset = offset;
5b4ee69b 2315
74bcbdf3 2316 set_value_component_location (v, obj);
9bbda503
AC
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
df407dfe 2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2320 {
53ba8333 2321 ++new_offset;
9bbda503 2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2323 }
53ba8333
JB
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 value_incref (obj);
14f9c5c9
AS
2330 }
2331 else
9bbda503 2332 set_value_bitsize (v, bit_size);
0fd88904 2333 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2334
2335 srcBitsLeft = bit_size;
2336 nsrc = len;
2337 ntarg = TYPE_LENGTH (type);
2338 sign = 0;
2339 if (bit_size == 0)
2340 {
2341 memset (unpacked, 0, TYPE_LENGTH (type));
2342 return v;
2343 }
50810684 2344 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2345 {
d2e4a39e 2346 src = len - 1;
1265e4aa
JB
2347 if (has_negatives (type)
2348 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2349 sign = ~0;
d2e4a39e
AS
2350
2351 unusedLS =
4c4b4cd2
PH
2352 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 % HOST_CHAR_BIT;
14f9c5c9
AS
2354
2355 switch (TYPE_CODE (type))
4c4b4cd2
PH
2356 {
2357 case TYPE_CODE_ARRAY:
2358 case TYPE_CODE_UNION:
2359 case TYPE_CODE_STRUCT:
2360 /* Non-scalar values must be aligned at a byte boundary... */
2361 accumSize =
2362 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2363 /* ... And are placed at the beginning (most-significant) bytes
2364 of the target. */
529cad9c 2365 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2366 ntarg = targ + 1;
4c4b4cd2
PH
2367 break;
2368 default:
2369 accumSize = 0;
2370 targ = TYPE_LENGTH (type) - 1;
2371 break;
2372 }
14f9c5c9 2373 }
d2e4a39e 2374 else
14f9c5c9
AS
2375 {
2376 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377
2378 src = targ = 0;
2379 unusedLS = bit_offset;
2380 accumSize = 0;
2381
d2e4a39e 2382 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2383 sign = ~0;
14f9c5c9 2384 }
d2e4a39e 2385
14f9c5c9
AS
2386 accum = 0;
2387 while (nsrc > 0)
2388 {
2389 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2390 part of the value. */
d2e4a39e 2391 unsigned int unusedMSMask =
4c4b4cd2
PH
2392 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 1;
2394 /* Sign-extend bits for this byte. */
14f9c5c9 2395 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2396
d2e4a39e 2397 accum |=
4c4b4cd2 2398 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2399 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2400 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2401 {
2402 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2403 accumSize -= HOST_CHAR_BIT;
2404 accum >>= HOST_CHAR_BIT;
2405 ntarg -= 1;
2406 targ += delta;
2407 }
14f9c5c9
AS
2408 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2409 unusedLS = 0;
2410 nsrc -= 1;
2411 src += delta;
2412 }
2413 while (ntarg > 0)
2414 {
2415 accum |= sign << accumSize;
2416 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 ntarg -= 1;
2420 targ += delta;
2421 }
2422
2423 return v;
2424}
d2e4a39e 2425
14f9c5c9
AS
2426/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2427 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2428 not overlap. */
14f9c5c9 2429static void
fc1a4b47 2430move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2431 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2432{
2433 unsigned int accum, mask;
2434 int accum_bits, chunk_size;
2435
2436 target += targ_offset / HOST_CHAR_BIT;
2437 targ_offset %= HOST_CHAR_BIT;
2438 source += src_offset / HOST_CHAR_BIT;
2439 src_offset %= HOST_CHAR_BIT;
50810684 2440 if (bits_big_endian_p)
14f9c5c9
AS
2441 {
2442 accum = (unsigned char) *source;
2443 source += 1;
2444 accum_bits = HOST_CHAR_BIT - src_offset;
2445
d2e4a39e 2446 while (n > 0)
4c4b4cd2
PH
2447 {
2448 int unused_right;
5b4ee69b 2449
4c4b4cd2
PH
2450 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2451 accum_bits += HOST_CHAR_BIT;
2452 source += 1;
2453 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 if (chunk_size > n)
2455 chunk_size = n;
2456 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2457 mask = ((1 << chunk_size) - 1) << unused_right;
2458 *target =
2459 (*target & ~mask)
2460 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 n -= chunk_size;
2462 accum_bits -= chunk_size;
2463 target += 1;
2464 targ_offset = 0;
2465 }
14f9c5c9
AS
2466 }
2467 else
2468 {
2469 accum = (unsigned char) *source >> src_offset;
2470 source += 1;
2471 accum_bits = HOST_CHAR_BIT - src_offset;
2472
d2e4a39e 2473 while (n > 0)
4c4b4cd2
PH
2474 {
2475 accum = accum + ((unsigned char) *source << accum_bits);
2476 accum_bits += HOST_CHAR_BIT;
2477 source += 1;
2478 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 if (chunk_size > n)
2480 chunk_size = n;
2481 mask = ((1 << chunk_size) - 1) << targ_offset;
2482 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 n -= chunk_size;
2484 accum_bits -= chunk_size;
2485 accum >>= chunk_size;
2486 target += 1;
2487 targ_offset = 0;
2488 }
14f9c5c9
AS
2489 }
2490}
2491
14f9c5c9
AS
2492/* Store the contents of FROMVAL into the location of TOVAL.
2493 Return a new value with the location of TOVAL and contents of
2494 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2495 floating-point or non-scalar types. */
14f9c5c9 2496
d2e4a39e
AS
2497static struct value *
2498ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2499{
df407dfe
AC
2500 struct type *type = value_type (toval);
2501 int bits = value_bitsize (toval);
14f9c5c9 2502
52ce6436
PH
2503 toval = ada_coerce_ref (toval);
2504 fromval = ada_coerce_ref (fromval);
2505
2506 if (ada_is_direct_array_type (value_type (toval)))
2507 toval = ada_coerce_to_simple_array (toval);
2508 if (ada_is_direct_array_type (value_type (fromval)))
2509 fromval = ada_coerce_to_simple_array (fromval);
2510
88e3b34b 2511 if (!deprecated_value_modifiable (toval))
323e0a4a 2512 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2513
d2e4a39e 2514 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2515 && bits > 0
d2e4a39e 2516 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2517 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2518 {
df407dfe
AC
2519 int len = (value_bitpos (toval)
2520 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2521 int from_size;
d2e4a39e
AS
2522 char *buffer = (char *) alloca (len);
2523 struct value *val;
42ae5230 2524 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2525
2526 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2527 fromval = value_cast (type, fromval);
14f9c5c9 2528
52ce6436 2529 read_memory (to_addr, buffer, len);
aced2898
PH
2530 from_size = value_bitsize (fromval);
2531 if (from_size == 0)
2532 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2533 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2534 move_bits (buffer, value_bitpos (toval),
50810684 2535 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2536 else
50810684
UW
2537 move_bits (buffer, value_bitpos (toval),
2538 value_contents (fromval), 0, bits, 0);
972daa01 2539 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2540
14f9c5c9 2541 val = value_copy (toval);
0fd88904 2542 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2543 TYPE_LENGTH (type));
04624583 2544 deprecated_set_value_type (val, type);
d2e4a39e 2545
14f9c5c9
AS
2546 return val;
2547 }
2548
2549 return value_assign (toval, fromval);
2550}
2551
2552
52ce6436
PH
2553/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2554 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2555 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2556 * COMPONENT, and not the inferior's memory. The current contents
2557 * of COMPONENT are ignored. */
2558static void
2559value_assign_to_component (struct value *container, struct value *component,
2560 struct value *val)
2561{
2562 LONGEST offset_in_container =
42ae5230 2563 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2564 int bit_offset_in_container =
2565 value_bitpos (component) - value_bitpos (container);
2566 int bits;
2567
2568 val = value_cast (value_type (component), val);
2569
2570 if (value_bitsize (component) == 0)
2571 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 else
2573 bits = value_bitsize (component);
2574
50810684 2575 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val),
2579 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2580 bits, 1);
52ce6436
PH
2581 else
2582 move_bits (value_contents_writeable (container) + offset_in_container,
2583 value_bitpos (container) + bit_offset_in_container,
50810684 2584 value_contents (val), 0, bits, 0);
52ce6436
PH
2585}
2586
4c4b4cd2
PH
2587/* The value of the element of array ARR at the ARITY indices given in IND.
2588 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2589 thereto. */
2590
d2e4a39e
AS
2591struct value *
2592ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2593{
2594 int k;
d2e4a39e
AS
2595 struct value *elt;
2596 struct type *elt_type;
14f9c5c9
AS
2597
2598 elt = ada_coerce_to_simple_array (arr);
2599
df407dfe 2600 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2601 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2602 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2603 return value_subscript_packed (elt, arity, ind);
2604
2605 for (k = 0; k < arity; k += 1)
2606 {
2607 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2608 error (_("too many subscripts (%d expected)"), k);
2497b498 2609 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2610 }
2611 return elt;
2612}
2613
2614/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2615 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2616 IND. Does not read the entire array into memory. */
14f9c5c9 2617
2c0b251b 2618static struct value *
d2e4a39e 2619ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2620 struct value **ind)
14f9c5c9
AS
2621{
2622 int k;
2623
2624 for (k = 0; k < arity; k += 1)
2625 {
2626 LONGEST lwb, upb;
14f9c5c9
AS
2627
2628 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2629 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2630 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2631 value_copy (arr));
14f9c5c9 2632 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2633 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2634 type = TYPE_TARGET_TYPE (type);
2635 }
2636
2637 return value_ind (arr);
2638}
2639
0b5d8877 2640/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2641 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2642 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2643 per Ada rules. */
0b5d8877 2644static struct value *
f5938064
JG
2645ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 int low, int high)
0b5d8877 2647{
b0dd7688 2648 struct type *type0 = ada_check_typedef (type);
6c038f32 2649 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2650 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2651 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2652 struct type *index_type =
b0dd7688 2653 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2654 low, high);
6c038f32 2655 struct type *slice_type =
b0dd7688 2656 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2657
f5938064 2658 return value_at_lazy (slice_type, base);
0b5d8877
PH
2659}
2660
2661
2662static struct value *
2663ada_value_slice (struct value *array, int low, int high)
2664{
b0dd7688 2665 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2666 struct type *index_type =
0b5d8877 2667 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2668 struct type *slice_type =
0b5d8877 2669 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2670
6c038f32 2671 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2672}
2673
14f9c5c9
AS
2674/* If type is a record type in the form of a standard GNAT array
2675 descriptor, returns the number of dimensions for type. If arr is a
2676 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2677 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2678
2679int
d2e4a39e 2680ada_array_arity (struct type *type)
14f9c5c9
AS
2681{
2682 int arity;
2683
2684 if (type == NULL)
2685 return 0;
2686
2687 type = desc_base_type (type);
2688
2689 arity = 0;
d2e4a39e 2690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2691 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2692 else
2693 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2694 {
4c4b4cd2 2695 arity += 1;
61ee279c 2696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2697 }
d2e4a39e 2698
14f9c5c9
AS
2699 return arity;
2700}
2701
2702/* If TYPE is a record type in the form of a standard GNAT array
2703 descriptor or a simple array type, returns the element type for
2704 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2705 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2706
d2e4a39e
AS
2707struct type *
2708ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2709{
2710 type = desc_base_type (type);
2711
d2e4a39e 2712 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2713 {
2714 int k;
d2e4a39e 2715 struct type *p_array_type;
14f9c5c9 2716
556bdfd4 2717 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2718
2719 k = ada_array_arity (type);
2720 if (k == 0)
4c4b4cd2 2721 return NULL;
d2e4a39e 2722
4c4b4cd2 2723 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2724 if (nindices >= 0 && k > nindices)
4c4b4cd2 2725 k = nindices;
d2e4a39e 2726 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2727 {
61ee279c 2728 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2729 k -= 1;
2730 }
14f9c5c9
AS
2731 return p_array_type;
2732 }
2733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2736 {
2737 type = TYPE_TARGET_TYPE (type);
2738 nindices -= 1;
2739 }
14f9c5c9
AS
2740 return type;
2741 }
2742
2743 return NULL;
2744}
2745
4c4b4cd2 2746/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2747 Does not examine memory. Throws an error if N is invalid or TYPE
2748 is not an array type. NAME is the name of the Ada attribute being
2749 evaluated ('range, 'first, 'last, or 'length); it is used in building
2750 the error message. */
14f9c5c9 2751
1eea4ebd
UW
2752static struct type *
2753ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2754{
4c4b4cd2
PH
2755 struct type *result_type;
2756
14f9c5c9
AS
2757 type = desc_base_type (type);
2758
1eea4ebd
UW
2759 if (n < 0 || n > ada_array_arity (type))
2760 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2761
4c4b4cd2 2762 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2763 {
2764 int i;
2765
2766 for (i = 1; i < n; i += 1)
4c4b4cd2 2767 type = TYPE_TARGET_TYPE (type);
262452ec 2768 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2769 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2770 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2771 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2772 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2773 result_type = NULL;
14f9c5c9 2774 }
d2e4a39e 2775 else
1eea4ebd
UW
2776 {
2777 result_type = desc_index_type (desc_bounds_type (type), n);
2778 if (result_type == NULL)
2779 error (_("attempt to take bound of something that is not an array"));
2780 }
2781
2782 return result_type;
14f9c5c9
AS
2783}
2784
2785/* Given that arr is an array type, returns the lower bound of the
2786 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2787 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2788 array-descriptor type. It works for other arrays with bounds supplied
2789 by run-time quantities other than discriminants. */
14f9c5c9 2790
abb68b3e 2791static LONGEST
1eea4ebd 2792ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2793{
1ce677a4 2794 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2795 int i;
262452ec
JK
2796
2797 gdb_assert (which == 0 || which == 1);
14f9c5c9 2798
ad82864c
JB
2799 if (ada_is_constrained_packed_array_type (arr_type))
2800 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2801
4c4b4cd2 2802 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2803 return (LONGEST) - which;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2806 type = TYPE_TARGET_TYPE (arr_type);
2807 else
2808 type = arr_type;
2809
1ce677a4
UW
2810 elt_type = type;
2811 for (i = n; i > 1; i--)
2812 elt_type = TYPE_TARGET_TYPE (type);
2813
14f9c5c9 2814 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2815 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2816 if (index_type_desc != NULL)
28c85d6c
JB
2817 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 NULL);
262452ec 2819 else
1ce677a4 2820 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2821
43bbcdc2
PH
2822 return
2823 (LONGEST) (which == 0
2824 ? ada_discrete_type_low_bound (index_type)
2825 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2826}
2827
2828/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2829 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2830 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2831 supplied by run-time quantities other than discriminants. */
14f9c5c9 2832
1eea4ebd 2833static LONGEST
4dc81987 2834ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2835{
df407dfe 2836 struct type *arr_type = value_type (arr);
14f9c5c9 2837
ad82864c
JB
2838 if (ada_is_constrained_packed_array_type (arr_type))
2839 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2840 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2841 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2842 else
1eea4ebd 2843 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2844}
2845
2846/* Given that arr is an array value, returns the length of the
2847 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2848 supplied by run-time quantities other than discriminants.
2849 Does not work for arrays indexed by enumeration types with representation
2850 clauses at the moment. */
14f9c5c9 2851
1eea4ebd 2852static LONGEST
d2e4a39e 2853ada_array_length (struct value *arr, int n)
14f9c5c9 2854{
df407dfe 2855 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2856
ad82864c
JB
2857 if (ada_is_constrained_packed_array_type (arr_type))
2858 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2859
4c4b4cd2 2860 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2861 return (ada_array_bound_from_type (arr_type, n, 1)
2862 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2863 else
1eea4ebd
UW
2864 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2865 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2866}
2867
2868/* An empty array whose type is that of ARR_TYPE (an array type),
2869 with bounds LOW to LOW-1. */
2870
2871static struct value *
2872empty_array (struct type *arr_type, int low)
2873{
b0dd7688 2874 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2875 struct type *index_type =
b0dd7688 2876 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2877 low, low - 1);
b0dd7688 2878 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2879
0b5d8877 2880 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2881}
14f9c5c9 2882\f
d2e4a39e 2883
4c4b4cd2 2884 /* Name resolution */
14f9c5c9 2885
4c4b4cd2
PH
2886/* The "decoded" name for the user-definable Ada operator corresponding
2887 to OP. */
14f9c5c9 2888
d2e4a39e 2889static const char *
4c4b4cd2 2890ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2891{
2892 int i;
2893
4c4b4cd2 2894 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2895 {
2896 if (ada_opname_table[i].op == op)
4c4b4cd2 2897 return ada_opname_table[i].decoded;
14f9c5c9 2898 }
323e0a4a 2899 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2900}
2901
2902
4c4b4cd2
PH
2903/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2904 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2905 undefined namespace) and converts operators that are
2906 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2907 non-null, it provides a preferred result type [at the moment, only
2908 type void has any effect---causing procedures to be preferred over
2909 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2910 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2911
4c4b4cd2
PH
2912static void
2913resolve (struct expression **expp, int void_context_p)
14f9c5c9 2914{
30b15541
UW
2915 struct type *context_type = NULL;
2916 int pc = 0;
2917
2918 if (void_context_p)
2919 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920
2921 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2922}
2923
4c4b4cd2
PH
2924/* Resolve the operator of the subexpression beginning at
2925 position *POS of *EXPP. "Resolving" consists of replacing
2926 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2927 with their resolutions, replacing built-in operators with
2928 function calls to user-defined operators, where appropriate, and,
2929 when DEPROCEDURE_P is non-zero, converting function-valued variables
2930 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2931 are as in ada_resolve, above. */
14f9c5c9 2932
d2e4a39e 2933static struct value *
4c4b4cd2 2934resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2935 struct type *context_type)
14f9c5c9
AS
2936{
2937 int pc = *pos;
2938 int i;
4c4b4cd2 2939 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2940 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2941 struct value **argvec; /* Vector of operand types (alloca'ed). */
2942 int nargs; /* Number of operands. */
52ce6436 2943 int oplen;
14f9c5c9
AS
2944
2945 argvec = NULL;
2946 nargs = 0;
2947 exp = *expp;
2948
52ce6436
PH
2949 /* Pass one: resolve operands, saving their types and updating *pos,
2950 if needed. */
14f9c5c9
AS
2951 switch (op)
2952 {
4c4b4cd2
PH
2953 case OP_FUNCALL:
2954 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2956 *pos += 7;
4c4b4cd2
PH
2957 else
2958 {
2959 *pos += 3;
2960 resolve_subexp (expp, pos, 0, NULL);
2961 }
2962 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2963 break;
2964
14f9c5c9 2965 case UNOP_ADDR:
4c4b4cd2
PH
2966 *pos += 1;
2967 resolve_subexp (expp, pos, 0, NULL);
2968 break;
2969
52ce6436
PH
2970 case UNOP_QUAL:
2971 *pos += 3;
17466c1a 2972 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2973 break;
2974
52ce6436 2975 case OP_ATR_MODULUS:
4c4b4cd2
PH
2976 case OP_ATR_SIZE:
2977 case OP_ATR_TAG:
4c4b4cd2
PH
2978 case OP_ATR_FIRST:
2979 case OP_ATR_LAST:
2980 case OP_ATR_LENGTH:
2981 case OP_ATR_POS:
2982 case OP_ATR_VAL:
4c4b4cd2
PH
2983 case OP_ATR_MIN:
2984 case OP_ATR_MAX:
52ce6436
PH
2985 case TERNOP_IN_RANGE:
2986 case BINOP_IN_BOUNDS:
2987 case UNOP_IN_RANGE:
2988 case OP_AGGREGATE:
2989 case OP_OTHERS:
2990 case OP_CHOICES:
2991 case OP_POSITIONAL:
2992 case OP_DISCRETE_RANGE:
2993 case OP_NAME:
2994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2995 *pos += oplen;
14f9c5c9
AS
2996 break;
2997
2998 case BINOP_ASSIGN:
2999 {
4c4b4cd2
PH
3000 struct value *arg1;
3001
3002 *pos += 1;
3003 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 if (arg1 == NULL)
3005 resolve_subexp (expp, pos, 1, NULL);
3006 else
df407dfe 3007 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3008 break;
14f9c5c9
AS
3009 }
3010
4c4b4cd2 3011 case UNOP_CAST:
4c4b4cd2
PH
3012 *pos += 3;
3013 nargs = 1;
3014 break;
14f9c5c9 3015
4c4b4cd2
PH
3016 case BINOP_ADD:
3017 case BINOP_SUB:
3018 case BINOP_MUL:
3019 case BINOP_DIV:
3020 case BINOP_REM:
3021 case BINOP_MOD:
3022 case BINOP_EXP:
3023 case BINOP_CONCAT:
3024 case BINOP_LOGICAL_AND:
3025 case BINOP_LOGICAL_OR:
3026 case BINOP_BITWISE_AND:
3027 case BINOP_BITWISE_IOR:
3028 case BINOP_BITWISE_XOR:
14f9c5c9 3029
4c4b4cd2
PH
3030 case BINOP_EQUAL:
3031 case BINOP_NOTEQUAL:
3032 case BINOP_LESS:
3033 case BINOP_GTR:
3034 case BINOP_LEQ:
3035 case BINOP_GEQ:
14f9c5c9 3036
4c4b4cd2
PH
3037 case BINOP_REPEAT:
3038 case BINOP_SUBSCRIPT:
3039 case BINOP_COMMA:
40c8aaa9
JB
3040 *pos += 1;
3041 nargs = 2;
3042 break;
14f9c5c9 3043
4c4b4cd2
PH
3044 case UNOP_NEG:
3045 case UNOP_PLUS:
3046 case UNOP_LOGICAL_NOT:
3047 case UNOP_ABS:
3048 case UNOP_IND:
3049 *pos += 1;
3050 nargs = 1;
3051 break;
14f9c5c9 3052
4c4b4cd2
PH
3053 case OP_LONG:
3054 case OP_DOUBLE:
3055 case OP_VAR_VALUE:
3056 *pos += 4;
3057 break;
14f9c5c9 3058
4c4b4cd2
PH
3059 case OP_TYPE:
3060 case OP_BOOL:
3061 case OP_LAST:
4c4b4cd2
PH
3062 case OP_INTERNALVAR:
3063 *pos += 3;
3064 break;
14f9c5c9 3065
4c4b4cd2
PH
3066 case UNOP_MEMVAL:
3067 *pos += 3;
3068 nargs = 1;
3069 break;
3070
67f3407f
DJ
3071 case OP_REGISTER:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 break;
3074
4c4b4cd2
PH
3075 case STRUCTOP_STRUCT:
3076 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3077 nargs = 1;
3078 break;
3079
4c4b4cd2 3080 case TERNOP_SLICE:
4c4b4cd2
PH
3081 *pos += 1;
3082 nargs = 3;
3083 break;
3084
52ce6436 3085 case OP_STRING:
14f9c5c9 3086 break;
4c4b4cd2
PH
3087
3088 default:
323e0a4a 3089 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3090 }
3091
76a01679 3092 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3093 for (i = 0; i < nargs; i += 1)
3094 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3095 argvec[i] = NULL;
3096 exp = *expp;
3097
3098 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3099 switch (op)
3100 {
3101 default:
3102 break;
3103
14f9c5c9 3104 case OP_VAR_VALUE:
4c4b4cd2 3105 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 2].symbol),
3113 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3114 &candidates, 1);
76a01679
JB
3115
3116 if (n_candidates > 1)
3117 {
3118 /* Types tend to get re-introduced locally, so if there
3119 are any local symbols that are not types, first filter
3120 out all types. */
3121 int j;
3122 for (j = 0; j < n_candidates; j += 1)
3123 switch (SYMBOL_CLASS (candidates[j].sym))
3124 {
3125 case LOC_REGISTER:
3126 case LOC_ARG:
3127 case LOC_REF_ARG:
76a01679
JB
3128 case LOC_REGPARM_ADDR:
3129 case LOC_LOCAL:
76a01679 3130 case LOC_COMPUTED:
76a01679
JB
3131 goto FoundNonType;
3132 default:
3133 break;
3134 }
3135 FoundNonType:
3136 if (j < n_candidates)
3137 {
3138 j = 0;
3139 while (j < n_candidates)
3140 {
3141 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 {
3143 candidates[j] = candidates[n_candidates - 1];
3144 n_candidates -= 1;
3145 }
3146 else
3147 j += 1;
3148 }
3149 }
3150 }
3151
3152 if (n_candidates == 0)
323e0a4a 3153 error (_("No definition found for %s"),
76a01679
JB
3154 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3155 else if (n_candidates == 1)
3156 i = 0;
3157 else if (deprocedure_p
3158 && !is_nonfunction (candidates, n_candidates))
3159 {
06d5cf63
JB
3160 i = ada_resolve_function
3161 (candidates, n_candidates, NULL, 0,
3162 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 context_type);
76a01679 3164 if (i < 0)
323e0a4a 3165 error (_("Could not find a match for %s"),
76a01679
JB
3166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3167 }
3168 else
3169 {
323e0a4a 3170 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3171 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3172 user_select_syms (candidates, n_candidates, 1);
3173 i = 0;
3174 }
3175
3176 exp->elts[pc + 1].block = candidates[i].block;
3177 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3178 if (innermost_block == NULL
3179 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3180 innermost_block = candidates[i].block;
3181 }
3182
3183 if (deprocedure_p
3184 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 == TYPE_CODE_FUNC))
3186 {
3187 replace_operator_with_call (expp, pc, 0, 0,
3188 exp->elts[pc + 2].symbol,
3189 exp->elts[pc + 1].block);
3190 exp = *expp;
3191 }
14f9c5c9
AS
3192 break;
3193
3194 case OP_FUNCALL:
3195 {
4c4b4cd2 3196 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3197 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3198 {
3199 struct ada_symbol_info *candidates;
3200 int n_candidates;
3201
3202 n_candidates =
76a01679
JB
3203 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3204 (exp->elts[pc + 5].symbol),
3205 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3206 &candidates, 1);
4c4b4cd2
PH
3207 if (n_candidates == 1)
3208 i = 0;
3209 else
3210 {
06d5cf63
JB
3211 i = ada_resolve_function
3212 (candidates, n_candidates,
3213 argvec, nargs,
3214 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 context_type);
4c4b4cd2 3216 if (i < 0)
323e0a4a 3217 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3218 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 }
3220
3221 exp->elts[pc + 4].block = candidates[i].block;
3222 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3223 if (innermost_block == NULL
3224 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3225 innermost_block = candidates[i].block;
3226 }
14f9c5c9
AS
3227 }
3228 break;
3229 case BINOP_ADD:
3230 case BINOP_SUB:
3231 case BINOP_MUL:
3232 case BINOP_DIV:
3233 case BINOP_REM:
3234 case BINOP_MOD:
3235 case BINOP_CONCAT:
3236 case BINOP_BITWISE_AND:
3237 case BINOP_BITWISE_IOR:
3238 case BINOP_BITWISE_XOR:
3239 case BINOP_EQUAL:
3240 case BINOP_NOTEQUAL:
3241 case BINOP_LESS:
3242 case BINOP_GTR:
3243 case BINOP_LEQ:
3244 case BINOP_GEQ:
3245 case BINOP_EXP:
3246 case UNOP_NEG:
3247 case UNOP_PLUS:
3248 case UNOP_LOGICAL_NOT:
3249 case UNOP_ABS:
3250 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3251 {
3252 struct ada_symbol_info *candidates;
3253 int n_candidates;
3254
3255 n_candidates =
3256 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3257 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3258 &candidates, 1);
4c4b4cd2 3259 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3260 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3261 if (i < 0)
3262 break;
3263
76a01679
JB
3264 replace_operator_with_call (expp, pc, nargs, 1,
3265 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3266 exp = *expp;
3267 }
14f9c5c9 3268 break;
4c4b4cd2
PH
3269
3270 case OP_TYPE:
b3dbf008 3271 case OP_REGISTER:
4c4b4cd2 3272 return NULL;
14f9c5c9
AS
3273 }
3274
3275 *pos = pc;
3276 return evaluate_subexp_type (exp, pos);
3277}
3278
3279/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3280 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3281 a non-pointer. */
14f9c5c9 3282/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3283 liberal. */
14f9c5c9
AS
3284
3285static int
4dc81987 3286ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3287{
61ee279c
PH
3288 ftype = ada_check_typedef (ftype);
3289 atype = ada_check_typedef (atype);
14f9c5c9
AS
3290
3291 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3292 ftype = TYPE_TARGET_TYPE (ftype);
3293 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3294 atype = TYPE_TARGET_TYPE (atype);
3295
d2e4a39e 3296 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3297 {
3298 default:
5b3d5b7d 3299 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3300 case TYPE_CODE_PTR:
3301 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3302 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3303 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3304 else
1265e4aa
JB
3305 return (may_deref
3306 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_ENUM:
3309 case TYPE_CODE_RANGE:
3310 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3311 {
3312 case TYPE_CODE_INT:
3313 case TYPE_CODE_ENUM:
3314 case TYPE_CODE_RANGE:
3315 return 1;
3316 default:
3317 return 0;
3318 }
14f9c5c9
AS
3319
3320 case TYPE_CODE_ARRAY:
d2e4a39e 3321 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3322 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3323
3324 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3325 if (ada_is_array_descriptor_type (ftype))
3326 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3327 || ada_is_array_descriptor_type (atype));
14f9c5c9 3328 else
4c4b4cd2
PH
3329 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3330 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3331
3332 case TYPE_CODE_UNION:
3333 case TYPE_CODE_FLT:
3334 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3335 }
3336}
3337
3338/* Return non-zero if the formals of FUNC "sufficiently match" the
3339 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3340 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3341 argument function. */
14f9c5c9
AS
3342
3343static int
d2e4a39e 3344ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3345{
3346 int i;
d2e4a39e 3347 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3348
1265e4aa
JB
3349 if (SYMBOL_CLASS (func) == LOC_CONST
3350 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3351 return (n_actuals == 0);
3352 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 return 0;
3354
3355 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 return 0;
3357
3358 for (i = 0; i < n_actuals; i += 1)
3359 {
4c4b4cd2 3360 if (actuals[i] == NULL)
76a01679
JB
3361 return 0;
3362 else
3363 {
5b4ee69b
MS
3364 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 i));
df407dfe 3366 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3367
76a01679
JB
3368 if (!ada_type_match (ftype, atype, 1))
3369 return 0;
3370 }
14f9c5c9
AS
3371 }
3372 return 1;
3373}
3374
3375/* False iff function type FUNC_TYPE definitely does not produce a value
3376 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3377 FUNC_TYPE is not a valid function type with a non-null return type
3378 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379
3380static int
d2e4a39e 3381return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3382{
d2e4a39e 3383 struct type *return_type;
14f9c5c9
AS
3384
3385 if (func_type == NULL)
3386 return 1;
3387
4c4b4cd2 3388 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3389 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3390 else
18af8284 3391 return_type = get_base_type (func_type);
14f9c5c9
AS
3392 if (return_type == NULL)
3393 return 1;
3394
18af8284 3395 context_type = get_base_type (context_type);
14f9c5c9
AS
3396
3397 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3398 return context_type == NULL || return_type == context_type;
3399 else if (context_type == NULL)
3400 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 else
3402 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3403}
3404
3405
4c4b4cd2 3406/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3407 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3408 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3409 that returns that type, then eliminate matches that don't. If
3410 CONTEXT_TYPE is void and there is at least one match that does not
3411 return void, eliminate all matches that do.
3412
14f9c5c9
AS
3413 Asks the user if there is more than one match remaining. Returns -1
3414 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3415 solely for messages. May re-arrange and modify SYMS in
3416 the process; the index returned is for the modified vector. */
14f9c5c9 3417
4c4b4cd2
PH
3418static int
3419ada_resolve_function (struct ada_symbol_info syms[],
3420 int nsyms, struct value **args, int nargs,
3421 const char *name, struct type *context_type)
14f9c5c9 3422{
30b15541 3423 int fallback;
14f9c5c9 3424 int k;
4c4b4cd2 3425 int m; /* Number of hits */
14f9c5c9 3426
d2e4a39e 3427 m = 0;
30b15541
UW
3428 /* In the first pass of the loop, we only accept functions matching
3429 context_type. If none are found, we add a second pass of the loop
3430 where every function is accepted. */
3431 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3432 {
3433 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3434 {
61ee279c 3435 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3436
3437 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3438 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3439 {
3440 syms[m] = syms[k];
3441 m += 1;
3442 }
3443 }
14f9c5c9
AS
3444 }
3445
3446 if (m == 0)
3447 return -1;
3448 else if (m > 1)
3449 {
323e0a4a 3450 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3451 user_select_syms (syms, m, 1);
14f9c5c9
AS
3452 return 0;
3453 }
3454 return 0;
3455}
3456
4c4b4cd2
PH
3457/* Returns true (non-zero) iff decoded name N0 should appear before N1
3458 in a listing of choices during disambiguation (see sort_choices, below).
3459 The idea is that overloadings of a subprogram name from the
3460 same package should sort in their source order. We settle for ordering
3461 such symbols by their trailing number (__N or $N). */
3462
14f9c5c9 3463static int
0d5cff50 3464encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3465{
3466 if (N1 == NULL)
3467 return 0;
3468 else if (N0 == NULL)
3469 return 1;
3470 else
3471 {
3472 int k0, k1;
5b4ee69b 3473
d2e4a39e 3474 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3475 ;
d2e4a39e 3476 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3477 ;
d2e4a39e 3478 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3479 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3480 {
3481 int n0, n1;
5b4ee69b 3482
4c4b4cd2
PH
3483 n0 = k0;
3484 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 n0 -= 1;
3486 n1 = k1;
3487 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 n1 -= 1;
3489 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3490 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 }
14f9c5c9
AS
3492 return (strcmp (N0, N1) < 0);
3493 }
3494}
d2e4a39e 3495
4c4b4cd2
PH
3496/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3497 encoded names. */
3498
d2e4a39e 3499static void
4c4b4cd2 3500sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3501{
4c4b4cd2 3502 int i;
5b4ee69b 3503
d2e4a39e 3504 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3505 {
4c4b4cd2 3506 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3507 int j;
3508
d2e4a39e 3509 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3510 {
3511 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3512 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 break;
3514 syms[j + 1] = syms[j];
3515 }
d2e4a39e 3516 syms[j + 1] = sym;
14f9c5c9
AS
3517 }
3518}
3519
4c4b4cd2
PH
3520/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3521 by asking the user (if necessary), returning the number selected,
3522 and setting the first elements of SYMS items. Error if no symbols
3523 selected. */
14f9c5c9
AS
3524
3525/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3526 to be re-integrated one of these days. */
14f9c5c9
AS
3527
3528int
4c4b4cd2 3529user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3530{
3531 int i;
d2e4a39e 3532 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3533 int n_chosen;
3534 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3535 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3536
3537 if (max_results < 1)
323e0a4a 3538 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3539 if (nsyms <= 1)
3540 return nsyms;
3541
717d2f5a
JB
3542 if (select_mode == multiple_symbols_cancel)
3543 error (_("\
3544canceled because the command is ambiguous\n\
3545See set/show multiple-symbol."));
3546
3547 /* If select_mode is "all", then return all possible symbols.
3548 Only do that if more than one symbol can be selected, of course.
3549 Otherwise, display the menu as usual. */
3550 if (select_mode == multiple_symbols_all && max_results > 1)
3551 return nsyms;
3552
323e0a4a 3553 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3554 if (max_results > 1)
323e0a4a 3555 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3556
4c4b4cd2 3557 sort_choices (syms, nsyms);
14f9c5c9
AS
3558
3559 for (i = 0; i < nsyms; i += 1)
3560 {
4c4b4cd2
PH
3561 if (syms[i].sym == NULL)
3562 continue;
3563
3564 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 {
76a01679
JB
3566 struct symtab_and_line sal =
3567 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3568
323e0a4a
AC
3569 if (sal.symtab == NULL)
3570 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.line);
3574 else
3575 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3576 SYMBOL_PRINT_NAME (syms[i].sym),
3577 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3578 continue;
3579 }
d2e4a39e 3580 else
4c4b4cd2
PH
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3595 {
a3f17187 3596 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3598 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
323e0a4a
AC
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab->filename);
3609 else
3610 printf_unfiltered (is_enumeral
323e0a4a
AC
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
14f9c5c9 3616 }
d2e4a39e 3617
14f9c5c9 3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3619 "overload-choice");
14f9c5c9
AS
3620
3621 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3622 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3623
3624 return n_chosen;
3625}
3626
3627/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3628 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
4c4b4cd2 3634 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
4c4b4cd2 3638 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3641 prompts (for use with the -f switch). */
14f9c5c9
AS
3642
3643int
d2e4a39e 3644get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3645 int is_all_choice, char *annotation_suffix)
14f9c5c9 3646{
d2e4a39e 3647 char *args;
0bcd0149 3648 char *prompt;
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3651
14f9c5c9
AS
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
0bcd0149 3654 prompt = "> ";
14f9c5c9 3655
0bcd0149 3656 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3657
14f9c5c9 3658 if (args == NULL)
323e0a4a 3659 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3660
3661 n_chosen = 0;
76a01679 3662
4c4b4cd2
PH
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
14f9c5c9
AS
3665 while (1)
3666 {
d2e4a39e 3667 char *args2;
14f9c5c9
AS
3668 int choice, j;
3669
0fcd72ba 3670 args = skip_spaces (args);
14f9c5c9 3671 if (*args == '\0' && n_chosen == 0)
323e0a4a 3672 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3673 else if (*args == '\0')
4c4b4cd2 3674 break;
14f9c5c9
AS
3675
3676 choice = strtol (args, &args2, 10);
d2e4a39e 3677 if (args == args2 || choice < 0
4c4b4cd2 3678 || choice > n_choices + first_choice - 1)
323e0a4a 3679 error (_("Argument must be choice number"));
14f9c5c9
AS
3680 args = args2;
3681
d2e4a39e 3682 if (choice == 0)
323e0a4a 3683 error (_("cancelled"));
14f9c5c9
AS
3684
3685 if (choice < first_choice)
4c4b4cd2
PH
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
14f9c5c9
AS
3692 choice -= first_choice;
3693
d2e4a39e 3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3695 {
3696 }
14f9c5c9
AS
3697
3698 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3699 {
3700 int k;
5b4ee69b 3701
4c4b4cd2
PH
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
14f9c5c9
AS
3707 }
3708
3709 if (n_chosen > max_results)
323e0a4a 3710 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3711
14f9c5c9
AS
3712 return n_chosen;
3713}
3714
4c4b4cd2
PH
3715/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3718
3719static void
d2e4a39e 3720replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3721 int oplen, struct symbol *sym,
3722 struct block *block)
14f9c5c9
AS
3723{
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3725 symbol, -oplen for operator being replaced). */
d2e4a39e 3726 struct expression *newexp = (struct expression *)
8c1a34e7 3727 xzalloc (sizeof (struct expression)
4c4b4cd2 3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3729 struct expression *exp = *expp;
14f9c5c9
AS
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3489610d 3733 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
aacb1f0a 3746 xfree (exp);
d2e4a39e 3747}
14f9c5c9
AS
3748
3749/* Type-class predicates */
3750
4c4b4cd2
PH
3751/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
14f9c5c9
AS
3753
3754static int
d2e4a39e 3755numeric_type_p (struct type *type)
14f9c5c9
AS
3756{
3757 if (type == NULL)
3758 return 0;
d2e4a39e
AS
3759 else
3760 {
3761 switch (TYPE_CODE (type))
4c4b4cd2
PH
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
d2e4a39e 3772 }
14f9c5c9
AS
3773}
3774
4c4b4cd2 3775/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3776
3777static int
d2e4a39e 3778integer_type_p (struct type *type)
14f9c5c9
AS
3779{
3780 if (type == NULL)
3781 return 0;
d2e4a39e
AS
3782 else
3783 {
3784 switch (TYPE_CODE (type))
4c4b4cd2
PH
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
d2e4a39e 3794 }
14f9c5c9
AS
3795}
3796
4c4b4cd2 3797/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3798
3799static int
d2e4a39e 3800scalar_type_p (struct type *type)
14f9c5c9
AS
3801{
3802 if (type == NULL)
3803 return 0;
d2e4a39e
AS
3804 else
3805 {
3806 switch (TYPE_CODE (type))
4c4b4cd2
PH
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
d2e4a39e 3816 }
14f9c5c9
AS
3817}
3818
4c4b4cd2 3819/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3820
3821static int
d2e4a39e 3822discrete_type_p (struct type *type)
14f9c5c9
AS
3823{
3824 if (type == NULL)
3825 return 0;
d2e4a39e
AS
3826 else
3827 {
3828 switch (TYPE_CODE (type))
4c4b4cd2
PH
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
872f0337 3833 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3834 return 1;
3835 default:
3836 return 0;
3837 }
d2e4a39e 3838 }
14f9c5c9
AS
3839}
3840
4c4b4cd2
PH
3841/* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
14f9c5c9
AS
3844
3845static int
d2e4a39e 3846possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3847{
76a01679 3848 struct type *type0 =
df407dfe 3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3850 struct type *type1 =
df407dfe 3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3852
4c4b4cd2
PH
3853 if (type0 == NULL)
3854 return 0;
3855
14f9c5c9
AS
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
d2e4a39e 3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
d2e4a39e 3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
d2e4a39e 3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3881
3882 case BINOP_CONCAT:
ee90b9ab 3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3884
3885 case BINOP_EXP:
d2e4a39e 3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
14f9c5c9
AS
3893
3894 }
3895}
3896\f
4c4b4cd2 3897 /* Renaming */
14f9c5c9 3898
aeb5907d
JB
3899/* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911/* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
0963b4bd 3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930enum ada_renaming_category
3931ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934{
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
14f9c5c9 3942 {
aeb5907d
JB
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
14f9c5c9 3976 }
4c4b4cd2 3977
aeb5907d
JB
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989}
3990
3991/* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995static enum ada_renaming_category
3996parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999{
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
14f9c5c9 4004
aeb5907d
JB
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
14f9c5c9 4008
aeb5907d
JB
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
14f9c5c9 4034
aeb5907d
JB
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
a5ee536b
JB
4048}
4049
4050/* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
52ce6436 4053
a5ee536b
JB
4054static struct value *
4055ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057{
4058 char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4064 old_chain = make_cleanup (xfree, sym_name);
1bb9788d 4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
a5ee536b
JB
4066 make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071}
14f9c5c9 4072\f
d2e4a39e 4073
4c4b4cd2 4074 /* Evaluation: Function Calls */
14f9c5c9 4075
4c4b4cd2 4076/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4079
d2e4a39e 4080static struct value *
40bc484c 4081ensure_lval (struct value *val)
14f9c5c9 4082{
40bc484c
JB
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4085 {
df407dfe 4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4089
40bc484c 4090 set_value_address (val, addr);
a84a8a0d 4091 VALUE_LVAL (val) = lval_memory;
40bc484c 4092 write_memory (addr, value_contents (val), len);
c3e5cd34 4093 }
14f9c5c9
AS
4094
4095 return val;
4096}
4097
4098/* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4101 values not residing in memory, updating it as needed. */
14f9c5c9 4102
a93c0eb6 4103struct value *
40bc484c 4104ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4105{
df407dfe 4106 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4107 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4114
4c4b4cd2 4115 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4117 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4120 {
a84a8a0d 4121 struct value *result;
5b4ee69b 4122
14f9c5c9 4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4124 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4125 result = desc_data (actual);
14f9c5c9 4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
5b4ee69b 4131
df407dfe 4132 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4133 val = allocate_value (actual_type);
990a07ab 4134 memcpy ((char *) value_contents_raw (val),
0fd88904 4135 (char *) value_contents (actual),
4c4b4cd2 4136 TYPE_LENGTH (actual_type));
40bc484c 4137 actual = ensure_lval (val);
4c4b4cd2 4138 }
a84a8a0d 4139 result = value_addr (actual);
4c4b4cd2 4140 }
a84a8a0d
JB
4141 else
4142 return actual;
b1af9e97 4143 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149}
4150
438c98a1
JB
4151/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156static CORE_ADDR
4157value_pointer (struct value *value, struct type *type)
4158{
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168}
4169
14f9c5c9 4170
4c4b4cd2
PH
4171/* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
14f9c5c9 4176
d2e4a39e 4177static struct value *
40bc484c 4178make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4179{
d2e4a39e
AS
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4184 int i;
d2e4a39e 4185
0963b4bd
MS
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
14f9c5c9 4188 {
19f220c3
JK
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4197 }
d2e4a39e 4198
40bc484c 4199 bounds = ensure_lval (bounds);
d2e4a39e 4200
19f220c3
JK
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4214
40bc484c 4215 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221}
14f9c5c9 4222\f
963a6417 4223/* Dummy definitions for an experimental caching module that is not
0963b4bd 4224 * used in the public sources. */
96d887e8 4225
96d887e8
PH
4226static int
4227lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4228 struct symbol **sym, struct block **block)
96d887e8
PH
4229{
4230 return 0;
4231}
4232
4233static void
4234cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4235 struct block *block)
96d887e8
PH
4236{
4237}
4c4b4cd2
PH
4238\f
4239 /* Symbol Lookup */
4240
c0431670
JB
4241/* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247static int
4248should_use_wild_match (const char *lookup_name)
4249{
4250 return (strstr (lookup_name, "__") == NULL);
4251}
4252
4c4b4cd2
PH
4253/* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256static struct symbol *
4257standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259{
acbd605d
MGD
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4c4b4cd2 4262
2570f2b7 4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4264 return sym;
2570f2b7
UW
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4267 return sym;
4268}
4269
4270
4271/* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274static int
4275is_nonfunction (struct ada_symbol_info syms[], int n)
4276{
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4283 return 1;
4284
4285 return 0;
4286}
4287
4288/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4289 struct types. Otherwise, they may not. */
14f9c5c9
AS
4290
4291static int
d2e4a39e 4292equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4293{
d2e4a39e 4294 if (type0 == type1)
14f9c5c9 4295 return 1;
d2e4a39e 4296 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
d2e4a39e 4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4303 return 1;
d2e4a39e 4304
14f9c5c9
AS
4305 return 0;
4306}
4307
4308/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4309 no more defined than that of SYM1. */
14f9c5c9
AS
4310
4311static int
d2e4a39e 4312lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4313{
4314 if (sym0 == sym1)
4315 return 1;
176620f1 4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
d2e4a39e 4320 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4c4b4cd2
PH
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4330 int len0 = strlen (name0);
5b4ee69b 4331
4c4b4cd2
PH
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4341 default:
4342 return 0;
14f9c5c9
AS
4343 }
4344}
4345
4c4b4cd2
PH
4346/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4348
4349static void
76a01679
JB
4350add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
2570f2b7 4352 struct block *block)
14f9c5c9
AS
4353{
4354 int i;
4c4b4cd2 4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4356
529cad9c
PH
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4c4b4cd2
PH
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4c4b4cd2 4374 return;
76a01679 4375 }
4c4b4cd2
PH
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4c4b4cd2
PH
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385}
4386
4387/* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
76a01679
JB
4390static int
4391num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4392{
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394}
4395
4396/* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
76a01679 4400static struct ada_symbol_info *
4c4b4cd2
PH
4401defns_collected (struct obstack *obstackp, int finish)
4402{
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407}
4408
96d887e8 4409/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4412 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4413
96d887e8
PH
4414struct minimal_symbol *
4415ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4416{
4c4b4cd2 4417 struct objfile *objfile;
96d887e8 4418 struct minimal_symbol *msymbol;
dc4024cd 4419 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4420
c0431670
JB
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
96d887e8 4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4429 name += sizeof ("standard__") - 1;
4c4b4cd2 4430
96d887e8
PH
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
dc4024cd 4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4c4b4cd2 4437
96d887e8
PH
4438 return NULL;
4439}
4c4b4cd2 4440
96d887e8
PH
4441/* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4c4b4cd2 4446
96d887e8
PH
4447static void
4448add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4449 const char *name, domain_enum namespace,
48b78332 4450 int wild_match_p)
96d887e8 4451{
96d887e8 4452}
14f9c5c9 4453
96d887e8
PH
4454/* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
14f9c5c9 4456
96d887e8
PH
4457static int
4458is_nondebugging_type (struct type *type)
4459{
0d5cff50 4460 const char *name = ada_type_name (type);
5b4ee69b 4461
96d887e8
PH
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463}
4c4b4cd2 4464
8f17729f
JB
4465/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472static int
4473ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474{
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
0d5cff50
DE
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506}
4507
4508/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528static int
4529symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530{
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565}
4566
96d887e8
PH
4567/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4c4b4cd2 4573
96d887e8
PH
4574static int
4575remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576{
4577 int i, j;
4c4b4cd2 4578
8f17729f
JB
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
96d887e8
PH
4585 i = 0;
4586 while (i < nsyms)
4587 {
a35ddb44 4588 int remove_p = 0;
339c13b6
JB
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4603 remove_p = 1;
339c13b6
JB
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4623 remove_p = 1;
4c4b4cd2 4624 }
4c4b4cd2 4625 }
339c13b6 4626
a35ddb44 4627 if (remove_p)
339c13b6
JB
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
96d887e8 4634 i += 1;
14f9c5c9 4635 }
8f17729f
JB
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
96d887e8 4652 return nsyms;
14f9c5c9
AS
4653}
4654
96d887e8
PH
4655/* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4659
96d887e8
PH
4660static char *
4661xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4662{
96d887e8 4663 /* The renaming types adhere to the following convention:
0963b4bd 4664 <scope>__<rename>___<XR extension>.
96d887e8
PH
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
76a01679 4667
96d887e8
PH
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
14f9c5c9 4673
96d887e8
PH
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4676
96d887e8
PH
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
76a01679 4680
96d887e8 4681 /* Make a copy of scope and return it. */
14f9c5c9 4682
96d887e8
PH
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4685
96d887e8
PH
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4c4b4cd2 4688
96d887e8 4689 return scope;
4c4b4cd2
PH
4690}
4691
96d887e8 4692/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4693
96d887e8
PH
4694static int
4695is_package_name (const char *name)
4c4b4cd2 4696{
96d887e8
PH
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4c4b4cd2 4702
96d887e8 4703 char *fun_name;
76a01679 4704
96d887e8
PH
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
14f9c5c9 4709
96d887e8
PH
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
14f9c5c9 4712
96d887e8 4713 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4714 functions names cannot contain "__" in them. */
96d887e8
PH
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4c4b4cd2 4717
b435e160 4718 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4719
96d887e8
PH
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721}
14f9c5c9 4722
96d887e8 4723/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4724 not visible from FUNCTION_NAME. */
14f9c5c9 4725
96d887e8 4726static int
0d5cff50 4727old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4728{
aeb5907d
JB
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4735
96d887e8 4736 make_cleanup (xfree, scope);
14f9c5c9 4737
96d887e8
PH
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
aeb5907d 4740 return 0;
14f9c5c9 4741
96d887e8
PH
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
76a01679 4744
96d887e8
PH
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
f26caa11 4751
aeb5907d 4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4753}
4754
aeb5907d
JB
4755/* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
96d887e8
PH
4760
4761 Rationale:
aeb5907d
JB
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
f26caa11 4774
96d887e8
PH
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4c4b4cd2 4791
14f9c5c9 4792static int
aeb5907d
JB
4793remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4795{
4796 struct symbol *current_function;
0d5cff50 4797 const char *current_function_name;
4c4b4cd2 4798 int i;
aeb5907d
JB
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
0963b4bd 4803 First, zero out such symbols, then compress. */
aeb5907d
JB
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
4808 struct block *block = syms[i].block;
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
5b4ee69b 4821
aeb5907d
JB
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4c4b4cd2
PH
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
76a01679 4846
4c4b4cd2
PH
4847 if (current_block == NULL)
4848 return nsyms;
76a01679 4849
7f0df278 4850 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
aeb5907d
JB
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4868 {
4869 int j;
5b4ee69b 4870
aeb5907d 4871 for (j = i + 1; j < nsyms; j += 1)
76a01679 4872 syms[j - 1] = syms[j];
4c4b4cd2
PH
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880}
4881
339c13b6
JB
4882/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892static void
4893ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
d0a8ab18 4895 int wild_match_p)
339c13b6
JB
4896{
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
d0a8ab18
JB
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
339c13b6
JB
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4917}
4918
ccefe4c4 4919/* An object of this type is used as the user_data argument when
40658b94 4920 calling the map_matching_symbols method. */
ccefe4c4 4921
40658b94 4922struct match_data
ccefe4c4 4923{
40658b94 4924 struct objfile *objfile;
ccefe4c4 4925 struct obstack *obstackp;
40658b94
PH
4926 struct symbol *arg_sym;
4927 int found_sym;
ccefe4c4
TT
4928};
4929
40658b94
PH
4930/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
ccefe4c4 4938
40658b94
PH
4939static int
4940aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4941{
40658b94
PH
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968}
4969
4970/* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
5b4ee69b 4974
40658b94
PH
4975static int
4976compare_names (const char *string1, const char *string2)
4977{
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
052874e8 4994 if (is_name_suffix (string1))
40658b94
PH
4995 return 0;
4996 else
1a1d5513 4997 return 1;
40658b94 4998 }
dbb8534f 4999 /* FALLTHROUGH */
40658b94
PH
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
ccefe4c4
TT
5006}
5007
339c13b6
JB
5008/* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012static void
40658b94
PH
5013add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
339c13b6
JB
5016{
5017 struct objfile *objfile;
40658b94 5018 struct match_data data;
339c13b6 5019
6475f2fe 5020 memset (&data, 0, sizeof data);
ccefe4c4 5021 data.obstackp = obstackp;
339c13b6 5022
ccefe4c4 5023 ALL_OBJFILES (objfile)
40658b94
PH
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
0963b4bd
MS
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
40658b94
PH
5049 full_match, compare_names);
5050 }
5051 }
339c13b6
JB
5052}
5053
4c4b4cd2 5054/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
9f88c959
JB
5055 scope and in global scopes, returning the number of matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5057 indicating the symbols found and the blocks and symbol tables (if
9f88c959
JB
5058 any) in which they were found. This vector are transient---good only to
5059 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4c4b4cd2
PH
5060 symbol match within the nest of blocks whose innermost member is BLOCK0,
5061 is the one match returned (no other matches in that or
d9680e73
TT
5062 enclosing blocks is returned). If there are any matches in or
5063 surrounding BLOCK0, then these alone are returned. Otherwise, if
5064 FULL_SEARCH is non-zero, then the search extends to global and
5065 file-scope (static) symbol tables.
9f88c959 5066 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5067 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5068
5069int
4c4b4cd2 5070ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5071 domain_enum namespace,
5072 struct ada_symbol_info **results,
5073 int full_search)
14f9c5c9
AS
5074{
5075 struct symbol *sym;
14f9c5c9 5076 struct block *block;
4c4b4cd2 5077 const char *name;
82ccd55e 5078 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5079 int cacheIfUnique;
4c4b4cd2 5080 int ndefns;
14f9c5c9 5081
4c4b4cd2
PH
5082 obstack_free (&symbol_list_obstack, NULL);
5083 obstack_init (&symbol_list_obstack);
14f9c5c9 5084
14f9c5c9
AS
5085 cacheIfUnique = 0;
5086
5087 /* Search specified block and its superiors. */
5088
4c4b4cd2 5089 name = name0;
76a01679
JB
5090 block = (struct block *) block0; /* FIXME: No cast ought to be
5091 needed, but adding const will
5092 have a cascade effect. */
339c13b6
JB
5093
5094 /* Special case: If the user specifies a symbol name inside package
5095 Standard, do a non-wild matching of the symbol name without
5096 the "standard__" prefix. This was primarily introduced in order
5097 to allow the user to specifically access the standard exceptions
5098 using, for instance, Standard.Constraint_Error when Constraint_Error
5099 is ambiguous (due to the user defining its own Constraint_Error
5100 entity inside its program). */
4c4b4cd2
PH
5101 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5102 {
4c4b4cd2
PH
5103 block = NULL;
5104 name = name0 + sizeof ("standard__") - 1;
5105 }
5106
339c13b6 5107 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5108
339c13b6 5109 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
82ccd55e 5110 wild_match_p);
d9680e73 5111 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5112 goto done;
d2e4a39e 5113
339c13b6
JB
5114 /* No non-global symbols found. Check our cache to see if we have
5115 already performed this search before. If we have, then return
5116 the same result. */
5117
14f9c5c9 5118 cacheIfUnique = 1;
2570f2b7 5119 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5120 {
5121 if (sym != NULL)
2570f2b7 5122 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5123 goto done;
5124 }
14f9c5c9 5125
339c13b6
JB
5126 /* Search symbols from all global blocks. */
5127
40658b94 5128 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5129 wild_match_p);
d2e4a39e 5130
4c4b4cd2 5131 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5132 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5133
4c4b4cd2 5134 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5135 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5136 wild_match_p);
14f9c5c9 5137
4c4b4cd2
PH
5138done:
5139 ndefns = num_defns_collected (&symbol_list_obstack);
5140 *results = defns_collected (&symbol_list_obstack, 1);
5141
5142 ndefns = remove_extra_symbols (*results, ndefns);
5143
2ad01556 5144 if (ndefns == 0 && full_search)
2570f2b7 5145 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5146
2ad01556 5147 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5148 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5149
aeb5907d 5150 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5151
14f9c5c9
AS
5152 return ndefns;
5153}
5154
f8eba3c6
TT
5155/* If NAME is the name of an entity, return a string that should
5156 be used to look that entity up in Ada units. This string should
5157 be deallocated after use using xfree.
5158
5159 NAME can have any form that the "break" or "print" commands might
5160 recognize. In other words, it does not have to be the "natural"
5161 name, or the "encoded" name. */
5162
5163char *
5164ada_name_for_lookup (const char *name)
5165{
5166 char *canon;
5167 int nlen = strlen (name);
5168
5169 if (name[0] == '<' && name[nlen - 1] == '>')
5170 {
5171 canon = xmalloc (nlen - 1);
5172 memcpy (canon, name + 1, nlen - 2);
5173 canon[nlen - 2] = '\0';
5174 }
5175 else
5176 canon = xstrdup (ada_encode (ada_fold_name (name)));
5177 return canon;
5178}
5179
5180/* Implementation of the la_iterate_over_symbols method. */
5181
5182static void
5183ada_iterate_over_symbols (const struct block *block,
5184 const char *name, domain_enum domain,
8e704927 5185 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5186 void *data)
5187{
5188 int ndefs, i;
5189 struct ada_symbol_info *results;
5190
d9680e73 5191 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5192 for (i = 0; i < ndefs; ++i)
5193 {
5194 if (! (*callback) (results[i].sym, data))
5195 break;
5196 }
5197}
5198
4e5c77fe
JB
5199/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5200 to 1, but choosing the first symbol found if there are multiple
5201 choices.
5202
5e2336be
JB
5203 The result is stored in *INFO, which must be non-NULL.
5204 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5205
5206void
5207ada_lookup_encoded_symbol (const char *name, const struct block *block,
5208 domain_enum namespace,
5e2336be 5209 struct ada_symbol_info *info)
14f9c5c9 5210{
4c4b4cd2 5211 struct ada_symbol_info *candidates;
14f9c5c9
AS
5212 int n_candidates;
5213
5e2336be
JB
5214 gdb_assert (info != NULL);
5215 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe
JB
5216
5217 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
d9680e73 5218 1);
14f9c5c9
AS
5219
5220 if (n_candidates == 0)
4e5c77fe 5221 return;
4c4b4cd2 5222
5e2336be
JB
5223 *info = candidates[0];
5224 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5225}
aeb5907d
JB
5226
5227/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5228 scope and in global scopes, or NULL if none. NAME is folded and
5229 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5230 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5231 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5232
aeb5907d
JB
5233struct symbol *
5234ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5235 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5236{
5e2336be 5237 struct ada_symbol_info info;
4e5c77fe 5238
aeb5907d
JB
5239 if (is_a_field_of_this != NULL)
5240 *is_a_field_of_this = 0;
5241
4e5c77fe 5242 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5243 block0, namespace, &info);
5244 return info.sym;
4c4b4cd2 5245}
14f9c5c9 5246
4c4b4cd2
PH
5247static struct symbol *
5248ada_lookup_symbol_nonlocal (const char *name,
76a01679 5249 const struct block *block,
21b556f4 5250 const domain_enum domain)
4c4b4cd2 5251{
94af9270 5252 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5253}
5254
5255
4c4b4cd2
PH
5256/* True iff STR is a possible encoded suffix of a normal Ada name
5257 that is to be ignored for matching purposes. Suffixes of parallel
5258 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5259 are given by any of the regular expressions:
4c4b4cd2 5260
babe1480
JB
5261 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5262 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5263 TKB [subprogram suffix for task bodies]
babe1480 5264 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5265 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5266
5267 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5268 match is performed. This sequence is used to differentiate homonyms,
5269 is an optional part of a valid name suffix. */
4c4b4cd2 5270
14f9c5c9 5271static int
d2e4a39e 5272is_name_suffix (const char *str)
14f9c5c9
AS
5273{
5274 int k;
4c4b4cd2
PH
5275 const char *matching;
5276 const int len = strlen (str);
5277
babe1480
JB
5278 /* Skip optional leading __[0-9]+. */
5279
4c4b4cd2
PH
5280 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5281 {
babe1480
JB
5282 str += 3;
5283 while (isdigit (str[0]))
5284 str += 1;
4c4b4cd2 5285 }
babe1480
JB
5286
5287 /* [.$][0-9]+ */
4c4b4cd2 5288
babe1480 5289 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5290 {
babe1480 5291 matching = str + 1;
4c4b4cd2
PH
5292 while (isdigit (matching[0]))
5293 matching += 1;
5294 if (matching[0] == '\0')
5295 return 1;
5296 }
5297
5298 /* ___[0-9]+ */
babe1480 5299
4c4b4cd2
PH
5300 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5301 {
5302 matching = str + 3;
5303 while (isdigit (matching[0]))
5304 matching += 1;
5305 if (matching[0] == '\0')
5306 return 1;
5307 }
5308
9ac7f98e
JB
5309 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5310
5311 if (strcmp (str, "TKB") == 0)
5312 return 1;
5313
529cad9c
PH
5314#if 0
5315 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5316 with a N at the end. Unfortunately, the compiler uses the same
5317 convention for other internal types it creates. So treating
529cad9c 5318 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5319 some regressions. For instance, consider the case of an enumerated
5320 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5321 name ends with N.
5322 Having a single character like this as a suffix carrying some
0963b4bd 5323 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5324 to be something like "_N" instead. In the meantime, do not do
5325 the following check. */
5326 /* Protected Object Subprograms */
5327 if (len == 1 && str [0] == 'N')
5328 return 1;
5329#endif
5330
5331 /* _E[0-9]+[bs]$ */
5332 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5333 {
5334 matching = str + 3;
5335 while (isdigit (matching[0]))
5336 matching += 1;
5337 if ((matching[0] == 'b' || matching[0] == 's')
5338 && matching [1] == '\0')
5339 return 1;
5340 }
5341
4c4b4cd2
PH
5342 /* ??? We should not modify STR directly, as we are doing below. This
5343 is fine in this case, but may become problematic later if we find
5344 that this alternative did not work, and want to try matching
5345 another one from the begining of STR. Since we modified it, we
5346 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5347 if (str[0] == 'X')
5348 {
5349 str += 1;
d2e4a39e 5350 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5351 {
5352 if (str[0] != 'n' && str[0] != 'b')
5353 return 0;
5354 str += 1;
5355 }
14f9c5c9 5356 }
babe1480 5357
14f9c5c9
AS
5358 if (str[0] == '\000')
5359 return 1;
babe1480 5360
d2e4a39e 5361 if (str[0] == '_')
14f9c5c9
AS
5362 {
5363 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5364 return 0;
d2e4a39e 5365 if (str[2] == '_')
4c4b4cd2 5366 {
61ee279c
PH
5367 if (strcmp (str + 3, "JM") == 0)
5368 return 1;
5369 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5370 the LJM suffix in favor of the JM one. But we will
5371 still accept LJM as a valid suffix for a reasonable
5372 amount of time, just to allow ourselves to debug programs
5373 compiled using an older version of GNAT. */
4c4b4cd2
PH
5374 if (strcmp (str + 3, "LJM") == 0)
5375 return 1;
5376 if (str[3] != 'X')
5377 return 0;
1265e4aa
JB
5378 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5379 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5380 return 1;
5381 if (str[4] == 'R' && str[5] != 'T')
5382 return 1;
5383 return 0;
5384 }
5385 if (!isdigit (str[2]))
5386 return 0;
5387 for (k = 3; str[k] != '\0'; k += 1)
5388 if (!isdigit (str[k]) && str[k] != '_')
5389 return 0;
14f9c5c9
AS
5390 return 1;
5391 }
4c4b4cd2 5392 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5393 {
4c4b4cd2
PH
5394 for (k = 2; str[k] != '\0'; k += 1)
5395 if (!isdigit (str[k]) && str[k] != '_')
5396 return 0;
14f9c5c9
AS
5397 return 1;
5398 }
5399 return 0;
5400}
d2e4a39e 5401
aeb5907d
JB
5402/* Return non-zero if the string starting at NAME and ending before
5403 NAME_END contains no capital letters. */
529cad9c
PH
5404
5405static int
5406is_valid_name_for_wild_match (const char *name0)
5407{
5408 const char *decoded_name = ada_decode (name0);
5409 int i;
5410
5823c3ef
JB
5411 /* If the decoded name starts with an angle bracket, it means that
5412 NAME0 does not follow the GNAT encoding format. It should then
5413 not be allowed as a possible wild match. */
5414 if (decoded_name[0] == '<')
5415 return 0;
5416
529cad9c
PH
5417 for (i=0; decoded_name[i] != '\0'; i++)
5418 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5419 return 0;
5420
5421 return 1;
5422}
5423
73589123
PH
5424/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5425 that could start a simple name. Assumes that *NAMEP points into
5426 the string beginning at NAME0. */
4c4b4cd2 5427
14f9c5c9 5428static int
73589123 5429advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5430{
73589123 5431 const char *name = *namep;
5b4ee69b 5432
5823c3ef 5433 while (1)
14f9c5c9 5434 {
aa27d0b3 5435 int t0, t1;
73589123
PH
5436
5437 t0 = *name;
5438 if (t0 == '_')
5439 {
5440 t1 = name[1];
5441 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5442 {
5443 name += 1;
5444 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5445 break;
5446 else
5447 name += 1;
5448 }
aa27d0b3
JB
5449 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5450 || name[2] == target0))
73589123
PH
5451 {
5452 name += 2;
5453 break;
5454 }
5455 else
5456 return 0;
5457 }
5458 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5459 name += 1;
5460 else
5823c3ef 5461 return 0;
73589123
PH
5462 }
5463
5464 *namep = name;
5465 return 1;
5466}
5467
5468/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5469 informational suffixes of NAME (i.e., for which is_name_suffix is
5470 true). Assumes that PATN is a lower-cased Ada simple name. */
5471
5472static int
5473wild_match (const char *name, const char *patn)
5474{
22e048c9 5475 const char *p;
73589123
PH
5476 const char *name0 = name;
5477
5478 while (1)
5479 {
5480 const char *match = name;
5481
5482 if (*name == *patn)
5483 {
5484 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5485 if (*p != *name)
5486 break;
5487 if (*p == '\0' && is_name_suffix (name))
5488 return match != name0 && !is_valid_name_for_wild_match (name0);
5489
5490 if (name[-1] == '_')
5491 name -= 1;
5492 }
5493 if (!advance_wild_match (&name, name0, *patn))
5494 return 1;
96d887e8 5495 }
96d887e8
PH
5496}
5497
40658b94
PH
5498/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5499 informational suffix. */
5500
c4d840bd
PH
5501static int
5502full_match (const char *sym_name, const char *search_name)
5503{
40658b94 5504 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5505}
5506
5507
96d887e8
PH
5508/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5509 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5510 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5511 OBJFILE is the section containing BLOCK.
5512 SYMTAB is recorded with each symbol added. */
5513
5514static void
5515ada_add_block_symbols (struct obstack *obstackp,
76a01679 5516 struct block *block, const char *name,
96d887e8 5517 domain_enum domain, struct objfile *objfile,
2570f2b7 5518 int wild)
96d887e8 5519{
8157b174 5520 struct block_iterator iter;
96d887e8
PH
5521 int name_len = strlen (name);
5522 /* A matching argument symbol, if any. */
5523 struct symbol *arg_sym;
5524 /* Set true when we find a matching non-argument symbol. */
5525 int found_sym;
5526 struct symbol *sym;
5527
5528 arg_sym = NULL;
5529 found_sym = 0;
5530 if (wild)
5531 {
8157b174
TT
5532 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5533 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5534 {
5eeb2539
AR
5535 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5536 SYMBOL_DOMAIN (sym), domain)
73589123 5537 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5538 {
2a2d4dc3
AS
5539 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5540 continue;
5541 else if (SYMBOL_IS_ARGUMENT (sym))
5542 arg_sym = sym;
5543 else
5544 {
76a01679
JB
5545 found_sym = 1;
5546 add_defn_to_vec (obstackp,
5547 fixup_symbol_section (sym, objfile),
2570f2b7 5548 block);
76a01679
JB
5549 }
5550 }
5551 }
96d887e8
PH
5552 }
5553 else
5554 {
8157b174
TT
5555 for (sym = block_iter_match_first (block, name, full_match, &iter);
5556 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5557 {
5eeb2539
AR
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
76a01679 5560 {
c4d840bd
PH
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
2a2d4dc3 5566 {
c4d840bd
PH
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
2a2d4dc3 5571 }
c4d840bd 5572 }
76a01679
JB
5573 }
5574 }
96d887e8
PH
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
76a01679
JB
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5581 block);
96d887e8
PH
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5590 {
5eeb2539
AR
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
2a2d4dc3
AS
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
76a01679
JB
5620 }
5621 }
76a01679 5622 }
96d887e8
PH
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
76a01679 5629 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5630 block);
96d887e8
PH
5631 }
5632 }
5633}
5634\f
41d27058
JB
5635
5636 /* Symbol Completion */
5637
5638/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5643 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5644 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5645 in its encoded form. */
5646
5647static const char *
5648symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
6ea35997 5650 int wild_match_p, int encoded_p)
41d27058 5651{
41d27058
JB
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
6ea35997 5667 if (match && !encoded_p)
41d27058
JB
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
e701b3c0 5698 if (!match && wild_match_p)
41d27058
JB
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
6ea35997 5717 if (!encoded_p)
41d27058
JB
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721}
5722
5723/* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
c0af1706 5733 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5734 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738static void
d6565258 5739symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
cb8e9b97 5743 int wild_match_p, int encoded_p)
41d27058
JB
5744{
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5746 wild_match_p, encoded_p);
41d27058
JB
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
d6565258 5775 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5776}
5777
ccefe4c4 5778/* An object of this type is passed as the user_data argument to the
7b08b9eb 5779 expand_partial_symbol_names method. */
ccefe4c4
TT
5780struct add_partial_datum
5781{
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789};
5790
7b08b9eb
JK
5791/* A callback for expand_partial_symbol_names. */
5792static int
e078317b 5793ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5794{
5795 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5799}
5800
49c4e619
TT
5801/* Return a list of possible symbol names completing TEXT0. WORD is
5802 the entire command on which completion is made. */
41d27058 5803
49c4e619 5804static VEC (char_ptr) *
41d27058
JB
5805ada_make_symbol_completion_list (char *text0, char *word)
5806{
5807 char *text;
5808 int text_len;
b1ed564a
JB
5809 int wild_match_p;
5810 int encoded_p;
2ba95b9b 5811 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5812 struct symbol *sym;
5813 struct symtab *s;
41d27058
JB
5814 struct minimal_symbol *msymbol;
5815 struct objfile *objfile;
5816 struct block *b, *surrounding_static_block = 0;
5817 int i;
8157b174 5818 struct block_iterator iter;
41d27058
JB
5819
5820 if (text0[0] == '<')
5821 {
5822 text = xstrdup (text0);
5823 make_cleanup (xfree, text);
5824 text_len = strlen (text);
b1ed564a
JB
5825 wild_match_p = 0;
5826 encoded_p = 1;
41d27058
JB
5827 }
5828 else
5829 {
5830 text = xstrdup (ada_encode (text0));
5831 make_cleanup (xfree, text);
5832 text_len = strlen (text);
5833 for (i = 0; i < text_len; i++)
5834 text[i] = tolower (text[i]);
5835
b1ed564a 5836 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5837 /* If the name contains a ".", then the user is entering a fully
5838 qualified entity name, and the match must not be done in wild
5839 mode. Similarly, if the user wants to complete what looks like
5840 an encoded name, the match must not be done in wild mode. */
b1ed564a 5841 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5842 }
5843
5844 /* First, look at the partial symtab symbols. */
41d27058 5845 {
ccefe4c4
TT
5846 struct add_partial_datum data;
5847
5848 data.completions = &completions;
5849 data.text = text;
5850 data.text_len = text_len;
5851 data.text0 = text0;
5852 data.word = word;
b1ed564a
JB
5853 data.wild_match = wild_match_p;
5854 data.encoded = encoded_p;
7b08b9eb 5855 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5856 }
5857
5858 /* At this point scan through the misc symbol vectors and add each
5859 symbol you find to the list. Eventually we want to ignore
5860 anything that isn't a text symbol (everything else will be
5861 handled by the psymtab code above). */
5862
5863 ALL_MSYMBOLS (objfile, msymbol)
5864 {
5865 QUIT;
d6565258 5866 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5867 text, text_len, text0, word, wild_match_p,
5868 encoded_p);
41d27058
JB
5869 }
5870
5871 /* Search upwards from currently selected frame (so that we can
5872 complete on local vars. */
5873
5874 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5875 {
5876 if (!BLOCK_SUPERBLOCK (b))
5877 surrounding_static_block = b; /* For elmin of dups */
5878
5879 ALL_BLOCK_SYMBOLS (b, iter, sym)
5880 {
d6565258 5881 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5882 text, text_len, text0, word,
b1ed564a 5883 wild_match_p, encoded_p);
41d27058
JB
5884 }
5885 }
5886
5887 /* Go through the symtabs and check the externs and statics for
5888 symbols which match. */
5889
5890 ALL_SYMTABS (objfile, s)
5891 {
5892 QUIT;
5893 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5894 ALL_BLOCK_SYMBOLS (b, iter, sym)
5895 {
d6565258 5896 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5897 text, text_len, text0, word,
b1ed564a 5898 wild_match_p, encoded_p);
41d27058
JB
5899 }
5900 }
5901
5902 ALL_SYMTABS (objfile, s)
5903 {
5904 QUIT;
5905 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5906 /* Don't do this block twice. */
5907 if (b == surrounding_static_block)
5908 continue;
5909 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 {
d6565258 5911 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5912 text, text_len, text0, word,
b1ed564a 5913 wild_match_p, encoded_p);
41d27058
JB
5914 }
5915 }
5916
49c4e619 5917 return completions;
41d27058
JB
5918}
5919
963a6417 5920 /* Field Access */
96d887e8 5921
73fb9985
JB
5922/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5923 for tagged types. */
5924
5925static int
5926ada_is_dispatch_table_ptr_type (struct type *type)
5927{
0d5cff50 5928 const char *name;
73fb9985
JB
5929
5930 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5931 return 0;
5932
5933 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5934 if (name == NULL)
5935 return 0;
5936
5937 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5938}
5939
963a6417
PH
5940/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5941 to be invisible to users. */
96d887e8 5942
963a6417
PH
5943int
5944ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5945{
963a6417
PH
5946 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5947 return 1;
ffde82bf 5948
73fb9985
JB
5949 /* Check the name of that field. */
5950 {
5951 const char *name = TYPE_FIELD_NAME (type, field_num);
5952
5953 /* Anonymous field names should not be printed.
5954 brobecker/2007-02-20: I don't think this can actually happen
5955 but we don't want to print the value of annonymous fields anyway. */
5956 if (name == NULL)
5957 return 1;
5958
ffde82bf
JB
5959 /* Normally, fields whose name start with an underscore ("_")
5960 are fields that have been internally generated by the compiler,
5961 and thus should not be printed. The "_parent" field is special,
5962 however: This is a field internally generated by the compiler
5963 for tagged types, and it contains the components inherited from
5964 the parent type. This field should not be printed as is, but
5965 should not be ignored either. */
73fb9985
JB
5966 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5967 return 1;
5968 }
5969
5970 /* If this is the dispatch table of a tagged type, then ignore. */
5971 if (ada_is_tagged_type (type, 1)
5972 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5973 return 1;
5974
5975 /* Not a special field, so it should not be ignored. */
5976 return 0;
963a6417 5977}
96d887e8 5978
963a6417 5979/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5980 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5981
963a6417
PH
5982int
5983ada_is_tagged_type (struct type *type, int refok)
5984{
5985 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5986}
96d887e8 5987
963a6417 5988/* True iff TYPE represents the type of X'Tag */
96d887e8 5989
963a6417
PH
5990int
5991ada_is_tag_type (struct type *type)
5992{
5993 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5994 return 0;
5995 else
96d887e8 5996 {
963a6417 5997 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5998
963a6417
PH
5999 return (name != NULL
6000 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6001 }
96d887e8
PH
6002}
6003
963a6417 6004/* The type of the tag on VAL. */
76a01679 6005
963a6417
PH
6006struct type *
6007ada_tag_type (struct value *val)
96d887e8 6008{
df407dfe 6009 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6010}
96d887e8 6011
963a6417 6012/* The value of the tag on VAL. */
96d887e8 6013
963a6417
PH
6014struct value *
6015ada_value_tag (struct value *val)
6016{
03ee6b2e 6017 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6018}
6019
963a6417
PH
6020/* The value of the tag on the object of type TYPE whose contents are
6021 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6022 ADDRESS. */
96d887e8 6023
963a6417 6024static struct value *
10a2c479 6025value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6026 const gdb_byte *valaddr,
963a6417 6027 CORE_ADDR address)
96d887e8 6028{
b5385fc0 6029 int tag_byte_offset;
963a6417 6030 struct type *tag_type;
5b4ee69b 6031
963a6417 6032 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6033 NULL, NULL, NULL))
96d887e8 6034 {
fc1a4b47 6035 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6036 ? NULL
6037 : valaddr + tag_byte_offset);
963a6417 6038 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6039
963a6417 6040 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6041 }
963a6417
PH
6042 return NULL;
6043}
96d887e8 6044
963a6417
PH
6045static struct type *
6046type_from_tag (struct value *tag)
6047{
6048 const char *type_name = ada_tag_name (tag);
5b4ee69b 6049
963a6417
PH
6050 if (type_name != NULL)
6051 return ada_find_any_type (ada_encode (type_name));
6052 return NULL;
6053}
96d887e8 6054
1b611343
JB
6055/* Return the "ada__tags__type_specific_data" type. */
6056
6057static struct type *
6058ada_get_tsd_type (struct inferior *inf)
963a6417 6059{
1b611343 6060 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6061
1b611343
JB
6062 if (data->tsd_type == 0)
6063 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6064 return data->tsd_type;
6065}
529cad9c 6066
1b611343
JB
6067/* Return the TSD (type-specific data) associated to the given TAG.
6068 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6069
1b611343 6070 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6071
1b611343
JB
6072static struct value *
6073ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6074{
4c4b4cd2 6075 struct value *val;
1b611343 6076 struct type *type;
5b4ee69b 6077
1b611343
JB
6078 /* First option: The TSD is simply stored as a field of our TAG.
6079 Only older versions of GNAT would use this format, but we have
6080 to test it first, because there are no visible markers for
6081 the current approach except the absence of that field. */
529cad9c 6082
1b611343
JB
6083 val = ada_value_struct_elt (tag, "tsd", 1);
6084 if (val)
6085 return val;
e802dbe0 6086
1b611343
JB
6087 /* Try the second representation for the dispatch table (in which
6088 there is no explicit 'tsd' field in the referent of the tag pointer,
6089 and instead the tsd pointer is stored just before the dispatch
6090 table. */
e802dbe0 6091
1b611343
JB
6092 type = ada_get_tsd_type (current_inferior());
6093 if (type == NULL)
6094 return NULL;
6095 type = lookup_pointer_type (lookup_pointer_type (type));
6096 val = value_cast (type, tag);
6097 if (val == NULL)
6098 return NULL;
6099 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6100}
6101
1b611343
JB
6102/* Given the TSD of a tag (type-specific data), return a string
6103 containing the name of the associated type.
6104
6105 The returned value is good until the next call. May return NULL
6106 if we are unable to determine the tag name. */
6107
6108static char *
6109ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6110{
529cad9c
PH
6111 static char name[1024];
6112 char *p;
1b611343 6113 struct value *val;
529cad9c 6114
1b611343 6115 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6116 if (val == NULL)
1b611343 6117 return NULL;
4c4b4cd2
PH
6118 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6119 for (p = name; *p != '\0'; p += 1)
6120 if (isalpha (*p))
6121 *p = tolower (*p);
1b611343 6122 return name;
4c4b4cd2
PH
6123}
6124
6125/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6126 a C string.
6127
6128 Return NULL if the TAG is not an Ada tag, or if we were unable to
6129 determine the name of that tag. The result is good until the next
6130 call. */
4c4b4cd2
PH
6131
6132const char *
6133ada_tag_name (struct value *tag)
6134{
1b611343
JB
6135 volatile struct gdb_exception e;
6136 char *name = NULL;
5b4ee69b 6137
df407dfe 6138 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6139 return NULL;
1b611343
JB
6140
6141 /* It is perfectly possible that an exception be raised while trying
6142 to determine the TAG's name, even under normal circumstances:
6143 The associated variable may be uninitialized or corrupted, for
6144 instance. We do not let any exception propagate past this point.
6145 instead we return NULL.
6146
6147 We also do not print the error message either (which often is very
6148 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6149 the caller print a more meaningful message if necessary. */
6150 TRY_CATCH (e, RETURN_MASK_ERROR)
6151 {
6152 struct value *tsd = ada_get_tsd_from_tag (tag);
6153
6154 if (tsd != NULL)
6155 name = ada_tag_name_from_tsd (tsd);
6156 }
6157
6158 return name;
4c4b4cd2
PH
6159}
6160
6161/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6162
d2e4a39e 6163struct type *
ebf56fd3 6164ada_parent_type (struct type *type)
14f9c5c9
AS
6165{
6166 int i;
6167
61ee279c 6168 type = ada_check_typedef (type);
14f9c5c9
AS
6169
6170 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6171 return NULL;
6172
6173 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6174 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6175 {
6176 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6177
6178 /* If the _parent field is a pointer, then dereference it. */
6179 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6180 parent_type = TYPE_TARGET_TYPE (parent_type);
6181 /* If there is a parallel XVS type, get the actual base type. */
6182 parent_type = ada_get_base_type (parent_type);
6183
6184 return ada_check_typedef (parent_type);
6185 }
14f9c5c9
AS
6186
6187 return NULL;
6188}
6189
4c4b4cd2
PH
6190/* True iff field number FIELD_NUM of structure type TYPE contains the
6191 parent-type (inherited) fields of a derived type. Assumes TYPE is
6192 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6193
6194int
ebf56fd3 6195ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6196{
61ee279c 6197 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6198
4c4b4cd2
PH
6199 return (name != NULL
6200 && (strncmp (name, "PARENT", 6) == 0
6201 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6202}
6203
4c4b4cd2 6204/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6205 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6206 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6207 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6208 structures. */
14f9c5c9
AS
6209
6210int
ebf56fd3 6211ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6212{
d2e4a39e 6213 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6214
d2e4a39e 6215 return (name != NULL
4c4b4cd2
PH
6216 && (strncmp (name, "PARENT", 6) == 0
6217 || strcmp (name, "REP") == 0
6218 || strncmp (name, "_parent", 7) == 0
6219 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6220}
6221
4c4b4cd2
PH
6222/* True iff field number FIELD_NUM of structure or union type TYPE
6223 is a variant wrapper. Assumes TYPE is a structure type with at least
6224 FIELD_NUM+1 fields. */
14f9c5c9
AS
6225
6226int
ebf56fd3 6227ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6228{
d2e4a39e 6229 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6230
14f9c5c9 6231 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6232 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6233 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6234 == TYPE_CODE_UNION)));
14f9c5c9
AS
6235}
6236
6237/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6238 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6239 returns the type of the controlling discriminant for the variant.
6240 May return NULL if the type could not be found. */
14f9c5c9 6241
d2e4a39e 6242struct type *
ebf56fd3 6243ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6244{
d2e4a39e 6245 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6246
7c964f07 6247 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6248}
6249
4c4b4cd2 6250/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6251 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6252 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6253
6254int
ebf56fd3 6255ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6256{
d2e4a39e 6257 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6258
14f9c5c9
AS
6259 return (name != NULL && name[0] == 'O');
6260}
6261
6262/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6263 returns the name of the discriminant controlling the variant.
6264 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6265
d2e4a39e 6266char *
ebf56fd3 6267ada_variant_discrim_name (struct type *type0)
14f9c5c9 6268{
d2e4a39e 6269 static char *result = NULL;
14f9c5c9 6270 static size_t result_len = 0;
d2e4a39e
AS
6271 struct type *type;
6272 const char *name;
6273 const char *discrim_end;
6274 const char *discrim_start;
14f9c5c9
AS
6275
6276 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6277 type = TYPE_TARGET_TYPE (type0);
6278 else
6279 type = type0;
6280
6281 name = ada_type_name (type);
6282
6283 if (name == NULL || name[0] == '\000')
6284 return "";
6285
6286 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6287 discrim_end -= 1)
6288 {
4c4b4cd2
PH
6289 if (strncmp (discrim_end, "___XVN", 6) == 0)
6290 break;
14f9c5c9
AS
6291 }
6292 if (discrim_end == name)
6293 return "";
6294
d2e4a39e 6295 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6296 discrim_start -= 1)
6297 {
d2e4a39e 6298 if (discrim_start == name + 1)
4c4b4cd2 6299 return "";
76a01679 6300 if ((discrim_start > name + 3
4c4b4cd2
PH
6301 && strncmp (discrim_start - 3, "___", 3) == 0)
6302 || discrim_start[-1] == '.')
6303 break;
14f9c5c9
AS
6304 }
6305
6306 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6307 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6308 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6309 return result;
6310}
6311
4c4b4cd2
PH
6312/* Scan STR for a subtype-encoded number, beginning at position K.
6313 Put the position of the character just past the number scanned in
6314 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6315 Return 1 if there was a valid number at the given position, and 0
6316 otherwise. A "subtype-encoded" number consists of the absolute value
6317 in decimal, followed by the letter 'm' to indicate a negative number.
6318 Assumes 0m does not occur. */
14f9c5c9
AS
6319
6320int
d2e4a39e 6321ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6322{
6323 ULONGEST RU;
6324
d2e4a39e 6325 if (!isdigit (str[k]))
14f9c5c9
AS
6326 return 0;
6327
4c4b4cd2 6328 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6329 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6330 LONGEST. */
14f9c5c9
AS
6331 RU = 0;
6332 while (isdigit (str[k]))
6333 {
d2e4a39e 6334 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6335 k += 1;
6336 }
6337
d2e4a39e 6338 if (str[k] == 'm')
14f9c5c9
AS
6339 {
6340 if (R != NULL)
4c4b4cd2 6341 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6342 k += 1;
6343 }
6344 else if (R != NULL)
6345 *R = (LONGEST) RU;
6346
4c4b4cd2 6347 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6348 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6349 number representable as a LONGEST (although either would probably work
6350 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6351 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6352
6353 if (new_k != NULL)
6354 *new_k = k;
6355 return 1;
6356}
6357
4c4b4cd2
PH
6358/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6359 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6360 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6361
d2e4a39e 6362int
ebf56fd3 6363ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6364{
d2e4a39e 6365 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6366 int p;
6367
6368 p = 0;
6369 while (1)
6370 {
d2e4a39e 6371 switch (name[p])
4c4b4cd2
PH
6372 {
6373 case '\0':
6374 return 0;
6375 case 'S':
6376 {
6377 LONGEST W;
5b4ee69b 6378
4c4b4cd2
PH
6379 if (!ada_scan_number (name, p + 1, &W, &p))
6380 return 0;
6381 if (val == W)
6382 return 1;
6383 break;
6384 }
6385 case 'R':
6386 {
6387 LONGEST L, U;
5b4ee69b 6388
4c4b4cd2
PH
6389 if (!ada_scan_number (name, p + 1, &L, &p)
6390 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6391 return 0;
6392 if (val >= L && val <= U)
6393 return 1;
6394 break;
6395 }
6396 case 'O':
6397 return 1;
6398 default:
6399 return 0;
6400 }
6401 }
6402}
6403
0963b4bd 6404/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6405
6406/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6407 ARG_TYPE, extract and return the value of one of its (non-static)
6408 fields. FIELDNO says which field. Differs from value_primitive_field
6409 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6410
4c4b4cd2 6411static struct value *
d2e4a39e 6412ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6413 struct type *arg_type)
14f9c5c9 6414{
14f9c5c9
AS
6415 struct type *type;
6416
61ee279c 6417 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6418 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6419
4c4b4cd2 6420 /* Handle packed fields. */
14f9c5c9
AS
6421
6422 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6423 {
6424 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6425 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6426
0fd88904 6427 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6428 offset + bit_pos / 8,
6429 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6430 }
6431 else
6432 return value_primitive_field (arg1, offset, fieldno, arg_type);
6433}
6434
52ce6436
PH
6435/* Find field with name NAME in object of type TYPE. If found,
6436 set the following for each argument that is non-null:
6437 - *FIELD_TYPE_P to the field's type;
6438 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6439 an object of that type;
6440 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6441 - *BIT_SIZE_P to its size in bits if the field is packed, and
6442 0 otherwise;
6443 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6444 fields up to but not including the desired field, or by the total
6445 number of fields if not found. A NULL value of NAME never
6446 matches; the function just counts visible fields in this case.
6447
0963b4bd 6448 Returns 1 if found, 0 otherwise. */
52ce6436 6449
4c4b4cd2 6450static int
0d5cff50 6451find_struct_field (const char *name, struct type *type, int offset,
76a01679 6452 struct type **field_type_p,
52ce6436
PH
6453 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6454 int *index_p)
4c4b4cd2
PH
6455{
6456 int i;
6457
61ee279c 6458 type = ada_check_typedef (type);
76a01679 6459
52ce6436
PH
6460 if (field_type_p != NULL)
6461 *field_type_p = NULL;
6462 if (byte_offset_p != NULL)
d5d6fca5 6463 *byte_offset_p = 0;
52ce6436
PH
6464 if (bit_offset_p != NULL)
6465 *bit_offset_p = 0;
6466 if (bit_size_p != NULL)
6467 *bit_size_p = 0;
6468
6469 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6470 {
6471 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6472 int fld_offset = offset + bit_pos / 8;
0d5cff50 6473 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6474
4c4b4cd2
PH
6475 if (t_field_name == NULL)
6476 continue;
6477
52ce6436 6478 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6479 {
6480 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6481
52ce6436
PH
6482 if (field_type_p != NULL)
6483 *field_type_p = TYPE_FIELD_TYPE (type, i);
6484 if (byte_offset_p != NULL)
6485 *byte_offset_p = fld_offset;
6486 if (bit_offset_p != NULL)
6487 *bit_offset_p = bit_pos % 8;
6488 if (bit_size_p != NULL)
6489 *bit_size_p = bit_size;
76a01679
JB
6490 return 1;
6491 }
4c4b4cd2
PH
6492 else if (ada_is_wrapper_field (type, i))
6493 {
52ce6436
PH
6494 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6495 field_type_p, byte_offset_p, bit_offset_p,
6496 bit_size_p, index_p))
76a01679
JB
6497 return 1;
6498 }
4c4b4cd2
PH
6499 else if (ada_is_variant_part (type, i))
6500 {
52ce6436
PH
6501 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6502 fixed type?? */
4c4b4cd2 6503 int j;
52ce6436
PH
6504 struct type *field_type
6505 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6506
52ce6436 6507 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6508 {
76a01679
JB
6509 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6510 fld_offset
6511 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6512 field_type_p, byte_offset_p,
52ce6436 6513 bit_offset_p, bit_size_p, index_p))
76a01679 6514 return 1;
4c4b4cd2
PH
6515 }
6516 }
52ce6436
PH
6517 else if (index_p != NULL)
6518 *index_p += 1;
4c4b4cd2
PH
6519 }
6520 return 0;
6521}
6522
0963b4bd 6523/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6524
52ce6436
PH
6525static int
6526num_visible_fields (struct type *type)
6527{
6528 int n;
5b4ee69b 6529
52ce6436
PH
6530 n = 0;
6531 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6532 return n;
6533}
14f9c5c9 6534
4c4b4cd2 6535/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6536 and search in it assuming it has (class) type TYPE.
6537 If found, return value, else return NULL.
6538
4c4b4cd2 6539 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6540
4c4b4cd2 6541static struct value *
d2e4a39e 6542ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6543 struct type *type)
14f9c5c9
AS
6544{
6545 int i;
14f9c5c9 6546
5b4ee69b 6547 type = ada_check_typedef (type);
52ce6436 6548 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6549 {
0d5cff50 6550 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6551
6552 if (t_field_name == NULL)
4c4b4cd2 6553 continue;
14f9c5c9
AS
6554
6555 else if (field_name_match (t_field_name, name))
4c4b4cd2 6556 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6557
6558 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6559 {
0963b4bd 6560 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6561 ada_search_struct_field (name, arg,
6562 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6563 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6564
4c4b4cd2
PH
6565 if (v != NULL)
6566 return v;
6567 }
14f9c5c9
AS
6568
6569 else if (ada_is_variant_part (type, i))
4c4b4cd2 6570 {
0963b4bd 6571 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6572 int j;
5b4ee69b
MS
6573 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6574 i));
4c4b4cd2
PH
6575 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6576
52ce6436 6577 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6578 {
0963b4bd
MS
6579 struct value *v = ada_search_struct_field /* Force line
6580 break. */
06d5cf63
JB
6581 (name, arg,
6582 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6583 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6584
4c4b4cd2
PH
6585 if (v != NULL)
6586 return v;
6587 }
6588 }
14f9c5c9
AS
6589 }
6590 return NULL;
6591}
d2e4a39e 6592
52ce6436
PH
6593static struct value *ada_index_struct_field_1 (int *, struct value *,
6594 int, struct type *);
6595
6596
6597/* Return field #INDEX in ARG, where the index is that returned by
6598 * find_struct_field through its INDEX_P argument. Adjust the address
6599 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6600 * If found, return value, else return NULL. */
52ce6436
PH
6601
6602static struct value *
6603ada_index_struct_field (int index, struct value *arg, int offset,
6604 struct type *type)
6605{
6606 return ada_index_struct_field_1 (&index, arg, offset, type);
6607}
6608
6609
6610/* Auxiliary function for ada_index_struct_field. Like
6611 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6612 * *INDEX_P. */
52ce6436
PH
6613
6614static struct value *
6615ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6616 struct type *type)
6617{
6618 int i;
6619 type = ada_check_typedef (type);
6620
6621 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6622 {
6623 if (TYPE_FIELD_NAME (type, i) == NULL)
6624 continue;
6625 else if (ada_is_wrapper_field (type, i))
6626 {
0963b4bd 6627 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6628 ada_index_struct_field_1 (index_p, arg,
6629 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6630 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6631
52ce6436
PH
6632 if (v != NULL)
6633 return v;
6634 }
6635
6636 else if (ada_is_variant_part (type, i))
6637 {
6638 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6639 find_struct_field. */
52ce6436
PH
6640 error (_("Cannot assign this kind of variant record"));
6641 }
6642 else if (*index_p == 0)
6643 return ada_value_primitive_field (arg, offset, i, type);
6644 else
6645 *index_p -= 1;
6646 }
6647 return NULL;
6648}
6649
4c4b4cd2
PH
6650/* Given ARG, a value of type (pointer or reference to a)*
6651 structure/union, extract the component named NAME from the ultimate
6652 target structure/union and return it as a value with its
f5938064 6653 appropriate type.
14f9c5c9 6654
4c4b4cd2
PH
6655 The routine searches for NAME among all members of the structure itself
6656 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6657 (e.g., '_parent').
6658
03ee6b2e
PH
6659 If NO_ERR, then simply return NULL in case of error, rather than
6660 calling error. */
14f9c5c9 6661
d2e4a39e 6662struct value *
03ee6b2e 6663ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6664{
4c4b4cd2 6665 struct type *t, *t1;
d2e4a39e 6666 struct value *v;
14f9c5c9 6667
4c4b4cd2 6668 v = NULL;
df407dfe 6669 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6670 if (TYPE_CODE (t) == TYPE_CODE_REF)
6671 {
6672 t1 = TYPE_TARGET_TYPE (t);
6673 if (t1 == NULL)
03ee6b2e 6674 goto BadValue;
61ee279c 6675 t1 = ada_check_typedef (t1);
4c4b4cd2 6676 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6677 {
994b9211 6678 arg = coerce_ref (arg);
76a01679
JB
6679 t = t1;
6680 }
4c4b4cd2 6681 }
14f9c5c9 6682
4c4b4cd2
PH
6683 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6684 {
6685 t1 = TYPE_TARGET_TYPE (t);
6686 if (t1 == NULL)
03ee6b2e 6687 goto BadValue;
61ee279c 6688 t1 = ada_check_typedef (t1);
4c4b4cd2 6689 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6690 {
6691 arg = value_ind (arg);
6692 t = t1;
6693 }
4c4b4cd2 6694 else
76a01679 6695 break;
4c4b4cd2 6696 }
14f9c5c9 6697
4c4b4cd2 6698 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6699 goto BadValue;
14f9c5c9 6700
4c4b4cd2
PH
6701 if (t1 == t)
6702 v = ada_search_struct_field (name, arg, 0, t);
6703 else
6704 {
6705 int bit_offset, bit_size, byte_offset;
6706 struct type *field_type;
6707 CORE_ADDR address;
6708
76a01679
JB
6709 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6710 address = value_as_address (arg);
4c4b4cd2 6711 else
0fd88904 6712 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6713
1ed6ede0 6714 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6715 if (find_struct_field (name, t1, 0,
6716 &field_type, &byte_offset, &bit_offset,
52ce6436 6717 &bit_size, NULL))
76a01679
JB
6718 {
6719 if (bit_size != 0)
6720 {
714e53ab
PH
6721 if (TYPE_CODE (t) == TYPE_CODE_REF)
6722 arg = ada_coerce_ref (arg);
6723 else
6724 arg = ada_value_ind (arg);
76a01679
JB
6725 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6726 bit_offset, bit_size,
6727 field_type);
6728 }
6729 else
f5938064 6730 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6731 }
6732 }
6733
03ee6b2e
PH
6734 if (v != NULL || no_err)
6735 return v;
6736 else
323e0a4a 6737 error (_("There is no member named %s."), name);
14f9c5c9 6738
03ee6b2e
PH
6739 BadValue:
6740 if (no_err)
6741 return NULL;
6742 else
0963b4bd
MS
6743 error (_("Attempt to extract a component of "
6744 "a value that is not a record."));
14f9c5c9
AS
6745}
6746
6747/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6748 If DISPP is non-null, add its byte displacement from the beginning of a
6749 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6750 work for packed fields).
6751
6752 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6753 followed by "___".
14f9c5c9 6754
0963b4bd 6755 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6756 be a (pointer or reference)+ to a struct or union, and the
6757 ultimate target type will be searched.
14f9c5c9
AS
6758
6759 Looks recursively into variant clauses and parent types.
6760
4c4b4cd2
PH
6761 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6762 TYPE is not a type of the right kind. */
14f9c5c9 6763
4c4b4cd2 6764static struct type *
76a01679
JB
6765ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6766 int noerr, int *dispp)
14f9c5c9
AS
6767{
6768 int i;
6769
6770 if (name == NULL)
6771 goto BadName;
6772
76a01679 6773 if (refok && type != NULL)
4c4b4cd2
PH
6774 while (1)
6775 {
61ee279c 6776 type = ada_check_typedef (type);
76a01679
JB
6777 if (TYPE_CODE (type) != TYPE_CODE_PTR
6778 && TYPE_CODE (type) != TYPE_CODE_REF)
6779 break;
6780 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6781 }
14f9c5c9 6782
76a01679 6783 if (type == NULL
1265e4aa
JB
6784 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6785 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6786 {
4c4b4cd2 6787 if (noerr)
76a01679 6788 return NULL;
4c4b4cd2 6789 else
76a01679
JB
6790 {
6791 target_terminal_ours ();
6792 gdb_flush (gdb_stdout);
323e0a4a
AC
6793 if (type == NULL)
6794 error (_("Type (null) is not a structure or union type"));
6795 else
6796 {
6797 /* XXX: type_sprint */
6798 fprintf_unfiltered (gdb_stderr, _("Type "));
6799 type_print (type, "", gdb_stderr, -1);
6800 error (_(" is not a structure or union type"));
6801 }
76a01679 6802 }
14f9c5c9
AS
6803 }
6804
6805 type = to_static_fixed_type (type);
6806
6807 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6808 {
0d5cff50 6809 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6810 struct type *t;
6811 int disp;
d2e4a39e 6812
14f9c5c9 6813 if (t_field_name == NULL)
4c4b4cd2 6814 continue;
14f9c5c9
AS
6815
6816 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6817 {
6818 if (dispp != NULL)
6819 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6820 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6821 }
14f9c5c9
AS
6822
6823 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6824 {
6825 disp = 0;
6826 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6827 0, 1, &disp);
6828 if (t != NULL)
6829 {
6830 if (dispp != NULL)
6831 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6832 return t;
6833 }
6834 }
14f9c5c9
AS
6835
6836 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6837 {
6838 int j;
5b4ee69b
MS
6839 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6840 i));
4c4b4cd2
PH
6841
6842 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6843 {
b1f33ddd
JB
6844 /* FIXME pnh 2008/01/26: We check for a field that is
6845 NOT wrapped in a struct, since the compiler sometimes
6846 generates these for unchecked variant types. Revisit
0963b4bd 6847 if the compiler changes this practice. */
0d5cff50 6848 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6849 disp = 0;
b1f33ddd
JB
6850 if (v_field_name != NULL
6851 && field_name_match (v_field_name, name))
6852 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6853 else
0963b4bd
MS
6854 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6855 j),
b1f33ddd
JB
6856 name, 0, 1, &disp);
6857
4c4b4cd2
PH
6858 if (t != NULL)
6859 {
6860 if (dispp != NULL)
6861 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6862 return t;
6863 }
6864 }
6865 }
14f9c5c9
AS
6866
6867 }
6868
6869BadName:
d2e4a39e 6870 if (!noerr)
14f9c5c9
AS
6871 {
6872 target_terminal_ours ();
6873 gdb_flush (gdb_stdout);
323e0a4a
AC
6874 if (name == NULL)
6875 {
6876 /* XXX: type_sprint */
6877 fprintf_unfiltered (gdb_stderr, _("Type "));
6878 type_print (type, "", gdb_stderr, -1);
6879 error (_(" has no component named <null>"));
6880 }
6881 else
6882 {
6883 /* XXX: type_sprint */
6884 fprintf_unfiltered (gdb_stderr, _("Type "));
6885 type_print (type, "", gdb_stderr, -1);
6886 error (_(" has no component named %s"), name);
6887 }
14f9c5c9
AS
6888 }
6889
6890 return NULL;
6891}
6892
b1f33ddd
JB
6893/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6894 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6895 represents an unchecked union (that is, the variant part of a
0963b4bd 6896 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6897
6898static int
6899is_unchecked_variant (struct type *var_type, struct type *outer_type)
6900{
6901 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6902
b1f33ddd
JB
6903 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6904 == NULL);
6905}
6906
6907
14f9c5c9
AS
6908/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6909 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6910 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6911 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6912
d2e4a39e 6913int
ebf56fd3 6914ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6915 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6916{
6917 int others_clause;
6918 int i;
d2e4a39e 6919 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6920 struct value *outer;
6921 struct value *discrim;
14f9c5c9
AS
6922 LONGEST discrim_val;
6923
0c281816
JB
6924 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6925 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6926 if (discrim == NULL)
14f9c5c9 6927 return -1;
0c281816 6928 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6929
6930 others_clause = -1;
6931 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6932 {
6933 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6934 others_clause = i;
14f9c5c9 6935 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6936 return i;
14f9c5c9
AS
6937 }
6938
6939 return others_clause;
6940}
d2e4a39e 6941\f
14f9c5c9
AS
6942
6943
4c4b4cd2 6944 /* Dynamic-Sized Records */
14f9c5c9
AS
6945
6946/* Strategy: The type ostensibly attached to a value with dynamic size
6947 (i.e., a size that is not statically recorded in the debugging
6948 data) does not accurately reflect the size or layout of the value.
6949 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6950 conventional types that are constructed on the fly. */
14f9c5c9
AS
6951
6952/* There is a subtle and tricky problem here. In general, we cannot
6953 determine the size of dynamic records without its data. However,
6954 the 'struct value' data structure, which GDB uses to represent
6955 quantities in the inferior process (the target), requires the size
6956 of the type at the time of its allocation in order to reserve space
6957 for GDB's internal copy of the data. That's why the
6958 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6959 rather than struct value*s.
14f9c5c9
AS
6960
6961 However, GDB's internal history variables ($1, $2, etc.) are
6962 struct value*s containing internal copies of the data that are not, in
6963 general, the same as the data at their corresponding addresses in
6964 the target. Fortunately, the types we give to these values are all
6965 conventional, fixed-size types (as per the strategy described
6966 above), so that we don't usually have to perform the
6967 'to_fixed_xxx_type' conversions to look at their values.
6968 Unfortunately, there is one exception: if one of the internal
6969 history variables is an array whose elements are unconstrained
6970 records, then we will need to create distinct fixed types for each
6971 element selected. */
6972
6973/* The upshot of all of this is that many routines take a (type, host
6974 address, target address) triple as arguments to represent a value.
6975 The host address, if non-null, is supposed to contain an internal
6976 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6977 target at the target address. */
14f9c5c9
AS
6978
6979/* Assuming that VAL0 represents a pointer value, the result of
6980 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6981 dynamic-sized types. */
14f9c5c9 6982
d2e4a39e
AS
6983struct value *
6984ada_value_ind (struct value *val0)
14f9c5c9 6985{
c48db5ca 6986 struct value *val = value_ind (val0);
5b4ee69b 6987
4c4b4cd2 6988 return ada_to_fixed_value (val);
14f9c5c9
AS
6989}
6990
6991/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6992 qualifiers on VAL0. */
6993
d2e4a39e
AS
6994static struct value *
6995ada_coerce_ref (struct value *val0)
6996{
df407dfe 6997 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6998 {
6999 struct value *val = val0;
5b4ee69b 7000
994b9211 7001 val = coerce_ref (val);
4c4b4cd2 7002 return ada_to_fixed_value (val);
d2e4a39e
AS
7003 }
7004 else
14f9c5c9
AS
7005 return val0;
7006}
7007
7008/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7009 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7010
7011static unsigned int
ebf56fd3 7012align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7013{
7014 return (off + alignment - 1) & ~(alignment - 1);
7015}
7016
4c4b4cd2 7017/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7018
7019static unsigned int
ebf56fd3 7020field_alignment (struct type *type, int f)
14f9c5c9 7021{
d2e4a39e 7022 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7023 int len;
14f9c5c9
AS
7024 int align_offset;
7025
64a1bf19
JB
7026 /* The field name should never be null, unless the debugging information
7027 is somehow malformed. In this case, we assume the field does not
7028 require any alignment. */
7029 if (name == NULL)
7030 return 1;
7031
7032 len = strlen (name);
7033
4c4b4cd2
PH
7034 if (!isdigit (name[len - 1]))
7035 return 1;
14f9c5c9 7036
d2e4a39e 7037 if (isdigit (name[len - 2]))
14f9c5c9
AS
7038 align_offset = len - 2;
7039 else
7040 align_offset = len - 1;
7041
4c4b4cd2 7042 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7043 return TARGET_CHAR_BIT;
7044
4c4b4cd2
PH
7045 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7046}
7047
852dff6c 7048/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7049
852dff6c
JB
7050static struct symbol *
7051ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7052{
7053 struct symbol *sym;
7054
7055 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7056 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7057 return sym;
7058
7059 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7060 return sym;
14f9c5c9
AS
7061}
7062
dddfab26
UW
7063/* Find a type named NAME. Ignores ambiguity. This routine will look
7064 solely for types defined by debug info, it will not search the GDB
7065 primitive types. */
4c4b4cd2 7066
852dff6c 7067static struct type *
ebf56fd3 7068ada_find_any_type (const char *name)
14f9c5c9 7069{
852dff6c 7070 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7071
14f9c5c9 7072 if (sym != NULL)
dddfab26 7073 return SYMBOL_TYPE (sym);
14f9c5c9 7074
dddfab26 7075 return NULL;
14f9c5c9
AS
7076}
7077
739593e0
JB
7078/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7079 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7080 symbol, in which case it is returned. Otherwise, this looks for
7081 symbols whose name is that of NAME_SYM suffixed with "___XR".
7082 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7083
7084struct symbol *
739593e0 7085ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
aeb5907d 7086{
739593e0 7087 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7088 struct symbol *sym;
7089
739593e0
JB
7090 if (strstr (name, "___XR") != NULL)
7091 return name_sym;
7092
aeb5907d
JB
7093 sym = find_old_style_renaming_symbol (name, block);
7094
7095 if (sym != NULL)
7096 return sym;
7097
0963b4bd 7098 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7099 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7100 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7101 return sym;
7102 else
7103 return NULL;
7104}
7105
7106static struct symbol *
7107find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7108{
7f0df278 7109 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7110 char *rename;
7111
7112 if (function_sym != NULL)
7113 {
7114 /* If the symbol is defined inside a function, NAME is not fully
7115 qualified. This means we need to prepend the function name
7116 as well as adding the ``___XR'' suffix to build the name of
7117 the associated renaming symbol. */
0d5cff50 7118 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7119 /* Function names sometimes contain suffixes used
7120 for instance to qualify nested subprograms. When building
7121 the XR type name, we need to make sure that this suffix is
7122 not included. So do not include any suffix in the function
7123 name length below. */
69fadcdf 7124 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7125 const int rename_len = function_name_len + 2 /* "__" */
7126 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7127
529cad9c 7128 /* Strip the suffix if necessary. */
69fadcdf
JB
7129 ada_remove_trailing_digits (function_name, &function_name_len);
7130 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7131 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7132
4c4b4cd2
PH
7133 /* Library-level functions are a special case, as GNAT adds
7134 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7135 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7136 have this prefix, so we need to skip this prefix if present. */
7137 if (function_name_len > 5 /* "_ada_" */
7138 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7139 {
7140 function_name += 5;
7141 function_name_len -= 5;
7142 }
4c4b4cd2
PH
7143
7144 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7145 strncpy (rename, function_name, function_name_len);
7146 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7147 "__%s___XR", name);
4c4b4cd2
PH
7148 }
7149 else
7150 {
7151 const int rename_len = strlen (name) + 6;
5b4ee69b 7152
4c4b4cd2 7153 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7154 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7155 }
7156
852dff6c 7157 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7158}
7159
14f9c5c9 7160/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7161 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7162 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7163 otherwise return 0. */
7164
14f9c5c9 7165int
d2e4a39e 7166ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7167{
7168 if (type1 == NULL)
7169 return 1;
7170 else if (type0 == NULL)
7171 return 0;
7172 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7173 return 1;
7174 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7175 return 0;
4c4b4cd2
PH
7176 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7177 return 1;
ad82864c 7178 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7179 return 1;
4c4b4cd2
PH
7180 else if (ada_is_array_descriptor_type (type0)
7181 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7182 return 1;
aeb5907d
JB
7183 else
7184 {
7185 const char *type0_name = type_name_no_tag (type0);
7186 const char *type1_name = type_name_no_tag (type1);
7187
7188 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7189 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7190 return 1;
7191 }
14f9c5c9
AS
7192 return 0;
7193}
7194
7195/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7196 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7197
0d5cff50 7198const char *
d2e4a39e 7199ada_type_name (struct type *type)
14f9c5c9 7200{
d2e4a39e 7201 if (type == NULL)
14f9c5c9
AS
7202 return NULL;
7203 else if (TYPE_NAME (type) != NULL)
7204 return TYPE_NAME (type);
7205 else
7206 return TYPE_TAG_NAME (type);
7207}
7208
b4ba55a1
JB
7209/* Search the list of "descriptive" types associated to TYPE for a type
7210 whose name is NAME. */
7211
7212static struct type *
7213find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7214{
7215 struct type *result;
7216
7217 /* If there no descriptive-type info, then there is no parallel type
7218 to be found. */
7219 if (!HAVE_GNAT_AUX_INFO (type))
7220 return NULL;
7221
7222 result = TYPE_DESCRIPTIVE_TYPE (type);
7223 while (result != NULL)
7224 {
0d5cff50 7225 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7226
7227 if (result_name == NULL)
7228 {
7229 warning (_("unexpected null name on descriptive type"));
7230 return NULL;
7231 }
7232
7233 /* If the names match, stop. */
7234 if (strcmp (result_name, name) == 0)
7235 break;
7236
7237 /* Otherwise, look at the next item on the list, if any. */
7238 if (HAVE_GNAT_AUX_INFO (result))
7239 result = TYPE_DESCRIPTIVE_TYPE (result);
7240 else
7241 result = NULL;
7242 }
7243
7244 /* If we didn't find a match, see whether this is a packed array. With
7245 older compilers, the descriptive type information is either absent or
7246 irrelevant when it comes to packed arrays so the above lookup fails.
7247 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7248 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7249 return ada_find_any_type (name);
7250
7251 return result;
7252}
7253
7254/* Find a parallel type to TYPE with the specified NAME, using the
7255 descriptive type taken from the debugging information, if available,
7256 and otherwise using the (slower) name-based method. */
7257
7258static struct type *
7259ada_find_parallel_type_with_name (struct type *type, const char *name)
7260{
7261 struct type *result = NULL;
7262
7263 if (HAVE_GNAT_AUX_INFO (type))
7264 result = find_parallel_type_by_descriptive_type (type, name);
7265 else
7266 result = ada_find_any_type (name);
7267
7268 return result;
7269}
7270
7271/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7272 SUFFIX to the name of TYPE. */
14f9c5c9 7273
d2e4a39e 7274struct type *
ebf56fd3 7275ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7276{
0d5cff50
DE
7277 char *name;
7278 const char *typename = ada_type_name (type);
14f9c5c9 7279 int len;
d2e4a39e 7280
14f9c5c9
AS
7281 if (typename == NULL)
7282 return NULL;
7283
7284 len = strlen (typename);
7285
b4ba55a1 7286 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7287
7288 strcpy (name, typename);
7289 strcpy (name + len, suffix);
7290
b4ba55a1 7291 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7292}
7293
14f9c5c9 7294/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7295 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7296
d2e4a39e
AS
7297static struct type *
7298dynamic_template_type (struct type *type)
14f9c5c9 7299{
61ee279c 7300 type = ada_check_typedef (type);
14f9c5c9
AS
7301
7302 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7303 || ada_type_name (type) == NULL)
14f9c5c9 7304 return NULL;
d2e4a39e 7305 else
14f9c5c9
AS
7306 {
7307 int len = strlen (ada_type_name (type));
5b4ee69b 7308
4c4b4cd2
PH
7309 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7310 return type;
14f9c5c9 7311 else
4c4b4cd2 7312 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7313 }
7314}
7315
7316/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7317 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7318
d2e4a39e
AS
7319static int
7320is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7321{
7322 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7323
d2e4a39e 7324 return name != NULL
14f9c5c9
AS
7325 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7326 && strstr (name, "___XVL") != NULL;
7327}
7328
4c4b4cd2
PH
7329/* The index of the variant field of TYPE, or -1 if TYPE does not
7330 represent a variant record type. */
14f9c5c9 7331
d2e4a39e 7332static int
4c4b4cd2 7333variant_field_index (struct type *type)
14f9c5c9
AS
7334{
7335 int f;
7336
4c4b4cd2
PH
7337 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7338 return -1;
7339
7340 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7341 {
7342 if (ada_is_variant_part (type, f))
7343 return f;
7344 }
7345 return -1;
14f9c5c9
AS
7346}
7347
4c4b4cd2
PH
7348/* A record type with no fields. */
7349
d2e4a39e 7350static struct type *
e9bb382b 7351empty_record (struct type *template)
14f9c5c9 7352{
e9bb382b 7353 struct type *type = alloc_type_copy (template);
5b4ee69b 7354
14f9c5c9
AS
7355 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7356 TYPE_NFIELDS (type) = 0;
7357 TYPE_FIELDS (type) = NULL;
b1f33ddd 7358 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7359 TYPE_NAME (type) = "<empty>";
7360 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7361 TYPE_LENGTH (type) = 0;
7362 return type;
7363}
7364
7365/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7366 the value of type TYPE at VALADDR or ADDRESS (see comments at
7367 the beginning of this section) VAL according to GNAT conventions.
7368 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7369 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7370 an outer-level type (i.e., as opposed to a branch of a variant.) A
7371 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7372 of the variant.
14f9c5c9 7373
4c4b4cd2
PH
7374 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7375 length are not statically known are discarded. As a consequence,
7376 VALADDR, ADDRESS and DVAL0 are ignored.
7377
7378 NOTE: Limitations: For now, we assume that dynamic fields and
7379 variants occupy whole numbers of bytes. However, they need not be
7380 byte-aligned. */
7381
7382struct type *
10a2c479 7383ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7384 const gdb_byte *valaddr,
4c4b4cd2
PH
7385 CORE_ADDR address, struct value *dval0,
7386 int keep_dynamic_fields)
14f9c5c9 7387{
d2e4a39e
AS
7388 struct value *mark = value_mark ();
7389 struct value *dval;
7390 struct type *rtype;
14f9c5c9 7391 int nfields, bit_len;
4c4b4cd2 7392 int variant_field;
14f9c5c9 7393 long off;
d94e4f4f 7394 int fld_bit_len;
14f9c5c9
AS
7395 int f;
7396
4c4b4cd2
PH
7397 /* Compute the number of fields in this record type that are going
7398 to be processed: unless keep_dynamic_fields, this includes only
7399 fields whose position and length are static will be processed. */
7400 if (keep_dynamic_fields)
7401 nfields = TYPE_NFIELDS (type);
7402 else
7403 {
7404 nfields = 0;
76a01679 7405 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7406 && !ada_is_variant_part (type, nfields)
7407 && !is_dynamic_field (type, nfields))
7408 nfields++;
7409 }
7410
e9bb382b 7411 rtype = alloc_type_copy (type);
14f9c5c9
AS
7412 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7413 INIT_CPLUS_SPECIFIC (rtype);
7414 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7415 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7416 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7417 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7418 TYPE_NAME (rtype) = ada_type_name (type);
7419 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7420 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7421
d2e4a39e
AS
7422 off = 0;
7423 bit_len = 0;
4c4b4cd2
PH
7424 variant_field = -1;
7425
14f9c5c9
AS
7426 for (f = 0; f < nfields; f += 1)
7427 {
6c038f32
PH
7428 off = align_value (off, field_alignment (type, f))
7429 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7430 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7431 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7432
d2e4a39e 7433 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7434 {
7435 variant_field = f;
d94e4f4f 7436 fld_bit_len = 0;
4c4b4cd2 7437 }
14f9c5c9 7438 else if (is_dynamic_field (type, f))
4c4b4cd2 7439 {
284614f0
JB
7440 const gdb_byte *field_valaddr = valaddr;
7441 CORE_ADDR field_address = address;
7442 struct type *field_type =
7443 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7444
4c4b4cd2 7445 if (dval0 == NULL)
b5304971
JG
7446 {
7447 /* rtype's length is computed based on the run-time
7448 value of discriminants. If the discriminants are not
7449 initialized, the type size may be completely bogus and
0963b4bd 7450 GDB may fail to allocate a value for it. So check the
b5304971
JG
7451 size first before creating the value. */
7452 check_size (rtype);
7453 dval = value_from_contents_and_address (rtype, valaddr, address);
7454 }
4c4b4cd2
PH
7455 else
7456 dval = dval0;
7457
284614f0
JB
7458 /* If the type referenced by this field is an aligner type, we need
7459 to unwrap that aligner type, because its size might not be set.
7460 Keeping the aligner type would cause us to compute the wrong
7461 size for this field, impacting the offset of the all the fields
7462 that follow this one. */
7463 if (ada_is_aligner_type (field_type))
7464 {
7465 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7466
7467 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7468 field_address = cond_offset_target (field_address, field_offset);
7469 field_type = ada_aligned_type (field_type);
7470 }
7471
7472 field_valaddr = cond_offset_host (field_valaddr,
7473 off / TARGET_CHAR_BIT);
7474 field_address = cond_offset_target (field_address,
7475 off / TARGET_CHAR_BIT);
7476
7477 /* Get the fixed type of the field. Note that, in this case,
7478 we do not want to get the real type out of the tag: if
7479 the current field is the parent part of a tagged record,
7480 we will get the tag of the object. Clearly wrong: the real
7481 type of the parent is not the real type of the child. We
7482 would end up in an infinite loop. */
7483 field_type = ada_get_base_type (field_type);
7484 field_type = ada_to_fixed_type (field_type, field_valaddr,
7485 field_address, dval, 0);
27f2a97b
JB
7486 /* If the field size is already larger than the maximum
7487 object size, then the record itself will necessarily
7488 be larger than the maximum object size. We need to make
7489 this check now, because the size might be so ridiculously
7490 large (due to an uninitialized variable in the inferior)
7491 that it would cause an overflow when adding it to the
7492 record size. */
7493 check_size (field_type);
284614f0
JB
7494
7495 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7496 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7497 /* The multiplication can potentially overflow. But because
7498 the field length has been size-checked just above, and
7499 assuming that the maximum size is a reasonable value,
7500 an overflow should not happen in practice. So rather than
7501 adding overflow recovery code to this already complex code,
7502 we just assume that it's not going to happen. */
d94e4f4f 7503 fld_bit_len =
4c4b4cd2
PH
7504 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7505 }
14f9c5c9 7506 else
4c4b4cd2 7507 {
5ded5331
JB
7508 /* Note: If this field's type is a typedef, it is important
7509 to preserve the typedef layer.
7510
7511 Otherwise, we might be transforming a typedef to a fat
7512 pointer (encoding a pointer to an unconstrained array),
7513 into a basic fat pointer (encoding an unconstrained
7514 array). As both types are implemented using the same
7515 structure, the typedef is the only clue which allows us
7516 to distinguish between the two options. Stripping it
7517 would prevent us from printing this field appropriately. */
7518 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7519 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7520 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7521 fld_bit_len =
4c4b4cd2
PH
7522 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7523 else
5ded5331
JB
7524 {
7525 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7526
7527 /* We need to be careful of typedefs when computing
7528 the length of our field. If this is a typedef,
7529 get the length of the target type, not the length
7530 of the typedef. */
7531 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7532 field_type = ada_typedef_target_type (field_type);
7533
7534 fld_bit_len =
7535 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7536 }
4c4b4cd2 7537 }
14f9c5c9 7538 if (off + fld_bit_len > bit_len)
4c4b4cd2 7539 bit_len = off + fld_bit_len;
d94e4f4f 7540 off += fld_bit_len;
4c4b4cd2
PH
7541 TYPE_LENGTH (rtype) =
7542 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7543 }
4c4b4cd2
PH
7544
7545 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7546 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7547 the record. This can happen in the presence of representation
7548 clauses. */
7549 if (variant_field >= 0)
7550 {
7551 struct type *branch_type;
7552
7553 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7554
7555 if (dval0 == NULL)
7556 dval = value_from_contents_and_address (rtype, valaddr, address);
7557 else
7558 dval = dval0;
7559
7560 branch_type =
7561 to_fixed_variant_branch_type
7562 (TYPE_FIELD_TYPE (type, variant_field),
7563 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7564 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7565 if (branch_type == NULL)
7566 {
7567 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7568 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7569 TYPE_NFIELDS (rtype) -= 1;
7570 }
7571 else
7572 {
7573 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7574 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7575 fld_bit_len =
7576 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7577 TARGET_CHAR_BIT;
7578 if (off + fld_bit_len > bit_len)
7579 bit_len = off + fld_bit_len;
7580 TYPE_LENGTH (rtype) =
7581 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7582 }
7583 }
7584
714e53ab
PH
7585 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7586 should contain the alignment of that record, which should be a strictly
7587 positive value. If null or negative, then something is wrong, most
7588 probably in the debug info. In that case, we don't round up the size
0963b4bd 7589 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7590 the current RTYPE length might be good enough for our purposes. */
7591 if (TYPE_LENGTH (type) <= 0)
7592 {
323e0a4a
AC
7593 if (TYPE_NAME (rtype))
7594 warning (_("Invalid type size for `%s' detected: %d."),
7595 TYPE_NAME (rtype), TYPE_LENGTH (type));
7596 else
7597 warning (_("Invalid type size for <unnamed> detected: %d."),
7598 TYPE_LENGTH (type));
714e53ab
PH
7599 }
7600 else
7601 {
7602 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7603 TYPE_LENGTH (type));
7604 }
14f9c5c9
AS
7605
7606 value_free_to_mark (mark);
d2e4a39e 7607 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7608 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7609 return rtype;
7610}
7611
4c4b4cd2
PH
7612/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7613 of 1. */
14f9c5c9 7614
d2e4a39e 7615static struct type *
fc1a4b47 7616template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7617 CORE_ADDR address, struct value *dval0)
7618{
7619 return ada_template_to_fixed_record_type_1 (type, valaddr,
7620 address, dval0, 1);
7621}
7622
7623/* An ordinary record type in which ___XVL-convention fields and
7624 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7625 static approximations, containing all possible fields. Uses
7626 no runtime values. Useless for use in values, but that's OK,
7627 since the results are used only for type determinations. Works on both
7628 structs and unions. Representation note: to save space, we memorize
7629 the result of this function in the TYPE_TARGET_TYPE of the
7630 template type. */
7631
7632static struct type *
7633template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7634{
7635 struct type *type;
7636 int nfields;
7637 int f;
7638
4c4b4cd2
PH
7639 if (TYPE_TARGET_TYPE (type0) != NULL)
7640 return TYPE_TARGET_TYPE (type0);
7641
7642 nfields = TYPE_NFIELDS (type0);
7643 type = type0;
14f9c5c9
AS
7644
7645 for (f = 0; f < nfields; f += 1)
7646 {
61ee279c 7647 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7648 struct type *new_type;
14f9c5c9 7649
4c4b4cd2
PH
7650 if (is_dynamic_field (type0, f))
7651 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7652 else
f192137b 7653 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7654 if (type == type0 && new_type != field_type)
7655 {
e9bb382b 7656 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7657 TYPE_CODE (type) = TYPE_CODE (type0);
7658 INIT_CPLUS_SPECIFIC (type);
7659 TYPE_NFIELDS (type) = nfields;
7660 TYPE_FIELDS (type) = (struct field *)
7661 TYPE_ALLOC (type, nfields * sizeof (struct field));
7662 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7663 sizeof (struct field) * nfields);
7664 TYPE_NAME (type) = ada_type_name (type0);
7665 TYPE_TAG_NAME (type) = NULL;
876cecd0 7666 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7667 TYPE_LENGTH (type) = 0;
7668 }
7669 TYPE_FIELD_TYPE (type, f) = new_type;
7670 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7671 }
14f9c5c9
AS
7672 return type;
7673}
7674
4c4b4cd2 7675/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7676 whose address in memory is ADDRESS, returns a revision of TYPE,
7677 which should be a non-dynamic-sized record, in which the variant
7678 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7679 for discriminant values in DVAL0, which can be NULL if the record
7680 contains the necessary discriminant values. */
7681
d2e4a39e 7682static struct type *
fc1a4b47 7683to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7684 CORE_ADDR address, struct value *dval0)
14f9c5c9 7685{
d2e4a39e 7686 struct value *mark = value_mark ();
4c4b4cd2 7687 struct value *dval;
d2e4a39e 7688 struct type *rtype;
14f9c5c9
AS
7689 struct type *branch_type;
7690 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7691 int variant_field = variant_field_index (type);
14f9c5c9 7692
4c4b4cd2 7693 if (variant_field == -1)
14f9c5c9
AS
7694 return type;
7695
4c4b4cd2
PH
7696 if (dval0 == NULL)
7697 dval = value_from_contents_and_address (type, valaddr, address);
7698 else
7699 dval = dval0;
7700
e9bb382b 7701 rtype = alloc_type_copy (type);
14f9c5c9 7702 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7703 INIT_CPLUS_SPECIFIC (rtype);
7704 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7705 TYPE_FIELDS (rtype) =
7706 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7707 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7708 sizeof (struct field) * nfields);
14f9c5c9
AS
7709 TYPE_NAME (rtype) = ada_type_name (type);
7710 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7711 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7712 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7713
4c4b4cd2
PH
7714 branch_type = to_fixed_variant_branch_type
7715 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7716 cond_offset_host (valaddr,
4c4b4cd2
PH
7717 TYPE_FIELD_BITPOS (type, variant_field)
7718 / TARGET_CHAR_BIT),
d2e4a39e 7719 cond_offset_target (address,
4c4b4cd2
PH
7720 TYPE_FIELD_BITPOS (type, variant_field)
7721 / TARGET_CHAR_BIT), dval);
d2e4a39e 7722 if (branch_type == NULL)
14f9c5c9 7723 {
4c4b4cd2 7724 int f;
5b4ee69b 7725
4c4b4cd2
PH
7726 for (f = variant_field + 1; f < nfields; f += 1)
7727 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7728 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7729 }
7730 else
7731 {
4c4b4cd2
PH
7732 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7733 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7734 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7735 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7736 }
4c4b4cd2 7737 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7738
4c4b4cd2 7739 value_free_to_mark (mark);
14f9c5c9
AS
7740 return rtype;
7741}
7742
7743/* An ordinary record type (with fixed-length fields) that describes
7744 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7745 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7746 should be in DVAL, a record value; it may be NULL if the object
7747 at ADDR itself contains any necessary discriminant values.
7748 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7749 values from the record are needed. Except in the case that DVAL,
7750 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7751 unchecked) is replaced by a particular branch of the variant.
7752
7753 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7754 is questionable and may be removed. It can arise during the
7755 processing of an unconstrained-array-of-record type where all the
7756 variant branches have exactly the same size. This is because in
7757 such cases, the compiler does not bother to use the XVS convention
7758 when encoding the record. I am currently dubious of this
7759 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7760
d2e4a39e 7761static struct type *
fc1a4b47 7762to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7763 CORE_ADDR address, struct value *dval)
14f9c5c9 7764{
d2e4a39e 7765 struct type *templ_type;
14f9c5c9 7766
876cecd0 7767 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7768 return type0;
7769
d2e4a39e 7770 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7771
7772 if (templ_type != NULL)
7773 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7774 else if (variant_field_index (type0) >= 0)
7775 {
7776 if (dval == NULL && valaddr == NULL && address == 0)
7777 return type0;
7778 return to_record_with_fixed_variant_part (type0, valaddr, address,
7779 dval);
7780 }
14f9c5c9
AS
7781 else
7782 {
876cecd0 7783 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7784 return type0;
7785 }
7786
7787}
7788
7789/* An ordinary record type (with fixed-length fields) that describes
7790 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7791 union type. Any necessary discriminants' values should be in DVAL,
7792 a record value. That is, this routine selects the appropriate
7793 branch of the union at ADDR according to the discriminant value
b1f33ddd 7794 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7795 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7796
d2e4a39e 7797static struct type *
fc1a4b47 7798to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7799 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7800{
7801 int which;
d2e4a39e
AS
7802 struct type *templ_type;
7803 struct type *var_type;
14f9c5c9
AS
7804
7805 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7806 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7807 else
14f9c5c9
AS
7808 var_type = var_type0;
7809
7810 templ_type = ada_find_parallel_type (var_type, "___XVU");
7811
7812 if (templ_type != NULL)
7813 var_type = templ_type;
7814
b1f33ddd
JB
7815 if (is_unchecked_variant (var_type, value_type (dval)))
7816 return var_type0;
d2e4a39e
AS
7817 which =
7818 ada_which_variant_applies (var_type,
0fd88904 7819 value_type (dval), value_contents (dval));
14f9c5c9
AS
7820
7821 if (which < 0)
e9bb382b 7822 return empty_record (var_type);
14f9c5c9 7823 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7824 return to_fixed_record_type
d2e4a39e
AS
7825 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7826 valaddr, address, dval);
4c4b4cd2 7827 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7828 return
7829 to_fixed_record_type
7830 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7831 else
7832 return TYPE_FIELD_TYPE (var_type, which);
7833}
7834
7835/* Assuming that TYPE0 is an array type describing the type of a value
7836 at ADDR, and that DVAL describes a record containing any
7837 discriminants used in TYPE0, returns a type for the value that
7838 contains no dynamic components (that is, no components whose sizes
7839 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7840 true, gives an error message if the resulting type's size is over
4c4b4cd2 7841 varsize_limit. */
14f9c5c9 7842
d2e4a39e
AS
7843static struct type *
7844to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7845 int ignore_too_big)
14f9c5c9 7846{
d2e4a39e
AS
7847 struct type *index_type_desc;
7848 struct type *result;
ad82864c 7849 int constrained_packed_array_p;
14f9c5c9 7850
b0dd7688 7851 type0 = ada_check_typedef (type0);
284614f0 7852 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7853 return type0;
14f9c5c9 7854
ad82864c
JB
7855 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7856 if (constrained_packed_array_p)
7857 type0 = decode_constrained_packed_array_type (type0);
284614f0 7858
14f9c5c9 7859 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7860 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7861 if (index_type_desc == NULL)
7862 {
61ee279c 7863 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7864
14f9c5c9 7865 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7866 depend on the contents of the array in properly constructed
7867 debugging data. */
529cad9c
PH
7868 /* Create a fixed version of the array element type.
7869 We're not providing the address of an element here,
e1d5a0d2 7870 and thus the actual object value cannot be inspected to do
529cad9c
PH
7871 the conversion. This should not be a problem, since arrays of
7872 unconstrained objects are not allowed. In particular, all
7873 the elements of an array of a tagged type should all be of
7874 the same type specified in the debugging info. No need to
7875 consult the object tag. */
1ed6ede0 7876 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7877
284614f0
JB
7878 /* Make sure we always create a new array type when dealing with
7879 packed array types, since we're going to fix-up the array
7880 type length and element bitsize a little further down. */
ad82864c 7881 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7882 result = type0;
14f9c5c9 7883 else
e9bb382b 7884 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7885 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7886 }
7887 else
7888 {
7889 int i;
7890 struct type *elt_type0;
7891
7892 elt_type0 = type0;
7893 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7894 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7895
7896 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7897 depend on the contents of the array in properly constructed
7898 debugging data. */
529cad9c
PH
7899 /* Create a fixed version of the array element type.
7900 We're not providing the address of an element here,
e1d5a0d2 7901 and thus the actual object value cannot be inspected to do
529cad9c
PH
7902 the conversion. This should not be a problem, since arrays of
7903 unconstrained objects are not allowed. In particular, all
7904 the elements of an array of a tagged type should all be of
7905 the same type specified in the debugging info. No need to
7906 consult the object tag. */
1ed6ede0
JB
7907 result =
7908 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7909
7910 elt_type0 = type0;
14f9c5c9 7911 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7912 {
7913 struct type *range_type =
28c85d6c 7914 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7915
e9bb382b 7916 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7917 result, range_type);
1ce677a4 7918 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7919 }
d2e4a39e 7920 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7921 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7922 }
7923
2e6fda7d
JB
7924 /* We want to preserve the type name. This can be useful when
7925 trying to get the type name of a value that has already been
7926 printed (for instance, if the user did "print VAR; whatis $". */
7927 TYPE_NAME (result) = TYPE_NAME (type0);
7928
ad82864c 7929 if (constrained_packed_array_p)
284614f0
JB
7930 {
7931 /* So far, the resulting type has been created as if the original
7932 type was a regular (non-packed) array type. As a result, the
7933 bitsize of the array elements needs to be set again, and the array
7934 length needs to be recomputed based on that bitsize. */
7935 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7936 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7937
7938 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7939 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7940 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7941 TYPE_LENGTH (result)++;
7942 }
7943
876cecd0 7944 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7945 return result;
d2e4a39e 7946}
14f9c5c9
AS
7947
7948
7949/* A standard type (containing no dynamically sized components)
7950 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7951 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7952 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7953 ADDRESS or in VALADDR contains these discriminants.
7954
1ed6ede0
JB
7955 If CHECK_TAG is not null, in the case of tagged types, this function
7956 attempts to locate the object's tag and use it to compute the actual
7957 type. However, when ADDRESS is null, we cannot use it to determine the
7958 location of the tag, and therefore compute the tagged type's actual type.
7959 So we return the tagged type without consulting the tag. */
529cad9c 7960
f192137b
JB
7961static struct type *
7962ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7963 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7964{
61ee279c 7965 type = ada_check_typedef (type);
d2e4a39e
AS
7966 switch (TYPE_CODE (type))
7967 {
7968 default:
14f9c5c9 7969 return type;
d2e4a39e 7970 case TYPE_CODE_STRUCT:
4c4b4cd2 7971 {
76a01679 7972 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7973 struct type *fixed_record_type =
7974 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7975
529cad9c
PH
7976 /* If STATIC_TYPE is a tagged type and we know the object's address,
7977 then we can determine its tag, and compute the object's actual
0963b4bd 7978 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7979 type (the parent part of the record may have dynamic fields
7980 and the way the location of _tag is expressed may depend on
7981 them). */
529cad9c 7982
1ed6ede0 7983 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7984 {
7985 struct type *real_type =
1ed6ede0
JB
7986 type_from_tag (value_tag_from_contents_and_address
7987 (fixed_record_type,
7988 valaddr,
7989 address));
5b4ee69b 7990
76a01679 7991 if (real_type != NULL)
1ed6ede0 7992 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7993 }
4af88198
JB
7994
7995 /* Check to see if there is a parallel ___XVZ variable.
7996 If there is, then it provides the actual size of our type. */
7997 else if (ada_type_name (fixed_record_type) != NULL)
7998 {
0d5cff50 7999 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8000 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8001 int xvz_found = 0;
8002 LONGEST size;
8003
88c15c34 8004 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8005 size = get_int_var_value (xvz_name, &xvz_found);
8006 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8007 {
8008 fixed_record_type = copy_type (fixed_record_type);
8009 TYPE_LENGTH (fixed_record_type) = size;
8010
8011 /* The FIXED_RECORD_TYPE may have be a stub. We have
8012 observed this when the debugging info is STABS, and
8013 apparently it is something that is hard to fix.
8014
8015 In practice, we don't need the actual type definition
8016 at all, because the presence of the XVZ variable allows us
8017 to assume that there must be a XVS type as well, which we
8018 should be able to use later, when we need the actual type
8019 definition.
8020
8021 In the meantime, pretend that the "fixed" type we are
8022 returning is NOT a stub, because this can cause trouble
8023 when using this type to create new types targeting it.
8024 Indeed, the associated creation routines often check
8025 whether the target type is a stub and will try to replace
0963b4bd 8026 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8027 might cause the new type to have the wrong size too.
8028 Consider the case of an array, for instance, where the size
8029 of the array is computed from the number of elements in
8030 our array multiplied by the size of its element. */
8031 TYPE_STUB (fixed_record_type) = 0;
8032 }
8033 }
1ed6ede0 8034 return fixed_record_type;
4c4b4cd2 8035 }
d2e4a39e 8036 case TYPE_CODE_ARRAY:
4c4b4cd2 8037 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8038 case TYPE_CODE_UNION:
8039 if (dval == NULL)
4c4b4cd2 8040 return type;
d2e4a39e 8041 else
4c4b4cd2 8042 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8043 }
14f9c5c9
AS
8044}
8045
f192137b
JB
8046/* The same as ada_to_fixed_type_1, except that it preserves the type
8047 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8048
8049 The typedef layer needs be preserved in order to differentiate between
8050 arrays and array pointers when both types are implemented using the same
8051 fat pointer. In the array pointer case, the pointer is encoded as
8052 a typedef of the pointer type. For instance, considering:
8053
8054 type String_Access is access String;
8055 S1 : String_Access := null;
8056
8057 To the debugger, S1 is defined as a typedef of type String. But
8058 to the user, it is a pointer. So if the user tries to print S1,
8059 we should not dereference the array, but print the array address
8060 instead.
8061
8062 If we didn't preserve the typedef layer, we would lose the fact that
8063 the type is to be presented as a pointer (needs de-reference before
8064 being printed). And we would also use the source-level type name. */
f192137b
JB
8065
8066struct type *
8067ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8068 CORE_ADDR address, struct value *dval, int check_tag)
8069
8070{
8071 struct type *fixed_type =
8072 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8073
96dbd2c1
JB
8074 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8075 then preserve the typedef layer.
8076
8077 Implementation note: We can only check the main-type portion of
8078 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8079 from TYPE now returns a type that has the same instance flags
8080 as TYPE. For instance, if TYPE is a "typedef const", and its
8081 target type is a "struct", then the typedef elimination will return
8082 a "const" version of the target type. See check_typedef for more
8083 details about how the typedef layer elimination is done.
8084
8085 brobecker/2010-11-19: It seems to me that the only case where it is
8086 useful to preserve the typedef layer is when dealing with fat pointers.
8087 Perhaps, we could add a check for that and preserve the typedef layer
8088 only in that situation. But this seems unecessary so far, probably
8089 because we call check_typedef/ada_check_typedef pretty much everywhere.
8090 */
f192137b 8091 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8092 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8093 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8094 return type;
8095
8096 return fixed_type;
8097}
8098
14f9c5c9 8099/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8100 TYPE0, but based on no runtime data. */
14f9c5c9 8101
d2e4a39e
AS
8102static struct type *
8103to_static_fixed_type (struct type *type0)
14f9c5c9 8104{
d2e4a39e 8105 struct type *type;
14f9c5c9
AS
8106
8107 if (type0 == NULL)
8108 return NULL;
8109
876cecd0 8110 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8111 return type0;
8112
61ee279c 8113 type0 = ada_check_typedef (type0);
d2e4a39e 8114
14f9c5c9
AS
8115 switch (TYPE_CODE (type0))
8116 {
8117 default:
8118 return type0;
8119 case TYPE_CODE_STRUCT:
8120 type = dynamic_template_type (type0);
d2e4a39e 8121 if (type != NULL)
4c4b4cd2
PH
8122 return template_to_static_fixed_type (type);
8123 else
8124 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8125 case TYPE_CODE_UNION:
8126 type = ada_find_parallel_type (type0, "___XVU");
8127 if (type != NULL)
4c4b4cd2
PH
8128 return template_to_static_fixed_type (type);
8129 else
8130 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8131 }
8132}
8133
4c4b4cd2
PH
8134/* A static approximation of TYPE with all type wrappers removed. */
8135
d2e4a39e
AS
8136static struct type *
8137static_unwrap_type (struct type *type)
14f9c5c9
AS
8138{
8139 if (ada_is_aligner_type (type))
8140 {
61ee279c 8141 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8142 if (ada_type_name (type1) == NULL)
4c4b4cd2 8143 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8144
8145 return static_unwrap_type (type1);
8146 }
d2e4a39e 8147 else
14f9c5c9 8148 {
d2e4a39e 8149 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8150
d2e4a39e 8151 if (raw_real_type == type)
4c4b4cd2 8152 return type;
14f9c5c9 8153 else
4c4b4cd2 8154 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8155 }
8156}
8157
8158/* In some cases, incomplete and private types require
4c4b4cd2 8159 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8160 type Foo;
8161 type FooP is access Foo;
8162 V: FooP;
8163 type Foo is array ...;
4c4b4cd2 8164 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8165 cross-references to such types, we instead substitute for FooP a
8166 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8167 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8168
8169/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8170 exists, otherwise TYPE. */
8171
d2e4a39e 8172struct type *
61ee279c 8173ada_check_typedef (struct type *type)
14f9c5c9 8174{
727e3d2e
JB
8175 if (type == NULL)
8176 return NULL;
8177
720d1a40
JB
8178 /* If our type is a typedef type of a fat pointer, then we're done.
8179 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8180 what allows us to distinguish between fat pointers that represent
8181 array types, and fat pointers that represent array access types
8182 (in both cases, the compiler implements them as fat pointers). */
8183 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8184 && is_thick_pntr (ada_typedef_target_type (type)))
8185 return type;
8186
14f9c5c9
AS
8187 CHECK_TYPEDEF (type);
8188 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8189 || !TYPE_STUB (type)
14f9c5c9
AS
8190 || TYPE_TAG_NAME (type) == NULL)
8191 return type;
d2e4a39e 8192 else
14f9c5c9 8193 {
0d5cff50 8194 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8195 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8196
05e522ef
JB
8197 if (type1 == NULL)
8198 return type;
8199
8200 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8201 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8202 types, only for the typedef-to-array types). If that's the case,
8203 strip the typedef layer. */
8204 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8205 type1 = ada_check_typedef (type1);
8206
8207 return type1;
14f9c5c9
AS
8208 }
8209}
8210
8211/* A value representing the data at VALADDR/ADDRESS as described by
8212 type TYPE0, but with a standard (static-sized) type that correctly
8213 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8214 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8215 creation of struct values]. */
14f9c5c9 8216
4c4b4cd2
PH
8217static struct value *
8218ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8219 struct value *val0)
14f9c5c9 8220{
1ed6ede0 8221 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8222
14f9c5c9
AS
8223 if (type == type0 && val0 != NULL)
8224 return val0;
d2e4a39e 8225 else
4c4b4cd2
PH
8226 return value_from_contents_and_address (type, 0, address);
8227}
8228
8229/* A value representing VAL, but with a standard (static-sized) type
8230 that correctly describes it. Does not necessarily create a new
8231 value. */
8232
0c3acc09 8233struct value *
4c4b4cd2
PH
8234ada_to_fixed_value (struct value *val)
8235{
c48db5ca
JB
8236 val = unwrap_value (val);
8237 val = ada_to_fixed_value_create (value_type (val),
8238 value_address (val),
8239 val);
8240 return val;
14f9c5c9 8241}
d2e4a39e 8242\f
14f9c5c9 8243
14f9c5c9
AS
8244/* Attributes */
8245
4c4b4cd2
PH
8246/* Table mapping attribute numbers to names.
8247 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8248
d2e4a39e 8249static const char *attribute_names[] = {
14f9c5c9
AS
8250 "<?>",
8251
d2e4a39e 8252 "first",
14f9c5c9
AS
8253 "last",
8254 "length",
8255 "image",
14f9c5c9
AS
8256 "max",
8257 "min",
4c4b4cd2
PH
8258 "modulus",
8259 "pos",
8260 "size",
8261 "tag",
14f9c5c9 8262 "val",
14f9c5c9
AS
8263 0
8264};
8265
d2e4a39e 8266const char *
4c4b4cd2 8267ada_attribute_name (enum exp_opcode n)
14f9c5c9 8268{
4c4b4cd2
PH
8269 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8270 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8271 else
8272 return attribute_names[0];
8273}
8274
4c4b4cd2 8275/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8276
4c4b4cd2
PH
8277static LONGEST
8278pos_atr (struct value *arg)
14f9c5c9 8279{
24209737
PH
8280 struct value *val = coerce_ref (arg);
8281 struct type *type = value_type (val);
14f9c5c9 8282
d2e4a39e 8283 if (!discrete_type_p (type))
323e0a4a 8284 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8285
8286 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8287 {
8288 int i;
24209737 8289 LONGEST v = value_as_long (val);
14f9c5c9 8290
d2e4a39e 8291 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8292 {
14e75d8e 8293 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8294 return i;
8295 }
323e0a4a 8296 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8297 }
8298 else
24209737 8299 return value_as_long (val);
4c4b4cd2
PH
8300}
8301
8302static struct value *
3cb382c9 8303value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8304{
3cb382c9 8305 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8306}
8307
4c4b4cd2 8308/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8309
d2e4a39e
AS
8310static struct value *
8311value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8312{
d2e4a39e 8313 if (!discrete_type_p (type))
323e0a4a 8314 error (_("'VAL only defined on discrete types"));
df407dfe 8315 if (!integer_type_p (value_type (arg)))
323e0a4a 8316 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8317
8318 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8319 {
8320 long pos = value_as_long (arg);
5b4ee69b 8321
14f9c5c9 8322 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8323 error (_("argument to 'VAL out of range"));
14e75d8e 8324 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8325 }
8326 else
8327 return value_from_longest (type, value_as_long (arg));
8328}
14f9c5c9 8329\f
d2e4a39e 8330
4c4b4cd2 8331 /* Evaluation */
14f9c5c9 8332
4c4b4cd2
PH
8333/* True if TYPE appears to be an Ada character type.
8334 [At the moment, this is true only for Character and Wide_Character;
8335 It is a heuristic test that could stand improvement]. */
14f9c5c9 8336
d2e4a39e
AS
8337int
8338ada_is_character_type (struct type *type)
14f9c5c9 8339{
7b9f71f2
JB
8340 const char *name;
8341
8342 /* If the type code says it's a character, then assume it really is,
8343 and don't check any further. */
8344 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8345 return 1;
8346
8347 /* Otherwise, assume it's a character type iff it is a discrete type
8348 with a known character type name. */
8349 name = ada_type_name (type);
8350 return (name != NULL
8351 && (TYPE_CODE (type) == TYPE_CODE_INT
8352 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8353 && (strcmp (name, "character") == 0
8354 || strcmp (name, "wide_character") == 0
5a517ebd 8355 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8356 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8357}
8358
4c4b4cd2 8359/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8360
8361int
ebf56fd3 8362ada_is_string_type (struct type *type)
14f9c5c9 8363{
61ee279c 8364 type = ada_check_typedef (type);
d2e4a39e 8365 if (type != NULL
14f9c5c9 8366 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8367 && (ada_is_simple_array_type (type)
8368 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8369 && ada_array_arity (type) == 1)
8370 {
8371 struct type *elttype = ada_array_element_type (type, 1);
8372
8373 return ada_is_character_type (elttype);
8374 }
d2e4a39e 8375 else
14f9c5c9
AS
8376 return 0;
8377}
8378
5bf03f13
JB
8379/* The compiler sometimes provides a parallel XVS type for a given
8380 PAD type. Normally, it is safe to follow the PAD type directly,
8381 but older versions of the compiler have a bug that causes the offset
8382 of its "F" field to be wrong. Following that field in that case
8383 would lead to incorrect results, but this can be worked around
8384 by ignoring the PAD type and using the associated XVS type instead.
8385
8386 Set to True if the debugger should trust the contents of PAD types.
8387 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8388static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8389
8390/* True if TYPE is a struct type introduced by the compiler to force the
8391 alignment of a value. Such types have a single field with a
4c4b4cd2 8392 distinctive name. */
14f9c5c9
AS
8393
8394int
ebf56fd3 8395ada_is_aligner_type (struct type *type)
14f9c5c9 8396{
61ee279c 8397 type = ada_check_typedef (type);
714e53ab 8398
5bf03f13 8399 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8400 return 0;
8401
14f9c5c9 8402 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8403 && TYPE_NFIELDS (type) == 1
8404 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8405}
8406
8407/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8408 the parallel type. */
14f9c5c9 8409
d2e4a39e
AS
8410struct type *
8411ada_get_base_type (struct type *raw_type)
14f9c5c9 8412{
d2e4a39e
AS
8413 struct type *real_type_namer;
8414 struct type *raw_real_type;
14f9c5c9
AS
8415
8416 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8417 return raw_type;
8418
284614f0
JB
8419 if (ada_is_aligner_type (raw_type))
8420 /* The encoding specifies that we should always use the aligner type.
8421 So, even if this aligner type has an associated XVS type, we should
8422 simply ignore it.
8423
8424 According to the compiler gurus, an XVS type parallel to an aligner
8425 type may exist because of a stabs limitation. In stabs, aligner
8426 types are empty because the field has a variable-sized type, and
8427 thus cannot actually be used as an aligner type. As a result,
8428 we need the associated parallel XVS type to decode the type.
8429 Since the policy in the compiler is to not change the internal
8430 representation based on the debugging info format, we sometimes
8431 end up having a redundant XVS type parallel to the aligner type. */
8432 return raw_type;
8433
14f9c5c9 8434 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8435 if (real_type_namer == NULL
14f9c5c9
AS
8436 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8437 || TYPE_NFIELDS (real_type_namer) != 1)
8438 return raw_type;
8439
f80d3ff2
JB
8440 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8441 {
8442 /* This is an older encoding form where the base type needs to be
8443 looked up by name. We prefer the newer enconding because it is
8444 more efficient. */
8445 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8446 if (raw_real_type == NULL)
8447 return raw_type;
8448 else
8449 return raw_real_type;
8450 }
8451
8452 /* The field in our XVS type is a reference to the base type. */
8453 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8454}
14f9c5c9 8455
4c4b4cd2 8456/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8457
d2e4a39e
AS
8458struct type *
8459ada_aligned_type (struct type *type)
14f9c5c9
AS
8460{
8461 if (ada_is_aligner_type (type))
8462 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8463 else
8464 return ada_get_base_type (type);
8465}
8466
8467
8468/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8469 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8470
fc1a4b47
AC
8471const gdb_byte *
8472ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8473{
d2e4a39e 8474 if (ada_is_aligner_type (type))
14f9c5c9 8475 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8476 valaddr +
8477 TYPE_FIELD_BITPOS (type,
8478 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8479 else
8480 return valaddr;
8481}
8482
4c4b4cd2
PH
8483
8484
14f9c5c9 8485/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8486 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8487const char *
8488ada_enum_name (const char *name)
14f9c5c9 8489{
4c4b4cd2
PH
8490 static char *result;
8491 static size_t result_len = 0;
d2e4a39e 8492 char *tmp;
14f9c5c9 8493
4c4b4cd2
PH
8494 /* First, unqualify the enumeration name:
8495 1. Search for the last '.' character. If we find one, then skip
177b42fe 8496 all the preceding characters, the unqualified name starts
76a01679 8497 right after that dot.
4c4b4cd2 8498 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8499 translates dots into "__". Search forward for double underscores,
8500 but stop searching when we hit an overloading suffix, which is
8501 of the form "__" followed by digits. */
4c4b4cd2 8502
c3e5cd34
PH
8503 tmp = strrchr (name, '.');
8504 if (tmp != NULL)
4c4b4cd2
PH
8505 name = tmp + 1;
8506 else
14f9c5c9 8507 {
4c4b4cd2
PH
8508 while ((tmp = strstr (name, "__")) != NULL)
8509 {
8510 if (isdigit (tmp[2]))
8511 break;
8512 else
8513 name = tmp + 2;
8514 }
14f9c5c9
AS
8515 }
8516
8517 if (name[0] == 'Q')
8518 {
14f9c5c9 8519 int v;
5b4ee69b 8520
14f9c5c9 8521 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8522 {
8523 if (sscanf (name + 2, "%x", &v) != 1)
8524 return name;
8525 }
14f9c5c9 8526 else
4c4b4cd2 8527 return name;
14f9c5c9 8528
4c4b4cd2 8529 GROW_VECT (result, result_len, 16);
14f9c5c9 8530 if (isascii (v) && isprint (v))
88c15c34 8531 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8532 else if (name[1] == 'U')
88c15c34 8533 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8534 else
88c15c34 8535 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8536
8537 return result;
8538 }
d2e4a39e 8539 else
4c4b4cd2 8540 {
c3e5cd34
PH
8541 tmp = strstr (name, "__");
8542 if (tmp == NULL)
8543 tmp = strstr (name, "$");
8544 if (tmp != NULL)
4c4b4cd2
PH
8545 {
8546 GROW_VECT (result, result_len, tmp - name + 1);
8547 strncpy (result, name, tmp - name);
8548 result[tmp - name] = '\0';
8549 return result;
8550 }
8551
8552 return name;
8553 }
14f9c5c9
AS
8554}
8555
14f9c5c9
AS
8556/* Evaluate the subexpression of EXP starting at *POS as for
8557 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8558 expression. */
14f9c5c9 8559
d2e4a39e
AS
8560static struct value *
8561evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8562{
4b27a620 8563 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8564}
8565
8566/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8567 value it wraps. */
14f9c5c9 8568
d2e4a39e
AS
8569static struct value *
8570unwrap_value (struct value *val)
14f9c5c9 8571{
df407dfe 8572 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8573
14f9c5c9
AS
8574 if (ada_is_aligner_type (type))
8575 {
de4d072f 8576 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8577 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8578
14f9c5c9 8579 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8580 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8581
8582 return unwrap_value (v);
8583 }
d2e4a39e 8584 else
14f9c5c9 8585 {
d2e4a39e 8586 struct type *raw_real_type =
61ee279c 8587 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8588
5bf03f13
JB
8589 /* If there is no parallel XVS or XVE type, then the value is
8590 already unwrapped. Return it without further modification. */
8591 if ((type == raw_real_type)
8592 && ada_find_parallel_type (type, "___XVE") == NULL)
8593 return val;
14f9c5c9 8594
d2e4a39e 8595 return
4c4b4cd2
PH
8596 coerce_unspec_val_to_type
8597 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8598 value_address (val),
1ed6ede0 8599 NULL, 1));
14f9c5c9
AS
8600 }
8601}
d2e4a39e
AS
8602
8603static struct value *
8604cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8605{
8606 LONGEST val;
8607
df407dfe 8608 if (type == value_type (arg))
14f9c5c9 8609 return arg;
df407dfe 8610 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8611 val = ada_float_to_fixed (type,
df407dfe 8612 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8613 value_as_long (arg)));
d2e4a39e 8614 else
14f9c5c9 8615 {
a53b7a21 8616 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8617
14f9c5c9
AS
8618 val = ada_float_to_fixed (type, argd);
8619 }
8620
8621 return value_from_longest (type, val);
8622}
8623
d2e4a39e 8624static struct value *
a53b7a21 8625cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8626{
df407dfe 8627 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8628 value_as_long (arg));
5b4ee69b 8629
a53b7a21 8630 return value_from_double (type, val);
14f9c5c9
AS
8631}
8632
d99dcf51
JB
8633/* Given two array types T1 and T2, return nonzero iff both arrays
8634 contain the same number of elements. */
8635
8636static int
8637ada_same_array_size_p (struct type *t1, struct type *t2)
8638{
8639 LONGEST lo1, hi1, lo2, hi2;
8640
8641 /* Get the array bounds in order to verify that the size of
8642 the two arrays match. */
8643 if (!get_array_bounds (t1, &lo1, &hi1)
8644 || !get_array_bounds (t2, &lo2, &hi2))
8645 error (_("unable to determine array bounds"));
8646
8647 /* To make things easier for size comparison, normalize a bit
8648 the case of empty arrays by making sure that the difference
8649 between upper bound and lower bound is always -1. */
8650 if (lo1 > hi1)
8651 hi1 = lo1 - 1;
8652 if (lo2 > hi2)
8653 hi2 = lo2 - 1;
8654
8655 return (hi1 - lo1 == hi2 - lo2);
8656}
8657
8658/* Assuming that VAL is an array of integrals, and TYPE represents
8659 an array with the same number of elements, but with wider integral
8660 elements, return an array "casted" to TYPE. In practice, this
8661 means that the returned array is built by casting each element
8662 of the original array into TYPE's (wider) element type. */
8663
8664static struct value *
8665ada_promote_array_of_integrals (struct type *type, struct value *val)
8666{
8667 struct type *elt_type = TYPE_TARGET_TYPE (type);
8668 LONGEST lo, hi;
8669 struct value *res;
8670 LONGEST i;
8671
8672 /* Verify that both val and type are arrays of scalars, and
8673 that the size of val's elements is smaller than the size
8674 of type's element. */
8675 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8676 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8677 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8678 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8679 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8680 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8681
8682 if (!get_array_bounds (type, &lo, &hi))
8683 error (_("unable to determine array bounds"));
8684
8685 res = allocate_value (type);
8686
8687 /* Promote each array element. */
8688 for (i = 0; i < hi - lo + 1; i++)
8689 {
8690 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8691
8692 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8693 value_contents_all (elt), TYPE_LENGTH (elt_type));
8694 }
8695
8696 return res;
8697}
8698
4c4b4cd2
PH
8699/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8700 return the converted value. */
8701
d2e4a39e
AS
8702static struct value *
8703coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8704{
df407dfe 8705 struct type *type2 = value_type (val);
5b4ee69b 8706
14f9c5c9
AS
8707 if (type == type2)
8708 return val;
8709
61ee279c
PH
8710 type2 = ada_check_typedef (type2);
8711 type = ada_check_typedef (type);
14f9c5c9 8712
d2e4a39e
AS
8713 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8714 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8715 {
8716 val = ada_value_ind (val);
df407dfe 8717 type2 = value_type (val);
14f9c5c9
AS
8718 }
8719
d2e4a39e 8720 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8721 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8722 {
d99dcf51
JB
8723 if (!ada_same_array_size_p (type, type2))
8724 error (_("cannot assign arrays of different length"));
8725
8726 if (is_integral_type (TYPE_TARGET_TYPE (type))
8727 && is_integral_type (TYPE_TARGET_TYPE (type2))
8728 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8729 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8730 {
8731 /* Allow implicit promotion of the array elements to
8732 a wider type. */
8733 return ada_promote_array_of_integrals (type, val);
8734 }
8735
8736 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8737 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8738 error (_("Incompatible types in assignment"));
04624583 8739 deprecated_set_value_type (val, type);
14f9c5c9 8740 }
d2e4a39e 8741 return val;
14f9c5c9
AS
8742}
8743
4c4b4cd2
PH
8744static struct value *
8745ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8746{
8747 struct value *val;
8748 struct type *type1, *type2;
8749 LONGEST v, v1, v2;
8750
994b9211
AC
8751 arg1 = coerce_ref (arg1);
8752 arg2 = coerce_ref (arg2);
18af8284
JB
8753 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8754 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8755
76a01679
JB
8756 if (TYPE_CODE (type1) != TYPE_CODE_INT
8757 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8758 return value_binop (arg1, arg2, op);
8759
76a01679 8760 switch (op)
4c4b4cd2
PH
8761 {
8762 case BINOP_MOD:
8763 case BINOP_DIV:
8764 case BINOP_REM:
8765 break;
8766 default:
8767 return value_binop (arg1, arg2, op);
8768 }
8769
8770 v2 = value_as_long (arg2);
8771 if (v2 == 0)
323e0a4a 8772 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8773
8774 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8775 return value_binop (arg1, arg2, op);
8776
8777 v1 = value_as_long (arg1);
8778 switch (op)
8779 {
8780 case BINOP_DIV:
8781 v = v1 / v2;
76a01679
JB
8782 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8783 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8784 break;
8785 case BINOP_REM:
8786 v = v1 % v2;
76a01679
JB
8787 if (v * v1 < 0)
8788 v -= v2;
4c4b4cd2
PH
8789 break;
8790 default:
8791 /* Should not reach this point. */
8792 v = 0;
8793 }
8794
8795 val = allocate_value (type1);
990a07ab 8796 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8797 TYPE_LENGTH (value_type (val)),
8798 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8799 return val;
8800}
8801
8802static int
8803ada_value_equal (struct value *arg1, struct value *arg2)
8804{
df407dfe
AC
8805 if (ada_is_direct_array_type (value_type (arg1))
8806 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8807 {
f58b38bf
JB
8808 /* Automatically dereference any array reference before
8809 we attempt to perform the comparison. */
8810 arg1 = ada_coerce_ref (arg1);
8811 arg2 = ada_coerce_ref (arg2);
8812
4c4b4cd2
PH
8813 arg1 = ada_coerce_to_simple_array (arg1);
8814 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8815 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8816 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8817 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8818 /* FIXME: The following works only for types whose
76a01679
JB
8819 representations use all bits (no padding or undefined bits)
8820 and do not have user-defined equality. */
8821 return
df407dfe 8822 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8823 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8824 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8825 }
8826 return value_equal (arg1, arg2);
8827}
8828
52ce6436
PH
8829/* Total number of component associations in the aggregate starting at
8830 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8831 OP_AGGREGATE. */
52ce6436
PH
8832
8833static int
8834num_component_specs (struct expression *exp, int pc)
8835{
8836 int n, m, i;
5b4ee69b 8837
52ce6436
PH
8838 m = exp->elts[pc + 1].longconst;
8839 pc += 3;
8840 n = 0;
8841 for (i = 0; i < m; i += 1)
8842 {
8843 switch (exp->elts[pc].opcode)
8844 {
8845 default:
8846 n += 1;
8847 break;
8848 case OP_CHOICES:
8849 n += exp->elts[pc + 1].longconst;
8850 break;
8851 }
8852 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8853 }
8854 return n;
8855}
8856
8857/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8858 component of LHS (a simple array or a record), updating *POS past
8859 the expression, assuming that LHS is contained in CONTAINER. Does
8860 not modify the inferior's memory, nor does it modify LHS (unless
8861 LHS == CONTAINER). */
8862
8863static void
8864assign_component (struct value *container, struct value *lhs, LONGEST index,
8865 struct expression *exp, int *pos)
8866{
8867 struct value *mark = value_mark ();
8868 struct value *elt;
5b4ee69b 8869
52ce6436
PH
8870 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8871 {
22601c15
UW
8872 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8873 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8874
52ce6436
PH
8875 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8876 }
8877 else
8878 {
8879 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8880 elt = ada_to_fixed_value (elt);
52ce6436
PH
8881 }
8882
8883 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8884 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8885 else
8886 value_assign_to_component (container, elt,
8887 ada_evaluate_subexp (NULL, exp, pos,
8888 EVAL_NORMAL));
8889
8890 value_free_to_mark (mark);
8891}
8892
8893/* Assuming that LHS represents an lvalue having a record or array
8894 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8895 of that aggregate's value to LHS, advancing *POS past the
8896 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8897 lvalue containing LHS (possibly LHS itself). Does not modify
8898 the inferior's memory, nor does it modify the contents of
0963b4bd 8899 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8900
8901static struct value *
8902assign_aggregate (struct value *container,
8903 struct value *lhs, struct expression *exp,
8904 int *pos, enum noside noside)
8905{
8906 struct type *lhs_type;
8907 int n = exp->elts[*pos+1].longconst;
8908 LONGEST low_index, high_index;
8909 int num_specs;
8910 LONGEST *indices;
8911 int max_indices, num_indices;
8912 int is_array_aggregate;
8913 int i;
52ce6436
PH
8914
8915 *pos += 3;
8916 if (noside != EVAL_NORMAL)
8917 {
52ce6436
PH
8918 for (i = 0; i < n; i += 1)
8919 ada_evaluate_subexp (NULL, exp, pos, noside);
8920 return container;
8921 }
8922
8923 container = ada_coerce_ref (container);
8924 if (ada_is_direct_array_type (value_type (container)))
8925 container = ada_coerce_to_simple_array (container);
8926 lhs = ada_coerce_ref (lhs);
8927 if (!deprecated_value_modifiable (lhs))
8928 error (_("Left operand of assignment is not a modifiable lvalue."));
8929
8930 lhs_type = value_type (lhs);
8931 if (ada_is_direct_array_type (lhs_type))
8932 {
8933 lhs = ada_coerce_to_simple_array (lhs);
8934 lhs_type = value_type (lhs);
8935 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8936 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8937 is_array_aggregate = 1;
8938 }
8939 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8940 {
8941 low_index = 0;
8942 high_index = num_visible_fields (lhs_type) - 1;
8943 is_array_aggregate = 0;
8944 }
8945 else
8946 error (_("Left-hand side must be array or record."));
8947
8948 num_specs = num_component_specs (exp, *pos - 3);
8949 max_indices = 4 * num_specs + 4;
8950 indices = alloca (max_indices * sizeof (indices[0]));
8951 indices[0] = indices[1] = low_index - 1;
8952 indices[2] = indices[3] = high_index + 1;
8953 num_indices = 4;
8954
8955 for (i = 0; i < n; i += 1)
8956 {
8957 switch (exp->elts[*pos].opcode)
8958 {
1fbf5ada
JB
8959 case OP_CHOICES:
8960 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8961 &num_indices, max_indices,
8962 low_index, high_index);
8963 break;
8964 case OP_POSITIONAL:
8965 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8966 &num_indices, max_indices,
8967 low_index, high_index);
1fbf5ada
JB
8968 break;
8969 case OP_OTHERS:
8970 if (i != n-1)
8971 error (_("Misplaced 'others' clause"));
8972 aggregate_assign_others (container, lhs, exp, pos, indices,
8973 num_indices, low_index, high_index);
8974 break;
8975 default:
8976 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8977 }
8978 }
8979
8980 return container;
8981}
8982
8983/* Assign into the component of LHS indexed by the OP_POSITIONAL
8984 construct at *POS, updating *POS past the construct, given that
8985 the positions are relative to lower bound LOW, where HIGH is the
8986 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8987 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8988 assign_aggregate. */
52ce6436
PH
8989static void
8990aggregate_assign_positional (struct value *container,
8991 struct value *lhs, struct expression *exp,
8992 int *pos, LONGEST *indices, int *num_indices,
8993 int max_indices, LONGEST low, LONGEST high)
8994{
8995 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8996
8997 if (ind - 1 == high)
e1d5a0d2 8998 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8999 if (ind <= high)
9000 {
9001 add_component_interval (ind, ind, indices, num_indices, max_indices);
9002 *pos += 3;
9003 assign_component (container, lhs, ind, exp, pos);
9004 }
9005 else
9006 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9007}
9008
9009/* Assign into the components of LHS indexed by the OP_CHOICES
9010 construct at *POS, updating *POS past the construct, given that
9011 the allowable indices are LOW..HIGH. Record the indices assigned
9012 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9013 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9014static void
9015aggregate_assign_from_choices (struct value *container,
9016 struct value *lhs, struct expression *exp,
9017 int *pos, LONGEST *indices, int *num_indices,
9018 int max_indices, LONGEST low, LONGEST high)
9019{
9020 int j;
9021 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9022 int choice_pos, expr_pc;
9023 int is_array = ada_is_direct_array_type (value_type (lhs));
9024
9025 choice_pos = *pos += 3;
9026
9027 for (j = 0; j < n_choices; j += 1)
9028 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9029 expr_pc = *pos;
9030 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9031
9032 for (j = 0; j < n_choices; j += 1)
9033 {
9034 LONGEST lower, upper;
9035 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9036
52ce6436
PH
9037 if (op == OP_DISCRETE_RANGE)
9038 {
9039 choice_pos += 1;
9040 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9041 EVAL_NORMAL));
9042 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9043 EVAL_NORMAL));
9044 }
9045 else if (is_array)
9046 {
9047 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9048 EVAL_NORMAL));
9049 upper = lower;
9050 }
9051 else
9052 {
9053 int ind;
0d5cff50 9054 const char *name;
5b4ee69b 9055
52ce6436
PH
9056 switch (op)
9057 {
9058 case OP_NAME:
9059 name = &exp->elts[choice_pos + 2].string;
9060 break;
9061 case OP_VAR_VALUE:
9062 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9063 break;
9064 default:
9065 error (_("Invalid record component association."));
9066 }
9067 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9068 ind = 0;
9069 if (! find_struct_field (name, value_type (lhs), 0,
9070 NULL, NULL, NULL, NULL, &ind))
9071 error (_("Unknown component name: %s."), name);
9072 lower = upper = ind;
9073 }
9074
9075 if (lower <= upper && (lower < low || upper > high))
9076 error (_("Index in component association out of bounds."));
9077
9078 add_component_interval (lower, upper, indices, num_indices,
9079 max_indices);
9080 while (lower <= upper)
9081 {
9082 int pos1;
5b4ee69b 9083
52ce6436
PH
9084 pos1 = expr_pc;
9085 assign_component (container, lhs, lower, exp, &pos1);
9086 lower += 1;
9087 }
9088 }
9089}
9090
9091/* Assign the value of the expression in the OP_OTHERS construct in
9092 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9093 have not been previously assigned. The index intervals already assigned
9094 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9095 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9096static void
9097aggregate_assign_others (struct value *container,
9098 struct value *lhs, struct expression *exp,
9099 int *pos, LONGEST *indices, int num_indices,
9100 LONGEST low, LONGEST high)
9101{
9102 int i;
5ce64950 9103 int expr_pc = *pos + 1;
52ce6436
PH
9104
9105 for (i = 0; i < num_indices - 2; i += 2)
9106 {
9107 LONGEST ind;
5b4ee69b 9108
52ce6436
PH
9109 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9110 {
5ce64950 9111 int localpos;
5b4ee69b 9112
5ce64950
MS
9113 localpos = expr_pc;
9114 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9115 }
9116 }
9117 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9118}
9119
9120/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9121 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9122 modifying *SIZE as needed. It is an error if *SIZE exceeds
9123 MAX_SIZE. The resulting intervals do not overlap. */
9124static void
9125add_component_interval (LONGEST low, LONGEST high,
9126 LONGEST* indices, int *size, int max_size)
9127{
9128 int i, j;
5b4ee69b 9129
52ce6436
PH
9130 for (i = 0; i < *size; i += 2) {
9131 if (high >= indices[i] && low <= indices[i + 1])
9132 {
9133 int kh;
5b4ee69b 9134
52ce6436
PH
9135 for (kh = i + 2; kh < *size; kh += 2)
9136 if (high < indices[kh])
9137 break;
9138 if (low < indices[i])
9139 indices[i] = low;
9140 indices[i + 1] = indices[kh - 1];
9141 if (high > indices[i + 1])
9142 indices[i + 1] = high;
9143 memcpy (indices + i + 2, indices + kh, *size - kh);
9144 *size -= kh - i - 2;
9145 return;
9146 }
9147 else if (high < indices[i])
9148 break;
9149 }
9150
9151 if (*size == max_size)
9152 error (_("Internal error: miscounted aggregate components."));
9153 *size += 2;
9154 for (j = *size-1; j >= i+2; j -= 1)
9155 indices[j] = indices[j - 2];
9156 indices[i] = low;
9157 indices[i + 1] = high;
9158}
9159
6e48bd2c
JB
9160/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9161 is different. */
9162
9163static struct value *
9164ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9165{
9166 if (type == ada_check_typedef (value_type (arg2)))
9167 return arg2;
9168
9169 if (ada_is_fixed_point_type (type))
9170 return (cast_to_fixed (type, arg2));
9171
9172 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9173 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9174
9175 return value_cast (type, arg2);
9176}
9177
284614f0
JB
9178/* Evaluating Ada expressions, and printing their result.
9179 ------------------------------------------------------
9180
21649b50
JB
9181 1. Introduction:
9182 ----------------
9183
284614f0
JB
9184 We usually evaluate an Ada expression in order to print its value.
9185 We also evaluate an expression in order to print its type, which
9186 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9187 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9188 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9189 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9190 similar.
9191
9192 Evaluating expressions is a little more complicated for Ada entities
9193 than it is for entities in languages such as C. The main reason for
9194 this is that Ada provides types whose definition might be dynamic.
9195 One example of such types is variant records. Or another example
9196 would be an array whose bounds can only be known at run time.
9197
9198 The following description is a general guide as to what should be
9199 done (and what should NOT be done) in order to evaluate an expression
9200 involving such types, and when. This does not cover how the semantic
9201 information is encoded by GNAT as this is covered separatly. For the
9202 document used as the reference for the GNAT encoding, see exp_dbug.ads
9203 in the GNAT sources.
9204
9205 Ideally, we should embed each part of this description next to its
9206 associated code. Unfortunately, the amount of code is so vast right
9207 now that it's hard to see whether the code handling a particular
9208 situation might be duplicated or not. One day, when the code is
9209 cleaned up, this guide might become redundant with the comments
9210 inserted in the code, and we might want to remove it.
9211
21649b50
JB
9212 2. ``Fixing'' an Entity, the Simple Case:
9213 -----------------------------------------
9214
284614f0
JB
9215 When evaluating Ada expressions, the tricky issue is that they may
9216 reference entities whose type contents and size are not statically
9217 known. Consider for instance a variant record:
9218
9219 type Rec (Empty : Boolean := True) is record
9220 case Empty is
9221 when True => null;
9222 when False => Value : Integer;
9223 end case;
9224 end record;
9225 Yes : Rec := (Empty => False, Value => 1);
9226 No : Rec := (empty => True);
9227
9228 The size and contents of that record depends on the value of the
9229 descriminant (Rec.Empty). At this point, neither the debugging
9230 information nor the associated type structure in GDB are able to
9231 express such dynamic types. So what the debugger does is to create
9232 "fixed" versions of the type that applies to the specific object.
9233 We also informally refer to this opperation as "fixing" an object,
9234 which means creating its associated fixed type.
9235
9236 Example: when printing the value of variable "Yes" above, its fixed
9237 type would look like this:
9238
9239 type Rec is record
9240 Empty : Boolean;
9241 Value : Integer;
9242 end record;
9243
9244 On the other hand, if we printed the value of "No", its fixed type
9245 would become:
9246
9247 type Rec is record
9248 Empty : Boolean;
9249 end record;
9250
9251 Things become a little more complicated when trying to fix an entity
9252 with a dynamic type that directly contains another dynamic type,
9253 such as an array of variant records, for instance. There are
9254 two possible cases: Arrays, and records.
9255
21649b50
JB
9256 3. ``Fixing'' Arrays:
9257 ---------------------
9258
9259 The type structure in GDB describes an array in terms of its bounds,
9260 and the type of its elements. By design, all elements in the array
9261 have the same type and we cannot represent an array of variant elements
9262 using the current type structure in GDB. When fixing an array,
9263 we cannot fix the array element, as we would potentially need one
9264 fixed type per element of the array. As a result, the best we can do
9265 when fixing an array is to produce an array whose bounds and size
9266 are correct (allowing us to read it from memory), but without having
9267 touched its element type. Fixing each element will be done later,
9268 when (if) necessary.
9269
9270 Arrays are a little simpler to handle than records, because the same
9271 amount of memory is allocated for each element of the array, even if
1b536f04 9272 the amount of space actually used by each element differs from element
21649b50 9273 to element. Consider for instance the following array of type Rec:
284614f0
JB
9274
9275 type Rec_Array is array (1 .. 2) of Rec;
9276
1b536f04
JB
9277 The actual amount of memory occupied by each element might be different
9278 from element to element, depending on the value of their discriminant.
21649b50 9279 But the amount of space reserved for each element in the array remains
1b536f04 9280 fixed regardless. So we simply need to compute that size using
21649b50
JB
9281 the debugging information available, from which we can then determine
9282 the array size (we multiply the number of elements of the array by
9283 the size of each element).
9284
9285 The simplest case is when we have an array of a constrained element
9286 type. For instance, consider the following type declarations:
9287
9288 type Bounded_String (Max_Size : Integer) is
9289 Length : Integer;
9290 Buffer : String (1 .. Max_Size);
9291 end record;
9292 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9293
9294 In this case, the compiler describes the array as an array of
9295 variable-size elements (identified by its XVS suffix) for which
9296 the size can be read in the parallel XVZ variable.
9297
9298 In the case of an array of an unconstrained element type, the compiler
9299 wraps the array element inside a private PAD type. This type should not
9300 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9301 that we also use the adjective "aligner" in our code to designate
9302 these wrapper types.
9303
1b536f04 9304 In some cases, the size allocated for each element is statically
21649b50
JB
9305 known. In that case, the PAD type already has the correct size,
9306 and the array element should remain unfixed.
9307
9308 But there are cases when this size is not statically known.
9309 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9310
9311 type Dynamic is array (1 .. Five) of Integer;
9312 type Wrapper (Has_Length : Boolean := False) is record
9313 Data : Dynamic;
9314 case Has_Length is
9315 when True => Length : Integer;
9316 when False => null;
9317 end case;
9318 end record;
9319 type Wrapper_Array is array (1 .. 2) of Wrapper;
9320
9321 Hello : Wrapper_Array := (others => (Has_Length => True,
9322 Data => (others => 17),
9323 Length => 1));
9324
9325
9326 The debugging info would describe variable Hello as being an
9327 array of a PAD type. The size of that PAD type is not statically
9328 known, but can be determined using a parallel XVZ variable.
9329 In that case, a copy of the PAD type with the correct size should
9330 be used for the fixed array.
9331
21649b50
JB
9332 3. ``Fixing'' record type objects:
9333 ----------------------------------
9334
9335 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9336 record types. In this case, in order to compute the associated
9337 fixed type, we need to determine the size and offset of each of
9338 its components. This, in turn, requires us to compute the fixed
9339 type of each of these components.
9340
9341 Consider for instance the example:
9342
9343 type Bounded_String (Max_Size : Natural) is record
9344 Str : String (1 .. Max_Size);
9345 Length : Natural;
9346 end record;
9347 My_String : Bounded_String (Max_Size => 10);
9348
9349 In that case, the position of field "Length" depends on the size
9350 of field Str, which itself depends on the value of the Max_Size
21649b50 9351 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9352 we need to fix the type of field Str. Therefore, fixing a variant
9353 record requires us to fix each of its components.
9354
9355 However, if a component does not have a dynamic size, the component
9356 should not be fixed. In particular, fields that use a PAD type
9357 should not fixed. Here is an example where this might happen
9358 (assuming type Rec above):
9359
9360 type Container (Big : Boolean) is record
9361 First : Rec;
9362 After : Integer;
9363 case Big is
9364 when True => Another : Integer;
9365 when False => null;
9366 end case;
9367 end record;
9368 My_Container : Container := (Big => False,
9369 First => (Empty => True),
9370 After => 42);
9371
9372 In that example, the compiler creates a PAD type for component First,
9373 whose size is constant, and then positions the component After just
9374 right after it. The offset of component After is therefore constant
9375 in this case.
9376
9377 The debugger computes the position of each field based on an algorithm
9378 that uses, among other things, the actual position and size of the field
21649b50
JB
9379 preceding it. Let's now imagine that the user is trying to print
9380 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9381 end up computing the offset of field After based on the size of the
9382 fixed version of field First. And since in our example First has
9383 only one actual field, the size of the fixed type is actually smaller
9384 than the amount of space allocated to that field, and thus we would
9385 compute the wrong offset of field After.
9386
21649b50
JB
9387 To make things more complicated, we need to watch out for dynamic
9388 components of variant records (identified by the ___XVL suffix in
9389 the component name). Even if the target type is a PAD type, the size
9390 of that type might not be statically known. So the PAD type needs
9391 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9392 we might end up with the wrong size for our component. This can be
9393 observed with the following type declarations:
284614f0
JB
9394
9395 type Octal is new Integer range 0 .. 7;
9396 type Octal_Array is array (Positive range <>) of Octal;
9397 pragma Pack (Octal_Array);
9398
9399 type Octal_Buffer (Size : Positive) is record
9400 Buffer : Octal_Array (1 .. Size);
9401 Length : Integer;
9402 end record;
9403
9404 In that case, Buffer is a PAD type whose size is unset and needs
9405 to be computed by fixing the unwrapped type.
9406
21649b50
JB
9407 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9408 ----------------------------------------------------------
9409
9410 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9411 thus far, be actually fixed?
9412
9413 The answer is: Only when referencing that element. For instance
9414 when selecting one component of a record, this specific component
9415 should be fixed at that point in time. Or when printing the value
9416 of a record, each component should be fixed before its value gets
9417 printed. Similarly for arrays, the element of the array should be
9418 fixed when printing each element of the array, or when extracting
9419 one element out of that array. On the other hand, fixing should
9420 not be performed on the elements when taking a slice of an array!
9421
9422 Note that one of the side-effects of miscomputing the offset and
9423 size of each field is that we end up also miscomputing the size
9424 of the containing type. This can have adverse results when computing
9425 the value of an entity. GDB fetches the value of an entity based
9426 on the size of its type, and thus a wrong size causes GDB to fetch
9427 the wrong amount of memory. In the case where the computed size is
9428 too small, GDB fetches too little data to print the value of our
9429 entiry. Results in this case as unpredicatble, as we usually read
9430 past the buffer containing the data =:-o. */
9431
9432/* Implement the evaluate_exp routine in the exp_descriptor structure
9433 for the Ada language. */
9434
52ce6436 9435static struct value *
ebf56fd3 9436ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9437 int *pos, enum noside noside)
14f9c5c9
AS
9438{
9439 enum exp_opcode op;
b5385fc0 9440 int tem;
14f9c5c9
AS
9441 int pc;
9442 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9443 struct type *type;
52ce6436 9444 int nargs, oplen;
d2e4a39e 9445 struct value **argvec;
14f9c5c9 9446
d2e4a39e
AS
9447 pc = *pos;
9448 *pos += 1;
14f9c5c9
AS
9449 op = exp->elts[pc].opcode;
9450
d2e4a39e 9451 switch (op)
14f9c5c9
AS
9452 {
9453 default:
9454 *pos -= 1;
6e48bd2c 9455 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9456
9457 if (noside == EVAL_NORMAL)
9458 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9459
9460 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9461 then we need to perform the conversion manually, because
9462 evaluate_subexp_standard doesn't do it. This conversion is
9463 necessary in Ada because the different kinds of float/fixed
9464 types in Ada have different representations.
9465
9466 Similarly, we need to perform the conversion from OP_LONG
9467 ourselves. */
9468 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9469 arg1 = ada_value_cast (expect_type, arg1, noside);
9470
9471 return arg1;
4c4b4cd2
PH
9472
9473 case OP_STRING:
9474 {
76a01679 9475 struct value *result;
5b4ee69b 9476
76a01679
JB
9477 *pos -= 1;
9478 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9479 /* The result type will have code OP_STRING, bashed there from
9480 OP_ARRAY. Bash it back. */
df407dfe
AC
9481 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9482 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9483 return result;
4c4b4cd2 9484 }
14f9c5c9
AS
9485
9486 case UNOP_CAST:
9487 (*pos) += 2;
9488 type = exp->elts[pc + 1].type;
9489 arg1 = evaluate_subexp (type, exp, pos, noside);
9490 if (noside == EVAL_SKIP)
4c4b4cd2 9491 goto nosideret;
6e48bd2c 9492 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9493 return arg1;
9494
4c4b4cd2
PH
9495 case UNOP_QUAL:
9496 (*pos) += 2;
9497 type = exp->elts[pc + 1].type;
9498 return ada_evaluate_subexp (type, exp, pos, noside);
9499
14f9c5c9
AS
9500 case BINOP_ASSIGN:
9501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9502 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9503 {
9504 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9505 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9506 return arg1;
9507 return ada_value_assign (arg1, arg1);
9508 }
003f3813
JB
9509 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9510 except if the lhs of our assignment is a convenience variable.
9511 In the case of assigning to a convenience variable, the lhs
9512 should be exactly the result of the evaluation of the rhs. */
9513 type = value_type (arg1);
9514 if (VALUE_LVAL (arg1) == lval_internalvar)
9515 type = NULL;
9516 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9517 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9518 return arg1;
df407dfe
AC
9519 if (ada_is_fixed_point_type (value_type (arg1)))
9520 arg2 = cast_to_fixed (value_type (arg1), arg2);
9521 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9522 error
323e0a4a 9523 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9524 else
df407dfe 9525 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9526 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9527
9528 case BINOP_ADD:
9529 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9530 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9531 if (noside == EVAL_SKIP)
4c4b4cd2 9532 goto nosideret;
2ac8a782
JB
9533 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9534 return (value_from_longest
9535 (value_type (arg1),
9536 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9537 if ((ada_is_fixed_point_type (value_type (arg1))
9538 || ada_is_fixed_point_type (value_type (arg2)))
9539 && value_type (arg1) != value_type (arg2))
323e0a4a 9540 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9541 /* Do the addition, and cast the result to the type of the first
9542 argument. We cannot cast the result to a reference type, so if
9543 ARG1 is a reference type, find its underlying type. */
9544 type = value_type (arg1);
9545 while (TYPE_CODE (type) == TYPE_CODE_REF)
9546 type = TYPE_TARGET_TYPE (type);
f44316fa 9547 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9548 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9549
9550 case BINOP_SUB:
9551 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9552 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9553 if (noside == EVAL_SKIP)
4c4b4cd2 9554 goto nosideret;
2ac8a782
JB
9555 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9556 return (value_from_longest
9557 (value_type (arg1),
9558 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9559 if ((ada_is_fixed_point_type (value_type (arg1))
9560 || ada_is_fixed_point_type (value_type (arg2)))
9561 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9562 error (_("Operands of fixed-point subtraction "
9563 "must have the same type"));
b7789565
JB
9564 /* Do the substraction, and cast the result to the type of the first
9565 argument. We cannot cast the result to a reference type, so if
9566 ARG1 is a reference type, find its underlying type. */
9567 type = value_type (arg1);
9568 while (TYPE_CODE (type) == TYPE_CODE_REF)
9569 type = TYPE_TARGET_TYPE (type);
f44316fa 9570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9571 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9572
9573 case BINOP_MUL:
9574 case BINOP_DIV:
e1578042
JB
9575 case BINOP_REM:
9576 case BINOP_MOD:
14f9c5c9
AS
9577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9578 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579 if (noside == EVAL_SKIP)
4c4b4cd2 9580 goto nosideret;
e1578042 9581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9582 {
9583 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9584 return value_zero (value_type (arg1), not_lval);
9585 }
14f9c5c9 9586 else
4c4b4cd2 9587 {
a53b7a21 9588 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9589 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9590 arg1 = cast_from_fixed (type, arg1);
df407dfe 9591 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9592 arg2 = cast_from_fixed (type, arg2);
f44316fa 9593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9594 return ada_value_binop (arg1, arg2, op);
9595 }
9596
4c4b4cd2
PH
9597 case BINOP_EQUAL:
9598 case BINOP_NOTEQUAL:
14f9c5c9 9599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9600 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9601 if (noside == EVAL_SKIP)
76a01679 9602 goto nosideret;
4c4b4cd2 9603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9604 tem = 0;
4c4b4cd2 9605 else
f44316fa
UW
9606 {
9607 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9608 tem = ada_value_equal (arg1, arg2);
9609 }
4c4b4cd2 9610 if (op == BINOP_NOTEQUAL)
76a01679 9611 tem = !tem;
fbb06eb1
UW
9612 type = language_bool_type (exp->language_defn, exp->gdbarch);
9613 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9614
9615 case UNOP_NEG:
9616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9617 if (noside == EVAL_SKIP)
9618 goto nosideret;
df407dfe
AC
9619 else if (ada_is_fixed_point_type (value_type (arg1)))
9620 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9621 else
f44316fa
UW
9622 {
9623 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9624 return value_neg (arg1);
9625 }
4c4b4cd2 9626
2330c6c6
JB
9627 case BINOP_LOGICAL_AND:
9628 case BINOP_LOGICAL_OR:
9629 case UNOP_LOGICAL_NOT:
000d5124
JB
9630 {
9631 struct value *val;
9632
9633 *pos -= 1;
9634 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9635 type = language_bool_type (exp->language_defn, exp->gdbarch);
9636 return value_cast (type, val);
000d5124 9637 }
2330c6c6
JB
9638
9639 case BINOP_BITWISE_AND:
9640 case BINOP_BITWISE_IOR:
9641 case BINOP_BITWISE_XOR:
000d5124
JB
9642 {
9643 struct value *val;
9644
9645 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9646 *pos = pc;
9647 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9648
9649 return value_cast (value_type (arg1), val);
9650 }
2330c6c6 9651
14f9c5c9
AS
9652 case OP_VAR_VALUE:
9653 *pos -= 1;
6799def4 9654
14f9c5c9 9655 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9656 {
9657 *pos += 4;
9658 goto nosideret;
9659 }
9660 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9661 /* Only encountered when an unresolved symbol occurs in a
9662 context other than a function call, in which case, it is
52ce6436 9663 invalid. */
323e0a4a 9664 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9665 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9666 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9667 {
0c1f74cf 9668 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9669 /* Check to see if this is a tagged type. We also need to handle
9670 the case where the type is a reference to a tagged type, but
9671 we have to be careful to exclude pointers to tagged types.
9672 The latter should be shown as usual (as a pointer), whereas
9673 a reference should mostly be transparent to the user. */
9674 if (ada_is_tagged_type (type, 0)
9675 || (TYPE_CODE(type) == TYPE_CODE_REF
9676 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9677 {
9678 /* Tagged types are a little special in the fact that the real
9679 type is dynamic and can only be determined by inspecting the
9680 object's tag. This means that we need to get the object's
9681 value first (EVAL_NORMAL) and then extract the actual object
9682 type from its tag.
9683
9684 Note that we cannot skip the final step where we extract
9685 the object type from its tag, because the EVAL_NORMAL phase
9686 results in dynamic components being resolved into fixed ones.
9687 This can cause problems when trying to print the type
9688 description of tagged types whose parent has a dynamic size:
9689 We use the type name of the "_parent" component in order
9690 to print the name of the ancestor type in the type description.
9691 If that component had a dynamic size, the resolution into
9692 a fixed type would result in the loss of that type name,
9693 thus preventing us from printing the name of the ancestor
9694 type in the type description. */
b79819ba
JB
9695 struct type *actual_type;
9696
0c1f74cf 9697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9698 actual_type = type_from_tag (ada_value_tag (arg1));
9699 if (actual_type == NULL)
9700 /* If, for some reason, we were unable to determine
9701 the actual type from the tag, then use the static
9702 approximation that we just computed as a fallback.
9703 This can happen if the debugging information is
9704 incomplete, for instance. */
9705 actual_type = type;
9706
9707 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9708 }
9709
4c4b4cd2
PH
9710 *pos += 4;
9711 return value_zero
9712 (to_static_fixed_type
9713 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9714 not_lval);
9715 }
d2e4a39e 9716 else
4c4b4cd2 9717 {
284614f0 9718 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9719 return ada_to_fixed_value (arg1);
9720 }
9721
9722 case OP_FUNCALL:
9723 (*pos) += 2;
9724
9725 /* Allocate arg vector, including space for the function to be
9726 called in argvec[0] and a terminating NULL. */
9727 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9728 argvec =
9729 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9730
9731 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9732 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9733 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9734 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9735 else
9736 {
9737 for (tem = 0; tem <= nargs; tem += 1)
9738 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9739 argvec[tem] = 0;
9740
9741 if (noside == EVAL_SKIP)
9742 goto nosideret;
9743 }
9744
ad82864c
JB
9745 if (ada_is_constrained_packed_array_type
9746 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9747 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9748 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9749 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9750 /* This is a packed array that has already been fixed, and
9751 therefore already coerced to a simple array. Nothing further
9752 to do. */
9753 ;
df407dfe
AC
9754 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9755 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9756 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9757 argvec[0] = value_addr (argvec[0]);
9758
df407dfe 9759 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9760
9761 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9762 them. So, if this is an array typedef (encoding use for array
9763 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9764 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9765 type = ada_typedef_target_type (type);
9766
4c4b4cd2
PH
9767 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9768 {
61ee279c 9769 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9770 {
9771 case TYPE_CODE_FUNC:
61ee279c 9772 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9773 break;
9774 case TYPE_CODE_ARRAY:
9775 break;
9776 case TYPE_CODE_STRUCT:
9777 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9778 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9779 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9780 break;
9781 default:
323e0a4a 9782 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9783 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9784 break;
9785 }
9786 }
9787
9788 switch (TYPE_CODE (type))
9789 {
9790 case TYPE_CODE_FUNC:
9791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9792 {
9793 struct type *rtype = TYPE_TARGET_TYPE (type);
9794
9795 if (TYPE_GNU_IFUNC (type))
9796 return allocate_value (TYPE_TARGET_TYPE (rtype));
9797 return allocate_value (rtype);
9798 }
4c4b4cd2 9799 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9800 case TYPE_CODE_INTERNAL_FUNCTION:
9801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9802 /* We don't know anything about what the internal
9803 function might return, but we have to return
9804 something. */
9805 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9806 not_lval);
9807 else
9808 return call_internal_function (exp->gdbarch, exp->language_defn,
9809 argvec[0], nargs, argvec + 1);
9810
4c4b4cd2
PH
9811 case TYPE_CODE_STRUCT:
9812 {
9813 int arity;
9814
4c4b4cd2
PH
9815 arity = ada_array_arity (type);
9816 type = ada_array_element_type (type, nargs);
9817 if (type == NULL)
323e0a4a 9818 error (_("cannot subscript or call a record"));
4c4b4cd2 9819 if (arity != nargs)
323e0a4a 9820 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9821 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9822 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9823 return
9824 unwrap_value (ada_value_subscript
9825 (argvec[0], nargs, argvec + 1));
9826 }
9827 case TYPE_CODE_ARRAY:
9828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9829 {
9830 type = ada_array_element_type (type, nargs);
9831 if (type == NULL)
323e0a4a 9832 error (_("element type of array unknown"));
4c4b4cd2 9833 else
0a07e705 9834 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9835 }
9836 return
9837 unwrap_value (ada_value_subscript
9838 (ada_coerce_to_simple_array (argvec[0]),
9839 nargs, argvec + 1));
9840 case TYPE_CODE_PTR: /* Pointer to array */
9841 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9843 {
9844 type = ada_array_element_type (type, nargs);
9845 if (type == NULL)
323e0a4a 9846 error (_("element type of array unknown"));
4c4b4cd2 9847 else
0a07e705 9848 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9849 }
9850 return
9851 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9852 nargs, argvec + 1));
9853
9854 default:
e1d5a0d2
PH
9855 error (_("Attempt to index or call something other than an "
9856 "array or function"));
4c4b4cd2
PH
9857 }
9858
9859 case TERNOP_SLICE:
9860 {
9861 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9862 struct value *low_bound_val =
9863 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9864 struct value *high_bound_val =
9865 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9866 LONGEST low_bound;
9867 LONGEST high_bound;
5b4ee69b 9868
994b9211
AC
9869 low_bound_val = coerce_ref (low_bound_val);
9870 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9871 low_bound = pos_atr (low_bound_val);
9872 high_bound = pos_atr (high_bound_val);
963a6417 9873
4c4b4cd2
PH
9874 if (noside == EVAL_SKIP)
9875 goto nosideret;
9876
4c4b4cd2
PH
9877 /* If this is a reference to an aligner type, then remove all
9878 the aligners. */
df407dfe
AC
9879 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9880 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9881 TYPE_TARGET_TYPE (value_type (array)) =
9882 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9883
ad82864c 9884 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9885 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9886
9887 /* If this is a reference to an array or an array lvalue,
9888 convert to a pointer. */
df407dfe
AC
9889 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9890 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9891 && VALUE_LVAL (array) == lval_memory))
9892 array = value_addr (array);
9893
1265e4aa 9894 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9895 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9896 (value_type (array))))
0b5d8877 9897 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9898
9899 array = ada_coerce_to_simple_array_ptr (array);
9900
714e53ab
PH
9901 /* If we have more than one level of pointer indirection,
9902 dereference the value until we get only one level. */
df407dfe
AC
9903 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9904 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9905 == TYPE_CODE_PTR))
9906 array = value_ind (array);
9907
9908 /* Make sure we really do have an array type before going further,
9909 to avoid a SEGV when trying to get the index type or the target
9910 type later down the road if the debug info generated by
9911 the compiler is incorrect or incomplete. */
df407dfe 9912 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9913 error (_("cannot take slice of non-array"));
714e53ab 9914
828292f2
JB
9915 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9916 == TYPE_CODE_PTR)
4c4b4cd2 9917 {
828292f2
JB
9918 struct type *type0 = ada_check_typedef (value_type (array));
9919
0b5d8877 9920 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9921 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9922 else
9923 {
9924 struct type *arr_type0 =
828292f2 9925 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9926
f5938064
JG
9927 return ada_value_slice_from_ptr (array, arr_type0,
9928 longest_to_int (low_bound),
9929 longest_to_int (high_bound));
4c4b4cd2
PH
9930 }
9931 }
9932 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 return array;
9934 else if (high_bound < low_bound)
df407dfe 9935 return empty_array (value_type (array), low_bound);
4c4b4cd2 9936 else
529cad9c
PH
9937 return ada_value_slice (array, longest_to_int (low_bound),
9938 longest_to_int (high_bound));
4c4b4cd2 9939 }
14f9c5c9 9940
4c4b4cd2
PH
9941 case UNOP_IN_RANGE:
9942 (*pos) += 2;
9943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9944 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9945
14f9c5c9 9946 if (noside == EVAL_SKIP)
4c4b4cd2 9947 goto nosideret;
14f9c5c9 9948
4c4b4cd2
PH
9949 switch (TYPE_CODE (type))
9950 {
9951 default:
e1d5a0d2
PH
9952 lim_warning (_("Membership test incompletely implemented; "
9953 "always returns true"));
fbb06eb1
UW
9954 type = language_bool_type (exp->language_defn, exp->gdbarch);
9955 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9956
9957 case TYPE_CODE_RANGE:
030b4912
UW
9958 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9959 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9961 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9962 type = language_bool_type (exp->language_defn, exp->gdbarch);
9963 return
9964 value_from_longest (type,
4c4b4cd2
PH
9965 (value_less (arg1, arg3)
9966 || value_equal (arg1, arg3))
9967 && (value_less (arg2, arg1)
9968 || value_equal (arg2, arg1)));
9969 }
9970
9971 case BINOP_IN_BOUNDS:
14f9c5c9 9972 (*pos) += 2;
4c4b4cd2
PH
9973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9974 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9975
4c4b4cd2
PH
9976 if (noside == EVAL_SKIP)
9977 goto nosideret;
14f9c5c9 9978
4c4b4cd2 9979 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9980 {
9981 type = language_bool_type (exp->language_defn, exp->gdbarch);
9982 return value_zero (type, not_lval);
9983 }
14f9c5c9 9984
4c4b4cd2 9985 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9986
1eea4ebd
UW
9987 type = ada_index_type (value_type (arg2), tem, "range");
9988 if (!type)
9989 type = value_type (arg1);
14f9c5c9 9990
1eea4ebd
UW
9991 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9992 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9993
f44316fa
UW
9994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9995 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9996 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9997 return
fbb06eb1 9998 value_from_longest (type,
4c4b4cd2
PH
9999 (value_less (arg1, arg3)
10000 || value_equal (arg1, arg3))
10001 && (value_less (arg2, arg1)
10002 || value_equal (arg2, arg1)));
10003
10004 case TERNOP_IN_RANGE:
10005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10006 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10007 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10008
10009 if (noside == EVAL_SKIP)
10010 goto nosideret;
10011
f44316fa
UW
10012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10014 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10015 return
fbb06eb1 10016 value_from_longest (type,
4c4b4cd2
PH
10017 (value_less (arg1, arg3)
10018 || value_equal (arg1, arg3))
10019 && (value_less (arg2, arg1)
10020 || value_equal (arg2, arg1)));
10021
10022 case OP_ATR_FIRST:
10023 case OP_ATR_LAST:
10024 case OP_ATR_LENGTH:
10025 {
76a01679 10026 struct type *type_arg;
5b4ee69b 10027
76a01679
JB
10028 if (exp->elts[*pos].opcode == OP_TYPE)
10029 {
10030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10031 arg1 = NULL;
5bc23cb3 10032 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10033 }
10034 else
10035 {
10036 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10037 type_arg = NULL;
10038 }
10039
10040 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10041 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10042 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10043 *pos += 4;
10044
10045 if (noside == EVAL_SKIP)
10046 goto nosideret;
10047
10048 if (type_arg == NULL)
10049 {
10050 arg1 = ada_coerce_ref (arg1);
10051
ad82864c 10052 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10053 arg1 = ada_coerce_to_simple_array (arg1);
10054
1eea4ebd
UW
10055 type = ada_index_type (value_type (arg1), tem,
10056 ada_attribute_name (op));
10057 if (type == NULL)
10058 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10059
10060 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10061 return allocate_value (type);
76a01679
JB
10062
10063 switch (op)
10064 {
10065 default: /* Should never happen. */
323e0a4a 10066 error (_("unexpected attribute encountered"));
76a01679 10067 case OP_ATR_FIRST:
1eea4ebd
UW
10068 return value_from_longest
10069 (type, ada_array_bound (arg1, tem, 0));
76a01679 10070 case OP_ATR_LAST:
1eea4ebd
UW
10071 return value_from_longest
10072 (type, ada_array_bound (arg1, tem, 1));
76a01679 10073 case OP_ATR_LENGTH:
1eea4ebd
UW
10074 return value_from_longest
10075 (type, ada_array_length (arg1, tem));
76a01679
JB
10076 }
10077 }
10078 else if (discrete_type_p (type_arg))
10079 {
10080 struct type *range_type;
0d5cff50 10081 const char *name = ada_type_name (type_arg);
5b4ee69b 10082
76a01679
JB
10083 range_type = NULL;
10084 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10085 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10086 if (range_type == NULL)
10087 range_type = type_arg;
10088 switch (op)
10089 {
10090 default:
323e0a4a 10091 error (_("unexpected attribute encountered"));
76a01679 10092 case OP_ATR_FIRST:
690cc4eb 10093 return value_from_longest
43bbcdc2 10094 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10095 case OP_ATR_LAST:
690cc4eb 10096 return value_from_longest
43bbcdc2 10097 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10098 case OP_ATR_LENGTH:
323e0a4a 10099 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10100 }
10101 }
10102 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10103 error (_("unimplemented type attribute"));
76a01679
JB
10104 else
10105 {
10106 LONGEST low, high;
10107
ad82864c
JB
10108 if (ada_is_constrained_packed_array_type (type_arg))
10109 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10110
1eea4ebd 10111 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10112 if (type == NULL)
1eea4ebd
UW
10113 type = builtin_type (exp->gdbarch)->builtin_int;
10114
76a01679
JB
10115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10116 return allocate_value (type);
10117
10118 switch (op)
10119 {
10120 default:
323e0a4a 10121 error (_("unexpected attribute encountered"));
76a01679 10122 case OP_ATR_FIRST:
1eea4ebd 10123 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10124 return value_from_longest (type, low);
10125 case OP_ATR_LAST:
1eea4ebd 10126 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10127 return value_from_longest (type, high);
10128 case OP_ATR_LENGTH:
1eea4ebd
UW
10129 low = ada_array_bound_from_type (type_arg, tem, 0);
10130 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10131 return value_from_longest (type, high - low + 1);
10132 }
10133 }
14f9c5c9
AS
10134 }
10135
4c4b4cd2
PH
10136 case OP_ATR_TAG:
10137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 if (noside == EVAL_SKIP)
76a01679 10139 goto nosideret;
4c4b4cd2
PH
10140
10141 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10142 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10143
10144 return ada_value_tag (arg1);
10145
10146 case OP_ATR_MIN:
10147 case OP_ATR_MAX:
10148 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10150 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10151 if (noside == EVAL_SKIP)
76a01679 10152 goto nosideret;
d2e4a39e 10153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10154 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10155 else
f44316fa
UW
10156 {
10157 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10158 return value_binop (arg1, arg2,
10159 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10160 }
14f9c5c9 10161
4c4b4cd2
PH
10162 case OP_ATR_MODULUS:
10163 {
31dedfee 10164 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10165
5b4ee69b 10166 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10167 if (noside == EVAL_SKIP)
10168 goto nosideret;
4c4b4cd2 10169
76a01679 10170 if (!ada_is_modular_type (type_arg))
323e0a4a 10171 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10172
76a01679
JB
10173 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10174 ada_modulus (type_arg));
4c4b4cd2
PH
10175 }
10176
10177
10178 case OP_ATR_POS:
10179 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10181 if (noside == EVAL_SKIP)
76a01679 10182 goto nosideret;
3cb382c9
UW
10183 type = builtin_type (exp->gdbarch)->builtin_int;
10184 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10185 return value_zero (type, not_lval);
14f9c5c9 10186 else
3cb382c9 10187 return value_pos_atr (type, arg1);
14f9c5c9 10188
4c4b4cd2
PH
10189 case OP_ATR_SIZE:
10190 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10191 type = value_type (arg1);
10192
10193 /* If the argument is a reference, then dereference its type, since
10194 the user is really asking for the size of the actual object,
10195 not the size of the pointer. */
10196 if (TYPE_CODE (type) == TYPE_CODE_REF)
10197 type = TYPE_TARGET_TYPE (type);
10198
4c4b4cd2 10199 if (noside == EVAL_SKIP)
76a01679 10200 goto nosideret;
4c4b4cd2 10201 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10202 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10203 else
22601c15 10204 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10205 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10206
10207 case OP_ATR_VAL:
10208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10210 type = exp->elts[pc + 2].type;
14f9c5c9 10211 if (noside == EVAL_SKIP)
76a01679 10212 goto nosideret;
4c4b4cd2 10213 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10214 return value_zero (type, not_lval);
4c4b4cd2 10215 else
76a01679 10216 return value_val_atr (type, arg1);
4c4b4cd2
PH
10217
10218 case BINOP_EXP:
10219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10221 if (noside == EVAL_SKIP)
10222 goto nosideret;
10223 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10224 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10225 else
f44316fa
UW
10226 {
10227 /* For integer exponentiation operations,
10228 only promote the first argument. */
10229 if (is_integral_type (value_type (arg2)))
10230 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10231 else
10232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10233
10234 return value_binop (arg1, arg2, op);
10235 }
4c4b4cd2
PH
10236
10237 case UNOP_PLUS:
10238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10239 if (noside == EVAL_SKIP)
10240 goto nosideret;
10241 else
10242 return arg1;
10243
10244 case UNOP_ABS:
10245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10246 if (noside == EVAL_SKIP)
10247 goto nosideret;
f44316fa 10248 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10249 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10250 return value_neg (arg1);
14f9c5c9 10251 else
4c4b4cd2 10252 return arg1;
14f9c5c9
AS
10253
10254 case UNOP_IND:
6b0d7253 10255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10256 if (noside == EVAL_SKIP)
4c4b4cd2 10257 goto nosideret;
df407dfe 10258 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10259 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10260 {
10261 if (ada_is_array_descriptor_type (type))
10262 /* GDB allows dereferencing GNAT array descriptors. */
10263 {
10264 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10265
4c4b4cd2 10266 if (arrType == NULL)
323e0a4a 10267 error (_("Attempt to dereference null array pointer."));
00a4c844 10268 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10269 }
10270 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10271 || TYPE_CODE (type) == TYPE_CODE_REF
10272 /* In C you can dereference an array to get the 1st elt. */
10273 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10274 {
10275 type = to_static_fixed_type
10276 (ada_aligned_type
10277 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10278 check_size (type);
10279 return value_zero (type, lval_memory);
10280 }
4c4b4cd2 10281 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10282 {
10283 /* GDB allows dereferencing an int. */
10284 if (expect_type == NULL)
10285 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10286 lval_memory);
10287 else
10288 {
10289 expect_type =
10290 to_static_fixed_type (ada_aligned_type (expect_type));
10291 return value_zero (expect_type, lval_memory);
10292 }
10293 }
4c4b4cd2 10294 else
323e0a4a 10295 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10296 }
0963b4bd 10297 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10298 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10299
96967637
JB
10300 if (TYPE_CODE (type) == TYPE_CODE_INT)
10301 /* GDB allows dereferencing an int. If we were given
10302 the expect_type, then use that as the target type.
10303 Otherwise, assume that the target type is an int. */
10304 {
10305 if (expect_type != NULL)
10306 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10307 arg1));
10308 else
10309 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10310 (CORE_ADDR) value_as_address (arg1));
10311 }
6b0d7253 10312
4c4b4cd2
PH
10313 if (ada_is_array_descriptor_type (type))
10314 /* GDB allows dereferencing GNAT array descriptors. */
10315 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10316 else
4c4b4cd2 10317 return ada_value_ind (arg1);
14f9c5c9
AS
10318
10319 case STRUCTOP_STRUCT:
10320 tem = longest_to_int (exp->elts[pc + 1].longconst);
10321 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10323 if (noside == EVAL_SKIP)
4c4b4cd2 10324 goto nosideret;
14f9c5c9 10325 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10326 {
df407dfe 10327 struct type *type1 = value_type (arg1);
5b4ee69b 10328
76a01679
JB
10329 if (ada_is_tagged_type (type1, 1))
10330 {
10331 type = ada_lookup_struct_elt_type (type1,
10332 &exp->elts[pc + 2].string,
10333 1, 1, NULL);
10334 if (type == NULL)
10335 /* In this case, we assume that the field COULD exist
10336 in some extension of the type. Return an object of
10337 "type" void, which will match any formal
0963b4bd 10338 (see ada_type_match). */
30b15541
UW
10339 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10340 lval_memory);
76a01679
JB
10341 }
10342 else
10343 type =
10344 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10345 0, NULL);
10346
10347 return value_zero (ada_aligned_type (type), lval_memory);
10348 }
14f9c5c9 10349 else
284614f0
JB
10350 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10351 arg1 = unwrap_value (arg1);
10352 return ada_to_fixed_value (arg1);
10353
14f9c5c9 10354 case OP_TYPE:
4c4b4cd2
PH
10355 /* The value is not supposed to be used. This is here to make it
10356 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10357 (*pos) += 2;
10358 if (noside == EVAL_SKIP)
4c4b4cd2 10359 goto nosideret;
14f9c5c9 10360 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10361 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10362 else
323e0a4a 10363 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10364
10365 case OP_AGGREGATE:
10366 case OP_CHOICES:
10367 case OP_OTHERS:
10368 case OP_DISCRETE_RANGE:
10369 case OP_POSITIONAL:
10370 case OP_NAME:
10371 if (noside == EVAL_NORMAL)
10372 switch (op)
10373 {
10374 case OP_NAME:
10375 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10376 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10377 case OP_AGGREGATE:
10378 error (_("Aggregates only allowed on the right of an assignment"));
10379 default:
0963b4bd
MS
10380 internal_error (__FILE__, __LINE__,
10381 _("aggregate apparently mangled"));
52ce6436
PH
10382 }
10383
10384 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10385 *pos += oplen - 1;
10386 for (tem = 0; tem < nargs; tem += 1)
10387 ada_evaluate_subexp (NULL, exp, pos, noside);
10388 goto nosideret;
14f9c5c9
AS
10389 }
10390
10391nosideret:
22601c15 10392 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10393}
14f9c5c9 10394\f
d2e4a39e 10395
4c4b4cd2 10396 /* Fixed point */
14f9c5c9
AS
10397
10398/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10399 type name that encodes the 'small and 'delta information.
4c4b4cd2 10400 Otherwise, return NULL. */
14f9c5c9 10401
d2e4a39e 10402static const char *
ebf56fd3 10403fixed_type_info (struct type *type)
14f9c5c9 10404{
d2e4a39e 10405 const char *name = ada_type_name (type);
14f9c5c9
AS
10406 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10407
d2e4a39e
AS
10408 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10409 {
14f9c5c9 10410 const char *tail = strstr (name, "___XF_");
5b4ee69b 10411
14f9c5c9 10412 if (tail == NULL)
4c4b4cd2 10413 return NULL;
d2e4a39e 10414 else
4c4b4cd2 10415 return tail + 5;
14f9c5c9
AS
10416 }
10417 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10418 return fixed_type_info (TYPE_TARGET_TYPE (type));
10419 else
10420 return NULL;
10421}
10422
4c4b4cd2 10423/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10424
10425int
ebf56fd3 10426ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10427{
10428 return fixed_type_info (type) != NULL;
10429}
10430
4c4b4cd2
PH
10431/* Return non-zero iff TYPE represents a System.Address type. */
10432
10433int
10434ada_is_system_address_type (struct type *type)
10435{
10436 return (TYPE_NAME (type)
10437 && strcmp (TYPE_NAME (type), "system__address") == 0);
10438}
10439
14f9c5c9
AS
10440/* Assuming that TYPE is the representation of an Ada fixed-point
10441 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10442 delta cannot be determined. */
14f9c5c9
AS
10443
10444DOUBLEST
ebf56fd3 10445ada_delta (struct type *type)
14f9c5c9
AS
10446{
10447 const char *encoding = fixed_type_info (type);
facc390f 10448 DOUBLEST num, den;
14f9c5c9 10449
facc390f
JB
10450 /* Strictly speaking, num and den are encoded as integer. However,
10451 they may not fit into a long, and they will have to be converted
10452 to DOUBLEST anyway. So scan them as DOUBLEST. */
10453 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10454 &num, &den) < 2)
14f9c5c9 10455 return -1.0;
d2e4a39e 10456 else
facc390f 10457 return num / den;
14f9c5c9
AS
10458}
10459
10460/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10461 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10462
10463static DOUBLEST
ebf56fd3 10464scaling_factor (struct type *type)
14f9c5c9
AS
10465{
10466 const char *encoding = fixed_type_info (type);
facc390f 10467 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10468 int n;
d2e4a39e 10469
facc390f
JB
10470 /* Strictly speaking, num's and den's are encoded as integer. However,
10471 they may not fit into a long, and they will have to be converted
10472 to DOUBLEST anyway. So scan them as DOUBLEST. */
10473 n = sscanf (encoding,
10474 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10475 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10476 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10477
10478 if (n < 2)
10479 return 1.0;
10480 else if (n == 4)
facc390f 10481 return num1 / den1;
d2e4a39e 10482 else
facc390f 10483 return num0 / den0;
14f9c5c9
AS
10484}
10485
10486
10487/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10488 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10489
10490DOUBLEST
ebf56fd3 10491ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10492{
d2e4a39e 10493 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10494}
10495
4c4b4cd2
PH
10496/* The representation of a fixed-point value of type TYPE
10497 corresponding to the value X. */
14f9c5c9
AS
10498
10499LONGEST
ebf56fd3 10500ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10501{
10502 return (LONGEST) (x / scaling_factor (type) + 0.5);
10503}
10504
14f9c5c9 10505\f
d2e4a39e 10506
4c4b4cd2 10507 /* Range types */
14f9c5c9
AS
10508
10509/* Scan STR beginning at position K for a discriminant name, and
10510 return the value of that discriminant field of DVAL in *PX. If
10511 PNEW_K is not null, put the position of the character beyond the
10512 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10513 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10514
10515static int
07d8f827 10516scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10517 int *pnew_k)
14f9c5c9
AS
10518{
10519 static char *bound_buffer = NULL;
10520 static size_t bound_buffer_len = 0;
10521 char *bound;
10522 char *pend;
d2e4a39e 10523 struct value *bound_val;
14f9c5c9
AS
10524
10525 if (dval == NULL || str == NULL || str[k] == '\0')
10526 return 0;
10527
d2e4a39e 10528 pend = strstr (str + k, "__");
14f9c5c9
AS
10529 if (pend == NULL)
10530 {
d2e4a39e 10531 bound = str + k;
14f9c5c9
AS
10532 k += strlen (bound);
10533 }
d2e4a39e 10534 else
14f9c5c9 10535 {
d2e4a39e 10536 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10537 bound = bound_buffer;
d2e4a39e
AS
10538 strncpy (bound_buffer, str + k, pend - (str + k));
10539 bound[pend - (str + k)] = '\0';
10540 k = pend - str;
14f9c5c9 10541 }
d2e4a39e 10542
df407dfe 10543 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10544 if (bound_val == NULL)
10545 return 0;
10546
10547 *px = value_as_long (bound_val);
10548 if (pnew_k != NULL)
10549 *pnew_k = k;
10550 return 1;
10551}
10552
10553/* Value of variable named NAME in the current environment. If
10554 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10555 otherwise causes an error with message ERR_MSG. */
10556
d2e4a39e
AS
10557static struct value *
10558get_var_value (char *name, char *err_msg)
14f9c5c9 10559{
4c4b4cd2 10560 struct ada_symbol_info *syms;
14f9c5c9
AS
10561 int nsyms;
10562
4c4b4cd2 10563 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10564 &syms, 1);
14f9c5c9
AS
10565
10566 if (nsyms != 1)
10567 {
10568 if (err_msg == NULL)
4c4b4cd2 10569 return 0;
14f9c5c9 10570 else
8a3fe4f8 10571 error (("%s"), err_msg);
14f9c5c9
AS
10572 }
10573
4c4b4cd2 10574 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10575}
d2e4a39e 10576
14f9c5c9 10577/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10578 no such variable found, returns 0, and sets *FLAG to 0. If
10579 successful, sets *FLAG to 1. */
10580
14f9c5c9 10581LONGEST
4c4b4cd2 10582get_int_var_value (char *name, int *flag)
14f9c5c9 10583{
4c4b4cd2 10584 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10585
14f9c5c9
AS
10586 if (var_val == 0)
10587 {
10588 if (flag != NULL)
4c4b4cd2 10589 *flag = 0;
14f9c5c9
AS
10590 return 0;
10591 }
10592 else
10593 {
10594 if (flag != NULL)
4c4b4cd2 10595 *flag = 1;
14f9c5c9
AS
10596 return value_as_long (var_val);
10597 }
10598}
d2e4a39e 10599
14f9c5c9
AS
10600
10601/* Return a range type whose base type is that of the range type named
10602 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10603 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10604 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10605 corresponding range type from debug information; fall back to using it
10606 if symbol lookup fails. If a new type must be created, allocate it
10607 like ORIG_TYPE was. The bounds information, in general, is encoded
10608 in NAME, the base type given in the named range type. */
14f9c5c9 10609
d2e4a39e 10610static struct type *
28c85d6c 10611to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10612{
0d5cff50 10613 const char *name;
14f9c5c9 10614 struct type *base_type;
d2e4a39e 10615 char *subtype_info;
14f9c5c9 10616
28c85d6c
JB
10617 gdb_assert (raw_type != NULL);
10618 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10619
1ce677a4 10620 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10621 base_type = TYPE_TARGET_TYPE (raw_type);
10622 else
10623 base_type = raw_type;
10624
28c85d6c 10625 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10626 subtype_info = strstr (name, "___XD");
10627 if (subtype_info == NULL)
690cc4eb 10628 {
43bbcdc2
PH
10629 LONGEST L = ada_discrete_type_low_bound (raw_type);
10630 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10631
690cc4eb
PH
10632 if (L < INT_MIN || U > INT_MAX)
10633 return raw_type;
10634 else
28c85d6c 10635 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10636 ada_discrete_type_low_bound (raw_type),
10637 ada_discrete_type_high_bound (raw_type));
690cc4eb 10638 }
14f9c5c9
AS
10639 else
10640 {
10641 static char *name_buf = NULL;
10642 static size_t name_len = 0;
10643 int prefix_len = subtype_info - name;
10644 LONGEST L, U;
10645 struct type *type;
10646 char *bounds_str;
10647 int n;
10648
10649 GROW_VECT (name_buf, name_len, prefix_len + 5);
10650 strncpy (name_buf, name, prefix_len);
10651 name_buf[prefix_len] = '\0';
10652
10653 subtype_info += 5;
10654 bounds_str = strchr (subtype_info, '_');
10655 n = 1;
10656
d2e4a39e 10657 if (*subtype_info == 'L')
4c4b4cd2
PH
10658 {
10659 if (!ada_scan_number (bounds_str, n, &L, &n)
10660 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10661 return raw_type;
10662 if (bounds_str[n] == '_')
10663 n += 2;
0963b4bd 10664 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10665 n += 1;
10666 subtype_info += 1;
10667 }
d2e4a39e 10668 else
4c4b4cd2
PH
10669 {
10670 int ok;
5b4ee69b 10671
4c4b4cd2
PH
10672 strcpy (name_buf + prefix_len, "___L");
10673 L = get_int_var_value (name_buf, &ok);
10674 if (!ok)
10675 {
323e0a4a 10676 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10677 L = 1;
10678 }
10679 }
14f9c5c9 10680
d2e4a39e 10681 if (*subtype_info == 'U')
4c4b4cd2
PH
10682 {
10683 if (!ada_scan_number (bounds_str, n, &U, &n)
10684 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10685 return raw_type;
10686 }
d2e4a39e 10687 else
4c4b4cd2
PH
10688 {
10689 int ok;
5b4ee69b 10690
4c4b4cd2
PH
10691 strcpy (name_buf + prefix_len, "___U");
10692 U = get_int_var_value (name_buf, &ok);
10693 if (!ok)
10694 {
323e0a4a 10695 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10696 U = L;
10697 }
10698 }
14f9c5c9 10699
28c85d6c 10700 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10701 TYPE_NAME (type) = name;
14f9c5c9
AS
10702 return type;
10703 }
10704}
10705
4c4b4cd2
PH
10706/* True iff NAME is the name of a range type. */
10707
14f9c5c9 10708int
d2e4a39e 10709ada_is_range_type_name (const char *name)
14f9c5c9
AS
10710{
10711 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10712}
14f9c5c9 10713\f
d2e4a39e 10714
4c4b4cd2
PH
10715 /* Modular types */
10716
10717/* True iff TYPE is an Ada modular type. */
14f9c5c9 10718
14f9c5c9 10719int
d2e4a39e 10720ada_is_modular_type (struct type *type)
14f9c5c9 10721{
18af8284 10722 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10723
10724 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10725 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10726 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10727}
10728
4c4b4cd2
PH
10729/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10730
61ee279c 10731ULONGEST
0056e4d5 10732ada_modulus (struct type *type)
14f9c5c9 10733{
43bbcdc2 10734 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10735}
d2e4a39e 10736\f
f7f9143b
JB
10737
10738/* Ada exception catchpoint support:
10739 ---------------------------------
10740
10741 We support 3 kinds of exception catchpoints:
10742 . catchpoints on Ada exceptions
10743 . catchpoints on unhandled Ada exceptions
10744 . catchpoints on failed assertions
10745
10746 Exceptions raised during failed assertions, or unhandled exceptions
10747 could perfectly be caught with the general catchpoint on Ada exceptions.
10748 However, we can easily differentiate these two special cases, and having
10749 the option to distinguish these two cases from the rest can be useful
10750 to zero-in on certain situations.
10751
10752 Exception catchpoints are a specialized form of breakpoint,
10753 since they rely on inserting breakpoints inside known routines
10754 of the GNAT runtime. The implementation therefore uses a standard
10755 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10756 of breakpoint_ops.
10757
0259addd
JB
10758 Support in the runtime for exception catchpoints have been changed
10759 a few times already, and these changes affect the implementation
10760 of these catchpoints. In order to be able to support several
10761 variants of the runtime, we use a sniffer that will determine
28010a5d 10762 the runtime variant used by the program being debugged. */
f7f9143b
JB
10763
10764/* The different types of catchpoints that we introduced for catching
10765 Ada exceptions. */
10766
10767enum exception_catchpoint_kind
10768{
10769 ex_catch_exception,
10770 ex_catch_exception_unhandled,
10771 ex_catch_assert
10772};
10773
3d0b0fa3
JB
10774/* Ada's standard exceptions. */
10775
10776static char *standard_exc[] = {
10777 "constraint_error",
10778 "program_error",
10779 "storage_error",
10780 "tasking_error"
10781};
10782
0259addd
JB
10783typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10784
10785/* A structure that describes how to support exception catchpoints
10786 for a given executable. */
10787
10788struct exception_support_info
10789{
10790 /* The name of the symbol to break on in order to insert
10791 a catchpoint on exceptions. */
10792 const char *catch_exception_sym;
10793
10794 /* The name of the symbol to break on in order to insert
10795 a catchpoint on unhandled exceptions. */
10796 const char *catch_exception_unhandled_sym;
10797
10798 /* The name of the symbol to break on in order to insert
10799 a catchpoint on failed assertions. */
10800 const char *catch_assert_sym;
10801
10802 /* Assuming that the inferior just triggered an unhandled exception
10803 catchpoint, this function is responsible for returning the address
10804 in inferior memory where the name of that exception is stored.
10805 Return zero if the address could not be computed. */
10806 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10807};
10808
10809static CORE_ADDR ada_unhandled_exception_name_addr (void);
10810static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10811
10812/* The following exception support info structure describes how to
10813 implement exception catchpoints with the latest version of the
10814 Ada runtime (as of 2007-03-06). */
10815
10816static const struct exception_support_info default_exception_support_info =
10817{
10818 "__gnat_debug_raise_exception", /* catch_exception_sym */
10819 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10820 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10821 ada_unhandled_exception_name_addr
10822};
10823
10824/* The following exception support info structure describes how to
10825 implement exception catchpoints with a slightly older version
10826 of the Ada runtime. */
10827
10828static const struct exception_support_info exception_support_info_fallback =
10829{
10830 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10831 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10832 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10833 ada_unhandled_exception_name_addr_from_raise
10834};
10835
f17011e0
JB
10836/* Return nonzero if we can detect the exception support routines
10837 described in EINFO.
10838
10839 This function errors out if an abnormal situation is detected
10840 (for instance, if we find the exception support routines, but
10841 that support is found to be incomplete). */
10842
10843static int
10844ada_has_this_exception_support (const struct exception_support_info *einfo)
10845{
10846 struct symbol *sym;
10847
10848 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10849 that should be compiled with debugging information. As a result, we
10850 expect to find that symbol in the symtabs. */
10851
10852 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10853 if (sym == NULL)
a6af7abe
JB
10854 {
10855 /* Perhaps we did not find our symbol because the Ada runtime was
10856 compiled without debugging info, or simply stripped of it.
10857 It happens on some GNU/Linux distributions for instance, where
10858 users have to install a separate debug package in order to get
10859 the runtime's debugging info. In that situation, let the user
10860 know why we cannot insert an Ada exception catchpoint.
10861
10862 Note: Just for the purpose of inserting our Ada exception
10863 catchpoint, we could rely purely on the associated minimal symbol.
10864 But we would be operating in degraded mode anyway, since we are
10865 still lacking the debugging info needed later on to extract
10866 the name of the exception being raised (this name is printed in
10867 the catchpoint message, and is also used when trying to catch
10868 a specific exception). We do not handle this case for now. */
10869 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10870 error (_("Your Ada runtime appears to be missing some debugging "
10871 "information.\nCannot insert Ada exception catchpoint "
10872 "in this configuration."));
10873
10874 return 0;
10875 }
f17011e0
JB
10876
10877 /* Make sure that the symbol we found corresponds to a function. */
10878
10879 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10880 error (_("Symbol \"%s\" is not a function (class = %d)"),
10881 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10882
10883 return 1;
10884}
10885
0259addd
JB
10886/* Inspect the Ada runtime and determine which exception info structure
10887 should be used to provide support for exception catchpoints.
10888
3eecfa55
JB
10889 This function will always set the per-inferior exception_info,
10890 or raise an error. */
0259addd
JB
10891
10892static void
10893ada_exception_support_info_sniffer (void)
10894{
3eecfa55 10895 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10896
10897 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10898 if (data->exception_info != NULL)
0259addd
JB
10899 return;
10900
10901 /* Check the latest (default) exception support info. */
f17011e0 10902 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10903 {
3eecfa55 10904 data->exception_info = &default_exception_support_info;
0259addd
JB
10905 return;
10906 }
10907
10908 /* Try our fallback exception suport info. */
f17011e0 10909 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10910 {
3eecfa55 10911 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10912 return;
10913 }
10914
10915 /* Sometimes, it is normal for us to not be able to find the routine
10916 we are looking for. This happens when the program is linked with
10917 the shared version of the GNAT runtime, and the program has not been
10918 started yet. Inform the user of these two possible causes if
10919 applicable. */
10920
ccefe4c4 10921 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10922 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10923
10924 /* If the symbol does not exist, then check that the program is
10925 already started, to make sure that shared libraries have been
10926 loaded. If it is not started, this may mean that the symbol is
10927 in a shared library. */
10928
10929 if (ptid_get_pid (inferior_ptid) == 0)
10930 error (_("Unable to insert catchpoint. Try to start the program first."));
10931
10932 /* At this point, we know that we are debugging an Ada program and
10933 that the inferior has been started, but we still are not able to
0963b4bd 10934 find the run-time symbols. That can mean that we are in
0259addd
JB
10935 configurable run time mode, or that a-except as been optimized
10936 out by the linker... In any case, at this point it is not worth
10937 supporting this feature. */
10938
7dda8cff 10939 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10940}
10941
f7f9143b
JB
10942/* True iff FRAME is very likely to be that of a function that is
10943 part of the runtime system. This is all very heuristic, but is
10944 intended to be used as advice as to what frames are uninteresting
10945 to most users. */
10946
10947static int
10948is_known_support_routine (struct frame_info *frame)
10949{
4ed6b5be 10950 struct symtab_and_line sal;
0d5cff50 10951 const char *func_name;
692465f1 10952 enum language func_lang;
f7f9143b 10953 int i;
f7f9143b 10954
4ed6b5be
JB
10955 /* If this code does not have any debugging information (no symtab),
10956 This cannot be any user code. */
f7f9143b 10957
4ed6b5be 10958 find_frame_sal (frame, &sal);
f7f9143b
JB
10959 if (sal.symtab == NULL)
10960 return 1;
10961
4ed6b5be
JB
10962 /* If there is a symtab, but the associated source file cannot be
10963 located, then assume this is not user code: Selecting a frame
10964 for which we cannot display the code would not be very helpful
10965 for the user. This should also take care of case such as VxWorks
10966 where the kernel has some debugging info provided for a few units. */
f7f9143b 10967
9bbc9174 10968 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10969 return 1;
10970
4ed6b5be
JB
10971 /* Check the unit filename againt the Ada runtime file naming.
10972 We also check the name of the objfile against the name of some
10973 known system libraries that sometimes come with debugging info
10974 too. */
10975
f7f9143b
JB
10976 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10977 {
10978 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 10979 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 10980 return 1;
4ed6b5be
JB
10981 if (sal.symtab->objfile != NULL
10982 && re_exec (sal.symtab->objfile->name))
10983 return 1;
f7f9143b
JB
10984 }
10985
4ed6b5be 10986 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10987
e9e07ba6 10988 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10989 if (func_name == NULL)
10990 return 1;
10991
10992 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10993 {
10994 re_comp (known_auxiliary_function_name_patterns[i]);
10995 if (re_exec (func_name))
10996 return 1;
10997 }
10998
10999 return 0;
11000}
11001
11002/* Find the first frame that contains debugging information and that is not
11003 part of the Ada run-time, starting from FI and moving upward. */
11004
0ef643c8 11005void
f7f9143b
JB
11006ada_find_printable_frame (struct frame_info *fi)
11007{
11008 for (; fi != NULL; fi = get_prev_frame (fi))
11009 {
11010 if (!is_known_support_routine (fi))
11011 {
11012 select_frame (fi);
11013 break;
11014 }
11015 }
11016
11017}
11018
11019/* Assuming that the inferior just triggered an unhandled exception
11020 catchpoint, return the address in inferior memory where the name
11021 of the exception is stored.
11022
11023 Return zero if the address could not be computed. */
11024
11025static CORE_ADDR
11026ada_unhandled_exception_name_addr (void)
0259addd
JB
11027{
11028 return parse_and_eval_address ("e.full_name");
11029}
11030
11031/* Same as ada_unhandled_exception_name_addr, except that this function
11032 should be used when the inferior uses an older version of the runtime,
11033 where the exception name needs to be extracted from a specific frame
11034 several frames up in the callstack. */
11035
11036static CORE_ADDR
11037ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11038{
11039 int frame_level;
11040 struct frame_info *fi;
3eecfa55 11041 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11042
11043 /* To determine the name of this exception, we need to select
11044 the frame corresponding to RAISE_SYM_NAME. This frame is
11045 at least 3 levels up, so we simply skip the first 3 frames
11046 without checking the name of their associated function. */
11047 fi = get_current_frame ();
11048 for (frame_level = 0; frame_level < 3; frame_level += 1)
11049 if (fi != NULL)
11050 fi = get_prev_frame (fi);
11051
11052 while (fi != NULL)
11053 {
0d5cff50 11054 const char *func_name;
692465f1
JB
11055 enum language func_lang;
11056
e9e07ba6 11057 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11058 if (func_name != NULL
3eecfa55 11059 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11060 break; /* We found the frame we were looking for... */
11061 fi = get_prev_frame (fi);
11062 }
11063
11064 if (fi == NULL)
11065 return 0;
11066
11067 select_frame (fi);
11068 return parse_and_eval_address ("id.full_name");
11069}
11070
11071/* Assuming the inferior just triggered an Ada exception catchpoint
11072 (of any type), return the address in inferior memory where the name
11073 of the exception is stored, if applicable.
11074
11075 Return zero if the address could not be computed, or if not relevant. */
11076
11077static CORE_ADDR
11078ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11079 struct breakpoint *b)
11080{
3eecfa55
JB
11081 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11082
f7f9143b
JB
11083 switch (ex)
11084 {
11085 case ex_catch_exception:
11086 return (parse_and_eval_address ("e.full_name"));
11087 break;
11088
11089 case ex_catch_exception_unhandled:
3eecfa55 11090 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11091 break;
11092
11093 case ex_catch_assert:
11094 return 0; /* Exception name is not relevant in this case. */
11095 break;
11096
11097 default:
11098 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11099 break;
11100 }
11101
11102 return 0; /* Should never be reached. */
11103}
11104
11105/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11106 any error that ada_exception_name_addr_1 might cause to be thrown.
11107 When an error is intercepted, a warning with the error message is printed,
11108 and zero is returned. */
11109
11110static CORE_ADDR
11111ada_exception_name_addr (enum exception_catchpoint_kind ex,
11112 struct breakpoint *b)
11113{
bfd189b1 11114 volatile struct gdb_exception e;
f7f9143b
JB
11115 CORE_ADDR result = 0;
11116
11117 TRY_CATCH (e, RETURN_MASK_ERROR)
11118 {
11119 result = ada_exception_name_addr_1 (ex, b);
11120 }
11121
11122 if (e.reason < 0)
11123 {
11124 warning (_("failed to get exception name: %s"), e.message);
11125 return 0;
11126 }
11127
11128 return result;
11129}
11130
28010a5d
PA
11131static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11132 char *, char **,
c0a91b2b 11133 const struct breakpoint_ops **);
28010a5d
PA
11134static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11135
11136/* Ada catchpoints.
11137
11138 In the case of catchpoints on Ada exceptions, the catchpoint will
11139 stop the target on every exception the program throws. When a user
11140 specifies the name of a specific exception, we translate this
11141 request into a condition expression (in text form), and then parse
11142 it into an expression stored in each of the catchpoint's locations.
11143 We then use this condition to check whether the exception that was
11144 raised is the one the user is interested in. If not, then the
11145 target is resumed again. We store the name of the requested
11146 exception, in order to be able to re-set the condition expression
11147 when symbols change. */
11148
11149/* An instance of this type is used to represent an Ada catchpoint
11150 breakpoint location. It includes a "struct bp_location" as a kind
11151 of base class; users downcast to "struct bp_location *" when
11152 needed. */
11153
11154struct ada_catchpoint_location
11155{
11156 /* The base class. */
11157 struct bp_location base;
11158
11159 /* The condition that checks whether the exception that was raised
11160 is the specific exception the user specified on catchpoint
11161 creation. */
11162 struct expression *excep_cond_expr;
11163};
11164
11165/* Implement the DTOR method in the bp_location_ops structure for all
11166 Ada exception catchpoint kinds. */
11167
11168static void
11169ada_catchpoint_location_dtor (struct bp_location *bl)
11170{
11171 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11172
11173 xfree (al->excep_cond_expr);
11174}
11175
11176/* The vtable to be used in Ada catchpoint locations. */
11177
11178static const struct bp_location_ops ada_catchpoint_location_ops =
11179{
11180 ada_catchpoint_location_dtor
11181};
11182
11183/* An instance of this type is used to represent an Ada catchpoint.
11184 It includes a "struct breakpoint" as a kind of base class; users
11185 downcast to "struct breakpoint *" when needed. */
11186
11187struct ada_catchpoint
11188{
11189 /* The base class. */
11190 struct breakpoint base;
11191
11192 /* The name of the specific exception the user specified. */
11193 char *excep_string;
11194};
11195
11196/* Parse the exception condition string in the context of each of the
11197 catchpoint's locations, and store them for later evaluation. */
11198
11199static void
11200create_excep_cond_exprs (struct ada_catchpoint *c)
11201{
11202 struct cleanup *old_chain;
11203 struct bp_location *bl;
11204 char *cond_string;
11205
11206 /* Nothing to do if there's no specific exception to catch. */
11207 if (c->excep_string == NULL)
11208 return;
11209
11210 /* Same if there are no locations... */
11211 if (c->base.loc == NULL)
11212 return;
11213
11214 /* Compute the condition expression in text form, from the specific
11215 expection we want to catch. */
11216 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11217 old_chain = make_cleanup (xfree, cond_string);
11218
11219 /* Iterate over all the catchpoint's locations, and parse an
11220 expression for each. */
11221 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11222 {
11223 struct ada_catchpoint_location *ada_loc
11224 = (struct ada_catchpoint_location *) bl;
11225 struct expression *exp = NULL;
11226
11227 if (!bl->shlib_disabled)
11228 {
11229 volatile struct gdb_exception e;
11230 char *s;
11231
11232 s = cond_string;
11233 TRY_CATCH (e, RETURN_MASK_ERROR)
11234 {
1bb9788d
TT
11235 exp = parse_exp_1 (&s, bl->address,
11236 block_for_pc (bl->address), 0);
28010a5d
PA
11237 }
11238 if (e.reason < 0)
11239 warning (_("failed to reevaluate internal exception condition "
11240 "for catchpoint %d: %s"),
11241 c->base.number, e.message);
11242 }
11243
11244 ada_loc->excep_cond_expr = exp;
11245 }
11246
11247 do_cleanups (old_chain);
11248}
11249
11250/* Implement the DTOR method in the breakpoint_ops structure for all
11251 exception catchpoint kinds. */
11252
11253static void
11254dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11255{
11256 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11257
11258 xfree (c->excep_string);
348d480f 11259
2060206e 11260 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11261}
11262
11263/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11264 structure for all exception catchpoint kinds. */
11265
11266static struct bp_location *
11267allocate_location_exception (enum exception_catchpoint_kind ex,
11268 struct breakpoint *self)
11269{
11270 struct ada_catchpoint_location *loc;
11271
11272 loc = XNEW (struct ada_catchpoint_location);
11273 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11274 loc->excep_cond_expr = NULL;
11275 return &loc->base;
11276}
11277
11278/* Implement the RE_SET method in the breakpoint_ops structure for all
11279 exception catchpoint kinds. */
11280
11281static void
11282re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11283{
11284 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11285
11286 /* Call the base class's method. This updates the catchpoint's
11287 locations. */
2060206e 11288 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11289
11290 /* Reparse the exception conditional expressions. One for each
11291 location. */
11292 create_excep_cond_exprs (c);
11293}
11294
11295/* Returns true if we should stop for this breakpoint hit. If the
11296 user specified a specific exception, we only want to cause a stop
11297 if the program thrown that exception. */
11298
11299static int
11300should_stop_exception (const struct bp_location *bl)
11301{
11302 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11303 const struct ada_catchpoint_location *ada_loc
11304 = (const struct ada_catchpoint_location *) bl;
11305 volatile struct gdb_exception ex;
11306 int stop;
11307
11308 /* With no specific exception, should always stop. */
11309 if (c->excep_string == NULL)
11310 return 1;
11311
11312 if (ada_loc->excep_cond_expr == NULL)
11313 {
11314 /* We will have a NULL expression if back when we were creating
11315 the expressions, this location's had failed to parse. */
11316 return 1;
11317 }
11318
11319 stop = 1;
11320 TRY_CATCH (ex, RETURN_MASK_ALL)
11321 {
11322 struct value *mark;
11323
11324 mark = value_mark ();
11325 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11326 value_free_to_mark (mark);
11327 }
11328 if (ex.reason < 0)
11329 exception_fprintf (gdb_stderr, ex,
11330 _("Error in testing exception condition:\n"));
11331 return stop;
11332}
11333
11334/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11335 for all exception catchpoint kinds. */
11336
11337static void
11338check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11339{
11340 bs->stop = should_stop_exception (bs->bp_location_at);
11341}
11342
f7f9143b
JB
11343/* Implement the PRINT_IT method in the breakpoint_ops structure
11344 for all exception catchpoint kinds. */
11345
11346static enum print_stop_action
348d480f 11347print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11348{
79a45e25 11349 struct ui_out *uiout = current_uiout;
348d480f
PA
11350 struct breakpoint *b = bs->breakpoint_at;
11351
956a9fb9 11352 annotate_catchpoint (b->number);
f7f9143b 11353
956a9fb9 11354 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11355 {
956a9fb9
JB
11356 ui_out_field_string (uiout, "reason",
11357 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11358 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11359 }
11360
00eb2c4a
JB
11361 ui_out_text (uiout,
11362 b->disposition == disp_del ? "\nTemporary catchpoint "
11363 : "\nCatchpoint ");
956a9fb9
JB
11364 ui_out_field_int (uiout, "bkptno", b->number);
11365 ui_out_text (uiout, ", ");
f7f9143b 11366
f7f9143b
JB
11367 switch (ex)
11368 {
11369 case ex_catch_exception:
f7f9143b 11370 case ex_catch_exception_unhandled:
956a9fb9
JB
11371 {
11372 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11373 char exception_name[256];
11374
11375 if (addr != 0)
11376 {
11377 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11378 exception_name [sizeof (exception_name) - 1] = '\0';
11379 }
11380 else
11381 {
11382 /* For some reason, we were unable to read the exception
11383 name. This could happen if the Runtime was compiled
11384 without debugging info, for instance. In that case,
11385 just replace the exception name by the generic string
11386 "exception" - it will read as "an exception" in the
11387 notification we are about to print. */
967cff16 11388 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11389 }
11390 /* In the case of unhandled exception breakpoints, we print
11391 the exception name as "unhandled EXCEPTION_NAME", to make
11392 it clearer to the user which kind of catchpoint just got
11393 hit. We used ui_out_text to make sure that this extra
11394 info does not pollute the exception name in the MI case. */
11395 if (ex == ex_catch_exception_unhandled)
11396 ui_out_text (uiout, "unhandled ");
11397 ui_out_field_string (uiout, "exception-name", exception_name);
11398 }
11399 break;
f7f9143b 11400 case ex_catch_assert:
956a9fb9
JB
11401 /* In this case, the name of the exception is not really
11402 important. Just print "failed assertion" to make it clearer
11403 that his program just hit an assertion-failure catchpoint.
11404 We used ui_out_text because this info does not belong in
11405 the MI output. */
11406 ui_out_text (uiout, "failed assertion");
11407 break;
f7f9143b 11408 }
956a9fb9
JB
11409 ui_out_text (uiout, " at ");
11410 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11411
11412 return PRINT_SRC_AND_LOC;
11413}
11414
11415/* Implement the PRINT_ONE method in the breakpoint_ops structure
11416 for all exception catchpoint kinds. */
11417
11418static void
11419print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11420 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11421{
79a45e25 11422 struct ui_out *uiout = current_uiout;
28010a5d 11423 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11424 struct value_print_options opts;
11425
11426 get_user_print_options (&opts);
11427 if (opts.addressprint)
f7f9143b
JB
11428 {
11429 annotate_field (4);
5af949e3 11430 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11431 }
11432
11433 annotate_field (5);
a6d9a66e 11434 *last_loc = b->loc;
f7f9143b
JB
11435 switch (ex)
11436 {
11437 case ex_catch_exception:
28010a5d 11438 if (c->excep_string != NULL)
f7f9143b 11439 {
28010a5d
PA
11440 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11441
f7f9143b
JB
11442 ui_out_field_string (uiout, "what", msg);
11443 xfree (msg);
11444 }
11445 else
11446 ui_out_field_string (uiout, "what", "all Ada exceptions");
11447
11448 break;
11449
11450 case ex_catch_exception_unhandled:
11451 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11452 break;
11453
11454 case ex_catch_assert:
11455 ui_out_field_string (uiout, "what", "failed Ada assertions");
11456 break;
11457
11458 default:
11459 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11460 break;
11461 }
11462}
11463
11464/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11465 for all exception catchpoint kinds. */
11466
11467static void
11468print_mention_exception (enum exception_catchpoint_kind ex,
11469 struct breakpoint *b)
11470{
28010a5d 11471 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11472 struct ui_out *uiout = current_uiout;
28010a5d 11473
00eb2c4a
JB
11474 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11475 : _("Catchpoint "));
11476 ui_out_field_int (uiout, "bkptno", b->number);
11477 ui_out_text (uiout, ": ");
11478
f7f9143b
JB
11479 switch (ex)
11480 {
11481 case ex_catch_exception:
28010a5d 11482 if (c->excep_string != NULL)
00eb2c4a
JB
11483 {
11484 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11485 struct cleanup *old_chain = make_cleanup (xfree, info);
11486
11487 ui_out_text (uiout, info);
11488 do_cleanups (old_chain);
11489 }
f7f9143b 11490 else
00eb2c4a 11491 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11492 break;
11493
11494 case ex_catch_exception_unhandled:
00eb2c4a 11495 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11496 break;
11497
11498 case ex_catch_assert:
00eb2c4a 11499 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11500 break;
11501
11502 default:
11503 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11504 break;
11505 }
11506}
11507
6149aea9
PA
11508/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11509 for all exception catchpoint kinds. */
11510
11511static void
11512print_recreate_exception (enum exception_catchpoint_kind ex,
11513 struct breakpoint *b, struct ui_file *fp)
11514{
28010a5d
PA
11515 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11516
6149aea9
PA
11517 switch (ex)
11518 {
11519 case ex_catch_exception:
11520 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11521 if (c->excep_string != NULL)
11522 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11523 break;
11524
11525 case ex_catch_exception_unhandled:
78076abc 11526 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11527 break;
11528
11529 case ex_catch_assert:
11530 fprintf_filtered (fp, "catch assert");
11531 break;
11532
11533 default:
11534 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11535 }
d9b3f62e 11536 print_recreate_thread (b, fp);
6149aea9
PA
11537}
11538
f7f9143b
JB
11539/* Virtual table for "catch exception" breakpoints. */
11540
28010a5d
PA
11541static void
11542dtor_catch_exception (struct breakpoint *b)
11543{
11544 dtor_exception (ex_catch_exception, b);
11545}
11546
11547static struct bp_location *
11548allocate_location_catch_exception (struct breakpoint *self)
11549{
11550 return allocate_location_exception (ex_catch_exception, self);
11551}
11552
11553static void
11554re_set_catch_exception (struct breakpoint *b)
11555{
11556 re_set_exception (ex_catch_exception, b);
11557}
11558
11559static void
11560check_status_catch_exception (bpstat bs)
11561{
11562 check_status_exception (ex_catch_exception, bs);
11563}
11564
f7f9143b 11565static enum print_stop_action
348d480f 11566print_it_catch_exception (bpstat bs)
f7f9143b 11567{
348d480f 11568 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11569}
11570
11571static void
a6d9a66e 11572print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11573{
a6d9a66e 11574 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11575}
11576
11577static void
11578print_mention_catch_exception (struct breakpoint *b)
11579{
11580 print_mention_exception (ex_catch_exception, b);
11581}
11582
6149aea9
PA
11583static void
11584print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11585{
11586 print_recreate_exception (ex_catch_exception, b, fp);
11587}
11588
2060206e 11589static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11590
11591/* Virtual table for "catch exception unhandled" breakpoints. */
11592
28010a5d
PA
11593static void
11594dtor_catch_exception_unhandled (struct breakpoint *b)
11595{
11596 dtor_exception (ex_catch_exception_unhandled, b);
11597}
11598
11599static struct bp_location *
11600allocate_location_catch_exception_unhandled (struct breakpoint *self)
11601{
11602 return allocate_location_exception (ex_catch_exception_unhandled, self);
11603}
11604
11605static void
11606re_set_catch_exception_unhandled (struct breakpoint *b)
11607{
11608 re_set_exception (ex_catch_exception_unhandled, b);
11609}
11610
11611static void
11612check_status_catch_exception_unhandled (bpstat bs)
11613{
11614 check_status_exception (ex_catch_exception_unhandled, bs);
11615}
11616
f7f9143b 11617static enum print_stop_action
348d480f 11618print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11619{
348d480f 11620 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11621}
11622
11623static void
a6d9a66e
UW
11624print_one_catch_exception_unhandled (struct breakpoint *b,
11625 struct bp_location **last_loc)
f7f9143b 11626{
a6d9a66e 11627 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11628}
11629
11630static void
11631print_mention_catch_exception_unhandled (struct breakpoint *b)
11632{
11633 print_mention_exception (ex_catch_exception_unhandled, b);
11634}
11635
6149aea9
PA
11636static void
11637print_recreate_catch_exception_unhandled (struct breakpoint *b,
11638 struct ui_file *fp)
11639{
11640 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11641}
11642
2060206e 11643static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11644
11645/* Virtual table for "catch assert" breakpoints. */
11646
28010a5d
PA
11647static void
11648dtor_catch_assert (struct breakpoint *b)
11649{
11650 dtor_exception (ex_catch_assert, b);
11651}
11652
11653static struct bp_location *
11654allocate_location_catch_assert (struct breakpoint *self)
11655{
11656 return allocate_location_exception (ex_catch_assert, self);
11657}
11658
11659static void
11660re_set_catch_assert (struct breakpoint *b)
11661{
11662 return re_set_exception (ex_catch_assert, b);
11663}
11664
11665static void
11666check_status_catch_assert (bpstat bs)
11667{
11668 check_status_exception (ex_catch_assert, bs);
11669}
11670
f7f9143b 11671static enum print_stop_action
348d480f 11672print_it_catch_assert (bpstat bs)
f7f9143b 11673{
348d480f 11674 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11675}
11676
11677static void
a6d9a66e 11678print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11679{
a6d9a66e 11680 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11681}
11682
11683static void
11684print_mention_catch_assert (struct breakpoint *b)
11685{
11686 print_mention_exception (ex_catch_assert, b);
11687}
11688
6149aea9
PA
11689static void
11690print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11691{
11692 print_recreate_exception (ex_catch_assert, b, fp);
11693}
11694
2060206e 11695static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11696
f7f9143b
JB
11697/* Return a newly allocated copy of the first space-separated token
11698 in ARGSP, and then adjust ARGSP to point immediately after that
11699 token.
11700
11701 Return NULL if ARGPS does not contain any more tokens. */
11702
11703static char *
11704ada_get_next_arg (char **argsp)
11705{
11706 char *args = *argsp;
11707 char *end;
11708 char *result;
11709
0fcd72ba 11710 args = skip_spaces (args);
f7f9143b
JB
11711 if (args[0] == '\0')
11712 return NULL; /* No more arguments. */
11713
11714 /* Find the end of the current argument. */
11715
0fcd72ba 11716 end = skip_to_space (args);
f7f9143b
JB
11717
11718 /* Adjust ARGSP to point to the start of the next argument. */
11719
11720 *argsp = end;
11721
11722 /* Make a copy of the current argument and return it. */
11723
11724 result = xmalloc (end - args + 1);
11725 strncpy (result, args, end - args);
11726 result[end - args] = '\0';
11727
11728 return result;
11729}
11730
11731/* Split the arguments specified in a "catch exception" command.
11732 Set EX to the appropriate catchpoint type.
28010a5d 11733 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11734 specified by the user.
11735 If a condition is found at the end of the arguments, the condition
11736 expression is stored in COND_STRING (memory must be deallocated
11737 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11738
11739static void
11740catch_ada_exception_command_split (char *args,
11741 enum exception_catchpoint_kind *ex,
5845583d
JB
11742 char **excep_string,
11743 char **cond_string)
f7f9143b
JB
11744{
11745 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11746 char *exception_name;
5845583d 11747 char *cond = NULL;
f7f9143b
JB
11748
11749 exception_name = ada_get_next_arg (&args);
5845583d
JB
11750 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11751 {
11752 /* This is not an exception name; this is the start of a condition
11753 expression for a catchpoint on all exceptions. So, "un-get"
11754 this token, and set exception_name to NULL. */
11755 xfree (exception_name);
11756 exception_name = NULL;
11757 args -= 2;
11758 }
f7f9143b
JB
11759 make_cleanup (xfree, exception_name);
11760
5845583d 11761 /* Check to see if we have a condition. */
f7f9143b 11762
0fcd72ba 11763 args = skip_spaces (args);
5845583d
JB
11764 if (strncmp (args, "if", 2) == 0
11765 && (isspace (args[2]) || args[2] == '\0'))
11766 {
11767 args += 2;
11768 args = skip_spaces (args);
11769
11770 if (args[0] == '\0')
11771 error (_("Condition missing after `if' keyword"));
11772 cond = xstrdup (args);
11773 make_cleanup (xfree, cond);
11774
11775 args += strlen (args);
11776 }
11777
11778 /* Check that we do not have any more arguments. Anything else
11779 is unexpected. */
f7f9143b
JB
11780
11781 if (args[0] != '\0')
11782 error (_("Junk at end of expression"));
11783
11784 discard_cleanups (old_chain);
11785
11786 if (exception_name == NULL)
11787 {
11788 /* Catch all exceptions. */
11789 *ex = ex_catch_exception;
28010a5d 11790 *excep_string = NULL;
f7f9143b
JB
11791 }
11792 else if (strcmp (exception_name, "unhandled") == 0)
11793 {
11794 /* Catch unhandled exceptions. */
11795 *ex = ex_catch_exception_unhandled;
28010a5d 11796 *excep_string = NULL;
f7f9143b
JB
11797 }
11798 else
11799 {
11800 /* Catch a specific exception. */
11801 *ex = ex_catch_exception;
28010a5d 11802 *excep_string = exception_name;
f7f9143b 11803 }
5845583d 11804 *cond_string = cond;
f7f9143b
JB
11805}
11806
11807/* Return the name of the symbol on which we should break in order to
11808 implement a catchpoint of the EX kind. */
11809
11810static const char *
11811ada_exception_sym_name (enum exception_catchpoint_kind ex)
11812{
3eecfa55
JB
11813 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11814
11815 gdb_assert (data->exception_info != NULL);
0259addd 11816
f7f9143b
JB
11817 switch (ex)
11818 {
11819 case ex_catch_exception:
3eecfa55 11820 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11821 break;
11822 case ex_catch_exception_unhandled:
3eecfa55 11823 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11824 break;
11825 case ex_catch_assert:
3eecfa55 11826 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11827 break;
11828 default:
11829 internal_error (__FILE__, __LINE__,
11830 _("unexpected catchpoint kind (%d)"), ex);
11831 }
11832}
11833
11834/* Return the breakpoint ops "virtual table" used for catchpoints
11835 of the EX kind. */
11836
c0a91b2b 11837static const struct breakpoint_ops *
4b9eee8c 11838ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11839{
11840 switch (ex)
11841 {
11842 case ex_catch_exception:
11843 return (&catch_exception_breakpoint_ops);
11844 break;
11845 case ex_catch_exception_unhandled:
11846 return (&catch_exception_unhandled_breakpoint_ops);
11847 break;
11848 case ex_catch_assert:
11849 return (&catch_assert_breakpoint_ops);
11850 break;
11851 default:
11852 internal_error (__FILE__, __LINE__,
11853 _("unexpected catchpoint kind (%d)"), ex);
11854 }
11855}
11856
11857/* Return the condition that will be used to match the current exception
11858 being raised with the exception that the user wants to catch. This
11859 assumes that this condition is used when the inferior just triggered
11860 an exception catchpoint.
11861
11862 The string returned is a newly allocated string that needs to be
11863 deallocated later. */
11864
11865static char *
28010a5d 11866ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11867{
3d0b0fa3
JB
11868 int i;
11869
0963b4bd 11870 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11871 runtime units that have been compiled without debugging info; if
28010a5d 11872 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11873 exception (e.g. "constraint_error") then, during the evaluation
11874 of the condition expression, the symbol lookup on this name would
0963b4bd 11875 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11876 may then be set only on user-defined exceptions which have the
11877 same not-fully-qualified name (e.g. my_package.constraint_error).
11878
11879 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11880 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11881 exception constraint_error" is rewritten into "catch exception
11882 standard.constraint_error".
11883
11884 If an exception named contraint_error is defined in another package of
11885 the inferior program, then the only way to specify this exception as a
11886 breakpoint condition is to use its fully-qualified named:
11887 e.g. my_package.constraint_error. */
11888
11889 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11890 {
28010a5d 11891 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11892 {
11893 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11894 excep_string);
3d0b0fa3
JB
11895 }
11896 }
28010a5d 11897 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11898}
11899
11900/* Return the symtab_and_line that should be used to insert an exception
11901 catchpoint of the TYPE kind.
11902
28010a5d
PA
11903 EXCEP_STRING should contain the name of a specific exception that
11904 the catchpoint should catch, or NULL otherwise.
f7f9143b 11905
28010a5d
PA
11906 ADDR_STRING returns the name of the function where the real
11907 breakpoint that implements the catchpoints is set, depending on the
11908 type of catchpoint we need to create. */
f7f9143b
JB
11909
11910static struct symtab_and_line
28010a5d 11911ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11912 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11913{
11914 const char *sym_name;
11915 struct symbol *sym;
f7f9143b 11916
0259addd
JB
11917 /* First, find out which exception support info to use. */
11918 ada_exception_support_info_sniffer ();
11919
11920 /* Then lookup the function on which we will break in order to catch
f7f9143b 11921 the Ada exceptions requested by the user. */
f7f9143b
JB
11922 sym_name = ada_exception_sym_name (ex);
11923 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11924
f17011e0
JB
11925 /* We can assume that SYM is not NULL at this stage. If the symbol
11926 did not exist, ada_exception_support_info_sniffer would have
11927 raised an exception.
f7f9143b 11928
f17011e0
JB
11929 Also, ada_exception_support_info_sniffer should have already
11930 verified that SYM is a function symbol. */
11931 gdb_assert (sym != NULL);
11932 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11933
11934 /* Set ADDR_STRING. */
f7f9143b
JB
11935 *addr_string = xstrdup (sym_name);
11936
f7f9143b 11937 /* Set OPS. */
4b9eee8c 11938 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11939
f17011e0 11940 return find_function_start_sal (sym, 1);
f7f9143b
JB
11941}
11942
11943/* Parse the arguments (ARGS) of the "catch exception" command.
11944
f7f9143b
JB
11945 If the user asked the catchpoint to catch only a specific
11946 exception, then save the exception name in ADDR_STRING.
11947
5845583d
JB
11948 If the user provided a condition, then set COND_STRING to
11949 that condition expression (the memory must be deallocated
11950 after use). Otherwise, set COND_STRING to NULL.
11951
f7f9143b
JB
11952 See ada_exception_sal for a description of all the remaining
11953 function arguments of this function. */
11954
9ac4176b 11955static struct symtab_and_line
f7f9143b 11956ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11957 char **excep_string,
5845583d 11958 char **cond_string,
c0a91b2b 11959 const struct breakpoint_ops **ops)
f7f9143b
JB
11960{
11961 enum exception_catchpoint_kind ex;
11962
5845583d 11963 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
11964 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11965}
11966
11967/* Create an Ada exception catchpoint. */
11968
11969static void
11970create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11971 struct symtab_and_line sal,
11972 char *addr_string,
11973 char *excep_string,
5845583d 11974 char *cond_string,
c0a91b2b 11975 const struct breakpoint_ops *ops,
28010a5d
PA
11976 int tempflag,
11977 int from_tty)
11978{
11979 struct ada_catchpoint *c;
11980
11981 c = XNEW (struct ada_catchpoint);
11982 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11983 ops, tempflag, from_tty);
11984 c->excep_string = excep_string;
11985 create_excep_cond_exprs (c);
5845583d
JB
11986 if (cond_string != NULL)
11987 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 11988 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11989}
11990
9ac4176b
PA
11991/* Implement the "catch exception" command. */
11992
11993static void
11994catch_ada_exception_command (char *arg, int from_tty,
11995 struct cmd_list_element *command)
11996{
11997 struct gdbarch *gdbarch = get_current_arch ();
11998 int tempflag;
11999 struct symtab_and_line sal;
12000 char *addr_string = NULL;
28010a5d 12001 char *excep_string = NULL;
5845583d 12002 char *cond_string = NULL;
c0a91b2b 12003 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12004
12005 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12006
12007 if (!arg)
12008 arg = "";
5845583d
JB
12009 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12010 &cond_string, &ops);
28010a5d 12011 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12012 excep_string, cond_string, ops,
12013 tempflag, from_tty);
9ac4176b
PA
12014}
12015
5845583d
JB
12016/* Assuming that ARGS contains the arguments of a "catch assert"
12017 command, parse those arguments and return a symtab_and_line object
12018 for a failed assertion catchpoint.
12019
12020 Set ADDR_STRING to the name of the function where the real
12021 breakpoint that implements the catchpoint is set.
12022
12023 If ARGS contains a condition, set COND_STRING to that condition
12024 (the memory needs to be deallocated after use). Otherwise, set
12025 COND_STRING to NULL. */
12026
9ac4176b 12027static struct symtab_and_line
f7f9143b 12028ada_decode_assert_location (char *args, char **addr_string,
5845583d 12029 char **cond_string,
c0a91b2b 12030 const struct breakpoint_ops **ops)
f7f9143b 12031{
5845583d 12032 args = skip_spaces (args);
f7f9143b 12033
5845583d
JB
12034 /* Check whether a condition was provided. */
12035 if (strncmp (args, "if", 2) == 0
12036 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12037 {
5845583d 12038 args += 2;
0fcd72ba 12039 args = skip_spaces (args);
5845583d
JB
12040 if (args[0] == '\0')
12041 error (_("condition missing after `if' keyword"));
12042 *cond_string = xstrdup (args);
f7f9143b
JB
12043 }
12044
5845583d
JB
12045 /* Otherwise, there should be no other argument at the end of
12046 the command. */
12047 else if (args[0] != '\0')
12048 error (_("Junk at end of arguments."));
12049
28010a5d 12050 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12051}
12052
9ac4176b
PA
12053/* Implement the "catch assert" command. */
12054
12055static void
12056catch_assert_command (char *arg, int from_tty,
12057 struct cmd_list_element *command)
12058{
12059 struct gdbarch *gdbarch = get_current_arch ();
12060 int tempflag;
12061 struct symtab_and_line sal;
12062 char *addr_string = NULL;
5845583d 12063 char *cond_string = NULL;
c0a91b2b 12064 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12065
12066 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12067
12068 if (!arg)
12069 arg = "";
5845583d 12070 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12071 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12072 NULL, cond_string, ops, tempflag,
12073 from_tty);
9ac4176b 12074}
4c4b4cd2
PH
12075 /* Operators */
12076/* Information about operators given special treatment in functions
12077 below. */
12078/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12079
12080#define ADA_OPERATORS \
12081 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12082 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12083 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12084 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12085 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12086 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12087 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12088 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12089 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12090 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12091 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12092 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12093 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12094 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12095 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12096 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12097 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12098 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12099 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12100
12101static void
554794dc
SDJ
12102ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12103 int *argsp)
4c4b4cd2
PH
12104{
12105 switch (exp->elts[pc - 1].opcode)
12106 {
76a01679 12107 default:
4c4b4cd2
PH
12108 operator_length_standard (exp, pc, oplenp, argsp);
12109 break;
12110
12111#define OP_DEFN(op, len, args, binop) \
12112 case op: *oplenp = len; *argsp = args; break;
12113 ADA_OPERATORS;
12114#undef OP_DEFN
52ce6436
PH
12115
12116 case OP_AGGREGATE:
12117 *oplenp = 3;
12118 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12119 break;
12120
12121 case OP_CHOICES:
12122 *oplenp = 3;
12123 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12124 break;
4c4b4cd2
PH
12125 }
12126}
12127
c0201579
JK
12128/* Implementation of the exp_descriptor method operator_check. */
12129
12130static int
12131ada_operator_check (struct expression *exp, int pos,
12132 int (*objfile_func) (struct objfile *objfile, void *data),
12133 void *data)
12134{
12135 const union exp_element *const elts = exp->elts;
12136 struct type *type = NULL;
12137
12138 switch (elts[pos].opcode)
12139 {
12140 case UNOP_IN_RANGE:
12141 case UNOP_QUAL:
12142 type = elts[pos + 1].type;
12143 break;
12144
12145 default:
12146 return operator_check_standard (exp, pos, objfile_func, data);
12147 }
12148
12149 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12150
12151 if (type && TYPE_OBJFILE (type)
12152 && (*objfile_func) (TYPE_OBJFILE (type), data))
12153 return 1;
12154
12155 return 0;
12156}
12157
4c4b4cd2
PH
12158static char *
12159ada_op_name (enum exp_opcode opcode)
12160{
12161 switch (opcode)
12162 {
76a01679 12163 default:
4c4b4cd2 12164 return op_name_standard (opcode);
52ce6436 12165
4c4b4cd2
PH
12166#define OP_DEFN(op, len, args, binop) case op: return #op;
12167 ADA_OPERATORS;
12168#undef OP_DEFN
52ce6436
PH
12169
12170 case OP_AGGREGATE:
12171 return "OP_AGGREGATE";
12172 case OP_CHOICES:
12173 return "OP_CHOICES";
12174 case OP_NAME:
12175 return "OP_NAME";
4c4b4cd2
PH
12176 }
12177}
12178
12179/* As for operator_length, but assumes PC is pointing at the first
12180 element of the operator, and gives meaningful results only for the
52ce6436 12181 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12182
12183static void
76a01679
JB
12184ada_forward_operator_length (struct expression *exp, int pc,
12185 int *oplenp, int *argsp)
4c4b4cd2 12186{
76a01679 12187 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12188 {
12189 default:
12190 *oplenp = *argsp = 0;
12191 break;
52ce6436 12192
4c4b4cd2
PH
12193#define OP_DEFN(op, len, args, binop) \
12194 case op: *oplenp = len; *argsp = args; break;
12195 ADA_OPERATORS;
12196#undef OP_DEFN
52ce6436
PH
12197
12198 case OP_AGGREGATE:
12199 *oplenp = 3;
12200 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12201 break;
12202
12203 case OP_CHOICES:
12204 *oplenp = 3;
12205 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12206 break;
12207
12208 case OP_STRING:
12209 case OP_NAME:
12210 {
12211 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12212
52ce6436
PH
12213 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12214 *argsp = 0;
12215 break;
12216 }
4c4b4cd2
PH
12217 }
12218}
12219
12220static int
12221ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12222{
12223 enum exp_opcode op = exp->elts[elt].opcode;
12224 int oplen, nargs;
12225 int pc = elt;
12226 int i;
76a01679 12227
4c4b4cd2
PH
12228 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12229
76a01679 12230 switch (op)
4c4b4cd2 12231 {
76a01679 12232 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12233 case OP_ATR_FIRST:
12234 case OP_ATR_LAST:
12235 case OP_ATR_LENGTH:
12236 case OP_ATR_IMAGE:
12237 case OP_ATR_MAX:
12238 case OP_ATR_MIN:
12239 case OP_ATR_MODULUS:
12240 case OP_ATR_POS:
12241 case OP_ATR_SIZE:
12242 case OP_ATR_TAG:
12243 case OP_ATR_VAL:
12244 break;
12245
12246 case UNOP_IN_RANGE:
12247 case UNOP_QUAL:
323e0a4a
AC
12248 /* XXX: gdb_sprint_host_address, type_sprint */
12249 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12250 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12251 fprintf_filtered (stream, " (");
12252 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12253 fprintf_filtered (stream, ")");
12254 break;
12255 case BINOP_IN_BOUNDS:
52ce6436
PH
12256 fprintf_filtered (stream, " (%d)",
12257 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12258 break;
12259 case TERNOP_IN_RANGE:
12260 break;
12261
52ce6436
PH
12262 case OP_AGGREGATE:
12263 case OP_OTHERS:
12264 case OP_DISCRETE_RANGE:
12265 case OP_POSITIONAL:
12266 case OP_CHOICES:
12267 break;
12268
12269 case OP_NAME:
12270 case OP_STRING:
12271 {
12272 char *name = &exp->elts[elt + 2].string;
12273 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12274
52ce6436
PH
12275 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12276 break;
12277 }
12278
4c4b4cd2
PH
12279 default:
12280 return dump_subexp_body_standard (exp, stream, elt);
12281 }
12282
12283 elt += oplen;
12284 for (i = 0; i < nargs; i += 1)
12285 elt = dump_subexp (exp, stream, elt);
12286
12287 return elt;
12288}
12289
12290/* The Ada extension of print_subexp (q.v.). */
12291
76a01679
JB
12292static void
12293ada_print_subexp (struct expression *exp, int *pos,
12294 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12295{
52ce6436 12296 int oplen, nargs, i;
4c4b4cd2
PH
12297 int pc = *pos;
12298 enum exp_opcode op = exp->elts[pc].opcode;
12299
12300 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12301
52ce6436 12302 *pos += oplen;
4c4b4cd2
PH
12303 switch (op)
12304 {
12305 default:
52ce6436 12306 *pos -= oplen;
4c4b4cd2
PH
12307 print_subexp_standard (exp, pos, stream, prec);
12308 return;
12309
12310 case OP_VAR_VALUE:
4c4b4cd2
PH
12311 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12312 return;
12313
12314 case BINOP_IN_BOUNDS:
323e0a4a 12315 /* XXX: sprint_subexp */
4c4b4cd2 12316 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12317 fputs_filtered (" in ", stream);
4c4b4cd2 12318 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12319 fputs_filtered ("'range", stream);
4c4b4cd2 12320 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12321 fprintf_filtered (stream, "(%ld)",
12322 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12323 return;
12324
12325 case TERNOP_IN_RANGE:
4c4b4cd2 12326 if (prec >= PREC_EQUAL)
76a01679 12327 fputs_filtered ("(", stream);
323e0a4a 12328 /* XXX: sprint_subexp */
4c4b4cd2 12329 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12330 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12331 print_subexp (exp, pos, stream, PREC_EQUAL);
12332 fputs_filtered (" .. ", stream);
12333 print_subexp (exp, pos, stream, PREC_EQUAL);
12334 if (prec >= PREC_EQUAL)
76a01679
JB
12335 fputs_filtered (")", stream);
12336 return;
4c4b4cd2
PH
12337
12338 case OP_ATR_FIRST:
12339 case OP_ATR_LAST:
12340 case OP_ATR_LENGTH:
12341 case OP_ATR_IMAGE:
12342 case OP_ATR_MAX:
12343 case OP_ATR_MIN:
12344 case OP_ATR_MODULUS:
12345 case OP_ATR_POS:
12346 case OP_ATR_SIZE:
12347 case OP_ATR_TAG:
12348 case OP_ATR_VAL:
4c4b4cd2 12349 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12350 {
12351 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12352 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12353 &type_print_raw_options);
76a01679
JB
12354 *pos += 3;
12355 }
4c4b4cd2 12356 else
76a01679 12357 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12358 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12359 if (nargs > 1)
76a01679
JB
12360 {
12361 int tem;
5b4ee69b 12362
76a01679
JB
12363 for (tem = 1; tem < nargs; tem += 1)
12364 {
12365 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12366 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12367 }
12368 fputs_filtered (")", stream);
12369 }
4c4b4cd2 12370 return;
14f9c5c9 12371
4c4b4cd2 12372 case UNOP_QUAL:
4c4b4cd2
PH
12373 type_print (exp->elts[pc + 1].type, "", stream, 0);
12374 fputs_filtered ("'(", stream);
12375 print_subexp (exp, pos, stream, PREC_PREFIX);
12376 fputs_filtered (")", stream);
12377 return;
14f9c5c9 12378
4c4b4cd2 12379 case UNOP_IN_RANGE:
323e0a4a 12380 /* XXX: sprint_subexp */
4c4b4cd2 12381 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12382 fputs_filtered (" in ", stream);
79d43c61
TT
12383 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12384 &type_print_raw_options);
4c4b4cd2 12385 return;
52ce6436
PH
12386
12387 case OP_DISCRETE_RANGE:
12388 print_subexp (exp, pos, stream, PREC_SUFFIX);
12389 fputs_filtered ("..", stream);
12390 print_subexp (exp, pos, stream, PREC_SUFFIX);
12391 return;
12392
12393 case OP_OTHERS:
12394 fputs_filtered ("others => ", stream);
12395 print_subexp (exp, pos, stream, PREC_SUFFIX);
12396 return;
12397
12398 case OP_CHOICES:
12399 for (i = 0; i < nargs-1; i += 1)
12400 {
12401 if (i > 0)
12402 fputs_filtered ("|", stream);
12403 print_subexp (exp, pos, stream, PREC_SUFFIX);
12404 }
12405 fputs_filtered (" => ", stream);
12406 print_subexp (exp, pos, stream, PREC_SUFFIX);
12407 return;
12408
12409 case OP_POSITIONAL:
12410 print_subexp (exp, pos, stream, PREC_SUFFIX);
12411 return;
12412
12413 case OP_AGGREGATE:
12414 fputs_filtered ("(", stream);
12415 for (i = 0; i < nargs; i += 1)
12416 {
12417 if (i > 0)
12418 fputs_filtered (", ", stream);
12419 print_subexp (exp, pos, stream, PREC_SUFFIX);
12420 }
12421 fputs_filtered (")", stream);
12422 return;
4c4b4cd2
PH
12423 }
12424}
14f9c5c9
AS
12425
12426/* Table mapping opcodes into strings for printing operators
12427 and precedences of the operators. */
12428
d2e4a39e
AS
12429static const struct op_print ada_op_print_tab[] = {
12430 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12431 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12432 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12433 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12434 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12435 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12436 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12437 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12438 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12439 {">=", BINOP_GEQ, PREC_ORDER, 0},
12440 {">", BINOP_GTR, PREC_ORDER, 0},
12441 {"<", BINOP_LESS, PREC_ORDER, 0},
12442 {">>", BINOP_RSH, PREC_SHIFT, 0},
12443 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12444 {"+", BINOP_ADD, PREC_ADD, 0},
12445 {"-", BINOP_SUB, PREC_ADD, 0},
12446 {"&", BINOP_CONCAT, PREC_ADD, 0},
12447 {"*", BINOP_MUL, PREC_MUL, 0},
12448 {"/", BINOP_DIV, PREC_MUL, 0},
12449 {"rem", BINOP_REM, PREC_MUL, 0},
12450 {"mod", BINOP_MOD, PREC_MUL, 0},
12451 {"**", BINOP_EXP, PREC_REPEAT, 0},
12452 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12453 {"-", UNOP_NEG, PREC_PREFIX, 0},
12454 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12455 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12456 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12457 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12458 {".all", UNOP_IND, PREC_SUFFIX, 1},
12459 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12460 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12461 {NULL, 0, 0, 0}
14f9c5c9
AS
12462};
12463\f
72d5681a
PH
12464enum ada_primitive_types {
12465 ada_primitive_type_int,
12466 ada_primitive_type_long,
12467 ada_primitive_type_short,
12468 ada_primitive_type_char,
12469 ada_primitive_type_float,
12470 ada_primitive_type_double,
12471 ada_primitive_type_void,
12472 ada_primitive_type_long_long,
12473 ada_primitive_type_long_double,
12474 ada_primitive_type_natural,
12475 ada_primitive_type_positive,
12476 ada_primitive_type_system_address,
12477 nr_ada_primitive_types
12478};
6c038f32
PH
12479
12480static void
d4a9a881 12481ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12482 struct language_arch_info *lai)
12483{
d4a9a881 12484 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12485
72d5681a 12486 lai->primitive_type_vector
d4a9a881 12487 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12488 struct type *);
e9bb382b
UW
12489
12490 lai->primitive_type_vector [ada_primitive_type_int]
12491 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12492 0, "integer");
12493 lai->primitive_type_vector [ada_primitive_type_long]
12494 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12495 0, "long_integer");
12496 lai->primitive_type_vector [ada_primitive_type_short]
12497 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12498 0, "short_integer");
12499 lai->string_char_type
12500 = lai->primitive_type_vector [ada_primitive_type_char]
12501 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12502 lai->primitive_type_vector [ada_primitive_type_float]
12503 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12504 "float", NULL);
12505 lai->primitive_type_vector [ada_primitive_type_double]
12506 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12507 "long_float", NULL);
12508 lai->primitive_type_vector [ada_primitive_type_long_long]
12509 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12510 0, "long_long_integer");
12511 lai->primitive_type_vector [ada_primitive_type_long_double]
12512 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12513 "long_long_float", NULL);
12514 lai->primitive_type_vector [ada_primitive_type_natural]
12515 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12516 0, "natural");
12517 lai->primitive_type_vector [ada_primitive_type_positive]
12518 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12519 0, "positive");
12520 lai->primitive_type_vector [ada_primitive_type_void]
12521 = builtin->builtin_void;
12522
12523 lai->primitive_type_vector [ada_primitive_type_system_address]
12524 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12525 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12526 = "system__address";
fbb06eb1 12527
47e729a8 12528 lai->bool_type_symbol = NULL;
fbb06eb1 12529 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12530}
6c038f32
PH
12531\f
12532 /* Language vector */
12533
12534/* Not really used, but needed in the ada_language_defn. */
12535
12536static void
6c7a06a3 12537emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12538{
6c7a06a3 12539 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12540}
12541
12542static int
12543parse (void)
12544{
12545 warnings_issued = 0;
12546 return ada_parse ();
12547}
12548
12549static const struct exp_descriptor ada_exp_descriptor = {
12550 ada_print_subexp,
12551 ada_operator_length,
c0201579 12552 ada_operator_check,
6c038f32
PH
12553 ada_op_name,
12554 ada_dump_subexp_body,
12555 ada_evaluate_subexp
12556};
12557
1a119f36 12558/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12559 for Ada. */
12560
1a119f36
JB
12561static symbol_name_cmp_ftype
12562ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12563{
12564 if (should_use_wild_match (lookup_name))
12565 return wild_match;
12566 else
12567 return compare_names;
12568}
12569
a5ee536b
JB
12570/* Implement the "la_read_var_value" language_defn method for Ada. */
12571
12572static struct value *
12573ada_read_var_value (struct symbol *var, struct frame_info *frame)
12574{
12575 struct block *frame_block = NULL;
12576 struct symbol *renaming_sym = NULL;
12577
12578 /* The only case where default_read_var_value is not sufficient
12579 is when VAR is a renaming... */
12580 if (frame)
12581 frame_block = get_frame_block (frame, NULL);
12582 if (frame_block)
12583 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12584 if (renaming_sym != NULL)
12585 return ada_read_renaming_var_value (renaming_sym, frame_block);
12586
12587 /* This is a typical case where we expect the default_read_var_value
12588 function to work. */
12589 return default_read_var_value (var, frame);
12590}
12591
6c038f32
PH
12592const struct language_defn ada_language_defn = {
12593 "ada", /* Language name */
12594 language_ada,
6c038f32 12595 range_check_off,
6c038f32
PH
12596 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12597 that's not quite what this means. */
6c038f32 12598 array_row_major,
9a044a89 12599 macro_expansion_no,
6c038f32
PH
12600 &ada_exp_descriptor,
12601 parse,
12602 ada_error,
12603 resolve,
12604 ada_printchar, /* Print a character constant */
12605 ada_printstr, /* Function to print string constant */
12606 emit_char, /* Function to print single char (not used) */
6c038f32 12607 ada_print_type, /* Print a type using appropriate syntax */
be942545 12608 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12609 ada_val_print, /* Print a value using appropriate syntax */
12610 ada_value_print, /* Print a top-level value */
a5ee536b 12611 ada_read_var_value, /* la_read_var_value */
6c038f32 12612 NULL, /* Language specific skip_trampoline */
2b2d9e11 12613 NULL, /* name_of_this */
6c038f32
PH
12614 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12615 basic_lookup_transparent_type, /* lookup_transparent_type */
12616 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12617 NULL, /* Language specific
12618 class_name_from_physname */
6c038f32
PH
12619 ada_op_print_tab, /* expression operators for printing */
12620 0, /* c-style arrays */
12621 1, /* String lower bound */
6c038f32 12622 ada_get_gdb_completer_word_break_characters,
41d27058 12623 ada_make_symbol_completion_list,
72d5681a 12624 ada_language_arch_info,
e79af960 12625 ada_print_array_index,
41f1b697 12626 default_pass_by_reference,
ae6a3a4c 12627 c_get_string,
1a119f36 12628 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12629 ada_iterate_over_symbols,
6c038f32
PH
12630 LANG_MAGIC
12631};
12632
2c0b251b
PA
12633/* Provide a prototype to silence -Wmissing-prototypes. */
12634extern initialize_file_ftype _initialize_ada_language;
12635
5bf03f13
JB
12636/* Command-list for the "set/show ada" prefix command. */
12637static struct cmd_list_element *set_ada_list;
12638static struct cmd_list_element *show_ada_list;
12639
12640/* Implement the "set ada" prefix command. */
12641
12642static void
12643set_ada_command (char *arg, int from_tty)
12644{
12645 printf_unfiltered (_(\
12646"\"set ada\" must be followed by the name of a setting.\n"));
12647 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12648}
12649
12650/* Implement the "show ada" prefix command. */
12651
12652static void
12653show_ada_command (char *args, int from_tty)
12654{
12655 cmd_show_list (show_ada_list, from_tty, "");
12656}
12657
2060206e
PA
12658static void
12659initialize_ada_catchpoint_ops (void)
12660{
12661 struct breakpoint_ops *ops;
12662
12663 initialize_breakpoint_ops ();
12664
12665 ops = &catch_exception_breakpoint_ops;
12666 *ops = bkpt_breakpoint_ops;
12667 ops->dtor = dtor_catch_exception;
12668 ops->allocate_location = allocate_location_catch_exception;
12669 ops->re_set = re_set_catch_exception;
12670 ops->check_status = check_status_catch_exception;
12671 ops->print_it = print_it_catch_exception;
12672 ops->print_one = print_one_catch_exception;
12673 ops->print_mention = print_mention_catch_exception;
12674 ops->print_recreate = print_recreate_catch_exception;
12675
12676 ops = &catch_exception_unhandled_breakpoint_ops;
12677 *ops = bkpt_breakpoint_ops;
12678 ops->dtor = dtor_catch_exception_unhandled;
12679 ops->allocate_location = allocate_location_catch_exception_unhandled;
12680 ops->re_set = re_set_catch_exception_unhandled;
12681 ops->check_status = check_status_catch_exception_unhandled;
12682 ops->print_it = print_it_catch_exception_unhandled;
12683 ops->print_one = print_one_catch_exception_unhandled;
12684 ops->print_mention = print_mention_catch_exception_unhandled;
12685 ops->print_recreate = print_recreate_catch_exception_unhandled;
12686
12687 ops = &catch_assert_breakpoint_ops;
12688 *ops = bkpt_breakpoint_ops;
12689 ops->dtor = dtor_catch_assert;
12690 ops->allocate_location = allocate_location_catch_assert;
12691 ops->re_set = re_set_catch_assert;
12692 ops->check_status = check_status_catch_assert;
12693 ops->print_it = print_it_catch_assert;
12694 ops->print_one = print_one_catch_assert;
12695 ops->print_mention = print_mention_catch_assert;
12696 ops->print_recreate = print_recreate_catch_assert;
12697}
12698
d2e4a39e 12699void
6c038f32 12700_initialize_ada_language (void)
14f9c5c9 12701{
6c038f32
PH
12702 add_language (&ada_language_defn);
12703
2060206e
PA
12704 initialize_ada_catchpoint_ops ();
12705
5bf03f13
JB
12706 add_prefix_cmd ("ada", no_class, set_ada_command,
12707 _("Prefix command for changing Ada-specfic settings"),
12708 &set_ada_list, "set ada ", 0, &setlist);
12709
12710 add_prefix_cmd ("ada", no_class, show_ada_command,
12711 _("Generic command for showing Ada-specific settings."),
12712 &show_ada_list, "show ada ", 0, &showlist);
12713
12714 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12715 &trust_pad_over_xvs, _("\
12716Enable or disable an optimization trusting PAD types over XVS types"), _("\
12717Show whether an optimization trusting PAD types over XVS types is activated"),
12718 _("\
12719This is related to the encoding used by the GNAT compiler. The debugger\n\
12720should normally trust the contents of PAD types, but certain older versions\n\
12721of GNAT have a bug that sometimes causes the information in the PAD type\n\
12722to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12723work around this bug. It is always safe to turn this option \"off\", but\n\
12724this incurs a slight performance penalty, so it is recommended to NOT change\n\
12725this option to \"off\" unless necessary."),
12726 NULL, NULL, &set_ada_list, &show_ada_list);
12727
9ac4176b
PA
12728 add_catch_command ("exception", _("\
12729Catch Ada exceptions, when raised.\n\
12730With an argument, catch only exceptions with the given name."),
12731 catch_ada_exception_command,
12732 NULL,
12733 CATCH_PERMANENT,
12734 CATCH_TEMPORARY);
12735 add_catch_command ("assert", _("\
12736Catch failed Ada assertions, when raised.\n\
12737With an argument, catch only exceptions with the given name."),
12738 catch_assert_command,
12739 NULL,
12740 CATCH_PERMANENT,
12741 CATCH_TEMPORARY);
12742
6c038f32 12743 varsize_limit = 65536;
6c038f32
PH
12744
12745 obstack_init (&symbol_list_obstack);
12746
12747 decoded_names_store = htab_create_alloc
12748 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12749 NULL, xcalloc, xfree);
6b69afc4 12750
e802dbe0
JB
12751 /* Setup per-inferior data. */
12752 observer_attach_inferior_exit (ada_inferior_exit);
12753 ada_inferior_data
8e260fc0 12754 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12755}
This page took 2.042256 seconds and 4 git commands to generate.